Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz
2016-11-05
In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna; Lipinska, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Lew, Virgilio L.; Thomas, Serge L. Y.
2010-01-01
Background The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. Methodology/Principal Findings The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K+ and Cl− currents were strictly dependent on the presence of Ca2+. The Ca2+-dependent currents were transient, with typical decay half-times of about 5–10 min, suggesting the spontaneous inactivation of a stretch-activated Ca2+ permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca2+ permeability pathway leading to increased [Ca2+]i, secondary activation of Ca2+-sensitive K+ channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. Conclusions/Significance The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca2+-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca2+ content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia. PMID:20195477
Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna; Lipinska, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Lew, Virgilio L; Thomas, Serge L Y
2010-02-26
The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+) and Cl(-) currents were strictly dependent on the presence of Ca(2+). The Ca(2+)-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+) permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca(2+) permeability pathway leading to increased [Ca(2+)](i), secondary activation of Ca(2+)-sensitive K(+) channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia.
Schoen, Ingmar; Fromherz, Peter
2007-01-01
Extracellular excitation of neurons is applied in studies of cultured networks and brain tissue, as well as in neuroprosthetics. We elucidate its mechanism in an electrophysiological approach by comparing voltage-clamp and current-clamp recordings of individual neurons on an insulated planar electrode. Noninvasive stimulation of neurons from pedal ganglia of Lymnaea stagnalis is achieved by defined voltage ramps applied to an electrolyte/HfO2/silicon capacitor. Effects on the smaller attached cell membrane and the larger free membrane are distinguished in a two-domain-stimulation model. Under current-clamp, we study the polarization that is induced for closed ion channels. Under voltage-clamp, we determine the capacitive gating of ion channels in the attached membrane by falling voltage ramps and for comparison also the gating of all channels by conventional variation of the intracellular voltage. Neuronal excitation is elicited under current-clamp by two mechanisms: Rising voltage ramps depolarize the free membrane such that an action potential is triggered. Falling voltage ramps depolarize the attached membrane such that local ion currents are activated that depolarize the free membrane and trigger an action potential. The electrophysiological analysis of extracellular stimulation in the simple model system is a basis for its systematic optimization in neuronal networks and brain tissue. PMID:17098803
Voltage-Clamp Studies on Uterine Smooth Muscle
Anderson, Nels C.
1969-01-01
These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366
MEMBRANE POTENTIAL OF THE SQUID GIANT AXON DURING CURRENT FLOW
Cole, Kenneth S.; Curtis, Howard J.
1941-01-01
The squid giant axon was placed in a shallow narrow trough and current was sent in at two electrodes in opposite sides of the trough and out at a third electrode several centimeters away. The potential difference across the membrane was measured between an inside fine capillary electrode with its tip in the axoplasm between the pair of polarizing electrodes, and an outside capillary electrode with its tip flush with the surface of one polarizing electrode. The initial transient was roughly exponential at the anode make and damped oscillatory at the sub-threshold cathode make with the action potential arising from the first maximum when threshold was reached. The constant change of membrane potential, after the initial transient, was measured as a function of the total polarizing current and from these data the membrane potential is obtained as a function of the membrane current density. The absolute value of the resting membrane resistance approached at low polarizing currents is about 23 ohm cm.2. This low value is considered to be a result of the puncture of the axon. The membrane was found to be an excellent rectifier with a ratio of about one hundred between the high resistance at the anode and the low resistance at the cathode for the current range investigated. On the assumption that the membrane conductance is a measure of its ion permeability, these experiments show an increase of ion permeability under a cathode and a decrease under an anode. PMID:19873234
Liang, Yanyan; Liu, Zhengping
2016-12-20
Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.
Nikonenko, Victor V; Pismenskaya, Natalia D; Belova, Elena I; Sistat, Philippe; Huguet, Patrice; Pourcelly, Gérald; Larchet, Christian
2010-10-15
Usually in electrochemical systems, the direct current densities not exceeding the limiting current density are applied. However, the recent practice of electrodialysis evidences the interest of other current modes where either the imposed direct current is over the limiting one or a non-constant asymmetrical (such as pulsed) current is used. The paper is devoted to make the mechanisms of mass transfer under these current regimes more clear. The theoretical background for mathematical modelling of mass transfer at overlimiting currents is described. Four effects providing overlimiting current conductance are examined. Two of them are related to water splitting: the appearance of additional charge carriers (H(+) and OH(-) ions) and exaltation effect. Two others are due to coupled convection partially destroying the diffusion boundary layer: gravitational convection and electroconvection. These effects result from formation of concentration gradients (known as concentration polarization) caused by the current flowing under conditions where ionic transport numbers are different in the membrane and solution. Similar effects take place not only in electrodialysis membrane systems, but in electrode ones, in electrophoresis and electrokinetic micro- and nanofluidic devices such as micropumps. The relation of these effects to the properties of the membrane surface (the chemical nature of the fixed groups, the degree of heterogeneity and hydrophobicity, and the geometrical shape of the surface) is analyzed. The interaction between the coupled effects is studied, and the conditions under which one or another effect becomes dominant are discussed. The application of intensive current modes in electrodialysis, the state-of-the-art and perspectives, are considered. It is shown that the intensive current modes are compatible with new trends in water treatment oriented towards Zero Liquid Discharge (ZLD) technologies. The main idea of these hybrid schemes including pressure- and electro-driven processes as well as conventional methods is to provide the precipitation of hardness salts before the membrane modules and that of well dissolved salts after. Copyright © 2010 Elsevier B.V. All rights reserved.
Zhu, Anna; Liu, Harris K; Long, Feng; Su, Erzheng; Klibanov, Alexander M
2015-01-01
Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution.
Franklin, Clarence C; Ball, John M; Schulz, David J; Nair, Satish S
2010-09-01
The underlying membrane potential oscillation of both forced and endogenous slow-wave bursting cells affects the number of spikes per burst, which in turn affects outputs downstream. We use a biophysical model of a class of slow-wave bursting cells with six active currents to investigate and generalize correlations among maximal current conductances that might generate and preserve its underlying oscillation. We propose three phases for the underlying oscillation for this class of cells: generation, maintenance, and termination and suggest that different current modules coregulate to preserve the characteristics of each phase. Coregulation of I(Burst) and I(A) currents within distinct boundaries maintains the dynamics during the generation phase. Similarly, coregulation of I(CaT) and I(Kd) maintains the peak and duration of the underlying oscillation, whereas the calcium-activated I(KCa) ensures appropriate termination of the oscillation and adjusts the duration independent of peak.
Nasreen, Shaik Anwar Ahamed Nabeela; Sundarrajan, Subramanian; Nizar, Syed Abdulrahim Syed; Balamurugan, Ramalingam; Ramakrishna, Seeram
2013-01-01
Water, among the most valuable natural resources available on earth, is under serious threat as a result of undesirable human activities: for example, marine dumping, atmospheric deposition, domestic, industrial and agricultural practices. Optimizing current methodologies and developing new and effective techniques to remove contaminants from water is the current focus of interest, in order to renew the available water resources. Materials like nanoparticles, polymers, and simple organic compounds, inorganic clay materials in the form of thin film, membrane or powder have been employed for water treatment. Among these materials, membrane technology plays a vital role in removal of contaminants due to its easy handling and high efficiency. Though many materials are under investigation, nanofibers driven membrane are more valuable and reliable. Synthetic methodologies applied over the modification of membrane and its applications in water treatment have been reviewed in this article. PMID:24957057
Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R
2018-02-01
This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.
2015-01-01
Detergents have several biological applications but present cytotoxicity concerns, since they can solubilize cell membranes. Using the IonFlux 16, an ensemble whole cell planar patch clamp, we observed that anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB), and cationic, fluorescent octadecyl rhodamine B (ORB) increased the membrane permeability of cells substantially within a second of exposure, under superfusion conditions. Increased permeability was irreversible for 15 min. At subsolubilizing detergent concentrations, patched cells showed increased membrane currents that reached a steady state and were intact when imaged using fluorescence microscopy. SDS solubilized cells at concentrations of 2 mM (2× CMC), while CTAB did not solubilize cells even at concentrations of 10 mM (1000× CMC). The relative activity for plasma membrane current induction was 1:20:14 for SDS, CTAB, and ORB, respectively. Under quiescent conditions, the relative ratio of lipid to detergent in cell membranes at the onset of membrane permeability was 1:7:5 for SDS, CTAB, and ORB, respectively. The partition constants (K) for SDS, CTAB, and ORB were 23000, 55000, and 39000 M–1, respectively. Combining the whole cell patch clamp data and XTT viability data, SDS ≤ 0.2 mM and CTAB and ORB ≤ 1 mM induced cell membrane permeability without causing acute toxicity. PMID:24548291
Basolateral K channels in an insect epithelium. Channel density, conductance, and block by barium
Hanrahan, JW; Wills, NK; Phillips, JE; Lewis, SA
1986-01-01
K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area. PMID:2420918
Choi, Jae-Hwan; Park, Jin-Soo; Moon, Seung-Hyeon
2002-07-15
In this study the concentration distributions within the diffusion boundary layer were obtained by directly measuring the potential drops while the currents (under- and overlimiting) passed through the Neosepta CMX cation-exchange membrane (Tokuyama Corp., Japan). Potential drops according to the distance from the membrane surface on the depleted side were measured using a microelectrode to obtain the concentration profile. From the concentration profiles obtained, it was observed that the diffusion boundary layers existed in the range of 300-350 microm, which reasonably coincide with the theoretical diffusion boundary layer thickness calculated from the limiting current density. Although there were some deviations between the concentrations determined from the Nernst model and those from experiments, it was confirmed that the Nernst model effectively depicts the transport phenomena in the ion-exchange membrane system. In addition it was found that the salt concentration at the membrane surface increased when the currents applied exceeded the limiting current. It is thought that the concentration polarization formed in the diffusion boundary layer at currents near or lower than the limiting current was disturbed by a turbulent convection when the current was greater than the limiting current. As a consequence, the concentration at the membrane surface increased to a sufficient level for generation of the overlimiting current.
Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas
2012-01-01
The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429
[Electrical response of inner membrane structures of corynebacteria during electrotransformation].
Tiurin, M V; Voroshilova, E B; Rostova, Iu G; Oparina, N Iu; Gusiatiner, M M
1998-01-01
The efficiency of the electrotransformation of intact cells of corynebacteria by a solitary impulse with a complex shape amounted to 10(6) transformants/microgram of plasmid pNV1 DNA at an electric field strength of 14.2 kW/cm; the voltage-current curve of the cell samples was nonlinear. Under these conditions, the structure of the electric current impulse passing intact cells or protoplasts included oscillations characterized by increasing amplitude and a duration of 170 microseconds, which were not detected in the structure of the electric current impulses at field strengths insufficient for obtaining transformants. These changes in the impulse shape suggest the involvement of internal closed membrane structures in the electrical response of cells to the exogenous electric impulse. Most probably, under conditions of electrical treatment optimal for transformation, electropores are formed in the intracellular membranes of corynebacteria.
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes
Wu, Xiaojian
2017-01-01
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed. PMID:29240676
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes.
Experton, Juliette; Wu, Xiaojian; Martin, Charles R
2017-12-14
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed.
Visualizing the dynamic structure of the plant photosynthetic membrane.
Ruban, Alexander V; Johnson, Matthew P
2015-11-03
The chloroplast thylakoid membrane is the site for the initial steps of photosynthesis that convert solar energy into chemical energy, ultimately powering almost all life on earth. The heterogeneous distribution of protein complexes within the membrane gives rise to an intricate three-dimensional structure that is nonetheless extremely dynamic on a timescale of seconds to minutes. These dynamics form the basis for the regulation of photosynthesis, and therefore the adaptability of plants to different environments. High-resolution microscopy has in recent years begun to provide new insights into the structural dynamics underlying a number of regulatory processes such as membrane stacking, photosystem II repair, photoprotective energy dissipation, state transitions and alternative electron transfer. Here we provide an overview of the essentials of thylakoid membrane structure in plants, and consider how recent advances, using a range of microscopies, have substantially increased our knowledge of the thylakoid dynamic structure. We discuss both the successes and limitations of the currently available techniques and highlight newly emerging microscopic methods that promise to move the field beyond the current 'static' view of membrane organization based on frozen snapshots to a 'live' view of functional membranes imaged under native aqueous conditions at ambient temperature and responding dynamically to external stimuli.
Chen, Yan; Ding, Jiawang; Qin, Wei
2012-12-01
A potentiometric biosensor for the determination of trypsin is described based on current-controlled reagent delivery. A polymeric membrane protamine-sensitive electrode with dinonylnaphthalene sulfonate as cation exchanger is used for in situ generation of protamine. Diffusion of protamine across the polymeric membrane can be controlled precisely by applying an external current. The hydrolysis catalyzed with trypsin in sample solution decreases the concentration of free protamine released at the sample-membrane interface and facilitates the stripping of protamine out of the membrane surface via the ion-exchange process with sodium ions from the sample solution, thus decreasing the membrane potential, by which the protease can be sensed potentiometrically. The influences of anodic current amplitude, current pulse duration and protamine concentration in the inner filling solution on the membrane potential response have been studied. Under optimum conditions, the proposed protamine-sensitive electrode is useful for continuous and reversible detection of trypsin over the concentration range of 0.5-5UmL(-1) with a detection limit of 0.3UmL(-1). The proposed detection strategy provides a rapid and reagentless way for the detection of protease activities and offers great potential in the homogeneous immunoassays using proteases as labels. Copyright © 2012 Elsevier B.V. All rights reserved.
Functional Na+ Channels in Cell Adhesion probed by Transistor Recording
Schmidtner, Markus; Fromherz, Peter
2006-01-01
Cell membranes in a tissue are in close contact to each other, embedded in the extracellular matrix. Standard electrophysiological methods are not able to characterize ion channels under these conditions. Here we consider the area of cell adhesion on a solid substrate as a model system. We used HEK 293 cells cultured on fibronectin and studied the activation of NaV1.4 sodium channels in the adherent membrane with field-effect transistors in a silicon substrate. Under voltage clamp, we compared the transistor response with the whole-cell current. We observed that the extracellular voltage in the cell-chip contact was proportional to the total membrane current. The relation was calibrated by alternating-current stimulation. We found that Na+ channels are present in the area of cell adhesion on fibronectin with a functionality and a density that is indistinguishable from the free membrane. The experiment provides a basis for studying selective accumulation and depletion of ion channels in cell adhesion and also for a development of cell-based biosensoric devices and neuroelectronic systems. PMID:16227504
Cifuentes-Araya, Nicolás; Astudillo-Castro, Carolina; Bazinet, Laurent
2014-07-15
Experiments revealed the fouling nature evolutions along different electrodialysis (ED) trials, and how it disappears when current pulsation acts repetitively on the interfaces of ion-exchange membranes (IEMs). Fouling was totally controlled on the diluate side of cation-exchange membrane (CEM) by the repetitive pulsation frequency of the higher on-duty ratios applied. They created steady water splitting proton-barriers that neutralized OH(-) leakage through the membrane, decreasing the interfacial pH, and fouling of the concentrate side. The anion-exchange membrane (AEM) on the diluate side was similarly protected, but it was fouled once water splitting OH(-) generation became either intense enough or excessively weak. Interestingly, amorphous magnesium hydroxide (AMH) stemmed on the CEM-diluate side from brucite under intense water splitting OH(-) generation, and/or strong OH(-) leakage electromigration through the membrane. Water dissociation and overlimiting current regimes triggered drastic water molecule removal from crystal lattices through an accelerated cascade water splitting reaction. Also, amorphous calcium carbonate (ACC) appeared on CEM under intense water splitting reaction, and disappeared once intense OH(-) leakage was allowed by the water splitting proton-barrier dissipation. Our findings have implications for membrane fouling control, as well as for the understanding of the growth behavior of CaCO3 and Mg(OH)2 species on electromembrane interfaces. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar
2015-08-01
Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.
Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.
Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E
2014-11-01
Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Fanglei; Tien, Huynh Ngoc; Xu, Weiwei L; Chen, Jung-Tsai; Liu, Qiuli; Hicks, Ethan; Fathizadeh, Mahdi; Li, Shiguang; Yu, Miao
2017-12-13
Among the current CO 2 capture technologies, membrane gas separation has many inherent advantages over other conventional techniques. However, fabricating gas separation membranes with both high CO 2 permeance and high CO 2 /N 2 selectivity, especially under wet conditions, is a challenge. In this study, sub-20-nm thick, layered graphene oxide (GO)-based hollow fiber membranes with grafted, brush-like CO 2 -philic agent alternating between GO layers are prepared by a facile coating process for highly efficient CO 2 /N 2 separation under wet conditions. Piperazine, as an effective CO 2 -philic agent, is introduced as a carrier-brush into the GO nanochannels with chemical bonding. The membrane exhibits excellent separation performance under simulated flue gas conditions with CO 2 permeance of 1,020 GPU and CO 2 /N 2 selectivity as high as 680, demonstrating its potential for CO 2 capture from flue gas. We expect this GO-based membrane structure combined with the facile coating process to facilitate the development of ultrathin GO-based membranes for CO 2 capture.
Yan, Guang; Li, S Kevin; Peck, Kendall D; Zhu, Honggang; Higuchi, William I
2004-12-01
One of the primary safety and tolerability limitations of direct current iontophoresis is the potential for electrochemical burns associated with the necessary current densities and/or application times required for effective treatment. Alternating current (AC) transdermal iontophoresis has the potential to eliminate electrochemical burns that are frequently observed during direct current transdermal iontophoresis. Although it has been demonstrated that the intrinsic permeability of skin can be increased by applying low-to-moderate AC voltages, transdermal transport phenomena and enhancement under AC conditions have not been systematically studied and are not well understood. The aim of the present work was to study the fundamental transport mechanisms of square-wave AC iontophoresis using a synthetic membrane system. The model synthetic membrane used was a composite Nuclepore membrane. AC frequencies ranging from 20 to 1000 Hz and AC fields ranging from 0.25 to 0.5 V/membrane were investigated. A charged permeant, tetraethyl ammonium, and a neutral permeant, arabinose, were used. The transport studies showed that flux was enhanced by increasing the AC voltage and decreasing AC frequency. Two theoretical transport models were developed: one is a homogeneous membrane model; the other is a heterogeneous membrane model. Experimental transport data were compared with computer simulations based on these models. Excellent agreement between model predictions and experimental data was observed when the data were compared with the simulations from the heterogeneous membrane model. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association
Seyler, Claudia; Scherer, Daniel; Köpple, Christoph; Kulzer, Martin; Korkmaz, Sevil; Xynogalos, Panagiotis; Thomas, Dierk; Kaya, Ziya; Scholz, Eberhard; Backs, Johannes; Karle, Christoph; Katus, Hugo A; Zitron, Edgar
2017-05-01
The cardiac I K1 current stabilizes the resting membrane potential of cardiomyocytes. Protein kinase A (PKA) induces an inhibition of I K1 current which strongly promotes focal arrhythmogenesis. The molecular mechanisms underlying this regulation have only partially been elucidated yet. Furthermore, the role of A-kinase anchoring proteins (AKAPs) in this regulation has not been examined to date. The objective of this project was to elucidate the molecular mechanisms underlying the inhibition of I K1 by PKA and to identify novel molecular targets for antiarrhythmic therapy downstream β-adrenoreceptors. Patch clamp and voltage clamp experiments were used to record currents and co-immunoprecipitation, and co-localization experiments were performed to show spatial and functional coupling. Activation of PKA inhibited I K1 current in rat cardiomyocytes. This regulation was markedly attenuated by disrupting PKA-binding to AKAPs with the peptide inhibitor AKAP-IS. We observed functional and spatial coupling of the plasma membrane-associated AKAP15 and AKAP79 to Kir2.1 and Kir2.2 channel subunits, but not to Kir2.3 channels. In contrast, AKAPyotiao had no functional effect on the PKA regulation of Kir channels. AKAP15 and AKAP79 co-immunoprecipitated with and co-localized to Kir2.1 and Kir2.2 channel subunits in ventricular cardiomyocytes. In this study, we provide evidence for coupling of cardiac Kir2.1 and Kir2.2 subunits with the plasma membrane-bound AKAPs 15 and 79. Cardiac membrane-associated AKAPs are a functionally essential part of the regulatory cascade determining I K1 current function and may be novel molecular targets for antiarrhythmic therapy downstream from β-adrenoreceptors.
Synchrony of two uncoupled neurons under half wave sine current stimulation
NASA Astrophysics Data System (ADS)
Peng, Yueping; Wang, Jue; Jian, Zhong
2009-04-01
Two uncoupled Hindmarsh-Rose neurons under different initial discharge patterns are stimulated by the half wave sine current; and the synchronization mechanism of the two neurons is discussed by analyzing their membrane potentials and their interspike interval (ISI) distribution. Under the half wave sine current stimulation, the two uncoupled neurons under different initial conditions, whose parameter r (the parameter r is related to the membrane penetration of calcium ion, and reflects the changing speed of the slow adaptation current) is different or the same, can realize discharge synchronization (phase synchronization) or the full synchronization (state synchronization). The synchronization characteristics are mainly related to the frequency and the amplitude of the half wave sine current, and are little related to the parameter r and the initial state of the two neurons. This investigation shows the mechanism of the current's amplitude and its frequency affecting the synchronization process of neurons, and the neurons' discharge patterns and synchronization process can be adjusted and controlled by the current's amplitude and its frequency. This result is of far reaching importance to study synchronization and encode of many neurons or neural network, and provides the theoretic basis for studying the mechanism of some nervous diseases such as epilepsy and Alzheimer's disease by the slow wave of EEG.
Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma.
Tijink, Marlon S L; Wester, Maarten; Glorieux, Griet; Gerritsen, Karin G F; Sun, Junfen; Swart, Pieter C; Borneman, Zandrie; Wessling, Matthias; Vanholder, Raymond; Joles, Jaap A; Stamatialis, Dimitrios
2013-10-01
In end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins. The MMM hollow fiber consists of porous macro-void free polymeric inner membrane layer well attached to the activated carbon containing outer MMM layer. The new membranes have permeation properties in the ultrafiltration range. Under static conditions, they adsorb 57% p-cresylsulfate, 82% indoxyl sulfate and 94% of hippuric acid from spiked human plasma in 4 h. Under dynamic conditions, they adsorb on average 2.27 mg PCS/g membrane and 3.58 mg IS/g membrane in 4 h in diffusion experiments and 2.68 mg/g membrane PCS and 12.85 mg/g membrane IS in convection experiments. Based on the dynamic experiments we estimate that our membranes would suffice to remove the daily production of these protein bound solutes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi
2016-01-01
Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H+-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H+-ATPase in organic acid exudation under Al toxicity and P deficiency conditions. PMID:26713714
Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi
2016-01-01
Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H(+)-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H(+)-ATPase in organic acid exudation under Al toxicity and P deficiency conditions.
Proton transport through aqueous Nafion membrane
NASA Astrophysics Data System (ADS)
Son, D. N.; Kasai, H.
2009-08-01
We introduce a new model for proton transport through a single proton-conducting channel of an aqueous Nafion membrane based on a mechanism in which protons move under electrostatic effect provided by the sulfonate ( SO3 -groups of the Nafion side chains, the spin effect of active components, the hydrogen bonding effect with water molecules, and the screening effect of water media. This model can describe the proton transport within various levels of humidification ranging from the low humidity to the high humidity as a function of operating temperature. At low humidity, this model approaches to the so-called surface mechanism, while at high humidity, it approaches the well-known Grotthuss one. Proton motion is considered as the transfer from cluster to cluster under a potential energy. A proton-proton interaction is comprised in the calculation. Using Green function method, we obtained the proton current as a function of the Nafion membrane temperature. We found that the lower the temperature, the higher the proton current transfer through the Nafion membrane in low temperatures compared to the critical point 10K, which separates magnetic regime from non-magnetic regime. The increasing of proton current at very low temperatures is attributed to the spin effect. As the membrane temperature is higher than 40 ° C , the decreasing of proton current is attributed to the loss of water uptake and the polymer contraction. The results of this study are qualitatively in good agreement with experiments. The expression for the critical temperature is also presented as a function of structural and tunable parameters, and interpreted by experimental data. in here
The enduring legacy of the “constant-field equation” in membrane ion transport
2017-01-01
In 1943, David Goldman published a seminal paper in The Journal of General Physiology that reported a concise expression for the membrane current as a function of ion concentrations and voltage. This body of work was, and still is, the theoretical pillar used to interpret the relationship between a cell’s membrane potential and its external and/or internal ionic composition. Here, we describe from an historical perspective the theory underlying the constant-field equation and its application to membrane ion transport. PMID:28931632
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaehn, John; Peterson, Eric; Orme, Christopher
2013-01-01
Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H 2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H 2 gas separations at operating temperatures (~200°C).more » VTEC PI 80-051 was thoroughly analyzed for its H 2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H 2/CO 2 separation (α = 7-9) and H 2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H 2 gas separations membrane for high-temperature syngas streams.« less
Modeling of the axon membrane skeleton structure and implications for its mechanical properties
Tzingounis, Anastasios V.
2017-01-01
Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young’s modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration. PMID:28241082
Modeling of the axon membrane skeleton structure and implications for its mechanical properties.
Zhang, Yihao; Abiraman, Krithika; Li, He; Pierce, David M; Tzingounis, Anastasios V; Lykotrafitis, George
2017-02-01
Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.
Qin, Kai-Rong; Xiang, Cheng; Cao, Ling-Ling
2011-10-01
In this paper, a dynamic model is proposed to quantify the relationship between fluid flow and Cl(-)-selective membrane current in vascular endothelial cells (VECs). It is assumed that the external shear stress would first induce channel deformation in VECs. This deformation could activate the Cl(-) channels on the membrane, thus allowing Cl(-) transport across the membrane. A modified Hodgkin-Huxley model is embedded into our dynamic system to describe the electrophysiological properties of the membrane, such as the Cl(-)-selective membrane current (I), voltage (V) and conductance. Three flow patterns, i. e., steady flow, oscillatory flow, and pulsatile flow, are applied in our simulation studies. When the extracellular Cl(-) concentration is constant, the I-V characteristics predicted by our dynamic model shows strong consistency with the experimental observations. It is also interesting to note that the Cl(-) currents under different flow patterns show some differences, indicating that VECs distinguish among and respond differently to different types of flows. When the extracellular Cl(-) concentration keeps constant or varies slowly with time (i.e. oscillates at 0.02 Hz), the convection and diffusion of Cl(-) in extracellular space can be ignored and the Cl(-) current is well captured by the modified Hodgkin-Huxley model alone. However, when the extracellular Cl(-) varies fast (i.e., oscillates at 0.2 Hz), the convection and diffusion effect should be considered because the Cl(-) current dynamics is different from the case where the convection-diffusion effect is simply ignored. The proposed dynamic model along with the simulation results could not only provide more insights into the flow-regulated electrophysiological behavior of the cell membrane but also help to reveal new findings in the electrophysiological experimental investigations of VECs in response to dynamic flow and biochemical stimuli.
Sun, Jingqiu; Hu, Chengzhi; Tong, Tiezheng; Zhao, Kai; Qu, Jiuhui; Liu, Huijuan; Elimelech, Menachem
2017-08-01
A novel electrocoagulation membrane reactor (ECMR) was developed, in which ultrafiltration (UF) membrane modules are placed between electrodes to improve effluent water quality and reduce membrane fouling. Experiments with feedwater containing clays (kaolinite) and natural organic matter (humic acid) revealed that the combined effect of coagulation and electric field mitigated membrane fouling in the ECMR, resulting in higher water flux than the conventional combination of electrocoagulation and UF in separate units (EC-UF). Higher current densities and weakly acidic pH in the EMCR favored faster generation of large flocs and effectively reduced membrane pore blocking. The hydraulic resistance of the formed cake layers on the membrane surface in ECMR was reduced due to an increase in cake layer porosity and polarity, induced by both coagulation and the applied electric field. The formation of a polarized cake layer was controlled by the applied current density and voltage, with cake layers formed under higher electric field strengths showing higher porosity and hydrophilicity. Compared to EC-UF, ECMR has a smaller footprint and could achieve significant energy savings due to improved fouling resistance and a more compact reactor design.
Ceramic membrane development in NGK
NASA Astrophysics Data System (ADS)
Araki, Kiyoshi; Sakai, Hitoshi
2011-05-01
NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.
NASA Astrophysics Data System (ADS)
Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.
2018-04-01
Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.
Junges, R; Kolb, H A
1983-06-01
Under equilibrium and nonequilibrium steady-state conditions, the spectral intensity of current noise SJ(f) generated by the transport of hydrophobic anions across lipid bilayer membranes was investigated. The experimental results were compared with different reaction models. SJ(f) showed a characteristic increase proportional to f2 between frequency-independent tails at low and high frequencies. This gradient was found to be independent of applied voltage which indicates the contribution of a single voltage-dependent reaction step of ion translocation across the membrane. From the shape of SJ(f) at low frequencies the rate constant of ion desorption from the membrane into the aqueous phase could be estimated. Unambiguous evidence for the application of a general model, which includes the coupling of slow ion diffusion in the aqueous phase to ion adsorption/desorption at the membrane interface, could not be obtained from the low-frequency shape of SJ(f). The shot noise of this ion transport determines the amplitude of SJ(f) at high frequencies which decreases with increasing voltage applied. Analysis of voltage-jump current-relaxation experiments and of current noise carried out on one membrane yielded significant differences of the derived ion partition coefficient. This deviation is qualitatively described on the basis of incomplete reaction steps.
Dynamic spectrin/ankyrin-G microdomains promote lateral membrane assembly by opposing endocytosis
Jenkins, Paul M.; He, Meng; Bennett, Vann
2015-01-01
Current physical models for plasma membranes emphasize dynamic 10- to 300-nm compartments at thermodynamic equilibrium but subject to thermal fluctuations. However, epithelial lateral membranes contain micrometer-sized domains defined by an underlying membrane skeleton composed of spectrin and its partner ankyrin-G. We demonstrate that these spectrin/ankyrin-G domains exhibit local microtubule-dependent movement on a time scale of minutes and encounter most of the lateral membranes within an hour. Spectrin/ankyrin-G domains exclude clathrin and clathrin-dependent cargo, and inhibit both receptor-mediated and bulk endocytosis. Moreover, inhibition of endocytosis fully restores lateral membrane height in spectrin- or ankyrin-G–depleted cells. These findings support a non-equilibrium cellular-scale model for epithelial lateral membranes, where spectrin/ankyrin-G domains actively patrol the plasma membrane, analogous to “window washers,” and promote columnar morphology by blocking membrane uptake. PMID:26523289
Drinking water regulations under the Final Coliform Rule require that total coliform-positive drinking water samples be examined for the presence of Escherichia coli or fecal coliforms. The current U.S. Environmental Protection Agency-approved membrane filter (MF) method for E. c...
1990-01-01
Voltage-sensing dyes were used to examine the electrical behavior of the T-system under passive recording conditions similar to those commonly used to detect charge movement. These conditions are designed to eliminate all ionic currents and render the T-system potential linear with respect to the command potential applied at the surface membrane. However, we found an unexpected nonlinearity in the relationship between the dye signal from the T-system and the applied clamp potential. An additional voltage- and time-dependent optical signal appears over the same depolarizing range of potentials where change movement and mechanical activation occur. This nonlinearity is not associated with unblocked ionic currents and cannot be attributed to lack of voltage clamp control of the T-system, which appears to be good under these conditions. We propose that a local electrostatic potential change occurs in the T-system upon depolarization. An electrostatic potential would not be expected to extend beyond molecular distances of the membrane and therefore would be sensed by a charged dye in the membrane but not by the voltage clamp, which responds solely to the potential of the bulk solution. Results obtained with different dyes suggest that the location of the phenomena giving rise to the extra absorbance change is either intramembrane or at the inner surface of the T-system membrane. PMID:2299329
Oligodendrocytes: Myelination and Axonal Support
Simons, Mikael; Nave, Klaus-Armin
2016-01-01
Myelinated nerve fibers have evolved to enable fast and efficient transduction of electrical signals in the nervous system. To act as an electric insulator, the myelin sheath is formed as a multilamellar membrane structure by the spiral wrapping and subsequent compaction of the oligodendroglial plasma membrane around central nervous system (CNS) axons. Current evidence indicates that the myelin sheath is more than an inert insulating membrane structure. Oligodendrocytes are metabolically active and functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of macromolecules to and from the internodal periaxonal space under the myelin sheath. This review summarizes our current understanding of how myelin is generated and also the role of oligodendrocytes in supporting the long-term integrity of myelinated axons. PMID:26101081
Chloride Transport in Porous Lipid Bilayer Membranes
Andreoli, Thomas E.; Watkins, Mary L.
1973-01-01
This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. P DCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, P DCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of P DCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ∼90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the P DNa/P DCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness. PMID:4708408
NASA Astrophysics Data System (ADS)
Banerjee, J.; Verma, M. K.; Manna, S.; Ghosh, S.
2006-02-01
Noise profile of Voltage Dependent Anion Channel (VDAC) is investigated in open channel state. Single-channel currents through VDAC from mitochondria of rat brain reconstituted into a planar lipid bilayer are recorded under different voltage clamped conditions across the membrane. Power spectrum analysis of current indicates power law noise of 1/f nature. Moreover, this 1/f nature of the open channel noise is seen throughout the range of applied membrane potential from -30 to +30 mV. It is being proposed that 1/f noise in open ion channel arises out of obstruction in the passage of ions across the membrane. The process is recognised as a phenomenon of self-organized criticality (SOC) like sandpile avalanche and other physical systems. Based on SOC it has been theoretically established that the system of ion channel follows power law noise as observed in our experiments. We also show that the first-time return probability of current fluctuations obeys a power law distribution.
Dynamic behavior of ultra large graphene-based membranes using electrothermal transduction
NASA Astrophysics Data System (ADS)
Al-mashaal, A. K.; Wood, G. S.; Torin, A.; Mastropaolo, E.; Newton, M. J.; Cheung, R.
2017-12-01
This letter reports an experimental study of an electrothermal actuator made from an ultra-large graphene-based bilayer thin film with a diameter to thickness aspect ratio of ˜10 000. Suspended thin films consisting of multilayer graphene and 350-500 nm-thick Poly(methyl methacrylate) have been transferred over circular cavities with a diameter of 3.5 mm. The use of bilayer materials with different mechanical and thermal properties results in thin film structures that can be induced to vibrate mechanically under the electrothermal transduction mechanism. The dynamic response of the bilayer has been investigated electrothermally by driving the structures with a combination of alternating current and direct current actuation voltages ( Va c and Vd c) and characterizing their resonant frequencies. It has been found that the bilayer thin film structure behaves as a membrane. In addition, the actuation configurations affect not only the amplitude of vibration but also the tuning of the resonant frequency of the vibrating membranes. The existence of Joule heating-induced tension lowers the mechanical stiffness of the membrane and hence shifts the resonant frequency downwards by -108187 ppm. A resonant frequency of 3.26 kHz with a vibration amplitude of 4.34 nm has been achieved for 350 nm-thick membranes under actuation voltages of 1 V of Va c and 8 V of Vd c.
Experimental and numerical studies of micro PEM fuel cell
NASA Astrophysics Data System (ADS)
Peng, Rong-Gui; Chung, Chen-Chung; Chen, Chiun-Hsun
2011-10-01
A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm2 and channel depth of about 500 µm. A theoretical analysis is performed in this study for a novel MEMS-based design of amicro PEMFC. Themodel consists of the conservation equations of mass, momentum, species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code. The polarization curves of simulation are well correlated with experimental data. Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature, current density and water distributions in two different fuel flow rates (15 cm3/min and 40 cm3/min). Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4V operating voltage. Model predictions are well within those known for experimental mechanism phenomena.
Chong, Ketpin; Deng, Yuru
2012-01-01
Biological membranes are generally perceived as phospholipid bilayer structures that delineate in a lamellar form the cell surface and intracellular organelles. However, much more complex and highly convoluted membrane organizations are ubiquitously present in many cell types under certain types of stress, states of disease, or in the course of viral infections. Their occurrence under pathological conditions make such three-dimensionally (3D) folded and highly ordered membranes attractive biomarkers. They have also stimulated great biomedical interest in understanding the molecular basis of their formation. Currently, the analysis of such membrane arrangements, which include tubulo-reticular structures (TRS) or cubic membranes of various subtypes, is restricted to electron microscopic methods, including tomography. Preservation of membrane structures during sample preparation is the key to understand their true 3D nature. This chapter discusses methods for appropriate sample preparations to successfully examine and analyze well-preserved highly ordered membranes by electron microscopy. Processing methods and analysis conditions for green algae (Zygnema sp.) and amoeba (Chaos carolinense), mammalian cells in culture and primary tissue cells are described. We also discuss methods to identify cubic membranes by transmission electron microscopy (TEM) with the aid of a direct template matching method and by computer simulation. A 3D analysis of cubic cell membrane topology by electron tomography is described as well as scanning electron microscopy (SEM) to investigate surface contours of isolated mitochondria with cubic membrane arrangement. Copyright © 2012 Elsevier Inc. All rights reserved.
A convenient method for large-scale STM mapping of freestanding atomically thin conductive membranes
NASA Astrophysics Data System (ADS)
Uder, B.; Hartmann, U.
2017-06-01
Two-dimensional atomically flat sheets with a high flexibility are very attractive as ultrathin membranes but are also inherently challenging for microscopic investigations. We report on a method using Scanning Tunneling Microscopy (STM) under ultra-high vacuum conditions for large-scale mapping of several-micrometer-sized freestanding single and multilayer graphene membranes. This is achieved by operating the STM at unusual parameters. We found that large-scale scanning on atomically thin membranes delivers valuable results using very high tip-scan speeds combined with high feedback-loop gain and low tunneling currents. The method ultimately relies on the particular behavior of the freestanding membrane in the STM which is much different from that of a solid substrate.
NASA Astrophysics Data System (ADS)
Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam
2011-05-01
We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.
Modular operation of membrane bioreactors for higher hydraulic capacity utilisation.
Veltmann, K; Palmowski, L M; Pinnekamp, J
2011-01-01
Using data from 6 full-scale municipal membrane bioreactors (MBR) in Germany the hydraulic capacity utilisation and specific energy consumption were studied and their connexion shown. The average hydraulic capacity utilisation lies between 14% and 45%. These low values are justified by the necessity to deal with intense rain events and cater for future flow increases. However, this low hydraulic capacity utilisation leads to high specific energy consumption. The optimisation of MBR operation requires a better utilisation of MBR hydraulic capacity, particularly under consideration of the energy-intensive membrane aeration. A first approach to respond to large influent flow fluctuations consists in adjusting the number of operating modules. This is practised by most MBR operators but so far mostly with variable flux and constant membrane aeration. A second approach is the real-time adjustment of membrane aeration in line with flux variations. This adjustment is not permitted under current manufacturers' warranty conditions. A further opportunity is a discontinuous operation, in which filtration takes place over short periods at high flux and energy for membrane aeration is saved during filtration pauses. The integration of a buffer volume is thereby indispensable. Overall a modular design with small units, which can be activated/ inactivated according to the influent flow and always operate under optimum conditions, enables a better utilisation of MBR hydraulic capacity and forms a solid base to reduce MBR energy demand.
Contact bubble bilayers with flush drainage.
Iwamoto, Masayuki; Oiki, Shigetoshi
2015-03-16
Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels.
Contact Bubble Bilayers with Flush Drainage
Iwamoto, Masayuki; Oiki, Shigetoshi
2015-01-01
Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels. PMID:25772819
Effect of amine structure on CO2 capture by polymeric membranes.
Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki
2017-01-01
Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO 2 separation properties over H 2 . However, the CO 2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO 2 determining agent in the current CO 2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO 2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO 2 permeability coefficient of MEA containing membrane was 604 barrer with CO 2 selectivity of 58.5 over H 2 , which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO 2 -selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO 2 separation performance.
Effect of amine structure on CO2 capture by polymeric membranes
Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki
2017-01-01
Abstract Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO2 separation properties over H2. However, the CO2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO2 determining agent in the current CO2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO2 permeability coefficient of MEA containing membrane was 604 barrer with CO2 selectivity of 58.5 over H2, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO2-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO2 separation performance. PMID:29383045
Mittmann, Philipp; Ernst, A; Mittmann, M; Todt, I
2016-11-01
To preserve residual hearing in cochlear implant candidates, the atraumatic insertion of the cochlea electrode has become a focus of cochlea implant research. In a previous study, intracochlear pressure changes during the opening of the round window membrane were investigated. In the current study, intracochlear pressure changes during opening of the round window membrane under dry and transfluid conditions were investigated. Round window openings were performed in an artificial cochlear model. Intracochlear pressure changes were measured using a micro-optical pressure sensor, which was placed in the apex. Openings of the round window membrane were performed under dry and wet conditions using a cannula and a diode laser. Statistically significant differences in the intracochlear pressure changes were seen between the different methods used for opening of the round window membrane. Lower pressure changes were seen by opening the round window membrane with the diode laser than with the cannula. A significant difference was seen between the dry and wet conditions. The atraumatic approach to the cochlea is assumed to be essential for the preservation of residual hearing. Opening of the round window under wet conditions produce a significant advantage on intracochlear pressure changes in comparison to dry conditions by limiting negative outward pressure.
Detection of single ion channel activity with carbon nanotubes
NASA Astrophysics Data System (ADS)
Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.
2015-03-01
Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.
M-currents and other potassium currents in bullfrog sympathetic neurones
Adams, P. R.; Brown, D. A.; Constanti, A.
1982-01-01
1. Bullfrog lumbar sympathetic neurones were voltage-clamped in vitro through twin micro-electrodes. Four different outward (K+) currents could be identified: (i) a large sustained voltage-sensitive delayed rectifier current (IK) activated at membrane potentials more positive than -25 mV; (ii) a calcium-dependent sustained outward current (IC) activated at similar positive potentials and peaking at +20 to +60 mV; (iii) a transient current (IA) activated at membrane potentials more positive than -60 mV after a hyperpolarizing pre-pulse, but which was rapidly and totally inactivated at all potentials within its activation range; and (iv) a new K+ current, the M-current (IM). 2. IM was detected as a non-inactivating current with a threshold at -60 mV. The underlying conductance GM showed a sigmoidal activation curve between -60 and -10 mV, with half-activation at -35 mV and a maximal value (ḠM) of 84±14 (S.E.M.) nS per neurone. The voltage sensitivity of GM could be expressed in terms of a simple Boltzmann distribution for a single multivalent gating particle. 3. IM activated and de-activated along an exponential time course with a time constant uniquely dependent upon voltage, maximizing at ≃ 150 ms at -35 mV at 22 °C. 4. Instantaneous current—voltage (I/V) curves were approximately linear in the presence of IM, suggesting that the M-channels do not show appreciable rectification. However, the time- and voltage-dependent opening of the M-channels induced considerable rectification in the steady-state I/V curves recorded under both voltage-clamp and current-clamp modes between -60 and -25 mV. Both time- and voltage-dependent rectification in the voltage responses to current injection over this range could be predicted from the kinetic properties of IM. 5. It is suggested that IM exerts a strong potential-clamping effect on the behaviour of these neurones at membrane potentials subthreshold to excitation. PMID:6294290
NASA Astrophysics Data System (ADS)
Zhai, Yunfeng; St-Pierre, Jean
2017-12-01
Realistically, proton exchange membrane fuel cells (PEMFCs) are operated under varying operating conditions that potentially impact the acetylene contamination reactions. In this paper, the effects of the cell operating conditions on the acetylene contamination in PEMFCs are investigated under different current densities and temperatures with different acetylene concentrations in the cathode. Electrochemical impedance spectroscopy is applied during the constant-current operation to analyze the impacts of the operating conditions on the acetylene electrochemical reactions. The experimental results indicate that higher acetylene concentrations, higher current densities and lower cell temperatures decrease the cell performance more. In particular, cathode poisoning becomes more severe at medium cell current densities. The cell cathode potentials at such current densities are not sufficient to completely oxidize the intermediate or sufficiently low to completely reduce the adsorbed acetylene. Based on these investigations, the possible condition-dependent limitations of the acetylene concentration and cell operating voltage are proposed for insight into the acetylene contamination mitigation stratagem. Regarding the barrier conditions, the acetylene reactions change abruptly, and adjusting the cell operation parameters to change the acetylene adsorbate and intermediate accumulation conditions to induce complete oxidation or reduction conditions may mitigate the severe acetylene contamination effects on PEMFCs.
Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.; ...
2015-05-27
Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when usedmore » in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.« less
Van Helden, D F
1991-06-01
1. Recordings of membrane current were made in the smooth muscle of short segments of mesenteric vein before or during stimulation with noradrenaline (NA). 2. Small veins (diameter less than 150 microns) when cut into short segments (of length less than 250 microns) had the passive electrical characteristics of short cables both before and during activation with NA. 3. Spontaneous transient depolarizations (STDs) or the underlying inward currents (STICs) were recorded in these preparations. STDs were of myogenic origin as they were not blocked by tetrodotoxin or antagonists to the alpha-adrenoreceptor and persisted after either denervation or disruption of the endothelium. 4. STDs had time courses similar to the underlying currents and were generally slow compared to the membrane time constant of the short segments. 5. STDs and the underlying currents showed large variability in frequency and amplitude both within and between short segments. Currents were typically less than 0.3 nA, were characteristic in shape, had half-durations normally in the range 0.1-0.7 s and reversed at about -25 mV. 6. STDs persisted, but at markedly reduced frequencies, after exposure (3-10 min) to a solution in which cobalt ions had been used to substitute for Ca2+. STDs were also substantially suppressed by exposure to low-chloride solution. 7. Caffeine induced excitatory and inhibitory conductances. An initial component of the caffeine-induced responses showed similar voltage dependence to STDs and was also suppressed by exposure to low-chloride solution. 8. NA, through activation of alpha-adrenoreceptors, caused a sustained depolarization or inward current (under voltage clamp) with considerable membrane potential or current noise often in the form of agonist-induced spontaneous transient depolarizations (ASTDs) or currents (ASTICs). There were marked increases in amplitude and frequency of ASTDs with increase in NA concentrations. 9. ASTDs appeared to be generated within the smooth muscle as they were activated in preparations which had been denervated or in which the endothelium had been disrupted. 10. Except for the pathway of activation, ASTDs were indistinguishable from STDs having half-durations in the same range (0.1-2 s with the majority less than 0.7 s). The underlying currents again showed large variation in amplitude (typically less than 0.3 nA; maximum recorded 0.9 nA). They reversed at about -25 mV, could still be elicited in cobalt solution (but at reduced intensity for long exposures to this low-Ca2+ solution) and were reduced by long term exposure to low-chloride solution.(ABSTRACT TRUNCATED AT 400 WORDS)
Acetylcholine-induced current in perfused rat myoballs
1980-01-01
Spherical "myoballs" were grown under tissue culture conditions from striated muscle of neonatal rat thighs. The myoballs were examined electrophysiologically with a suction pipette which was used to pass current and perfuse internally. A microelectrode was used to record membrane potential. Experiments were performed with approximately symmetrical (intracellular and extracellular) sodium aspartate solutions. The resting potential, acetylcholine (ACh) reversal potential, and sodium channel reversal potential were all approximately 0 mV. ACh-induced currents were examined by use of both voltage jumps and voltage ramps in the presence of iontophoretically applied agonist. The voltage-jump relaxations had a single exponential time-course. The time constant, tau, was exponentially related to membrane potential, increasing e-fold for 81 mV hyperpolarization. The equilibrium current- voltage relationship was also approximately exponential, from -120 to +81 mV, increasing e-fold for 104 mV hyperpolarization. The data are consistent with a first-order gating process in which the channel opening rate constant is slightly voltage dependent. The instantaneous current-voltage relationship was sublinear in the hyperpolarizing direction. Several models are discussed which can account for the nonlinearity. Evidence is presented that the "selectivity filter" for the ACh channel is located near the intracellular membrane surface. PMID:7381423
Ishihara, Keiko
2018-06-15
Strong inward rectifier K + (sKir) channels determine the membrane potentials of many types of excitable and nonexcitable cells, most notably the resting potentials of cardiac myocytes. They show little outward current during membrane depolarization (i.e., strong inward rectification) because of the channel blockade by cytoplasmic polyamines, which depends on the deviation of the membrane potential from the K + equilibrium potential ( V - E K ) when the extracellular K + concentration ([K + ] out ) is changed. Because their open - channel conductance is apparently proportional to the "square root" of [K + ] out , increases/decreases in [K + ] out enhance/diminish outward currents through sKir channels at membrane potentials near their reversal potential, which also affects, for example, the repolarization and action-potential duration of cardiac myocytes. Despite its importance, however, the mechanism underlying the [K + ] out dependence of the open sKir channel conductance has remained elusive. By studying Kir2.1, the canonical member of the sKir channel family, we first show that the outward currents of Kir2.1 are observed under the external K + -free condition when its inward rectification is reduced and that the complete inhibition of the currents at 0 [K + ] out results solely from pore blockade caused by the polyamines. Moreover, the noted square-root proportionality of the open sKir channel conductance to [K + ] out is mediated by the pore blockade by the external Na + , which is competitive with the external K + Our results show that external K + itself does not activate or facilitate K + permeation through the open sKir channel to mediate the apparent external K + dependence of its open channel conductance. The paradoxical increase/decrease in outward sKir channel currents during alternations in [K + ] out , which is physiologically relevant, is caused by competition from impermeant extracellular Na . © 2018 Ishihara.
Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei
2011-10-17
A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
Kiksin, N I; Tsyndrenko, A Ia
1985-01-01
Isolated pyramidal neurons from rat hippocampus were investigated under conditions of intracellular perfusion and voltage clamp using the method of rapid application of extracellular solution. It was found that the L-glutamate-activated current was carried by sodium and potassium ions with PK+/PNa+ ratio about 0.6. The dose-response relationship demonstrated one to one interaction between L-glutamate and membrane receptor with Kd value about 1.1 mmol/l.
High V-PPase activity is beneficial under high salt loads, but detrimental without salinity.
Graus, Dorothea; Konrad, Kai R; Bemm, Felix; Patir Nebioglu, Meliha Görkem; Lorey, Christian; Duscha, Kerstin; Güthoff, Tilman; Herrmann, Johannes; Ferjani, Ali; Cuin, Tracey Ann; Roelfsema, M Rob G; Schumacher, Karin; Neuhaus, H Ekkehard; Marten, Irene; Hedrich, Rainer
2018-06-25
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H + -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP i hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na + sequestration. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco
1969-01-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216
Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F
1969-10-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.
Intelligent vision guide for automatic ventilation grommet insertion into the tympanic membrane.
Gao, Wenchao; Tan, Kok Kiong; Liang, Wenyu; Gan, Chee Wee; Lim, Hsueh Yee
2016-03-01
Otitis media with effusion is a worldwide ear disease. The current treatment is to surgically insert a ventilation grommet into the tympanic membrane. A robotic device allowing automatic grommet insertion has been designed in a previous study; however, the part of the membrane where the malleus bone is attached to the inner surface is to be avoided during the insertion process. This paper proposes a synergy of optical flow technique and a gradient vector flow active contours algorithm to achieve an online tracking of the malleus under endoscopic vision, to guide the working channel to move efficiently during the surgery. The proposed method shows a more stable and accurate tracking performance than the current tracking methods in preclinical tests. With satisfactory tracking results, vision guidance of a suitable insertion spot can be provided to the device to perform the surgery in an automatic way. Copyright © 2015 John Wiley & Sons, Ltd.
Chen, Chiao-Chen; Baker, Lane A
2011-01-07
Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.
NASA Astrophysics Data System (ADS)
Chevalier, S.; Ge, N.; Lee, J.; George, M. G.; Liu, H.; Shrestha, P.; Muirhead, D.; Lavielle, N.; Hatton, B. D.; Bazylak, A.
2017-06-01
This is the second paper in a two-part series in which we investigate the impact of the gas diffusion layer structure on the liquid water distribution in an operating polymer electrolyte membrane (PEM) fuel cell through the procedures of design, fabrication, and testing of novel hydrophobic electrospun gas diffusion layers (eGDLs). In this work, fibre diameters and alignment in eGDLs are precisely controlled, and concurrent synchrotron X-ray radiography and electrochemical impedance spectroscopy (EIS) are used to evaluate the influence of the controlled eGDL parameters on the liquid water distribution and on membrane liquid water content. For eGDLs with small fibre diameters (150-200 nm) and correspondingly smaller pore sizes, reduced liquid water accumulation under the flow field ribs is observed. However, more liquid water is pinned onto the eGDL - at the interface with flow field channels. Orienting fibre alignment perpendicular to the flow field channel direction leads to improved eGDL-catalyst layer contact and prevents rib-channel membrane deformation. On the other hand, eGDLs facilitate significant membrane dry-out, even under highly humidified operating conditions at high current densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagener, Earl; Topping, Chris; Morgan, Brad
Hydrogen fuel cells are currently one of the more promising long term alternative energy options and out of the range of fuel cell technologies under development, proton exchange membranes [PEMs] have the advantage of being able to deliver high power density at relatively low operating temperatures. This is essential for systems such as fuel cell vehicles (FCV) and many stationary applications that undergoing frequent on/off cycling. One of the biggest challenges for PEM systems is the need to maintain a high level of hydration in the cell to enable efficient conduction of protons from the anode to the cathode. Inmore » addition to significant power loss, low humidity conditions lead to increased stress on the membranes which can result in both physical and chemical degradation. Therefore, an effective fuel cell humidifier can be critical for the efficient operation and durability of the system under high load and low humidity conditions. The most common types of water vapor transport (WVT) devices are based on water permeable membrane based separators. Successful membranes must effectively permeate water vapor while restricting crossover of air, and be robust to the temperature and humidity fluctuations experienced in fuel cell systems. DOE sponsored independent evaluations indicate that balance of plant components, including humidification devices, make up more than half of the cost of current automotive fuel cell systems. Despite its relatively widespread us in other applications, the current industry standard perfluorosulfonic acid based Nafion® remains expensive compared with non-perfluorinated polymer membranes. During Phase II of this project, we demonstrated the improved performance of our semi-fluorinated perfluorocyclobutyl polymer based membranes compared with the current industry standard perfluorosulfonic acid based Nafion®, at ~ 50% lower cost. Building on this work, highlights of our Phase IIB developments, in close collaboration with leading global automotive component supplier Dana Holding Corporation include: • Development of a lower cost series of ionomers, with reduced synthetic steps and purification requirements and improved scale-ability, while maintaining performance advantages over Nafion® demonstrated during Phase II. • Demonstration of efficient, continuous production of down-selected WVT membrane configurations at commercial continuous roll coating facilities. We see no major issues producing Tetramer supported WVT membranes on a large commercial scale. • Following the production and testing of three prototype humidifier stacks, a full size humidifier unit was manufactured and successfully tested by an automotive customer for performance and durability. • Assuming the availability of a reasonably priced support, our cost projections for mid to large scale production of Tetramer WVT membranes are within the acceptable range of the leading automotive manufacturers and at a large scale, our calculations based on bulk sourcing of raw materials indicate we can achieve the project goal of $25/m2.« less
Instrumentation for low noise nanopore-based ionic current recording under laser illumination
NASA Astrophysics Data System (ADS)
Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent
2018-01-01
We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.
Li, Ya; Shi, Shaoyuan; Cao, Hongbin; Wu, Xinmin; Zhao, Zhijuan; Wang, Liying
2016-02-01
Simulated ammonium chloride wastewater was treated by a lab-scale bipolar membrane electrodialysis for the generation of HCl and NH3·H2O and desalination. The influence of initial concentration of NH4Cl, current density, salt solution volume, initial concentration of acid and base and membrane stack structure on the yields of HCl and NH3·H2O was investigated. The current efficiency and energy consumption were also examined under different conditions. The results showed that, at the current density of 48 mA/cm(2), the highest concentration of HCl and NH3·H2O with initial concentration of 110 g/L NH4Cl was 57.67 g/L and 45.85 g/L, respectively. Higher initial concentration of NH4Cl was favor to reduce unit energy consumption and increase current efficiency of the BMED system. The membrane stack voltage of BMED increased quickly under constant current when the concentration of NH4Cl contained in the solution of salt compartment was depleted below the "inflection point concentration" about 8000 mg/L. It means that the concentration of NH4Cl below 8000 mg/L was no longer suitable for BMED because of higher energy consumption. The HCl and NH3·H2O concentration increased more quickly following the increase of current density. When increasing the volume of NH4Cl, the concentration of HCl and NH3·H2O also increased. The high initial concentration of acid and base could improve the final concentration of them, while the growth rate was decreased. Compared with the BMED system with three compartments, the growth rate of HCl concentration with the two compartments was higher and its unit energy consumption was lower. It meant that the performance of the BMED system could be improved by optimizing operation conditions. The application feasibility of the generation of HCl and NH3·H2O and desalination of ammonium chloride wastewater by BMED was proved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fernandez, Fernando R.; Broicher, Tilman; Truong, Alan; White, John A.
2011-01-01
Modulating the gain of the input-output function of neurons is critical for processing of stimuli and network dynamics. Previous gain control mechanisms have suggested that voltage fluctuations play a key role in determining neuronal gain in vivo. Here we show that, under increased membrane conductance, voltage fluctuations restore Na+ current and reduce spike frequency adaptation in rat hippocampal CA1 pyramidal neurons in vitro. As a consequence, membrane voltage fluctuations produce a leftward shift in the f-I relationship without a change in gain, relative to an increase in conductance alone. Furthermore, we show that these changes have important implications for the integration of inhibitory inputs. Due to the ability to restore Na+ current, hyperpolarizing membrane voltage fluctuations mediated by GABAA-like inputs can increase firing rate in a high conductance state. Finally, our data show that the effects on gain and synaptic integration are mediated by voltage fluctuations within a physiologically relevant range of frequencies (10–40 Hz). PMID:21389243
Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions
He, W.; Ren, T.
2013-01-01
To understand how the inner ear-generated sound, i.e., otoacoustic emission, exits the cochlea, we created a sound source electrically in the second turn and measured basilar membrane vibrations at two longitudinal locations in the first turn in living gerbil cochleae using a laser interferometer. For a given longitudinal location, electrically evoked basilar membrane vibrations showed the same tuning and phase lag as those induced by sounds. For a given frequency, the phase measured at a basal location led that at a more apical location, indicating that either an electrical or an acoustical stimulus evoked a forward travelling wave. Under postmortem conditions, the electrically evoked emissions showed no significant change while the basilar membrane vibration nearly disappeared. The current data indicate that basilar membrane vibration was not involved in the backward propagation of otoacoustic emissions and that sounds exit the cochlea probably through alternative media, such as cochlear fluids. PMID:23695199
NASA Astrophysics Data System (ADS)
Pan, Huei-Jyuan; Wang, Ruei-Lin; Xiao, Jian-Long; Chang, Yu-Jen; Cheng, Ji-Yen; Chen, Yun-Ru; Lee, Chau-Hwang
2014-01-01
The membrane roughness of Neuro-2a neroblastoma cells is measured by using noninterferometric wide-field optical profilometry. The cells are treated with the fibril and oligomer conformers of amyloid-beta (Aβ) 42, which is a peptide of 42 amino acids related to the development of Alzheimer's disease. We find that both the Aβ42 fibrils and Aβ42 oligomers reduced the cell membrane roughness, but the effect of Aβ42 oligomers was faster and stronger than that of the fibrils. We also apply direct-current electric field (dcEF) stimulations on the cells. A dcEF of 300 mV/mm can increase the membrane roughness under the treatment of Aβ42. These results suggest that Aβ42 can decrease the membrane compliance of live neuroblastoma cells, and dcEFs may counteract this effect.
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.
1992-01-01
The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.
Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F
1987-12-01
1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the dilution of the serosal bath. Cells repolarized when exposed to low-osmolality solutions after being in the absence of serosal chloride or sodium. The repolarization ran in parallel with the restoration of the short-circuit current and the potassium selectivity of the serosal membrane. 6. The results show that the effects produced by the removal of sodium or chloride ions from the serosal bathing solution are most probably mediated by a reduction in cell volume. Cell volume changes would lead to changes in the serosal membrane selectivity to potassium and thus to changes in cell membrane potential and sodium transport.(ABSTRACT TRUNCATED AT 400 WORDS)
Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.
Cuartero, Maria; Crespo, Gaston A; Bakker, Eric
2016-06-07
We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than <1.5% RSD variation (n = 50). In contrast, plasticized poly(vinyl chloride), polystyrene, and poly(acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision.
Peng, Xiong; Omasta, Travis; Rigdon, William; ...
2016-11-15
In this paper, a low cost air-assisted cylindrical liquid jets spraying (ACLJS) system was developed to prepare high-performance catalyst-coated membranes (CCMs) for proton exchange membrane fuel cells (PEMFCs). The catalyst ink was flowed from a cylindrical orifice and was atomized by an air stream fed from a coaxial slit and sprayed directly onto the membrane, which was suctioned to a heated aluminum vacuum plate. The CCM pore architecture including size, distribution and volume can be controlled using various flow parameters, and the impact of spraying conditions on electrode structure and PEMFC performance was investigated. CCMs fabricated in the fiber-type break-upmore » regime by ACLJS achieved very high performance during PEMFC testing, with the top-performing cells having a current density greater than 1900 mA/cm 2 at 0.7 V under H 2/O 2 flows and 700 mA/cm 2 under H 2/Air at 1.5 bar(absolute) pressure and 60% gas RH, and 80°C cell temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xiong; Omasta, Travis; Rigdon, William
In this paper, a low cost air-assisted cylindrical liquid jets spraying (ACLJS) system was developed to prepare high-performance catalyst-coated membranes (CCMs) for proton exchange membrane fuel cells (PEMFCs). The catalyst ink was flowed from a cylindrical orifice and was atomized by an air stream fed from a coaxial slit and sprayed directly onto the membrane, which was suctioned to a heated aluminum vacuum plate. The CCM pore architecture including size, distribution and volume can be controlled using various flow parameters, and the impact of spraying conditions on electrode structure and PEMFC performance was investigated. CCMs fabricated in the fiber-type break-upmore » regime by ACLJS achieved very high performance during PEMFC testing, with the top-performing cells having a current density greater than 1900 mA/cm 2 at 0.7 V under H 2/O 2 flows and 700 mA/cm 2 under H 2/Air at 1.5 bar(absolute) pressure and 60% gas RH, and 80°C cell temperature.« less
Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing
2015-12-01
A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.
A novel crystallization method for visualizing the membrane localization of potassium channels.
Lopatin, A N; Makhina, E N; Nichols, C G
1998-01-01
The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel. PMID:9591643
A novel crystallization method for visualizing the membrane localization of potassium channels.
Lopatin, A N; Makhina, E N; Nichols, C G
1998-05-01
The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel.
O’Connell, Ryan P.; Musa, Hassan; Gomez, Mario San Martin; Avula, Uma Mahesh; Herron, Todd J.; Kalifa, Jerome; Anumonwo, Justus M. B.
2015-01-01
Background Epicardial adiposity and plasma levels of free fatty acids (FFAs) are elevated in atrial fibrillation, heart failure and obesity, with potentially detrimental effects on myocardial function. As major components of epicardial fat, FFAs may be abnormally regulated, with a potential to detrimentally modulate electro-mechanical function. The cellular mechanisms underlying such effects of FFAs are unknown. Objective To determine the mechanisms underlying electrophysiological effects of palmitic (PA), stearic (SA) and oleic (OA) FFAs on sheep atrial myocytes. Methods We used electrophysiological techniques, numerical simulations, biochemistry and optical imaging to examine the effects of acutely (≤ 15 min), short-term (4–6 hour) or 24-hour application of individual FFAs (10 μM) on isolated ovine left atrial myocytes (LAMs). Results Acute and short-term incubation in FFAs resulted in no differences in passive or active properties of isolated left atrial myocytes (LAMs). 24-hour application had differential effects depending on the FFA. PA did not affect cellular passive properties but shortened (p<0.05) action potential duration at 30% repolarization (APD30). APD50 and APD80 were unchanged. SA had no effect on resting membrane potential but reduced membrane capacitance by 15% (p<0.05), and abbreviated APD at all values measured (p≤0.001). OA did not significantly affect passive or active properties of LAMs. Measurement of the major voltage-gated ion channels in SA treated LAMs showed a ~60% reduction (p<0.01) of the L-type calcium current (ICa-L) and ~30% reduction (p<0.05) in the transient outward potassium current (ITO). A human atrial cell model recapitulated SA effects on APD. Optical imaging showed that SA incubated for 24 hours altered t-tubular structure in isolated cells (p<0.0001). Conclusions SA disrupts t-tubular architecture and remodels properties of membrane ionic currents in sheep atrial myocytes, with potential implications in arrhythmogenesis. PMID:26274906
O'Connell, Ryan P; Musa, Hassan; Gomez, Mario San Martin; Avula, Uma Mahesh; Herron, Todd J; Kalifa, Jerome; Anumonwo, Justus M B
2015-01-01
Epicardial adiposity and plasma levels of free fatty acids (FFAs) are elevated in atrial fibrillation, heart failure and obesity, with potentially detrimental effects on myocardial function. As major components of epicardial fat, FFAs may be abnormally regulated, with a potential to detrimentally modulate electro-mechanical function. The cellular mechanisms underlying such effects of FFAs are unknown. To determine the mechanisms underlying electrophysiological effects of palmitic (PA), stearic (SA) and oleic (OA) FFAs on sheep atrial myocytes. We used electrophysiological techniques, numerical simulations, biochemistry and optical imaging to examine the effects of acutely (≤ 15 min), short-term (4-6 hour) or 24-hour application of individual FFAs (10 μM) on isolated ovine left atrial myocytes (LAMs). Acute and short-term incubation in FFAs resulted in no differences in passive or active properties of isolated left atrial myocytes (LAMs). 24-hour application had differential effects depending on the FFA. PA did not affect cellular passive properties but shortened (p<0.05) action potential duration at 30% repolarization (APD30). APD50 and APD80 were unchanged. SA had no effect on resting membrane potential but reduced membrane capacitance by 15% (p<0.05), and abbreviated APD at all values measured (p≤0.001). OA did not significantly affect passive or active properties of LAMs. Measurement of the major voltage-gated ion channels in SA treated LAMs showed a ~60% reduction (p<0.01) of the L-type calcium current (ICa-L) and ~30% reduction (p<0.05) in the transient outward potassium current (ITO). A human atrial cell model recapitulated SA effects on APD. Optical imaging showed that SA incubated for 24 hours altered t-tubular structure in isolated cells (p<0.0001). SA disrupts t-tubular architecture and remodels properties of membrane ionic currents in sheep atrial myocytes, with potential implications in arrhythmogenesis.
Properties of an inward rectifying K channel in the membrane of guinea-pig atrial cardioballs.
Bechem, M; Glitsch, H G; Pott, L
1983-11-01
Single channel outward current fluctuations are recorded in excised (outside-out) membrane patches of isolated atrial cells in culture (cardioballs) from hearts of adult guinea-pigs. The ionic channel displays a high selectivity to K ions. Accordingly the reversal potential of the single channel current is close to the K equilibrium potential. The open channel conductance is unaffected by the membrane potential but depends on the K concentration of the outside solution (19.7pS at 2 mM Ko to 30.7pS at 20 mM Ko). The open state probability (Po) of the channel shows a marked voltage dependence. Po amounts to c.0.9 at -40 mV and decreases to c.0.1 at +40 mV. Under the assumption of no channel interaction a macroscopic steady state current voltage relationship is reconstructed from the single channel data. The relationship displays inward-going rectification. The rectification is due to the voltage dependence of Po. The I-V curve displays a negative slope at membrane potentials positive to -15 mV. In bathing solutions containing Ba ions (0.2 mM) Po is reduced by rapid closures which interrupt the open state events. The unit channel conductance is unaffected by Ba ions. The channel block exerted by Ba ions is augmented with increasing membrane hyperpolarization. The results suggest that the channel studied may represent a background K conductance.
NASA Astrophysics Data System (ADS)
Li, W. S.; Lu, D. S.; Luo, J. L.; Chuang, K. T.
A proton exchange membrane fuel cell for chemicals and energy co-generation was set up with hydrocarbons ethane, propane and butane as fuels, and the electrochemical performance of the cell was studied by using linear potential sweep, alternating current impedance and gas chromatography. The cell performance can be improved to a great extent by increasing the platinum load in the catalyst, by treating the membrane with phosphoric acid and by elevating temperature. The improvement of cell performance by the increase of platinum load is ascribed to the increase of reaction sites for hydrocarbon oxidation, that by phosphoric acid treatment to the increase of proton conductivity in Nafion membrane, and that by elevating temperature to the improvement in thermodynamic as well as kinetic aspects. Only a small fraction of the hydrocarbon is converted to carbon dioxide in this cell during its power generation. The current efficiency is 5% for the conversion of ethane to carbon dioxide in the ethane/oxygen fuel cell with 20% carbon-supported platinum as catalyst and phosphoric acid-treated membrane as proton exchange membrane at 0.2 V, 80 °C and ambient pressure. The reaction activity of hydrocarbons at the anode is in the order of propane, butane and ethane. The possible chemicals produced from the cell were hydrocarbons with more than six carbons, which are inactive at the anode under cell conditions.
Li, Hui; Zuo, Wei; Tian, Yu; Zhang, Jun; Di, Shijing; Li, Lipin; Su, Xinying
2017-02-01
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m 3 and a current density of 8.5 A/m 3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.
Shapiro, E; Castellucci, V F; Kandel, E R
1980-01-01
We have examined the relationships between the modulation of transmitter release and of specific ionic currents by membrane potential in the cholinergic interneuron L10 of the abdominal ganglion of Aplysia californica. The presynaptic cell body was voltage-clamped under various pharmacological conditions and transmitter release from the terminals was assayed simultaneously by recording the synaptic potentials in the postsynaptic cell. When cell L10 was voltage-clamped from a holding potential of -60 mV in the presence of tetrodotoxin, graded transmitter release was evoked by depolarizing command pulses in the membrane voltage range (-35 mV to + 10 mV) in which the Ca(2+) current was also increasing. Depolarizing the holding potential of L10 results in increased transmitter output. Two ionic mechanisms contribute to this form of plasticity. First, depolarization inactivates some K(+) channels so that depolarizing command pulses recruit a smaller K(+) current. In unclamped cells the decreased K(+) conductance causes spike-broadening and increased influx of Ca(2+) during each spike. Second, small depolarizations around resting potential (-55 mV to -35 mV) activate a steady-state Ca(2+) current that also contributes to the modulation of transmitter release, because, even with most presynaptic K(+) currents blocked pharmacologically, depolarizing the holding potential still increases transmitter release. In contrast to the steady-state Ca(2+) current, the transient inward Ca(2+) current evoked by depolarizing clamp steps is relatively unchanged from various holding potentials.
Barceló, Francisca; Perona, Javier S; Prades, Jesús; Funari, Sérgio S; Gomez-Gracia, Enrique; Conde, Manuel; Estruch, Ramon; Ruiz-Gutiérrez, Valentina
2009-11-01
A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.
Fully Nonlinear Modeling and Analysis of Precision Membranes
NASA Technical Reports Server (NTRS)
Pai, P. Frank; Young, Leyland G.
2003-01-01
High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.
Generation of action potentials in a mathematical model of corticotrophs.
LeBeau, A P; Robson, A B; McKinnon, A E; Donald, R A; Sneyd, J
1997-01-01
Corticotropin-releasing hormone (CRH) is an important regulator of adrenocorticotropin (ACTH) secretion from pituitary corticotroph cells. The intracellular signaling system that underlies this process involves modulation of voltage-sensitive Ca2+ channel activity, which leads to the generation of Ca2+ action potentials and influx of Ca2+. However, the mechanisms by which Ca2+ channel activity is modulated in corticotrophs are not currently known. We investigated this process in a Hodgkin-Huxley-type mathematical model of corticotroph plasma membrane electrical responses. We found that an increase in the L-type Ca2+ current was sufficient to generate action potentials from a previously resting state of the model. The increase in the L-type current could be elicited by either a shift in the voltage dependence of the current toward more negative potentials, or by an increase in the conductance of the current. Although either of these mechanisms is potentially responsible for the generation of action potentials, previous experimental evidence favors the former mechanism, with the magnitude of the shift required being consistent with the experimental findings. The model also shows that the T-type Ca2+ current plays a role in setting the excitability of the plasma membrane, but does not appear to contribute in a dynamic manner to action potential generation. Inhibition of a K+ conductance that is active at rest also affects the excitability of the plasma membrane. PMID:9284294
Uniform structure of eukaryotic plasma membrane: lateral domains in plants.
Malínská, Kateŕina; Zažímalová, Eva
2011-03-01
Current models of the plasma membrane (PM) organization focus on the lateral heterogeneity of the membrane and its relation to the cell function. Increasing evidence in mammals and yeast supports the direct relationship between PM lateral microdomains and specific cell processes and functions (nutrient transport, signaling, protein and lipid sorting, endocytosis, pathogen entry etc.). However, for the present the functional significance of an enrichment of specific proteins and possibly lipids in plant PM domains as well as the underlying molecular mechanism driving the lateral PM segregation remain unaddressed. Here we summarize recent findings on the plant PM organization and its role in signaling pathways, with the special emphasis on auxin transport.
Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh
2014-01-01
Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394
Biocompatible membrane of PDMS for the new chamber prosthesis stapes.
Banasik, Katarzyna; Kwacz, Monika
2016-06-30
Stapes protheses are designed for patients with otosclerosis resulting immobilization or significant reduction of the stapes mobility. All currently used prostheses are called - piston prosthesis. However, its use to stimulate the cochlea is still imperfect. New chamber stapes prosthesis allows the perilymph excitation more effective than the piston prothesis. Moreover, the chamber prosthesis eliminates the common causes of piston-stapedotomy failures. The most important element of the new prosthesis is a flexible membrane. The membrane stiffness should be close to the stiffness of normal annular ligament. This work presents the process of selection of the membrane's thickness and its manufacturing technology. Method A 3D model of the chamber stapes prosthesis was build using Autodesk Inventor 2015. The model was imported to Abacus 6.13 computing environment. During numerical simulations, displacements corresponding to applied loads were calculated and the membrane thickness was adjusted so that its stiffness was the same as the ligament stiffness (~ 120 N/m). The compliance ratios calculated from the load-displacement curves for the membrane and the annular ligament were verified using linear regression analysis. After determining the thickness, the manufacturing technology of the membrane was developed. Results The best similarity between the membrane's and annular ligament's stiffness was achieved for PDMS membrane with the 0,15- mm thickness (similarity ratio R2=0,997752). In this work, the technological parameters of spin-coating process for membrane manufacture are also presented. Summary The proper functioning of the chamber stapes prosthesis requires the PDMS membrane with a thickness of 0,15 mm. The 0,15-mm membrane has the tiffness close to the stiffness of the normal annular ligament. Therefore, the chamber stapes prosthesis provides the perilymph stimulation at the level comparable to the healthy ear. New prosthesis is currently under pre-clinical investigation to optimize the shape of the inner chamber's surface.
Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
NASA Astrophysics Data System (ADS)
Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung
2018-01-01
Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.
Voltage and pH sensing by the voltage-gated proton channel, HV1.
DeCoursey, Thomas E
2018-04-01
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high p K a ) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their p K a needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups. © 2018 The Author.
Voltage and pH sensing by the voltage-gated proton channel, HV1
2018-01-01
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a ‘counter-charge’ model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups. PMID:29643227
ELECTRIC IMPEDANCE OF NITELLA DURING ACTIVITY
Cole, Kenneth S.; Curtis, Howard J.
1938-01-01
The changes in the alternating current impedance which occur during activity of cells of the fresh water plant Nitella have been measured with the current flow normal to the cell axis, at eight frequencies from 0.05 to 20 kilocycles per second, and with simultaneous records of the action potential under the impedance electrodes. At each frequency the resting cell was balanced in a Wheatstone bridge with a cathode ray oscillograph, and after electrical stimulation at one end of the cell, the changes in the complex impedance were determined from the bridge unbalance recorded by motion pictures of the oscillograph figure. An extension of the previous technique of interpretation of the transverse impedance shows that the normal membrane capacity of 0.9 µf./cm.2 decreases about 15 per cent without change of phase angle, while the membrane resistance decreases from 105 ohm cm.2 to about 500 ohm cm.2 during the passage of the excitation wave. This membrane change occurs during the latter part of the rising phase of the action potential, and it is shown that the membrane electromotive force remains unchanged until nearly the same time. The part of the action potential preceding these membrane changes is probably a passive fall of potential ahead of a partial short circuit. PMID:19873091
NASA Astrophysics Data System (ADS)
Hou, Chen
Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.
Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min
2014-07-24
Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.
NASA Astrophysics Data System (ADS)
Ito, Hiroshi; Iwamura, Takuya; Someya, Satoshi; Munakata, Tetsuo; Nakano, Akihiro; Heo, Yun; Ishida, Masayoshi; Nakajima, Hironori; Kitahara, Tatsumi
2016-02-01
This experimental study identifies the effect of through-plane polytetrafluoroethylene (PTFE) distribution in gas diffusion backing (GDB) on the performance of proton exchange membrane fuel cells (PEMFC). PTFE-drying under vacuum pressure created a relatively uniform PTFE distribution in GDB compared to drying under atmospheric pressure. Carbon paper samples with different PTFE distributions due to the difference in drying conditions were prepared and used for the cathode gas diffusion layer (GDL) of PEMFCs. Also investigated is the effect of MPL application on the performance for those samples. The current density (i) - voltage (V) characteristics of these PEMFCs measured under high relative humidity conditions clearly showed that, with or without MPL, the cell using the GDL with PTFE dried under vacuum condition showed better performance than that dried under atmospheric condition. It is suggested that this improved performance is caused by the efficient transport of liquid water through the GDB due to the uniform distribution of PTFE.
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
NASA Technical Reports Server (NTRS)
Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.
1989-01-01
Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density.
The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater.
Cornelissen, E R; Harmsen, D; Beerendonk, E F; Qin, J J; Oo, H; de Korte, K F; Kappelhof, J W M N
2011-01-01
An innovative osmotic membrane bioreactor (OMBR) is currently under development for the reclamation of wastewater, which combines activated sludge treatment and forward osmosis (FO) membrane separation with a RO post-treatment. The research focus is FO membrane fouling and performance using different activated sludge investigated both at laboratory scale (membrane area of 112cm2) and at on-site bench scale (flat sheet membrane area of 0.1 m2). FO performance on laboratory-scale (i) increased with temperature due to a decrease in viscosity and (ii) was independent of the type of activated sludge. Draw solution leakage increased with temperature and varied for different activated sludge. FO performance on bench-scale (i) increased with osmotic driving force, (ii) depended on the membrane orientation due to internal concentration polarization and (iii) was invariant to feed flow decrease and air injection at the feed and draw side. Draw solution leakage could not be evaluated on bench-scale due to experimental limitation. Membrane fouling was not found on laboratory scale and bench-scale, however, partially reversible fouling was found on laboratory scale for FO membranes facing the draw solution. Economic assessment indicated a minimum flux of 15L.m-2 h-1 at 0.5M NaCl for OMBR-RO to be cost effective, depending on the FO membrane price.
The Multifaceted Role of SNARE Proteins in Membrane Fusion
Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.
2017-01-01
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686
Membrane morphology and topology for fouling control in Reverse Osmosis filtration systems
NASA Astrophysics Data System (ADS)
Ling, Bowen; Battiato, Ilenia
2017-11-01
Reverse Osmosis Membrane (ROM) filtration systems are widely utilized in waste-water recovery, seawater desalination, landfill water treatment, etc. During filtration, the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. Design and optimization of ROM filtration systems aim at reducing membrane fouling by studying the coupling between membrane structure, local flow field and foulant adsorption patterns. Yet, current studies focus exclusively on oversimplified steady-state models that ignore any dynamic coupling between fluid flow and transport through the membrane. In this work, we develop a customized solver (SUMembraneFoam) under OpenFOAM to solve the transient equations. The simulation results not only predict macroscopic quantities (e.g. permeate flux, pressure drop, etc.) but also show an excellent agreement with the fouling patterns observed in experiments. It is observed that foulant deposition is strongly controlled by the local shear stress on the membrane, and channel morphology or membrane topology can be modified to control the shear stress distribution and reduce fouling. Finally, we identify optimal regimes for design.
The Multifaceted Role of SNARE Proteins in Membrane Fusion.
Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A
2017-01-01
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.
NASA Astrophysics Data System (ADS)
Schalkhammer, Thomas G. M.; Weiss-Wichert, Christof; Smetazko, Michaela M.; Valina-Saba, Miriam
1997-06-01
Signal amplification using labels should be replaced by a technique monitoring the biochemical binding event directly. The use of a ligand coupled to an artificial gated membrane ion channel is a new promising strategy. Binding of protein- or DNA/RNA-analytes at ligand modified peptide channels results in an on/off-response of the channel current due to channel closure or distortion. The sensor consists of stable transmembrane channels with a ligand bound covalently at the peptide channel entrance, a sensor chip with a photostructurized hydrophobic polymer frame, a hydrophilic ion conducting membrane support, a lipid membrane incorporating the engineered ion channels, and a current amplifier or a sensitive fluorescence monitor. Detection of channel opening or closure can ether be obtained by directly monitoring membrane conductivity or a transient change of pH or ion concentration within the membrane compartment. This change can be induced by electrochemical or optical means and its decay is directly correlated to the permeability of the membrane. The ion concentration in the sub membrane compartment was monitored by incorporation of fluorescent indicator dyes. To obtain the stable sensor membrane the lipid layer had to be attached on a support and the floating of the second lipid membrane on top of the first one had to be prevented. Both problems do not occur using our new circular C44-C76 bolaamphiphilic lipids consisting of a long hydrophobic core region and two hydrophilic heads. Use of maleic ester-head groups enabled us to easily modify the lipids with amines, thioles, alcohols, phosphates, boronic acid as well as fluorescent dyes. The properties of these membranes were studied using LB and fluorescence techniques. Based on this detection principle miniaturized sensor chips with significantly enhanced sensitivity and large multi analyte arrays are under construction.
NASA Astrophysics Data System (ADS)
Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef
2017-02-01
Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).
[Effect of pulse magnetic field on distribution of neuronal action potential].
Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling
2014-08-25
The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.
A system for the automated data-acquisition of fast transient signals in excitable membranes.
Bustamante, J O
1988-01-01
This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.
Nicotine inhibits potassium currents in Aplysia bag cell neurons
White, Sean H.; Sturgeon, Raymond M.
2016-01-01
Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K+ with Cs+. Consistent with an underlying mechanism of direct inhibition of one or more K+ channels, nicotine was found to rapidly reduce the fast-inactivating A-type K+ current as well as both components of the delayed-rectifier K+ current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K+ channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763
VOLTAGE CLAMP BEHAVIOR OF IRON-NITRIC ACID SYSTEM AS COMPARED WITH THAT OF NERVE MEMBRANE
Tasaki, I.; Bak, A. F.
1959-01-01
The current-voltage relation for the surface layer of an iron wire immersed in nitric acid was investigated by the voltage clamp technique. Comparing the phase of nitric acid to the axoplasm and the metallic phase to the external fluid medium for the nerve fiber, a striking analogy was found between the voltage clamp behavior of the iron-nitric acid system and that of the nerve membrane. The current voltage curve was found to consist of three parts: (a) a straight line representing the behavior of the resting (passive) membrane, (b) a straight line representing the fully excited (active) state, and (c) an intermediate zone connecting (a) and (b). It was shown that in the intermediate zone, the surface of iron consisted of a fully active patch (or patches) surrounded by a remaining resting area. The phenomenon corresponding to "repetitive firing of responses under voltage clamp" in the nerve membrane was demonstrated in the intermediate zone. The behavior of the cobalt electrode system was also investigated by the same technique. An attempt was made to interpret the phenomenon of initiation and abolition of an active potential on the basis of the thermodynamics of irreversible processes. PMID:13654740
Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator
Sherman, AJ; Shrier, A; Cooper, E
1999-01-01
Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques. PMID:10545359
Modern Directions for Potentiometric Sensors
Bakker, Eric; Chumbimuni-Torres, Karin
2009-01-01
This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473
Enhanced Performance of non-PGM Catalysts in Air Operated PEM-Fuel Cells
Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary Brian; ...
2016-10-13
Here a non-platinum group metal (non-PGM) oxygen reduction catalyst was prepared from “support-free” zeolitic imidazolate framework (ZIF) precursor and tested in the proton exchange membrane fuel cell with air as the cathode feed. The iron nitrogen and carbon composite (FeeNeC) based catalyst has high specific surface area decorated uniformly with active sites, which redefines the triple phase boundary (TPB) and requires re-optimization of the cathodic membrane electrode fabrication to ensure efficient mass and charge transports to the catalyst surface. This study reports an effort in optimizing catalytic ink formulation for the membrane electrode preparation and its impact to the fuelmore » cell performance under air. Through optimization, the fuel cell areal current density as high as 115.2 mA/cm 2 at 0.8 V or 147.6 mA/cm 2 at 0.8 V iR-free has been achieved under one bar air. We also investigated impacts on fuel cell internal impedance and the water formation.« less
Frieden, M; Sollini, M; Bény, J-L
1999-01-01
Substance P and bradykinin, endothelium-dependent vasodilators of pig coronary artery, trigger in endothelial cells a rise in cytosolic Ca2+ concentration ([Ca2+]i) and membrane hyperpolarization. The aim of the present study was to determine the type of Ca2+-dependent K+ (KCa) currents underlying the endothelial cell hyperpolarization. The substance P-induced increase in [Ca2+]i was 30 % smaller than that induced by bradykinin, although the two peptides triggered a membrane hyperpolarization of the same amplitude. The two agonists evoked a large outward K+ current of the same conductance at maximal stimulation. Agonists applied together produced the same maximal current amplitude as either one applied alone. Iberiotoxin (50 nM) reduced by about 40 % the K+ current activated by bradykinin without modifying the substance P response. Conversely, apamin (1 μm) inhibited the substance P-induced K+ current by about 65 %, without affecting the bradykinin response. Similar results were obtained on peptide-induced membrane hyperpolarization. Bradykinin-induced, but not substance P-induced, endothelium-dependent relaxation resistant to NG-nitro-L-arginine and indomethacin was partly inhibited by 3 μm 17-octadecynoic acid (17-ODYA), an inhibitor of cytochrome P450 epoxygenase. Similarly, the bradykinin-induced K+ current was reduced by 17-ODYA. Our results show that responses to substance P and bradykinin result in a hyperpolarization due to activation of different KCa currents. A current consistent with the activation of large conductance (BKCa) channels was activated only by bradykinin, whereas a current consistent with the activation of small conductance (SKCa) channels was stimulated only by substance P. The observation that a similar electrical response is produced by different pools of channels implies distinct intracellular pathways leading to KCa current activation. PMID:10457055
Membrane lipids and the origin of life
NASA Technical Reports Server (NTRS)
Oro, J.; Holzer, G.; Rao, M.; Tornabene, T. G.
1981-01-01
The current state of knowledge regarding the development of biological systems is briefly reviewed. At a crucial stage concerning the evolution of such systems, the mechanisms leading to more complex structures must have evolved within the confines of a protected microenvironment, similar to those provided by the contemporary cell membranes. The major components found normally in biomembranes are phospholipids. The structure of the biomembrane is examined, and attention is given to questions concerning the availability of the structural components which are necessary in the formation of primitive lipid membranes. Two approaches regarding the study of protomembranes are discussed. The probability of obtaining ether lipids under prebiotic conditions is considered, taking into account the formation of cyclic and acyclic isoprenoids by the irradiation of isoprene with UV.
Heat pulse excitability of vestibular hair cells and afferent neurons
Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca
2016-01-01
In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at −68 mV and in 67% of hair cells at −60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448
NASA Technical Reports Server (NTRS)
Moisan, Tiffany A.; Ellisman, M. H.; Sosinsky, G. E.; Gerlach, John C. (Technical Monitor)
2001-01-01
Understanding the light-harvesting properties of algae and higher plants are a fundamental topic in photosynthesis research. Using thick sections obtained from fixed and embedded cultures of colonial P antarctica, we calculate tomographic reconstructions of individual chloroplasts under light-limiting and saturating conditions for net photosynthesis. Our goal is to gain an understanding of the continuity of thylakoid membranes and understand the spatial relationship between the pyrenoid, the starch containing organelle, and thylakoid membranes. We found that Phaeocystis showed considerable morphological and physiological flexibility in response to environmental light levels. We found that the thylakoids generally run parallel to the chloroplast membrane with many junctures and bifurcations, many of which are in contact with the chloroplast membrane itself. The considerable flexibility in the. thylakoid membranes allows for the accommodation of the pyrenoid structure. The arrangement of the thylakoids within these structures resemble those found in new structures of mitochondria cristae. We present a new structural model for algal chloroplasts which greatly revises current concepts of thylakoid membrane structure in relation to photoacclimation.
The incorporation of hydrophobic protein receptors and artificial lipid membranes.
Reader, T A; Fiszer de Plazas, S; Salas, P J; de Robertis, E
1976-01-01
The mechanism of chemical synaptic transmission implies: 1) the existence of a specific protein receptor at the postsynaptic membrane, and 2) the interaction between the transmitter released and the receptor, thus producing a change in ionic permeability. Previous studies from our laboratory have shown that special hydrophobic proteins extracted from postsynpatic membranes of different tissues showed a high affinity binding for the different pharmacological agents. The present paper describes experiments in which different hydrophobic protein binding acetylcholine, noradrenaline, gamma-aminobutyric acid, and glutamate were incorporated into artificial lipid membranes, similar to those first described by Mueller et al. (19). The effect of the different pharmacological agents was tested under experimental conditions of voltage clamp and the d.c. current changes measured. The results were then compared for the different lipid-protein membranes employed during the steady state and during transient conductance changes. The specificity of the responses indicate that artificial lipid membranes containing these hydrophobic proteins from electroplax, myocardium, spleen capsule and shrimp muscle can be used as a model to study pharmacologic receptors.
The dynamics of plant plasma membrane proteins: PINs and beyond.
Luschnig, Christian; Vert, Grégory
2014-08-01
Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment. © 2014. Published by The Company of Biologists Ltd.
Building a patchwork - The yeast plasma membrane as model to study lateral domain formation.
Schuberth, Christian; Wedlich-Söldner, Roland
2015-04-01
The plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. Copyright © 2014 Elsevier B.V. All rights reserved.
The physostigmine depolarization potentiating effect of salicylate in frog skeletal muscle.
Varga, E; Kovács, L; Szücs, G; Illés, B
1975-01-01
1) The frog's sartorius muscle was depolarized depending on the degree of concentration 2--4 times more intensely by physostigmine salicylate than by physostigmine sulphate. 2) In normal Ringer's solution, 1 mM physostigmine salicylate decreased the sensitivity of the membrane to potassium depolarization by about 90%. Under similar experimental conditions, physostigmine sulphate and Na salicylate, respectively, decrease the sensitivity of the membrane to potassium depolarization by about 30%. 3) The difference manifested in the depolarizing effect of salicylate and other physostigmine salts (chloride, sulphate, phosphate, formiate, acetate, monochloracetate, benzoate and para-oxy-benzoate) is expressed already at 1 mM concentration (about 10-fold), if the muscle had been equilibrated in chloride-free glucuronate or sulphate milieu. 4) The depolarization develops slowly. It takes 30--60 minutes for the new steady state to develop even in the superficial sartorius fibres. If depolarization has reached its maximum on an average 100 mV, the membrane potential remains unchanged for hours. 5) Depolarization ensues at an unchanged degree in the presence of Na-free (choline) Ringer as well as in the presence of 2X10(-8) g/ml tetrodotoxin; therefore, it is not a Na-dependent process. 6) Under the influence of 1 mM physostigmine salicylate the membrane's resistance to the inward potassium current increased about twofold, while the increase was only 15% to the outward potassium current. It is assumed that the salicylate anion is characteristically capable of potentiating the decreasing effect of physostigmine on potassium permeability, though the role of the metabolic effect of salicylate cannot be excluded.
Binder of Sperm Proteins 1 and 5 have contrasting effects on the capacitation of ram spermatozoa.
Pini, Taylor; de Graaf, Simon P; Druart, Xavier; Tsikis, Guillaume; Labas, Valerie; Teixeira-Gomes, Ana Paula; Gadella, Barend M; Leahy, Tamara
2018-06-01
Binder of Sperm Proteins (BSPs) are the most abundant seminal plasma protein family in the ram and bull. They have been extensively studied in the bull but less is known about their function in ovine seminal plasma and current knowledge suggests that BSPs may have different effects in these two species. In the bull, they facilitate capacitation and destabilize the sperm membrane during in vitro handling, whereas in the ram, they appear to stabilize the sperm membrane and prevent cryopreservation-induced capacitation-like changes. Further investigation into the effects of BSPs on ram spermatozoa under capacitating conditions is required to further clarify their physiological roles in the ram. We investigated the effects of Binder of Sperm Proteins 1 and 5 on epididymal ram spermatozoa in conditions of low, moderate, and high cAMP. BSPs had minimal effects on sperm function in low-cAMP conditions, but caused significant changes under cAMP upregulation. BSP1 stabilized the membrane and qualitatively reduced protein tyrosine phosphorylation, but significantly increased cholesterol efflux and induced spontaneous acrosome reactions. BSP5 slightly increased spontaneous acrosome reactions and caused sperm necrosis. However, BSP5 had minimal effects on membrane lipid order and cholesterol efflux and did not inhibit protein tyrosine phosphorylation. These findings demonstrate that under maximal cAMP upregulation, BSP1 affected ram spermatozoa in a manner comparable to bull spermatozoa, while BSP5 did not.
Kerres, Jochen A.; Krieg, Henning M.
2017-01-01
In view of the many possible applications such as fuel cells and electrolysers, recent interest in novel anion exchange membranes (AEMs) has increased significantly. However, their low conductivity and chemical stability limits their current suitability. In this study, the synthesis and characterization of several three- and four-component anion exchange blend membranes (AEBMs) is described, where the compositions have been systematically varied to study the influence of the AEBM’s composition on the anion conductivities as well as chemical and thermal stabilities under strongly alkaline conditions. It was shown that the epoxide-functionalized poly(ethylene glycol)s that were introduced into the four-component AEBMs resulted in increased conductivity as well as a marked improvement in the stability of the AEBMs in an alkaline environment. In addition, the thermal stability of the novel AEBMs was excellent showing the suitability of these membranes for several electrochemical applications. PMID:28621717
So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung
2017-01-01
Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.
Acoustic emission by self-organising effects of micro-hollow cathode discharges
NASA Astrophysics Data System (ADS)
Kotschate, Daniel; Gaal, Mate; Kersten, Holger
2018-04-01
We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.
