Science.gov

Sample records for membrane curvature preference

  1. Intrinsically disordered proteins drive membrane curvature

    NASA Astrophysics Data System (ADS)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  2. Protein-Induced Membrane Curvature Alters Local Membrane Tension

    PubMed Central

    Rangamani, Padmini; Mandadap, Kranthi K.; Oster, George

    2014-01-01

    Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins. PMID:25099814

  3. Preference for Curvature: A Historical and Conceptual Framework

    PubMed Central

    Gómez-Puerto, Gerardo; Munar, Enric; Nadal, Marcos

    2016-01-01

    That people find curved contours and lines more pleasurable than straight ones is a recurrent observation in the aesthetic literature. Although such observation has been tested sporadically throughout the history of scientific psychology, only during the last decade has it been the object of systematic research. Recent studies lend support to the idea that human preference for curved contours is biologically determined. However, it has also been argued that this preference is a cultural phenomenon. In this article, we review the available evidence, together with different attempts to explain the nature of preference for curvature: sensoriomotor-based and valuation-based approaches. We also argue that the lack of a unifying framework and clearly defined concepts might be undermining our efforts towards a better understanding of the nature of preference for curvature. Finally, we point to a series of unresolved matters as the starting point to further develop a consistent research program. PMID:26793092

  4. Transmembrane protein sorting driven by membrane curvature

    PubMed Central

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-01-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization. PMID:26522943

  5. Transmembrane protein sorting driven by membrane curvature

    NASA Astrophysics Data System (ADS)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  6. Adhesive Nanoparticles as Local Probes of Membrane Curvature.

    PubMed

    Agudo-Canalejo, Jaime; Lipowsky, Reinhard

    2015-10-14

    Biological and biomimetic membranes display complex shapes with nonuniform curvature. Because the interaction of adhesive nanoparticles with such membranes depends on the local membrane curvature, different segments of the same membrane can differ in their engulfment behavior. For a single vesicle in contact with many nanoparticles, we predict ten distinct engulfment patterns as well as morphological transitions between these patterns, which are directly accessible to experiment.

  7. Nanoscale Membrane Curvature detected by Polarized Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin

    Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.

  8. The role of membrane curvature for the wrapping of nanoparticles.

    PubMed

    Bahrami, Amir Houshang; Lipowsky, Reinhard; Weikl, Thomas R

    2016-01-14

    Cellular internalization of nanoparticles requires the full wrapping of the nanoparticles by the cell membrane. This wrapping process can occur spontaneously if the adhesive interactions between the nanoparticles and the membranes are sufficiently strong to compensate for the cost of membrane bending. In this article, we show that the membrane curvature prior to wrapping plays a key role for the wrapping process, besides the size and shape of the nanoparticles that have been investigated in recent years. For membrane segments that initially bulge away from nanoparticles by having a mean curvature of the same sign as the mean curvature of the particle surface, we find strongly stable partially wrapped states that can prevent full wrapping. For membrane segments that initially bulge towards the nanoparticles, in contrast, partially wrapped states can constitute a significant energetic barrier for the wrapping process.

  9. Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by Inducing Membrane Curvature[W

    PubMed Central

    Armbruster, Ute; Labs, Mathias; Pribil, Mathias; Viola, Stefania; Xu, Wenteng; Scharfenberg, Michael; Hertle, Alexander P.; Rojahn, Ulrike; Jensen, Poul Erik; Rappaport, Fabrice; Joliot, Pierre; Dörmann, Peter; Wanner, Gerhard; Leister, Dario

    2013-01-01

    Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins. PMID:23839788

  10. Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes.

    PubMed

    Bradley, Ryan P; Radhakrishnan, Ravi

    2016-08-30

    We present coarse-grained molecular dynamics simulations of the epsin N-terminal homology domain interacting with a lipid bilayer and demonstrate a rigorous theoretical formalism and analysis method for computing the induced curvature field in varying concentrations of the protein in the dilute limit. Our theory is based on the description of the height-height undulation spectrum in the presence of a curvature field. We formulated an objective function to compare the acquired undulation spectrum from the simulations to that of the theory. We recover the curvature field parameters by minimizing the objective function even in the limit where the protein-induced membrane curvature is of the same order as the amplitude due to thermal undulations. The coupling between curvature and undulations leads to significant predictions: (i) Under dilute conditions, the proteins can sense a site of spontaneous curvature at distances much larger than their size; (ii) as the density of proteins increases the coupling focuses and stabilizes the curvature field to the site of the proteins; and (iii) the mapping of the protein localization and the induction of a stable curvature is a cooperative process that can be described through a Hill function. PMID:27531962

  11. Intermembrane Docking Reactions Are Regulated by Membrane Curvature

    PubMed Central

    Kunding, Andreas H.; Mortensen, Michael W.; Christensen, Sune M.; Bhatia, Vikram K.; Makarov, Ivan; Metzler, Ralf; Stamou, Dimitrios

    2011-01-01

    The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes. PMID:22261058

  12. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  13. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656

  14. Relaxation and curvature-induced molecular flows within multicomponent membranes.

    PubMed

    Morris, Richard G

    2014-06-01

    The quantitative understanding of membranes is still rooted in work performed in the 1970s by Helfrich and others, concerning amphiphilic bilayers. However, most biological membranes contain a wide variety of nonamphiphilic molecules too. Drawing analogy with the physics of nematic-non-nematic mixtures, we present a dynamical (out-of-equilibrium) description of such multicomponent membranes. The approach combines nematohydrodynamics in the linear regime and a proper use of (differential-) geometry. The main result is to demonstrate that one can obtain equations describing a cross-diffusion effect (similar to the Soret and Dufour effects) between curvature and the (in-membrane) flow of amphiphilic molecules relative to nonamphiphilic ones. Surprisingly, the shape of a membrane relaxes according to a simple heat equation in the mean curvature, a process that is accompanied by a simultaneous boost to the diffusion of amphiphiles away from regions of high curvature. The model also predicts the inverse process, by which the forced bending of a membrane induces a flow of amphiphilic molecules towards areas of high curvature. In principle, numerical values for the relevant diffusion coefficients should be verifiable by experiment. PMID:25019811

  15. Control of microelectromechanical systems membrane curvature by silicon ion implantation

    NASA Astrophysics Data System (ADS)

    Jin, S.; Mavoori, H.; Kim, J.; Aksyuk, V. A.

    2003-09-01

    Thin silicon membranes in microelectromechanical systems (MEMS) optical devices such as beam-steering, movable mirrors may exhibit undesirable curvature when their surface is metallized with light-reflecting metals to enhance optical performance. We have applied Si+ ion implantations at dose levels of 0.4-5×1016/cm2 into the gold metallization layer to successfully reduce the mirror curvature as well as the degree of its temperature-dependent changes. The curvature change as well as the temperature dependence is found to be dependent on the implantation dose. The mechanism of the observed curvature flattening effect is attributed mostly to the induced compressive stress in gold metallization caused by the insertion of foreign implanted atoms of silicon. Such a Si implantation approach can be useful as a means for post-fabrication correction of unwanted curvature in MEMS membranes, as well as a technique to intentionally introduce a desired degree of curvature if needed. A convenient blanket implantation process can be utilized with minimal contamination problems as Si is a common element already present in the MEMS.

  16. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton

    PubMed Central

    Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia

    2016-01-01

    Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896

  17. Bcl-2 apoptosis proteins, mitochondrial membrane curvature, and cancer

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Schmidt, Nathan; Sanders, Lori; Mishra, Abhijit; Wong, Gerard; Ivashyna, Olena; Christenson, Eric; Schlesinger, Paul; Akabori, Kiyotaka; Santangelo, Christian

    2012-02-01

    Critical interactions between Bcl-2 family proteins permeabilize the outer mitochondrial membrane, a common decision point early in the intrinsic apoptotic pathway that irreversibly commits the cell to death. However, a unified picture integrating the essential non-passive role of lipid membranes with the contested dynamics of Bcl-2 regulation remains unresolved. Correlating results between synchrotron x-ray diffraction and microscopy in cell-free assays, we report activation of pro-apoptotic Bax induces strong pure negative Gaussian membrane curvature topologically necessary for pore formation and membrane remodeling events. Strikingly, Bcl-xL suppresses not only Bax-induced pore formation, but also membrane remodeling by disparate systems including cell penetrating, antimicrobial or viral fusion peptides, and bacterial toxin, none of which have BH3 allosteric domains to mediate direct binding. We propose a parallel mode of Bcl-2 pore regulation in which Bax and Bcl-xL induce antagonistic and mutually interacting Gaussian membrane curvatures. The universal nature of curvature-mediated interactions allows synergy with direct binding mechanisms, and potentially accounts for the Bcl-2 family modulation of mitochondrial fission/fusion dynamics.

  18. Curvature-mediated interactions between membrane proteins.

    PubMed Central

    Kim, K S; Neu, J; Oster, G

    1998-01-01

    Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence of stable protein aggregates, despite their pairwise repulsions. PMID:9788923

  19. Exo70 Generates Membrane Curvature for Morphogenesis and Cell Migration

    PubMed Central

    Zhao, Yuting; Liu, Jianglan; Yang, Changsong; Capraro, Benjamin R.; Baumgart, Tobias; Bradley, Ryan P.; Ramakrishnan, N.; Xu, Xiaowei; Radhakrishnan, Ravi; Svitkina, Tatyana; Guo, Wei

    2013-01-01

    Dynamic shape changes of the plasma membrane are fundamental to many processes ranging from morphogenesis and cell migration to phagocytosis and viral propagation. Here we demonstrate that Exo70, a component of the exocyst complex, induces tubular membrane invaginations towards the lumen of synthetic vesicles in vitro and generates protrusions on the surface of cells. Biochemical analyses using Exo70 mutants and independent molecular dynamics simulations based on Exo70 structure demonstrate that Exo70 generates negative membrane curvature through an oligomerization-based mechanism. In cells, the membrane-deformation function of Exo70 is required for protrusion formation and directional cell migration. Exo70 thus represents a membrane-bending protein that may couple actin dynamics and plasma membrane remodeling for morphogenesis. PMID:23948253

  20. Spontaneous curvature of bilayer membranes from molecular simulations: Asymmetric lipid densities and asymmetric adsorption

    NASA Astrophysics Data System (ADS)

    RóŻycki, Bartosz; Lipowsky, Reinhard

    2015-02-01

    Biomimetic and biological membranes consist of molecular bilayers with two leaflets which are typically exposed to different aqueous environments and may differ in their molecular density or composition. Because of these asymmetries, the membranes prefer to curve in a certain manner as quantitatively described by their spontaneous curvature. Here, we study such asymmetric membranes via coarse-grained molecular dynamics simulations. We consider two mechanisms for the generation of spontaneous curvature: (i) different lipid densities within the two leaflets and (ii) leaflets exposed to different concentrations of adsorbing particles. We focus on membranes that experience no mechanical tension and describe two methods to compute the spontaneous curvature. The first method is based on the detailed structure of the bilayer's stress profile which can hardly be measured experimentally. The other method starts from the intuitive view that the bilayer represents a thin fluid film bounded by two interfaces and reduces the complexity of the stress profile to a few membrane parameters that can be measured experimentally. For the case of asymmetric adsorption, we introduce a simulation protocol based on two bilayers separated by two aqueous compartments with different adsorbate concentrations. The adsorption of small particles with a size below 1 nm is shown to generate large spontaneous curvatures up to about 1/(24 nm). Our computational approach is quite general: it can be applied to any molecular model of bilayer membranes and can be extended to other mechanisms for the generation of spontaneous curvatures as provided, e.g., by asymmetric lipid composition or depletion layers of solute molecules.

  1. Lipid membrane-mediated attraction between curvature inducing objects.

    PubMed

    van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J

    2016-01-01

    The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (-3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles. PMID:27618764

  2. Lipid membrane-mediated attraction between curvature inducing objects

    PubMed Central

    van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J.

    2016-01-01

    The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (−3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles. PMID:27618764

  3. Synaptobrevin Transmembrane Domain Influences Exocytosis by Perturbing Vesicle Membrane Curvature

    PubMed Central

    Chang, Che-Wei; Jackson, Meyer B.

    2015-01-01

    Membrane fusion requires that nearly flat lipid bilayers deform into shapes with very high curvature. This makes membrane bending a critical force in determining fusion mechanisms. A lipid bilayer will bend spontaneously when material is distributed asymmetrically between its two monolayers, and its spontaneous curvature (C0) will influence the stability of curved fusion intermediates. Prior work on Ca2+-triggered exocytosis revealed that fusion pore lifetime (τ) varies with vesicle content (Q), and showed that this relation reflects membrane bending energetics. Lipids that alter C0 change the dependence of τ on Q. These results suggested that the greater stability of an initial exocytotic fusion pore associated with larger vesicles reflects the need to bend more membrane during fusion pore dilation. In this study, we explored the possibility of manipulating C0 by mutating the transmembrane domain (TMD) of the vesicle membrane protein synaptobrevin 2 (syb2). Amperometric measurements of exocytosis in mouse chromaffin cells revealed that syb2 TMD mutations altered the relation between τ and Q. The effects of these mutations showed a striking periodicity, changing sign as the structural perturbation moved through the inner and outer leaflets. Some glycine and charge mutations also influenced the dependence of τ on Q in a manner consistent with expected changes in C0. These results suggest that side chains in the syb2 TMD influence the kinetics of exocytosis by perturbing the packing of the surrounding lipids. The present results support the view that membrane bending occurs during fusion pore expansion rather than during fusion pore formation. This supports the view of an initial fusion pore through two relatively flat membranes formed by protein. PMID:26153704

  4. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.

    PubMed

    Baumgart, Tobias; Capraro, Benjamin R; Zhu, Chen; Das, Sovan L

    2011-01-01

    Research investigating lipid membrane curvature generation and sensing is a rapidly developing frontier in membrane physical chemistry and biophysics. The fast recent progress is based on the discovery of a plethora of proteins involved in coupling membrane shape to cellular membrane function, the design of new quantitative experimental techniques to study aspects of membrane curvature, and the development of analytical theories and simulation techniques that allow a mechanistic interpretation of quantitative measurements. The present review first provides an overview of important classes of membrane proteins for which function is coupled to membrane curvature. We then survey several mechanisms that are assumed to underlie membrane curvature sensing and generation. Finally, we discuss relatively simple thermodynamic/mechanical models that allow quantitative interpretation of experimental observations.

  5. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo.

    PubMed

    Dymond, Marcus K

    2016-08-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697

  6. IRSp53 senses negative membrane curvature and phase separates along membrane tubules

    PubMed Central

    Prévost, Coline; Zhao, Hongxia; Manzi, John; Lemichez, Emmanuel; Lappalainen, Pekka; Callan-Jones, Andrew; Bassereau, Patricia

    2015-01-01

    BAR domain proteins contribute to membrane deformation in diverse cellular processes. The inverted-BAR (I-BAR) protein IRSp53, for instance, is found on the inner leaflet of the tubular membrane of filopodia; however its role in the formation of these structures is incompletely understood. Here we develop an original assay in which proteins are encapsulated in giant unilamellar vesicles connected to membrane nanotubes. Our results demonstrate that I-BAR dimers sense negative membrane curvature. Experiment and theory reveal that the I-BAR displays a non-monotonic sorting with curvature, and expands the tube at high imposed tension while constricting it at low tension. Strikingly, at low protein density and tension, protein-rich domains appear along the tube. This peculiar behaviour is due to the shallow intrinsic curvature of I-BAR dimers. It allows constriction of weakly curved membranes coupled to local protein enrichment at biologically relevant conditions. This might explain how IRSp53 contributes in vivo to the initiation of filopodia. PMID:26469246

  7. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    PubMed

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it

  8. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    SciTech Connect

    Barragán Vidal, I. A. Müller, M.; Rosetti, C. M.; Pastorino, C.

    2014-11-21

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.

  9. The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction.

    PubMed

    Ho, Ruoya; Stroupe, Christopher

    2016-10-01

    Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. PMID:27307091

  10. Influenza M2 Transmembrane Domain Senses Membrane Heterogeneity and Enhances Membrane Curvature.

    PubMed

    Ho, Chian Sing; Khadka, Nawal K; She, Fengyu; Cai, Jianfeng; Pan, Jianjun

    2016-07-01

    Targeting host cell membranes by M2 of influenza A virus is important for virus invasion and replication. We study the transmembrane domain of M2 (M2TM) interacting with mica-supported planar bilayers and free-standing giant unilamellar vesicles (GUVs). Using solution atomic force microscopy (AFM), we show that the size of M2TM oligomers is dependent on lipid composition. The addition of M2TM to lipid bilayers containing liquid-ordered (Lo) and liquid-disordered (Ld) phases reveals that M2TM preferentially partitions into the Ld phase; phase-dependent partitioning results in a larger rigidity of the Ld phase. We next use fluorescence microscopy to study the effects of M2TM on phase-coexisting GUVs. In particular, M2TM is found to increase GUVs' miscibility transition temperature Tmix. The augmented thermodynamic stability can be accounted for by considering an enhanced energy barrier of lipid mixing between coexisting phases. Our GUV study also shows that M2TM can elicit an array of vesicle shapes mimicking virus budding. M2TM enhanced membrane curvature is consistent with our AFM data, which show altered membrane rigidity and consequently line tension at domain edges. Together, our results highlight that in addition to conducting protons, M2TM can actively regulate membrane heterogeneity and augment membrane curvature. PMID:27285399

  11. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian

    PubMed Central

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then

  12. Monolayer spontaneous curvature of raft-forming membrane lipids

    NASA Astrophysics Data System (ADS)

    Kollmitzer, Benjamin; Heftberger, Peter; Rappolt, Michael; Pabst, Georg

    Monolayer spontaneous curvatures for cholesterol, DOPE, POPE, DOPC, DPPC, DSPC, POPC, SOPC, and egg sphingomyelin were obtained using small-angle X-ray scattering (SAXS) on inverted hexagonal phases (HII). Spontaneous curvatures of bilayer forming lipids were estimated by adding controlled amounts to a HII forming template following previously established protocols. Spontanous curvatures of both phosphatidylethanolamines and cholesterol were found to be at least a factor of two more negative than those of phosphatidylcholines, whose J0 are closer to zero. Interestingly, a significant positive J0 value (+0.1 1/nm) was retrieved for DPPC at 25 {\\deg}C. We further determined the temperature dependence of the spontaneous curvatures J0(T) in the range from 15 to 55 \\degC, resulting in a quite narrow distribution of -1 to -3 * 10^-3 1/nm{\\deg}C for most investigated lipids. The data allowed us to estimate the monolayer spontaneous curvatures of ternary lipid mixtures showing liquid ordered / liquid disordered phase coexistence. We report spontaneous curvature phase diagrams for DSPC/DOPC/Chol, DPPC/DOPC/Chol and SM/POPC/Chol and discuss effects on protein insertion and line tension.

  13. A cost-benefit analysis of the physical mechanisms of membrane curvature

    PubMed Central

    Stachowiak, Jeanne C.; Brodsky, Frances M.; Miller, Elizabeth A.

    2013-01-01

    Many cellular membrane-bound structures exhibit distinct curvature that is driven by the physical properties of their lipid and protein constituents. Here we review how cells manipulate and control this curvature in the context of dynamic events such as vesicle-mediated membrane traffic. Lipids and cargo proteins each contribute energetic barriers that must be overcome during vesicle formation. In contrast, protein coats and their associated accessory proteins drive membrane bending using a variety of interdependent physical mechanisms. We survey the energetic costs and drivers involved in membrane curvature, drawing a contrast between the stochastic contributions of molecular crowding and the deterministic assembly of protein coats. These basic principles also apply to other cellular examples of membrane bending events, including important disease-related problems like viral egress. PMID:23999615

  14. Membrane Curvature Induced by Aggregates of LH2s and Monomeric LH1s

    PubMed Central

    Chandler, Danielle E.; Gumbart, James; Stack, John D.; Chipot, Christophe; Schulten, Klaus

    2009-01-01

    Abstract The photosynthetic apparatus of purple bacteria is contained within organelles called chromatophores, which form as extensions of the cytoplasmic membrane. The shape of these chromatophores can be spherical (as in Rhodobacter sphaeroides), lamellar (as in Rhodopseudomonas acidophila and Phaeospirillum molischianum), or tubular (as in certain Rb. sphaeroides mutants). Chromatophore shape is thought to be influenced by the integral membrane proteins Light Harvesting Complexes I and II (LH1 and LH2), which pack tightly together in the chromatophore. It has been suggested that the shape of LH2, together with its close packing in the membrane, induces membrane curvature. The mechanism of LH2-induced curvature is explored via molecular dynamics simulations of multiple LH2 complexes in a membrane patch. LH2s from three species—Rb. sphaeroides, Rps. acidophila, and Phsp. molischianum—were simulated in different packing arrangements. In each case, the LH2s pack together and tilt with respect to neighboring LH2s in a way that produces an overall curvature. This curvature appears to be driven by a combination of LH2's shape and electrostatic forces that are modulated by the presence of well-conserved cytoplasmic charged residues, the removal of which inhibits LH2 curvature. The interaction of LH2s and an LH1 monomer is also explored, and it suggests that curvature is diminished by the presence of LH1 monomers. The implications of our results for chromatophore shape are discussed. PMID:19948127

  15. When physics takes over: BAR proteins and membrane curvature

    PubMed Central

    Simunovic, Mijo; Voth, Gregory A.; Callan-Jones, Andrew; Bassereau, Patricia

    2016-01-01

    Cell membranes become highly curved during membrane trafficking, cytokinesis, infection, immune response or cell motion. Bin/amphiphysin/Rvs (BAR) domain proteins with their intrinsically curved and anisotropic shape are involved in many of these processes, but with a large spectrum of modes of action. In vitro experiments and multiscale computer simulations have contributed in identifying a minimal set of physical parameters, namely protein density on the membrane, membrane tension, and membrane shape, that control how bound BAR domain proteins behave on the membrane. In this review, we summarize the multifaceted coupling of BAR proteins to membrane mechanics and propose a simple phase diagram that recapitulates the effects of these parameters. PMID:26519988

  16. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    SciTech Connect

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C.

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.

  17. Curvature–undulation coupling as a basis for curvature sensing and generation in bilayer membranes

    PubMed Central

    Bradley, Ryan P.; Radhakrishnan, Ravi

    2016-01-01

    We present coarse-grained molecular dynamics simulations of the epsin N-terminal homology domain interacting with a lipid bilayer and demonstrate a rigorous theoretical formalism and analysis method for computing the induced curvature field in varying concentrations of the protein in the dilute limit. Our theory is based on the description of the height–height undulation spectrum in the presence of a curvature field. We formulated an objective function to compare the acquired undulation spectrum from the simulations to that of the theory. We recover the curvature field parameters by minimizing the objective function even in the limit where the protein-induced membrane curvature is of the same order as the amplitude due to thermal undulations. The coupling between curvature and undulations leads to significant predictions: (i) Under dilute conditions, the proteins can sense a site of spontaneous curvature at distances much larger than their size; (ii) as the density of proteins increases the coupling focuses and stabilizes the curvature field to the site of the proteins; and (iii) the mapping of the protein localization and the induction of a stable curvature is a cooperative process that can be described through a Hill function. PMID:27531962

  18. Molecular Characterization of Caveolin-induced Membrane Curvature*

    PubMed Central

    Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M.; Walser, Piers; Collins, Brett M.; Parton, Robert G.

    2015-01-01

    The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. PMID:26304117

  19. The Homeodomain Derived Peptide Penetratin Induces Curvature of Fluid Membrane Domains

    PubMed Central

    Lamazière, Antonin; Wolf, Claude; Lambert, Olivier; Chassaing, Gérard; Trugnan, Germain; Ayala-Sanmartin, Jesus

    2008-01-01

    Background Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, “physical endocytosis”. Methodology/Principal Findings Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in “raft” microdomains versus disordered fluid “non-raft” domains) in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation) are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like) membrane domains. Conclusions/Significance The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we showed that

  20. Fluid lipid membranes: from differential geometry to curvature stresses.

    PubMed

    Deserno, Markus

    2015-01-01

    A fluid lipid membrane transmits stresses and torques that are fully determined by its geometry. They can be described by a stress- and torque-tensor, respectively, which yield the force or torque per length through any curve drawn on the membrane's surface. In the absence of external forces or torques the surface divergence of these tensors vanishes, revealing them as conserved quantities of the underlying Euler-Lagrange equation for the membrane's shape. This review provides a comprehensive introduction into these concepts without assuming the reader's familiarity with differential geometry, which instead will be developed as needed, relying on little more than vector calculus. The Helfrich Hamiltonian is then introduced and discussed in some depth. By expressing the quest for the energy-minimizing shape as a functional variation problem subject to geometric constraints, as proposed by Guven (2004), stress- and torque-tensors naturally emerge, and their connection to the shape equation becomes evident. How to reason with both tensors is then illustrated with a number of simple examples, after which this review concludes with four more sophisticated applications: boundary conditions for adhering membranes, corrections to the classical micropipette aspiration equation, membrane buckling, and membrane mediated interactions.

  1. The Influenza Hemagglutinin Fusion Domain Is an Amphipathic Helical Hairpin That Functions by Inducing Membrane Curvature*

    PubMed Central

    Smrt, Sean T.; Draney, Adrian W.; Lorieau, Justin L.

    2015-01-01

    The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. PMID:25398882

  2. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature.

    PubMed

    Smrt, Sean T; Draney, Adrian W; Lorieau, Justin L

    2015-01-01

    The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk.

  3. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach.

    PubMed

    Bavi, Omid; Cox, Charles D; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef; Martinac, Boris

    2016-02-05

    Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace's equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace's equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.

  4. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach

    PubMed Central

    Bavi, Omid; Cox, Charles D.; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef; Martinac, Boris

    2016-01-01

    Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels. PMID:26861405

  5. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  6. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature.

    PubMed

    Henne, William Mike; Kent, Helen M; Ford, Marijn G J; Hegde, Balachandra G; Daumke, Oliver; Butler, P Jonathan G; Mittal, Rohit; Langen, Ralf; Evans, Philip R; McMahon, Harvey T

    2007-07-01

    A spectrum of membrane curvatures exists within cells, and proteins have evolved different modules to detect, create, and maintain these curvatures. Here we present the crystal structure of one such module found within human FCHo2. This F-BAR (extended FCH) module consists of two F-BAR domains, forming an intrinsically curved all-helical antiparallel dimer with a Kd of 2.5 microM. The module binds liposomes via a concave face, deforming them into tubules with variable diameters of up to 130 nm. Pulse EPR studies showed the membrane-bound dimer is the same as the crystal dimer, although the N-terminal helix changed conformation on membrane binding. Mutation of a phenylalanine on this helix partially attenuated narrow tubule formation, and resulted in a gain of curvature sensitivity. This structure shows a distant relationship to curvature-sensing BAR modules, and suggests how similar coiled-coil architectures in the BAR superfamily have evolved to expand the repertoire of membrane-sculpting possibilities. PMID:17540576

  7. A PH domain in ACAP1 possesses key features of the BAR domain in promoting membrane curvature.

    PubMed

    Pang, Xiaoyun; Fan, Jun; Zhang, Yan; Zhang, Kai; Gao, Bingquan; Ma, Jun; Li, Jian; Deng, Yuchen; Zhou, Qiangjun; Egelman, Edward H; Hsu, Victor W; Sun, Fei

    2014-10-13

    The BAR (Bin-Amphiphysin-Rvs) domain undergoes dimerization to produce a curved protein structure, which superimposes onto membrane through electrostatic interactions to sense and impart membrane curvature. In some cases, a BAR domain also possesses an amphipathic helix that inserts into the membrane to induce curvature. ACAP1 (Arfgap with Coil coil, Ankyrin repeat, and PH domain protein 1) contains a BAR domain. Here, we show that this BAR domain can neither bind membrane nor impart curvature, but instead requires a neighboring PH (Pleckstrin Homology) domain to achieve these functions. Specific residues within the PH domain are responsible for both membrane binding and curvature generation. The BAR domain adjacent to the PH domain instead interacts with the BAR domains of neighboring ACAP1 proteins to enable clustering at the membrane. Thus, we have uncovered the molecular basis for an unexpected and unconventional collaboration between PH and BAR domains in membrane bending. PMID:25284369

  8. Arenavirus budding resulting from viral-protein-associated cell membrane curvature

    PubMed Central

    Schley, David; Whittaker, Robert J.; Neuman, Benjamin W.

    2013-01-01

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations. PMID:23864502

  9. Poxviruses Encode a Reticulon-Like Protein that Promotes Membrane Curvature

    PubMed Central

    Erlandson, Karl J.; Bisht, Himani; Weisberg, Andrea S.; Hyun, Seong-In; Hansen, Bryan T.; Fischer, Elizabeth R.; Hinshaw, Jenny E.; Moss, Bernard

    2016-01-01

    Poxviruses are enveloped DNA viruses that replicate within the cytoplasm. The first viral structures are crescents and spherical particles with a lipoprotein membrane bilayer thought to be derived from the endoplasmic reticulum (ER). We determined that A17, a conserved viral transmembrane protein essential for crescent formation, forms homo-oligomers and shares topological features with cellular reticulon-like proteins, which promote membrane curvature and contribute to the tubular structure of the ER. When the purified A17 protein was incorporated into liposomes, 25 nm diameter vesicles and tubules formed at low and high A17 concentrations, respectively. In addition, intracellular expression of A17, in the absence of other viral structural proteins, transformed the ER into aggregated 3-dimensional tubular networks. We suggest that A17 is a viral reticulon-like protein that contributes to curvature during biogenesis of the poxvirus membrane. PMID:26923595

  10. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    NASA Astrophysics Data System (ADS)

    Schmid, Friederike; Dolezel, Stefan; Lenz, Olaf; Meinhardt, Sebastian

    2014-03-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model.

  11. The role of Gauss curvature in a membrane phase separation problem

    NASA Astrophysics Data System (ADS)

    Gillmor, Susan; Lee, Jieun; Ren, Xiaofeng

    2011-12-01

    Consider a two-phase lipid vesicle. Below the transition temperature, the phases separate into non-connecting domains that coarsen into larger areas. The free energy of phase properties determines the length of the boundaries separating the regions. The two phases correspond to different lipid compositions, and in cells, this fluctuation in composition is a dynamic process vital to its function. We prove that a small patch of the minority lipids forms at a point of the membrane where the Gauss curvature attains a maximum. This patch has a round shape approximately and its boundary has a constant geodesic curvature. The proof consists of three steps. The construction of a family of good approximate solutions, an improvement of the approximate solutions so that their geodesic curvature is a constant modulo translation, and the identification of an exact solution from the family of the improved approximate solutions. Our theoretical results are supported by vesicle experiments.

  12. Membrane curvature generated by asymmetric depletion layers of ions, small molecules, and nanoparticles.

    PubMed

    Różycki, Bartosz; Lipowsky, Reinhard

    2016-08-21

    Biomimetic and biological membranes consist of molecular bilayers with two leaflets that are typically exposed to different aqueous solutions. We consider solutions of "particles" that experience effectively repulsive interactions with these membranes and form depletion layers in front of the membrane leaflets. The particles considered here are water-soluble, have a size between a few angstrom and a few nanometers as well as a rigid, more or less globular shape, and do neither adsorb onto the membranes nor permeate these membranes. Examples are provided by ions, small sugar molecules, globular proteins, or inorganic nanoparticles with a hydrophilic surface. We first study depletion layers in a hard-core system based on ideal particle solutions as well as hard-wall interactions between these particles and the membrane. For this system, we obtain exact expressions for the coverages and tensions of the two leaflets as well as for the spontaneous curvature of the bilayer membrane. All of these quantities depend linearly on the particle concentrations. The exact results for the hard-core system also show that the spontaneous curvature can be directly deduced from the planar membrane geometry. Our results for the hard-core system apply both to ions and solutes that are small compared to the membrane thickness and to nanoparticles with a size that is comparable to the membrane thickness, provided the particle solutions are sufficiently dilute. We then corroborate the different relationships found for the hard-core system by extensive simulations of a soft-core particle system using dissipative particle dynamics. The simulations confirm the linear relationships obtained for the hard-core system. Both our analytical and our simulation results show that the spontaneous curvature induced by a single particle species can be quite large. When one leaflet of the membrane is exposed, e.g., to a 100 mM solution of glucose, a lipid bilayer can acquire a spontaneous curvature of ±1

  13. Membrane curvature generated by asymmetric depletion layers of ions, small molecules, and nanoparticles

    NASA Astrophysics Data System (ADS)

    RóŻycki, Bartosz; Lipowsky, Reinhard

    2016-08-01

    Biomimetic and biological membranes consist of molecular bilayers with two leaflets that are typically exposed to different aqueous solutions. We consider solutions of "particles" that experience effectively repulsive interactions with these membranes and form depletion layers in front of the membrane leaflets. The particles considered here are water-soluble, have a size between a few angstrom and a few nanometers as well as a rigid, more or less globular shape, and do neither adsorb onto the membranes nor permeate these membranes. Examples are provided by ions, small sugar molecules, globular proteins, or inorganic nanoparticles with a hydrophilic surface. We first study depletion layers in a hard-core system based on ideal particle solutions as well as hard-wall interactions between these particles and the membrane. For this system, we obtain exact expressions for the coverages and tensions of the two leaflets as well as for the spontaneous curvature of the bilayer membrane. All of these quantities depend linearly on the particle concentrations. The exact results for the hard-core system also show that the spontaneous curvature can be directly deduced from the planar membrane geometry. Our results for the hard-core system apply both to ions and solutes that are small compared to the membrane thickness and to nanoparticles with a size that is comparable to the membrane thickness, provided the particle solutions are sufficiently dilute. We then corroborate the different relationships found for the hard-core system by extensive simulations of a soft-core particle system using dissipative particle dynamics. The simulations confirm the linear relationships obtained for the hard-core system. Both our analytical and our simulation results show that the spontaneous curvature induced by a single particle species can be quite large. When one leaflet of the membrane is exposed, e.g., to a 100 mM solution of glucose, a lipid bilayer can acquire a spontaneous curvature of ±1

  14. Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers.