Rab11-dependent Recycling of the Human Ether-a-go-go-related Gene (hERG) Channel*
Chen, Jeffery; Guo, Jun; Yang, Tonghua; Li, Wentao; Lamothe, Shawn M.; Kang, Yudi; Szendrey, John A.; Zhang, Shetuan
2015-01-01
The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr). A reduction in the hERG current causes long QT syndrome, which predisposes affected individuals to ventricular arrhythmias and sudden death. We reported previously that hERG channels in the plasma membrane undergo vigorous internalization under low K+ conditions. In the present study, we addressed whether hERG internalization occurs under normal K+ conditions and whether/how internalized channels are recycled back to the plasma membrane. Using patch clamp, Western blot, and confocal imaging analyses, we demonstrated that internalized hERG channels can effectively recycle back to the plasma membrane. Low K+-enhanced hERG internalization is accompanied by an increased rate of hERG recovery in the plasma membrane upon reculture following proteinase K-mediated clearance of cell-surface proteins. The increased recovery rate is not due to enhanced protein synthesis, as hERG mRNA expression was not altered by low K+ exposure, and the increased recovery was observed in the presence of the protein biosynthesis inhibitor cycloheximide. GTPase Rab11, but not Rab4, is involved in the recycling of hERG channels. Interfering with Rab11 function not only delayed hERG recovery in cells after exposure to low K+ medium but also decreased hERG expression and function in cells under normal culture conditions. We concluded that the recycling pathway plays an important role in the homeostasis of plasma membrane-bound hERG channels. PMID:26152716
Membrane development for vanadium redox flow batteries.
Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo
2011-10-17
Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.
Graupner, Michael; Reyes, Alex D
2013-09-18
Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.
An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification.
Gao, Feng; Courjean, Olivier; Mano, Nicolas
2009-10-15
A key objective in any bioelectrochemical systems is to improve the current densities and mass transport limitation. Most of the work is focused on increasing the specific surface of the electrodes or improving the electron transfer between enzymes and electrodes. However, nothing is said about the comparison of purified and non-purified enzyme and their effects on the biosensor efficiency. To illustrate the effect of the enzyme purity, we studied the widely used commercial Glucose Oxidase (GOx) from Aspergillus niger that we are using in our miniature membrane-less biofuel cell. Our results indicate that even if additional compounds contained in the lyophilized enzyme powder do not interfere with its intrinsic catalytic properties, they could prevent a good electron transfer between the enzyme and the electrode surface. By introducing a purified glucose oxidase into a bioelectrocatalyst immobilized on an electrode surface, we show that we can increase the interaction between the enzyme and the redox polymer, forming a better homogenous, leather like gel. At 5mM glucose concentration and under oxygen atmosphere, the current is three-fold higher when using a purified enzyme than it is when using a non-purified enzyme. Built with this novel anode, we showed that a miniature implantable membrane-less glucose-O(2) biofuel cell could produce, under air, twice the power density that is usually obtained when using a non-purified GOx.
Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics
NASA Astrophysics Data System (ADS)
Luk, Brian Tsengchi
The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.
Parylene as a new membrane material for BioMEMS applications
NASA Astrophysics Data System (ADS)
Lu, Bo
The work in this thesis aims to use MEMS and microfabrication technologies to develop two types of parylene membrane devices for biomedical applications. The first device is the parylene membrane filter for cancer detection. The presence of circulating tumor cells (CTC) in patient blood is an important sign of cancer metastasis. However, currently there are two big challenges for CTC detection. First, CTCs are extremely rare, especially at the early stage of cancer metastasis. Secondly, CTCs are very fragile, and are very likely to be damaged during the capturing process. By using size-based membrane filtration through the specially designed parylene filters, together with a constant-pressure filtration system, we are able to capture the CTCs from patient blood with high capture efficiency, high viability, moderate enrichment, and high throughput. Both immunofluorescence enumeration and telomerase activity detection have been used to detect and differentiate the captured CTCs. The feasibility of further cell culture of the captured CTCs has also been demonstrated, which could be a useful way to increase the number of CTCs for future studies. Models of the time-dependent cell membrane damage are developed to predict and prevent CTC damage during this detection process. The results of clinical trials further demonstrate that the parylene membrane filter is a promising device for cancer detection. The second device is the parylene artificial Bruch's membrane for age-related macular degeneration (AMD). AMD is usually characterized by an impaired Bruch's membrane with much lowered permeability, which impedes the transportation of nutrients from choroid vessels to nourish the retinal pigment epithelial (RPE) cells and photoreceptors. Parylene is selected as a substitute material because of its good mechanical properties, transparency, biocompatibility, and machinability. More importantly, it is found that the permeability of submicron parylene is very similar to that of healthy human Bruch's membrane. A mesh-supported submicron parylene membrane structure has been designed and its feasibility as an artificial Bruch's membrane has been demonstrated by diffusion experiments, cell perfusion culture, and pressure deflection tests. RPE cells are able to adhere, proliferate and develop into normal in vivo-like morphology and functions. Currently this artificial membrane is under clinical trials.
Advanced Water Recovery Technologies for Long Duration Space Exploration Missions
NASA Technical Reports Server (NTRS)
Liu, Scan X.
2005-01-01
Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.
Pape, H C; Budde, T; Mager, R; Kisvárday, Z F
1994-01-01
1. Neurones enzymatically dissociated from the rat dorsal lateral geniculate nucleus (LGN) were identified as GABAergic local circuit interneurones and geniculocortical relay cells, based upon quantitative analysis of soma profiles, immunohistochemical detection of GABA or glutamic acid decarboxylase, and basic electrogenic behaviour. 2. During whole-cell current-clamp recording, isolated LGN neurones generated firing patterns resembling those in intact tissue, with the most striking difference relating to the presence in relay cells of a Ca2+ action potential with a low threshold of activation, capable of triggering fast spikes, and the absence of a regenerative Ca2+ response with a low threshold of activation in local circuit cells. 3. Whole-cell voltage-clamp experiments demonstrated that both classes of LGN neurones possess at least two voltage-dependent membrane currents which operate in a range of membrane potentials negative to the threshold for generation of Na(+)-K(+)-mediated spikes: the T-type Ca2+ current (IT) and an A-type K+ current (IA). Taking into account the differences in membrane surface area, the average size of IT was similar in the two types of neurones, and interneurones possessed a slightly larger A-conductance. 4. In local circuit neurones, the ranges of steady-state inactivation and activation of IT and IA were largely overlapping (VH = 81.1 vs. -82.8 mV), both currents activated at around -70 mV, and they rapidly increased in amplitude with further depolarization. In relay cells, the inactivation curve of IT was negatively shifted along the voltage axis by about 20 mV compared with that of IA (Vh = -86.1 vs. -69.2 mV), and the activation threshold for IT (at -80 mV) was 20 mV more negative than that for IA. In interneurones, the activation range of IT was shifted to values more positive than that in relay cells (Vh = -54.9 vs. -64.5 mV), whereas the activation range of IA was more negative (Vh = -25.2 vs. -14.5 mV). 5. Under whole-cell voltage-clamp conditions that allowed the combined activation of Ca2+ and K+ currents, depolarizing voltage steps from -110 mV evoked inward currents resembling IT in relay cells and small outward currents indicative of IA in local circuit neurones. After blockade of IA with 4-aminopyridine (4-AP), the same pulse protocol produced IT in both types of neurones. Under current clamp, 4-AP unmasked a regenerative membrane depolarization with a low threshold of activation capable of triggering fast spikes in local circuit neurones.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 PMID:7965855
Optimization of microelectrophoresis to select highly negatively charged sperm.
Simon, Luke; Murphy, Kristin; Aston, Kenneth I; Emery, Benjamin R; Hotaling, James M; Carrell, Douglas T
2016-06-01
The sperm membrane undergoes extensive surface remodeling as it matures in the epididymis. During this process, the sperm is encapsulated in an extensive glycocalyx layer, which provides the membrane with its characteristic negative electrostatic charge. In this study, we develop a method of microelectrophoresis and standardize the protocol to isolate sperm with high negative membrane charge. Under an electric field, the percentage of positively charged sperm (PCS), negatively charged sperm (NCS), and neutrally charged sperm was determined for each ejaculate prior to and following density gradient centrifugation (DGC), and evaluated for sperm DNA damage, and histone retention. Subsequently, PCS, NCS, and neutrally charged sperm were selected using an ICSI needle and directly analyzed for DNA damage. When raw semen was analyzed using microelectrophoresis, 94 % were NCS. In contrast, DGC completely or partially stripped the negative membrane charge from sperm resulting PCS and neutrally charged sperm, while the charged sperm populations are increased with an increase in electrophoretic current. Following DGC, high sperm DNA damage and abnormal histone retention were inversely correlated with percentage NCS and directly correlated with percentage PCS. NCS exhibited significantly lower DNA damage when compared with control (P < 0.05) and PCS (P < 0.05). When the charged sperm population was corrected for neutrally charged sperm, sperm DNA damage was strongly associated with NCS at a lower electrophoretic current. The results suggest that selection of NCS at lower current may be an important biomarker to select healthy sperm for assisted reproductive treatment.
Boronovskiĭ, S E; Nartsissov, Ia R
2009-01-01
Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.
Electrical characteristics in reverse electrodialysis using nanoporous membranes
NASA Astrophysics Data System (ADS)
Chanda, Sourayon; Tsai, Peichun Amy
2017-11-01
We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.
Clay, John R
2009-01-01
Potassium ion current in nerve membrane, I(K), has traditionally been described by I(K) = g(K)(V - E(K)), where g(K) is the K ion conductance, V is membrane potential and E(K) is the K(+) Nernst potential. This description has been unchallenged by most investigators in neuroscience since its introduction almost 60 years ago. The problem with the I(K) approximately (V - E(K)) proportionality is that it is inconsistent with the unequal distribution of K ions in the intra- and extracellular bathing media. Under physiological conditions the intracellular K(+) concentration is significantly higher than the extracellular concentration. Consequently, the slope conductance at potentials positive to E(K) cannot be the same as that for potentials negative to E(K), as the linear proportionality between I(K) and (V - E(K)) requires. Instead I(K) has a non-linear dependence on (V - E(K)) which is well described by the Goldman-Hodgkin-Katz equation. The implications of this result for K(+) channel gating and membrane excitability are reviewed in this report.
Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao
2016-10-01
Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.
Characterization of tissue-simulating phantom materials for ultrasound-guided needle procedures
NASA Astrophysics Data System (ADS)
Buchanan, Susan; Moore, John; Lammers, Deanna; Baxter, John; Peters, Terry
2012-02-01
Needle biopsies are standard protocols that are commonly performed under ultrasound (US) guidance or computed tomography (CT)1. Vascular access such as central line insertions, and many spinal needle therapies also rely on US guidance. Phantoms for these procedures are crucial as both training tools for clinicians and research tools for developing new guidance systems. Realistic imaging properties and material longevity are critical qualities for needle guidance phantoms. However, current commercially available phantoms for use with US guidance have many limitations, the most detrimental of which include harsh needle tracks obfuscating US images and a membrane comparable to human skin that does not allow seepage of inner media. To overcome these difficulties, we tested a variety of readily available media and membranes to evaluate optimal materials to fit our current needs. It was concluded that liquid hand soap was the best medium, as it instantly left no needle tracks, had an acceptable depth of US penetration and portrayed realistic imaging conditions, while because of its low leakage, low cost, acceptable durability and transparency, the optimal membrane was 10 gauge vinyl.
Haydon, D A; Urban, B W
1983-01-01
The effects of several n-alkanols and n-alkyl oxyethylene alcohols, methyl octanoate, glycerol 1-monooctanoate and dioctanoyl phosphatidylcholine on the ionic currents and electrical capacity of the squid giant axon membrane have been examined. The peak inward current in voltage-clamped axons was reduced reversibly by each substance. For n-pentanol to n-decanol the concentrations required to suppress the peak inward current by 50% were determined. From these data, it was estimated that the standard free energy per CH2 for adsorption to the site of action was -3.04 kJ mole-1, as compared with -3.11 kJ mole-1 for adsorption into phospholipid bilayers or an n-alkane/aqueous solution interface. The membrane capacity at 100 kHz was not greatly by any of the test substances at concentrations which reduced the inward current by 50%. Na currents under voltage clamp were recorded in intracellularly perfused axons before, during and sometimes after exposure to the test substances and the records were fitted with equations similar to those proposed by Hodgkin & Huxley (1952). Shifts in the curves of the steady-state activation and inactivation parameters (m infinity and h infinity) against membrane potential, changes in the peak heights of the activation and inactivation time constants (tau m and tau h) and reductions in the maximum Na conductance (gNa) have been tabulated. All of the test substances shifted the voltage dependence of the steady-state activation in the depolarizing direction and lowered the peak time constants for both activation and inactivation. The origins of these effects, and of the differences in the present results from those of the hydrocarbons (Haydon & Urban, 1983), have been discussed in terms of the physico-chemical properties of the two groups of substances and with reference to their effects on artificial membranes. PMID:6312030
Au particle formation on the electron beam induced membrane
NASA Astrophysics Data System (ADS)
Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Sae-Joong; Kim, Sung-In; Park, Nam Kyou; Park, Doo-Jae; Choi, Soo Bong; Kim, Yong-Sang
2017-02-01
Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized by using a portable solidstate nanopore (MinION) with an electrical detection technique. However, there have been several reports about the high error rates of the fabricated nanopore device, possibly due to an electrical double layer formed inside the pore channel. The current DNA sequencing technology utilized is based on the optical detection method. In order to utilize the current optical detection technique, we will present the formation of the Au nano-pore with Au particle under the various electron beam irradiations. In order to provide the diffusion of Au atoms, a 2 keV electron beam irradiation has been performed During electron beam irradiations by using field emission scanning electron microscopy (FESEM), Au and C atoms would diffuse together and form the binary mixture membrane. Initially, the Au atoms diffused in the membrane are smaller than 1 nm, below the detection limit of the transmission electron microscopy (TEM), so that we are unable to observe the Au atoms in the formed membrane. However, after several months later, the Au atoms became larger and larger with expense of the smaller particles: Ostwald ripening. Furthermore, we also observe the Au crystalline lattice structure on the binary Au-C membrane. The formed Au crystalline lattice structures were constantly changing during electron beam imaging process due to Spinodal decomposition; the unstable thermodynamic system of Au-C binary membrane. The fabricated Au nanopore with an Au nanoparticle can be utilized as a single molecule nanobio sensor.
Fernandez, Fernando R.; Malerba, Paola; Bressloff, Paul C.; White, John A.
2013-01-01
In active networks, excitatory and inhibitory synaptic inputs generate membrane voltage fluctuations that drive spike activity in a probabilistic manner. Despite this, some cells in vivo show a strong propensity to precisely lock to the local field potential and maintain a specific spike-phase relationship relative to other cells. In recordings from rat medial entorhinal cortical stellate cells, we measured spike phase-locking in response to sinusoidal “test” inputs in the presence of different forms of background membrane voltage fluctuations, generated via dynamic clamp. We find that stellate cells show strong and robust spike phase-locking to theta (4–12 Hz) inputs. This response occurs under a wide variety of background membrane voltage fluctuation conditions that include a substantial increase in overall membrane conductance. Furthermore, the IH current present in stellate cells is critical to the enhanced spike phase-locking response at theta. Finally, we show that correlations between inhibitory and excitatory conductance fluctuations, which can arise through feed-back and feed-forward inhibition, can substantially enhance the spike phase-locking response. The enhancement in locking is a result of a selective reduction in the size of low frequency membrane voltage fluctuations due to cancelation of inhibitory and excitatory current fluctuations with correlations. Hence, our results demonstrate that stellate cells have a strong preference for spike phase-locking to theta band inputs and that the absolute magnitude of locking to theta can be modulated by the properties of background membrane voltage fluctuations. PMID:23554484
Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.
Liu, S Y; Kono, M; Ebrey, T G
1991-01-01
The effect of pH buffers on the microsecond photocurrent component, B2, of oriented purple membranes has been studied. We found that under low salt conditions (less than 10 mM monovalent cationic salt) pH buffers can dramatically alter the waveform of the B2 component. The effect is induced by the protonation process of the buffer molecules by protons expelled from the membrane. These effects can be classified according to the charge transition upon protonation of the buffer. Buffers that carry two positive charges in their protonated form add a negative current component (N component) to B2. Almost all of the other buffers add a positive current component (P component) to B2, which is essentially a mirror image of the N component. Buffers with a pK less than 5.5 have only a small positive buffer component. The pH dependence of the buffer effect is closely related to the pK of the buffer; it requires that the buffer be in its unprotonated form. The rise time of the buffer component increases with the concentration of the buffer molecules. All the buffer effects can be inhibited by the addition of 5 mM of a divalent cation such as Ca2+. Reducing the surface potential slows down the N component but accelerates the P component without affecting the amplitude of the buffer effect significantly. Many of the buffer effects can be explained if we assume that upon protonation of the buffer by a proton expelled from the membrane by light, the buffer molecules move toward the membrane. This backward movement of buffer molecules forms a counter current very similar to that due to cations discussed in Liu, S. Y., R. Govindjee, and T. G. Ebrey. (1990. Biophys. J. 57:951-963). PMID:1883939
NASA Astrophysics Data System (ADS)
Agudelo-Toro, Andres; Neef, Andreas
2013-04-01
Objective. We present a computational method that implements a reduced set of Maxwell's equations to allow simulation of cells under realistic conditions: sub-micron cell morphology, a conductive non-homogeneous space and various ion channel properties and distributions. Approach. While a reduced set of Maxwell's equations can be used to couple membrane currents to extra- and intracellular potentials, this approach is rarely taken, most likely because adequate computational tools are missing. By using these equations, and introducing an implicit solver, numerical stability is attained even with large time steps. The time steps are limited only by the time development of the membrane potentials. Main results. This method allows simulation times of tens of minutes instead of weeks, even for complex problems. The extracellular fields are accurately represented, including secondary fields, which originate at inhomogeneities of the extracellular space and can reach several millivolts. We present a set of instructive examples that show how this method can be used to obtain reference solutions for problems, which might not be accurately captured by the traditional approaches. This includes the simulation of realistic magnitudes of extracellular action potential signals in restricted extracellular space. Significance. The electric activity of neurons creates extracellular potentials. Recent findings show that these endogenous fields act back onto the neurons, contributing to the synchronization of population activity. The influence of endogenous fields is also relevant for understanding therapeutic approaches such as transcranial direct current, transcranial magnetic and deep brain stimulation. The mutual interaction between fields and membrane currents is not captured by today's concepts of cellular electrophysiology, including the commonly used activation function, as those concepts are based on isolated membranes in an infinite, isopotential extracellular space. The presented tool makes simulations with detailed morphology and implicit interactions of currents and fields available to the electrophysiology community.
NASA Astrophysics Data System (ADS)
Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young
2017-09-01
Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.
NASA Astrophysics Data System (ADS)
Lin, R.; Xiong, F.; Tang, W. C.; Técher, L.; Zhang, J. M.; Ma, J. X.
2014-08-01
Durability is one of the most important limiting factors for the commercialization of proton exchange membrane fuel cell (PEMFC). Fuel cells are more vulnerable to degradation under operating conditions as dynamic load cycle or start up/shut down. The purpose of this study is to evaluate influences of driving cycles on the durability of fuel cells through analyzing the degradation mechanism of a segmented cell in real time. This study demonstrates that the performance of the fuel cell significantly decreases after 200 cycles. The segmented cell technology is used to measure the local current density distribution, which shows that the current density at the exit region and the inlet region declines much faster than the other parts. Meanwhile, electro-chemical impedance spectroscopy (EIS) reveals that after 200 cycles the ohmic resistance of fuel cell increases, especially at the cathode, and electro-chemical surface area (ESA) decreases from 392 to 307 cm2 mg-1. Furthermore, scanning electron microscopy (SEM) images of the membrane-electrode assembly (MEA) in cross-section demonstrate crackle flaw on the surface of the catalyst layer and the delamination of the electrodes from the membrane. Transmission electron microscope (TEM) results also show that the Pt particle size increases distinctly after driving cycles.
The reasons for the high power density of fuel cells fabricated with directly deposited membranes
NASA Astrophysics Data System (ADS)
Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon
2016-09-01
In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.
Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G
2013-09-01
Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.
Wang, Wei; Putra, Adhytia; Schools, Gary P.; Ma, Baofeng; Chen, Haijun; Kaczmarek, Leonard K.; Barhanin, Jacques; Lesage, Florian; Zhou, Min
2013-01-01
TWIK-1 two-pore domain K+ channels are expressed abundantly in astrocytes. In the present study, we examined the extent to which TWIK-1 contributes to the linear current-voltage (I–V) relationship (passive) K+ membrane conductance, a dominant electrophysiological feature of mature hippocampal astrocytes. Astrocytes from TWIK-1 knockout mice have a more negative resting potential than those from wild type animals and a reduction in both inward rectification and Cs+ permeability. Nevertheless, the overall whole-cell passive conductance is not altered significantly in TWIK-1 knockout astrocytes. The expression of Kir4.1 and TREK-1, two other major astrocytic K+ channels, or of other two-pore K+ channels is not altered in TWIK-1 knockout mice, suggesting that the mild effect of TWIK-1 knockout does not result from compensation by these channels. Fractionation experiments showed that TWIK-1 is primarily localized in intracellular cytoplasmic fractions (55%) and mildly hydrophobic internal compartment fractions (41%), with only 5% in fractions containing plasma membranes. Our study revealed that TWIK-1 proteins are mainly located in the intracellular compartments of hippocampal astrocyte under physiological condition, therefore a minimal contribution of TWIK-1 channels to whole-cell currents is likely attributable to a relatively low level presence of channels in the plasma membrane. PMID:24368895
Detailed numerical investigation of the dissipative stochastic mechanics based neuron model.
Güler, Marifi
2008-10-01
Recently, a physical approach for the description of neuronal dynamics under the influence of ion channel noise was proposed in the realm of dissipative stochastic mechanics (Güler, Phys Rev E 76:041918, 2007). Led by the presence of a multiple number of gates in an ion channel, the approach establishes a viewpoint that ion channels are exposed to two kinds of noise: the intrinsic noise, associated with the stochasticity in the movement of gating particles between the inner and the outer faces of the membrane, and the topological noise, associated with the uncertainty in accessing the permissible topological states of open gates. Renormalizations of the membrane capacitance and of a membrane voltage dependent potential function were found to arise from the mutual interaction of the two noisy systems. The formalism therein was scrutinized using a special membrane with some tailored properties giving the Rose-Hindmarsh dynamics in the deterministic limit. In this paper, the resultant computational neuron model of the above approach is investigated in detail numerically for its dynamics using time-independent input currents. The following are the major findings obtained. The intrinsic noise gives rise to two significant coexisting effects: it initiates spiking activity even in some range of input currents for which the corresponding deterministic model is quiet and causes bursting in some other range of input currents for which the deterministic model fires tonically. The renormalization corrections are found to augment the above behavioral transitions from quiescence to spiking and from tonic firing to bursting, and, therefore, the bursting activity is found to take place in a wider range of input currents for larger values of the correction coefficients. Some findings concerning the diffusive behavior in the voltage space are also reported.
Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores
van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf
2015-01-01
Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328
Ion pathways in the taste bud and their significance for transduction.
DeSimone, J A; Ye, Q; Heck, G L
1993-01-01
Taste buds share a topology with ion-transporting epithelial and evidence now indicates that neural responses in rats to Na+ salts of differing anion are mediated by both transcellular and paracellular ion transport. Na+ exerts its effects mainly on the transcellular pathway. Neural responses to Na+ salts are enhanced by negative voltage clamp and suppressed by positive clamp in a manner indicating modulation of the apical membrane potential of receptor cells. Anion effects are mainly paracellular. Under zero current clamp increasing anion size reduces the neural response at constant Na+ concentration. Below about 50 mM this difference is entirely eliminated under voltage clamp. This suggests that paracellular transepithelial potentials normally create an anion difference. At higher concentrations the relatively high permeability of the paracellular shunt to Cl- permits sufficient electroneutral diffusion of NaCl below the tight junctions to stimulate cells that do not make direct contact with the oral cavity. In general, the sensitivity of a response to perturbations in the apical membrane potential indicates that some phase of Na+ salt taste transduction is accompanied by changes in an apical membrane channel conductance.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.
2013-11-01
Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.
Elmoazzen, Heidi Y.; Elliott, Janet A.W.; McGann, Locksley E.
2009-01-01
The fundamental physical mechanisms of water and solute transport across cell membranes have long been studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assumptions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which includes the reflection coefficient, σ). There is less unexpected concentration dependence with the nondilute transport equations, suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport equations. PMID:19348741
Cheng, Ming Soon; Lau, Suk Hiang; Chow, Vincent T; Toh, Chee-Seng
2011-08-01
A sensitive and selective membrane-based electrochemical nanobiosensor is developed for specific quantitative label-free detection of Escherichia coli (E. coli) cells and analysis of viable but nonculturable (VBNC) E. coli cells which remain mostly undetected using current methods. The sensing mechanism relies on the blocking of nanochannels of a nanoporous alumina-membrane modified electrode, upon the formation of immune complexes at the nanoporous membrane. The resulting obstacle to diffusive mass transfer of a redox probe in the analysis solution to the underlying platinum electrode reduces the Faradaic signal response of the biosensor, measured using cyclic voltammetry. Antibody loading under conditions of varying antibody concentrations and pHs are optimized. The biosensor gives a low detection limit of 22 cfu mL(-1) (R(2) = 0.999) over a wide linear working range of 10 to 10(6) cfu mL(-1). It is specific toward E. coli with minimal cross-reactivity to two other pathogenic bacteria (commonly found in waters). Relative standard deviation (RSD) for triplicate measurements of 2.5% indicates reasonably useful level of reproducibility. Differentiation of live, VBNC, and dead cells are carried out after the cell capture and quantitation step, by simple monitoring of the cells' enzyme activity using the same redox probe in the analysis solution, in the presence of glucose.
Hu, Yan; Ke, Lei; Chen, Hao; Zhuo, Ma; Yang, Xinzhou; Zhao, Dan; Zeng, Suying; Xiao, Xincai
2017-01-01
To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. PMID:29200852
Spray-applied waterproofing membranes: effective solution for safe and durable tunnel linings?
NASA Astrophysics Data System (ADS)
Pisova, Barbora; Hilar, Matous
2017-09-01
What is the perfect tunnel lining? Cost efficient, easy and fast to build with acceptable environmental impact? How to construct a watertight and safe tunnel lining? Would it be possible to apply a waterproofing system directly onto the rock face just after the tunnel face opening? This might be the system of the future enabling all concrete applied to the rock face to remain permanent. For now though, we would like to focus on an optimisation and examination of currently available technologies and materials, such as tunnel linings with the use of spray-applied waterproofing membranes. In this paper, the failure mechanisms of a tunnel lining with a spray-applied waterproofing membrane are described, the behaviour of spray-applied waterproofing membrane under various conditions (dry, moist, wet) is challenged and the possibilities of interface numerical modelling are presented. Tunnel lining design is mainly dependent on the geological and hydrological conditions in the considered area. The application of tunnel linings with spray-applied waterproofing membrane in both hard rock and soft ground tunnelling, are studied.
Hydrodynamics of spatially inhomogeneous real membranes
NASA Astrophysics Data System (ADS)
Kirii, V. A.; Shelistov, V. S.; Demekhin, E. A.
2017-07-01
Electrokinetic processes in the vicinity of inhomogeneous ion-selective surfaces (electrodes, membranes, microchannels, and nanochannels) consisting of alternating conducting and nonconducting regions in the presence of a normal-to-surface electric current are numerically studied. An increase in the electric current density is observed in the case of some particular alternation of conducting and nonconducting regions of the surface. The current-voltage characteristics of homogeneous and inhomogeneous electric membranes are found to be in qualitative agreement. Various physical phenomena leading to the emergence of a supercritical current in homogeneous and inhomogeneous membranes are detected.
Su, Y C; Huang, C P; Pan, Jill R; Lee, H C
2008-01-01
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.
Rotating disk electrode system for elevated pressures and temperatures.
Fleige, M J; Wiberg, G K H; Arenz, M
2015-06-01
We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.
Rotating disk electrode system for elevated pressures and temperatures
NASA Astrophysics Data System (ADS)
Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.
2015-06-01
We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.
NASA Astrophysics Data System (ADS)
Gyenge, E. L.
The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damköhler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack.
The properties of single cones isolated from the tiger salamander retina
Attwell, David; Werblin, Frank S.; Wilson, Martin
1982-01-01
1. The properties of isolated single cones were studied using the voltage-clamp technique, with two micro-electrodes inserted under visual control. 2. Single cones had input resistances, when impaled with two electrodes, of up to 270 MΩ. This is probably lower than the true membrane resistance, because of damage by the impaling electrodes. The cone capacitance was about 85 pF. 3. The cone membrane contains a time-dependent current, IB, controlled by voltage, and a separate photosensitive current. 4. The gated current, IB, is an inward current with a reversal potential around -25 mV. It is activated by hyperpolarization over the range -30 to -80 mV, and at constant voltage obeys first order (exponential) kinetics. The gating time constant is typically 50 ms at the resting potential of -45 mV, rises to 170 ms at -70 mV, and decreases for further hyperpolarization. 5. The spectral sensitivity curve of the cone light response peaks at 620 nm wave-length, and is narrower than the nomogram for vitamin A2-based pigments. The light responses of isolated cones are spectrally univariant. 6. Voltage-clamped photocurrents were recorded at various membrane potentials, for light steps of various intensities. The photocurrent reversed at around -8 mV. The time course of the photocurrent, for a given intensity, was approximately independent of voltage (although its magnitude was voltage-dependent). The shape of the peak current—voltage relation of the light-sensitive current was independent of light intensity (although its magnitude was intensity-dependent). 7. These results can be explained if: (a) light simply changes the number of photosensitive channels open, without altering the properties of an open channel; (b) the reactions controlling the production of internal transmitter, the binding of internal transmitter to the photosensitive channels, and the closing and opening of the channels are unaffected by the electric field in the cone membrane, even though at least some of these reactions take place in the membrane. 8. IB plays only a small role in shaping the cone voltage response to light. ImagesPlate 1 PMID:7131315
Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane
Liu, Zhimeng; Zhu, Mengfu; Wang, Zheng; Wang, Hong; Deng, Cheng; Li, Kui
2016-01-01
In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC) using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD) removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L−1 (pH, 3.8–9.6). The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L−1, current density of 1 mA·cm−2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment. PMID:28773486
Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K
2016-12-01
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Bouayed, Naila; Dietrich, Nicolas; Lafforgue, Christine; Lee, Chung-Hak; Guigui, Christelle
2016-01-01
Quorum Quenching (QQ) has been developed over the last few years to overcome practical issues related to membrane biofouling, which is currently the major difficulty thwarting the extensive development of membrane bioreactors (MBRs). QQ is the disruption of Quorum Sensing (QS), cell-to-cell communication enabling the bacteria to harmonize their behavior. The production of biofilm, which is recognized as a major part of the biocake formed on a membrane surface, and which leads to biofouling, has been found to be one of the bacterial behaviors controlled by QS. Since the enzymatic disruption of QS was reported to be efficient as a membrane biofouling mitigation technique in MBRs, the application of QQ to lab-scale MBRs has been the subject of much research using different approaches under different operating conditions. This paper gives an overview of the effectiveness of QQ in mitigating membrane biofouling in MBRs. It is based on the results of previous studies, using two microbial strains, Rhodococcus sp. BH4 and Pseudomonas sp. 1A1. The effect of bacterial QQ on the physical phenomena of the MBR process is analyzed, adopting an original multi-scale approach. Finally, the potential influence of the MBR operating conditions on QQ effectiveness is discussed. PMID:27983578
Controlled permeation of cell membrane by single bubble acoustic cavitation
Zhou, Y.; Yang, K.; Cui, J.; Ye, J. Y.; Deng, C. X.
2011-01-01
Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustic, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency (7.44 MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5 MHz) ultrasound pulse (duration 13.3 or 40 µs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d = 0.75. The maximum mean radius of the pores was estimated from the measured TMC to be 0.106 ± 0.032 µm (n = 70) for acoustic pressure of 1.5 MPa (duration 13.3 µs), and increased to 0.171 ± 0.030 µm (n = 125) for acoustic pressure of 1.7 MPa and to 0.182 ± 0.052 µm (n=112) for a pulse duration of 40 µs (1.5 MPa). These results from controlled cell membrane permeation by cavitation of single bubbles revealed insights and key factors affecting sonoporation at the single cell level. PMID:21945682
Unconventional Protein Secretion in Animal Cells.
Ng, Fanny; Tang, Bor Luen
2016-01-01
All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR). Mechanisms underlying unconventional protein secretion (UPS) are actively being analyzed and deciphered, and these range from an unusual form of plasma membrane translocation to vesicular processes involving the generation of exosomes and other extracellular microvesicles. In this chapter, we provide an overview on what is currently known about UPS in animal cells.
ER-plasma membrane junctions: Why and how do we study them?
Chang, Chi-Lun; Chen, Yu-Ju; Liou, Jen
2017-09-01
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are membrane microdomains important for communication between the ER and the PM. ER-PM junctions were first reported in muscle cells in 1957, but mostly ignored in non-excitable cells due to their scarcity and lack of functional significance. In 2005, the discovery of stromal interaction molecule 1 (STIM1) mediating a universal Ca 2+ feedback mechanism at ER-PM junctions in mammalian cells led to a resurgence of research interests toward ER-PM junctions. In the past decade, several major advancements have been made in this emerging topic in cell biology, including the generation of tools for labeling ER-PM junctions and the unraveling of mechanisms underlying regulation and functions of ER-PM junctions. This review summarizes early studies, recently developed tools, and current advances in the characterization and understanding of ER-PM junctions. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Copyright © 2017 Elsevier B.V. All rights reserved.
Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.
Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R
2018-01-01
The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels. Although membrane excitability and the kinetics of action potential currents were unaffected, the permeation of the channels underlying the diatom action potential was significantly altered in the presence of PbTx-3. However, at environmentally relevant concentrations the effects of PbTx- on diatom voltage activated currents and interference of cell signaling through this pathway may be limited. The relative insensitivity of phytoplankton VGCs may be due to divergence of site-5 (the putative PbTx binding site), and in some cases, such as O. sinensis , resistance to toxin effects may be because of evolutionary loss of the 4-domain eukaryote channel, while retaining a single domain bacterial-like VGC that can substitute in the generation of fast action potentials.
Erxleben, Christian; Rathmayer, Werner
1997-01-01
Single-channel currents through calcium channels in muscle of a marine crustacean, the isopod Idotea baltica, were investigated in cell-attached patches. Inward barium currents were strongly voltage-dependent, and the channels were closed at the cell's resting membrane potential. The open probability (Po) increased e-fold for an 8.2 mV (±2.4, n = 13) depolarization. Channel openings were mainly brief (<0.3 ms) and evenly distributed throughout 100-ms pulses. Averaged, quasimacroscopic currents showed fast activation and deactivation and did not inactivate during 100-ms test pulses. Similarly, channel activity persisted at steadily depolarized holding potentials. With 200 mM Ba2+ as charge carrier, the average slope conductance from the unitary currents between +30 and +80 mV, was 20 pS (±2.6, n = 12). The proportion of long openings, which were very infrequent under control conditions, was greatly increased by preincubation of the muscle fibers with the calcium channel agonist, the dihydropyridine Bay K8644 (10–100 μM). Properties of these currents resemble those through the L-type calcium channels of mammalian nerve, smooth muscle, and cardiac muscle cells. PMID:9089439
Mechanisms of EHD/RME-1 Protein Function in Endocytic Transport
Grant, Barth D.; Caplan, Steve
2009-01-01
The evolutionarily conserved Eps15 homology domain (EHD)/receptor-mediated endocytosis (RME)-1 family of C-terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME-1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases. PMID:18801062
A mini-type hydrogen generator from aluminum for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Wang, Er-Dong; Shi, Peng-Fei; Du, Chun-Yu; Wang, Xiao-Rui
A safe and simple hydrogen generator, which produced hydrogen by chemical reaction of aluminum and sodium hydroxide solution, was proposed for proton exchange membrane fuel cells. The effects of concentration, dropping rate and initial temperature of sodium hydroxide solution on hydrogen generation rate were investigated. The results showed that about 38 ml min -1 of hydrogen generation rate was obtained with 25 wt.% concentration and 0.01 ml s -1 dropping rate of sodium hydroxide solution. The cell fueled by hydrogen from the generator exhibited performance improvement at low current densities, which was mainly due to the humidified hydrogen reduced the protonic resistivity of the proton exchange membrane. The hydrogen generator could stably operate a single cell under 500 mA for nearly 5 h with about 77% hydrogen utilization ratio.
Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga1
Vera-Estrella, Rosario
2017-01-01
Ettlia oleoabundans is a nonsequenced oleaginous green microalga. Despite the significant biotechnological interest in producing value-added compounds from the acyl lipids of this microalga, a basic understanding of the physiology and biochemistry of oleaginous microalgae is lacking, especially under nitrogen deprivation conditions known to trigger lipid accumulation. Using an RNA sequencing-based proteomics approach together with manual annotation, we are able to provide, to our knowledge, the first membrane proteome of an oleaginous microalga. This approach allowed the identification of novel proteins in E. oleoabundans, including two photoprotection-related proteins, Photosystem II Subunit S and Maintenance of Photosystem II under High Light1, which were considered exclusive to higher photosynthetic organisms, as well as Retinitis Pigmentosa Type 2-Clathrin Light Chain, a membrane protein with a novel domain architecture. Free-flow zonal electrophoresis of microalgal membranes coupled to liquid chromatography-tandem mass spectrometry proved to be a useful technique for determining the intracellular location of proteins of interest. Carbon-flow compartmentalization in E. oleoabundans was modeled using this information. Molecular phylogenetic analyses of protein markers and 18S ribosomal DNA support the reclassification of E. oleoabundans within the trebouxiophycean microalgae, rather than with the Chlorophyceae class, in which it is currently classified, indicating that it may not be closely related to the model green alga Chlamydomonas reinhardtii. A detailed survey of biological processes taking place in the membranes of nitrogen-deprived E. oleoabundans, including lipid metabolism, provides insights into the basic biology of this nonmodel organism. PMID:27837088
Novitski, David; Holdcroft, Steven
2015-12-16
Oxygen mass transport resistance through the ionomer component in the cathode catalyst layer is considered to contribute overpotential losses in polymer electrolyte membrane fuel cells. Whereas it is known that water uptake, water transport, and proton conductivity are reduced upon reducing relative humidity, the effect on oxygen mass transport remains unknown. We report a two-electrode approach to determine mass transport coefficients for the oxygen reduction reaction in air at the Pt/perfluorosulfonic acid ionomer membrane interface between 90 and 30% RH at 70 °C using a Pt microdisk in a solid state electrochemical cell. Potential-step chronoamperometry was performed at specific mass-transport limiting potentials to allow for the elucidation of the oxygen diffusion coefficient (D(bO2)) and oxygen concentration (c(bO2)). In our efforts, novel approaches in data acquisition, as well as analysis, were examined because of the dynamic nature of the membrane under lowered hydration conditions. Linear regression analysis reveals a decrease in oxygen permeability (D(bO2c(bO2)) by a factor of 1.7 and 3.4 from 90 to 30% RH for Nafion 211 membrane and membranes cast from Nafion DE2020 ionomer solutions, respectively. Additionally, nonlinear curve fitting by way of the Shoup-Szabo equation is employed to analyze the entire current transient during potential step controlled ORR. We also report on the presence of an RH dependence of our previously reported time-dependency measurements for O2 mass transport coefficients.
Mechanisms Underlying the Confined Diffusion of Cholera Toxin B-Subunit in Intact Cell Membranes
Day, Charles A.; Kenworthy, Anne K.
2012-01-01
Multivalent glycolipid binding toxins such as cholera toxin have the capacity to cluster glycolipids, a process thought to be important for their functional uptake into cells. In contrast to the highly dynamic properties of lipid probes and many lipid-anchored proteins, the B-subunit of cholera toxin (CTxB) diffuses extremely slowly when bound to its glycolipid receptor GM1 in the plasma membrane of living cells. In the current study, we used confocal FRAP to examine the origins of this slow diffusion of the CTxB/GM1 complex at the cell surface, relative to the behavior of a representative GPI-anchored protein, transmembrane protein, and fluorescent lipid analog. We show that the diffusion of CTxB is impeded by actin- and ATP-dependent processes, but is unaffected by caveolae. At physiological temperature, the diffusion of several cell surface markers is unchanged in the presence of CTxB, suggesting that binding of CTxB to membranes does not alter the organization of the plasma membrane in a way that influences the diffusion of other molecules. Furthermore, diffusion of the B-subunit of another glycolipid-binding toxin, Shiga toxin, is significantly faster than that of CTxB, indicating that the confined diffusion of CTxB is not a simple function of its ability to cluster glycolipids. By identifying underlying mechanisms that control CTxB dynamics at the cell surface, these findings help to delineate the fundamental properties of toxin-receptor complexes in intact cell membranes. PMID:22511973
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao
2014-10-27
Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as highmore » resolution separations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Gregory W.; Lopez, Marcos M.; Ramiah Rajasekaran, Pradeep
2015-07-09
We have recently demonstrated a new electrokinetic phenomenon—electroosmotic flow rectification in membranes with asymmetrically shaped pores. Flow rectification means that at constant driving force the flow rate in one direction through the membrane is faster than the flow rate in the opposite direction. EOF rectification could be of practical use in microfluidic devices incorporating porous membranes, but additional research is required. We explore here the effects of two key experimental variables—current density used to drive flow through the membrane and membrane pore density—on EOF rectification. We have found that the extent of EOF rectification, as quantified by the rectification ratio,more » increases with increasing current density. In contrast, the rectification ratio decreases with increasing membrane pore density. We propose explanations for these results based on simple EOF and membrane-transport theories.« less
Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick
2014-03-10
Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.
Electrical filtering in gerbil isolated type I semicircular canal hair cells
NASA Technical Reports Server (NTRS)
Rennie, K. J.; Ricci, A. J.; Correia, M. J.
1996-01-01
1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200 to 750 pA) produced only small-amplitude, pulse-like changes in membrane potential. 2. Injecting constant current to hyperpolarize the membrane to around -100 mV resulted in a approximately 10-fold increase in membrane resistance. Current pulses superimposed on this constant hyperpolarization produced larger and more complex membrane potential changes. Depolarizing currents > or = 200 pA caused a rapid transient peak voltage before a plateau. 3. Membrane voltage was able to faithfully follow sine-wave current injections around Vz over the range 1-1,000 Hz with < 25% attenuation at 1 kHz. A previously described K conductance, IKI, which is active at Vz, produces the low input resistance and frequency response. This was confirmed by pharmacologically blocking IKI. This conductance, present in type I cells but not type II hair cells, would appear to confer on type I cells a lower gain, but a much broader bandwidth at Vz, than seen in type II cells.
NASA Astrophysics Data System (ADS)
Schoelz, James K.
Graphene has the ability to provide for a technological revolution. First isolated and characterized in 2004, this material shows promise in the field of flexible electronics. The electronic properties of graphene can be tuned by controlling the shape of the membrane. Of particular interest in this endeavor are the thermal ripples in graphene membranes. Years of theoretical work by such luminaries as Lev Landau, Rudolf Peierls, David Mermin and Herbert Wagner have established that 2D crystals should not be thermodynamically stable. Experimental research on thin films has supported this finding. Yet graphene exists, and freestanding graphene films have been grown on large scales. It turns out that coupling between the bending and stretching phonons can stabilize the graphene in a flat, albeit rippled phase. These ripples have attracted much attention, and recent work has shown how to arrange these ripples in a variety of configurations. In this thesis, I will present work done using a scanning tunneling microscope (STM) to interact with freestanding graphene membranes. First I will present STM images of freestanding graphene and show how these images show signs of distortion under the electrostatic influence of the STM tip. This electrostatic attraction between the STM tip and the graphene sample can be used to pull on the graphene sample. At the same time, by employing Joule heating in order to heat graphene using the tunneling current, and exploiting the negative coefficient of thermal expansion, a repulsive thermal load can be generated. By repeatedly pulling on the graphene using the electrostatic potential, while sequentially increasing the setpoint current we can generate a thermal mirror buckling event. Slowly heating the graphene using the tunneling current, prepares a small convex region of graphene under the tip. By increasing thermal stress, as well as pulling using the out of plane electrostatic force, the graphene suddenly and irreversibly switches the sign of its curvature. This event is discovered using STM measurements and supplemented by molecular dynamics simulations. Finally, I will show how to characterize this transition using the famed Ising model. The ripples are modeled as individual Ising spins, which at low temperature exhibit antiferromagnetic coupling. By heating the graphene membrane, the strain increases, changing the antiferromagnetic coupling to ferromagnetic coupling, which characterizes the irreversible transition from a soft, flexible state to a rigid configuration.
Molecular physiology and modulation of somatodendritic A-type potassium channels.
Jerng, Henry H; Pfaffinger, Paul J; Covarrubias, Manuel
2004-12-01
The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.
Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi
2016-08-16
Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.
Hysteresis in voltage-gated channels.
Villalba-Galea, Carlos A
2017-03-04
Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.
Li, Ting; Zhang, Weiming; Zhai, Shu; Gao, Guandao; Ding, Jie; Zhang, Wenbin; Liu, Yang; Zhao, Xin; Pan, Bingcai; Lv, Lu
2018-06-15
The development of highly efficient membranes, especially those aimed at the removal of trace (ppm, 10 -6 ) heavy metals from high salinity wastewater, is one of the principal challenges in the wastewater treatment field. In this study, a new metal-organic frameworks-based hybrid ultrafiltration membrane (PAA/ZIF-8/PVDF membrane) was prepared, which outperformed some other adsorption materials and owned the first and highest reported nickel ion (Ni(II)) adsorption capacity (219.09 mg/g) in high salinity ([Na + ] = 15000 mg/L) wastewater. Novel and highly efficient hybrid ultrafiltration membrane was facilely fabricated by physically immobilizing zeolitic imidazolate framework-8 (ZIF-8) particles onto the surface of trimesoyl chloride (TMC)-modified polyvinylidene fluoride (PVDF) membrane under the protection of polyacrylic acid (PAA) layer, and possessed a relatively high water flux of ∼460 L m -2 h -1 . The XPS studies revealed that the Ni(II) uptake was mainly attributed to the specific hydrogen bonding interaction between Ni(II) and hydroxyl on ZIF-8 frameworks as well as the electrostatic adsorption by carboxyl groups in PAA layer. Especially, compared to PAA, ZIF-8 could selectively bind with Ni(II) effectively, which was almost not affected by concentrated sodium ion. The filtration study showed that the membrane with an area of 12.56 cm 2 could treat 5.76 L of Ni(II)-contained high salinity wastewater ([Ni(II) = 2 mg/L, [Na + ] = 15000 mg/L) to meet the maximum contaminant level of 0.1 mg/L Ni(II). Moreover, the hybrid membrane can be regenerated several times by HCl-NaCl solution (pH = 5.5) for repeated use under direct current electric field. Thus, the newly developed ZIF-8 hybrid ultrafiltration membrane showed a promising potential for heavy metals containing wastewater treatment. This work provides a worthy reference for designing highly efficient ultrafiltration membranes modified by metal-organic frameworks. Copyright © 2018 Elsevier Ltd. All rights reserved.
The effects of some inhalation anaesthetics on the sodium current of the squid giant axon.