    PubMed

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2013-08-01

    Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices.

  15. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    PubMed Central

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  16. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham-Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description, the

  17. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    SciTech Connect

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  18. Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers

    PubMed Central

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S. P.

    2014-01-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins. PMID:25340788

  19. Membrane penetration and curvature induced by single-walled carbon nanotubes: the effect of diameter, length, and concentration.

    PubMed

    Lee, Hwankyu

    2013-10-14

    We performed coarse-grained (CG) molecular dynamics (MD) simulations of single-walled carbon nanotubes (SWNTs) with lipid bilayers to understand the effect of the SWNT diameter, length, and concentration on membrane curvature and penetration. Starting with different orientations of multiple SWNTs near lipid bilayers, simulations show that SWNTs insert into the bilayer and induce membrane curvature, which is much larger than that observed from previous simulations of a single SWNT. Longer and thicker SWNTs at higher concentration cause larger membrane curvature, indicating the effect of the SWNT size and concentration, in qualitative agreement with experiments. In particular, thicker SWNTs significantly increase the bilayer height and the difference of the projected and contour bilayer areas, decrease the area compressibility, and disorder lipids. When inserted into the bilayer, thinner SWNTs mainly contact the entire tails of lipids, while thicker SWNTs are wrapped mainly by the ending tail-carbons, leading to the larger membrane curvature. This indicates the effect of SWNT diameter on the SWNT-lipid interaction, yielding different extents of membrane curvature. These findings imply that the SWNT-induced membrane penetration and curvature are modulated by a combination of SWNT length, diameter, and concentration.

  20. Holographic interferometry of ultrasmall-pressure-induced curvature changes of bilayer lipid membranes

    SciTech Connect

    Picard, G.; Schneider-Henriquez, J.E.; Fendler, J.H. )

    1990-01-25

    Two-exposure interferometric holograms have been shown to sensitively report ultrasmall-pressure (10 natm)-induced curvature changes in glyceryl monooleate (GMO) bilayer lipid membranes (BLMs). The number of concentric fringes observed, and hence the lateral distance between the plane of the Teflon and the BLM, increased linearly with increasing transmembrane pressure and led to a value of 1.1 {plus minus} 0.05 dyn/cm for the surface tension of the BLM. BLMs with appreciable Plateau-Gibbs borders have been shown to undergo nonuniform deformation; the bilayer portion is distorted less than the surrounding Plateau-Gibbs border upon the application of a transmembrane pressure gradient.

  1. Interaction of the N-terminus of sterol carrier protein 2 with membranes: role of membrane curvature.

    PubMed Central

    Huang, H; Ball, J M; Billheimer, J T; Schroeder, F

    1999-01-01

    Although neither the physiological function nor the mechanism of action of sterol carrier protein 2 (SCP(2)) is yet completely clear, it is thought that SCP(2) interacts with membranes to elicit its biological effects. The results presented here show that the SCP(2) N-terminus, composed of two amphipathic alpha-helices, interacted preferentially with highly curved but not lower-curvature membranes containing anionic phospholipid. CD spectra of SCP(2) showed up to 1. 2-fold increased alpha-helical content, on the interaction of SCP(2) with small unilamellar vesicles (SUV) (median radius 10-14 nm) but less with large unilamellar vesicles (LUV) (median radius 52-60 nm). Although enhanced interaction with the SUV membranes was due in part to the radius of curvature and to the greater exposure of acidic phospholipid in the outer leaflet of the bilayer, simply increasing the molar percentage of acidic phospholipid in the LUV membranes had much less effect on SCP(2) binding. A similar preferential interaction was observed with highly curved SUV as opposed to LUV for the SCP(2) N-terminal peptide (1-32)SCP(2) as well as structurally modified peptides in the order (1-32)SCP(2)=(10-32)SCP(2)>(1-24)SCP(2)>>(1-E20-32)SCP(2). The CD results were confirmed with an independent filtration binding assay, which showed that SCP(2) bound 5-fold more to SUV than LUV, whereas its N-terminal peptides bound up to 4-fold better in the order (1-32)SCP(2)=(10-32)SCP(2)>(1-24)SCP(2)>(1-E20-32)SCP(2). Finally, cholesterol potentiated the binding of SCP(2) and N-terminal peptides to anionic-phospholipid-containing SUV but not LUV. These findings were consistent with the SCP(2) N-terminus being a membrane-binding domain that was highly dependent on membrane surface curvature as well as on lipid composition. PMID:10567245

  2. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport

    PubMed Central

    Xu, Peng; Baldridge, Ryan D.; Chi, Richard J.; Burd, Christopher G.

    2013-01-01

    Vesicle-mediated protein transport between organelles of the secretory and endocytic pathways is strongly influenced by the composition and organization of membrane lipids. In budding yeast, protein transport between the trans-Golgi network (TGN) and early endosome (EE) requires Drs2, a phospholipid translocase in the type IV P-type ATPase family. However, downstream effectors of Drs2 and specific phospholipid substrate requirements for protein transport in this pathway are unknown. Here, we show that the Arf GTPase-activating protein (ArfGAP) Gcs1 is a Drs2 effector that requires a variant of the ArfGAP lipid packing sensor (+ALPS) motif for localization to TGN/EE membranes. Drs2 increases membrane curvature and anionic phospholipid composition of the cytosolic leaflet, both of which are sensed by the +ALPS motif. Using mutant forms of Drs2 and the related protein Dnf1, which alter their ability to recognize phosphatidylserine, we show that translocation of this substrate to the cytosolic leaflet is essential for +ALPS binding and vesicular transport between the EE and the TGN. PMID:24019533

  3. Complex instability of axially compressed tubular lipid membrane with controlled spontaneous curvature.

    PubMed

    Golushko, I Yu; Rochal, S B; Lorman, V L

    2015-10-01

    Tubular lipid membranes (TLMs) are formed by an external pulling force from artificial or biological bilayer vesicles and can be subsequently stabilized by incorporating proteins or amphiphilic polymers into the lipid bilayer. The arising spontaneous curvature of the lipid sheet allows switching off the pulling force without TLM destabilization. However, here we show that during this process two different thermal fluctuation modes drastically increase their amplitudes making fluctuations of the TLM much greater than its radius. Due to the system's proximity to the critical fluctuation point, a weak axial compressive force is sufficient to destabilize the TLM. Its absolute value is shown to be much smaller than that of the pulling force required for the initial lipid nanotube formation. Induced complex instability was studied in the frame of Landau phase transition theory. The process involves two consecutive second-order phase transitions and leads to the tube deformation combining annular corrugation with completely unconventional chiral buckling.

  4. Complex instability of axially compressed tubular lipid membrane with controlled spontaneous curvature.

    PubMed

    Golushko, I Yu; Rochal, S B; Lorman, V L

    2015-10-01

    Tubular lipid membranes (TLMs) are formed by an external pulling force from artificial or biological bilayer vesicles and can be subsequently stabilized by incorporating proteins or amphiphilic polymers into the lipid bilayer. The arising spontaneous curvature of the lipid sheet allows switching off the pulling force without TLM destabilization. However, here we show that during this process two different thermal fluctuation modes drastically increase their amplitudes making fluctuations of the TLM much greater than its radius. Due to the system's proximity to the critical fluctuation point, a weak axial compressive force is sufficient to destabilize the TLM. Its absolute value is shown to be much smaller than that of the pulling force required for the initial lipid nanotube formation. Induced complex instability was studied in the frame of Landau phase transition theory. The process involves two consecutive second-order phase transitions and leads to the tube deformation combining annular corrugation with completely unconventional chiral buckling. PMID:26507403

  5. Roles of Amphipathic Helices and the Bin/Amphiphysin/Rvs (BAR) Domain of Endophilin in Membrane Curvature Generation*

    PubMed Central

    Jao, Christine C.; Hegde, Balachandra G.; Gallop, Jennifer L.; Hegde, Prabhavati B.; McMahon, Harvey T.; Haworth, Ian S.; Langen, Ralf

    2010-01-01

    Control of membrane curvature is required in many important cellular processes, including endocytosis and vesicular trafficking. Endophilin is a bin/amphiphysin/rvs (BAR) domain protein that induces vesicle formation by promotion of membrane curvature through membrane binding as a dimer. Using site-directed spin labeling and EPR spectroscopy, we show that the overall BAR domain structure of the rat endophilin A1 dimer determined crystallographically is maintained under predominantly vesiculating conditions. Spin-labeled side chains on the concave surface of the BAR domain do not penetrate into the acyl chain interior, indicating that the BAR domain interacts only peripherally with the surface of a curved bilayer. Using a combination of EPR data and computational refinement, we determined the structure of residues 63–86, a region that is disordered in the crystal structure of rat endophilin A1. Upon membrane binding, residues 63–75 in each subunit of the endophilin dimer form a slightly tilted, amphipathic α-helix that directly interacts with the membrane. In their predominant conformation, these helices are located orthogonal to the long axis of the BAR domain. In this conformation, the amphipathic helices are positioned to act as molecular wedges that induce membrane curvature along the concave surface of the BAR domain. PMID:20418375

  6. Numerical simulation of endocytosis: Viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules

    NASA Astrophysics Data System (ADS)

    Lowengrub, John; Allard, Jun; Aland, Sebastian

    2016-03-01

    The formation of membrane vesicles from a larger membrane that occurs during endocytosis and other cell processes is typically orchestrated by curvature-inducing molecules attached to the membrane. Recent reports demonstrate that vesicles can form de novo in a few milliseconds. Membrane dynamics at these scales are strongly influenced by hydrodynamic interactions. To study this problem, we develop new diffuse interface models for the dynamics of inextensible vesicles in a viscous fluid with stiff, curvature-inducing molecules. The model couples the Navier-Stokes equations with membrane-induced bending forces that incorporate concentration-dependent bending stiffness coefficients and spontaneous curvatures, with equations for molecule transport and for a Lagrange multiplier to enforce local inextensibility. Two forms of surface transport equations are considered: Fickian surface diffusion and Cahn-Hilliard surface dynamics, with the former being more appropriate for small molecules and the latter being better for large molecules. The system is solved using adaptive finite element methods in 3D axisymmetric geometries. The results demonstrate that hydrodynamics can indeed enable the rapid formation of a small vesicle attached to the membrane by a narrow neck. When the Fickian model is used, this is a transient state with the steady state being a flat membrane with a uniformly distributed molecule concentration due to diffusion. When the Cahn-Hilliard model is used, molecule concentration gradients are sustained, the neck stabilizes and the system evolves to a steady-state with a small, compact vesicle attached to the membrane. By varying the membrane coverage of molecules in the Cahn-Hilliard model, we find that there is a critical (smallest) neck radius and a critical (fastest) budding time. These critical points are associated with changes in the vesicle morphology from spherical to mushroom-like as the molecule coverage on the membrane is increased.

  7. Peptide-induced membrane curvature in edge-stabilized open bilayers: A theoretical and molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pannuzzo, Martina; Raudino, Antonio; Böckmann, Rainer A.

    2014-07-01

    Peptide- or protein-induced curvatures of lipid membranes may be studied in molecular dynamics (MD) simulations. In these, membranes are usually modeled as infinitely extended bilayers by using periodic boundary conditions. However, the enforced periodicity results in an underestimation of the bending power of peptides, unless the patch size is much larger than the induced curvature radii. In this letter, we propose a novel approach to evaluate the bending power of a given distribution and/or density of peptides based on the use of flat open-edged lipid patches. To ensure long-lived metastable structures, the patch rim is stabilized in MD simulations by a local enrichment with short-chain lipids. By combining the theory of continuum elastic media with MD simulations, we prove that open-edged patches evolve from a planar state to a closed vesicle, with a transition rate that strongly depends on the concentration of lipid soluble peptides. For close-to-critical values for the patch size and edge energy, the response to even small changes in peptide concentration adopts a transition-like behavior (buckling instability). The usage of open-edged membrane patches amplifies the bending power of peptides, thereby enabling the analysis of the structural properties of membrane-peptide systems. We applied the presented method to investigate the curvature induced by aggregating β -amyloid peptides, unraveling a strong sensitivity of membrane deformation to the peptide concentration.

  8. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature.

    PubMed

    Miller, Sharon E; Mathiasen, Signe; Bright, Nicholas A; Pierre, Fabienne; Kelly, Bernard T; Kladt, Nikolay; Schauss, Astrid; Merrifield, Christien J; Stamou, Dimitrios; Höning, Stefan; Owen, David J

    2015-04-20

    The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of "open" clathrin-coated pits (CCPs) to "necked"/"closed" CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake.

  9. CALM Regulates Clathrin-Coated Vesicle Size and Maturation by Directly Sensing and Driving Membrane Curvature

    PubMed Central

    Miller, Sharon E.; Mathiasen, Signe; Bright, Nicholas A.; Pierre, Fabienne; Kelly, Bernard T.; Kladt, Nikolay; Schauss, Astrid; Merrifield, Christien J.; Stamou, Dimitrios; Höning, Stefan; Owen, David J.

    2015-01-01

    Summary The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of “open” clathrin-coated pits (CCPs) to “necked”/“closed” CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake. PMID:25898166

  10. Effect of intrinsic curvature and edge tension on the stability of binary mixed-membrane three-junctions

    NASA Astrophysics Data System (ADS)

    Gardner, Jasmine M.; Deserno, Markus; Abrams, Cameron F.

    2016-08-01

    We use a combination of coarse-grained molecular dynamics simulations and theoretical modeling to examine three-junctions in mixed lipid bilayer membranes. These junctions are localized defect lines in which three bilayers merge in such a way that each bilayer shares one monolayer with one of the other two bilayers. The resulting local morphology is non-lamellar, resembling the threefold symmetric defect lines in inverse hexagonal phases, but it regularly occurs during membrane fission and fusion events. We realize a system of junctions by setting up a honeycomb lattice, which in its primitive cell contains two hexagons and four three-line junctions, permitting us to study their stability as well as their line tension. We specifically consider the effects of lipid composition and intrinsic curvature in binary mixtures, which contain a fraction of negatively curved lipids in a curvature-neutral background phase. Three-junction stability results from a competition between the junction and an open edge, which arises if one of the three bilayers detaches from the other two. We show that the stable phase is the one with the lower defect line tension. The strong and opposite monolayer curvatures present in junctions and edges enhance the mole fraction of negatively curved lipids in junctions and deplete it in edges. This lipid sorting affects the two line tensions and in turn the relative stability of the two phases. It also leads to a subtle entropic barrier for the transition between junction and edge that is absent in uniform membranes.

  11. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism.

    PubMed

    Kawamoto, Shuhei; Klein, Michael L; Shinoda, Wataru

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  12. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    SciTech Connect

    Kawamoto, Shuhei; Shinoda, Wataru; Klein, Michael L.

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  13. Mechanism of a Prototypical Synthetic Membrane-Active Antimicrobial: Efficient Hole-Punching Via Interaction With Negative Intrinsic Curvature Lipids

    SciTech Connect

    Yang, L.; Gordon, V.D.; Trinkle, D.R.; Schmidt, N.W.; Davis, M.A.; DeVries, C.; Som, A.; Cronan, J.E., Jr.; Tew, G.N.; Wong, G.C.L.

    2009-05-28

    Phenylene ethynylenes comprise a prototypical class of synthetic antimicrobial compounds that mimic antimicrobial peptides produced by eukaryotes and have broad-spectrum antimicrobial activity. We show unambiguously that bacterial membrane permeation by these antimicrobials depends on the presence of negative intrinsic curvature lipids, such as phosphatidylethanolamine (PE) lipids, found in high concentrations within bacterial membranes. Plate-killing assays indicate that a PE-knockout mutant strain of Escherichia coli drastically out-survives the wild type against the membrane-active phenylene ethynylene antimicrobials, whereas the opposite is true when challenged with traditional metabolic antibiotics. That the PE deletion is a lethal mutation in normative environments suggests that resistant bacterial strains do not evolve because a lethal mutation is required to gain immunity. PE lipids allow efficient generation of negative curvature required for the circumferential barrel of an induced membrane pore; an inverted hexagonal HII phase, which consists of arrays of water channels, is induced by a small number of antimicrobial molecules. The estimated antimicrobial occupation in these water channels is nonlinear and jumps from {approx}1 to 3 per 4 nm of induced water channel length as the global antimicrobial concentration is increased. By comparing to exactly solvable 1D spin models for magnetic systems, we quantify the cooperativity of these antimicrobials.

  14. Nonadditive Compositional Curvature Energetics of Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.

    2016-09-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  15. Effect of intrinsic curvature and edge tension on the stability of binary mixed-membrane three-junctions.

    PubMed

    Gardner, Jasmine M; Deserno, Markus; Abrams, Cameron F

    2016-08-21

    We use a combination of coarse-grained molecular dynamics simulations and theoretical modeling to examine three-junctions in mixed lipid bilayer membranes. These junctions are localized defect lines in which three bilayers merge in such a way that each bilayer shares one monolayer with one of the other two bilayers. The resulting local morphology is non-lamellar, resembling the threefold symmetric defect lines in inverse hexagonal phases, but it regularly occurs during membrane fission and fusion events. We realize a system of junctions by setting up a honeycomb lattice, which in its primitive cell contains two hexagons and four three-line junctions, permitting us to study their stability as well as their line tension. We specifically consider the effects of lipid composition and intrinsic curvature in binary mixtures, which contain a fraction of negatively curved lipids in a curvature-neutral background phase. Three-junction stability results from a competition between the junction and an open edge, which arises if one of the three bilayers detaches from the other two. We show that the stable phase is the one with the lower defect line tension. The strong and opposite monolayer curvatures present in junctions and edges enhance the mole fraction of negatively curved lipids in junctions and deplete it in edges. This lipid sorting affects the two line tensions and in turn the relative stability of the two phases. It also leads to a subtle entropic barrier for the transition between junction and edge that is absent in uniform membranes. PMID:27544120

  16. Curvature-Driven Pore Growth in Charged Membranes during Charge-Pulse and Voltage-Clamp Experiments

    PubMed Central

    Kroeger, Jens H.; Vernon, Dan; Grant, Martin

    2009-01-01

    We find that curvature-driven growth of pores in electrically charged membranes correctly reproduces charge-pulse experiments. Our model, consisting of a Langevin equation for the time dependence of the pore radius coupled to an ordinary differential equation for the number of pores, captures the statistics of the pore population and its effect on the membrane conductance. The calculated pore radius is a linear, and not an exponential, function of time, as observed experimentally. Two other important features of charge-pulse experiments are recovered: pores reseal for low and high voltages but grow irreversibly for intermediate values of the voltage. Our set of coupled ordinary differential equations is equivalent to the partial differential equation used previously to study pore dynamics, but permits the study of longer timescales necessary for the simulations of voltage-clamp experiments. An effective phase diagram for such experiments is obtained. PMID:19186129

  17. A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing.

    PubMed

    Dorn, Jonas F; Zhang, Li; Phi, Tan-Trao; Lacroix, Benjamin; Maddox, Paul S; Liu, Jian; Maddox, Amy Shaub

    2016-04-15

    During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in theCaenorhabditis eleganszygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane-cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity. PMID:26912796

  18. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress

    SciTech Connect

    Rand, R.P.; Fuller, N.L. ); Gruner, S.M. ); Parsegian, V.A. )

    1990-01-09

    Amphiphiles respond both to polar and to nonpolar solvents. In this paper X-ray diffraction and osmotic stress have been used to examine the phase behavior, the structural dimensions, and the work of deforming the monolayer-lined aqueous cavities formed by mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) as a function of the concentration of two solvents, water and tetradecane (td). In the absence of td, most PE/PC mixtures show only lamellar phases in excess water; all of these become single reverse hexagonal (H{sub II}) phases with addition of excess td. The spontaneous radius of curvature R{sub 0} of lipid monolayers, as expressed in these H{sub II} phases, is allowed by the relief of hydrocarbon chain stress by td; R{sub 0} increases with the ratio DOPC/DOPE. Single H{sub II} phases stressed by limited water or td show several responses. (a) the molecular area is compressed at the polar end of the molecule and expanded at the hydrocarbon ends. (b) For circularly symmetrical water cylinders, the degrees of hydrocarbon chain splaying and polar group compression are different for molecules aligned in different directions around the water cylinder. (c) A pivotal position exists along the length of the phospholipid molecule where little area change occurs as the monolayer is bent to increasing curvatures. (d) By defining R{sub 0} at the pivotal position, the authors find that measured energies are well fit by a quadratic bending energy. (e) For lipid mixtures, enforced deviation of the H{sub II} monolayer from R{sub 0} is sufficiently powerful to cause demixing of the phospholipids in a way suggesting that the DOPE/DOPC ratio self-adjusts so that its R{sub 0} matches the amount of td or water available, i.e., that curvature energy is minimized.

  19. A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing

    PubMed Central

    Dorn, Jonas F.; Zhang, Li; Phi, Tan-Trao; Lacroix, Benjamin; Maddox, Paul S.; Liu, Jian; Maddox, Amy Shaub

    2016-01-01

    During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in the Caenorhabditis elegans zygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane–cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity. PMID:26912796

  20. Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids.

    PubMed

    Lee, Hwankyu

    2013-02-01

    Single-walled carbon nanotubes (SWNTs) wrapped with different types of lipids and polyethylene glycol (PEG)-grafted lipids were simulated with lipid bilayers. Simulations were carried out with the previously parametrized coarse-grained (CG) SWNT and PEG force fields that had captured the experimentally observed conformations of self-assembled SWNT-lipid complexes and phase behavior of PEG-grafted lipids. Simulations of multiple copies of the SWNT in water show that all pure SWNTs aggregate, lipid-wrapped SWNTs partially aggregate, but those wrapped with lipids grafted to PEG (M(w) = 550) completely disperse, indicating the effect of short PEG chains on interparticle aggregation, in agreement with experiment. Starting with initial SWNT orientation parallel to the bilayer surface, SWNTs wrapped with lysophospholipids and PEG (M(w) = 550)-grafted lipids insert into the hydrophobic region of the bilayer, while SWNTs wrapped with phospholipids and longer PEG (M(w) = 2000)-grafted lipids do not. These indicate that SWNTs insert because of the hydrophobic interaction with the bilayer tails, but the tight wrapping of charged lipid headgroups and long hydrophilic PEG chains can weaken the hydrophobic interaction and inhibit SWNT insertion. The inserted SWNTs contact the entire tails of neighboring lipids in one leaflet of the bilayer, which disorders the lipid bilayer and induces positive curvature. Our findings indicate that interparticle aggregation, SWNT penetration, and membrane curvature can be modulated by the SWNT-lipid structure and the PEG length.

  1. External push and internal pull forces recruit curvature sensing N-BAR domain proteins to the plasma membrane

    PubMed Central

    Galic, Milos; Jeong, Sangmoo; Tsai, Feng-Chiao; Joubert, Lydia-Marie; Wu, Yi I.; Hahn, Klaus M.; Cui, Yi; Meyer, Tobias

    2012-01-01

    Many of the more than 20 mammalian proteins with N-BAR domains1-2 control cell architecture3 and endocytosis4-5 by associating with curved sections of the plasma membrane (PM)6. It is not well understood whether N-BAR proteins are recruited directly by processes that mechanically curve the PM or indirectly by PM-associated adaptor proteins that recruit proteins with N-BAR domains that then induce membrane curvature. Here, we show that externally-induced inward deformation of the PM by cone-shaped nanostructures (Nanocones) and internally-induced inward deformation by contracting actin cables both trigger recruitment of isolated N-BAR domains to the curved PM. Markedly, live-cell imaging in adherent cells showed selective recruitment of full length N-BAR proteins and isolated N-BAR domains to PM sub-regions above Nanocone stripes. Electron microscopy confirmed that N-BAR domains are recruited to local membrane sites curved by Nanocones. We further showed that N-BAR domains are periodically recruited to curved PM sites during local lamellipodia retraction in the front of migrating cells. Recruitment required Myosin II-generated force applied to PM connected actin cables. Together, our study shows that N-BAR domains can be directly recruited to the PM by external push or internal pull forces that locally curve the PM. PMID:22750946

  2. Dependence of purple membrane bump curvature on pH and ionic strength analyzed using atomic force microscopy combined with solvent exchange.

    PubMed

    Yokoyama, Yasunori; Yamada, Kosuke; Higashi, Yosuke; Ozaki, Satoshi; Wang, Haorang; Koito, Naoki; Watanabe, Naoya; Sonoyama, Masashi; Mitaku, Shigeki

    2014-08-01

    Purple membrane (PM), which is a membrane patch formed by the self-assembly of the membrane protein bacteriorhodopsin (bR) with archaeal lipids, is a good subject for studying the mechanism for the supramolecular structural formation of membrane proteins. Several studies have suggested that PM is not simply planar but that it has a curvature. Atomic force microscopy (AFM) studies also indicate the presence of dome-like structures (bumps) on the cytoplasmic surface of PM. PM must have a curvature to form the bump structures; therefore, bump formations will be related to a mechanism for supramolecular structural formation via self-assembly. To elucidate the effect of an asymmetric distribution of charged residues between two aqueous domains on the bump curvature, AFM topography of identical PM sheets were examined with variation of the solvent ionic strength and pH using a newly constructed solvent circulation system. The radius and height distributions of the bumps on the identical PM sheets indicated a linear correlation. The bump curvature, which was simply estimated by the slope of the distribution, became smaller with increasing KCl concentration, which suggests that tension at the cytoplasmic surface caused by electrostatic repulsive force between negatively charged amino acid residues becomes weaker by the electrostatic shielding effect. AFM observations revealed that the bump curvature remained even at high KCl concentration where the Debye length is within a few Angstroms; therefore, the contribution of the intrinsic difference between the domain sizes of bR between two sides was confirmed. Interestingly, the bump curvature was significantly increased by the addition of CaCl2 and then decreased with a similar dependency to KCl at higher CaCl2 concentration. The effect of pH on the bump curvature was also examined, where the curvature increased and reached a maximum at pH 9, while it decreased above pH 10, at which point the two-dimensional crystalline

  3. Localization of Curvature and Relaxation of Stress Due to an Isolated Disclination in Crystalline Membrane

    NASA Astrophysics Data System (ADS)

    Sun, Yiwei; Davidovitch, Benny; Grason, Gregory M.

    2014-03-01

    A crystalline membrane with an isolated disclination buckles below a critical thickness. Examples include mechanical models of viral capsids-pentavalent and hexavalent units assembled into triangulated shells-that show a pronounced faceting above a critical size. While buckling from the planar state has been studied previously in coarse-grained simulations, questions remain regarding the organization of structure and mechanics of the buckled state. Specifically, how is elastic stress distributed within the membrane; more precisely - how does this mechanical state evolve from the buckling threshold to the asymptotic limit of vanishing thickness, where the shape is expected to be isometric (conical) nearly everywhere? We employ a combination of numerical and analytic approaches to studying the solutions of the Föppl-von Kármán equations describing the shape of and stress in circular sheets possessing a 5-fold defect. Despite the complexity underlying the solution of these highly nonlinear relations, we search for much simpler set of mechanical principles to quantitatively capture the inhomogeneous concentration of stress and shape deformation throughout the full range of the von Kármán number.

  4. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    PubMed Central

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-01-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104

  5. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    NASA Astrophysics Data System (ADS)

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  6. Sensing Membrane Stresses by Protein Insertions

    PubMed Central

    Campelo, Felix; Kozlov, Michael M.

    2014-01-01

    Protein domains shallowly inserting into the membrane matrix are ubiquitous in peripheral membrane proteins involved in various processes of intracellular membrane shaping and remodeling. It has been suggested that these domains sense membrane curvature through their preferable binding to strongly curved membranes, the binding mechanism being mediated by lipid packing defects. Here we make an alternative statement that shallow protein insertions are universal sensors of the intra-membrane stresses existing in the region of the insertion embedding rather than sensors of the curvature per se. We substantiate this proposal computationally by considering different independent ways of the membrane stress generation among which some include changes of the membrane curvature whereas others do not alter the membrane shape. Our computations show that the membrane-binding coefficient of shallow protein insertions is determined by the resultant stress independently of the way this stress has been produced. By contrast, consideration of the correlation between the insertion binding and the membrane curvature demonstrates that the binding coefficient either increases or decreases with curvature depending on the factors leading to the curvature generation. To validate our computational model, we treat quantitatively the experimental results on membrane binding by ALPS1 and ALPS2 motifs of ArfGAP1. PMID:24722359

  7. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature.

    PubMed

    Katayama, Sayaka; Nakase, Ikuhiko; Yano, Yoshiaki; Murayama, Tomo; Nakata, Yasushi; Matsuzaki, Katsumi; Futaki, Shiroh

    2013-09-01

    Arginine-rich cell-penetrating peptides, including octaarginine (R8) and HIV-1 TAT peptides, have the ability to translocate through cell membranes and transport exogenous bioactive molecules into cells. Hydrophobic counteranions such as pyrenebutyrate (PyB) have been reported to markedly promote the membrane translocation of these peptides. In this study, using model membranes having liquid-ordered (Lo) and liquid-disordered (Ld) phases, we explored the effects of PyB on the promotion of R8 translocation. Confocal microscopic observations of giant unilamellar vesicles (GUVs) showed that PyB significantly accelerated the accumulation of R8 on membranes containing negatively charged lipids, leading to the internalization of R8 without collapse of the GUV structures. PyB displayed an alternative activity, increasing the fluidity of the negatively charged membranes, which diminished the distinct Lo/Ld phase separation on GUVs. This was supported by the decrease in fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH). Additionally, PyB induced membrane curvature, which has been suggested as a possible mechanism of membrane translocation for R8. Taken together, our results indicate that PyB may have multiple effects that promote R8 translocation through cell membranes.

  8. Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: N-terminal helix derived from adenovirus internal protein VI as a model.

    PubMed

    Murayama, Tomo; Pujals, Sílvia; Hirose, Hisaaki; Nakase, Ikuhiko; Futaki, Shiroh

    2016-11-01

    The N-terminal amphipathic helical segment of adenovirus internal protein VI (AdVpVI) plays a critical role in viral infection. Here, we report that the peptide segment corresponding to AdVpVI (positions 33-55) can induce positive membrane curvature together with membrane perturbation. The enhanced perturbation ability of the peptide was observed for membranes containing negatively charged phospholipids. Based on the liposome leakage assay, substitution of leucine at position 40 to other aliphatic (isoleucine) and aromatic (phenylalanine and tryptophan) residues yielded a similar degree of membrane perturbation by the peptides, which was considerably diminished by the substitution to glutamine. Further studies using the wild-type AdVpVI (33-55) (WT) and phenylalanine-substituted peptides (L40F) demonstrated that both peptides have positive membrane-curvature-inducing ability. These peptides showed higher binding affinity to 50-nm large unilamellar vesicles (LUVs) than to 200-nm LUVs. However, no enhanced perturbation by these peptides was observed for 50-nm LUVs compared to 200-nm LUVs, suggesting that both the original membrane curvature and the additional strain due to peptide insertion affect the membrane perturbation ability of these peptides. In the case of L40F, this peptide rather had a lower membrane perturbation ability for 50-nm LUVs than for 200-nm LUVs, which can be attributed to possible shallower binding of L40F on membranes. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 430-439, 2016.

  9. Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: N-terminal helix derived from adenovirus internal protein VI as a model.