Haydon, D A; Urban, B W
1983-01-01
The effects of diethyl ether, methoxyflurane, halothane, dichloromethane and chloroform on the ionic currents and electrical capacity of the squid giant axon have been examined. The peak inward current in voltage-clamped axons was reduced reversibly by each substance. Sodium currents under voltage clamp were recorded in intracellularly perfused axons before, during, and sometimes after exposure to the test substances, and the records were fitted with equations similar to those proposed by Hodgkin & Huxley (1952). Shifts in the dependence of the steady-state activation and inactivation parameters (m infinity and h infinity) on membrane potential, reductions in the peak heights of the activation and inactivation time constants (tau m and tau h) and decreases in the maximum Na conductance (gNa) have been tabulated. For each of the anaesthetics the steady-state inactivation curve was shifted in the hyperpolarizing direction though less markedly than for the hydrocarbons. The steady-state activation curve was in each instance shifted in the depolarizing direction, as for the alcohols and other surface active substances. In common with both the hydrocarbons and the surface active substances the peak time constants were invariably reduced. The membrane capacity at 100 kHz was affected significantly only by methoxyflurane, where decreases of ca. 9% were observed for 3 mM solutions. The extent to which the results can be accounted for in terms of the perturbation of membrane lipid has been discussed. PMID:6312031
Kur, Joanna; McGahon, Mary K; Fernández, Jose A; Scholfield, C Norman; McGeown, J Graham; Curtis, Tim M
2014-05-02
To investigate the mechanisms responsible for the dilatation of rat retinal arterioles in response to arachidonic acid (AA). Changes in the diameter of isolated, pressurized rat retinal arterioles were measured in the presence of AA alone and following pre-incubation with pharmacologic agents inhibiting Ca(2+) sparks and oscillations and K(+) channels. Subcellular Ca(2+) signals were recorded in arteriolar myocytes using Fluo-4-based confocal imaging. The effects of AA on membrane currents of retinal arteriolar myocytes were studied using whole-cell perforated patch clamp recording. Arachidonic acid dilated pressurized retinal arterioles under conditions of myogenic tone. Eicosatetraynoic acid (ETYA) exerted a similar effect, but unlike AA, its effects were rapidly reversible. Arachidonic acid-induced dilation was associated with an inhibition of subcellular Ca(2+) signals. Interventions known to block Ca(2+) sparks and oscillations in retinal arterioles caused dilatation and inhibited AA-induced vasodilator responses. Arachidonic acid accelerated the rate of inactivation of the A-type Kv current and the voltage dependence of inactivation was shifted to more negative membrane potentials. It also enhanced voltage-activated and spontaneous large-conductance calcium-activated K(+) (BK) currents, but only at positive membrane potentials. Pharmacologic inhibition of A-type Kv and BK currents failed to block AA-induced vasodilator responses. Arachidonic acid suppressed L-type Ca(2+) currents. These results suggest that AA induces retinal arteriolar vasodilation by inhibiting subcellular Ca(2+)-signaling activity in retinal arteriolar myocytes, most likely through a mechanism involving the inhibition of L-type Ca(2+)-channel activity. Arachidonic acid actions on K(+) currents are inconsistent with a model in which K(+) channels contribute to the vasodilator effects of AA.
Poloxamer 188 (p188) as a membrane resealing reagent in biomedical applications.
Moloughney, Joseph G; Weisleder, Noah
2012-12-01
Maintenance of the integrity of the plasma membrane is essential for maintenance of cellular function and prevention of cell death. Since the plasma membrane is frequently exposed to a variety of mechanical and chemical insults the cell has evolved active processes to defend against these injuries by resealing disruptions in the plasma membrane. Cell membrane repair is a conserved process observed in nearly every cell type where intracellular vesicles are recruited to sites of membrane disruption where they can fuse with themselves or the plasma membrane to create a repair patch. When disruptions are extensive or there is an underlying pathology that reduces the membrane repair capacity of a cell this defense mechanism may prove insufficient and the cell could die due to breakdown of the plasma membrane. Extensive loss of cells can compromise the integrity and function of tissues and leading to disease. Thus, methods to increase membrane resealing capacity could have broad utility in a number of disease states. Efforts to find reagents that can modulate plasma membrane reseal found that specific tri-block copolymers, such as poloxamer 188 (P188, or Pluronic F68), can increase the structural stability and resealing of the plasma membrane. Here we review several current patents and patent applications that present inventions making use of P188 and other copolymers to treat specific disease states such as muscular dystrophy, heart failure, neurodegenerative disorders and electrical injuries, or to facilitate biomedical applications such as transplantation. There appears to be promise for the application of poloxamers in the treatment of various diseases, however there are potential concerns with toxicity with long term application and bioavailability in some cases.
Inoue, Shigeki; Murata, Kaoru; Tanaka, Aiko; Kakuta, Eri; Tanemura, Saori; Hatakeyama, Shiori; Nakamura, Atsunao; Yamamoto, Chihiro; Hasebe, Masaharu; Kosakai, Kumiko; Yoshino, Masami
2014-09-01
Intrinsic neurons within the mushroom body of the insect brain, called Kenyon cells, play an important role in olfactory associative learning. In this study, we examined the ionic mechanisms mediating the intrinsic excitability of Kenyon cells in the cricket Gryllus bimaculatus. A perforated whole-cell clamp study using β-escin indicated the existence of several inward and outward currents. Three types of inward currents (INaf, INaP, and ICa) were identified. The transient sodium current (INaf) activated at -40 mV, peaked at -26 mV, and half-inactivated at -46.7 mV. The persistent sodium current (INaP) activated at -51 mV, peaked at -23 mV, and half-inactivated at -30.7 mV. Tetrodotoxin (TTX; 1 μM) completely blocked both INaf and INaP, but 10nM TTX blocked INaf more potently than INaP. Cd(2+) (50 μM) potently blocked INaP with little effect on INaf. Riluzole (>20 μM) nonselectively blocked both INaP and INaf. The voltage-dependent calcium current (ICa) activated at -30 mV, peaked at -11.3 mV, and half-inactivated at -34 mV. The Ca(2+) channel blocker verapamil (100 μM) blocked ICa in a use-dependent manner. Cell-attached patch-clamp recordings showed the presence of a large-conductance Ca(2+)-activated K(+) (BK) channel, and the activity of this channel was decreased by removing the extracellular Ca(2+) or adding verapamil or nifedipine, and increased by adding the Ca(2+) agonist Bay K8644, indicating that Ca(2+) entry via the L-type Ca(2+) channel regulates BK channel activity. Under the current-clamp condition, membrane depolarization generated membrane oscillations in the presence of 10nM TTX or 100 μM riluzole in the bath solution. These membrane oscillations disappeared with 1 μM TTX, 50 μM Cd(2+), replacement of external Na(+) with choline, and blockage of Na(+)-activated K(+) current (IKNa) with 50 μM quinidine, indicating that membrane oscillations are primarily mediated by INaP in cooperation with IKNa. The plateau potentials observed either in Ca(2+)-free medium or in the presence of verapamil were eliminated by blocking INaP with 50 μM Cd(2+). Taken together, these results indicate that INaP and IKNa participate in the generation of membrane oscillations and that INaP additionally participates in the generation of plateau potentials and initiation of spontaneous action potentials. ICa, through L-type Ca(2+) channels, was also found to play a role in the rapid membrane repolarization of action potentials by functional coupling with BK channels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Membrane separation technology in the 1980s
NASA Technical Reports Server (NTRS)
Lonsdale, H. K.
1982-01-01
The current status of membrane technology is assessed and industrial processes in which membrane technology could effect energy savings or other advantages are identified. The extension of current trends is recommended; i.e., the development of ultrathin and highly permselective membranes, the use of specific carriers to enhance permselectivity and permit 'uphill' diffusion, and the improvement of separation efficiency. Membranes are predicted to be important in biotechnology and in the production of solar energy. Guidelines indicating where and how to look for opportunities where evolving membrane technology might fit are provided.
NASA Astrophysics Data System (ADS)
Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi
2017-04-01
A novel branched side-chain-type sulfonated polyimide (6F-s-bSPI) membrane with accessible branching agents of melamine, hydrophobic trifluoromethyl groups (sbnd CF3), and flexible sulfoalkyl pendants is prepared by a high-temperature polycondensation and post-sulfonation method for use in vanadium redox flow batteries (VRFBs). The chemical structure of the 6F-s-bSPI membrane is confirmed by ATR-FTIR and 1H NMR spectra. The physico-chemical properties of the as-prepared 6F-s-bSPI membrane are systematically investigated and found to be strongly related to the specially designed structure. The 6F-s-bSPI membrane offers a reduced cost and possesses a significantly lowered vanadium ion permeability (1.18 × 10-7 cm2 min-1) compared to the linear SPI (2.25 × 10-7 cm2 min-1) and commercial Nafion 115 (1.36 × 10-6 cm2 min-1) membranes, prolonging the self-discharge duration of the VRFBs. In addition, the VRFB assembled with a 6F-s-bSPI membrane shows higher coulombic (98.3%-99.7%) and energy efficiencies (88.4%-66.12%) than that with a SPI or Nafion 115 membrane under current densities ranging from 20 to 100 mA cm-2. Moreover, the VRFB with a 6F-s-bSPI membrane delivers a stable cycling performance over 100 cycles with no decline in coulombic and energy efficiencies. These results show that the branched side-chain-type structure is a promising design to prepare excellent proton conductive membranes.
Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe
2010-01-01
Thermosensitive transient receptor potential proteins (TRPs) such as TRPV1-TRPV4 are all heat-activated non-selective cation channels that are modestly permeable to Ca2+. TRPV1, TRPV3 and TRPV4 functional expression were previously identified in human corneal epithelial cells (HCEC). However, the membrane currents were not described underlying their activation by either selective agonists or thermal variation. This study characterized the membrane currents and [Ca 2+]i transients induced by thermal and agonist TRPV1 and 4 stimulation. TRPV1 and 4 expressions were confirmed by RT-PCR and TRPV2 transcripts were also detected. In fura2-loaded HCEC, a TRPV1-3 selective agonist, 100 µM 2-aminoethoxydiphenyl borate (2-APB), induced intracellular Ca2+ transients and an increase in non-selective cation outward currents that were suppressed by ruthenium-red (RuR) (10–20 µM), a nonselective TRPV channel blocker. These changes were also elicited by rises in ambient temperature from 25 °C to over 40 °C. RuR (5 µM) and a selective TRPV1 channel blocker capsazepine (CPZ) (10 µM) or another related blocker, lanthanum chloride (La3+) (100 µM) suppressed these temperature-induced Ca2+ increases. Planar patch-clamp technique was used to characterize the currents underlying Ca2+ transients. Increasing the temperature to over 40 °C induced reversible rises in non-selective cation currents. Moreover, a hypotonic challenge (25 %) increased non-selective cation currents confirming TRPV4 activity. We conclude that HCEC possess in addition to thermo-sensitive TRPV3 activity TRPV1, TRPV2 and TRPV4 activity. Their activation confers temperature sensitivity at the ocular surface, which may protect the cornea against such stress. PMID:21506114
Idiopathic membranous nephropathy: outline and rationale of a treatment strategy.
du Buf-Vereijken, Peggy W G; Branten, Amanda J W; Wetzels, Jack F M
2005-12-01
Idiopathic membranous nephropathy is a common cause of nephrotic syndrome. The treatment of patients with idiopathic membranous nephropathy is heavily debated. Based on literature data and our own experience, we propose a rational treatment strategy. Patients with renal insufficiency (serum creatinine level > 1.5 mg/dL [> 135 micromol/L]) are at greatest risk for the development of end-stage renal disease and should receive immunosuppressive therapy. In patients with normal renal function (serum creatinine level < 1.5 mg/dL [< 135 micromol/L]), risk for developing end-stage renal disease can be estimated by measuring urinary excretion of beta2-microglobulin or alpha1-microglobulin and immunoglobulin G. For low-risk patients, a wait-and-see policy is advised. High-risk patients likely benefit from immunosuppressive therapy. Currently, combinations of steroids with chlorambucil or cyclophosphamide are the best studied. We prefer cyclophosphamide in view of its fewer side effects. Cyclosporine may be an alternative option in patients with well-preserved renal function, although long-term data are lacking. Other immunosuppressive agents, such as mycophenolate mofetil or rituximab, currently are under study; however, data are insufficient to support their routine use.
An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.
Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R
2016-04-26
Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps.
Sodium and potassium conductance changes during a membrane action potential.
Bezanilla, F; Rojas, E; Taylor, R E
1970-12-01
1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.
Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.
Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
NASA Astrophysics Data System (ADS)
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-01
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-26
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Overturning dogma: tolerance of insects to mixed-sterol diets is not universal.
Behmer, Spencer T
2017-10-01
Insects cannot synthesize sterols de novo, but like all eukaryotes they use them as cell membrane inserts where they influence membrane fluidity and rigidity. They also use a small amount for metabolic purposes, most notably as essential precursors for steroid hormones. It has been a long-held view that most insects require a small amount of specific sterol (often cholesterol) for metabolic purposes, but for membrane purposes (where the bulk of sterols are used) specificity in sterol structure was less important. Under this model, it was assumed that insects could tolerate mixed-sterol diets as long as a small amount of cholesterol was available. In the current paper this dogma is overturned, using data from plant-feeding insects that were fed mixed-sterol diets with different amounts and ratios of dietary sterols. Copyright © 2017 Elsevier Inc. All rights reserved.
The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.
2010-12-17
Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less
Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole
NASA Astrophysics Data System (ADS)
Søndergaard, Tonny; Cleemann, Lars Nilausen; Becker, Hans; Aili, David; Steenberg, Thomas; Hjuler, Hans Aage; Seerup, Larisa; Li, Qingfeng; Jensen, Jens Oluf
2017-02-01
Long-term durability of high temperature polymer electrolyte membrane fuel cells based on thermally cross-linked polybenzimidazole membranes was studied and compared with reference membranes based on linear polybenzimidazole. The test was conducted at 160 °C under constant load currents of 200 mA cm-2 for periods of 1000, 4400, and 13,000 h. Extensive beginning-of-life (BoL) and end-of-test (EoT) characterisation was carried out, and disturbance of the steady state operated cells was minimised by limiting in-line diagnostics to the low-invasive technique of electrochemical impedance spectroscopy (EIS). Up until the operating time of 9200 h, the cell equipped with the cross-linked membrane showed an average degradation rate of 0.5 μV h-1, compared to 2.6 μV h-1 for the reference membrane, though parallel tests for a shorter period of time showed deviations, likely due to malfunctioning contact between layers or cell components. For the full test period of 13,000 h, the average voltage decay rate was about 1.4 and 4.6 μV h-1 for cells equipped with cross-linked and linear polybenzimidazole membranes, respectively. EIS and post-test analysis revealed that the cross-linked membrane showed better stability in terms of area specific resistance due to improved acid retention characteristics.
Naito, M; Fuchikami, N; Sasaki, N; Kambara, T
1991-01-01
The dynamic response of the lipid bilayer membrane is studied theoretically using a microscopic model of the membrane. The time courses of membrane potential variations due to monovalent salt stimulation are calculated explicitly under various conditions. A set of equations describing the time evolution of membrane surface potential and diffusion potential is derived and solved numerically. It is shown that a rather simple membrane such as lipid bilayer has functions capable of reproducing the following properties of dynamic response observed in gustatory receptor potential. Initial transient depolarization does not occur under Ringer adaptation but does under water. It appears only for comparatively rapid flows of stimuli, the peak height of transient response is expressed by a power function of the flow rate, and the membrane potential gradually decreases after reaching its peak under long and strong stimulation. The dynamic responses in the present model arise from the differences between the time dependences in the surface potential phi s and the diffusion potential phi d across a membrane. Under salt stimulation phi d cannot immediately follow the variation in phi s because of the delay due to the charging up of membrane capacitance. It is suggested that lipid bilayer in the apical membrane is the most probable agency producing the initial phasic response to the stimulation. PMID:1873461
Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.
2014-01-01
Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030
Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T
2014-11-01
Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.
Cholesterol Regulates Multiple Forms of Vesicle Endocytosis at a Mammalian Central Synapse
Yue, Hai-Yuan; Xu, Jianhua
2015-01-01
Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from nonspecific effects after cholesterol manipulation. Furthermore, it is unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase (COase) or methyl-β-cyclodextrin (MCD) impaired three different forms of endocytosis, i.e., slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca2+ channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of MCD reduced exocytosis, mainly by decreasing the readily releasable pool (RRP) and the vesicle replenishment after RRP depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses. PMID:25893258
Zhao, Guang-Ying; Ma, Chao; Li, Jian-Rong
2010-01-01
To improve the key technology of immunesensors in immobilizing bio-sensitive element and keeping its bioactivity, an enzyme immunosensor based on chitosan-SiO(2) (CS-Sio(2)) hybrid membrane was fabricated. To estimate the new immunosensor Vibrio parahaemolyticus which was the main pathogens of aquatic products. A CS-SiO(2) hybrid membrane was prepared using sol-gel method. The enzyme immunosensor was fabricated by coating the membrane and horseradish peroxidase labeled Vibrio parahaemolyticus antibody (HRP-anti-VP) on the surface of four-channel screen-printed carbon electrode. The immunosensor was characterized by cyclic voltammetry. Vibrio parahaemolyticus could be detected according to the decrease percentage (DP) of peak current before and after immune response, while cyclic voltammetry was used as an electrochemical mean to detect the products of the enzymatic reaction. Seven kinds of bacteria, like Vibrio alginolyticus, were selected for specific experiments. By studying the infrared spectrum of three kinds of films, the CS-SiO(2) hybrid membrane was prepared and HRP-anti-VP was fixed in the hybrid membrane. Under the optimum conditions of immunoreaction and electrochemical detection, the DP of peak current before and after immune response showed a linear relation with lgC in the range of 10(4) - 10(9) cfu/ml, while the linear regression equation was: DP = 6.5 lgC-3.319, the correlation coefficient was 0.9958 and the detection limit was 6.9 x 10(3) cfu/ml (S/N = 3). The immunosensor possessed acceptable specificity, reproducibility (RSD < 6%), stability (the amperometric response was 95% of the initial response after a week) and accuracy (96.7% of the results obtained by the immunosensor were in agreement with those obtained by GB/T 4789.7-2003). The enzyme immunosensor based on CS-SiO(2) hybrid membrane gave a good performance in rapid detection of Vibrio parahaemolyticus.
Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference
Santi, C. M.; Yuan, A.; Fawcett, G.; Wang, Z.-W.; Butler, A.; Nonet, M. L.; Wei, A.; Rojas, P.; Salkoff, L.
2003-01-01
GFP-promoter experiments have previously shown that at least nine genes encoding potassium channel subunits are expressed in Caenorhabditis elegans muscle. By using genetic, RNA interference, and physiological techniques we revealed the molecular identity of the major components of the outward K+ currents in body wall muscle cells in culture. We found that under physiological conditions, outward current is dominated by the products of only two genes, Shaker (Kv1) and Shal (Kv4), both expressing voltage-dependent potassium channels. Other channels may be held in reserve to respond to particular circumstances. Because GFP-promoter experiments indicated that slo-2 expression is prominent, we created a deletion mutant to identify the SLO-2 current in vivo. In both whole-cell and single-channel modes, in vivo SLO-2 channels were active only when intracellular Ca2+ and Cl- were raised above normal physiological conditions, as occurs during hypoxia. Under such conditions, SLO-2 is the largest outward current, contributing up to 87% of the total current. Other channels are present in muscle, but our results suggest that they are unlikely to contribute a large outward component under physiological conditions. However, they, too, may contribute currents conditional on other factors. Hence, the picture that emerges is of a complex membrane with a small number of household conductances functioning under normal circumstances, but with additional conductances that are activated during unusual circumstances. PMID:14612577
Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed
2016-01-15
This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xipeng; Zhao, Changwei; Yang, Mei; Yang, Bin; Hou, Deyin; Wang, Tao
2017-10-01
Reduced graphene oxide-NH2 (R-GO-NH2), a kind of amino graphene oxide, was embedded into the polyamide (PA) layer of nanofiltration (NF) composite hollow fiber membranes via interfacial polymerization to enhance the permeate flux and antifouling properties of NF membranes under low pressure conditions. In addition, it could mitigate the poor compatibility issue between graphene oxide materials and PA layer. To evaluate the influence of R-GO-NH2 on the performance of the NF composite hollow fiber membrane, SEM, AFM, FTIR, XPS and Zeta potentials were used to characterize the membranes. The results indicated that the compatibility and interactions between R-GO-NH2 and PA layer were enhanced, which was mainly due to the polymerization reaction between amino groups of R-GO-NH2 and acyl chloride groups of TMC. Therefore, salts rejection of the current membranes was improved significantly, and the modified membranes with 50 mg/L R-GO-NH2 demonstrated highest performance in terms of the rejections, which were 26.9%, 98.5%, 98.1%, and 96.1%, for NaCl, Na2SO4, MgSO4, and CaCl2 respectively. It was found that with the R-GO-NH2 contents rasing from 0 to 50 mg/L, pure water flux increased from 30.44 ± 1.71 to 38.57 ± 2.01 L/(m2.h) at 2 bar. What's more, the membrane demonstrated improved antifouling properties.
L.-H. Huang, Christopher; Fraser, James A.
2011-01-01
Skeletal muscle activation requires action potential (AP) initiation followed by its sarcolemmal propagation and tubular excitation to trigger Ca2+ release and contraction. Recent studies demonstrate that ion channels underlying the resting membrane conductance (GM) of fast-twitch mammalian muscle fibers are highly regulated during muscle activity. Thus, onset of activity reduces GM, whereas prolonged activity can markedly elevate GM. Although these observations implicate GM regulation in control of muscle excitability, classical theoretical studies in un-myelinated axons predict little influence of GM on membrane excitability. However, surface membrane morphologies differ markedly between un-myelinated axons and muscle fibers, predominantly because of the tubular (t)-system of muscle fibers. This study develops a linear circuit model of mammalian muscle fiber and uses this to assess the role of subthreshold electrical properties, including GM changes during muscle activity, for AP initiation, AP propagation, and t-system excitation. Experimental observations of frequency-dependent length constant and membrane-phase properties in fast-twitch rat fibers could only be replicated by models that included t-system luminal resistances. Having quantified these resistances, the resulting models showed enhanced conduction velocity of passive current flow also implicating elevated AP propagation velocity. Furthermore, the resistances filter passive currents such that higher frequency current components would determine sarcolemma AP conduction velocity, whereas lower frequency components excite t-system APs. Because GM modulation affects only the low-frequency membrane impedance, the GM changes in active muscle would predominantly affect neuromuscular transmission and low-frequency t-system excitation while exerting little influence on the high-frequency process of sarcolemmal AP propagation. This physiological role of GM regulation was increased by high Cl− permeability, as in muscle endplate regions, and by increased extracellular [K+], as observed in working muscle. Thus, reduced GM at the onset of exercise would enhance t-system excitation and neuromuscular transmission, whereas elevated GM after sustained activity would inhibit these processes and thereby accentuate muscle fatigue. PMID:21670208
Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers
DiFranco, Marino; Herrera, Alvaro
2011-01-01
Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (ICl) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward ICl, and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and ICl acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be ICl dependent since its magnitude varied in close correlation with the amplitude and time course of ICl. While the properties of ICl, and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (PCl) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if PCl was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded ICl arises from TTS contributions. PMID:21149546
Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga.
Garibay-Hernández, Adriana; Barkla, Bronwyn J; Vera-Estrella, Rosario; Martinez, Alfredo; Pantoja, Omar
2017-01-01
Ettlia oleoabundans is a nonsequenced oleaginous green microalga. Despite the significant biotechnological interest in producing value-added compounds from the acyl lipids of this microalga, a basic understanding of the physiology and biochemistry of oleaginous microalgae is lacking, especially under nitrogen deprivation conditions known to trigger lipid accumulation. Using an RNA sequencing-based proteomics approach together with manual annotation, we are able to provide, to our knowledge, the first membrane proteome of an oleaginous microalga. This approach allowed the identification of novel proteins in E. oleoabundans, including two photoprotection-related proteins, Photosystem II Subunit S and Maintenance of Photosystem II under High Light1, which were considered exclusive to higher photosynthetic organisms, as well as Retinitis Pigmentosa Type 2-Clathrin Light Chain, a membrane protein with a novel domain architecture. Free-flow zonal electrophoresis of microalgal membranes coupled to liquid chromatography-tandem mass spectrometry proved to be a useful technique for determining the intracellular location of proteins of interest. Carbon-flow compartmentalization in E. oleoabundans was modeled using this information. Molecular phylogenetic analyses of protein markers and 18S ribosomal DNA support the reclassification of E. oleoabundans within the trebouxiophycean microalgae, rather than with the Chlorophyceae class, in which it is currently classified, indicating that it may not be closely related to the model green alga Chlamydomonas reinhardtii A detailed survey of biological processes taking place in the membranes of nitrogen-deprived E. oleoabundans, including lipid metabolism, provides insights into the basic biology of this nonmodel organism. © 2017 American Society of Plant Biologists. All Rights Reserved.
Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A
2016-09-01
Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Proton conducting ceramic membranes for hydrogen separation
Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT
2011-09-06
A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.
Filice, Fraser P; Li, Michelle S M; Henderson, Jeffrey D; Ding, Zhifeng
2016-02-18
Scanning Electrochemical Microscopy (SECM) is a powerful, non-invasive, analytical methodology that can be used to investigate live cell membrane permeability. Depth scan SECM imaging allowed for the generation of 2D current maps of live cells relative to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan image can contain hundreds of probe approach curves (PACs). Individual PACs were obtained by simply extracting vertical cross-sections from the 2D image. These experimental PACs were overlaid onto theoretically generated PACs simulated at specific geometry conditions. Simulations were carried out using 3D models in COMSOL Multiphysics to determine the cell membrane permeability coefficients at different locations on the surface of the cells. Common in literature, theoretical PACs are generated using a 2D axially symmetric geometry. This saves on both compute time and memory utilization. However, due to symmetry limitations of the model, only one experimental PAC right above the cell can be matched with simulated PAC data. Full 3D models in this article were developed for the SECM system of live cells, allowing all experimental PACs over the entire cell to become usable. Cd(2+)-induced membrane permeability changes of single human bladder (T24) cells were investigated at several positions above the cell, displaced from the central axis. The experimental T24 cells under study were incubated with Cd(2+) in varying concentrations. It is experimentally observed that 50 and 100 μM Cd(2+) caused a decrease in membrane permeability, which was uniform across all locations over the cell regardless of Cd(2+) concentration. The Cd(2+) was found to have detrimental effects on the cell, with cells shrinking in size and volume, and the membrane permeability decreasing. A mapping technique for the analysis of the cell membrane permeability under the Cd(2+) stress is realized by the methodology presented. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Omiya, Takuma; Tanaka, Akira; Shimomura, Masaru
2012-07-01
The structure of porous silicon carbide membranes that peeled off spontaneously during electrochemical etching was studied. They were fabricated from n-type 6H SiC(0001) wafers by a double-step electrochemical etching process in a hydrofluoric electrolyte. Nanoporous membranes were obtained after double-step etching with current densities of 10-20 and 60-100 mA/cm2 in the first and second steps, respectively. Microporous membranes were also fabricated after double-step etching with current densities of 100 and 200 mA/cm2. It was found that the pore diameter is influenced by the etching current in step 1, and that a higher current is required in step 2 when the current in step 1 is increased. During the etching processes in steps 1 and 2, vertical nanopore and lateral crack formations proceed, respectively. The influx pathway of hydrofluoric solution, expansion of generated gases, and transfer limitation of positive holes to the pore surface are the key factors in the peeling-off mechanism of the membrane.
Hysteresis in voltage-gated channels
2017-01-01
ABSTRACT Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels. PMID:27689426
Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron
2016-01-01
In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581
Signaling States of Rhodopsin in Rod Disk Membranes Lacking Transducin βγ-Complex
Lomonosova, Elena; Kolesnikov, Alexander V.; Kefalov, Vladimir J.
2012-01-01
Purpose. To characterize the possible role of transducin Gtβγ-complex in modulating the signaling properties of photoactivated rhodopsin and its lifetime in rod disc membranes and intact rods. Methods. Rhodopsin photolysis was studied using UV-visible spectroscopy and rapid scanning spectroscopy in the presence of hydroxylamine in highly purified wild-type and Gtγ-deficient mouse rod disc membranes. Complex formation between photoactivated rhodopsin and transducin was measured by extra-metarhodopsin (meta) II assay. Recovery of dark current and flash sensitivity in individual intact wild-type and Gtγ-deficient mouse rods was measured by single-cell suction recordings. Results. Photoconversion of rhodopsin to meta I/meta II equilibrium proceeds normally after elimination of the Gtβγ-complex. The meta I/meta II ratio, the rate of meta II decay, the reactivity of meta II toward hydroxylamine, and the rate of meta III formation in Gtγ-deficient rod disc membranes were identical with those observed in wild-type samples. Under low-intensity illumination, the amount of extra–meta II in Gtγ-deficient discs was significantly reduced. The initial rate of dark current recovery after 12% rhodopsin bleach was three times faster in Gtγ-deficient rods, whereas the rate of the late current recovery was largely unchanged. Mutant rods also exhibited faster postbleach recovery of flash sensitivity. Conclusions. Photoactivation and thermal decay of rhodopsin proceed similarly in wild-type and Gtγ-deficient mouse rods, but the complex formation between photoactivated rhodopsin and transducin is severely compromised in the absence of Gtβγ. The resultant lower transduction activation contributes to faster photoresponse recovery after a moderate pigment bleach in Gtγ-deficient rods. PMID:22266510
The molecular mechanisms underlying lens fiber elongation
Audette, Dylan S.; Scheiblin, David A.; Duncan, Melinda K.
2016-01-01
Lens fiber cells are highly elongated cells with complex membrane morphologies that are critical for the transparency of the ocular lens. Investigations into the molecular mechanisms underlying lens fiber cell elongation were first reported in the 1960s, however, our understanding of the process is still poor nearly 50 years later. This review summarizes what is currently hypothesized about the regulation of lens fiber cell elongation along with the available experimental evidence, and how this information relates to what is known about the regulation of cell shape/elongation in other cell types, particularly neurons. PMID:27015931
Membrane Pump for Synthetic Muscle Actuation
2009-09-28
FIG. 3 is a schematic representation of an embodiment of a muscle equipped to use electroosmotic flow in accordance with the present invention...water through the membrane to the cathode. This movement of water across the membrane during the application of current is called electroosmotic ...current and a 120 V AC source, again with an appropriate electronics package to control voltage and current. Preferably, the power source 316 can be
Thin membrane sensor with biochemical switch
NASA Technical Reports Server (NTRS)
Worley, III, Jennings F. (Inventor); Case, George D. (Inventor)
1994-01-01
A modular biosensor system for chemical or biological agent detection utilizes electrochemical measurement of an ion current across a gate membrane triggered by the reaction of the target agent with a recognition protein conjugated to a channel blocker. The sensor system includes a bioresponse simulator or biochemical switch module which contains the recognition protein-channel blocker conjugate, and in which the detection reactions occur, and a transducer module which contains a gate membrane and a measuring electrode, and in which the presence of agent is sensed electrically. In the poised state, ion channels in the gate membrane are blocked by the recognition protein-channel blocker conjugate. Detection reactions remove the recognition protein-channel blocker conjugate from the ion channels, thus eliciting an ion current surge in the gate membrane which subsequently triggers an output alarm. Sufficiently large currents are generated that simple direct current electronics are adequate for the measurements. The biosensor has applications for environmental, medical, and industrial use.
Chain scission and anti fungal effect of electron beam on cellulose membrane
NASA Astrophysics Data System (ADS)
Wanichapichart, Pikul; Taweepreeda, Wirach; Nawae, Safitree; Choomgan, Pastraporn; Yasenchak, Dan
2012-08-01
Two types of bacterial cellulose (BC) membranes were produced under a modified H&S medium using sucrose as a carbon source, with (CCB) and without (SHB) coconut juice supplement. Both membranes showed similar crystallinity of 69.24 and 71.55%. After being irradiated with E-beams under oxygen limited and ambient condition, the results from water contact angle showed that only the irradiated membrane CCB was increased from 30 to 40 degrees, and irradiation under oxygen ambient condition provided the greatest value. Comparing with the control membranes, smaller water flux was the cases after electron beam irradiation which indicated a reduction of membrane pore area. However, the results from molecular weight cut off (MWCO) revealed that chain scission was greater for membrane SHB and its cut off was increased from 28,000 Da to more than 35,000 Da. FTIR analysis revealed some changes in membrane functional groups, corresponding with the above results. These changes initiated new property of cellulose membranes, an anti-fungal food wrap.
Influence of asymmetric donor-receiver ion concentration upon transscleral iontophoretic transport.
Li, S Kevin; Zhang, Yanhui; Zhu, Honggang; Higuchi, William I; White, Henry S
2005-04-01
Recent in vitro and in vivo studies have suggested transscleral iontophoresis as a means for non-invasive drug delivery to the eye. However, there remains a lack of information of the iontophoretic transport behavior of the sclera. The objective of the present study was to investigate the effects of permeant concentration upon transscleral iontophoretic transport. Constant current direct current (DC) iontophoresis was conducted with rabbit sclera in vitro at permeant concentration ranging from 0.015 to 1.0 M in the donor chamber without background electrolyte at 0.4-4 mA (current density: 2-20 mA/cm2). PBS (0.15 M) was the receiver solution. Salicylate (SA) and tetraethylammonium (TEA) were the model ionic permeants, and mannitol was the neutral probe permeant. Conductivity experiments of SA and TEA solutions were performed to determine the effects of ion concentration upon SA and TEA electromobilities. Model simulations were carried out and compared with the experimental data. It was found that the fluxes of the ionic permeants increased linearly with the electric current but were relatively independent of their donor concentrations. Electric field-induced convective solvent flow (electroosmosis) in the sclera was observed to be from the anode to cathode, suggesting that the sclera is net negatively charge at neutral pH. For the studied permeants, electrophoresis was the main transport enhancing mechanism with electroosmosis as a secondary effect. No significant interaction between the permeants and sclera was observed that significantly altered electroosmosis in the membrane. Under the asymmetric donor and receiver conditions, the transference of the permeants could not be predicted by the concentrations of the ions in the donor and receiver chambers with the assumption of constant electric field in the membrane. The membrane ion concentrations were different from those in the chambers due to the requirement of charge neutrality in the membrane. Copyright (c) 2005 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Huang, Xiaoming
Direct methanol fuel cell (DMFC) is an attractive power source for portable applications in the near future, due to the high energy density of liquid methanol. Towards commercialization of the DMFC, several technical and economic challenges need to be addressed though. The present study aims at developing and characterizing high performance membrane electrode assemblies (MEAs) for the DMFCs by using a hydrocarbon type membrane (PolyFuel 62) and supported catalysts (PtRu/C). First, methanol and water transport properties in the PolyFuel 62 membrane were examined by various material characterization methods. Compared with the currently used perflurosulfonated Nafion 212 membrane, the PolyFuel membrane has lower methanol crossover, especially at high testing temperature. In addition, based on results of water diffusivity test, water diffusion through the PolyFuel membrane was also lower compared with the Nafion membrane. In order to check the possible impacts of the low methanol and water diffusivities in the PolyFuel membrane, a MEA with this new type of membrane was developed and its performance was compared with a Nafion MEA with otherwise identical electrodes and GDLs. The results showed anode performance was identical, while cathode performance of the PolyFuel MEA was lower. More experiments combined with a transmission line model revealed that low water transport through the PolyFuel membrane resulted in a higher proton resistance in the cathode electrode and thus, leading to a low cathode performance. Thus increasing the water content in the cathode electrode is critical for using the PolyFuel membrane in the DMFC MEA. Then, a low loading carbon supported catalyst, PtRu/C, was prepared and tested as the anode electrode in a MEA of the DMFC. Compared with performance of an unsupported MEA, we could find that lower performance in the supported MEA was due to methanol transport limitation because of the denser and thicker supported catalyst layer. Accordingly, an addition of a pore former, Li 2CO3, was proposed during the catalyst ink preparation. This was proved to be very effective, largely improving anode performance with only 1/3 of catalyst loading. Finally, the PolyFuel membrane and supported catalysts were ready to be applied in the new MEA for the DMFCs. The new made MEA, with the catalyst loading of 2.6-time lower than a reference MEA, showed a very promising result, about only 10mV performance loss under the current density of 150mA/cm² compared with the reference MEA. Moreover, a short-term decay test indicated that the new MEA may have better durability and life because of its low methanol crossover on the cathode electrode due the PolyFuel membrane.
Role of the array geometry in multi-bilayer hair cell sensors
NASA Astrophysics Data System (ADS)
Tamaddoni, Nima J.; Sarles, Stephen A.
2014-03-01
Recently, a bio-inspired, synthetic membrane-based hair cell sensor was fabricated and characterized. This sensor generates current in response to mechanical stimuli, such as airflow or free vibration, which perturb the sensor's hair. Vibration transferred from the hair to a lipid membrane (lipid bilayer) causes a voltage-dependent time rate of change in electrical capacitance of the membrane, which produces measurable current. Studies to date have been performed on systems containing only two droplets and a single bilayer, even though an array of multiple bilayers can be formed with more than 2 droplets. Thus, it is yet to be determined how multiple lipid bilayers affect the sensing response of a membrane-based hair cell sensor. In this work, we assemble serial droplet arrays with more than 1 bilayer to experimentally study the current generated by each membrane in response to perturbation of a single hair element. Two serial array configurations are studied: The first consists of a serial array of 3 bilayers formed using 4 droplets with the hair positioned in an end droplet. The second configuration consists of 3 droplets and 2 bilayers in series with the hair positioned in the central droplet. In serial arrays of up to four droplets, we observe that mechanotransduction of the hair's motion into a capacitive current occurs at every membrane, with bilayers positioned adjacent to the droplet containing the hair generating the largest sensing current. The measured currents suggest the total current generated by all bilayers in a 4-droplet, 3-bilaye array is greater than the current produced by a single-membrane sensor and similar in magnitude to the sum of currents output by 3, single-bilayer sensors operated independently. Moreover, we learned that bilayers positioned on the same side of the hair produce sensing currents that are in-phase, whereas bilayers positioned on opposite sides of the droplet containing the hair generate out-of-phase responses.
NASA Astrophysics Data System (ADS)
Wang, Jia-Yu; Kausik, Ravinath; Chen, Chi-Yuan; Han, Song-I.; Marks, Jeremy; Lee, Ka Yee
2010-03-01
Cell membrane dysfunction due to loss of structural integrity is the pathology of tissue death in trauma and common diseases. It is now established that certain biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and polyethylene glycol (PEG), are effective in sealing of injured cell membranes, and able to prevent acute necrosis. Despite these broad applications of these polymers for human health, the fundamental mechanisms by which these polymers interact with cell membranes are still under debate. Here, the effects of a group of biocompatible polymers on phospholipid membrane integrity under osmotic and oxidative stress were explored using giant unilamellar vesicles as model cell membranes. Our results suggest that the adsorption of the polymers on the membrane surface is responsible for the cell membrane resealing process due to its capability of slowing down the surface hydration dynamics.
1991-01-01
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time- dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. PMID:1865177
Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals
Poznanski, R. R.; Cacha, L. A.; Ali, J.; Rizvi, Z. H.; Yupapin, P.; Salleh, S. H.; Bandyopadhyay, A.
2017-01-01
A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge ‘soakage’ is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge ‘soakage’) have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell’s equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current. PMID:28880876
Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.
Poznanski, R R; Cacha, L A; Ali, J; Rizvi, Z H; Yupapin, P; Salleh, S H; Bandyopadhyay, A
2017-01-01
A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage') have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current.
Godbout, Charles; Frenette, Jérôme
2006-01-01
A prevailing paradigm is that electrical fields can promote cell migration and tissue healing. To further validate this paradigm, we tested the hypothesis that periodic direct current (DC) can enhance wound closure using an in vitro dynamic model of cell migration. Layers of primary fibroblasts were wounded and treated with DC under various voltages. Repair area, cell velocity, and directionality as well as lamellipodium area were evaluated at different times. Direct current had no beneficial effect on cell migration. Moreover, prolonged stimulation under the highest voltage led to significant reduction in wound closure and cell velocity. The reduction of membrane protusions in stimulated cells may be associated with the deleterious effect of DC. Contrary to the authors' expectations, they found that periodic DC did not promote wound closure, a finding that emphasizes the need to clarify the complex effects of electrical fields on migrating cells.
NASA Astrophysics Data System (ADS)
White, Nicholas
Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is <2. However, water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains high salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity of these membranes. PEMs deposited on commercial ultrafiltration (UF) membranes also show high rejections of organic dyes. Coating the surface of polyethersulfone (PES) membranes imparts a selective barrier to dye molecules used in textile production. These films achieve dye rejections >98% and may be useful for wastewater treatment and dye recovery. Other studies in microfluidic channels exploit ion transport phenomena in the vicinity of ion-selective junctions, such as cation-exchange membranes. These studies suggest that ion concentration polarization (ICP) could remove charged species from feed streams.
Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films.
Novitski, David; Kosakian, Aslan; Weissbach, Thomas; Secanell, Marc; Holdcroft, Steven
2016-11-30
Mass transport of oxygen through an ionomer contained within the cathode catalyst layer in an anion exchange membrane fuel cell is critical for a functioning fuel cell, yet is relatively unexplored. Moreover, because water is a reactant in the oxygen reduction reaction (ORR) in alkaline media, an adequate supply of water is required. In this work, ORR mass transport behavior is reported for methylated hexamethyl-p-terphenyl polymethylbenzimidazoles (HMT-PMBI), charge balanced by hydroxide ions (IEC from 2.1 to 2.5 mequiv/g), and commercial Fumatec FAA-3 membranes. Electrochemical mass transport parameters are determined by potential step chronoamperometry using a Pt microdisk solid-state electrochemical cell, in air at 60 °C, with relative humidity controlled between 70% and 98%. The oxygen diffusion coefficient (D bO2 ), oxygen concentration (c bO2 ), and oxygen permeability (D bO2 ·c bO2 ) were obtained by nonlinear curve fitting of the current transients using the Shoup-Szabo equation. Mass transport parameters are correlated to water content of the ionomer membrane. It is found that the oxygen diffusion coefficients decreased by 2 orders of magnitude upon reducing the water content of the ionomer membrane by lowering the relative humidity. The limitation of the Shoup-Szabo equation for extracting ORR mass transport parameters using thin ionomer films was evaluated by numerical modeling of the current transients, which revealed that a significant discrepancy (up to 29% under present conditions) was evident for highly hydrated membranes for which the oxygen diffusion coefficient was largest, and in which the oxygen depletion region reached the ionomer/gas interface during the chronoamperometric analysis.
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
Sodium influxes in internally perfused squid giant axon during voltage clamp.
Atwater, I; Bezanilla, F; Rojas, E
1969-05-01
1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential.2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio ;measured sodium influx/computed ionic flux during the early current' is 0.92 +/- 0.12.3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses.
PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.
Păunescu, T G; Helman, S I
2001-01-01
Measurements of transepithelial electrical impedance of continuously short-circuited A6 epithelia were made at audio frequencies (0.244 Hz to 10.45 kHz) to investigate the time course and extent to which prostaglandin E(2) (PGE(2)) modulates Cl(-) transport and apical membrane capacitance in this cell-cultured model epithelium. Apical and basolateral membrane resistances were determined by nonlinear curve-fitting of the impedance vectors at relatively low frequencies (<50 Hz) to equations (Păunescu, T. G., and S. I. Helman. 2001. Biophys. J. 81:838--851) where depressed Nyquist impedance semicircles were characteristic of the membrane impedances under control Na(+)-transporting and amiloride-inhibited conditions. In all tissues (control, amiloride-blocked, and amiloride-blocked and furosemide-pretreated), PGE(2) caused relatively small (< approximately 3 microA/cm(2)) and rapid (<60 s) maximal increase of chloride current due to activation of a rather large increase of apical membrane conductance that preceded significant activation of Na(+) transport through amiloride-sensitive epithelial Na(+) channels (ENaCs). Apical membrane capacitance was frequency-dependent with a Cole-Cole dielectric dispersion whose relaxation frequency was near 150 Hz. Analysis of the time-dependent changes of the complex frequency-dependent equivalent capacitance of the cells at frequencies >1.5 kHz revealed that the mean 9.8% increase of capacitance caused by PGE(2) was not correlated in time with activation of chloride conductance, but rather correlated with activation of apical membrane Na(+) transport. PMID:11463630
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.
Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa
2011-01-31
We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.
[Effect of sludge bulking on membrane fouling of MBR under low temperature].
Ren, Nan-qi; Liu, Jiao; Wang, Xiu-heng
2009-01-01
The performance and membrane fouling of submerged membrane bioreactor were studied in the case of active sludge bulking under low temperature. The factors contributing to membrane fouling were discussed from the microorganism aspect. The results showed that COD removal efficiencies of supernatant and permeate were 85% and 92% respectively and filamentous sludge bulking had little impact on them. The sludge settleability became bad and the filament index (FI) increased from 2 to 5 during the formation of filamentous sludge bulking under low temperature. The filamentous bacteria extending from the sludge flocs formed net structure. Membrane fouling changed with time in linear under low temperature and the operation period of MBR was 15 d. However, membrane fouling was more serious in the condition of filamentous sludge bulking at low temperature, shortening the operation period of MBR to 7 d. The extracellular polymeric substances (EPS) content of bulking sludge was three times as that of normal sludge and the relative hydrophobicity (RH) of sludge flocs was decreased as FI increased. The increase of EPS and RH may cause more materials to deposit on the membrane surface, thus the membrane fouling rate improved and the operation period of MBR became short. Further analysis indicated that the mixed liquid viscosity, Zeta potential and sludge floc structure were all important factors of membrane fouling.
Lv, Zhiwei; Hu, Jiahui; Zhang, Xuan; Wang, Lianjun
2015-10-07
In the current study, thin-film composite (TFC) nanofiltration membranes desirable for water softening were successfully developed through interfacial polymerization using N-(2-hydroxyethyl)ethylenediamine (HEDA) as the amine monomer in the aqueous phase. The hydrophilicity of the membrane surface was greatly enhanced with the introduction of the residual hydroxyl groups during the fabrication process. The TFC membranes possessed a permeate flux of 15.8 L m(-2) h(-1) under 0.6 MPa, with a rejection of 85.9%, 73.8%, and 99.8% for Na2SO4, MgSO4 and Congo red, respectively. The interplays of the solvent, solute and polymer matrix on the separation performance were investigated by means of the solubility parameter study. Moreover, density functional theory was employed to calculate the Fukui function by the Hirshfeld charge, which gave the global and local softness values to predict the reactivity of the atomic sites in the HEDA molecule. The findings of this study support the possible forming mechanism of the barrier layer for the first time. The TFC membrane was found to be stable and displayed good separation ability over a week-long filtration process. The combined results of this work suggest that these HEDA/TMC TFC nanofiltration membranes are promising candidates for various applications, such as desalination and dye removal from wastewater.
NASA Astrophysics Data System (ADS)
Chang, Chih-Chang; Huang, Wei-Hao
2017-11-01
Graphene oxide (GO) sheets in aqueous solution becomes negatively charged due to the dissociation of surface functional group (e.g., -OH, -COOH). Therefore, the membrane constructed by GO sheets would disintegrate owing to electrostatic repulsion. In this work, two monomers (glyoxal and ethylenediamine) were used for cross-linking GO sheets to construct composite graphene oxide-framework (GOF) membranes with 2D nanofluidic channels through the vacuum filtration method. Results of X-ray diffraction (XRD) showed that d-spacing in GOF layers (nanochannel size) is tuned to a value of approximately 1 nm in wet state. The stretching of d-spacing could be effectively suppressed and the stability of GOF membranes in aqueous solution was greatly improved. Finally, the ion transport and nonlinear current-voltage characteristics of these GOF membranes in salt (KCl) solution were investigated experimentally. The results showed that ion transport through GOF membrane begins to deviate from bulk behavior up to the salt concentration of 0.01M and gradually plateaus at low salt concentrations, i.e., the surface-charge-governed ion transport in 2D GOF nanofluidic channels. The nonlinear I - V characteristic of GOF membranes due to concentration polarization was also observed. Financial support from MOST of Taiwan under Project No. MOST 105-2218-E-167-001-MY2 is gratefully acknowledged.