    PubMed

    Murayama, Tomo; Pujals, Sílvia; Hirose, Hisaaki; Nakase, Ikuhiko; Futaki, Shiroh

    2016-11-01

    The N-terminal amphipathic helical segment of adenovirus internal protein VI (AdVpVI) plays a critical role in viral infection. Here, we report that the peptide segment corresponding to AdVpVI (positions 33-55) can induce positive membrane curvature together with membrane perturbation. The enhanced perturbation ability of the peptide was observed for membranes containing negatively charged phospholipids. Based on the liposome leakage assay, substitution of leucine at position 40 to other aliphatic (isoleucine) and aromatic (phenylalanine and tryptophan) residues yielded a similar degree of membrane perturbation by the peptides, which was considerably diminished by the substitution to glutamine. Further studies using the wild-type AdVpVI (33-55) (WT) and phenylalanine-substituted peptides (L40F) demonstrated that both peptides have positive membrane-curvature-inducing ability. These peptides showed higher binding affinity to 50-nm large unilamellar vesicles (LUVs) than to 200-nm LUVs. However, no enhanced perturbation by these peptides was observed for 50-nm LUVs compared to 200-nm LUVs, suggesting that both the original membrane curvature and the additional strain due to peptide insertion affect the membrane perturbation ability of these peptides. In the case of L40F, this peptide rather had a lower membrane perturbation ability for 50-nm LUVs than for 200-nm LUVs, which can be attributed to possible shallower binding of L40F on membranes. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 430-439, 2016. PMID:27271816

  10. Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons

    PubMed Central

    Galic, Milos; Tsai, Feng-Chiao; Collins, Sean R; Matis, Maja; Bandara, Samuel; Meyer, Tobias

    2014-01-01

    In the vertebrate central nervous system, exploratory filopodia transiently form on dendritic branches to sample the neuronal environment and initiate new trans-neuronal contacts. While much is known about the molecules that control filopodia extension and subsequent maturation into functional synapses, the mechanisms that regulate initiation of these dynamic, actin-rich structures have remained elusive. Here, we find that filopodia initiation is suppressed by recruitment of ArhGAP44 to actin-patches that seed filopodia. Recruitment is mediated by binding of a membrane curvature-sensing ArhGAP44 N-BAR domain to plasma membrane sections that were deformed inward by acto-myosin mediated contractile forces. A GAP domain in ArhGAP44 triggers local Rac-GTP hydrolysis, thus reducing actin polymerization required for filopodia formation. Additionally, ArhGAP44 expression increases during neuronal development, concurrent with a decrease in the rate of filopodia formation. Together, our data reveals a local auto-regulatory mechanism that limits initiation of filopodia via protein recruitment to nanoscale membrane deformations. DOI: http://dx.doi.org/10.7554/eLife.03116.001 PMID:25498153

  11. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents

    SciTech Connect

    Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta; Duncan, Roy

    2010-02-05

    The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

  12. Shape deformation of lipid membranes by banana-shaped protein rods: Comparison with isotropic inclusions and membrane rupture

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2016-05-01

    The assembly of curved protein rods on fluid membranes is studied using implicit-solvent meshless membrane simulations. As the rod curvature increases, the rods on a membrane tube assemble along the azimuthal direction first and subsequently along the longitudinal direction. Here, we show that both transition curvatures decrease with increasing rod stiffness. For comparison, curvature-inducing isotropic inclusions are also simulated. When the isotropic inclusions have the same bending rigidity as the other membrane regions, the inclusions are uniformly distributed on the membrane tubes and vesicles even for large spontaneous curvature of the inclusions. However, the isotropic inclusions with much larger bending rigidity induce shape deformation and are concentrated on the region of a preferred curvature. For high rod density, high rod stiffness, and/or low line tension of the membrane edge, the rod assembly induces vesicle rupture, resulting in the formation of a high-genus vesicle. A gradual change in the curvature suppresses this rupture. Hence, large stress, compared to the edge tension, induced by the rod assembly is the key factor determining rupture. For rod curvature with the opposite sign to the vesicle curvature, membrane rupture induces inversion of the membrane, leading to division into multiple vesicles as well as formation of a high-genus vesicle.

  13. Arginine in α-defensins: differential effects on bactericidal activity correspond to geometry of membrane curvature generation and peptide-lipid phase behavior.

    PubMed

    Schmidt, Nathan W; Tai, Kenneth P; Kamdar, Karishma; Mishra, Abhijit; Lai, Ghee Hwee; Zhao, Kun; Ouellette, André J; Wong, Gerard C L

    2012-06-22

    The conserved tridisulfide array of the α-defensin family imposes a common triple-stranded β-sheet topology on peptides that may have highly diverse primary structures, resulting in differential outcomes after targeted mutagenesis. In mouse cryptdin-4 (Crp4) and rhesus myeloid α-defensin-4 (RMAD4), complete substitutions of Arg with Lys affect bactericidal peptide activity very differently. Lys-for-Arg mutagenesis attenuates Crp4, but RMAD4 activity remains mostly unchanged. Here, we show that the differential biological effect of Lys-for-Arg replacements can be understood by the distinct phase behavior of the experimental peptide-lipid system. In Crp4, small-angle x-ray scattering analyses showed that Arg-to-Lys replacements shifted the induced nanoporous phases to a different range of lipid compositions compared with the Arg-rich native peptide, consistent with the attenuation of bactericidal activity by Lys-for-Arg mutations. In contrast, such phases generated by RMAD4 were largely unchanged. The concordance between small-angle x-ray scattering measurements and biological activity provides evidence that specific types of α-defensin-induced membrane curvature-generating tendencies correspond directly to bactericidal activity via membrane destabilization.

  14. The Gaussian Curvature Elastic Modulus of N-Monomethylated Dioleoylphosphatidylethanolamine: Relevance to Membrane Fusion and Lipid Phase Behavior

    PubMed Central

    Siegel, D. P.; Kozlov, M. M.

    2004-01-01

    The energy of intermediates in fusion of phospholipid bilayers is sensitive to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\kappa}}}_{{\\mathrm{m}}},\\end{equation*}\\end{document} the saddle splay (Gaussian curvature) elastic modulus of the lipid monolayers. The value \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\kappa}}}_{{\\mathrm{m}}}\\end{equation*}\\end{document} is also important in understanding the stability of inverted cubic (QII) and rhombohedral (R) phases relative to the lamellar (Lα) and inverted hexagonal (HII) phases in phospholipids. However, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\kappa}}}_{{\\mathrm{m}}}\\end{equation*}\\end{document} cannot be measured directly. It was previously measured by observing changes in QII phase lattice dimensions as a function of water content. Here we use observations of the phase behavior of N-mono-methylated dioleoylphosphatidylethanolamine (DOPE-Me) to determine \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\kappa}}}_{{\\mathrm{m}}}.\\end{equation*}\\end{document} At the temperature of the Lα/QII phase transition, TQ, the partial energies of the two phases are equal, and we can express \\documentclass[12pt

  15. The Gaussian Curvature Elastic Modulus of N-Monomethylated Dioleoylphosphatidylethanolamine: Relevance to Membrane Fusion and Lipid Phase Behavior

    PubMed Central

    Siegel, D. P.; Kozlov, M. M.

    2004-01-01

    The energy of intermediates in fusion of phospholipid bilayers is sensitive to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\kappa}}}_{{\\mathrm{m}}},\\end{equation*}\\end{document} the saddle splay (Gaussian curvature) elastic modulus of the lipid monolayers. The value \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\kappa}}}_{{\\mathrm{m}}}\\end{equation*}\\end{document} is also important in understanding the stability of inverted cubic (QII) and rhombohedral (R) phases relative to the lamellar (Lα) and inverted hexagonal (HII) phases in phospholipids. However, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\kappa}}}_{{\\mathrm{m}}}\\end{equation*}\\end{document} cannot be measured directly. It was previously measured by observing changes in QII phase lattice dimensions as a function of water content. Here we use observations of the phase behavior of N-mono-methylated dioleoylphosphatidylethanolamine (DOPE-Me) to determine \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\bar {{\\kappa}}}_{{\\mathrm{m}}}.\\end{equation*}\\end{document} At the temperature of the Lα/QII phase transition, TQ, the partial energies of the two phases are equal, and we can express \\documentclass[12pt

  16. Interaction of C60 fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study.

    PubMed

    Cherniavskyi, Yevhen K; Ramseyer, Christophe; Yesylevskyy, Semen O

    2016-01-01

    Interaction of fullerenes with asymmetric and curved DOPC/DOPS bicelles is studied by means of coarse-grained molecular dynamics simulations. The effects caused by asymmetric lipid composition of the membrane leaflets and the curvature of the membrane are analyzed. It is shown that the aggregates of fullerenes prefer to penetrate into the membrane in the regions of the moderately positive mean curvature. Upon penetration into the hydrophobic core of the membrane fullerenes avoid the regions of the extreme positive or the negative curvature. Fullerenes increase the ordering of lipid tails, which are in direct contact with them, but do not influence other lipids significantly. Our data suggest that the effects of the membrane curvature should be taken into account in the studies concerning permeability of the membranes to fullerenes and fullerene-based drug delivery systems.

  17. Curvature-induced lipid segregation

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Meng, Qing-Tian; B. Selinger Robin, L.; V. Selinger, Jonathan; Ye, Fang-Fu

    2015-06-01

    We investigate how an externally imposed curvature influences lipid segregation on two-phase-coexistent membranes. We show that the bending-modulus contrast of the two phases and the curvature act together to yield a reduced effective line tension. On largely curved membranes, a state of multiple domains (or rafts) forms due to a mechanism analogous to that causing magnetic-vortex formation in type-II superconductors. We determine the criterion for such a multi-domain state to occur; we then calculate respectively the size of the domains formed on cylindrically and spherically curved membranes. Project supported by the Hundred-Talent Program of the Chinese Academy of Sciences (FY) and the National Science Foundation of USA via Grant DMR-1106014 (RLBS, JVS).

  18. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids

    PubMed Central

    Campanacci, Valérie; Bishop, Russell E.; Blangy, Stéphanie; Tegoni, Mariella; Cambillau, Christian

    2016-01-01

    Lipocalins, a widespread multifunctional family of small proteins (15–25 kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183–188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar Kd range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar Kd range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane. PMID:16920109

  19. Lipopeptaibol metabolites of tolypocladium geodes: total synthesis, preferred conformation, and membrane activity.

    PubMed

    Rainaldi, Mario; Moretto, Alessandro; Peggion, Cristina; Formaggio, Fernando; Mammi, Stefano; Peggion, Evaristo; Galvez, José Antonio; Díaz-de-Villegas, Maria Dolores; Cativiela, Carlos; Toniolo, Claudio

    2003-08-01

    We have synthesized by solution methods and characterized the lipopeptaibol metabolite LP237-F8 extracted from the fungus Tolypocladium geodes and five selected analogues with the Etn-->Aib or Etn-->Nva replacement at position 8 and/or a triple Gln-->Glu(OMe) replacement at positions 5, 6, and 9 (Etn=Calpha-ethylnorvaline, Aib=alpha-aminoisobutyric acid, Nva=norvaline). Conformation analysis, performed by FT-IR absorption, NMR, and CD techniques, strongly supports the view that the six terminally blocked decapeptides are highly helical in solution. Helix topology and amphiphilic character are responsible for their remarkable membrane activity. At position 8 the combination of high hydrophobicity and Calpha tetrasubstitution, as in the Etn-containing LP237-F8 metabolite, has a positive effect on membrane interaction.

  20. Curvature constraints from the causal entropic principle

    SciTech Connect

    Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel

    2009-07-15

    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than {rho}{sub k}=40{rho}{sub m} are disfavored by more than 99.99% peak value at {rho}{sub {lambda}}=7.9x10{sup -123} and {rho}{sub k}=4.3{rho}{sub m} for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.

  1. Spatial curvature, spacetime curvature, and gravity

    NASA Astrophysics Data System (ADS)

    Price, Richard H.

    2016-08-01

    The belief that curved spacetime gravity cannot be simply and correctly presented results in such misleading presentations as elastic two-dimensional sheets deformed as they support heavy objects. This article attempts to show that the conceptual basis of curved spacetime gravity can be simply and correctly presented, and that the spatial curvature of a deformed elastic sheet is very different from the spacetime curvature underlying gravity. This article introduces the idea of a "splittable" spacetime that has spatial curvature, but is missing most of the manifestations of gravity. A section in which no mathematics is used is directed at students who have studied no more than introductory physics. A separate section, for students who have taken only an introductory course in general relativity, gives mathematical arguments centering on splittable spacetimes.

  2. Raft Formation in Lipid Bilayers Coupled to Curvature

    PubMed Central

    Sadeghi, Sina; Müller, Marcus; Vink, Richard L.C.

    2014-01-01

    We present computer simulations of a membrane in which the local composition is coupled to the local membrane curvature. At high temperatures (i.e., above the temperature of macroscopic phase separation), finite-sized transient domains are observed, reminiscent of lipid rafts. The domain size is in the range of hundred nanometers, and set by the membrane elastic properties. These findings are in line with the notion of the membrane as a curvature-induced microemulsion. At low temperature, the membrane phase separates. The transition to the phase-separated regime is continuous and belongs to the two-dimensional Ising universality class when the coupling to curvature is weak, but becomes first-order for strong curvature-composition coupling. PMID:25296311

  3. Raft formation in lipid bilayers coupled to curvature.

    PubMed

    Sadeghi, Sina; Müller, Marcus; Vink, Richard L C

    2014-10-01

    We present computer simulations of a membrane in which the local composition is coupled to the local membrane curvature. At high temperatures (i.e., above the temperature of macroscopic phase separation), finite-sized transient domains are observed, reminiscent of lipid rafts. The domain size is in the range of hundred nanometers, and set by the membrane elastic properties. These findings are in line with the notion of the membrane as a curvature-induced microemulsion. At low temperature, the membrane phase separates. The transition to the phase-separated regime is continuous and belongs to the two-dimensional Ising universality class when the coupling to curvature is weak, but becomes first-order for strong curvature-composition coupling.

  4. Pancreatic carcinomas deposit laminin-5, preferably adhere to laminin-5, and migrate on the newly deposited basement membrane.

    PubMed Central

    Tani, T.; Lumme, A.; Linnala, A.; Kivilaakso, E.; Kiviluoto, T.; Burgeson, R. E.; Kangas, L.; Leivo, I.; Virtanen, I.

    1997-01-01

    We studied the adhesion mechanism of pancreatic carcinoma using in vitro adhesion and migration assays of stable cell lines and tumors grown from these cell lines in nude mice. We also compared the results with the expression profiles of laminins and their receptors in pancreatic carcinomas to evaluate the relevance of these mechanisms in vivo. All of the cell lines preferably adhered to laminin-5, irrespective of their capability to synthesize laminin-5. Cell migration was studied in the presence of hepatocyte growth factor, as it increased the speed of migration manyfold. Herbimycin A treatment and antibodies against the beta 1 and alpha 3 integrin subunits and laminin alpha 3 chain almost entirely blocked cell migration of the BxPC-3 cell line, whereas migration was nearly unaffected by RGD peptide and only moderately inhibited by antibody against the alpha 6 integrin subunit. Indirect immunofluorescence microscopy of wounded BxPC-3 cells suggested a rapid endocytosis of alpha 3 integrin subunit in the cells at the margin of the wound and a rapid, polarized rearrangement of the alpha 6 beta 4 integrin. Especially HGF-treated cultures showed a prominent cytoplasmic reaction for laminin-5 at the margin of the wound. Xenografted cells formed tumors that produced and deposited the same laminin chains as the in vitro cultures. Frozen sections of human pancreatic carcinomas showed reactivity for laminin chains suggestive for expression of laminin-1 and laminin-5. Both xenografted tumors and human pancreatic carcinomas also showed stromal reactivity for laminin-5. Electron microscopy of the human tumors suggested that this was due to an abundant reduplication the basement-membrane-like material around the nests of malignant cells. Our results suggest that pancreatic carcinomas synthesize and deposit laminin-5 in the basement membrane in an abnormal manner. Invading cells adhere to this newly produced basement membrane and migrate on it by using the alpha 3 beta 1

  5. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid.

    PubMed

    Kooijman, Edgar E; Chupin, Vladimir; Fuller, Nola L; Kozlov, Michael M; de Kruijff, Ben; Burger, Koert N J; Rand, Peter R

    2005-02-15

    The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission.

  6. Analysis of microtubule curvature.

    PubMed

    Bicek, Andrew D; Tüzel, Erkan; Kroll, Daniel M; Odde, David J

    2007-01-01

    The microtubule cytoskeleton in living cells generate and resist mechanical forces to mediate fundamental cell processes, including cell division and migration. Recent advances in digital fluorescence microscopy have enabled the direct observation of bending of individual microtubules in living cells, which has enabled quantitative estimation of the mechanical state of the microtubule array. Although a variety of mechanisms have been proposed, the precise origins of microtubule deformation in living cells remain largely obscure. To investigate these mechanisms and their relative importance in cellular processes, a method is needed to accurately quantify microtubule bending within living cells. Here we describe a method for quantification of bending, using digital fluorescence microscope images to estimate the distribution of curvature in the microtubule. Digital images of individual microtubules can be used to obtain a set of discrete x-y coordinates along the microtubule contour, which is then used to estimate the curvature distribution. Due to system noise and digitization error, the estimate will be inaccurate to some degree. To quantify the inaccuracy, a computational model is used to simulate both the bending of thermally driven microtubules and their observation by digital fluorescence microscopy. This allows for direct comparison between experimental and simulated images, a method which we call model convolution microscopy. We assess the accuracy of various methods and present a suitable method for estimating the curvature distribution for thermally driven semiflexible polymers. Finally, we discuss extensions of the method to quantify microtubule curvature in living cells. PMID:17613311

  7. Diffraction with wavefront curvature

    NASA Astrophysics Data System (ADS)

    Nugent, K. A.; Peele, A. G.; Quiney, H. M.; Chapman, H. N.

    2005-05-01

    Modern X-ray optics can produce a focused synchrotron beam with curvature on a scale comparable to that of an isolated biomolecule or to the lattice spacing of a biomolecular crystal. It is demonstrated that diffraction of phase-curved beams from such systems allows unique and robust phase recovery.

  8. Curvature calculations with GEOCALC

    SciTech Connect

    Moussiaux, A.; Tombal, P.

    1987-04-01

    A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. They show how to apply this package to the Schwarzchild case and they discuss the different results.

  9. Structural preferences among folate compounds and their analogues for ATPase-mediated efflux by inside-out plasma membrane vesicles derived from L1210 cells.

    PubMed

    Schlemmer, S R; Sirotnak, F M

    1995-05-17

    Our prior studies with inside-out plasma membrane vesicles from L1210 cells (Schlemmer SR and Sirotnak FM, J Biol Chem 267: 14746-14752, 1992) identified an outwardly directed, translocating ATPase as mediating the majority of methotrexate (MTX) efflux in these cells. In the current studies, we examined by competitive inhibition with [3H]MTX as permeant some of the structural features that determine preferences among folate compounds and their analogues as permeants for this ATPase. The results show that folate compounds are preferred over simple quinazolines (5,8-dideaza-pteridines), and IL5-CH3-folateH4, and probably other 5-substituted folates are preferred over folic acid. In the latter regard, the observed equivalence in preference to IL5-CH3-folateH4 of the 4-oxa-pyridopyrimidine, lometrexol (DDATHF), probably relates to its close similarity to folateH4. The results also suggest that the 4-position in the case of folate analogues, but not in the case of the quinazoline analogues, is an important determinant with 4-amino preferred over 4-oxa. They also suggest that the N10 position on the bridge region in both series of compounds, and probably for the pyridopyrimidine lometrexol, is not an important determinant. In contrast to results seen with the simple quinazolines, the 2-CH3 desamino quinazoline ZEN D1694, modified as well by a 2-benzyl to thienyl replacement on the side chain, was highly preferred. The same relative differences seen among some of these analogues as inhibitors of [3H]MTX efflux in inside-out vesicles were documented for their effectiveness as permeants for ATP-dependent efflux in intact L1210 cells.

  10. Free-energy analysis of the preferred configuration of transmembrane protein in model membrane: Roles of lipid and water

    NASA Astrophysics Data System (ADS)

    Purqon, Acep; Matubayasi, Nobuyuki

    2016-02-01

    Two contrast configurations are examined for a transmembrane protein in a model membrane system. In the first one, the protein stays in the direction normal to the membrane surface, and in the second, it is buried in the membrane core. We investigate the relative stabilities of the two configurations with the free-energy analysis using the energy-representation method. The free-energy change of the protein binding is found to be more favorable for the vertical configuration. The free-energy decomposition into the contributions from lipid and water shows that the water effect overturns the lipid one to stabilize the vertical configuration.

  11. Biophysical Investigations with MARCKS-ED: Dissecting the Molecular Mechanism of Its Curvature Sensing Behaviors

    PubMed Central

    de Jesus, Armando J.; Espinoza, Arianna; Yin, Hang

    2014-01-01

    Curved membranes are a common and important attribute in cells. Protein and peptide curvature sensors are known to activate signaling pathways, initiate vesicle budding, trigger membrane fusion, and facilitate molecular transport across cell membranes. Nonetheless, there is little understanding how these proteins and peptides achieve preferential binding of different membrane curvatures. The current study is to elucidate specific factors required for curvature sensing. As a model system, we employed a recently identified peptide curvature sensor, MARCKS-ED, derived from the effector domain of the myristoylated alanine-rich C-kinase substrate protein, for these biophysical investigations. An atomistic molecular dynamics (MD) simulation suggested an important role played by the insertion of the Phe residues within MARCKS-ED. To test these observations from our computational simulations, we performed electron paramagnetic resonance (EPR) studies to determine the insertion depth of MARCKS-ED into differently curved membrane bilayers. Next, studies with varied lipid compositions revealed their influence on curvature sensing by MARCKS-ED, suggesting contributions from membrane fluidity, rigidity, as well as various lipid structures. Finally, we demonstrated that the curvature sensing by MARCKS-ED is configuration independent. In summary, our studies have shed further light to the understanding of how MARCKS-ED differentiates between membrane curvatures, which may be generally applicable to protein curvature sensing behavior. PMID:25195712

  12. Curvature dependent modulation of fish fin stiffness

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Yu, Ning; Bandi, Mahesh; Venkadesan, Madhusudhan; Mandre, Shreyas

    Propulsion and maneuvering ability of fishes depends on the stiffness of their fins. However, increasing stiffness by simply adding material to thicken the fin would incur a substantial energetic cost associated with flapping the fin. We propose that fishes increase stiffness of the fin not by building thicker fins, but by geometrically coupling out-of-plane bending of the fin's rays with in-plane stretching of a stiff membrane that connects the rays. We present a model of fin elasticity for ray-finned fish, where we decompose the fin into a series of elastic beams (rays) with springy interconnections (membrane). In one limit, where the membranes are infinitely extensible, the fin's stiffness is no more than the sum of the stiffness of individual rays. At the other limit of an inextensible membrane, fin stiffness reaches an asymptotic maximum. The asymptote value increases monotonically with curvature. We propose that musculature at the base of the fin controls fin curvature, and thereby modulates stiffness.

  13. Anisotropic cubic curvature couplings

    NASA Astrophysics Data System (ADS)

    Bailey, Quentin G.

    2016-09-01

    To complement recent work on tests of spacetime symmetry in gravity, cubic curvature couplings are studied using an effective field theory description of spacetime-symmetry breaking. The associated mass-dimension-eight coefficients for Lorentz violation studied do not result in any linearized gravity modifications and instead are revealed in the first nonlinear terms in an expansion of spacetime around a flat background. We consider effects on gravitational radiation through the energy loss of a binary system and we study two-body orbital perturbations using the post-Newtonian metric. Some effects depend on the internal structure of the source and test bodies, thereby breaking the weak equivalence principle for self-gravitating bodies. These coefficients can be measured in Solar-System tests, while binary-pulsar systems and short-range gravity tests are particularly sensitive.

  14. Membrane-mediated aggregation of anisotropically curved nanoparticles.

    PubMed

    Olinger, Alexander D; Spangler, Eric J; Kumar, P B Sunil; Laradji, Mohamed

    2016-01-01

    Using systematic numerical simulations, we study the self-assembly of elongated curved nanoparticles on lipid vesicles. Our simulations are based on molecular dynamics of a coarse-grained implicit-solvent model of self-assembled lipid membranes with a Langevin thermostat. Here we consider only the case wherein the nanoparticle-nanoparticle interaction is repulsive, only the concave surface of the nanoparticle interacts attractively with the lipid head groups and only the outer surface of the vesicle is exposed to the nanoparticles. Upon their adhesion on the vesicle, the curved nanoparticles generate local curvature on the membrane. The resulting nanoparticle-generated membrane curvature leads in turn to nanoparticle self-assembly into two main types of aggregates corresponding to chain aggregates at low adhesion strengths and aster aggregates at high adhesion strength. The chain-like aggregates are due to the fact that at low values of adhesion strength, the nanoparticles prefer to lie parallel to each other. As the adhesion strength is increased, a splay angle between the nanoparticles is induced with a magnitude that increases with increasing adhesion strength. The origin of the splay angles between the nanoparticles is shown to be saddle-like membrane deformations induced by a tilt of the lipids around the nanoparticles. This phenomenon of membrane mediated self-assembly of anisotropically curved nanoparticles is explored for systems with varying nanoparticle number densities, adhesion strength, and nanoparticle intrinsic curvature.

  15. Representation of tactile curvature in macaque somatosensory area 2

    PubMed Central

    Connor, Charles E.; Hsiao, Steven S.

    2013-01-01

    Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII. PMID:23536717

  16. Representation of tactile curvature in macaque somatosensory area 2.

    PubMed

    Yau, Jeffrey M; Connor, Charles E; Hsiao, Steven S

    2013-06-01

    Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII.

  17. Curvature, Hydrogen, Q

    SciTech Connect

    Wallace, John Paul; Myneni, Ganapati Rao; Pike, Robert

    2011-03-31

    The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.

  18. Curvature, Hydrogen, Q

    SciTech Connect

    John Paul Wallace, Ganapati Rao Myneni, and Robert Pike

    2011-03-01

    The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.

  19. On the edge energy of lipid membranes and the thermodynamic stability of pores

    SciTech Connect

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2015-01-21

    To perform its barrier function, the lipid bilayer membrane requires a robust resistance against pore formation. Using a self-consistent field (SCF) theory and a molecularly detailed model for membranes composed of charged or zwitterionic lipids, it is possible to predict structural, mechanical, and thermodynamical parameters for relevant lipid bilayer membranes. We argue that the edge energy in membranes is a function of the spontaneous lipid monolayer curvature, the mean bending modulus, and the membrane thickness. An analytical Helfrich-like model suggests that most bilayers should have a positive edge energy. This means that there is a natural resistance against pore formation. Edge energies evaluated explicitly in a two-gradient SCF model are consistent with this. Remarkably, the edge energy can become negative for phosphatidylglycerol (e.g., dioleoylphosphoglycerol) bilayers at a sufficiently low ionic strength. Such bilayers become unstable against the formation of pores or the formation of lipid disks. In the weakly curved limit, we study the curvature dependence of the edge energy and evaluate the preferred edge curvature and the edge bending modulus. The latter is always positive, and the former increases with increasing ionic strength. These results point to a small window of ionic strengths for which stable pores can form as too low ionic strengths give rise to lipid disks. Higher order curvature terms are necessary to accurately predict relevant pore sizes in bilayers. The electric double layer overlap across a small pore widens the window of ionic strengths for which pores are stable.

  20. Compound curvature laser window development

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless compound curvature laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report summarizes the main aspects of compound curvature laser window development. It is an overview of the methodology and the peculiarities associated with the formulation of these windows. Included in this discussion is new information regarding procedures for compound curvature laser window development.

  1. Sigma models with negative curvature

    NASA Astrophysics Data System (ADS)

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-05-01

    We construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O (n , 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.

  2. Particles and curvatures in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.

  3. Solving higher curvature gravity theories

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2016-10-01

    Solving field equations in the context of higher curvature gravity theories is a formidable task. However, in many situations, e.g., in the context of f( R) theories, the higher curvature gravity action can be written as an Einstein-Hilbert action plus a scalar field action. We show that not only the action but the field equations derived from the action are also equivalent, provided the spacetime is regular. We also demonstrate that such an equivalence continues to hold even when the gravitational field equations are projected on a lower-dimensional hypersurface. We have further addressed explicit examples in which the solutions for Einstein-Hilbert and a scalar field system lead to solutions of the equivalent higher curvature theory. The same, but on the lower-dimensional hypersurface, has been illustrated in the reverse order as well. We conclude with a brief discussion on this technique of solving higher curvature field equations.

  4. Curvature Interaction in Collective Space

    NASA Astrophysics Data System (ADS)

    Herrmann, Richard

    2012-12-01

    For the Riemannian space, built from the collective coordinates used within nuclear models, an additional interaction with the metric is investigated, using the collective equivalent to Einstein's curvature scalar. The coupling strength is determined using a fit with the AME2003 ground state masses. An extended finite-range droplet model including curvature is introduced, which generates significant improvements for light nuclei and nuclei in the trans-fermium region.

  5. Curvature capillary migration of microspheres.

    PubMed

    Sharifi-Mood, Nima; Liu, Iris B; Stebe, Kathleen J

    2015-09-14

    We address the question: how does capillarity propel microspheres along curvature gradients? For a particle on a fluid interface, there are two conditions that can apply at the three phase contact line: either the contact line adopts an equilibrium contact angle, or it can be pinned by kinetic trapping, e.g. at chemical heterogeneities, asperities, or other pinning sites on the particle surface. We formulate the curvature capillary energy for both scenarios for particles smaller than the capillary length and far from any pinning boundaries. The scale and range of the distortion made by the particle are set by the particle radius; we use singular perturbation methods to find the distortions and to rigorously evaluate the associated capillary energies. For particles with equilibrium contact angles, contrary to the literature, we find that the capillary energy is negligible, with the first contribution bounded to fourth order in the product of the particle radius and the deviatoric curvature of the host interface. For pinned contact lines, we find curvature capillary energies that are finite, with a functional form investigated previously by us for disks and microcylinders on curved interfaces. In experiments, we show microspheres migrate along deterministic trajectories toward regions of maximum deviatoric curvature with curvature capillary energies ranging from 6 × 10(3)-5 × 10(4)kBT. These data agree with the curvature capillary energy for the case of pinned contact lines. The underlying physics of this migration is a coupling of the interface deviatoric curvature with the quadrupolar mode of nanometric disturbances in the interface owing to the particle's contact line undulations. This work is an example of the major implications of nanometric roughness and contact line pinning for colloidal dynamics.

  6. Spatial curvature endgame: Reaching the limit of curvature determination

    NASA Astrophysics Data System (ADS)

    Leonard, C. Danielle; Bull, Philip; Allison, Rupert

    2016-07-01

    Current constraints on spatial curvature show that it is dynamically negligible: |ΩK|≲5 ×10-3 (95% C.L.). Neglecting it as a cosmological parameter would be premature however, as more stringent constraints on ΩK at around the 10-4 level would offer valuable tests of eternal inflation models and probe novel large-scale structure phenomena. This precision also represents the "curvature floor," beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the curvature floor is unreachable—by an order of magnitude—even with Stage IV experiments, unless strong assumptions are made about dark energy evolution and the Λ CDM parameter values. We also discuss some of the novel problems that arise when attempting to constrain a global cosmological parameter like ΩK with such high precision. Measuring curvature down to this level would be an important validation of systematics characterization in high-precision cosmological analyses.

  7. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals.

    PubMed

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D; Yoon, Dong Ki

    2016-01-01

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales. PMID:26725975

  8. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals.

    PubMed

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D; Yoon, Dong Ki

    2016-01-04

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales.

  9. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals

    PubMed Central

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D.; Yoon, Dong Ki

    2016-01-01

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air–smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales. PMID:26725975

  10. Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides.

    PubMed

    de Jesus, Armando J; White, Ormacinda R; Flynn, Aaron D; Yin, Hang

    2016-05-10

    It is increasingly recognized that membrane curvature plays an important role in various cellular activities such as signaling and trafficking, as well as key issues involving health and disease development. Thus, curvature-sensing peptides are essential to the study and detection of highly curved bilayer structures. The effector domain of myristoylated alanine-rich C-kinase substrate (MARCKS-ED) has been demonstrated to have curvature-sensing ability. Research of the MARCKS-ED has further revealed that its Lys and Phe residues play an essential role in how MARCKS-ED detects and binds to curved bilayers. MARCKS-ED has the added property of being a lower-molecular-weight curvature sensor, which offers advantages in production. With that in mind, this work investigates peptide-sequence-related factors that influence curvature sensing and explores whether peptide fragments of even shorter length can function as curvature sensors. Using both experimental and computational methods, we studied the curvature-sensing capabilities of seven fragments of MARCKS-ED. Two of the longer fragments were designed from approximately the two halves of the full-length peptide whereas the five shorter fragments were taken from the central stretch of MARCKS-ED. Fully atomistic molecular dynamics simulations show that the fragments that remain bound to the bilayer exhibit interactions with the bilayer similar to that of the full-length MARCKS-ED peptide. Fluorescence enhancement and anisotropy assays, meanwhile, reveal that five of the MARCKS fragments possess the ability to sense membrane curvature. Based on the sequences of the curvature-sensing fragments, it appears that the ability to sense curvature involves a balance between the numbers of positively charged residues and hydrophobic anchoring residues. Together, these findings help crystallize our understanding of the molecular mechanisms underpinning the curvature-sensing behaviors of peptides, which will prove useful in the

  11. On the Weyl curvature hypothesis

    SciTech Connect

    Stoica, Ovidiu Cristinel

    2013-11-15

    The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmological models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.

  12. Spatial curvature falsifies eternal inflation

    SciTech Connect

    Kleban, Matthew; Schillo, Marjorie E-mail: mls604@nyu.edu

    2012-06-01

    Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10{sup −5}). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature Ω{sub k}. On this basis we argue that a measurement of |Ω{sub k}| > 10{sup −4} would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of Ω{sub k} < −10{sup −4} (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of Ω{sub k} measurements and constitute a sharp test of these predictions.