Lu, Tom Z.; Feng, Zhong-Ping
2011-01-01
The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na+ (ILeak-Na). The ILeak-Na contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na+ leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals. PMID:21526173
Hu, Yan; Chua, Daniel H C
2016-06-15
Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.
Hu, Yan; Chua, Daniel H. C.
2016-01-01
Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135
Ionic Current Measurements in the Squid Giant Axon Membrane
Cole, Kenneth S.; Moore, John W.
1960-01-01
The concepts, experiments, and interpretations of ionic current measurements after a step change of the squid axon membrane potential require the potential to be constant for the duration and the membrane area measured. An experimental approach to this ideal has been developed. Electrometer, operational, and control amplifiers produce the step potential between internal micropipette and external potential electrodes within 40 microseconds and a few millivolts. With an internal current electrode effective resistance of 2 ohm cm.2, the membrane potential and current may be constant within a few millivolts and 10 per cent out to near the electrode ends. The maximum membrane current patterns of the best axons are several times larger but of the type described by Cole and analyzed by Hodgkin and Huxley when the change of potential is adequately controlled. The occasional obvious distortions are attributed to the marginal adequacy of potential control to be expected from the characteristics of the current electrodes and the axon. Improvements are expected only to increase stability and accuracy. No reason has been found either to question the qualitative characteristics of the early measurements or to so discredit the analyses made of them. PMID:13694548
NASA Astrophysics Data System (ADS)
García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.
2017-12-01
The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.
Plant uncoupling mitochondrial proteins.
Vercesi, Aníbal Eugênio; Borecký, Jiri; Maia, Ivan de Godoy; Arruda, Paulo; Cuccovia, Iolanda Midea; Chaimovich, Hernan
2006-01-01
Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.
Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes.
Zdrachek, Elena; Bakker, Eric
2018-06-07
We present here for the first time a solid contact ion-selective electrode suitable for the simultaneous sensing of cations (tetrabutylammonium) and anions (hexafluorophosphate), achieved by electrochemical switching. The membrane is based on a thin plasticized polyurethane membrane deposited on poly(3-octylthiophene) (POT) and contains a cation exchanger and lipophilic electrolyte (ETH 500). The cation exchanger is initially in excess; the ion-selective electrode exhibits an initial potentiometric response to cations. During an oxidative current pulse, POT is converted into POT + , which results in the expulsion of cations from the membrane followed by the extraction of anions from the sample solution to fulfill the electroneutrality condition. This creates a defined excess of lipophilic cation in the membrane, resulting in a potentiometric anion response. A reductive current pulse restores the original cation response by triggering the conversion of POT + back into POT, which is accompanied by the expulsion of anions from the membrane and the extraction of cations from the sample solution. Various current pulse magnitudes and durations are explored, and the best results in terms of response slope values and signal stability were observed with an oxidation current pulse of 140 μA cm -2 applied for 8 s and a reduction current pulse of -71 μA cm -2 applied for 8 s.
Cell membrane temperature rate sensitivity predicted from the Nernst equation.
Barnes, F S
1984-01-01
A hyperpolarized current is predicted from the Nernst equation for conditions of positive temperature derivatives with respect to time. This ion current, coupled with changes in membrane channel conductivities, is expected to contribute to a transient potential shift across the cell membrane for silent cells and to a change in firing rate for pacemaker cells.
Laser Ablation Increases PEM/Catalyst Interfacial Area
NASA Technical Reports Server (NTRS)
Whitacre, Jay; Yalisove, Steve
2009-01-01
An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken as indications that laser-roughened PEMs should function well in fuel cells and, in particular, should exhibit current and power densities greater than those attainable by use of smooth membranes.
IFITM Proteins Restrict Viral Membrane Hemifusion
Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C.; Gratton, Enrico; Cohen, Fredric S.; Liu, Shan-Lu
2013-01-01
The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous curvature in the outer leaflets of cell membranes. Our study provides novel insight into the understanding of how IFITM protein family restricts viral membrane fusion and infection. PMID:23358889
Monaghan, Kevin; McNaughten, Jennifer; McGahon, Mary K.; Kelly, Catriona; Kyle, Daniel; Yong, Phaik Har
2015-01-01
Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months’ streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the molecular and functional expression of TRPV4 channels in retinal microvascular endothelial cells. These changes may contribute to diabetes induced endothelial dysfunction and retinopathy. PMID:26047504
NASA Astrophysics Data System (ADS)
Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei
2016-09-01
Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.
Shepherd, V A; Beilby, M J; Bisson, M A
2004-06-01
Ventricaria ventricosa and its relatives have intrigued cell biologists and electrophysiologists for over a hundred years. Historically, electrophysiologists have regarded V. ventricosa as a large single plant cell with unusual characteristics including a small and positive vacuole-to-outside membrane potential difference. However, V. ventricosa has a coenocytic construction, with an alveolate cytoplasm interpenetrated by a complex vacuole containing sulphated polysaccharides. We present a theory relating the coenocytic structure to the unusual electrophysiology of V. ventricosa. The alveolate cytoplasm of V. ventricosa consists of a collective of uninucleate cytoplasmic domains interconnected by fine cytoplasmic strands containing microtubules. The cytoplasm is capable of disassociating into single cytoplasmic domains or aggregations of domains that can regenerate new coenocytes. The cytoplasmic domains are enclosed by outer (apical) and inner (basolateral) faces of a communal membrane with polarised K(+)-transporting functions, stabilised by microtubules and resembling a tissue such as a polarised epithelium. There is evidence for membrane trafficking through endocytosis and exocytosis and so "plasmalemma" and "tonoplast" do not have fixed identities. Intra- and extracellular polysaccharide mucilage has effects on electrophysiology through reducing the activity of water and through ion exchange. The vacuole-to-outside potential difference, at which the cell membrane conductance is maximal, reverses its sign from positive under hypertonic conditions to negative under hypotonic conditions. The marked mirror symmetry of the characteristics of current as a function of voltage and conductance as a function of voltage is interpreted as a feature of the communal membrane with polarised K(+) transport. The complex inhomogeneous structure of the cytoplasm places in doubt previous measurements of cytoplasm-to-outside potential difference.
Exhaustive exercise--a near death experience for skeletal muscle cells?
Behringer, Michael; Montag, Johannes; Franz, Alexander; McCourt, Molly L; Mester, Joachim; Nosaka, Kazunori Ken
2014-12-01
In sports medicine, muscle enzymes in the blood are frequently used as an indicator of muscle damage. It is commonly assumed that mechanical stress disrupts plasma membrane to an extent that allows large molecules, such as enzymes, to leak into the extracellular space. However, this does not appear to fully explain changes in muscle enzyme activity in the blood after exercise. Apart from this mechanically induced membrane damage, we hypothesize that, under critical metabolic conditions, ATP consuming enzymes like creatine kinase (CK) are "volitionally" expulsed by muscle cells in order to prevent cell death. This would put themselves into a situation comparable to that of CK deficient muscle fibers, which have been shown in animal experiments to be virtually infatigable at the expense of muscle strength. Additionally we expand on this hypothesis with the idea that membrane blebbing is a way for the muscle fibers to store CK in fringe areas of the muscle fiber or to expulse CK from the cytosol by detaching the blebs from the plasma membrane. The blebbing has been shown to occur in heart muscle cells under ischaemic conditions and has been speculated to be an alternative pathway for the expulsion of troponin. The blebbing has also been seen skeletal muscle cells when intracellular calcium concentration increases. Cytoskeletal damage, induced by reactive oxygen species (ROS) or by calcium activated proteases in concert with increasing intracellular pressure, seems to provoke this type of membrane reaction. If these hypotheses are confirmed by future investigations, our current understanding of CK as a blood muscle damage marker will be fundamentally affected. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guardiola-Serrano, Francisca; Beteta-Göbel, Roberto; Rodríguez-Lorca, Raquel; Ibarguren, Maitane; López, David J; Terés, Silvia; Alvarez, Rafael; Alonso-Sande, María; Busquets, Xavier; Escribá, Pablo V
2015-08-01
Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Sacconi, Alessio; Moncelli, Maria Rosa; Margheri, Giancarlo; Tadini-Buoninsegni, Francesco
2013-11-12
A convenient model system for a biological membrane is a solid-supported membrane (SSM), which consists of a gold-supported alkanethiol|phospholipid bilayer. In combination with a concentration jump method, SSMs have been used for the investigation of several membrane transporters. Vesicles incorporating sarcoplasmic reticulum Ca-ATPase (SERCA) were adsorbed on a negatively charged SSM (octadecanethiol|phosphatidylserine bilayer). The current signal generated by the adsorbed vesicles following an ATP concentration jump was compared to that produced by SERCA-containing vesicles adsorbed on a conventional SSM (octadecanethiol|phosphatidylcholine bilayer). A significantly higher current amplitude was recorded on the serine-based SSM. The adsorption of SERCA-incorporating vesicles on the SSM was then characterized by surface plasmon resonance (SPR). The SPR measurements clearly indicate that in the presence of Ca(2+) and Mg(2+), the amount of adsorbed vesicles on the serine-based SSM is about twice that obtained using the conventional SSM, thereby demonstrating that the higher current amplitude recorded on the negatively charged SSM is correlated with a greater quantity of adsorbed vesicles. The enhanced adsorption of membrane vesicles on the PS-based SSM may be useful to study membrane preparations with a low concentration of transport protein generating small current signals, as in the case of various recombinantly expressed proteins.
Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming
2010-01-01
In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.
NASA Astrophysics Data System (ADS)
Li, Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu
2005-07-01
Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance.
Bali, Rachna; Savino, Laura; Ramirez, Diego A.; Tsvetkova, Nelly M.; Bagatolli, Luis; Tablin, Fern; Crowe, John H.; Leidy, Chad
2009-01-01
There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large domains. In contrast, some polarizable cells do show large regions with qualitative differences in lipid fluidity. It is important to ask more precisely, based on the current phase diagrams, under what conditions would large domains be expected to form in cells. In this work we study the thermotropic phase behavior of the platelet plasma membrane by FTIR, and compare it to a POPC/Sphingomyelin/Cholesterol model representing the outer leaflet composition. We find that this model closely reflects the platelet phase behavior. Previous work has shown that the platelet plasma membrane presents inhomogeneous distribution of DiI18:0 at 24°C, but not at 37°C, which suggests the formation of macroscopic lipid domains at low temperatures. We show by fluorescence microscopy, and by comparison with published phase diagrams, that the outer leaflet model system enters the macroscopic domain region only at the lower temperature. In addition, the low cholesterol content in platelets (~15 mol %), appears to be crucial for the formation of large domains during cooling. PMID:19341703
NASA Astrophysics Data System (ADS)
Clausen, M. P.; Colin-York, H.; Schneider, F.; Eggeling, C.; Fritzsche, M.
2017-02-01
Nanoscale spacing between the plasma membrane and the underlying cortical actin cytoskeleton profoundly modulates cellular morphology, mechanics, and function. Measuring this distance has been a key challenge in cell biology. Current methods for dissecting the nanoscale spacing either limit themselves to complex survey design using fixed samples or rely on diffraction-limited fluorescence imaging whose spatial resolution is insufficient to quantify distances on the nanoscale. Using dual-color super-resolution STED (stimulated-emission-depletion) microscopy, we here overcome this challenge and accurately measure the density distribution of the cortical actin cytoskeleton and the distance between the actin cortex and the membrane in live Jurkat T-cells. We found an asymmetric cortical actin density distribution with a mean width of 230 (+105/-125) nm. The spatial distances measured between the maximum density peaks of the cortex and the membrane were bi-modally distributed with mean values of 50 ± 15 nm and 120 ± 40 nm, respectively. Taken together with the finite width of the cortex, our results suggest that in some regions the cortical actin is closer than 10 nm to the membrane and a maximum of 20 nm in others.
Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse.
Yue, Hai-Yuan; Xu, Jianhua
2015-07-01
Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non-specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl-β-cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca(2+) channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl-β-cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses. © 2015 International Society for Neurochemistry.
The status of membrane bioreactor technology.
Judd, Simon
2008-02-01
In this article, the current status of membrane bioreactor (MBR) technology for wastewater treatment is reviewed. Fundamental facets of the MBR process and membrane and process configurations are outlined and the advantages and disadvantages over conventional suspended growth-based biotreatment are briefly identified. Key process design and operating parameters are defined and their significance explained. The inter-relationships between these parameters are identified and their implications discussed, with particular reference to impacts on membrane surface fouling and channel clogging. In addition, current understanding of membrane surface fouling and identification of candidate foulants is appraised. Although much interest in this technology exists and its penetration of the market will probably increase significantly, there remains a lack of understanding of key process constraints such as membrane channel clogging, and of the science of membrane cleaning.
NASA Astrophysics Data System (ADS)
Maizia, R.; Dib, A.; Thomas, A.; Martemianov, S.
2017-02-01
Electrochemical noise analysis (ENA) has been performed for the diagnosis of proton-exchange membrane fuel cell (PEMFC) under various operating conditions. Its interest is related with the possibility of a non-invasive on-line diagnosis of a commercial fuel cell. A methodology of spectral analysis has been developed and an evaluation of the stationarity of the signal has been proposed. It has been revealed that the spectral signature of fuel cell, is a linear slope with a fractional power dependence 1/fα where α = 2 for different relative humidities and current densities. Experimental results reveal that the electrochemical noise is sensitive to the water management, especially under dry conditions. At RHH2 = 20% and RHair = 20%, spectral analysis shows a three linear slopes signature on the spectrum at low frequency range (f < 100 Hz). This results indicates that power spectral density, calculated thanks to FFT, can be used for the detection of an incorrect fuel cell water balance.
NASA Astrophysics Data System (ADS)
Andersen, Geoff; Tullson, Drew
2006-06-01
In designing next-generation, ultra-large (>20m) apertures for space, many current concepts involve compactable, curved membrane reflectors. Here we present the idea of using a flat diffractive element that requires no out-of-plane deformation and so is much simpler to deploy. The primary is a photon sieve - a diffractive element consisting of a large number of precisely positioned holes distributed according to an underlying Fresnel Zone Plate (FZP) geometry. The advantage of the photon sieve over the FZP is that all the regions are connected, so the membrane substrate under simple tension can avoid buckling. Also, the hole distribution can be varied to generate any conic or apodization for specialized telescope requirements such as exo-solar planet detection. We have designed and tested numerous photon sieves as telescope primaries. Some of these have over 10 million holes in a 0.1 m diameter aperture and all of them give diffraction limited imaging. While photon sieves are diffractive elements and thus suffer from dispersion, we will present two successful solutions to this problem.
Wang, G K
1984-01-01
The effects of externally applied chloramine-T on the excitability of single toad myelinated nerve fibres were studied. Chloramine-T is a mild oxidant which reacts specifically with the cysteine and methionine residues of proteins. Chloramine-T prolongs the action potential of a single myelinated fibre by more than 1000-fold. This effect is concentration- and time-dependent; higher concentrations and longer incubation times increase prolongation. Under voltage-clamp conditions, sodium channel inactivation is markedly inhibited by chloramine-T while sodium channel activation remains normal. Prolonged depolarization of the membrane leads to a maintained sodium current. The maintained sodium currents show activation kinetics, dependence on membrane potential, and reversal potentials which are similar to those of normal, inactivating sodium currents in untreated fibres. Both the maintained and the peak sodium currents are equally inhibited by tetrodotoxin. After partial removal of sodium inactivation by brief exposures to chloramine-T, the voltage dependence of the steady-state sodium current inactivation (h infinity) is shifted in the depolarized direction by about 20 mV, even after correction for the non-inactivating component contributed by the maintained current. The phenomena described here imply that cysteine or methionine residues are critical for the sodium channel inactivation processes. The two different modifications of inactivation, its removal shown by the maintained current, and the shift in the voltage-dependence of the remaining inactivatable channels, reveal that at least two separate residues are modified by chloramine-T. PMID:6321714
Zivkovic, Danica; Créton, Robbert; Dohmen, René
1991-08-01
During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca 2+ -stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 μA/cm 2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca 2+ /Mg 2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca 2+ -stimulated ATPase. The ionic currents and Ca 2+ -stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca 2+ -stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca 2+ -stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase.
Introduction to Solid Supported Membrane Based Electrophysiology
Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus
2013-01-01
The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods. PMID:23711952
Introduction to solid supported membrane based electrophysiology.
Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus
2013-05-11
The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods.
Novel polymer membrane process for pre-combustion CO{sub 2} capture from coal-fired syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Tim
2011-09-14
This final report describes work conducted for the Department of Energy (DOE NETL) on development of a novel polymer membrane process for pre-combustion CO{sub 2} capture from coalfired syngas (award number DE-FE0001124). The work was conducted by Membrane Technology and Research, Inc. (MTR) from September 15, 2009, through December 14, 2011. Tetramer Technologies, LLC (Tetramer) was our subcontract partner on this project. The National Carbon Capture Center (NCCC) at Wilsonville, AL, provided access to syngas gasifier test facilities. The main objective of this project was to develop a cost-effective membrane process that could be used in the relatively near-term tomore » capture CO{sub 2} from shifted syngas generated by a coal-fired Integrated Gasification Combined Cycle (IGCC) power plant. In this project, novel polymeric membranes (designated as Proteus™ membranes) with separation properties superior to conventional polymeric membranes were developed. Hydrogen permeance of up to 800 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 50 psig, which exceeds the original project targets of 200 gpu for hydrogen permeance and 10 for H{sub 2}/CO{sub 2} selectivity. Lab-scale Proteus membrane modules (with a membrane area of 0.13 m{sup 2}) were also developed using scaled-up Proteus membranes and high temperature stable module components identified during this project. A mixed-gas hydrogen permeance of about 160 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 100 psig. We believe that a significant improvement in the membrane and module performance is likely with additional development work. Both Proteus membranes and lab-scale Proteus membrane modules were further evaluated using coal-derived syngas streams at the National Carbon Capture Center (NCCC). The results indicate that all module components, including the Proteus membrane, were stable under the field conditions (feed pressures: 150-175 psig and feed temperatures: 120-135°C) for over 600 hours. The field performance of both Proteus membrane stamps and Proteus membrane modules is consistent with the results obtained in the lab, suggesting that the presence of sulfur-containing compounds (up to 780 ppm hydrogen sulfide), saturated water vapor, carbon monoxide and heavy hydrocarbons in the syngas feed stream has no adverse effect on the Proteus membrane or module performance. We also performed an economic analysis for a number of membrane process designs developed in this project (using hydrogen-selective membranes, alone or in the combination with CO{sub 2}- selective membranes). The current field performance for Proteus membranes was used in the design analysis. The study showed the current best design has the potential to reduce the increase in Levelized Cost of Electricity (LCOE) caused by 90% CO{sub 2} capture to about 15% if co-sequestration of H{sub 2}S is viable. This value is still higher than the DOE target for increase in LCOE (10%); however, compared to the base-case Selexol process that gives a 30% increase in LCOE at 90% CO2 capture, the membrane-based process appears promising. We believe future improvements in membrane performance have the potential to reach the DOE target.« less
Ion-current-based Proteomic Profiling of the Retina in a Rat Model of Smith-Lemli-Opitz Syndrome*
Tu, Chengjian; Li, Jun; Jiang, Xiaosheng; Sheflin, Lowell G.; Pfeffer, Bruce A.; Behringer, Matthew; Fliesler, Steven J.; Qu, Jun
2013-01-01
Smith-Lemli-Opitz syndrome (SLOS) is one of the most common recessive human disorders and is characterized by multiple congenital malformations as well as neurosensory and cognitive abnormalities. A rat model of SLOS has been developed that exhibits progressive retinal degeneration and visual dysfunction; however, the molecular events underlying the degeneration and dysfunction remain poorly understood. Here, we employed a well-controlled, ion-current-based approach to compare retinas from the SLOS rat model to retinas from age- and sex-matched control rats (n = 5/group). Retinas were subjected to detergent extraction and subsequent precipitation and on-pellet-digestion procedures and then were analyzed on a long, heated column (75 cm, with small particles) with a 7-h gradient. The high analytical reproducibility of the overall proteomics procedure enabled reliable expression profiling. In total, 1,259 unique protein groups, ∼40% of which were membrane proteins, were quantified under highly stringent criteria, including a peptide false discovery rate of 0.4%, with high quality ion-current data (e.g. signal-to-noise ratio ≥ 10) obtained independently from at least two unique peptides for each protein. The ion-current-based strategy showed greater quantitative accuracy and reproducibility over a parallel spectral counting analysis. Statistically significant alterations of 101 proteins were observed; these proteins are implicated in a variety of biological processes, including lipid metabolism, oxidative stress, cell death, proteolysis, visual transduction, and vesicular/membrane transport, consistent with the features of the associated retinal degeneration in the SLOS model. Selected targets were further validated by Western blot analysis and correlative immunohistochemistry. Importantly, although photoreceptor cell death was validated by TUNEL analysis, Western blot and immunohistochemical analyses suggested a caspase-3-independent pathway. In total, these results provide compelling new evidence implicating molecular changes beyond the initial defect in cholesterol biosynthesis in this retinal degeneration model, and they might have broader implications with respect to the pathobiological mechanism underlying SLOS. PMID:23979708
NASA Astrophysics Data System (ADS)
Peng, Zhe; Badets, Vasilica; Huguet, Patrice; Morin, Arnaud; Schott, Pascal; Tran, Thi Bich Hue; Porozhnyy, Mikhaël; Nikonenko, Victor; Deabate, Stefano
2017-07-01
Operando μ-Raman spectroscopy is used to probe the water distribution across Nafion® and Aquivion™ membranes in the operating fuel cell. The through-plane water concentration profile is obtained with μm resolution at the middle of the active surface, both at the gas distribution channel and at the under-lands areas. Depth-resolved measurements carried out at room temperature show that the water content of both membranes increases with the increase of the feed gas relative humidity and decreases with the increase of stoichiometry. At given relative humidity and stoichiometry conditions, the water content first increases at the fuel cell start-up and, then, decreases progressively with the increase of the current density delivered by the cell. The water loss is due to the concomitant rise of pressure drops and of the cell inner temperature, the latter giving the larger contribution. Pressure drops are related to the increase of the feed gases fluxes while temperature rise is due to increasing ohmic losses and heat from the electrochemical reaction. Compared to Nafion, Aquivion exhibits larger water content, but similar dehydration rate as a function of ohmic losses, and larger water accumulation at the under-lands area compared to channel.
Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).
Marunaka, Y; Hagiwara, N; Tohda, H
1992-09-01
Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.
Serotonin inhibits low-threshold spike interneurons in the striatum
Cains, Sarah; Blomeley, Craig P; Bracci, Enrico
2012-01-01
Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583
NASA Astrophysics Data System (ADS)
Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man
2015-10-01
The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.
Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang
2015-02-01
The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.
Barrientos, G.; Sánchez-Aguilera, P.; Jaimovich, E.; Hidalgo, C.
2017-01-01
Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions. PMID:28367451
Sodium influxes in internally perfused squid giant axon during voltage clamp
Atwater, I.; Bezanilla, F.; Rojas, E.
1969-01-01
1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential. 2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio `measured sodium influx/computed ionic flux during the early current' is 0·92 ± 0·12. 3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses. PMID:5767887
New horizons for cystic fibrosis treatment.
Fajac, Isabelle; De Boeck, Kris
2017-02-01
Cystic fibrosis is an inherited multi-system disease associated with chronic lung infection, malabsorption, salt loss syndromes, male infertility and leading to numerous comorbidities. The landscape in cystic fibrosis care has changed markedly with currently more adult patients than children in many countries. Over 2000 different mutations in the CFTR gene have been reported and the majority are extremely rare. Understanding how CFTR mutations translate to disturbed synthesis or function of the CFTR protein has opened the way to 'personalized' treatments to correct the basic defect. The first 2 drugs have reached the clinic: a CFTR potentiator to augment CFTR channel function, and the combination of this potentiator with a corrector to increase CFTR expression at the cell membrane. To obtain robust correction of CFTR expression at the cell membrane, combinations of correctors with additive efficacy are under investigation. Other mutation type-specific treatments under clinical investigation are premature stop codon-read through drugs and antisense oligonucleotides that correct the basic defect at the mRNA level. Restoring the defective gene by gene editing can already be achieved ex vivo. Mutation agnostic treatments are explored as well: stabilizing CFTR expression at the cell membrane, circumventing the CFTR channel by blocking or activating other ion channels, and gene therapy. Combinations of these therapies can be anticipated. The pipeline of corrective strategies under clinical investigation is increasing continuously and a rising number of pharmaceutical companies are entering the field. Copyright © 2016 Elsevier Inc. All rights reserved.
Preliminary clinical results with the ISL laser
NASA Astrophysics Data System (ADS)
Hoppeler, Thomas; Gloor, Balder
1992-08-01
The ISL laser (Intelligent Surgical Lasers, Inc.), a Nd:YLF picosecond pulse laser, is currently being used under investigational device exemption to perform microsurgery of the anterior segment of the eye. At different study sites procedures for cataract fragmentation and iridotomy, as well as for posterior capsulotomy after cataract surgery, are under evaluation. Other potential applications include: sclerostomy ab interno, the cutting of membranes in the anterior and posterior segment of the eye; corneal incisions; and corneal intrastromal effects. We discuss various clinically relevant aspects of the use of this picosecond laser. An overview of different computer controlled laser patterns is given.
Membrane Desalination: Where Are We, and What Can We Learn from Fundamentals?
Imbrogno, Joseph; Belfort, Georges
2016-06-07
Although thermal desalination technology provides potable water in arid regions (e.g., Israel and the Gulf), its relatively high cost has limited application to less arid regions with large populations (e.g., California). Energy-intensive distillation is currently being replaced with less costly pressure- and electrically driven membrane-based processes. Reverse osmosis (RO) is a preferred membrane technology owing to process and pre- and posttreatment improvements that have significantly reduced energy requirements and cost. Further technical advances will require a deeper understanding of the fundamental science underlying RO. This includes determining the mechanism for water selectivity; elucidating the behavior of molecular water near polar and apolar surfaces, as well as the advantages and limitations of hydrophobic versus hydrophilic pores; learning the rules of selective water transport from nature; and designing synthetic analogs for selective water transport. Molecular dynamics simulations supporting experiments will play an important role in advancing these efforts. Finally, future improvements in RO are limited by inherent technical mass transfer limitations.
GPI-anchored protein organization and dynamics at the cell surface
Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit
2016-01-01
The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. PMID:26394904
NASA Astrophysics Data System (ADS)
Antonacci, Patrick
In this thesis, electrochemical impedance spectroscopy (EIS) and synchrotron x-ray radiography were utilized to characterize the impact of liquid water distributions in polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs) on fuel cell performance. These diagnostic techniques were used to quantify the effects of liquid water visualized on equivalent resistances measured through EIS. The effects of varying the thickness of the microporous layer (MPL) of GDLs were studied using these diagnostic techniques. In a first study on the feasibility of this methodology, two fuel cell cases with a 100 microm-thick and a 150 microm-thick MPL were compared under constant current density operation. In a second study with 10, 30, 50, and 100 microm-thick MPLs, the liquid water in the cathode substrate was demonstrated to affect mass transport resistance, while the liquid water content in the anode (from back diffusion) affected membrane hydration, evidenced through ohmic resistance measurements.
The physics of lipid droplet nucleation, growth and budding.
Thiam, Abdou Rachid; Forêt, Lionel
2016-08-01
Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deldime, Michèle; Dewez, Jean-Luc; Schneider, Yves-Jacques; Marchand-Brynaert, Jacqueline
1995-09-01
Poly(ethylene terephthalate) (PET) films and track-etched microporous membranes of two different porosities were pretreated by hydrolysis and/or oxidation in order to enhance the amount of carboxyl chain-ends displayed on their surface. The reactivity of these carboxyl functions was determined by derivatization assays in which the reactions were carried out under conditions likely to be encountered in the coupling of water-soluble biochemical signals on the surface of biomaterials. Original reagents, fluorine-labelled and/or 3H-labelled aminoacid compounds, were used. The derivatized PET samples were examined by X-ray photoelectron spectroscopy (XPS) to characterize their apparent surfaces, and by liquid scintillation counting (LSC) to quantify the amount of tags fixed on their open surfaces. Using this dual assay technique, we analyzed the surface of microporous membranes which are currently used as substrates for cell culture systems.
Hyodo, Kiwamu; Kaido, Masanori; Okuno, Tetsuro
2014-01-01
Many plant viruses have positive-strand RNA [(+)RNA] as their genome. Therefore, it is not surprising that RNA-binding proteins (RBPs) play important roles during (+)RNA virus infection in host plants. Increasing evidence demonstrates that viral and host RBPs play critical roles in multiple steps of the viral life cycle, including translation and replication of viral genomic RNAs, and their intra- and intercellular movement. Although studies focusing on the RNA-binding activities of viral and host proteins, and their associations with membrane targeting, and intercellular movement of viral genomes have been limited to a few viruses, these studies have provided important insights into the molecular mechanisms underlying the replication and movement of viral genomic RNAs. In this review, we briefly overview the currently defined roles of viral and host RBPs whose RNA-binding activity have been confirmed experimentally in association with their membrane targeting, and intercellular movement of plant RNA virus genomes. PMID:25071804
Shock wave-droplet interaction
NASA Astrophysics Data System (ADS)
Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan
2016-11-01
Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.
GPI-anchored protein organization and dynamics at the cell surface.
Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit
2016-02-01
The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Adelman, William J.; Taylor, Robert E.
1964-01-01
It was observed that a reduction of the sodium chloride concentration in the external solution bathing a squid giant axon by replacement with sucrose resulted in marked decreases in the peak inward and steady-state outward currents through the axon membrane following a step decrease in membrane potential. These effects are quantitatively acounted for by the increase in series resistance resulting from the decreased conductivity of the sea water and the assumption that the sodium current obeys a relation of the form I = k1C1 - k2C2 where C1, C2 are internal and external ion activities and k1, k2 are independent of concentration. It is concluded that the potassium ion current is independent of the sodium concentration. That the inward current is carried by sodium ions has been confirmed. The electrical potential (or barrier height) profile in the membrane which drives sodium ions appears to be independent of sodium ion concentration or current. A specific effect of the sucrose on hyperpolarizing currents was observed and noted but not investigated in detail. PMID:14232131
Laurent, C E; Cardinal, R; Rousseau, G; Vermeulen, M; Bouchard, C; Wilkinson, M; Armour, J A; Bouvier, M
2001-02-01
To corroborate alterations in the functional responses to beta-adrenergic receptor (beta-AR) stimulation with changes in beta-AR signaling in failing cardiomyocytes, contractile and L-type Ca(2+) current responses to isoproterenol along with stimulated cAMP generation were compared among cardiomyocytes isolated from canines with tachycardia-induced heart failure or healthy hearts. The magnitude of shortening of failing cardiomyocytes was significantly depressed (by 22 +/- 4.4%) under basal conditions, and the maximal response to isoproterenol was significantly reduced (by 45 +/- 18%). Similar results were obtained when the responses in the rate of contraction and rate of relaxation to isoproterenol were considered. The L-type Ca(2+) current amplitude measured in failing cardiomyocytes under basal conditions was unchanged, but the responses to isoproterenol were significantly reduced compared with healthy cells. Isoproterenol-stimulated cAMP generation was similar in sarcolemmal membranes derived from the homogenates of failing (45 +/- 6.8) and healthy cardiomyocytes (52 +/- 8.5 pmol cAMP. mg protein(-1). min(-1)). However, stimulated cAMP generation was found to be significantly reduced when the membranes were derived from the homogenates of whole tissue (failing: 67 +/- 8.1 vs. healthy: 140 +/- 27.8 pmol cAMP. mg protein(-1). min(-1)). Total beta-AR density was not reduced in membranes derived from either whole tissue or isolated cardiomyocyte homogenates, but the beta(1)/beta(2) ratio was significantly reduced in the former (failing: 45/55 vs. healthy: 72/28) without being altered in the latter (failing: 72/28, healthy: 77/23). We thus conclude that, in tachycardia-induced heart failure, reduction in the functional responses of isolated cardiomyocytes to beta-AR stimulation may be attributed to alterations in the excitation-contraction machinery rather than to limitation of cAMP generation.
Recycling of used perfluorosulfonic acid membranes
Grot, Stephen [Middletown, DE; Grot, Walther [Chadds Ford, PA
2007-08-14
A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.
The interactions of peripheral membrane proteins with biological membranes
Johs, Alexander; Whited, A. M.
2015-07-29
The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less
Zhang, Wen-Hao; Skerrett, Martha; Walker, N. Alan; Patrick, John W.; Tyerman, Stephen D.
2002-01-01
In developing bean (Phaseolus vulgaris) seeds, phloem-imported nutrients move in the symplast from sieve elements to the ground parenchyma cells where they are transported across the plasma membrane into the seed apoplast. To study the mechanisms underlying this transport, channel currents in ground parenchyma protoplasts were characterized using patch clamp. A fast-activating outward current was found in all protoplasts, whereas a slowly activating outward current was observed in approximately 25% of protoplasts. The two currents had low selectivity for univalent cations, but the slow current was more selective for K+ over Cl− (PK:PCl = 3.6–4.2) than the fast current (PK:PCl = 1.8–2.5) and also displayed Ca2+ selectivity. The slow current was blocked by Ba2+, whereas both currents were blocked by Gd3+ and La3+. Efflux of K+ from seed coat halves was inhibited 25% by Gd3+ and La3+ but was stimulated by Ba2+ and Cs+, suggesting that only the fast current may be a component in the pathway for K+ release. An “instantaneous” inward current observed in all protoplasts exhibited similar pharmacology and permeability for univalent cations to the fast outward current. In outside-out patches, two classes of depolarization-activated cation-selective channels were observed: one slowly activating of low conductance (determined from nonstationary noise to be 2.4 pS) and another with conductances 10-fold higher. Both channels occurred at high density. The higher conductance channel in 10 mm KCl had PK:PCl = 2.8. Such nonselective channels in the seed coat ground parenchyma cell could function to allow some of the efflux of phloem-imported univalent ions into the seed apoplast. PMID:11842143
Raman, I M; Trussell, L O
1995-01-01
We have examined the mechanisms underlying the voltage sensitivity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors in voltage-clamped outside-out patches and whole cells taken from the nucleus magnocellularis of the chick. Responses to either glutamate or kainate had outwardly rectifying current-voltage relations. The rate and extent of desensitization during prolonged exposure to agonist, and the rate of deactivation after brief exposure to agonist, decreased at positive potentials, suggesting that a kinetic transition was sensitive to membrane potential. Voltage dependence of the peak conductance and of the deactivation kinetics persisted when desensitization was reduced with aniracetam or blocked with cyclothiazide. Furthermore, the rate of recovery from desensitization to glutamate was not voltage dependent. Upon reduction of extracellular divalent cation concentration, kainate-evoked currents increased but preserved rectifying current-voltage relations. Rectification was strongest at lower kainate concentrations. Surprisingly, nonstationary variance analysis of desensitizing responses to glutamate or of the current deactivation after kainate removal revealed an increase in the mean single-channel conductance with more positive membrane potentials. These data indicate that the rectification of the peak response to a high agonist concentration reflects an increase in channel conductance, whereas rectification of steady-state current is dominated by voltage-sensitive channel kinetics. Images FIGURE 2 FIGURE 3 PMID:8580330
Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion.
Sarkar, Parijat; Chakraborty, Hirak; Chattopadhyay, Amitabha
2017-06-30
Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.
Mammalian plasma membrane proteins as potential biomarkers and drug targets.
Rucevic, Marijana; Hixson, Douglas; Josic, Djuro
2011-06-01
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ng, Joanna L; Collins, Ciara E; Knothe Tate, Melissa L
2017-07-01
Nonwoven and textile membranes have been applied both externally and internally to prescribe boundary conditions for medical conditions as diverse as oedema and tissue defects. Incorporation of mechanical gradients in next generation medical membrane design offers great potential to enhance function in a dynamic, physiological context. Yet the gradient properties and resulting mechanical performance of current membranes are not well described. To bridge this knowledge gap, we tested and compared the mechanical properties of bounding membranes used in both external (compression sleeves for oedema, exercise bands) and internal (surgical membranes) physiological contexts. We showed that anisotropic compression garment textiles, isotropic exercise bands and surgical membranes exhibit similar ranges of resistance to tension under physiologic strains. However, their mechanical gradients and resulting stress-strain relationships show differences in work capacity and energy expenditure. Exercise bands' moduli of elasticity and respective thicknesses allow for controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. In contrast, the gradients intrinsic to compression sleeve design exhibit gaps in the middle range (1-5N) of physiological strains and also inconsistencies along the length of the sleeve, resulting in less than optimal performance of these devices. These current shortcomings in compression textile and garment design may be addressed in the future through implementation of novel approaches. For example, patterns, fibre compositions, and fibre anisotropy can be incorporated into biomaterial design to achieve seamless mechanical gradients in structure and resulting dynamic function, which would be particularly useful in physiological contexts. These concepts can be applied further to biomaterial design to deliver pressure gradients during movement of oedematous limbs (compression garments) and facilitate transport of molecules and cells during tissue genesis within tissue defects (surgical membranes). External and internal biomaterial membranes prescribe boundary conditions for treatment of medical disorders, from oedema to tissue defects. Studies are needed to guide the design of next generation biomaterials and devices that incorporate gradient engineering approaches, which offer great potential to enhance function in a dynamic and physiological context. Mechanical gradients intrinsic to currently implemented biomaterials such as medical textiles and surgical interface membranes are poorly understood. Here we characterise quantitatively the mechanics of textile and nonwoven biomaterial membranes for external and internal use. The lack of seamless gradients in compression medical textiles contrasts with the graded mechanical effects achieved by elastomeric exercise bands, which are designed to deliver controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. Engineering textiles with a prescient choice of fibre composition/size, type of knit/weave and inlay fibres, and weave density/anisotropy will enable creation of fabrics that can deliver spatially and temporally controlled mechanical gradients to maintain force balances at tissue boundaries, e.g. to treat oedema or tissue defects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Basolateral membrane chloride permeability of A6 cells: implication in cell volume regulation.
Brochiero, E; Banderali, U; Lindenthal, S; Raschi, C; Ehrenfeld, J
1995-11-01
The permeability to Cl- of the basolateral membrane (blm) was investigated in renal (A6) epithelial cells, assessing their role in transepithelial ion transport under steady-state conditions (isoosmotic) and following a hypoosmotic shock (i.e. in a regulatory volume decrease, RVD). Three different complementary studies were made by measuring: (1) the Cl- transport rates (delta F/Fo s-1 (x10(-3))), where F is the fluorescence of N-(6-methoxyquinoyl) acetoethyl ester, MQAE, and Fo the maximal fluorescence (x10(-3)) of both membranes by following the intracellular Cl- activities (ai Cl-, measured with MQAE) after extracellular Cl- substitution (2) the blm 86Rb and 36Cl uptakes and (3) the cellular potential and Cl- current using the whole-cell patch-clamp technique to differentiate between the different Cl- transport mechanisms. The permeability of the blm to Cl- was found to be much greater than that of the apical membranes under resting conditions: aiCl- changes were 5.3 +/- 0.7 mM and 25.5 +/- 1.05 mM (n = 79) when Cl- was substituted by NO3(-) in the media bathing apical and basolateral membranes. The Cl- transport rate of the blm was blocked by bumetanide (100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 50 microM) but not by N-phenylanthranilic acid (DPC, 100 microM). 86Rb and 36Cl uptake experiments confirmed the presence of a bumetanide- and a NPPB-sensitive Cl- pathway, the latter being approximately three times more important than the former (Na/K/2Cl cotransporter). Appli-cation of a hypoosmotic medium to the serosal side of the cell increased delta F/Fo s-1 (x10(-3)) after extracellular Cl- substitution (1.03 +/- 0.10 and 2.45 +/- 0.17 arbitrary fluorescent units s-1 for isoosmotic and hypoosmotic conditions respectively, n = 11); this delta F/Fo s-1 (x10(-3)) increase was totally blocked by serosal NPPB application; on the other hand, cotransporter activity was decreased by the hypoosmotic shock. Cellular Ca2+ depletion had no effect on delta F/Fo s-1 (x10(-3)) under isoosmotic conditions, but blocked the delta F/Fo s-1 (x10(-3)) increase induced by a hypoosmotic stress. Under isotonic conditions the measured cellular potential at rest was -37.2 +/- 4.0 mV but reached a maximal and transient depolarization of -25.1 +/- 3.7 mV (n = 9) under hypoosmotic conditions. The cellular current at a patch-clamping cellular potential of -85 mV (close to the Nernst equilibrium potential for K+) was blocked by NPPB and transiently increased by hypoosmotic shock (≈50% maximum increase). This study demonstrates that the major component of Cl- transport through the blm of the A6 monolayer is a conductive pathway (NPPB-sensitive Cl- channels) and not a Na/K/2Cl cotransporter. These channels could play a role in transepithelial Cl- absorption and cell volume regulation. The increase in the blm Cl- conductance, inducing a depolarization of these membranes, is proposed as one of the early events responsible for the stimulation of the 86Rb efflux involved in cell volume regulation.
Plant and Animal Gravitational Biology. Part 1
NASA Technical Reports Server (NTRS)
1997-01-01
Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.
Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation
Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan
2010-01-01
Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939
Li, Zhen; He, Guangwei; Zhang, Bei; Cao, Ying; Wu, Hong; Jiang, Zhongyi; Tiantian, Zhou
2014-06-25
In this study, phytic acid (myo-inositol hexaphosphonic acid) was first immobilized by MIL101 via vacuum-assisted impregnation method. The obtained phytic@MIL101 was then utilized as a novel filler to incorporate into Nafion to fabricate hybrid proton exchange membrane for application in PEMFC under different relative humidities (RHs), especially under low RHs. High loading and uniform dispersion of phytic acid in MIL 101(Cr) were achieved as demonstrated by ICP, FT-IR, XPS, and EDS-mapping. The phytic@MIL101 was dispersed homogeneously in the Nafion matrix when the filler content was less than 12%. Hybrid membranes were evaluated by proton conductivity, mechanical property, thermal stability, and so forth. Remarkably, the Nafion/phytic@MIL hybrid membranes showed high proton conductivity at different RHs, especially under low RHs, which was up to 0.0608 S cm(-1) and 7.63 × 10(-4) S cm(-1) at 57.4% RH and 10.5% RH (2.8 and 11.0 times higher than that of pristine membrane), respectively. Moreover, the mechanical property of Nafion/phtic@MIL hybrid membranes was substantially enhanced and the thermal stability of membranes was well preserved.
In-Plane Channel-Structured Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells.
Lee, Dong-Hyun; Jo, Wonhee; Yuk, Seongmin; Choi, Jaeho; Choi, Sungyu; Doo, Gisu; Lee, Dong Wook; Kim, Hee-Tak
2018-02-07
In this study, we present a novel catalyst layer (CL) with in-plane flow channels to enhance the mass transports in polymer electrolyte membrane fuel cells. The CL with in-plane channels on its surface is fabricated by coating a CL slurry onto a surface-treated substrate with the inverse line pattern and transferring the dried CL from the substrate to a membrane. The membrane electrode assembly with the in-plane channel-patterned CL has superior power performances in high current densities compared with an unpatterned, flat CL, demonstrating a significant enhancement of the mass-transport property by the in-plane channels carved in the CL. The performance gain is more pronounced when the channel direction is perpendicular to the flow field direction, indicating that the in-plane channels increase the utilization of the CL under the rib area. An oxygen-transport resistance analysis shows that both molecular and Knudsen diffusion can be facilitated with the introduction of the in-plane channels. The direct CL patterning technique provides a platform for the fabrication of advanced CL structures with a high structural fidelity and design flexibility and a rational guideline for designing high-performance CLs.
NASA Astrophysics Data System (ADS)
Li, Yujiao; Shi, Shaoyuan; Cao, Hongbin; Zhao, Zhijuan; Wen, Hao
2018-06-01
The heterogeneous anion exchange membranes (AEMs) were modified by electrodeposition of graphene oxide (GO) under different conditions. The physicochemical properties of GO-modified membranes were characterized systemically to obtain the optimized conditions for the electrodeposition of GO on the surface of AEMs. The results indicated that the contact angle and zeta potential of the modified AEMs decreased when increasing the concentration of GO from 0.05 g/L to 0.1 g/L. The higher concentration of NaCl, as the supporting electrolyte, could hinder the electrodeposition of GO on the AEMs for the competitive migration between the GO and Cl- ions. The increase of current density had a positive effect on properties of GO-modified membranes in the range of 1-5 mA/cm2. Compared with the pristine AEM, all the GO-modified AEMs exhibited smoother surface, higher hydrophilicity and negative zeta potential. It was also found that the GO modifying layer did not increase electrical resistance and had only a negligible effect on the desalination performance of AEMs. In the fouling experiments with sodium dodecyl benzene sulfonate (SDBS) as the model foulant, the GO-modified AEMs exhibited improved fouling resistance to SDBS.
Edlmann, Ellie; Giorgi-Coll, Susan; Whitfield, Peter C; Carpenter, Keri L H; Hutchinson, Peter J
2017-05-30
Chronic subdural haematoma (CSDH) is an encapsulated collection of blood and fluid on the surface of the brain. Historically considered a result of head trauma, recent evidence suggests there are more complex processes involved. Trauma may be absent or very minor and does not explain the progressive, chronic course of the condition. This review focuses on several key processes involved in CSDH development: angiogenesis, fibrinolysis and inflammation. The characteristic membrane surrounding the CSDH has been identified as a source of fluid exudation and haemorrhage. Angiogenic stimuli lead to the creation of fragile blood vessels within membrane walls, whilst fibrinolytic processes prevent clot formation resulting in continued haemorrhage. An abundance of inflammatory cells and markers have been identified within the membranes and subdural fluid and are likely to contribute to propagating an inflammatory response which stimulates ongoing membrane growth and fluid accumulation. Currently, the mainstay of treatment for CSDH is surgical drainage, which has associated risks of recurrence requiring repeat surgery. Understanding of the underlying pathophysiological processes has been applied to developing potential drug treatments. Ongoing research is needed to identify if these therapies are successful in controlling the inflammatory and angiogenic disease processes leading to control and resolution of CSDH.
Presynaptic miniature GABAergic currents in developing interneurons.
Trigo, Federico F; Bouhours, Brice; Rostaing, Philippe; Papageorgiou, George; Corrie, John E T; Triller, Antoine; Ogden, David; Marty, Alain
2010-04-29
Miniature synaptic currents have long been known to represent random transmitter release under resting conditions, but much remains to be learned about their nature and function in central synapses. In this work, we describe a new class of miniature currents ("preminis") that arise by the autocrine activation of axonal receptors following random vesicular release. Preminis are prominent in gabaergic synapses made by cerebellar interneurons during the development of the molecular layer. Unlike ordinary miniature postsynaptic currents in the same cells, premini frequencies are strongly enhanced by subthreshold depolarization, suggesting that the membrane depolarization they produce belongs to a feedback loop regulating neurotransmitter release. Thus, preminis could guide the formation of the interneuron network by enhancing neurotransmitter release at recently formed synaptic contacts. Copyright 2010 Elsevier Inc. All rights reserved.