  13. Cosmic strings with curvature corrections

    NASA Astrophysics Data System (ADS)

    Boisseau, Bruno; Letelier, Patricio S.

    1992-08-01

    A generic model of string described by a Lagrangian density that depends on the extrinsic curvature of the string worldsheet is studied. Using a system of coordinates adapted to the string world sheet the equation of motion and the energy-momentum tensor are derived for strings evolving in curved spacetime. We find that the curvature corrections may change the relation between the string energy density and the tension. It can also introduce heat propagation along the string. We also find for the Polyakov as well as Nambu strings with a topological term that the open string end points can travel with a speed less than the velocity of light.

  14. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry.

    PubMed

    Agudo-Canalejo, Jaime; Lipowsky, Reinhard

    2015-01-01

    The adhesion and engulfment of nanoparticles by biomembranes is essential for many processes such as biomedical imaging, drug delivery, nanotoxicity, and viral infection. Many studies have shown that both surface chemistry, which determines the adhesive strength of the membrane-particle interactions, and particle size represent key parameters for these processes. Here, we show that the asymmetry between the two leaflets of a bilayer membrane provides another key parameter for the engulfment of nanoparticles. The asymmetric membrane prefers to curve in a certain manner as quantitatively described by its spontaneous curvature. We derive two general relationships between particle size, adhesive strength, and spontaneous curvature that determine the instabilities of (i) the nonadhering or free state and (ii) the completely engulfed state of the particle. For model membranes such as lipid or polymer bilayers with a uniform composition, the two relationships lead to two critical particle sizes that determine four distinct engulfment regimes, both for the endocytic and for the exocytic engulfment process. For strong adhesion, the critical particle sizes are on the order of 10 nm, while they are on the order of 1000 nm for weak or ultraweak adhesion. Our theoretical results are therefore accessible to both experimental studies and computer simulations of model membranes. In order to address the more complex process of receptor-mediated endocytosis, we take the adhesion-induced segregation of membrane components into account and consider bound and unbound membrane segments that differ in their spontaneous curvatures. To model protein coats as formed during clathrin-dependent endocytosis, we focus on the case in which the bound membrane segments have a large spontaneous curvature compared to the unbound ones. We derive explicit expressions for the engulfment rate and the uptake of nanoparticles, which both depend on the particle size in a nonmonotonic manner, and provide a

  15. Membrane interactions and conformational preferences of human and avian prion N-terminal tandem repeats: the role of copper(II) ions, pH, and membrane mimicking environments.

    PubMed

    Di Natale, Giuseppe; Pappalardo, Giuseppe; Milardi, Danilo; Sciacca, Michele F M; Attanasio, Francesco; La Mendola, Diego; Rizzarelli, Enrico

    2010-11-01

    The flexible N-terminal domain of the prion protein (PrP(c)) is believed to play a pivotal role in both trafficking of the protein through the cell membrane and its pathogenic conversion into the β sheet-rich scrapie isoform (PrP(sc)). Unlike mammalian PrP(c), avian prion proteins are not known to undergo any pathogenic conformational conversions. Consequently, some critical advances in our understanding of the molecular mechanisms underlying prion pathogenesis are expected from comparative studies of the biophysical properties of the N-terminal domains of the two proteins. The present study addresses the role played by different environmental factors, i.e., copper(II), pH, and membrane-mimicking environments, in assisting the conformational preferences of huPrP60-91 and chPrP53-76, two soluble peptides encompassing the N-terminal copper(II) binding domains of the human and chicken prion proteins, respectively. Moreover, the membrane interactions of huPrP60-91, chPrP53-76, and their copper(II) complexes were evaluated by Trp fluorescence in conjunction with measurements of the variation in thermotropic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) unilamellar vesicles. Circular dichroism experiments revealed that huPrP60-91 adopts a predominant polyproline II conformation in aqueous solution that is destabilized at basic pH or in the presence of trifluoroethanol (TFE). Unlike anionic sodium dodecyl sulfate (SDS), which seems to stabilize the polyproline II conformation further, zwitterionic dodecylphosphocholine (DPC) micelles do not affect the peptide structure. On the contrary, copper(II) promptly promotes an increase in β-turn-rich structures. Differential scanning calorimetry (DSC) and Trp fluorescence assays carried out on DPPC model membranes after incubation with huPrP60-91 showed a marked tendency of the peptide to slowly penetrate the lipid bilayer with a concomitant conformational transition toward an extended β-sheet-like structure

  16. Thermodynamic Curvature and Black Holes

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George

    In my talk, I will discuss black hole thermodynamics, particularly what happens when you add thermodynamic curvature to the mix. Although black hole thermodynamics is a little off the main theme of this workshop, I hope nevertheless that my message will be of some interest to researchers in supersymmetry and supergravity.

  17. Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers

    PubMed Central

    Herter, Sylvia; Piper, Derek E.; Aaron, Wade; Gabriele, Timothy; Cutler, Gene; Cao, Ping; Bhatt, Ami S.; Choe, Youngchool; Craik, Charles S.; Walker, Nigel; Meininger, David; Hoey, Timothy; Austin, Richard J.

    2005-01-01

    Hepsin is a membrane-anchored, trypsin-like serine protease with prominent expression in the human liver and tumours of the prostate and ovaries. To better understand the biological functions of hepsin, we identified macromolecular substrates employing a tetrapeptide PS-SCL (positional scanning-synthetic combinatorial library) screen that rapidly determines the P1–P4 substrate specificity. Hepsin exhibited strong preference at the P1 position for arginine over lysine, and favoured threonine, leucine or asparagine at the P2, glutamine or lysine at the P3, and proline or lysine at the P4 position. The relative activity of hepsin toward individual AMC (7-amino-4-methylcoumarin)-tetrapeptides was generally consistent with the overall peptide profiling results derived from the PC-SCL screen. The most active tetrapeptide substrate Ac (acetyl)-KQLR-AMC matched with the activation cleavage site of the hepatocyte growth factor precursor sc-HGF (single-chain HGF), KQLR↓VVNG (where ↓ denotes the cleavage site), as identified by a database analysis of trypsin-like precursors. X-ray crystallographic studies with KQLR chloromethylketone showed that the KQLR peptide fits well into the substrate-binding cleft of hepsin. This hepsin-processed HGF induced c-Met receptor tyrosine phosphorylation in SKOV-3 ovarian cancer cells, indicating that the hepsin-cleaved HGF is biologically active. Activation cleavage site mutants of sc-HGF with predicted non-preferred sequences, DPGR↓VVNG or KQLQ↓VVNG, were not processed, illustrating that the P4–P1 residues can be important determinants for substrate specificity. In addition to finding macromolecular hepsin substrates, the extracellular inhibitors of the HGF activator, HAI-1 and HAI-2, were potent inhibitors of hepsin activity (IC50 4±0.2 nM and 12±0.5 nM respectively). Together, our findings suggest that the HGF precursor is a potential in vivo substrate for hepsin in tumours, where hepsin expression is dysregulated and may

  18. Interaction of n-octyl β,D-glucopyranoside with giant magnetic-fluid-loaded phosphatidylcholine vesicles: direct visualization of membrane curvature fluctuations as a function of surfactant partitioning between water and lipid bilayer.

    PubMed

    Ménager, Christine; Guemghar, Dihya; Cabuil, Valérie; Lesieur, Sylviane

    2010-10-01

    The present study deals with the morphological modifications of giant dioleoyl phosphatidylcholine vesicles (DOPC GUVs) induced by the nonionic surfactant n-octyl β,D-glucopyranoside at sublytic levels, i.e., in the first steps of the vesicle-to-micelle transition process, when surfactant inserts into the vesicle bilayer without disruption. Experimental conditions were perfected to exactly control the surfactant bilayer composition of the vesicles, in line with former work focused on the mechanical properties of the membrane of magnetic-fluid-loaded DOPC GUVs submitted to a magnetic field. The purpose here was to systematically examine, in the absence of any external mechanical constraint, the dynamics of giant vesicle shape and membrane deformations as a function of surfactant partitioning between the aqueous phase and the lipid membrane, beforehand established by turbidity measurements from small unilamellar vesicles. PMID:20825201

  19. Why do the outer membrane proteins OmpF from E. coli and OprP from P. aeruginosa prefer trimers? Simulation studies.

    PubMed

    Niramitranon, Jitti; Sansom, Mark S P; Pongprayoon, Prapasiri

    2016-04-01

    Porins are water-filled protein channels across the outer membrane of gram-negative bacteria. They facilitate the uptake of nutrients and essential ions. Solutes are filtered by a constriction loop L3 at the mid of a pore. Porins are heat-stable and resistant to toxic agents and detergents. Most porins are trimer, but no clear explanation why trimeric form is preferable. In this work, we thus studied effects of oligomerization on porin structure and function in microscopic detail. A well-studied OmpF (general porin from Escherichia coli) and well-characterised OprP (phosphate-specific pore from Pseudomonas aeruginosa) are used as samples from 2 types of porins found in gram-negative bacteria. MD simulations of trimeric and monomeric pores in pure water and 1M NaCl solution were performed. With a salt solution, the external electric field was applied to mimic a transmembrane potential. Expectedly, OprP is more stable than OmpF. Interestingly, being a monomer turns OmpF into an anion-selective pore. The dislocation of D113's side chain on L3 in OmpF causes the disruption of cation pathway resulting in the reduction of cation influx. In contrast, OprP's structure and function are less dependent on oligomeric states. Both monomeric and trimeric OprP can maintain their anion selectivity. Our findings suggest that trimerization is crucial for both structure and function of general porin OmpF, whereas being trimer in substrate-specific channel OprP supports a pore function.

  20. Space Curvature and the "Heavy Banana 'Paradox.'"

    ERIC Educational Resources Information Center

    Gruber, Ronald P.; And Others

    1991-01-01

    Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)

  1. The dark side of curvature

    SciTech Connect

    Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia E-mail: enfmarti@mppmu.mpg.de E-mail: liciaverde@icc.ub.edu

    2010-03-01

    Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d{sub A}(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω{sub k} in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d{sub A}(z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω{sub k} degeneracy.

  2. Classification and quantification of leaf curvature

    PubMed Central

    Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke

    2010-01-01

    Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields. PMID:20400533

  3. Curvature operator for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Alesci, E.; Assanioussi, M.; Lewandowski, J.

    2014-06-01

    We introduce a new operator in loop quantum gravity—the 3D curvature operator—related to the three-dimensional scalar curvature. The construction is based on Regge calculus. We define this operator starting from the classical expression of the Regge curvature, we derive its properties and discuss some explicit checks of the semiclassical limit.

  4. Disformal invariance of curvature perturbation

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; White, Jonathan

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  5. On the collective curvature radiation

    NASA Astrophysics Data System (ADS)

    Istomin, Ya. N.; Philippov, A. A.; Beskin, V. S.

    2012-05-01

    In this paper, we study one possible mechanism of pulsar radio emission (i.e. with the collective curvature radiation of the relativistic particle stream moving along the curved magnetospheric magnetic field lines). We show that an electromagnetic wave that contains one cylindrical harmonic exp {isφ} cannot be radiated by the curvature radiation mechanism, which corresponds to the radiation of a charged particle moving along curved magnetic field lines. The point is that a particle in a vacuum radiates the triplex of harmonics (s, s± 1) in which the polarization of the emitted wave changes from one point to another on a circle of constant radius, while for one s-harmonic the polarization remains constant. So, for the collective curvature radiation, the wave polarization is very important and cannot be fixed a priori. For this reason, the polarization of real unstable waves must be determined directly from the solution of wave equations for the media. Its electromagnetic properties should be described by the dielectric permittivity tensor ?, which contains information on the reaction on all possible types of radiation.

  6. Thermodynamic curvature and ensemble nonequivalence

    NASA Astrophysics Data System (ADS)

    Bravetti, Alessandro; Nettel, Francisco

    2014-08-01

    In this work we consider thermodynamic geometries defined as Hessians of different potentials and derive some useful formulas that show their complementary role in the description of thermodynamic systems with 2 degrees of freedom that show ensemble nonequivalence. From the expressions derived for the metrics, we can obtain the curvature scalars in a very simple and compact form. We explain here the reason why each curvature scalar diverges over the line of divergence of one of the specific heats. This application is of special interest in the study of changes of stability in black holes as defined by Davies. From these results we are able to prove on a general footing a conjecture first formulated by Liu, Lü, Luo, and Shao stating that different Hessian metrics can correspond to different behaviors in the various ensembles. We study the case of two thermodynamic dimensions. Moreover, comparing our result with the more standard turning point method developed by Poincaré, we obtain that the divergence of the scalar curvature of the Hessian metric of one potential exactly matches the change of stability in the corresponding ensemble.

  7. Proteins interacting with Membranes: Protein Sorting and Membrane Shaping

    NASA Astrophysics Data System (ADS)

    Callan-Jones, Andrew

    2015-03-01

    Membrane-bound transport in cells requires generating membrane curvature. In addition, transport is selective, in order to establish spatial gradients of membrane components in the cell. The mechanisms underlying cell membrane shaping by proteins and the influence of curvature on membrane composition are active areas of study in cell biophysics. In vitro approaches using Giant Unilamellar Vesicles (GUVs) are a useful tool to identify the physical mechanisms that drive sorting of membrane components and membrane shape change by proteins. I will present recent work on the curvature sensing and generation of IRSp53, a protein belonging to the BAR family, whose members, sharing a banana-shaped backbone, are involved in endocytosis. Pulling membrane tubes with 10-100 nm radii from GUVs containing encapsulated IRSp53 have, unexpectedly, revealed a non-monotonic dependence of the protein concentration on the tube as a function of curvature. Experiments also show that bound proteins alter the tube mechanics and that protein phase separation along the tube occurs at low tensions. I will present accompanying theoretical work that can explain these findings based on the competition between the protein's intrinsic curvature and the effective rigidity of a membrane-protein patch.

  8. Pointlike Inclusion Interactions in Tubular Membranes

    NASA Astrophysics Data System (ADS)

    Vahid, Afshin; Idema, Timon

    2016-09-01

    Membrane tubes and tubular networks are ubiquitous in living cells. Inclusions like proteins are vital for both the stability and the dynamics of such networks. These inclusions interact via the curvature deformations they impose on the membrane. We analytically study the resulting membrane mediated interactions in strongly curved tubular membranes. We model inclusions as constraints coupled to the curvature tensor of the membrane tube. First, as special test cases, we analyze the interaction between ring- and rod-shaped inclusions. Using Monte Carlo simulations, we further show how pointlike inclusions interact to form linear aggregates. To minimize the curvature energy of the membrane, inclusions self-assemble into either line- or ringlike patterns. Our results show that the global curvature of the membrane strongly affects the interactions between proteins embedded in it, and can lead to the spontaneous formation of biologically relevant structures.

  9. The curvature elastic-energy function of the lipid-water cubic mesophase

    NASA Astrophysics Data System (ADS)

    Chung, Hesson; Caffrey, Martin

    1994-03-01

    CELL and lipid membranes are able to bend, as manifested during membrane fusion and the formation of non-lamellar lyotropic mesopbases in water. But there is an energy cost to bending of lipid layers, called the curvature elastic energy. Although the functional form of this energy is known1, a complete quantitative knowledge of the curvature elastic energy, which is central to predicting the relative stability of the large number of phases that lipid membranes can adopt, has been lacking. Here we use X-ray synchrotron diffraction measurements of the variation of lattice parameter with pressure and temperature for the periodic Ia3d (Q230) cubic phase of hydrated monoolein to calculate the complete curvature elastic-energy function for the lipid cubic mesophase. This allows us to predict the stabilities of different cubic and lamellar phases for this system as a function of composition.

  10. Adsorbate-induced curvature and stiffening of graphene.

    PubMed

    Svatek, Simon A; Scott, Oliver R; Rivett, Jasmine P H; Wright, Katherine; Baldoni, Matteo; Bichoutskaia, Elena; Taniguchi, Takashi; Watanabe, Kenji; Marsden, Alexander J; Wilson, Neil R; Beton, Peter H

    2015-01-14

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  11. Spontaneous curvature in chiral polar filaments near interfaces

    NASA Astrophysics Data System (ADS)

    Olmsted, Peter D.; Riley, Emily E.; Jordens, Sophia; Usov, Ivan; Isa, Lucio; Mezzenga, Raffaele

    2015-03-01

    Chiral filaments (actin, DNA, alpha helical strands, ...) are ubiquitous in biology, and they frequently come into contact with interfaces or inhomogeneous environments, either in biology (e.g. actin on membranes) or use and processing of biomaterials (fibrils at solvent boundaries or nanoparticle surfaces). Recent experiments have shown that amyloid fibrils can develop unusual curvatures at the air-water interface. Here we show that spontaneous curvature follows, on symmetry grounds, for chiral polar filaments placed in inhomgeneous environments such as near surfaces. We demonstrate this for simple model surface-fibril interactions, and discuss some of the implications. Financial support is acknowledged from: ETH Zurich (ETHIIRA TH 32-1), SNF (2-77002-11), and SNSF (IZK072_141955, PP00P2_144646/1, PZ00P2_142532/1).