Membrane projection lithography
Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L
2015-03-17
The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.
An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface
Hoiles, William; Krishnamurthy, Vikram; Cranfield, Charles G.; Cornell, Bruce
2014-01-01
This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities. PMID:25229142
Conductivity Analysis of Membranes for High-Temperature PEMFC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, R.; Turner, J.A.
2005-01-01
Low-temperature operation requirements for per-fluorinated membranes are one factor that limits the viability of current fuel cell technology for transportation and other uses. Because of this, high-temperature membrane materials are being researched. The protonic conductivity of organic/inorganic hybrid composites, Nafion® analog material, and heteropoly acid doped Nafion membranes were studied using a BekkTech® conductivity test cell as a hydrogen pump. The goal was to find a high-temperature membrane with sufficient enough conductive properties to replace the currently implemented low-temperature membranes, such as Nafion. Four-point conductivity measurements were taken using a hydrogen pump experiment. Results showed that one of the organic/inorganicmore » membranes that we tested had similar protonic conductivity to Nafion. Nafion analog membranes were shown to have similar to slightly better conductivity than Nafion at high-temperatures. However, like Nafion, performance dropped upon dehydration of the membrane at higher temperatures. Of the heteropoly acid doped Nafion membranes studied, silicotungstic acid was found to be, overall, the most promising for use as a dopant.« less
NASA Astrophysics Data System (ADS)
Ichikawa, Yasushi; Oshima, Nobuyuki; Tabuchi, Yuichiro; Ikezoe, Keigo
2014-12-01
Further cost reduction is a critical issue for commercialization of fuel-cell electric vehicles (FCEVs) based on polymer electrolyte fuel cells (PEFCs). The cost of the fuel-cell system is driven by the multiple parts required to maximize stack performance and maintain durability and robustness. The fuel-cell system of the FCEV must be simplified while maintaining functionality. The dead-ended anode is considered as a means of simplification in this study. Generally, if hydrogen is supplied under constant pressure during dead-ended operation, stable power generation is impossible because of accumulation of liquid water produced by power generation and of nitrogen via leakage from the cathode through the membrane. Herein, pressure oscillation is applied to address this issue. Empirical and CFD data are employed to elucidate the mechanism of stable power generation using the pressure swing supply. Simultaneous and time-continuous measurements of the current distribution and gas concentration distribution are also conducted. The results demonstrate that the nitrogen concentration in the anode channel under pressure constant operation differs from that under pressure swing supply conditions. The transient two-dimensional CFD results indicate that oscillatory flow is generated by pressure swing supply, which periodically sweeps out nitrogen from the active area, resulting in stable power generation.
The Electrophysiology of Electric Organs of Marine Electric Fishes
Bennett, M. V. L.; Wurzel, M.; Grundfest, H.
1961-01-01
Single electroplaques of Torpedo nobiliana have been studied with microelectrode recording. Direct evidence is presented that the only electrogenically reactive membrane of the cells is on the innervated surface and that this membrane is electrically inexcitable. Responses are not evoked by depolarizing currents applied to this membrane, but only by stimulating the innervating nerve fibers. The responses arise after a latency of 1 to 3 msec. This latency is not affected by large depolarizing or hyperpolarizing changes in membrane potential. Various properties that have been theoretically associated with electrically inexcitable responses have been also demonstrated to occur in the electroplaques. The neurally evoked response is not propagated actively in the membrane and may have different amplitudes and forms in closely adjacent regions. The maximal responses frequently are slightly larger than the recorded resting potential but the apparent small overshoot may be due to difficulty in recording the full resting potential. The responses are subject to electrochemical gradation and appear inverted in sign on applying strong outward currents across the innervated membrane. This membrane is cholinoceptive and shows marked desensitization. The membrane of the uninnervated surface has a very low resistance, a factor that aids maximum output of current during the discharge of the electric organ. PMID:19873534
Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.
Cimini, Alessio; Moresi, Mauro
2016-10-01
In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, v S = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J * ) of 32 or 37 L/m 2 /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity <1 EBC unit, but a significant reduction in density, viscosity, color, extract, and foam half-life with respect to their corresponding retentates. The 0.8-μm asymmetric membrane module might be selected, its corresponding permeate having quite a good turbidity and medium reduction in the aforementioned beer quality parameters. Moreover, it exhibited J * values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m 2 /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined. © 2016 Institute of Food Technologists®.
Structural basis for host membrane remodeling induced by protein 2B of hepatitis A virus.
Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra; Verdaguer, Núria
2015-04-01
The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus
Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa
2015-01-01
ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659
Weinberg, Seth H.
2015-01-01
Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a weighted sum of the membrane potential prior history. However, it is not clear to what extent fractional-order dynamics may alter the properties of active excitable cells. In this study, we investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in the membrane patch model, as fractional-order decreases, i.e., a greater influence of membrane potential memory, peak sodium and potassium currents are altered, and spike frequency and amplitude are generally reduced. In the nerve axon, the velocity of spike propagation increases as fractional-order decreases, while in a neural network, electrical activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails to reproduce many of the key alterations in spiking properties, suggesting that membrane capacitive memory and fractional-order membrane potential dynamics are important and necessary to reproduce neuronal electrical activity. PMID:25970534
Obaid, M; Mohamed, Hend Omar; Yasin, Ahmed S; Yassin, Mohamed A; Fadali, Olfat A; Kim, HakYong; Barakat, Nasser A M
2017-10-15
Water in the world is becoming an increasingly scarce commodity and the membrane technology is a most effective strategy to address this issue. However, the fouling and low flux of the polymeric membrane remains the big challenges. Novel modified Polyvinylidene fluoride (PVDF) membrane was introduced, in this work, using a novel treatment technique for an electrospun polymeric PVDF membrane to be used in oil/water separation systems. The Characterizations of the modified and pristine membranes showed distinct changes in the phase and crystal structure of the membrane material as well as the wettability. The modification process altered the surface morphology and structure of the membrane by forming hydrophilic microspheres on the membrane surface. Therefore, the proposed treatment converts the membrane from highly hydrophobic to be a superhydrophilic under-oil when wetted with water. Accordingly, in the separation of oil/water mixtures, the modified membrane can achieve an outstanding flux of 20664 L/m 2 . hr under gravity, which is higher than the pristine membrane by infinite times. Moreover, in the separation of the emulsion, a high flux of 2727 L/m 2 . h was achieved. The results exhibited that the modified membrane can treat a huge amount of oily water with a minimal energy consumption. The corresponding separation efficiencies of both of oil/water mixtures and emulsion are more than 99%. The achieved characteristics for the modified and pristine membranes could be exploited to design a novel continuous system for oil/water separation with an excellent efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.
Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor
2015-12-08
Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.
The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells
Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor
2015-01-01
Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258
Nouri, Mohammad-Zaman; Komatsu, Setsuko
2010-05-01
To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel-based and a LC MS/MS-based proteomics method. Two-day-old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two-phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel-based proteomics, four and eight protein spots were identified as up- and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up- and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low-abundance proteins could be identified by the LC MS/MS-based method. Three homologues of plasma membrane H(+)-ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H(+)-ATPase protein.
Yi, Feng; Stevanovic, Ana; Osborn, William A; Kolmakov, A; LaVan, David A
2017-11-01
We have developed a versatile nanocalorimeter sensor which allows imaging and electrical measurements of samples under different gaseous environments using the scanning electron microscope (SEM) and can simultaneously measure the sample temperature and associated heat of reaction. This new sensor consists of four independent heating/sensing elements for nanocalorimetry and eight electrodes for electrical measurements, all mounted on a 50 nm thick, 250 μm × 250 μm suspended silicon nitride membrane. This membrane is highly electron transparent and mechanically robust enabling in situ SEM observation under realistic temperatures, environmental conditions and pressures up to one atmosphere. To demonstrate this new capability, we report here on 1) in situ SEM-nanocalorimetry study of melting and solidification of polyethylene oxide, 2) the temperature dependence of conductivity of a nanowire; 3) the electron beam induced current measurements (EBID) of a nanowire in vacuum and air. Furthermore, the sensor is easily adaptable to operate in liquid environment and is compatible with most existing SEM. This versatile platform couples nanocalorimetry with in situ SEM imaging under various gaseous and liquid environments and is applicable to materials research, nanotechnology, energy, catalysis and biomedical applications.
Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Mishler, Jeffrey Harris
Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and validated against experimental data. The ice coverage coefficient was shown to be a key variable in matching with experimental data. From model analysis, it appears that the coulombs of charge passed before operation failure is an important parameter characterizing PEM fuel cell cold start. To investigate the coulombs of charge and its determining factors, PEM fuel cells were constructed to measure the effects of membrane configuration (thickness and initial state), catalyst layer configuration (thickness and ionomer-carbon ratio), current density, and temperature on the quantity. It was found that subfreezing temperature, ionomer-catalyst ratio, and catalyst-layer thickness significantly affect the amount of charge transferred before operational failure, whereas the membrane thickness and initial hydration level have limited effect for the considered cases. In addition, degradation of the catalyst layer was observed and quantified. These results improve the fundamental understanding of characteristics of subfreezing operation and thus are valuable for automobile applications of PEM fuel cells. The model directly relates the material properties to voltage loss, and predicts voltage evolution, thus providing a way for material optimization and diagnostics. Additionally, insights into component design and operating conditions can be used to better optimize the fuel cell for cold start-up of the vehicle.
Sodium and potassium conductance changes during a membrane action potential
Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.
1970-01-01
1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231
Morphology, development, and evolution of fetal membranes and placentation in squamate reptiles.
Blackburn, Daniel G; Flemming, Alexander F
2009-09-15
Current studies on fetal membranes of reptiles are providing insight into three major historical transformations: evolution of the amniote egg, evolution of viviparity, and evolution of placentotrophy. Squamates (lizards and snakes) are ideal for such studies because their fetal membranes sustain embryos in oviparous species and contribute to placentas in viviparous species. Ultrastructure of the fetal membranes in oviparous corn snakes (Pituophis guttatus) shows that the chorioallantois is specialized for gas exchange and the omphalopleure, for water absorption. Transmission and scanning electron microscopic studies of viviparous thamnophine snakes (Thamnophis, Storeria) have revealed morphological specializations for gas exchange and absorption in the intra-uterine environment that represent modifications of features found in oviparous species. Thus, fetal membranes in oviparous species show morphological differentiation for distinct functions that have been recruited and enhanced under viviparous conditions. The ultimate in specialization of fetal membranes is found in viviparous skinks of South America (Mabuya) and Africa (Trachylepis, Eumecia), in which placentotrophy accounts for nearly all of the nutrients for development. Ongoing research on these lizards has revealed morphological specializations of the chorioallantoic placenta through which nutrient transfer is accomplished. In addition, African Trachylepis show an invasive form of implantation, in which uterine epithelium is replaced by invading chorionic cells. Ongoing analysis of these lizards shows how integration of multiple lines of evidence can provide insight into the evolution of developmental and reproductive specializations once thought to be confined to eutherian mammals.
Coleman, H A; Tare, Marianne; Parkington, Helena C
2001-01-01
Membrane currents attributed to endothelium-derived hyperpolarizing factor (EDHF) were recorded in short segments of submucosal arterioles of guinea-pigs using single microelectrode voltage clamp. The functional responses of arterioles and human subcutaneous, rat hepatic and guinea-pig coronary arteries were also assessed as changes in membrane potential recorded simultaneously with contractile activity. The current-voltage (I-V) relationship for the conductance due to EDHF displayed outward rectification with little voltage dependence. Components of the current were blocked by charybdotoxin (30-60 nM) and apamin (0.25-0.50 μM), which also blocked hyperpolarization and prevented EDHF-induced relaxation. The EDHF-induced current was insensitive to Ba2+ (20-100 μM) and/or ouabain (1 μM to 1 mM). In human subcutaneous arteries and guinea-pig coronary arteries and submucosal arterioles, the EDHF-induced responses were insensitive to Ba2+ and/or ouabain. Increasing [K+]o to 11-21 mM evoked depolarization under conditions in which EDHF evoked hyperpolarization. Responses to ACh, sympathetic nerve stimulation and action potentials were indistinguishable between dye-labelled smooth muscle and endothelial cells in arterioles. Action potentials in identified endothelial cells were always associated with constriction of the arterioles. 18β-Glycyrrhetinic acid (30 μM) and carbenoxolone (100 μM) depolarized endothelial cells by 31 ± 6 mV (n = 7 animals) and 33 ± 4 mV (n = 5), respectively, inhibited action potentials in smooth muscle and endothelial cells and reduced the ACh-induced hyperpolarization of endothelial cells by 56 and 58 %, respectively. Thus, activation of outwardly rectifying K+ channels underlies the hyperpolarization and relaxation due to EDHF. These channels have properties similar to those of intermediate conductance (IKCa) and small conductance (SKCa) Ca2+-activated K+ channels. Strong electrical coupling between endothelial and smooth muscle cells implies that these two layers function as a single electrical syncytium. The non-specific effects of glycyrrhetinic acid precludes its use as an indicator of the involvement of gap junctions in EDHF-attributed responses. These conclusions are likely to apply to a variety of blood vessels including those of humans. PMID:11230509
Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio
2017-12-01
The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm -2 was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.
Luminescence characteristics of nanoporous anodic alumina annealed at different temperatures
NASA Astrophysics Data System (ADS)
Ilin, D. O.; Vokhmintsev, A. S.; Weinstein, I. A.
2016-09-01
Anodic aluminum oxide (AAO) membranes with 100 µm thickness were synthesized in oxalic acid solution under constant current density. Grown samples were annealed in 500-1250 °C range for 5 h in air. Average pore diameter was evaluated using quantitative analysis of SEM images and appeared to be within 78-86 nm diapason. It was found there was a broad emission band in the 350-620 nm region of photoluminescence (PL) spectra in amorphous membranes which is attributed to F-type oxygen deficient centers or oxalic ions. It was shown that intensive red emission caused by Cr3+ (696 nm) and Mn4+ (680 nm) impurities dominates in PL of AAO samples with crystalline α- and δ-phases after annealing at 1100-1250 °C temperatures.
Ionizing radiation, ion transports, and radioresistance of cancer cells
Huber, Stephan M.; Butz, Lena; Stegen, Benjamin; Klumpp, Dominik; Braun, Norbert; Ruth, Peter; Eckert, Franziska
2013-01-01
The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports. PMID:23966948
Kim, Dong-Hun; Kanaly, Robert A; Hur, Hor-Gil
2012-12-01
The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, reduced tellurite (Te(IV), TeO(3)(2-)) to elemental tellurium under anaerobic conditions resulting in the intracellular accumulation of needle shaped crystalline Te(0) nanorods. Fatty acid analyses showed that toxic Te(IV) increased the unsaturated fatty acid composition of the lipid components of the cell membrane, implying a deconstruction of the integrity of the cellular membrane structure. The current results suggest that dissimilatory metal reducing bacteria such as S. oneidensis MR-1 may play an important role in recycling toxic tellurium elements, and may be applied as a novel selective biological filter via the accumulation of industry-applicable rare materials, Te(0) nanorods, in the cell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Carvalho, Luis; Luque-Ortega, Juan Román; Manzano, José Ignacio; Castanys, Santiago; Rivas, Luis; Gamarro, Francisco
2010-01-01
Tafenoquine (TFQ), an 8-aminoquinoline analogue of primaquine, which is currently under clinical trial (phase IIb/III) for the treatment and prevention of malaria, may represent an alternative treatment for leishmaniasis. In this work, we have studied the mechanism of action of TFQ against Leishmania parasites. TFQ impaired the overall bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels without affecting plasma membrane permeability. TFQ induced mitochondrial dysfunction through the inhibition of cytochrome c reductase (respiratory complex III) with a decrease in the oxygen consumption rate and depolarization of mitochondrial membrane potential. This was accompanied by ROS production, elevation of intracellular Ca2+ levels and concomitant nuclear DNA fragmentation. We conclude that TFQ targets Leishmania mitochondria, leading to an apoptosis-like death process. PMID:20837758
Carvalho, Luis; Luque-Ortega, Juan Román; Manzano, José Ignacio; Castanys, Santiago; Rivas, Luis; Gamarro, Francisco
2010-12-01
Tafenoquine (TFQ), an 8-aminoquinoline analogue of primaquine, which is currently under clinical trial (phase IIb/III) for the treatment and prevention of malaria, may represent an alternative treatment for leishmaniasis. In this work, we have studied the mechanism of action of TFQ against Leishmania parasites. TFQ impaired the overall bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels without affecting plasma membrane permeability. TFQ induced mitochondrial dysfunction through the inhibition of cytochrome c reductase (respiratory complex III) with a decrease in the oxygen consumption rate and depolarization of mitochondrial membrane potential. This was accompanied by ROS production, elevation of intracellular Ca(2+) levels and concomitant nuclear DNA fragmentation. We conclude that TFQ targets Leishmania mitochondria, leading to an apoptosis-like death process.
Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states
NASA Astrophysics Data System (ADS)
McReynolds, Susanna; Jiang, Shaokai; Rong, Lijun; Caffrey, Michael
2009-12-01
The envelope glycoproteins S1 and S2 of severe acute respiratory syndrome coronavirus (SARS-CoV) mediate viral entry by conformational change from a prefusion state to a postfusion state that enables fusion of the viral and target membranes. In this work we present the characterization of the dynamic properties of the SARS-CoV S2-HR2 domain (residues 1141-1193 of S) in the prefusion and newly discovered transition states by NMR 15N relaxation studies. The dynamic properties of the different states, which are stabilized under different experimental conditions, extend the current model of viral membrane fusion and give insight into the design of structure-based antagonists of SARS-CoV in particular, as well as other enveloped viruses such as HIV.
Escobar-Henriques, Mafalda; Langer, Thomas
2006-01-01
A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.
Delgado-Ramírez, Mayra; Sánchez-Armass, Sergio; Meza, Ulises; Rodríguez-Menchaca, Aldo A
2018-05-01
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels. Copyright © 2018 Elsevier B.V. All rights reserved.
Phloretin-induced changes in ion transport across lipid bilayer membranes
1977-01-01
Phloretin, the aglucone derivative of phlorizin, increases cation conductance and decreases anion conductance in lipid bilayer membranes. In this paper we present evidence that phloretin acts almost exclusively by altering the permeability of the membrane interior and not by modifying the partition of the permanent species between the membrane and the bulk aqueous phases. We base our conclusion on an analysis of the current responses to a senylborate, and the cation complex, peptide PV-K+. These results are consistent with the hypothesis that phloretin decreases the intrinsic positive internal membrane potential but does not modify to a great extent the potential energy minima at the membrane interfaces. Phloretin increases the conductance for the nonactin-K+ complex, but above 10(-5) M the steady- state nonactin-K+ voltage-current curve changes from superlinear to sublinear. These results imply that, above 10(-5) M phloretin, the nonactin-5+ transport across the membrane becomes interfacially limited. PMID:576427
Membrane Specifications for Multi-Configuration Membrane Distillation Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Daniel; Vanneste, Johan; Cath, Tzahi
The data includes the membrane properties and specifications used for multi-configuration membrane distillation desalination. In this study, membranes from CLARCOR, 3M, and Aquastill are tested in counter-current, co-current and air-gap configurations at Colorado School of Mines (CSM), Advanced Water technology Center ( Aqwatech) laboratories. In the data sheets: The "theoretical" worksheet, contains steady-state values of the experimental runs and also provides several calculated values. The "Specifications" worksheet contains the inputs to the experiment. The "Data" spreadsheet contains the entire set of data and the rest of the sheets "20-40", "20-45", ...etc., contain individual portions of the data with variation ofmore » feed temperatures.« less
Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D
2013-01-01
Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426
3D-printed membrane for guided tissue regeneration.
Tayebi, Lobat; Rasoulianboroujeni, Morteza; Moharamzadeh, Keyvan; Almela, Thafar K D; Cui, Zhanfeng; Ye, Hua
2018-03-01
Three-dimensional (3D) printing is currently being intensely studied for a diverse set of applications, including the development of bioengineered tissues, as well as the production of functional biomedical materials and devices for dental and orthopedic applications. The aim of this study was to develop and characterize a 3D-printed hybrid construct that can be potentially suitable for guided tissue regeneration (GTR). For this purpose, the rheology analyses have been performed on different bioinks and a specific solution comprising 8% gelatin, 2% elastin and 0.5% sodium hyaluronate has been selected as the most suitable composition for printing a structured membrane for GTR application. Each membrane is composed of 6 layers with strand angles from the first layer to the last layer of 45, 135, 0, 90, 0 and 90°. Confirmed by 3D Laser Measuring imaging, the membrane has small pores on one side and large pores on the other to be able to accommodate different cells like osteoblasts, fibroblasts and keratinocytes on different sides. The ultimate cross-linked product is a 150μm thick flexible and bendable membrane with easy surgical handling. Static and dynamic mechanical testing revealed static tensile modules of 1.95±0.55MPa and a dynamic tensile storage modulus of 314±50kPa. Through seeding the membranes with fibroblast and keratinocyte cells, the results of in vitro tests, including histological analysis, tissue viability examinations and DAPI staining, indicated that the membrane has desirable in vitro biocompatibility. The membrane has demonstrated the barrier function of a GTR membrane by thorough separation of the oral epithelial layer from the underlying tissues. In conclusion, we have characterized a biocompatible and bio-resorbable 3D-printed structured gelatin/elastin/sodium hyaluronate membrane with optimal biostability, mechanical strength and surgical handling characteristics in terms of suturability for potential application in GTR procedures. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V
2018-04-01
We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that predictions of stronger effects in linear membrane models with a fixed activation threshold are inaccurate. Thus, the conventional cable equation works well for most neuroengineering applications, and the presented modeling approach is well suited to address the exceptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich Ciora; Paul KT Liu
2012-06-27
In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings ofmore » $$2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $$750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.« less
NASA Astrophysics Data System (ADS)
Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.
2017-02-01
A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.
Takeuchi, Kinya; Fukuda, Atsuo; Kanayama, Naohiro
2004-01-01
Amniotic fluid contains a significant level of urinary trypsin inhibitor (UTI). Previously, we reported that UTI inhibits calcium influx of myometrium and it is effective in preventing uterine contraction. This study examined the effects of UTI upon potassium channels, which is important for membrane excitability. Whole-cell patch-clamp recordings were performed in fibroblasts derived from human fetal skin. Potassium currents were recorded and the effects of exogenous UTI and/or cadmium determined. Tetraethylammonium sensitive potassium currents were elicited by step or ramp stimulations at depolarized membrane potentials (over +30 mV). Administration of 1 micro M UTI significantly increased these potassium currents by 16.9%. When calcium channels were blocked by the administration of cadmium, UTI increased the rest of the potassium currents by 4.8%. This indicates that UTI increased calcium-dependent potassium currents by 94.8% but only increased voltage-dependent potassium currents by 4.8%. Urinary trypsin inhibitor is a physiological substance of fetal origin that modulates calcium-dependent and voltage-dependent potassium channels. These data suggest that UTI is capable of regulating the membrane properties of the fetal and myometrial cells in contact with amniotic fluid.
Nonhumidified intermediate temperature fuel cells using protic ionic liquids.
Lee, Seung-Yul; Ogawa, Atsushi; Kanno, Michihiro; Nakamoto, Hirofumi; Yasuda, Tomohiro; Watanabe, Masayoshi
2010-07-21
In this paper, the characterization of a protic ionic liquid, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), as a proton conductor for a fuel cell and the fabrication of a membrane-type fuel cell system using [dema][TfO] under nonhumidified conditions at intermediate temperatures are described in detail. In terms of physicochemical and electrochemical properties, [dema][TfO] exhibits high activity for fuel cell electrode reactions (i.e., the hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR)) at a Pt electrode, and the open circuit voltage (OCV) of a liquid fuel cell is 1.03 V at 150 degrees C, as has reported in ref 27. However, diethylmethylammonium bis(trifluoromethane sulfonyl)amide ([dema][NTf(2)]) has relatively low HOR and ORR activity, and thus, the OCV is ca. 0.7 V, although [dema][NTf(2)] and [dema][TfO] have an identical cation ([dema]) and similar thermal and bulk-transport properties. Proton conduction occurs mainly via the vehicle mechanism in [dema][TfO] and the proton transference number (t(+)) is 0.5-0.6. This relatively low t(+) appears to be more disadvantageous for a proton conductor than for other electrolytes such as hydrated sulfonated polymer electrolyte membranes (t(+) = 1.0). However, fast proton-exchange reactions occur between ammonium cations and amines in a model compound. This indicates that the proton-exchange mechanism contributes to the fuel cell system under operation, where deprotonated amines are continuously generated by the cathodic reaction, and that polarization of the cell is avoided. Six-membered sulfonated polyimides in the diethylmethylammonium form exhibit excellent compatibility with [dema][TfO]. The composite membranes can be obtained up to a [dema][TfO] content of 80 wt % and exhibit good thermal stability, high ionic conductivity, and mechanical strength and gas permeation comparable to those of hydrated Nafion. H(2)/O(2) fuel cells prepared using the composite membranes can successfully operate at temperatures from 30 to 140 degrees C under nonhumidified conditions, and a current density of 250 mA cm(-2) is achieved at 120 degrees C. The protic ionic liquid and its composite membrane are a possible candidate for an electrolyte of a H(2)/O(2) fuel cell that operates under nonhumidified conditions.
Fuel-Cell Structure Prevents Membrane Drying
NASA Technical Reports Server (NTRS)
Mcelroy, J.
1986-01-01
Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.
Measurement of the membrane potential in small cells using patch clamp methods
Wilson, James R; Clark, Robert B; Banderali, Umberto
2011-01-01
The resting membrane potential, Em, of mammalian cells is a fundamental physiological parameter. Even small changes in Em can modulate excitability, contractility and rates of cell migration. At present accurate, reproducible measurements of Em and determination of its ionic basis remain significant challenges when patch clamp methods are applied to small cells. In this study, a mathematical model has been developed which incorporates many of the main biophysical principles which govern recordings of the resting potential of “small cells”. Such a prototypical cell (approx. capacitance, 6 pF; input resistance 5 GΩ) is representative of neonatal cardiac myocytes, and other cells in the cardiovascular system (endothelium, fibroblasts) and small cells in other tissues, e.g., bone (osteoclasts) articular joints (chondrocytes) and the pancreas (β cells). Two common experimental conditions have been examined: (1) when the background K+ conductance is linear; and (2) when this K+ conductance is highly nonlinear and shows pronounced inward rectification. In the case of a linear K+ conductance, the presence of a “leakage” current through the seal resistance between the cell membrane and the patch pipette always depolarizes Em. Our calculations confirm that accurate characterization of Em is possible when the seal resistance is at least five times larger than the input resistance of the targeted cell. Measurement of Em under conditions in which the main background current includes a markedly nonlinear K+ conductance (due to inward rectification) yields complex and somewhat counter-intuitive findings. In fact, there are at least two possible stable values of resting membrane potential for a cell when the nonlinear, inwardly rectifying K+ conductance interacts with the seal current. This type of bistable behavior has been reported in a variety of small mammalian cells, including those from the heart, endothelium, smooth muscle and bone. Our theoretical treatment of these two common experimental situations provides useful mechanistic insights, and suggests practical methods by which these significant limitations, and their impact, can be minimized. PMID:21829090
ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.
Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M
2018-01-01
In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.
Responses of neurons to extreme osmomechanical stress.
Wan, X; Harris, J A; Morris, C E
1995-05-01
Neurons are often regarded as fragile cells, easily destroyed by mechanical and osmotic insult. The results presented here demonstrate that this perception needs revision. Using extreme osmotic swelling, we show that molluscan neurons are astonishingly robust. In distilled water, a heterogeneous population of Lymnaea stagnalis CNS neurons swelled to several times their initial volume, yet had a ST50 (survival time for 50% of cells) > 60 min. Cells that were initially bigger survived longer. On return to normal medium, survivors were able, over the next 24 hr, to rearborize. Reversible membrane capacitance changes corresponding to about 0.7 muF/cm2 of apparent surface area accompanied neuronal swelling and shrinking in hypo- and hyperosmotic solutions; reversible changes in cell surface area evidently contributed to the neurons' ability to accommodate hydrostatic pressures then recover. The reversible membrane area/capacitance changes were not dependent on extracellular Ca2+. Neurons were monitored for potassium currents during direct mechanical inflation and during osmotically driven inflation. The latter but not the former stimulus routinely elicited small potassium currents, suggesting that tension increases activate the currents only if additional disruption of the cortex has occurred. Under stress in distilled water, a third of the neurons displayed a quite unexpected behavior: prolonged writhing of peripheral regions of the soma. This suggested that a plasma membrane-linked contractile machinery (presumably actomyosin) might contribute to the neurons' mechano-osmotic robustness by restricting water influx. Consistent with this possibility, 1 mM N-ethyl-maleimide, which inhibits myosin ATPase, decreased the ST50 to 18 min, rendered the survival time independent of initial size, and abolished writhing activity. For neurons, active mechanical resistance of the submembranous cortex, along with the mechanical compliance supplied by insertion or eversion of membrane stores may account for the ability to withstand diverse mechanical stresses. Mechanical robustness such as that displayed here could be an asset during neuronal outgrowth or regeneration.
[Three-dimensional finite element analysis on cell culture membrane under mechanical load].
Guo, Xin; Fan, Yubo; Song, Jinlin; Chen, Junkai
2002-01-01
A three-dimensional finite element model of the cell culture membrane was developed in the culture device under tension state made by us. The magnitude of tension and the displacement distribution in the membrane made of silicon rubber under different hydrostatic load were obtained by use of FEM analysis. A comparative study was made between the numerical and the experimental results. These results can serve as guides to the related cellular mechanical research.
Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes
NASA Technical Reports Server (NTRS)
Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank
2004-01-01
Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.
Membrane glycerolipid equilibrium under endoplasmic reticulum stress in Arabidopsis thaliana.
Yu, Chao-Yuan; Nguyen, Van Cam; Chuang, Ling; Kanehara, Kazue
2018-06-02
Endoplasmic reticulum (ER) is an indispensable organelle for secretory protein synthesis as well as metabolism of phospholipids and their derivatives in eukaryotic cells. Various external and internal factors may cause an accumulation of aberrant proteins in the ER, which causes ER stress and activates cellular ER stress responses to cope with the stress. In animal research, molecular mechanisms for protein quality control upon ER stress are well documented; however, how cells maintain lipid homeostasis under ER stress is an emerging issue. The ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE), two major phospholipid classes, is important under ER stress in animal cells. However, in seed plants, no study has reported on the changes in membrane lipid content under ER stress, although a number of physiologically important environmental stresses, such as heat and salinity, induce ER stress. Here, we investigated membrane glycerolipid metabolism under ER stress in Arabidopsis. ER stress transcriptionally affected PC and PE biosynthesis pathways differentially, with no significant changes in membrane glycerolipid content. Our results suggest that higher plants maintain membrane lipid equilibrium during active transcription of phospholipid biosynthetic genes under ER stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.
2011-01-01
Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768
Lee, Seung S; Roche, Philip Jr; Giannopoulos, Paresa N; Mitmaker, Elliot J; Tamilia, Michael; Paliouras, Miltiadis; Trifiro, Mark A
2017-03-01
Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.
Kong, Dexian; Zhuang, Qizhao; Han, Yejian; Xu, Lanping; Wang, Zeming; Jiang, Lili; Su, Jinwei; Lu, Chun-Hua; Chi, Yuwu
2018-08-01
In the present study, procaterol hydrochloride (ProH) was successfully electropolymerized onto a glass carbon electrode (GCE) with simply cyclic voltammetry scans to construct a poly(procaterol hydrochloride) (p-ProH) membrane modified electrode. Compared with the bare GCE, much higher oxidation peak current responses and better peak potentials separation could be obtained for the simultaneous oxidation of dopamine (DA) and uric acid (UA), owning to the excellent electrocatalytic ability of the p-ProH membrane. And it's based on that a square wave voltammetry (SWV) method was developed to selective and simultaneous measurement of DA and UA. Under the optimum conditions, the linear dependence of oxidation peak current on analyte concentrations were found to be 1.0-100 μmol/L and 2-100 μmol/L, giving detection limits of 0.3 μmol/L and 0.5 μmol/L for DA and UA, separately. The as prepared modified electrode shows simplicity in construction with the merits of good reproducibility, high stability, passable selectivity and nice sensitivity. Finally, the proposed p-ProH membrane modified electrode was successfully devoted to the detection of DA and UA in biological fluids such as human serum and urine with acceptable results. Copyright © 2018 Elsevier B.V. All rights reserved.
Reconstitution of Biological Molecular generators of electric current. Bacteriorhodopsin.
Drachev, L A; Frolov, V N; Kaulen, A D; Liberman, E A; Ostroumov, S A; Plakunova, V G; Semenov, A Y; Skulachev, V P
1976-11-25
1. Photoinduced generation of electric current by bacteriorhodopsin, incorporated into the planar phospholipid membrane, has been directly measured with conventional electrometer techniques. 2. Two methods for bacteriorhodopsin incorporation have been developed: (a) formation of planar membrane from a mixture of decane solution of phospholipids and of the fraction of violet fragments of the Halobacterium halobium membrane (bacteriorhodopsin sheets), and (b) adhesion of bacteriorhodopsin-containing reconstituted spherical membranes (proteoliposomes) to the planar membrane in the presence of Ca2+ or some other cations. In both cases, illumination was found to induce electric current generation directed across the planar membrane, an effect which was measured by macroelectrodes immersed into electrolyte solutions on both sides of the membrane. 3. The maximal values of the transmembrane electric potential were of about 150 mV at a current of about 10(-11) A. The electromotive force measured by means of counterbalancing the photoeffect by an external battery, was found to reach the value of 300 mV. 4. The action spectrum of the photoeffect coincides with the bacteriorhodopsin absorption spectrum (maximum about 570 nm). 5. Both components of the electrochemical potential of H+ ions (electric potential and delta pH) across the planar membrane affect the bacteriorhodopsin photoelectric response in a fashion which could be expected if bacteriorhodopsin were a light-dependent electrogenic proton pump. 6. La3+ ions were shown to inhibit operation of those bacteriorhodopsin which pump out H+ ions from the La3+-containing compartment. 7. The photoeffect, mediated by proteoliposomes associated with thick planar membrane, is decreased by gramicidin A at concentrations which do not influence the planar membrane resistance in the light. On the contrary, a protonophorous uncoupler, trichlorocarbonylcyanidephenylhydrazone, decreases the photoeffect only if it is added at a concentration lowering the light resistance. The dark resistance is shown to be higher than the light one, and decreases to the light level by gramicidin. 8. A simple equivalent electric scheme consistent with the above results has been proposed.
Fabrication of high-quality superconductor-insulator-superconductor junctions on thin SiN membranes
NASA Technical Reports Server (NTRS)
Garcia, Edouard; Jacobson, Brian R.; Hu, Qing
1993-01-01
We have successfully fabricated high-quality and high-current density superconductor-insulator-superconductor (SIS) junctions on freestanding thin silicon nitride (SIN) membranes. These devices can be used in a novel millimeter-wave and THz receiver system which is made using micromachining. The SIS junctions with planar antennas were fabricated first on a silicon wafer covered with a SiN membrane, the Si wafer underneath was then etched away using an anisotropic KOH etchant. The current-voltage characteristics of the SIS junctions remained unchanged after the whole process, and the junctions and the membrane survived thermal cycling.
NASA Astrophysics Data System (ADS)
Kowarsch, Robert; Zhang, Jiajun; Sguazzo, Carmen; Hartmann, Stefan; Rembe, Christian
2017-06-01
The analysis of materials and geometries in tensile tests and the extraction of mechanic parameters is an important field in solid mechanics. Especially the measurement of thickness changes is important to obtain accurate strain information of specimens under tensile loads. Current optical measurement methods comprising 3D digital image correlation enable thickness-change measurement only with nm-resolution. We present a phase-shifting electronic speckle-pattern interferometer in combination with speckle-correlation technique to measure the 3D deformation. The phase-shift for the interferometer is introduced by fast wavelength tuning of a visible diode laser by injection current. In a post-processing step, both measurements can be combined to reconstruct the 3D deformation. In this contribution, results of a 3Ddeformation measurement for a polymer membrane are presented. These measurements show sufficient resolution for the detection of 3D deformations of thin specimen in tensile test. In future work we address the thickness changes of thin specimen under tensile loads.
Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair.
Foldager, Casper Bindzus; Gomoll, Andreas H; Lind, Martin; Spector, Myron
2012-04-01
Cartilage repair techniques have been among the most intensively investigated treatments in orthopedics for the past decade, and several different treatment modalities are currently available. Despite the extensive research effort within this field, the generation of hyaline cartilage remains a considerable challenge. There are many parameters attendant to each of the cartilage repair techniques that can affect the amount and types of reparative tissue generated in the cartilage defect, and some of the most fundamental of these parameters have yet to be fully investigated. For procedures in which in vitro-cultured autologous chondrocytes are implanted under a periosteal or synthetic membrane cover, or seeded onto a porous membrane or scaffold, little is known about how the number of cells affects the clinical outcome. Few published clinical studies address the cell seeding density that was employed. The principal objective of this review is to provide an overview of the cell seeding densities used in cell-based treatments currently available in the clinic for cartilage repair. Select preclinical studies that have informed the use of specific cell seeding densities in the clinic are also discussed.
NASA Technical Reports Server (NTRS)
Hejtmancik, Kelly E.
1987-01-01
It is necessary that an adequate microbiology capability be provided as part of the Health Maintenance Facility (HMF) to support expected microbial disease events and environmental monitoring during long periods of space flight. The application of morphological and biochemical studies to confirm the presence of certain bacterial and fungal disease agents are currently available and under consideration. This confirmation would be facilitated through employment of serological methods to aid in the identification of bacterial, fungal, and viral agents. A number of serological approaches are currently being considered, including the use of Enzyme Linked Immunosorbent Assay (ELISA) technology, which could be utilized during microgravity conditions. A solid phase, membrane supported ELISA for the detection of Legionella pneumophila, an expected disease agent, was developed to show a potential model system that would meet the HMF requirements and specifications for the future space station. These studies demonstrate the capability of membrane supported ELISA systems for identification of expected microbial disease agents as part of the HMF.
Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells
NASA Astrophysics Data System (ADS)
Paquin, Mathieu; Fréchette, Luc G.
An analysis of water management in air breathing small polymer electrolyte membrane fuel cells (PEMFCs) is presented. Comprehensive understanding of flooding and dry-out limiting phenomena is presented through a combination of analytical modeling and experimental investigations using a small PEMFC prototype. Configurations of the fuel cell with different heat and mass transfer properties are experimentally evaluated to assess the impact of thermal resistance and mass transport resistance on water balance. Manifestation of dry-out and flooding problems, as limiting phenomena, are explained through a ratio between these two resistances. Main conclusions are that decreasing the ratio between thermal and mass transport resistance under a certain point leads to flooding problems in air breathing PEMFC. Increasing this ratio leads to dry-out of the polymer electrolyte membrane. However, too high thermal resistance or too low mass transport resistance reduces the limiting current by pushing forward the dry-out problem. This work provides a framework to achieve the proper balance between thermal rejection and mass transport to optimize the maximum current density of free convection fuel cells.
Microfluidic guillotine for single-cell wound repair studies
NASA Astrophysics Data System (ADS)
Blauch, Lucas R.; Gai, Ya; Khor, Jian Wei; Sood, Pranidhi; Marshall, Wallace F.; Tang, Sindy K. Y.
2017-07-01
Wound repair is a key feature distinguishing living from nonliving matter. Single cells are increasingly recognized to be capable of healing wounds. The lack of reproducible, high-throughput wounding methods has hindered single-cell wound repair studies. This work describes a microfluidic guillotine for bisecting single Stentor coeruleus cells in a continuous-flow manner. Stentor is used as a model due to its robust repair capacity and the ability to perform gene knockdown in a high-throughput manner. Local cutting dynamics reveals two regimes under which cells are bisected, one at low viscous stress where cells are cut with small membrane ruptures and high viability and one at high viscous stress where cells are cut with extended membrane ruptures and decreased viability. A cutting throughput up to 64 cells per minute—more than 200 times faster than current methods—is achieved. The method allows the generation of more than 100 cells in a synchronized stage of their repair process. This capacity, combined with high-throughput gene knockdown in Stentor, enables time-course mechanistic studies impossible with current wounding methods.
Chung, Chong Min; Tobino, Tomohiro; Cho, Kangwoo; Yamamoto, Kazuo
2016-06-01
The control of membrane fouling is still the biggest challenge that membrane bioreactor (MBR) for wastewater treatment faces with. In this report, we evince that an in-situ electrochemical free chlorine generation is effective for membrane fouling mitigation. An electrochemical oxidation (EO) apparatus with perforated Ti/IrO2 anodes and Ti/Pt cathodes was integrated into a conventional MBR with microfiltration module (EO-MBR). The membrane fouling characteristics of EO-MBR fed with synthetic wastewater were monitored for about 2 months in comparison to control MBRs. In the EO-MBR at a direct current density of 0.4 mA/cm(2), the frequency of membrane fouling when the trans-membrane pressure (TMP) reached 30 kPa was effectively reduced by 40% under a physical membrane cleaning regime. The evolution patterns of TMP together with hydraulic resistance analysis based on resistance-in-series model indicated that the electrochemically generated active chlorine alleviated the physically irremovable membrane fouling. Further analysis on extracellular polymeric substances (EPS) of sludge cake layer (SCL) revealed significant reductions of protein contents in soluble EPS and fluorescence emission intensities from humic acids and other fluorophores in bound EPS, which in-turn would decrease the hydrophobic accumulation of organic foulants on membrane pores. The chlorine dosage from the EO apparatus was estimated to be 4.7 mg Cl2/g MLVSS/day and the overall physicochemical properties (bio-solids concentration, floc diameter, zeta-potential) as well as the microbial activity in terms of specific oxygen utilization rate and removal efficiency of dissolved organic carbon (>97%) were not affected significantly. A T-RFLP (terminal restriction fragment length polymorphism) analysis suggested noticeable shifts in microbial community both in mixed liquor and sludge cake layer. Consequently, our electrochemical chlorination would be an efficient fouling control strategy in membrane-based water treatment processes where additional electricity consumption and cathodic scale deposition are not of serious concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Yi-Ning; Tang, Chuyang Y
2011-08-01
Protein fouling of nanofiltration (NF), reverse osmosis (RO), and ultrafiltration (UF) membranes by bovine serum albumin (BSA), lysozyme (LYS), and their mixture was investigated under cross-flow conditions. The effect of solution chemistry, membrane properties, and permeate flux level was systematically studied. When the solution pH was within the isoelectric points (IEPs) of the two proteins (i.e., pH 4.7-10.4), the mixed protein system experienced more severe flux decline compared to the respective single protein systems, which may be attributed to the electrostatic attraction between the negatively charged BSA and positively charged LYS molecules. Unlike a typical single protein system, membrane fouling by BSA-LYS mixture was only weakly dependent on solution pH within this pH range, and increased ionic strength was found to enhance the membrane flux as a result of the suppressed BSA-LYS electrostatic attraction. Membrane fouling was likely controlled by foulant-fouled-membrane interaction under severe fouling conditions (elevated flux level and unfavorable solution chemistry that promotes fouling), whereas it was likely dominated by foulant-clean-membrane interaction under mild fouling conditions. Compared to nonporous NF and RO membranes, the porous UF membrane was more susceptible to dramatic flux decline due to the increased risk of membrane pore plugging. This study reveals that membrane fouling by mixed macromolecules may behave very differently from that by typical single foulant system, especially when the inter-foulant-species interaction dominates over the intra-species interaction in the mixed foulant system.
Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.
Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu
2016-05-01
Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan
It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Mechanics of water pore formation in lipid membrane under electric field
NASA Astrophysics Data System (ADS)
Bu, Bing; Li, Dechang; Diao, Jiajie; Ji, Baohua
2017-04-01
Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.
Alphavirus entry into host cells.
Vancini, Ricardo; Hernandez, Raquel; Brown, Dennis
2015-01-01
Viruses have evolved to exploit the vast complexity of cellular processes for their success within the host cell. The entry mechanisms of enveloped viruses (viruses with a surrounding outer lipid bilayer membrane) are usually classified as being either endocytotic or fusogenic. Different mechanisms have been proposed for Alphavirus entry and genome delivery. Indirect observations led to a general belief that enveloped viruses can infect cells either by protein-assisted fusion with the plasma membrane in a pH-independent manner or by endocytosis and fusion with the endocytic vacuole in a low-pH environment. The mechanism of Alphavirus penetration has been recently revisited using direct observation of the processes by electron microscopy under conditions of different temperatures and time progression. Under conditions nonpermissive for endocytosis or any vesicular transport, events occur which allow the entry of the virus genome into the cells. When drug inhibitors of cellular functions are used to prevent entry, only ionophores are found to significantly inhibit RNA delivery. Arboviruses are agents of significant human and animal disease; therefore, strategies to control infections are needed and include development of compounds which will block critical steps in the early infection events. It appears that current evidence points to an entry mechanism, in which alphaviruses infect cells by direct penetration of cell plasma membranes through a pore structure formed by virus and, possibly, host proteins. © 2015 Elsevier Inc. All rights reserved.
Membrane thinning for efficient CO2 capture
Selyanchyn, Roman; Fujikawa, Shigenori
2017-01-01
Abstract Enhancing the fluxes in gas separation membranes is required for utilizing the membranes on a mass scale for CO2 capture. Membrane thinning is one of the most promising approaches to achieve high fluxes. In addition, sophisticated molecular transport across membranes can boost gas separation performance. In this review, we attempt to summarize the current state of CO2 separation membranes, especially from the viewpoint of thinning the selective layers and the membrane itself. The gas permeation behavior of membranes with ultimate thicknesses and their future directions are discussed. PMID:29152016
Evaluation of constant current alternating current iontophoresis for transdermal drug delivery.
Yan, Guang; Li, S Kevin; Higuchi, William I
2005-12-10
Previous studies in our laboratory have demonstrated that alternating current (AC) iontophoresis can significantly decrease skin electric resistance and enhance the transport of charged permeants across skin. Flux variability of neutral permeants during AC iontophoresis was also found to be less than that of conventional direct current (DC) iontophoresis. The objectives of the present study were to evaluate flux enhancement of constant current AC transdermal iontophoresis and compare the AC flux with that of constant current DC iontophoresis. Iontophoresis studies of AC amplitude of 1, 2, and 5 mA were conducted in side-by-side diffusion cells with donor solution of 0.015, 0.15, and 1.0 M tetraethylammonium (TEA) chloride and receiver solution of phosphate buffered saline (PBS) using human epidermal membrane (HEM). Conventional constant current DC iontophoresis of 0.2 mA was also performed under similar conditions. TEA and mannitol were the model permeants. The following are the major findings in the present study. The flux of TEA increased proportionally with the AC current for all three TEA chloride concentrations and at the AC frequency used in the present study. When the permeant and its counter ion were the only ionic species in the donor chamber, the fluxes during DC iontophoresis were weakly dependent of its donor concentration. The fluxes of TEA during constant current AC iontophoresis were moderately related to the donor concentration with the highest TEA flux observed under the 1.0 M TEA chloride condition although the relationship between flux and donor concentration was not linear. A trend of decreasing electroosmotic transport with increasing donor TEA chloride concentration was observed with significant sample-to-sample variability during DC iontophoresis. Mannitol permeability was also observed to decrease with increasing TEA chloride concentration in the donor under the AC conditions, but data variability under AC was significantly smaller than that under DC. The results in the present study indicate that constant current AC iontophoresis under conditions tolerable to human (2 and 5 mA) can provide predictable fluxes that were lower than but of comparable magnitude as those of conventional constant current DC iontophoresis (0.2 mA).
NASA Astrophysics Data System (ADS)
Saleem, Mohammed; Morlot, Sandrine; Hohendahl, Annika; Manzi, John; Lenz, Martin; Roux, Aurélien
2015-02-01
In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy.
Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell
Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; ...
2015-03-04
The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.« less
Calcium Currents Are Enhanced by α2δ-1 Lacking Its Membrane Anchor*
Kadurin, Ivan; Alvarez-Laviada, Anita; Ng, Shu Fun Josephine; Walker-Gray, Ryan; D'Arco, Marianna; Fadel, Michael G.; Pratt, Wendy S.; Dolphin, Annette C.
2012-01-01
The accessory α2δ subunits of voltage-gated calcium channels are membrane-anchored proteins, which are highly glycosylated, possess multiple disulfide bonds, and are post-translationally cleaved into α2 and δ. All α2δ subunits have a C-terminal hydrophobic, potentially trans-membrane domain and were described as type I transmembrane proteins, but we found evidence that they can be glycosylphosphatidylinositol-anchored. To probe further the function of membrane anchoring in α2δ subunits, we have now examined the properties of α2δ-1 constructs truncated at their putative glycosylphosphatidylinositol anchor site, located before the C-terminal hydrophobic domain (α2δ-1ΔC-term). We find that the majority of α2δ-1ΔC-term is soluble and secreted into the medium, but unexpectedly, some of the protein remains associated with detergent-resistant membranes, also termed lipid rafts, and is extrinsically bound to the plasma membrane. Furthermore, heterologous co-expression of α2δ-1ΔC-term with CaV2.1/β1b results in a substantial enhancement of the calcium channel currents, albeit less than that produced by wild-type α2δ-1. These results call into question the role of membrane anchoring of α2δ subunits for calcium current enhancement. PMID:22869375
Liu, Hengyuan; Chen, Nan; Feng, Chuanping; Tong, Shuang; Li, Rui
2017-05-01
This study aimed to investigate the effect of electro-stimulation on denitrifying bacterial growth in a bio-electrochemical reactor, and the growth were modeled using modified Gompertz model under different current densities at three C/Ns. It was found that the similar optimum current density of 250mA/m 2 was obtained at C/N=0.75, 1.00 and 1.25, correspondingly the maximum nitrate removal efficiencies were 98.0%, 99.2% and 99.9%. Moreover, ATP content and cell membrane permeability of denitrifying bacteria were significantly increased at optimum current density. Furthermore, modified Gompertz model fitted well with the microbial growth curves, and the highest maximum growth rates (µ max ) and shorter lag time were obtained at the optimum current density for all C/Ns. This study demonstrated that the modified Gompertz model could be used for describing microbial growth under different current densities and C/Ns in a bio-electrochemical denitrification reactor, and it provided an alternative for improving the performance of denitrification process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bucher, Thomas; Clodt, Juliana I.; Grabowski, Andrej; Hein, Martin; Filiz, Volkan
2017-01-01
Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time. PMID:29258193
Bucher, Thomas; Clodt, Juliana I; Grabowski, Andrej; Hein, Martin; Filiz, Volkan
2017-12-16
Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time.
Voltage and Current Clamp Transients with Membrane Dielectric Loss
Fitzhugh, R.; Cole, K. S.
1973-01-01
Transient responses of a space-clamped squid axon membrane to step changes of voltage or current are often approximated by exponential functions of time, corresponding to a series resistance and a membrane capacity of 1.0 μF/cm2. Curtis and Cole (1938, J. Gen. Physiol. 21:757) found, however, that the membrane had a constant phase angle impedance z = z1(jωτ)-α, with a mean α = 0.85. (α = 1.0 for an ideal capacitor; α < 1.0 may represent dielectric loss.) This result is supported by more recently published experimental data. For comparison with experiments, we have computed functions expressing voltage and current transients with constant phase angle capacitance, a parallel leakage conductance, and a series resistance, at nine values of α from 0.5 to 1.0. A series in powers of tα provided a good approximation for short times; one in powers of t-α, for long times; for intermediate times, a rational approximation matching both series for a finite number of terms was used. These computations may help in determining experimental series resistances and parallel leakage conductances from membrane voltage or current clamp data. PMID:4754194
Two-dimensional materials for novel liquid separation membranes.
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-19
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as well as fully explain up-to-date mechanisms and models of water transport and molecular separation behavior, which will arouse great interest among researchers entering or already working in the field of 2D material-based membranes.
Two-dimensional materials for novel liquid separation membranes
NASA Astrophysics Data System (ADS)
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-01
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as well as fully explain up-to-date mechanisms and models of water transport and molecular separation behavior, which will arouse great interest among researchers entering or already working in the field of 2D material-based membranes.
Correlations between properties and applications of the CVD amorphous silicon carbide films
NASA Astrophysics Data System (ADS)
Kleps, Irina; Angelescu, Anca
2001-12-01
The aim of this paper is to emphasise the correlation between film preparation conditions, film properties and their applications. Low pressure chemical vapour deposition amorphous silicon carbide (a-SiC) and silicon carbonitride (SiCN) films obtained from liquid precursors have different structure and composition depending on deposition conditions. Thus, the films deposited under kinetic working conditions reveal a stable structure and composition. Deposition at moderate temperature leads to stoichiometric SiC, while the films deposited at high temperatures have a composition closer to Si 1- xC x, with x=0.75. These films form a very reactive interface with metallic layers. The films realised under kinetic working regime can be used in Si membrane fabrication process or as coating films for field emission applications. SiC layers field emission properties were investigated; the field emission current density of the a-SiC/Si structures was 2.4 mA/cm 2 at 25 V/μm. An Si membrane technology based on moderate temperatures (770-850 °C) a-SiC etching mask is presented.
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.
English, Daniel F; Peyrache, Adrien; Stark, Eran; Roux, Lisa; Vallentin, Daniela; Long, Michael A; Buzsáki, György
2014-12-03
High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation of the rhythm and the recruitment of spikes from pyramidal neurons are still poorly understood. Using intracellular, sharp electrode recordings in freely moving, drug-free mice, we observed consistent large depolarizations in CA1 pyramidal cells during sharp wave ripples, which are associated with ripple frequency fluctuation of the membrane potential ("intracellular ripple"). Despite consistent depolarization, often exceeding pre-ripple spike threshold values, current pulse-induced spikes were strongly suppressed, indicating that spiking was under the control of concurrent shunting inhibition. Ripple events were followed by a prominent afterhyperpolarization and spike suppression. Action potentials during and outside ripples were orthodromic, arguing against ectopic spike generation, which has been postulated by computational models of ripple generation. These findings indicate that dendritic excitation of pyramidal neurons during ripples is countered by shunting of the membrane and postripple silence is mediated by hyperpolarizing inhibition. Copyright © 2014 the authors 0270-6474/14/3316509-09$15.00/0.
Sedwards, Sean; Mazza, Tommaso
2007-10-15
Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.
Wu, Sheng-Nan
2004-03-31
The purpose of this study was to develop a method to simulate the cardiac action potential using a Microsoft Excel spreadsheet. The mathematical model contained voltage-gated ionic currents that were modeled using either Beeler-Reuter (B-R) or Luo-Rudy (L-R) phase 1 kinetics. The simulation protocol involves the use of in-cell formulas directly typed into a spreadsheet. The capability of spreadsheet iteration was used in these simulations. It does not require any prior knowledge of computer programming, although the use of the macro language can speed up the calculation. The normal configuration of the cardiac ventricular action potential can be well simulated in the B-R model that is defined by four individual ionic currents, each representing the diffusion of ions through channels in the membrane. The contribution of Na+ inward current to the rate of depolarization is reproduced in this model. After removal of Na+ current from the model, a constant current stimulus elicits an oscillatory change in membrane potential. In the L-R phase 1 model where six types of ionic currents were defined, the effect of extracellular K+ concentration on changes both in the time course of repolarization and in the time-independent K+ current can be demonstrated, when the solutions are implemented in Excel. Using the simulation protocols described here, the users can readily study and graphically display the underlying properties of ionic currents to see how changes in these properties determine the behavior of the heart cell. The method employed in these simulation protocols may also be extended or modified to other biological simulation programs.
Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibres.
Colatsky, T J; Tsien, R W
1979-01-01
1. Rabbit Purkinje fibres were studied using micro-electrode recordings of electrical activity or a two-micro-electrode voltage clamp. Previous morphological work had suggested that these preparations offer structural advantages for the analysis of ionic permeability mechanisms. 2. Viable preparations could be obtained consistently by exposure to a K glutamate Tyrode solution during excision and recovery. In NaCl Tyrode solution, the action potential showed a large overshoot and fully developed plateau, but no pacemaker depolarization at negative potentials. 3. The passive electrical properties were consistent with morphological evidence for the accessibility of cleft membranes within the cell bundle. Electrotonic responses to intracellular current steps showed the behaviour expected for a simple leaky capacitative cable. Capacitative current transients under voltage clamp were changed very little by an eightfold reduction in the external solution conductivity. 4. Slow current changes attributable to K depletion were small compared to those found in other cardiac preparations. The amount of depletion was close to that predicted by a cleft model which assumed free K diffusion in 1 micron clefts. 5. Step depolarizations over the plateau range of potentials evoked a slow inward current which was resistant to tetrodotoxin but blocked by D600. 6. Strong depolarizations to potentials near 0 mV elicited a transient outward current and a slowly activating late outward current. Both components resembled currents found in sheep or calf Purkinje fibres. 7. These experiments support previous interpretations of slow plateau currents in terms of genuine permeability changes. The rabbit Purkinje fibre may allow various ionic channels to be studied with relatively little interference from radial non-uniformities in membrane potential or ion concentration. Images Fig. 7 PMID:469754
Structure and Function Study of HIV and Influenza Fusion Proteins
NASA Astrophysics Data System (ADS)
Liang, Shuang
Human immunodeficiency virus (HIV) and influenza virus are membrane-enveloped viruses causing acquired immunodeficiency syndrome (AIDS) and flu. The initial step of HIV and influenza virus infection is fusion between viral and host cell membrane catalyzed by the viral fusion protein gp41 and hemagglutinin (HA) respectively. However, the structure of gp41 and HA as well as the infection mechanism are still not fully understood. This work addresses (1) full length gp41 ectodomain and TM domain structure and function and (2) IFP membrane location and IFP-membrane interaction. My studies of gp41 protein and IFP can provide better understanding of the membrane fusion mechanism and may aid development of anti-viral therapeutics and vaccine. The full length ectodomain and transmembrane domain of gp41 and shorter constructs were expressed, purified and solubilized at physiology conditions. The constructs adopt overall alpha helical structure in SDS and DPC detergents, and showed hyperthermostability with Tm > 90 °C. The oligomeric states of these proteins vary in different detergent buffer: predominant trimer for all constructs and some hexamer fraction for HM and HM_TM protein in SDS at pH 7.4; and mixtures of monomer, trimer, and higher-order oligomer protein in DPC at pH 4.0 and 7.4. Substantial protein-induced vesicle fusion was observed, including fusion of neutral vesicles at neutral pH, which are the conditions similar HIV/cell fusion. Vesicle fusion by a gp41 ectodomain construct has rarely been observed under these conditions, and is aided by inclusion of both the FP and TM, and by protein which is predominantly trimer rather than monomer. Current data was integrated with existing data, and a structural model was proposed. Secondary structure and conformation of IFP is a helix-turn-helix structure in membrane. However, there has been arguments about the IFP membrane location. 13C-2H REDOR solid-state NMR is used to solve this problem. The IFP adopts major alpha helical, minor beta strand secondary structure in PC/PG membrane. The alpha helical IFP's with respectively 13CO labeled Leu-2, Ala-7 and Gly-16 all show close contacts with the lipid acyl chain tail, suggesting IFP has strong interaction with the membrane. By screening the current IFP topology models, it either has a membrane-spanning confirmation, or it promotes lipid trail protrusion. IFP bounded lipid membrane structure was studied by paramagnetic relaxation enhancement (PRE) solid-state NMR to provide more information about the detailed IFP membrane location model. The T2 relaxation time and rate were measured for membrane with or without IFP and with or without Mn2+ . Based on the results, it is concluded that IFP does not promote lipid protrusion at both gel phase and liquid phase, which is evidenced by that the R2 difference with and without Mn2+ is smaller for IFP free membrane than IFP bounded membrane, meaning IFP does not induce a smaller average distance between lipid acyl chain and aqueous layer. By integrating these results, a IFP membrane spanning model was proposed, in which IFP N-terminal helix adopts a 45° angle with respect to membrane normal.
Housley, G D; Norris, C H; Guth, P S
1990-01-01
Two cholinergically-induced modulations of membrane conductances have been identified in hair cells isolated from the crista ampullaris of the leopard frog (Rana pipiens), using the whole cell recording configuration of the patch clamp technique. Of 56 crista hair cells tested, 28 showed drug-induced changes in membrane current or membrane potential which were repeatable and could be reversed with washout of drug. The predominant effect (observed in 20 hair cells) of acetylcholine (Ach, 100 microM) to 1mM) or carbachol (1 microM to 50 microM) applied to these hair cells was the reduction of an outward current corresponding to a change in conductance of approximately -0.22 nS. This action by Ach on hair cells has been inferred from previous studies of afferent fiber discharge which reported an increase in firing rate with stimulation of efferent fibers or exogenous application of cholinomimetics (Bernard et al., 1985; Valli et al., 1986; Guth et al., 1986; Norris et al., 1988a). The Ach-induced reduction in outward current was associated with a depolarization of the zero-current membrane potential by approximately +2.5 mV. In a total of 8 hair cells, an Ach-induced reversible increase in outward current was recorded. Changes in conductance were approximately +0.13 nS and were associated with a hyperpolarization of the zero-current membrane potential by approximately -2.2 mV. This current increase is likely to be responsible for the inhibitory post-synaptic potentials (IPSPs) which have previously been recorded intracellularly from acoustico-lateralis hair cells during stimulation of the efferent innervation (Flock and Russell, 1976; Ashmore and Russell, 1982; Art et al., 1984, 1985). Of the remaining 28 hair cells, six cells failed to exhibit any change in membrane conductance or membrane potential in the presence of cholinomimetics while an additional 15 cells exhibited decreases, and 7 cells exhibited increases in outward conductance, during application of Ach or carbachol, which were neither reversible with washout nor repeatable. The Ach-induced decrease in outward current could be reversible blocked by removal of Ca2+ from the external solution. The antagonism of the Ach-induced decrease in outward current by atropine (10(-5) M) suggests that this current may correspond to a facilitatory, 'atropine-preferring' Ach receptor mediated response previously identified in the isolated semicircular canal (Norris et al., 1988a).(ABSTRACT TRUNCATED AT 400 WORDS)
Acid and alkali doped PBI electrolyte in electrochemical system
NASA Astrophysics Data System (ADS)
Xing, Baozhong
In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism was established. In solution the cations and OH- all participate in the transport of current. It is the OH- that breaks the bonds between PBI molecules and enables the cations pass through the membrane. The performance of alkali doped PBI (doped under optimum conditions) in fuel cell as PEM is as good as NafionRTM.
Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T
2012-02-01
Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.
Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons.
Hirayama, Michiko; Ogata, Masanori; Kawamata, Tomoyuki; Ishibashi, Hitoshi
2015-08-01
Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca(2+) markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca(2+) was fully inhibited by removal of extracellular Na(+), indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca(2+)/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca(2+) from intracellular Ca(2+) stores and calmodulin. The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liquid methanol under a static electric field
NASA Astrophysics Data System (ADS)
Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco
2015-02-01
We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.
NASA Astrophysics Data System (ADS)
Kim, Jinyong; Luo, Gang; Wang, Chao-Yang
2017-10-01
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels
NASA Astrophysics Data System (ADS)
DeCoursey, Thomas E.; Morgan, Deri; Cherny, Vladimir V.
2003-04-01
The enzyme NADPH oxidase in phagocytes is important in the body's defence against microbes: it produces superoxide anions (O2-, precursors to bactericidal reactive oxygen species). Electrons move from intracellular NADPH, across a chain comprising FAD (flavin adenine dinucleotide) and two haems, to reduce extracellular O2 to O2-. NADPH oxidase is electrogenic, generating electron current (Ie) that is measurable under voltage-clamp conditions. Here we report the complete current-voltage relationship of NADPH oxidase, the first such measurement of a plasma membrane electron transporter. We find that Ie is voltage-independent from -100mV to >0mV, but is steeply inhibited by further depolarization, and is abolished at about +190mV. It was proposed that H+ efflux mediated by voltage-gated proton channels compensates Ie, because Zn2+ and Cd2+ inhibit both H+ currents and O2- production. Here we show that COS-7 cells transfected with four NADPH oxidase components, but lacking H+ channels, produce O2- in the presence of Zn2+ concentrations that inhibit O2- production in neutrophils and eosinophils. Zn2+ does not inhibit NADPH oxidase directly, but through effects on H+ channels. H+ channels optimize NADPH oxidase function by preventing membrane depolarization to inhibitory voltages.
Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems
NASA Astrophysics Data System (ADS)
Chu, Bong-Chieh Benjamin
Alternative energy sources have become an increasingly important topic as energy needs outpace supply. Furthermore, as the world moves into the digital age of portable electronics, highly efficient and lightweight energy sources will need to be developed. Current technology, such as lithium ion batteries, provide enough power to run portable electronics for hours or days, but can still allow for improvement in their power density (W/kg). Utilizing energy-transducing membrane proteins, which are by nature highly efficient, it is possible to engineer biological-based energy sources with energy densities far greater than any solid-state systems. Furthermore, solar powered membrane proteins have the added benefit of a virtually unlimited supply of energy. This work has developed protein-polymer hybrid films and nanoscale vesicles for a variety of applications from fuel-cell technology to biological-based photovoltaics. Bacteriorhodopsin (BR), a light-activated proton pump, and Cytochrome C Oxidase (COX), a protein involved in the electron transport chain in mitochondria, were reconstituted into biomimetic triblock copolymer membranes. Block copolymer membranes mimic the amphiphilic nature of a natural lipid bilayer but exhibit greater mechanical stability due to UV-polymerizable endgroups. In BR/COX functionalized nanovesicles, proton gradients generated by the light-activated proton pumping of BR are used to drive COX in reverse to generate electrons, providing a hybrid biologically-active polymer to convert solar energy to chemical energy, and finally to electrical energy. This work has found protein activity in planar membranes through the photoelectric current generation by BR and the proton pumping activity of BR-functionalized polymer membranes deposited onto proton exchange membranes, as well as the coupled functionality of BR and COX through current generation in cyclic voltammetry and direct current measurements. Current switching between light and dark environments of composite BR/COX polymer vesicles show a light-dependent current generation with current changes as high as 10muA. Furthermore, electrode modifications were made using polymer and polymer/carbon nanotube (CNT) coatings as anti-absorbent and conductive anti-absorbent layers for the purpose of a more robust electrode. These findings have shown that biological functionality can be engineered into synthetic polymers to make hybrid devices.
Kang, Tong Mook; Markin, Vladislav S.; Hilgemann, Donald W.
2003-01-01
We have used ion-selective electrodes (ISEs) to quantify ion fluxes across giant membrane patches by measuring and simulating ion gradients on both membrane sides. Experimental conditions are selected with low concentrations of the ions detected on the membrane side being monitored. For detection from the cytoplasmic (bath) side, the patch pipette is oscillated laterally in front of an ISE. For detection on the extracellular (pipette) side, ISEs are fabricated from flexible quartz capillary tubing (tip diameters, 2–3 microns), and an ISE is positioned carefully within the patch pipette with the tip at a controlled distance from the mouth of the patch pipette. Transport activity is then manipulated by solution changes on the cytoplasmic side. Ion fluxes can be quantified by simulating the ion gradients with appropriate diffusion models. For extracellular (intrapatch pipette) recordings, ion diffusion coefficients can be determined from the time courses of concentration changes. The sensitivity and utility of the methods are demonstrated with cardiac membrane patches by measuring (a) potassium fluxes via ion channels, valinomycin, and Na/K pumps; (b) calcium fluxes mediated by Na/Ca exchangers; (c) sodium fluxes mediated by gramicidin and Na/K pumps; and (d) proton fluxes mediated by an unknown electrogenic mechanism. The potassium flux-to-current ratio for the Na/K pump is approximately twice that determined for potassium channels and valinomycin, as expected for a 3Na/2K pump stoichiometery (i.e., 2K/charge moved). For valinomycin-mediated potassium currents and gramicidin-mediated sodium currents, the ion fluxes calculated from diffusion models are typically 10–15% smaller than expected from the membrane currents. As presently implemented, the ISE methods allow reliable detection of calcium and proton fluxes equivalent to monovalent cation currents <1 pA in magnitude, and they allow detection of sodium and potassium fluxes equivalent to <5 pA currents. The capability to monitor ion fluxes, independent of membrane currents, should facilitate studies of both electrogenic and electroneutral ion–coupled transporters in giant patches. PMID:12668735
Postdoctoral Fellow | Center for Cancer Research
A postdoctoral position is currently available in a research program focused on a variety of key aspects of HIV-1 assembly and release. Of particular interest are the interplay between viral and host factors in the targeting of assembly to the plasma membrane and the mechanism by which the viral envelope glycoproteins are incorporated into virions. Recent studies have been aimed at defining the cellular pathways and host factors involved in envelope glycoprotein incorporation and the budding of retrovirus particles from the plasma membrane and identifying inhibitors of virus budding and entry. Mechanisms of HIV-1 drug resistance are also under investigation, and studies are underway to define the target and mechanism of action of a novel HIV-1 maturation inhibitor. Further details and a list of relevant publications can be found at http://home.ncifcrf.gov/hivdrp/Freed.html.
Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.
2002-01-01
A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.
A direct ascorbate fuel cell with an anion exchange membrane
NASA Astrophysics Data System (ADS)
Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.
2017-05-01
Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broecker, Jana; Klingel, Viviane; Ou, Wei-Lin
In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometerbased X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble andmore » membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.« less
Zhou, Yingjie; Bai, Kyoung
2018-01-01
Despite great progress in the development of nonprecious metal catalysts (NPMCs) over the past several decades, the performance and stability of these promising catalysts have not yet achieved commercial readiness for proton exchange membrane fuel cells (PEMFCs). Through rational design of the cathode catalyst layer (CCL), we demonstrate the highest reported performance for an NPMC-based membrane electrode assembly (MEA), achieving a peak power of 570 mW/cm2 under air. This record performance is achieved using a precommercial catalyst for which nearly all pores are <3 nm in diameter, challenging previous beliefs regarding the need for larger catalyst pores to achieve high current densities. This advance is achieved at industrially relevant scales (50 cm2 MEA) using a precommercial NPMC. In situ electrochemical analysis of the CCLs is also used to help gain insight into the degradation mechanism observed during galvanostatic testing. Overall, the performance of this NPMC-based MEA has achieved commercial readiness and will be introduced into an NPMC-based product for portable power applications. PMID:29582018
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions
Freites, J. Alfredo; Tobias, Douglas J.
2015-01-01
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na+, K+, Ca2+, and H+ selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1–S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here. PMID:25972106
Gubskiĭ, Iu I; Boldeskul, A E; Primak, R G; Zadorina, O V
1989-01-01
Physiochemical conformity of the alpha-tocopherol interaction with hepatic microsomal membranes has been studied by means of fluorescent probes (pyrene and 1-anilinonaphthalene-8-sulphonate). The microsomal membrane microviscosity is shown to sharply decrease under conditions of the antioxidant deficiency with vitamin E expelled into animals normalizes microviscosity, but feebly influences the microsomal surface charge. Microcalorimetry has been used to establish that penetration of tocopherol into microsomal membranes was accompanied by the exothermic effect.
High-performance ionic diode membrane for salinity gradient power generation.
Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei
2014-09-03
Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.
2013-08-06
of the problem studied Proton exchange membrane fuel cells ( PEMFCs ) are the most promising candidate systems for alternative electricity...characteristic. The limiting current can be used as a tool to study mass transport phenomena in PEMFC because it can provide experimental data for the...coefficient for PEMFCs under in situ conditions based on the galvanostatic discharge of a cell with an interrupted reactant supply. The results indicated
1989-07-01
surface because of the previous potential sweeps ). c- Cyclic voltamograms after different exposure times of the Hg drop electrode to a solution of lpg/ml...Cd + and 10-M NaCl. b - Cyclic voltamograms under similar conditions. Exposure time indicated, sweep rate O.2V/sec. specific capacitance < 4pf/cm 2...alamethicin. Cyclic voltametry shows (Fig. 3b) that it is the reduction current depending on the transport of TI+ ions across the monolayer to the electrode
Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang
2017-03-02
The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang
2017-03-01
The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.
Deng, Huimin; Shen, Wei; Gao, Zhiqiang
2013-07-22
Herein a novel strategy for the construction of an amperometric biosensor for highly sensitive and selective determination of glucose is described. The biosensor is made of a biocomposite membrane of glucose oxidase (GOx) and an Os(bpy)2 (bpy=2,2'-bipyridine)-based anionic redox polymer (Os-RP) mediator. The biosensor is fabricated through the co-immobilization of GOx and the Os-RP on the surface of a glassy carbon electrode by a simple one-step chemical crosslinking process. The crosslinked Os-RP/GOx composite membrane shows excellent catalytic activity toward the oxidation of glucose. Under optimal experimental conditions, a linear correlation between the oxidation current of glucose in amperometry at 0.25 V (vs. Ag/AgCl) and glucose concentration up to 10 mM with a sensitivity of 16.5 μA mM(-1) cm(-2) and a response time <5 s. Due to the presence of anionic sulfonic acid groups in the backbone of the redox polymer, the biosensor exhibits excellent selectivity to glucose in the presence of ascorbic acid and uric acid. The low hydrophobicity of the composite membrane also effectively retards the transport of molecular oxygen within the membrane. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proteoliposomes in nanobiotechnology.
Ciancaglini, P; Simão, A M S; Bolean, M; Millán, J L; Rigos, C F; Yoneda, J S; Colhone, M C; Stabeli, R G
2012-03-01
Proteoliposomes are systems that mimic lipid membranes (liposomes) to which a protein has been incorporated or inserted. During the last decade, these systems have gained prominence as tools for biophysical studies on lipid-protein interactions as well as for their biotechnological applications. Proteoliposomes have a major advantage when compared with natural membrane systems, since they can be obtained with a smaller number of lipidic (and protein) components, facilitating the design and interpretation of certain experiments. However, they have the disadvantage of requiring methodological standardization for incorporation of each specific protein, and the need to verify that the reconstitution procedure has yielded the correct orientation of the protein in the proteoliposome system with recovery of its functional activity. In this review, we chose two proteins under study in our laboratory to exemplify the steps necessary for the standardization of the reconstitution of membrane proteins in liposome systems: (1) alkaline phosphatase, a protein with a glycosylphosphatidylinositol anchor, and (2) Na,K-ATPase, an integral membrane protein. In these examples, we focus on the production of the specific proteoliposomes, as well as on their biochemical and biophysical characterization, with emphasis on studies of lipid-protein interactions. We conclude the chapter by highlighting current prospects of this technology for biotechnological applications, including the construction of nanosensors and of a multi-protein nanovesicular biomimetic to study the processes of initiation of skeletal mineralization.
Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes
NASA Astrophysics Data System (ADS)
Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.
2014-01-01
Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.
REDUCTION OF CONCENTRATION POLARIZATION IN PERVAPORATION USING VIBRATING MEMBRANE MODULE
A vibrating membrane module currently marketed for filtration applications was evaluated for the separation of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Preliminary screening experiments with three VOCs, four silicone membranes, and in the presenc...
NASA Astrophysics Data System (ADS)
Abouzari-lotf, Ebrahim; Jacob, Mohan V.; Ghassemi, Hossein; Ahmad, Arshad; Nasef, Mohamed Mahmoud; Zakeri, Masoumeh; Mehdipour-Ataei, Shahram
2016-09-01
Polyoxometalate immobilized nanofiber was used to fabricate low gas permeable layer for composite membranes designed for proton exchange membrane fuel cell (PEMFC) operating at low relative humidity (RH). The composite membranes revealed enhanced proton conductivity in dry conditions compared with state-of-the-art pristine membrane (Nafion 112, N112). This was coupled with a low fuel crossover inheriting the composite membranes about 100 mV higher OCV than N112 when tested in PEMFC at 60 °C and 40% RH. A maximum power density of up to 930 mW cm-2 was also achieved which is substantially higher than the N112 under similar conditions (577 mW cm-2). Such remarkable performance enhancement along with undetectable leaching of immobilized polyoxometalate, high dimensional stability and low water uptake of the composite membranes suggest a strong potential for PEMFC under low RH operation.
Study of the Photocatalytic Property of Polysulfone Membrane Incorporating TiO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Xingxing; Zhou, Weiqi; Chen, Zhe; Yao, Lei
In order to investigate the effect of the incorporated nanoparticles on the photocatalytic property of the hybrid membranes, the uncovered and covered polysulfone/TiO2 hybrid membranes were prepared. Positron annihilation γ-ray spectroscopy coupled with a positron beam was utilized to examine the depth profiles of the two membranes. The photocatalytic activities of the membranes were evaluated by the degradation of Rhodamine B (RhB) aqueous solution under the irradiation of Xe lamp. UV-Vis spectroscopy was applied to study the UV transmission through the polysulfone layer. Electrochemical impedance spectroscopy was used to detect the photo-generated charges by the covered membrane during the irradiation. It can be found that UV light can penetrate through the covered layer (about 230nm), and the incorporated nanoparticles can still generate charges under irradiation, which endows the photocatalytic ability of the covered membrane.
Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory
Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan; ...
2015-06-11
It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Potassium channels in brain mitochondria.
Bednarczyk, Piotr
2009-01-01
Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify their molecular correlates.
Rohani, S Alireza; Ghomashchi, Soroush; Agrawal, Sumit K; Ladak, Hanif M
2017-03-01
Finite-element models of the tympanic membrane are sensitive to the Young's modulus of the pars tensa. The aim of this work is to estimate the Young's modulus under a different experimental paradigm than currently used on the human tympanic membrane. These additional values could potentially be used by the auditory biomechanics community for building consensus. The Young's modulus of the human pars tensa was estimated through inverse finite-element modelling of an in-situ pressurization experiment. The experiments were performed on three specimens with a custom-built pressurization unit at a quasi-static pressure of 500 Pa. The shape of each tympanic membrane before and after pressurization was recorded using a Fourier transform profilometer. The samples were also imaged using micro-computed tomography to create sample-specific finite-element models. For each sample, the Young's modulus was then estimated by numerically optimizing its value in the finite-element model so simulated pressurized shapes matched experimental data. The estimated Young's modulus values were 2.2 MPa, 2.4 MPa and 2.0 MPa, and are similar to estimates obtained using in-situ single-point indentation testing. The estimates were obtained under the assumptions that the pars tensa is linearly elastic, uniform, isotropic with a thickness of 110 μm, and the estimates are limited to quasi-static loading. Estimates of pars tensa Young's modulus are sensitive to its thickness and inclusion of the manubrial fold. However, they do not appear to be sensitive to optimization initialization, height measurement error, pars flaccida Young's modulus, and tympanic membrane element type (shell versus solid). Copyright © 2017 Elsevier B.V. All rights reserved.
Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon
Yu, Kuai; Lujan, Rafael; Marmorstein, Alan; Gabriel, Sherif; Hartzell, H. Criss
2010-01-01
Anion transport by the colonic mucosa maintains the hydration and pH of the colonic lumen, and its disruption causes a variety of diarrheal diseases. Cholinergic agonists raise cytosolic Ca2+ levels and stimulate anion secretion, but the mechanisms underlying this effect remain unclear. Cholinergic stimulation of anion secretion may occur via activation of Ca2+-activated Cl– channels (CaCCs) or an increase in the Cl– driving force through CFTR after activation of Ca2+-dependent K+ channels. Here we investigated the role of a candidate CaCC protein, bestrophin-2 (Best2), using Best2–/– mice. Cholinergic stimulation of anion current was greatly reduced in Best2–/– mice, consistent with our proposed role for Best2 as a CaCC. However, immunostaining revealed Best2 localized to the basolateral membrane of mucin-secreting colonic goblet cells, not the apical membrane of Cl–-secreting enterocytes. In addition, in the absence of HCO3–, cholinergic-activated current was identical in control and Best2–/– tissue preparations, which suggests that most of the Best2 current was carried by HCO3–. These data delineate an alternative model of cholinergic regulation of colonic anion secretion in which goblet cells play a critical role in HCO3– homeostasis. We therefore propose that Best2 is a HCO3– channel that works in concert with a Cl:HCO3– exchanger in the apical membrane to affect transcellular HCO3– transport. Furthermore, previous models implicating CFTR in cholinergic Cl– secretion may be explained by substantial downregulation of Best2 in Cftr–/– mice. PMID:20407206
Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs)
Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar
2012-01-01
Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general. PMID:23226151
Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs).
Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar
2012-01-01
Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.
Zordan, Enrico; Amirouche, Farid; Zhou, Yu
2010-02-01
This paper deals with the design and characterization of an electromagnetic actuation micropump with superimposed dual chambers. An integral part of microfluidic system includes micropumps which have become a critical design focus and have the potential to alter treatment and drug delivery requirements to patients. In this paper, conceptual design of variable geometrical nozzle/diffuser elements, coaxial cantilever valve, is proposed. It takes advantages of cantilever fluctuating valves with preset geometry to optimize and control fluid flow. The integration of this conceptual valve into a dual chamber micropump has increased the flow rate when compared to a single chamber micropump. This technique also allows for the fluid flow to be actively controlled by adjusting the movement of the intermediate membrane and the cantilever valves due to their fast response and large deflection properties when subjected to an electromagnetic field. To ensure reliability and performance of both the membrane and electromagnets, finite element method was used to perform the stress-strain analysis and optimize the membrane structure and electromagnet configuration. The frequency-dependent flow rates and backpressure are investigated for different frequencies by varying the applied currents from 1A to 1.75A. The current micropump design exhibits a backpressure of 58 mmH(2)O and has a water flow rate that reaches maximum at 1.985 ml/s under a 1.75A current with a resonance frequency of 45 Hz. This proposed micropump while at its initial prototype stage can satisfy the requirements of wide flow rate drug delivery applications. Its controllability and process design are attractive for high volume fabrication and low cost.
FAS grafted superhydrophobic ceramic membrane
NASA Astrophysics Data System (ADS)
Lu, Jun; Yu, Yun; Zhou, Jianer; Song, Lixin; Hu, Xingfang; Larbot, Andre
2009-08-01
The hydrophobic properties of γ-Al 2O 3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 °C) of the fluoroalkylsilane grafted on Al 2O 3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al 2O 3 membrane surface as well as the formed surface morphology.
Local Area Water Removal Analysis of a Proton Exchange Membrane Fuel Cell under Gas Purge Conditions
Lee, Chi-Yuan; Lee, Yu-Ming; Lee, Shuo-Jen
2012-01-01
In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold. PMID:22368495
Lee, Chi-Yuan; Lee, Yu-Ming; Lee, Shuo-Jen
2012-01-01
In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold.
NASA Astrophysics Data System (ADS)
Chen, Yung Ting; Chen, Yang Fang
2010-03-01
A new approach for developing highly sensitive PMOS photodetector based on the assistance of AAO membrane is proposed, fabricated, and characterized. It enables the photodetector with the tunability of not only the intensity but also the range of the response. Under a forward bias, the response of the PMOS photodetector with AAO membrane covers the visible as well as infrared spectrum; however, under a reverse bias, the near-infrared light around Si band edge dominates the photoresponse. Notably, the response at the optical communication wavelength of 850 nm can reach up to 0.24 A/W with an external quantum efficiency of 35%. Moreover, the response shows a large enhancement factor of 10 times at 1050 nm under a reverse bias of 0.5 V comparing with the device without AAO membrane. The underlying mechanism for the novel properties of the newly designed device has been proposed.
Yao, Y; Parker, I
1992-01-01
1. The ability of cytosolic Ca2+ ions to modulate inositol 1,4,5-trisphosphate (Insp3)-induced Ca2+ liberation from intracellular stores was studied in Xenopus oocytes using light flash photolysis of caged InsP3. Changes in cytosolic free Ca2+ level were effected by inducing Ca2+ entry through ionophore and voltage-gated plasma membrane channels and by injection of Ca2+ through a micropipette. Their effects on Ca2+ liberation were monitored by video imaging of Fluo-3 fluorescence and by voltage clamp recording of Ca(2+)-activated membrane Cl- currents. 2. Treatment of oocytes with the Ca2+ ionophores A23187 and ionomycin caused a transient elevation of cytosolic Ca2+ level when cells were bathed in Ca(2+)-free solution, which probably arose because of release of Ca2+ from intracellular stores. 3. Membrane current and Fluo-3 Ca2+ signals evoked by photoreleased InsP3 in ionophore-treated oocytes were potentiated when the intracellular Ca2+ level was elevated by raising the Ca2+ level in the bathing solution. 4. Responses to photoreleased InsP3 were similarly potentiated following activation of Ca2+ entry through voltage-gated Ca2+ channels expressed in the plasma membrane. 5. Ca(2+)-activated membrane currents evoked by depolarization developed a delayed 'hump' component during sustained photorelease of InsP3, probably because Ca2+ ions entering through the membrane channels triggered liberation of Ca2+ from intracellular stores. 6. Ba2+ and Sr2+ ions were able to substitute for Ca2+ in potentiating InsP3-mediated Ca2+ liberation. 7. Gradual photorelease of InsP3 by weak photolysis light evoked Ca2+ liberation that began at particular foci and then propagated throughout, but not beyond that area of the oocyte exposed to the light. Local elevations of intracellular Ca2+ produced by microinjection of Ca2+ acted as new foci for the initiation of Ca2+ liberation by InsP3. 8. In resting oocytes, intracellular injections of Ca2+ resulted only in localized elevation of intracellular Ca2+, and did not evoke propagating waves. 9. The results show that cytosolic Ca2+ ions potentiate the ability of InsP3 to liberate Ca2+ from intracellular stores. This process may be important for the positive feedback mechanism underlying the generation of Ca2+ spikes and waves, and for interactions between the InsP3 pathway and Ca2+ ions entering cells through voltage- and ligand-gated channels. Images Fig. 5 PMID:1284567
Experimental Nanofluidics in an individual Nanotube
NASA Astrophysics Data System (ADS)
Siria, Alessandro; Poncharal, Philippe; Biance, Anne Laure; Fulcrand, Remy; Purcell, Stephen; Bocquet, Lyderic
2012-11-01
Building new devices that benefit from the strange transport behavior of fluids at nanoscales is an open and worthy challenge that may lead to new scientific and technological paradigms. We present here a new class of nanofluidic device, made of individual Boron-Nitride (BN) nanotube inserted in a pierced membrane and connecting two macroscopic reservoirs. We explore fluidic transport inside a single BN nanotube under electric fields, pressure drops, chemical gradients, and combinations of these. We show that in this transmembrane geometry, the pressure-driven streaming current is voltage gated, with an apparent electro-osmotic zeta potential raising up to one volt. Further, we measured the current induced by ion concentration gradients and show its dependency on the surface charge.
Novel Membranes and Systems for Industrial and Municipal Water Purification and Reuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This factsheet describes a project that developed nano-engineered, high-permeance membrane materials with more than double the permeance of current reverse osmosis membranes as well as manufacturing technologies for large-scale production of the novel materials.
Chen, Yungting; Cheng, Tzuhuan; Cheng, Chungliang; Wang, Chunhsiung; Chen, Chihwei; Wei, Chihming; Chen, Yangfang
2010-01-04
A new approach for developing highly sensitive MOS photodetector based on the assistance of anodic aluminum oxide (AAO) membrane is proposed, fabricated, and characterized. It enables the photodetector with the tunability of not only the intensity but also the range of the response. Under a forward bias, the response of the MOS photodetector with AAO membrane covers the visible as well as infrared spectrum; however, under a reverse bias, the near-infrared light around Si band edge dominates the photoresponse. Unlike general MOS photodetectors which only work under a reverse bias, our MOS photodetectors can work even under a forward bias, and the responsivity at the optical communication wavelength of 850nm can reach up to 0.24 A/W with an external quantum efficiency (EQE) of 35%. Moreover, the response shows a large enhancement factor of 10 times at 1050 nm under a reverse bias of 0.5V comparing with the device without AAO membrane. The underlying mechanism for the novel properties of the newly designed device has been proposed.
Thin Robust Anion Exchange Membranes for Fuel Cell Applications
2014-01-01
water diffsuion. Here we use a Polyphenylene Oxide dibock polymer co-polymerized with polyvinyl benzyl trimethyl ammonium blocks ( PPO -b-PVBTMA[F...in PPO -b-PVBTMA[F-] AEM under saturated humidity environment ECS Transactions, 64 (3) 1185-1194 (2014) 1191 Conductivity of this membrane was...makes it a promising material for applications in anion exchange membrane fuel cells. Figure 5: Conductivity of PPO -b-PVBTMA[F-] under 95% Relative
Impact of membrane characteristics on the performance and cycling of the Br-2-H-2 redox flow cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, MC; Cho, KT; Spingler, FB
2015-06-15
The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br-2/H-2 redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 mu m) pretreated by soaking in 70 degrees C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm(-2), with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane. (C) 2015 Elsevier B.V. All rights reserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.
2005-04-15
The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na{sub v}) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na{sub v} channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons,more » P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na{sub v} currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na{sub v} channel gating, observed clinically in response to ciguatera poisoning.« less
Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
Yang, Linyan; She, Qianhong; Wan, Man Pun; Wang, Rong; Chang, Victor W-C; Tang, Chuyang Y
2017-06-01
Recent studies report high concentrations of haloacetic acids (HAAs), a prevalent class of toxic disinfection by-products, in swimming pool water (SPW). We investigated the removal of 9 HAAs by four commercial reverse osmosis (RO) and nanofiltration (NF) membranes. Under typical SPW conditions (pH 7.5 and 50 mM ionic strength), HAA rejections were >60% for NF270 with molecular weight cut-off (MWCO) equal to 266 Da and equal or higher than 90% for XLE, NF90 and SB50 with MWCOs of 96, 118 and 152 Da, respectively, as a result of the combined effects of size exclusion and charge repulsion. We further included 7 neutral hydrophilic surrogates as molecular probes to resolve the rejection mechanisms. In the absence of strong electrostatic interaction (e.g., pH 3.5), the rejection data of HAAs and surrogates by various membranes fall onto an identical size-exclusion (SE) curve when plotted against the relative-size parameter, i.e., the ratio of molecular radius over membrane pore radius. The independence of this SE curve on molecular structures and membrane properties reveals that the relative-size parameter is a more fundamental SE descriptor compared to molecular weight. An effective molecular size with the Stokes radius accounting for size exclusion and the Debye length accounting for electrostatic interaction was further used to evaluate the rejection. The current study provides valuable insights on the rejection of trace contaminants by RO/NF membranes. Copyright © 2017. Published by Elsevier Ltd.
Byrne, N. G.; Muir, T. C.
1985-01-01
The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is concluded that the inhibitory response to nerve stimulation and extract in the BRP may involve several ionic species. However, unlike that in gastrointestinal muscles the NANC response in the BRP is accompanied by an increased membrane resistance and does not primarily involve K+. The underlying mechanisms for the inhibitory response to both NANC nerve stimulation and inhibitory extract appear to be similar, compatible with the view that the latter may contain the inhibitory transmitter released from these nerves in this tissue. PMID:4027462
Carlisky, N. J.; Lew, V. L.
1970-01-01
1. In the isolated colonic mucosa of Bufo arenarum, under special circumstances, there is a variable fraction of the short-circuit current (0-38%) that is unaccounted for by either the Na or the Cl and bicarbonate transmembrane net fluxes. 2. The hypothesis that a special kind of bicarbonate transport may account for the non-Na component of the short-circuit current was investigated. According to this, bicarbonate ions formed within the membrane await transport towards the mucosal solution within a compartment that does not undergo isotopic exchange with the serosal bathing solution. This kind of transport may be detected by a lowering of mucosal specific activity of bicarbonate but would not be revealed by the classic method of comparing the difference between the unidirectional fluxes with the short-circuit current. 3. The specific activity of bicarbonate was determined in the inside solution (initially bicarbonate-free) of ten normal and four everted colonic sacs incubated in an external medium (reservoir) containing a constant specific activity of bicarbonate. Comparison between membrane-to-internal solution bicarbonate flux and non-Na component of the short-circuit current was carried out in two different ways: (a) by measuring the remaining short-circuit current in Na-free medium and (b) by determining simultaneously the Na net flux. 4. Whatever the value of the short-circuit current and its non-Na component, there is no reduction of the specific activity of the bicarbonate appearing in the inside solution of the everted colonic sacs. 5. In the normal sacs there is a reduction of the specific activity of bicarbonate which accounts for a membrane-to-mucosa bicarbonate flux which parallels the variations of the non-Na component of the short-circuit current although quantitatively representing only 68-87% of it. 6. There is no systematic decrease in the rate of reduction of the mucosal specific activity of bicarbonate in successive experimental flux periods; this excludes a slow equilibration of the intracellular bicarbonate with serosal bicarbonate. 7. Other possible explanations of the present results are discussed, as well as the availability and hydration rate of metabolic CO2 necessary to account for this kind of bicarbonate transport. PMID:5498504
Nilius, B; Reichenbach, A
1988-06-01
Radial glial (Müller) cells were isolated from rabbit retinae by papaine and mechanical dissociation. Regional membrane properties of these cells were studied by using the patch-clamp technique. In the course of our experiments, we found three distinct types of large K+ conducting channels. The vitread process membrane was dominated by high conductance inwardly rectifying (HCR) channels which carried, in the open state, inward currents along a conductance of about 105 pS (symmetrical solutions with 140 mM K+) but almost no outward currents. In the membrane of the soma and the proximal distal process, we found low conductance inwardly rectifying (LCR) channels which had an open state-conductance of about 60 pS and showed rather weak rectification. The endfoot membrane, on the other hand, was found to contain non-rectifying very high conductance (VHC) channels with an open state-conductance of about 360 pS (same solutions). These results suggest that mammalian Müller cells express regional membrane specializations which are optimized to carry spatial buffering currents of excess K+ ions.
Osmotically-driven membrane processes for water reuse and energy recovery
NASA Astrophysics Data System (ADS)
Achilli, Andrea
Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to the lack of suitable membranes and membrane modules. In this investigation, for the first time, the use of a custom-made laboratory-scale membrane module enabled the collection of experimental PRO data. Results obtained with a flat-sheet cellulose triacetate FO membrane and NaCl feed and draw solutions closely matched model predictions. Power density was substantially reduced due to internal concentration polarization in the asymmetric membrane and, to a lesser degree, to salt passage. External concentration polarization was found to exhibit a relatively small effect on reducing the osmotic pressure driving force. Using the predictive PRO model, optimal membrane characteristics and module configuration can be determined in order to design a system specifically tailored for PRO processes.
Gabrielsson, Erik O; Janson, Per; Tybrandt, Klas; Simon, Daniel T; Berggren, Magnus
2014-08-13
Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fan, Jilian; Yu, Linhui; Xu, Changcheng
2017-06-01
Triacylglycerol is a key intermediate in membrane lipid breakdown and fatty acid β-oxidation, and blocking triacylglycerol hydrolysis reduces oxidative stress and enhances plant survival under extended darkness.
Rotating Reverse Osmosis for Wastewater Reuse
NASA Technical Reports Server (NTRS)
Lueptow, Richard M.; Yoon, Yeomin; Pederson, Cynthia
2004-01-01
Membrane filtration such as Reverse Osmosis (RO) removes ions, proteins, and organic chemicals which are generally very difficult to remove using conventional treatment. Moreover, membrane is an absolute filtration method, so its treatment efficiency and performance are stable and predictable. We are currently working on the development of rotating RO membrane system. Dynamic rotating membrane filtration, which can produce a high shear rate, may be helpful to obtain high rejection of organic pollutants.The goal of our current work is to improve the flux of the device by increasing pressure by a factor of 3 to 4. In addition, the rejections for a wider variety of inorganic and organic compounds typically found in space mission wastewater are measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.; ...
2018-04-25
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
There Is No Simple Model of the Plasma Membrane Organization
Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek
2016-01-01
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212
There Is No Simple Model of the Plasma Membrane Organization.
Bernardino de la Serna, Jorge; Schütz, Gerhard J; Eggeling, Christian; Cebecauer, Marek
2016-01-01
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.
Adrenergic Stress Protection of Human iPS Cell-Derived Cardiomyocytes by Fast Kv7.1 Recycling
Piccini, Ilaria; Fehrmann, Edda; Frank, Stefan; Müller, Frank U.; Greber, Boris; Seebohm, Guiscard
2017-01-01
The fight-or-flight response (FFR), a physiological acute stress reaction, involves positive chronotropic and inotropic effects on heart muscle cells mediated through β-adrenoceptor activation. Increased systolic calcium is required to enable stronger heart contractions whereas elevated potassium currents are to limit the duration of the action potentials and prevent arrhythmia. The latter effect is accomplished by an increased functional activity of the Kv7.1 channel encoded by KCNQ1. Current knowledge, however, does not sufficiently explain the full extent of rapid Kv7.1 activation and may hence be incomplete. Using inducible genetic KCNQ1 complementation in KCNQ1-deficient human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we here reinvestigate the functional role of Kv7.1 in adapting human CMs to adrenergic stress. Under baseline conditions, Kv7.1 was barely detectable at the plasma membrane of hiPSC-CMs, yet it fully protected these from adrenergic stress-induced beat-to-beat variability of repolarization and torsade des pointes-like arrhythmia. Furthermore, isoprenaline treatment increased field potential durations specifically in KCNQ1-deficient CMs to cause these adverse macroscopic effects. Mechanistically, we find that the protective action by Kv7.1 resides in a rapid translocation of channel proteins from intracellular stores to the plasma membrane, induced by adrenergic signaling. Gene silencing experiments targeting RAB GTPases, mediators of intracellular vesicle trafficking, showed that fast Kv7.1 recycling under acute stress conditions is RAB4A-dependent.Our data reveal a key mechanism underlying the rapid adaptation of human cardiomyocytes to adrenergic stress. These findings moreover aid to the understanding of disease pathology in long QT syndrome and bear important implications for safety pharmacological screening. PMID:28959214
Adrenergic Stress Protection of Human iPS Cell-Derived Cardiomyocytes by Fast Kv7.1 Recycling.
Piccini, Ilaria; Fehrmann, Edda; Frank, Stefan; Müller, Frank U; Greber, Boris; Seebohm, Guiscard
2017-01-01
The fight-or-flight response (FFR), a physiological acute stress reaction, involves positive chronotropic and inotropic effects on heart muscle cells mediated through β-adrenoceptor activation. Increased systolic calcium is required to enable stronger heart contractions whereas elevated potassium currents are to limit the duration of the action potentials and prevent arrhythmia. The latter effect is accomplished by an increased functional activity of the K v 7.1 channel encoded by KCNQ1 . Current knowledge, however, does not sufficiently explain the full extent of rapid K v 7.1 activation and may hence be incomplete. Using inducible genetic KCNQ1 complementation in KCNQ1 -deficient human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we here reinvestigate the functional role of K v 7.1 in adapting human CMs to adrenergic stress. Under baseline conditions, K v 7.1 was barely detectable at the plasma membrane of hiPSC-CMs, yet it fully protected these from adrenergic stress-induced beat-to-beat variability of repolarization and torsade des pointes -like arrhythmia. Furthermore, isoprenaline treatment increased field potential durations specifically in KCNQ1-deficient CMs to cause these adverse macroscopic effects. Mechanistically, we find that the protective action by K v 7.1 resides in a rapid translocation of channel proteins from intracellular stores to the plasma membrane, induced by adrenergic signaling. Gene silencing experiments targeting RAB GTPases, mediators of intracellular vesicle trafficking, showed that fast K v 7.1 recycling under acute stress conditions is RAB4A-dependent.Our data reveal a key mechanism underlying the rapid adaptation of human cardiomyocytes to adrenergic stress. These findings moreover aid to the understanding of disease pathology in long QT syndrome and bear important implications for safety pharmacological screening.
P97/CDC-48: proteostasis control in tumor cell biology.
Fessart, Delphine; Marza, Esther; Taouji, Saïd; Delom, Frédéric; Chevet, Eric
2013-08-28
P97/CDC-48 is a prominent member of a highly evolutionary conserved Walker cassette - containing AAA+ATPases. It has been involved in numerous cellular processes ranging from the control of protein homeostasis to membrane trafficking through the intervention of specific accessory proteins. Expression of p97/CDC-48 in cancers has been correlated with tumor aggressiveness and prognosis, however the precise underlying molecular mechanisms remain to be characterized. Moreover p97/CDC-48 inhibitors were developed and are currently under intense investigation as anticancer drugs. Herein, we discuss the role of p97/CDC-48 in cancer development and its therapeutic potential in tumor cell biology. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40.
Wijesinghe, Kaveesha J; Stahelin, Robert V
2015-12-30
Marburg virus (MARV), which belongs to the virus family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates that is often fatal. MARV is a lipid-enveloped virus that during the replication process extracts its lipid coat from the plasma membrane of the host cell it infects. MARV carries seven genes, one of which encodes its matrix protein VP40 (mVP40), which regulates the assembly and budding of the virions. Currently, little information is available on mVP40 lipid binding properties. Here, we have investigated the in vitro and cellular mechanisms by which mVP40 associates with lipid membranes. mVP40 associates with anionic membranes in a nonspecific manner that is dependent upon the anionic charge density of the membrane. These results are consistent with recent structural determination of mVP40, which elucidated an mVP40 dimer with a flat and extensive cationic lipid binding interface. Marburg virus (MARV) is a lipid-enveloped filamentous virus from the family Filoviridae. MARV was discovered in 1967, and yet little is known about how its seven genes are used to assemble and form a new viral particle in the host cell it infects. The MARV matrix protein VP40 (mVP40) underlies the inner leaflet of the virus and regulates budding from the host cell plasma membrane. In vitro and cellular assays in this study investigated the mechanism by which mVP40 associates with lipids. The results demonstrate that mVP40 interactions with lipid vesicles or the inner leaflet of the plasma membrane are electrostatic but nonspecific in nature and are dependent on the anionic charge density of the membrane surface. Small molecules that can disrupt lipid trafficking or reduce the anionic charge of the plasma membrane interface may be useful in inhibiting assembly and budding of MARV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Influence of Solutocapillary Convection on Macrovoid Defect Formation in Polymeric Membranes
NASA Technical Reports Server (NTRS)
Greenberg, Alan R.; Krantz, William B.; Todd, Paul
2003-01-01
The focus of this research project involved the dry-cast process for polymeric membrane formation, whereby evaporation of solvent from an initially homogeneous polymer/solvent/ nonsolvent solution results in phase separation and the formation of polymer-rich and polymer-lean phases. Under certain conditions the polymer-lean phase gives rise to very large and usually undesirable, tear-drop-shaped pores (size approx. 10 - 50 microns) termed macrovoids (MVs). Although in many cases the presence of MV pores has deleterious effects on membrane performance, there are a number of innovative applications where the presence of such pores is highly desirable. Although researchers have proposed a variety of mechanisms for MV formation over the past three decades, two main hypotheses are currently favored: one asserts that MV growth can be attributed solely to diffusion (the diffusive growth hypothesis), whereas the other states that solutocapillary convection (the SC hypothesis) at the MV interface contributes to growth. The overall goal of this research was to obtain a more comprehensive understanding of the fundamental mechanism of MV growth. This research incorporates a coupled modeling and experimental approach to test a solutocapillary convection hypothesis for the growth of macrovoid pores in polymeric membranes. Specifically, we utilized a modification of the first principles model developed by two of the PIs (ARG and WBK) for dry-cast CA membranes. For the experimental component, two separate and mutually complementary approaches were used to study MV growth. In the first, membranes cast in a zero-g environment aboard the NASA KC-135 aircraft were compared with those cast on the ground to assess the effect of the buoyancy force on membrane morphology and MV size and shape. In the second approach, videomicroscopy flow visualization (VMFV) was utilized to observe MV formation and growth in real time and to assess the effect of surface tension on the MV growth dynamics. As a result of these fundamental studies, our research group advanced a new hypothesis for MV pore development in polymeric membranes.
Theoretical model of the ionic mechanism of 1/f noise in nerve membrane.
Clay, J R; Shlesinger, M F
1976-01-01
A model is presented for the ionic mechanism of low frequency 1/f electrical noise which has been observed in axonal membranes. The model consists of narrow channels which open randomly throughout the membrane and remain open for only a short time compared with f-1max where fmax approximately 2 kHz is the maximum frequency for which 1/f noise is observed. The fluctuation in channel formation is coupled to low frequency normal mode vibrations in liquid crystals which have properties similar to nerve membranes. Ionic current flow through the channels is assumed to occur via single file diffusion. The diffusion process is regarded as a non-Markovian random walk on a one-dimensional lattice which is mathematically decomposed into its spatial and temporal components. This technique allows calculation of the mean and variance of the number of ions which flow through any single short-lived channel. The final result for the current noise power spectrum, S, is S(f) = (A + k/I/2)/f, where I is the mean membrane current and A and k are parameters which are independent of membrane voltage. The theoretical result is consistent with observations of 1/f noise in lobster axon by Poussart (1971, Biophys. J. 11:212.) on the dependence of S(f) on the mean steady-state current and the external potassium concentration. We also calculate the mean channel density and the Frank elastic constant of the membrane. This work is an extension of a macroscopic model of Lundström and McQueen (1974, J. Theor. Biol. 45:405.) who obtain a spectral density of the form S approximately /I/2/f. PMID:1247642
So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan
2012-05-15
Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.
A universal steady state I-V relationship for membrane current
NASA Technical Reports Server (NTRS)
Chernyak, Y. B.; Cohen, R. J. (Principal Investigator)
1995-01-01
A purely electrical mechanism for the gating of membrane ionic channel gives rise to a simple I-V relationship for membrane current. Our approach is based on the known presence of gating charge, which is an established property of the membrane channel gating. The gating charge is systematically treated as a polarization of the channel protein which varies with the external electric field and modifies the effective potential through which the ions migrate in the channel. Two polarization effects have been considered: 1) the up or down shift of the whole potential function, and 2) the change in the effective electric field inside the channel which is due to familiar effect of the effective reduction of the electric field inside a dielectric body because of the presence of surface charges on its surface. Both effects are linear in the channel polarization. The ionic current is described by a steady state solution of the Nernst-Planck equation with the potential directly controlled by the gating charge system. The solution describes reasonably well the steady state and peak-current I-V relationships for different channels, and when applied adiabatically, explains the time lag between the gating charge current and the rise of the ionic current. The approach developed can be useful as an effective way to model the ionic currents in axons, cardiac cells and other excitable tissues.
Effect of cations (Na +, Ca 2+, Fe 3+) on the conductivity of a Nafion membrane
NASA Astrophysics Data System (ADS)
Hongsirikarn, Kitiya; Goodwin, James G.; Greenway, Scott; Creager, Stephen
It is known that trace amounts of cations have a detrimental effect on the liquid-phase conductivity of perfluorosulfonated membranes at room temperature. However, the conditions used were very different from typical fuel cell conditions. Recent research has shown the impact of conductivity measurement conditions on NH 4 + contaminated membranes. In this study, the impact of nonproton-containing cations (M n+ = Na +, Ca 2+, and Fe 3+) on Nafion membrane (N-211) conductivity was investigated both in deionized (DI) water at room temperature (∼25 °C) and in the gas phase at 80 °C under conditions similar to in a PEMFC. These conductivities were compared with those of Nafion membranes contaminated with NH 4 + ions. Under the same conditions, the conductivity of a metal cationic-contaminated membrane having the same proton composition (yH+m) was similar, but slightly lower than that of an NH 4 +-contaminated membrane. The conductivity in the purely H +-form of N-211 was more than 12 times greater than the M n+-form form at 25 °C in DI water. At 80 °C, the gas-phase conductivity was 6 times and 125 times greater at 100%RH and 30%RH, respectively. The quantitative results for conductivity and activation energy of contaminated membranes under typical fuel cell conditions are reported here for the first time.
Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum.
Lew, V L
1970-03-01
1. The unidirectional fluxes of (22)Na, (36)Cl and [(14)C]bicarbonate ions were measured in paired portions of the isolated and short-circuited colonic mucosa of Bufo arenarum, separated from its muscular layer. Pharmacological effects as well as effects of changes in the composition of the nutrient solutions on the electrical parameters of membrane activity (potential difference, short-circuit current and total membrane resistance) are described.2. The net fluxes of both Cl and bicarbonate ions were not significantly different from zero in the absence of electrochemical gradients across the membrane.3. The net Na flux from mucosa to serosa represented a variable proportion of the short-circuit current ranging from 62 to 100%.4. The proportion of membranes with high discrepancies between net Na flux and short-circuit current decreased with the duration of captivity of the toads.5. When Na was entirely replaced by choline in the mucosal bathing solution, the short-circuit current dropped by a variable amount within the range of 64 to 98% of its control values in different membranes. This effect was completely reversible. Similar changes in the serosal solution had no effect.6. The short-circuit current and potential difference were very sensitive to the serosal concentration of bicarbonate ions. In different membranes, 60-100% of the short-circuit current was reversibly abolished by bathing the serosal surface with a bicarbonate-free solution. The mucosal bicarbonate level had no effect on either the potential difference or the short-circuit current. 5 mM bicarbonate in the serosal solution restored at least 50% of the short-circuit control value and full recovery was attained by concentrations near 30 mM bicarbonate.7. Anoxia brought the potential difference and short-circuit current reversibly down to zero in about 50 min.8. Ouabain reduced the short-circuit current up to 80% in about 40 min when present in the serosal solution at a concentration of 10(-4)M. At this or lower concentrations the ouabain effect was reversible. Above this level ouabain produced 100% inhibition in 3-4 hr, but this was no longer reversible. Ouabain had no effect on the short-circuit current either when applied to the mucosal surface or in the absence of Na from the mucosal solution.9. Diamox produced a variable inhibition of the short-circuit current of up to 30% only at concentrations above 10 mM.10. Possible mechanisms are discussed for the appearance of the non-Na component of the short-circuit current. A theory concerning its nature is proposed.
Lin, Ruhui; Li, Zuanfang; Lin, Jiumao; Ye, Jinxia; Cai, Qiaoyan; Chen, Lidian; Peng, Jun
2015-10-01
Tulipa edulis Bak (TEB) is an active ingredient in various traditional Chinese medicine compounds and is commonly used to treat swelling and redness, remove toxicity and eliminate stagnation, as well as to prevent and treat certain cancer types. However, the underlying molecular mechanism of the anticancer activity of TEB remains unclear. The aim of the current study was to investigate the effect and underlying mechanism of the ethanolic extract of TEB (EETEB) on SGC-7901 human gastric carcinoma cells. An MTT assay was performed to analyze cell viability. In addition, transmission electron microscopy, an Annexin V/fluorescein isothiocyanate assay, a JC-1 assay and laser scanning confocal microscopy with DAPI staining were used to determine the rate of apoptosis. Furthermore, reverse transcription-polymerase chain reaction and western blot analysis were used to detect the expression levels of the apoptosis gene and protein. EETEB was identified to inhibit the growth of SGC-7901 cells in a dose-dependent manner and induce changes in cell morphology. At the molecular level, EETEB induced SGC-7901 cell DNA fragmentation, loss of plasma membrane and asymmetrical collapse of the mitochondrial membrane potential, while it increased the expression of pro-apoptotic B-cell lymphoma-2 (Bcl-2)-associated X protein and reduced expression of anti-apoptotic Bcl-2. Thus, the results of the current study revealed that the application of EETEB may inhibit the growth of the SGC-7901 cells due to mitochondria-mediated apoptosis.
LIN, RUHUI; LI, ZUANFANG; LIN, JIUMAO; YE, JINXIA; CAI, QIAOYAN; CHEN, LIDIAN; PENG, JUN
2015-01-01
Tulipa edulis Bak (TEB) is an active ingredient in various traditional Chinese medicine compounds and is commonly used to treat swelling and redness, remove toxicity and eliminate stagnation, as well as to prevent and treat certain cancer types. However, the underlying molecular mechanism of the anticancer activity of TEB remains unclear. The aim of the current study was to investigate the effect and underlying mechanism of the ethanolic extract of TEB (EETEB) on SGC-7901 human gastric carcinoma cells. An MTT assay was performed to analyze cell viability. In addition, transmission electron microscopy, an Annexin V/fluorescein isothiocyanate assay, a JC-1 assay and laser scanning confocal microscopy with DAPI staining were used to determine the rate of apoptosis. Furthermore, reverse transcription-polymerase chain reaction and western blot analysis were used to detect the expression levels of the apoptosis gene and protein. EETEB was identified to inhibit the growth of SGC-7901 cells in a dose-dependent manner and induce changes in cell morphology. At the molecular level, EETEB induced SGC-7901 cell DNA fragmentation, loss of plasma membrane and asymmetrical collapse of the mitochondrial membrane potential, while it increased the expression of pro-apoptotic B-cell lymphoma-2 (Bcl-2)-associated X protein and reduced expression of anti-apoptotic Bcl-2. Thus, the results of the current study revealed that the application of EETEB may inhibit the growth of the SGC-7901 cells due to mitochondria-mediated apoptosis. PMID:26622854
Cui, Yue; Liu, Xiang-Yang; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian
2016-03-15
In this study, we have explored and compared the effectiveness of using (1) lab-fabricated forward osmosis (FO) membranes under both FO and reverse osmosis (RO) modes and (2) commercially available RO membranes under the RO mode for the removal of organic micro-pollutants. The lab-fabricated FO membranes are thin film composite (TFC) membranes consisting of a polyamide layer and a porous substrate cast from three different materials; namely, Matrimid, polyethersulfone (PESU) and sulfonated polyphenylene sulfone (sPPSU). The results show that the FO mode is superior to the RO mode in the removal of phenol, aniline and nitrobenzene from wastewater. The rejections of all three TFC membranes to all the three organic micro-pollutants under the FO processes are higher than 72% and can be even higher than 90% for aniline when a 1000 ppm aromatic aqueous solution and 1 M NaCl are employed as feeds. These performances outperform the results obtained from themselves and commercially available RO membranes under the RO mode. In addition, the rejection can be maintained even when treating a more concentrated feed solution (2000 ppm). The removal performance can be further enhanced by using a more concentrated draw solution (2 M). The water flux is almost doubled, and the rejection increment can reach up to 17%. Moreover, it was observed that annealing as a post-treatment would help compact the membrane selective layer and further enhance the separating efficiency. The obtained organic micro-pollutant rejections and water fluxes under various feasible operating conditions indicate that the FO process has potential to be a viable treatment for wastewater containing organic micro-pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tamagawa, Hirohisa; Funatani, Makoto; Ikeda, Kota
2016-01-26
The potential between two electrolytic solutions separated by a membrane impermeable to ions was measured and the generation mechanism of potential measured was investigated. From the physiological point of view, a nonzero membrane potential or action potential cannot be observed across the impermeable membrane. However, a nonzero membrane potential including action potential-like potential was clearly observed. Those observations gave rise to a doubt concerning the validity of currently accepted generation mechanism of membrane potential and action potential of cell. As an alternative theory, we found that the long-forgotten Ling's adsorption theory was the most plausible theory. Ling's adsorption theory suggests that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto the adsorption site of cell, and this theory is applicable even to nonliving (or non-biological) system as well as living system. Through this paper, the authors emphasize that it is necessary to reconsider the validity of current membrane theory and also would like to urge the readers to pay keen attention to the Ling's adsorption theory which has for long years been forgotten in the history of physiology.
Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan
2014-11-12
Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.
X-ray Diffraction from Membrane Protein Nanocrystals
Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.
2011-01-01
Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672
Hybrid and Mixed Matrix Membranes for Separations from Fermentations
Davey, Christopher John; Leak, David; Patterson, Darrell Alec
2016-01-01
Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase. PMID:26938567
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2017-11-28
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2016-09-06
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Effects of tetraethylammonium on potassium currents in a molluscan neurons
1981-01-01
The effects of tetraethylammonium (TEA) on the delayed K+ current and on the Ca2+-activated K+ current of the Aplysia pacemaker neurons R-15 and L-6 were studied. The delayed outward K+ current was measured in Ca2+-free ASW containing tetrodotoxin (TTX), using brief depolarizing clamp pulses. External TEA blocks the delayed K+ current reversibly in a dose-dependent manner. The experimental results are well fitted with a Michaelis-Menten expression, assuming a one-to-one reaction between TEA and a receptor site, with an apparent dissociation constant of 6.0 mM. The block depends on membrane voltage and is reduced at positive membrane potentials. The Ca2+-activated K+ current was measured in Ca2+- free artificial seawater (ASW) containing TTX, using internal Ca2+ ion injection to directly activate the K+ conductance. External TEA and a number of other quaternary ammonium ions block the Ca2+-activated K+ current reversibly in a dose-dependent manner. TEA is the most effective blocker, with an apparent dissociation constant, for a one-to- one reaction with a receptor site, of 0.4 mM. The block decreases with depolarization. The Ca2+-activated K+ current was also measured after intracellular iontophoretic TEA injection. Internal TEA blocks the Ca2+- activated K+ current (but the block is only apparent at positive membrane potentials), is increased by depolarization, and is irreversible. The effects of external and internal TEA can be seen in measurements of the total outward K+ current at different membrane potentials in normal ASW. PMID:6265594
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.
Freites, J Alfredo; Tobias, Douglas J
2015-06-01
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.
Kataev, Anatoly; Zherelova, Olga; Grishchenko, Valery
2016-12-01
Interaction of a HAMLET-like La-OA cytotoxic complex (human α-lactalbumin-oleic acid) and its constituents with the excitable plasmalemma of giant Chara corallina cells was investigated. The voltage-clamp technique was used to study Ca 2+ and Cl - transient currents in the plasmalemma of intact cells. The action of the complex and OA on the target cell membrane has a dose-dependent character. It was found that the La-OA complex has an inhibiting effect on Ca 2+ current across the plasmalemma, while α-lactalbumin alone does not affect the electrophysiological characteristics of the cellular membrane. However, oleic acid blocks Ca 2+ current across the plasmalemma. This is accompanied by the induction of a non-selective conductivity in the cellular membrane, a decrease in the resting potential and plasma membrane resistance of algal cells. We propose that the cytotoxicity of La-OA and other HAMLET-like complexes is determined by oleic acid acting as a blocker of potential-dependent Ca 2+ channels in the plasma membrane of target cells. The presented results show that the study model of green algae C. corallina cells plasmalemma is a convenient tool for the investigation of ion channels in many animal cells.
Amperometric monitoring of quercetin permeation through skin membranes.
Rembiesa, Jadwiga; Gari, Hala; Engblom, Johan; Ruzgas, Tautgirdas
2015-12-30
Transdermal delivery of quercetin (QR, 3,3',4',5,7-pentahydroxyflavone), a natural flavonoid with a considerable antioxidant capacity, is important for medical treatment of, e.g., skin disorders. QR permeability through skin is low, which, at the same time, makes the monitoring of percutaneous QR penetration difficult. The objective of this study was to assess an electrochemical method for monitoring QR penetration through skin membranes. An electrode was covered with the membrane, exposed to QR solution, and electrode current was measured. The registered current was due to electro-oxidation of QR penetrating the membrane. Exploiting strict current-QR flux relationships diffusion coefficient, D, of QR in skin and dialysis membranes was calculated. The D values were strongly dependent on the theoretical model and parameters assumed in the processing of the amperometric data. The highest values of D were in the range of 1.6-6.1×10(-7)cm(2)/s. This was reached only for skin membranes pretreated with buffer-ethanol mixture for more than 24h. QR solutions containing penetration enhancers, ethanol and l-menthol, definitely increased D values. The results demonstrate that electrochemical setup gives a possibility to assess penetration characteristics as well as enables monitoring of penetration dynamics, which is more difficult by traditional methods using Franz cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Norman, Mya A; Evans, Christine E; Fuoco, Anthony R; Noble, Richard D; Koval, Carl A
2005-10-01
Electrokinetic flow provides a mechanism for a variety of fluid pumping schemes. The design and characterization of an electrochemically driven pump that utilizes porous carbon electrodes, iodide/triiodide redox electrolytes, and Nafion membranes is described. Fluid pumping by the cell is reversible and controlled by the cell current. Chronopotentiometry experiments indicate that the total available fluid that can be pumped in a single electrolysis without gas evolution is determined solely by the initial concentration of electrolyte and the applied current. The magnitude of the fluid flow at a given current is determined by the nature of the cation in the electrolyte and by the water absorption properties of the Nafion membrane. For 1 M aqueous electrolytes, pumping rates ranging from 1 to 14 microL/min were obtained for current densities of 10-30 mA/cm2 of membrane area. Molar volume changes for the I3-/I- redox couple and for the alkali cation migration contribute little to the observed volumetric flow rates; the magnitude of the flow is dominated by the migration-induced flow of water.
Dual patch voltage clamp study of low membrane resistance astrocytes in situ.
Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min
2014-03-17
Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.
Inward rectifier potassium currents in mammalian skeletal muscle fibres
DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L
2015-01-01
Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface andthe transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K+], and could be blocked by Ba2+ or Rb+. In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba2+ (or Rb+) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K+] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10−6 cm s−1 and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K+ depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of most of the properties of IKir in skeletal muscle fibres, the model demonstrates that a substantial proportion of IKir (>70%) arises from the TTS. Overall, our work emphasizes that measured intrinsic properties (inward rectification and external [K] dependence) and localization of Kir channels in the TTS membranes are ideally suited for re-capturing potassium ions from the TTS lumen during, and immediately after, repetitive stimulation under physiological conditions. Key points This paper provides a comprehensive electrophysiological characterization of the external [K+] dependence and inward rectifying properties of Kir channels in fast skeletal muscle fibres of adult mice. Two isoforms of inward rectifier K channels (IKir2.1 and IKir2.2) are expressed in both the surface and the transverse tubular system (TTS) membranes of these fibres. Optical measurements demonstrate that Kir currents (IKir) affect the membrane potential changes in the TTS membranes, and result in a reduction in luminal [K+]. A model of the muscle fibre assuming that functional Kir channels are equally distributed between the surface and TTS membranes accounts for both the electrophysiological and the optical data. Model simulations demonstrate that the more than 70% of IKir arises from the TTS membranes. [K+] increases in the lumen of the TTS resulting from the activation of K delayed rectifier channels (Kv) lead to drastic enhancements of IKir, and to right-shifts in their reversal potential. These changes are predicted by the model. PMID:25545278
Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding
Navarro-Polanco, Ricardo A; Galindo, Eloy G Moreno; Ferrer-Villada, Tania; Arias, Marcelo; Rigby, J Ryan; Sánchez-Chapula, José A; Tristani-Firouzi, Martin
2011-01-01
Abstract The ability to sense transmembrane voltage is a central feature of many membrane proteins, most notably voltage-gated ion channels. Gating current measurements provide valuable information on protein conformational changes induced by voltage. The recent observation that muscarinic G-protein-coupled receptors (GPCRs) generate gating currents confirms their intrinsic capacity to sense the membrane electrical field. Here, we studied the effect of voltage on agonist activation of M2 muscarinic receptors (M2R) in atrial myocytes and how agonist binding alters M2R gating currents. Membrane depolarization decreased the potency of acetylcholine (ACh), but increased the potency and efficacy of pilocarpine (Pilo), as measured by ACh-activated K+ current, IKACh. Voltage-induced conformational changes in M2R were modified in a ligand-selective manner: ACh reduced gating charge displacement while Pilo increased the amount of charge displaced. Thus, these ligands manifest opposite voltage-dependent IKACh modulation and exert opposite effects on M2R gating charge displacement. Finally, mutations in the putative ligand binding site perturbed the movement of the M2R voltage sensor. Our data suggest that changes in voltage induce conformational changes in the ligand binding site that alter the agonist–receptor interaction in a ligand-dependent manner. Voltage-dependent GPCR modulation has important implications for cellular signalling in excitable tissues. Gating current measurement allows for the tracking of subtle conformational changes in the receptor that accompany agonist binding and changes in membrane voltage. PMID:21282291
Action potential propagation: ion current or intramembrane electric field?
Martí, Albert; Pérez, Juan J; Madrenas, Jordi
2018-01-01
The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.
Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.
Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E
2001-09-01
Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-01-01
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322
King, Travis L.; Gatimu, Enid N.; Bohn, Paul W.
2009-01-02
This paper presents a study of electrokinetic transport in single nanopores integrated into vertically-stacked three-dimensional hybrid microfluidic/nanofluidic structures. In these devices single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e.,DNA) polyelectrolytes across these nanopores. Single nanopore transport of polyelectrolytes across these nanoporesmore » using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electroosmotic transport is predominant over electrophoresis in single nanopores with d > 180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.« less
The Long Path of Human Placenta, and Its Derivatives, in Regenerative Medicine
Silini, Antonietta R.; Cargnoni, Anna; Magatti, Marta; Pianta, Stefano; Parolini, Ornella
2015-01-01
In the 1800s, a baby born with a caul, a remnant of the amniotic sack or fetal membranes, was thought to be lucky, special, or protected. Over time, fetal membranes lost their legendary power and were soon considered nothing more than biological waste after birth. However, placenta tissues have reclaimed their potential and since the early 1900s an increasing body of evidence has shown that these tissues have clinical benefits in a wide range of wound repair and surgical applications. Nowadays, there is a concerted effort to understand the mechanisms underlying the beneficial effects of placental tissues, and, more recently, cells derived thereof. This review will summarize the historical and current clinical applications of human placental tissues, and cells isolated from these tissues, and discuss some mechanisms thought to be responsible for the therapeutic effects observed after tissue and/or cell transplantation. PMID:26539433
Saheki, Yasunori; De Camilli, Pietro
2012-01-01
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746
Jadaun, Pratiksha; Yadav, Dhananjay; Bisen, Prakash Singh
2018-04-01
The current study was undertaken to study the effect of Spirulina platensis (Spirulina) extract on enhanced oxidative stress during high glucose induced cell death in H9c2 cells. H9c2 cultured under high glucose (33 mM) conditions resulted in a noteworthy increase in oxidative stress (free radical species) accompanied by loss of mitochondrial membrane potential, release of cytochrome c, increase in caspase activity and pro-apoptotic protein (Bax). Spirulina extract (1 μg/mL), considerably inhibited increased ROS and RNS levels, reduction in cytochrome c release, raise in mitochondrial membrane potential, decreased the over expression of proapoptotic protein Bax and suppressed the Bax/Bcl2 ratio with induced apoptosis without affecting cell viability. Overall results suggest that Spirulina extract plays preventing role against enhanced oxidative stress during high glucose induced apoptosis in cardiomyoblasts as well as related dysfunction in H9c2 cells.
Wang, Chin-Tsan; Huang, Yan-Sian; Sangeetha, Thangavel; Chen, Yen-Ming; Chong, Wen-Tong; Ong, Hwai-Chyuan; Zhao, Feng; Yan, Wei-Mon
2018-05-01
Photosynthetic microbial fuel cells (PMFCs) are novel bioelectrochemical transducers that employ microalgae to generate oxygen, organic metabolites and electrons. Conventional PMFCs employ non-eco-friendly membranes, catalysts and phosphate buffer solution. Eliminating the membrane, buffer and catalyst can make the MFC a practical possibility. Therefore, single chambered (SPMFC) were constructed and operated at different recirculation flow rates (0, 40 and 240 ml/min) under bufferless conditions. Furthermore, maximum power density of 4.06 mW/m 2 , current density of 46.34 mA/m 2 and open circuit potential of 0.43 V and low internal resistance of 611.8 Ω were obtained at 40 ml/min. Based on the results it was decided that SPMFC was better for operation at 40 ml/min. Therefore, these findings provided progressive insights for future pilot and industrial scale studies of PMFCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of radiation on red cell membrane and intracellular oxidative defense systems.
Katz, D; Mazor, D; Dvilansky, A; Meyerstein, N
1996-03-01
Ionizing radiation is currently used for prevention of transfusion associated graft versus host disease (TAGVHD). As radiation damage is associated with the production of activated oxygen species, the aim of this study was to observe the immediate effect of ionizing radiation on red cell membrane and intracellular oxidative defense systems. Neonatal and iron deficiency (IDA) cells, known for their increased sensitivity to oxidative stress, were chosen and compared with normal cells. Irradiation was performed in doses of 1500 cGy, 3000 cGy and 5000 cGy. GSH and methemoglobin levels and the activity of different antioxidant enzymes, measured under optimal in vitro conditions, were preserved in all cells after irradiation. Only radiation at the highest does of 5000 cGy, caused significant potassium leakage in neonatal cells and insignificant increase in IDA cells. Thus, cells with increased sensitivity to oxidative stress are more susceptible to damage by ionizing radiation than normal cells.
The Structural Basis of IKs Ion-Channel Activation: Mechanistic Insights from Molecular Simulations.
Ramasubramanian, Smiruthi; Rudy, Yoram
2018-06-05
Relating ion channel (iCh) structural dynamics to physiological function remains a challenge. Current experimental and computational techniques have limited ability to explore this relationship in atomistic detail over physiological timescales. A framework associating iCh structure to function is necessary for elucidating normal and disease mechanisms. We formulated a modeling schema that overcomes the limitations of current methods through applications of artificial intelligence machine learning. Using this approach, we studied molecular processes that underlie human IKs voltage-mediated gating. IKs malfunction underlies many debilitating and life-threatening diseases. Molecular components of IKs that underlie its electrophysiological function include KCNQ1 (a pore-forming tetramer) and KCNE1 (an auxiliary subunit). Simulations, using the IKs structure-function model, reproduced experimentally recorded saturation of gating-charge displacement at positive membrane voltages, two-step voltage sensor (VS) movement shown by fluorescence, iCh gating statistics, and current-voltage relationship. Mechanistic insights include the following: 1) pore energy profile determines iCh subconductance; 2) the entire protein structure, not limited to the pore, contributes to pore energy and channel subconductance; 3) interactions with KCNE1 result in two distinct VS movements, causing gating-charge saturation at positive membrane voltages and current activation delay; and 4) flexible coupling between VS and pore permits pore opening at lower VS positions, resulting in sequential gating. The new modeling approach is applicable to atomistic scale studies of other proteins on timescales of physiological function. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Altered Functional Properties of Satellite Glial Cells in Compressed Spinal Ganglia
Zhang, Haijun; Mei, Xiaofeng; Zhang, Pu; Ma, Chao; White, Fletcher A; Donnelly, David F; LaMotte, Robert H
2009-01-01
The cell bodies of sensory neurons in the dorsal root ganglion (DRG) are enveloped by satellite glial cells (SGCs). In an animal model of intervertebral foraminal stenosis and low-back pain, a chronic compression of the DRG (CCD) increases the excitability of neuronal cell bodies in the compressed ganglion. The morphological and electrophysiological properties of SGCs were investigated in both CCD and uninjured, control lumbar DRGs. SGCs responded within 12 hours of the onset of CCD as indicated by an increased expression of glial fibrillary acidic protein (GFAP) in the compressed DRG but to lesser extent in neighboring or contralateral DRGs. Within one week, coupling through gap junctions between SGCs was significantly enhanced in the compressed ganglion. Under whole-cell patch clamp recordings, inward and outward potassium currents, but not sodium currents, were detected in individual SGCs. SGCs enveloping differently sized neurons had similar electrophysiological properties. SGCs in the compressed vs. control DRG exhibited significantly reduced inwardly rectifying potassium currents (Kir), increased input resistances and positively shifted resting membrane potentials. The reduction in Kir was greater for nociceptive medium-sized neurons compared to non-nociceptive neurons. Kir currents of SGCs around spontaneously active neurons were significantly reduced one day after compression but recovered by 7 days. These data demonstrate rapid alterations in glial membrane currents and GFAP expression in close temporal association with the development of neuronal hyperexcitability in the CCD model of europathic pain. However, these alterations are not fully sustained and suggest other mechanisms for the maintenance of the hyperexcitable state. PMID:19330845
Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko
2015-10-21
Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.
Brown, T
2001-05-01
Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support (the properties and advantages of the different types of membrane, transfer buffer, and transfer method are discussed in detail), resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This appendix describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, using a high-salt transfer buffer to promote binding of DNA to the membrane. With the high-salt buffer, the DNA becomes bound to the membrane during transfer but not permanently immobilized. Immobilization is achieved by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. The advantage of this combination is that no post-transfer immobilization step is required, as the positively charged membrane binds DNA irreversibly under alkaline transfer conditions. The method can also be used with neutral nylon membranes but less DNA will be retained. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane described in the first basic and alternate protocols has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in the second alternate protocol is therefore more rapid than the basic protocol and can result in more complete transfer. Although the ease and reliability of capillary transfer methods makes this far and away the most popular system for Southern blotting with agarose gels, it unfortunately does not work with polyacrylamide gels, whose smaller pore size impedes the transverse movement of the DNA molecules. The third alternate protocol describes an electroblotting procedure that is currently the most reliable method for transfer of DNA from a polyacrylamide gel. Dot and slot blotting are also described.
Urtenov, Mahamet A-Kh; Kirillova, Evgeniya V; Seidova, Natalia M; Nikonenko, Victor V
2007-12-27
This paper deals with one-dimensional stationary Nernst-Planck and Poisson (NPP) equations describing ion electrodiffusion in multicomponent solution/electrode or ion-conductive membrane systems. A general method for resolving ordinary and singularly perturbed problems with these equations is developed. This method is based on the decoupling of NPP equations that results in deduction of an equation containing only the terms with different powers of the electrical field and its derivatives. Then, the solution of this equation, analytical in several cases or numerical, is substituted into the Nernst-Planck equations for calculating the concentration profile for each ion present in the system. Different ionic species are grouped in valency classes that allows one to reduce the dimension of the original set of equations and leads to a relatively easy treatment of multi-ion systems. When applying the method developed, the main attention is paid to ion transfer at limiting and overlimiting currents, where a significant deviation from local electroneutrality occurs. The boundary conditions and different approximations are examined: the local electroneutrality (LEN) assumption and the original assumption of quasi-uniform distribution of the space charge density (QCD). The relations between the ion fluxes at limiting and overlimiting currents are discussed. In particular, attention is paid to the "exaltation" of counterion transfer toward an ion-exchange membrane by co-ion flux leaking through the membrane or generated at the membrane/solution interface. The structure of the multi-ion concentration field in a depleted diffusion boundary layer (DBL) near an ion-exchange membrane at overlimiting currents is analyzed. The presence of salt ions and hydrogen and hydroxyl ions generated in the course of the water "splitting" reaction is considered. The thickness of the DBL and its different zones, as functions of applied current density, are found by fitting experimental current-voltage curves.
Membrane paradigm and RG flows for anomalous holographic theories
NASA Astrophysics Data System (ADS)
Copetti, Christian; Fernández-Pendás, Jorge
2018-04-01
Holographic RG flows can be better understood with the help of radially conserved charges. It was shown by various authors that the bulk gauge and diffeomorphism symmetries lead to the conservation of the zero mode of the holographic U(1) current and, if the spacetime is stationary, to that of the holographic heat current. In describing dual theories with 't Hooft anomalies the bulk gauge invariance is broken by Chern-Simons terms. We show that conservation laws can still be derived and used to characterize the anomalous transport in terms of membrane currents at the horizon. We devote particular attention to systems with gravitational anomalies. These are known to be problematic due to their higher derivative content. We show that this feature alters the construction of the membrane currents in a way which is deeply tied with the anomalous gravitational transport.
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan
2013-12-30
Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.
Mechanical degradation of fuel cell membranes under fatigue fracture tests
NASA Astrophysics Data System (ADS)
Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.
2015-01-01
The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.
Murphy, M A; Mun, Sungkwang; Horstemeyer, M F; Baskes, M I; Bakhtiary, A; LaPlaca, Michelle C; Gwaltney, Steven R; Williams, Lakiesha N; Prabhu, R K
2018-04-09
Continuum finite element material models used for traumatic brain injury lack local injury parameters necessitating nanoscale mechanical injury mechanisms be incorporated. One such mechanism is membrane mechanoporation, which can occur during physical insults and can be devastating to cells, depending on the level of disruption. The current study investigates the strain state dependence of phospholipid bilayer mechanoporation and failure. Using molecular dynamics, a simplified membrane, consisting of 72 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) phospholipids, was subjected to equibiaxial, 2:1 non-equibiaxial, 4:1 non-equibiaxial, strip biaxial, and uniaxial tensile deformations at a von Mises strain rate of 5.45 × 10 8 s -1 , resulting in velocities in the range of 1 to 4.6 m·s -1 . A water bridge forming through both phospholipid bilayer leaflets was used to determine structural failure. The stress magnitude, failure strain, headgroup clustering, and damage responses were found to be strain state-dependent. The strain state order of detrimentality in descending order was equibiaxial, 2:1 non-equibiaxial, 4:1 non-equibiaxial, strip biaxial, and uniaxial. The phospholipid bilayer failed at von Mises strains of .46, .47, .53, .77, and 1.67 during these respective strain path simulations. Additionally, a Membrane Failure Limit Diagram (MFLD) was created using the pore nucleation, growth, and failure strains to demonstrate safe and unsafe membrane deformation regions. This MFLD allowed representative equations to be derived to predict membrane failure from in-plane strains. These results provide the basis to implement a more accurate mechano-physiological internal state variable continuum model that captures lower length scale damage and will aid in developing higher fidelity injury models.
Sadaf, Aiman; Du, Yang; Santillan, Claudia; Mortensen, Jonas S.; Molist, Iago; Seven, Alpay B.; Hariharan, Parameswaran; Skiniotis, Georgios; Loland, Claus J.; Kobilka, Brian K.; Guan, Lan; Byrne, Bernadette
2017-01-01
The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein manipulation. Structural and functional stability is a prerequisite for biophysical characterization. However, many conventional detergents are limited in their ability to stabilize membrane proteins, making development of novel detergents for membrane protein manipulation an important research area. The architecture of a detergent hydrophobic group, that directly interacts with the hydrophobic segment of membrane proteins, is a key factor in dictating their efficacy for both membrane protein solubilization and stabilization. In the current study, we developed two sets of maltoside-based detergents with four alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6) clearly outperformed DDM in stabilizing human β2 adrenergic receptor (β2AR) and its complex with Gs protein. A further evaluation of this DTM led to a clear visualization of β2AR-Gs complex via electron microscopic analysis. Thus, the current study not only provides novel detergent tools useful for membrane protein study, but also suggests that the dendronic architecture has a role in governing detergent efficacy for membrane protein stabilization. PMID:29619178
Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N
2012-12-01
Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.
Yavuz, Halenur; Kattan, Iman; Hernandez, Javier Matias; Hofnagel, Oliver; Witkowska, Agata; Raunser, Stefan; Walla, Peter Jomo; Jahn, Reinhard
2018-04-17
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion in the secretory pathway. They contain conserved regions, termed SNARE motifs, that assemble between opposing membranes directionally from their N-termini to their membrane-proximal C-termini in a highly exergonic reaction. However, how this energy is utilized to overcome the energy barriers along the fusion pathway is still under debate. Here we have used mutants of the SNARE synaptobrevin to arrest trans-SNARE zippering at defined stages. We have uncovered two distinct vesicle docking intermediates, where the membranes are loosely and tightly connected, respectively. The tightly connected state is irreversible and independent of maintaining assembled SNARE complexes. Together, our results shed new light on the intermediate stages along the pathway of membrane fusion. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes.
Sandoval, Nicholas R; Papoutsakis, Eleftherios T
2016-10-01
Metabolite toxicity in microbes, particularly at the membrane, remains a bottleneck in the production of fuels and chemicals. Under chemical stress, native adaptation mechanisms combat hyper-fluidization by modifying the phospholipids in the membrane. Recent work in fluxomics reveals the mechanism of how membrane damage negatively affects energy metabolism while lipidomic and transcriptomic analyses show that strains evolved to be tolerant maintain membrane fluidity under stress through a variety of mechanisms such as incorporation of cyclopropanated fatty acids, trans-unsaturated fatty acids, and upregulation of cell wall biosynthesis genes. Engineered strains with modifications made in the biosynthesis of fatty acids, peptidoglycan, and lipopolysaccharide have shown increased tolerance to exogenous stress as well as increased production of desired metabolites of industrial importance. We review recent advances in elucidation of mechanisms or toxicity and tolerance as well as efforts to engineer the bacterial membrane and cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interaction forces between DPPC bilayers on glass
Orozco-Alcaraz, Raquel; Kuhl, Tonya L.
2013-01-01
The Surface Force Apparatus (SFA) was utilized to obtain force-distance profiles between silica supported membranes formed by Langmuir-Blodgett deposition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). In the absence of a membrane, a long range electrostatic and short range steric repulsion is measured due to deprotonation of silica in water and roughness of the silica film. The electrostatic repulsion is partially screened by the lipid membrane and a van der Waals adhesion comparable to that measured with well packed DPPC membranes on mica is measured. This finding suggest that electrostatic interactions due to the underlying negatively charged silica are likely present in other systems of glass supported membranes. In contrast, the charge of an underlying mica substrate is almost completely screened when a lipid membrane is deposited on the mica. The difference in the two systems is attributed to stronger physisorption of zwitterionic lipids to molecularly smooth mica compared to rougher silica. PMID:23199333
Attanasio, Angelina; Diano, Nadia; Grano, Valentina; Sicuranza, Stefano; Rossi, Sergio; Bencivenga, Umberto; Fraconte, Luigi; Di Martino, Silvana; Canciglia, Paolo; Mita, Damiano Gustavo
2005-01-01
Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1 degrees C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills.
Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons
NASA Technical Reports Server (NTRS)
Zheng, F.; Gallagher, J. P.
1992-01-01
We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.
Optimisation of a Generic Ionic Model of Cardiac Myocyte Electrical Activity
Guo, Tianruo; Al Abed, Amr; Lovell, Nigel H.; Dokos, Socrates
2013-01-01
A generic cardiomyocyte ionic model, whose complexity lies between a simple phenomenological formulation and a biophysically detailed ionic membrane current description, is presented. The model provides a user-defined number of ionic currents, employing two-gate Hodgkin-Huxley type kinetics. Its generic nature allows accurate reconstruction of action potential waveforms recorded experimentally from a range of cardiac myocytes. Using a multiobjective optimisation approach, the generic ionic model was optimised to accurately reproduce multiple action potential waveforms recorded from central and peripheral sinoatrial nodes and right atrial and left atrial myocytes from rabbit cardiac tissue preparations, under different electrical stimulus protocols and pharmacological conditions. When fitted simultaneously to multiple datasets, the time course of several physiologically realistic ionic currents could be reconstructed. Model behaviours tend to be well identified when extra experimental information is incorporated into the optimisation. PMID:23710254