  12. Adsorbate-Induced Curvature and Stiffening of Graphene

    PubMed Central

    2014-01-01

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon–carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  13. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  14. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension.

    PubMed

    Baumgart, Tobias; Hess, Samuel T; Webb, Watt W

    2003-10-23

    Lipid bilayer membranes--ubiquitous in biological systems and closely associated with cell function--exhibit rich shape-transition behaviour, including bud formation and vesicle fission. Membranes formed from multiple lipid components can laterally separate into coexisting liquid phases, or domains, with distinct compositions. This process, which may resemble raft formation in cell membranes, has been directly observed in giant unilamellar vesicles. Detailed theoretical frameworks link the elasticity of domains and their boundary properties to the shape adopted by membranes and the formation of particular domain patterns, but it has been difficult to experimentally probe and validate these theories. Here we show that high-resolution fluorescence imaging using two dyes preferentially labelling different fluid phases directly provides a correlation between domain composition and local membrane curvature. Using freely suspended membranes of giant unilamellar vesicles, we are able to optically resolve curvature and line tension interactions of circular, stripe and ring domains. We observe long-range domain ordering in the form of locally parallel stripes and hexagonal arrays of circular domains, curvature-dependent domain sorting, and membrane fission into separate vesicles at domain boundaries. By analysing our observations using available membrane theory, we are able to provide experimental estimates of boundary tension between fluid bilayer domains. PMID:14574408

  15. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  16. Determining wave direction using curvature parameters.

    PubMed

    de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista

    2016-01-01

    The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results. PMID:27408830

  17. Conversion of radius of curvature to power (and vice versa)

    NASA Astrophysics Data System (ADS)

    Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.

    2015-09-01

    Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.

  18. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  19. Magnetophoretic Induction of Root Curvature

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  20. Ionic liquid tunes microemulsion curvature.

    PubMed

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems. PMID:19161325

  1. Conformation of charged vesicles: the Debye Huckel and the low curvature limit

    NASA Astrophysics Data System (ADS)

    Sinha, Kumari Priti; Thaokar, Rochish M., , Prof.

    The shape as well as tension and pressure inside an uncharged vesicle are determined by the reduced volume. These parameters are important for a vesicle or a biological cell, since it can affect bio-physical processes such as osmosis and permeation, interaction with external agents such as bio- macromolecules and thermal fluctuations of the bilayer membrane of a vesicle. Charged membranes are ubiquitous in nature, most biological cell bio-membranes are charged, and therefore the knowledge of shape, tension and pressure of charged vesicles is critical. Additionally, the distribution of charges in the inner and outer leaflets is also important as it can affect the spatial interaction of a bilayer membrane with proteins. This work addresses these issues in the low charge and curvature limit. Our analysis indicates that despite a very strong two-way coupling between the charge and the curvature, the shapes of charged vesicles remain similar to that of uncharged vesicles at comparable reduced volumes, even for reasonable values of total charge. However, the tension and pressure values are higher, and are accurately estimated. Similarly the charge distribution on the outer and inner leaflet is strongly affected by the curvature. The value of spontaneous curvature due to charge redistribution is estimated. The insensitivity of the shape to charges persists even when only the outer leaflet is charged instead of charged inner and outer leaflets

  2. Conformation of charged vesicles: the Debye-Hückel and the low-curvature limit.

    PubMed

    Priti Sinha, Kumari; M Thaokar, Rochish

    2016-07-01

    The shape as well as tension and pressure inside an uncharged vesicle are understood to be determined by the reduced volume of a vesicle. These parameters are important for a vesicle or a biological cell, since they can affect bio-physical processes such as osmosis and permeation, interaction with external agents such as bio-macromolecules as well as thermal fluctuations in a bilayer membrane of a vesicle. Charged membranes are ubiquitous in nature, most biological cell bio-membranes are charged, and therefore the knowledge of shape, tension and pressure of charged vesicles is critical. Additionally, the distribution of charges in the inner and outer leaflets is also important as it can affect the spatial interaction of a bilayer membrane with proteins and other micro and macromolecular species. This work addresses these issues in the low-charge and low-curvature limit. Our analysis indicates that despite a very strong two-way coupling between the charge and the curvature, the shapes of charged vesicles remain similar to that of uncharged vesicles at comparable reduced volumes, even for reasonable values of total charge. However, the tension and pressure values are higher, and are accurately estimated in our analysis. The charge distribution on the outer and inner leaflet which is strongly affected by the curvature is calculated. The value of spontaneous curvature due to charge redistribution is also estimated. The insensitivity of the shape to charges persists even when only the outer leaflet is charged instead of charged inner and outer leaflets. PMID:27450654

  3. Curvature-driven capillary migration and assembly of rod-like particles.

    PubMed

    Cavallaro, Marcello; Botto, Lorenzo; Lewandowski, Eric P; Wang, Marisa; Stebe, Kathleen J

    2011-12-27

    Capillarity can be used to direct anisotropic colloidal particles to precise locations and to orient them by using interface curvature as an applied field. We show this in experiments in which the shape of the interface is molded by pinning to vertical pillars of different cross-sections. These interfaces present well-defined curvature fields that orient and steer particles along complex trajectories. Trajectories and orientations are predicted by a theoretical model in which capillary forces and torques are related to Gaussian curvature gradients and angular deviations from principal directions of curvature. Interface curvature diverges near sharp boundaries, similar to an electric field near a pointed conductor. We exploit this feature to induce migration and assembly at preferred locations, and to create complex structures. We also report a repulsive interaction, in which microparticles move away from planar bounding walls along curvature gradient contours. These phenomena should be widely useful in the directed assembly of micro- and nanoparticles with potential application in the fabrication of materials with tunable mechanical or electronic properties, in emulsion production, and in encapsulation.

  4. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  5. Soliton curvatures of surfaces and spaces

    SciTech Connect

    Konopelchenko, B.G.

    1997-01-01

    An intrinsic geometry of surfaces and three-dimensional Riemann spaces is discussed. In the geodesic coordinates the Gauss equation for two-dimensional Riemann spaces (surfaces) is reduced to the one-dimensional Schr{umlt o}dinger equation, where the Gaussian curvature plays a role of potential. The use of this fact provides an infinite set of explicit expressions for curvature and metric of surface. A special case is governed by the KdV equation for the Gaussian curvature. Integrable dynamics of curvature via the KdV equation, higher KdV equations, and 2+1-dimensional integrable equations with breaking solitons is considered. For a special class of three-dimensional Riemann spaces the relation between metric and scalar curvature is given by the two-dimensional stationary Schr{umlt o}dinger or perturbed string equations. This provides us an infinite family of Riemann spaces with explicit scalar curvature and metric. Particular class of spaces and their integrable evolutions are described by the Nizhnik{endash}Veselov{endash}Novikov equation and its higher analogs. Surfaces and three-dimensional Riemann spaces with large curvature and slow dependence on the variable are considered. They are associated with the Burgers and Kadomtsev{endash}Petviashvili equations, respectively. {copyright} {ital 1997 American Institute of Physics.}

  6. Distributed curvature and stability of fullerenes.

    PubMed

    Fowler, Patrick W; Nikolić, Sonja; De Los Reyes, Rasthy; Myrvold, Wendy

    2015-09-21

    Energies of non-planar conjugated π systems are typically described qualitatively in terms of the balance of π stabilisation and the steric strain associated with geometric curvature. Curvature also has a purely graph-theoretical description: combinatorial curvature at a vertex of a polyhedral graph is defined as one minus half the vertex degree plus the sum of reciprocal sizes of the faces meeting at that vertex. Prisms and antiprisms have positive combinatorial vertex curvature at every vertex. Excluding these two infinite families, we call any other polyhedron with everywhere positive combinatorial curvature a PCC polyhedron. Cubic PCC polyhedra are initially common, but must eventually die out with increasing vertex count; the largest example constructed so far has 132 vertices. The fullerenes Cn have cubic polyhedral molecular graphs with n vertices, 12 pentagonal and (n/2 - 10) hexagonal faces. We show that there are exactly 39 PCC fullerenes, all in the range 20 ≤n≤ 60. In this range, there is only partial correlation between PCC status and stability as defined by minimum pentagon adjacency. The sum of vertex curvatures is 2 for any polyhedron; for fullerenes the sum of squared vertex curvatures is linearly related to the number of pentagon adjacencies and hence is a direct measure of relative stability of the lower (n≤ 60) fullerenes. For n≥ 62, non-PCC fullerenes with a minimum number of pentagon adjacencies minimise mean-square curvature. For n≥ 70, minimum mean-square curvature implies isolation of pentagons, which is the strongest indicator of stability for a bare fullerene. PMID:26283188

  7. Magnetic curvature effects on plasma interchange turbulence

    NASA Astrophysics Data System (ADS)

    Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.

    2016-06-01

    The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.

  8. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment

    PubMed Central

    Bender, Ruben R.; Muth, Anke; Schneider, Irene C.; Friedel, Thorsten; Hartmann, Jessica; Plückthun, Andreas; Maisner, Andrea; Buchholz, Christian J.

    2016-01-01

    Receptor-targeted lentiviral vectors (LVs) can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV) glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance). Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV) glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4) was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs. PMID:27281338

  9. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    PubMed

    Bender, Ruben R; Muth, Anke; Schneider, Irene C; Friedel, Thorsten; Hartmann, Jessica; Plückthun, Andreas; Maisner, Andrea; Buchholz, Christian J

    2016-06-01

    Receptor-targeted lentiviral vectors (LVs) can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV) glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance). Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV) glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4) was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs. PMID:27281338

  10. Coarse-Grained Molecular Dynamics Simulations of Membrane-Trehalose Interactions.

    PubMed

    Kapla, Jon; Stevensson, Baltzar; Maliniak, Arnold

    2016-09-15

    It is well established that trehalose (TRH) affects the physical properties of lipid bilayers and stabilizes biological membranes. We present molecular dynamics (MD) computer simulations to investigate the interactions between lipid membranes formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and TRH. Both atomistic and coarse-grained (CG) interaction models were employed, and the coarse graining of DMPC leads to a reduction in the acyl chain length corresponding to a 1,2-dilauroyl-sn-glycero-3-phosphocholine lipid (DLPC). Several modifications of the Martini interaction model, used for CG simulations, were implemented, resulting in different potentials of mean force (PMFs) for DMPC bilayer-TRH interactions. These PMFs were subsequently used in a simple two-site analytical model for the description of sugar binding at the membrane interface. In contrast to that in atomistic MD simulations, the binding in the CG model was not in agreement with the two-site model. Our interpretation is that the interaction balance, involving water, TRH, and lipids, in the CG systems needs further tuning of the force-field parameters. The area per lipid is only weakly affected by TRH concentration, whereas the compressibility modulus related to the fluctuations of the membrane increases with an increase in TRH content. In agreement with experimental findings, the bending modulus is not affected by the inclusion of TRH. The important aspects of lipid bilayer interactions with biomolecules are membrane curvature generation and sensing. In the present investigation, membrane curvature is generated by artificial buckling of the bilayer in one dimension. It turns out that TRH prefers the regions with the highest curvature, which enables the most favorable situation for lipid-sugar interactions. PMID:27530142

  11. Defect Motifs for Constant Mean Curvature Surfaces

    NASA Astrophysics Data System (ADS)

    Kusumaatmaja, Halim; Wales, David J.

    2013-04-01

    The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.

  12. Induced gravity from curvature density preserving diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-08-01

    We construct not only an induced gravity model with restricted diffeomorphisms, that is, transverse diffeomorphisms that preserve the curvature density, but also with full diffeomorphisms. By solving the equations of motion, it turns out that these models produce Einstein's equations with a certain Newton constant in addition to the constraint for the curvature density. In the limit of the infinite Newton constant, the models give rise to induced gravity. Moreover, we discuss cosmological solutions on the basis of the gravitational models at hand.

  13. Curvature tensors unified field equations on SEXn

    NASA Astrophysics Data System (ADS)

    Chung, Kyung Tae; Lee, Il Young

    1988-09-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.

  14. The role of curvature in entanglement

    NASA Astrophysics Data System (ADS)

    Buck, Gregory

    2015-10-01

    Which tangles more readily: curly hair or straight hair? A perhaps natural thought, supported by some theoretical evidence, is to associate curvature and entanglement, and assume that they would grow together-that an increase in one fosters an increase in the other. However we have biological examples such as DNA in the chromosome, and mechanical examples such as coiled telephone cords, in which much more curvature is employed than is required for the packing, and in which tangling is presumably detrimental. We offer a resolution to this conundrum. We show, that at least for simple but generally applicable models, the relationship between curvature and entanglement is subtle: if we keep filament density constant and increase curvature, the entanglement initially increases, passes through a maximum, then decreases, so there is a regime where increasing curvature increases entanglement, and there is also a regime where increasing curvature decreases entanglement. This has implications for filament packing in many circumstances, and in particular for the compaction structure of DNA in the cell-it provides a straightforward argument for the view that one purpose of DNA coiling and supercoiling is to inhibit entanglement. It also tells us to expect that wavy hair-neither the straightest nor the curliest-tangles most readily.

  15. Spherical gravitational curvature boundary-value problem

    NASA Astrophysics Data System (ADS)

    Šprlák, Michal; Novák, Pavel

    2016-08-01

    Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.

  16. The effect of spontaneous curvature on a two-phase vesicle

    PubMed Central

    Cox, Geoffrey; Lowengrub, John

    2015-01-01

    Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature’s propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. PMID:26097287

  17. Formation, Stability, and Mobility of One-Dimensional Lipid Bilayer on High Curvature Substrates

    SciTech Connect

    Huang, J; Martinez, J; Artyukhin, A; Sirbuly, D; Wang, Y; Ju, J W; Stroeve, P; Noy, A

    2007-03-23

    Curved lipid membranes are ubiquitous in living systems and play an important role in many biological processes. To understand how curvature and lipid composition affect membrane formation and fluidity we have assembled and studied mixed 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC) and 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine (DOPE) supported lipid bilayers on amorphous silicon nanowires with controlled diameters ranging from 20 nm to 200 nm. Addition of cone-shaped DOPE molecules to cylindrical DOPC molecules promotes vesicle fusion and bilayer formation on smaller diameter nanowires. Our experiments demonstrate that nanowire-supported bilayers are mobile, exhibit fast recovery after photobleaching, and have low concentration of defects. Lipid diffusion coefficients in these high-curvature tubular membranes are comparable to the values reported for flat supported bilayers and increase with decreasing nanowire diameter.

  18. Membrane with supported internal passages

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    2000-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.

  19. Shape matters in protein mobility within membranes

    PubMed Central

    Quemeneur, François; Sigurdsson, Jon K.; Renner, Marianne; Atzberger, Paul J.; Bassereau, Patricia; Lacoste, David

    2014-01-01

    The lateral mobility of proteins within cell membranes is usually thought to be dependent on their size and modulated by local heterogeneities of the membrane. Experiments using single-particle tracking on reconstituted membranes demonstrate that protein diffusion is significantly influenced by the interplay of membrane curvature, membrane tension, and protein shape. We find that the curvature-coupled voltage-gated potassium channel (KvAP) undergoes a significant increase in protein mobility under tension, whereas the mobility of the curvature-neutral water channel aquaporin 0 (AQP0) is insensitive to it. Such observations are well explained in terms of an effective friction coefficient of the protein induced by the local membrane deformation. PMID:24706877

  20. Hydrophobic surfactant proteins strongly induce negative curvature.

    PubMed

    Chavarha, Mariya; Loney, Ryan W; Rananavare, Shankar B; Hall, Stephen B

    2015-07-01

    The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706

  1. Strong curvature effects in Neumann wave problems

    SciTech Connect

    Willatzen, M.; Pors, A.; Gravesen, J.

    2012-08-15

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schroedinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.

  2. Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature

    PubMed Central

    Chavarha, Mariya; Loney, Ryan W.; Rananavare, Shankar B.; Hall, Stephen B.

    2015-01-01

    The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706

  3. A new algorithm for evaluating 3D curvature and curvature gradient for improved fracture detection

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2014-09-01

    In 3D seismic interpretation, both curvature and curvature gradient are useful seismic attributes for structure characterization and fault detection in the subsurface. However, the existing algorithms are computationally intensive and limited by the lateral resolution for steeply-dipping formations. This study presents new and robust volume-based algorithms that evaluate both curvature and curvature gradient attributes more accurately and effectively. The algorithms first instantaneously fit a local surface to seismic data and then compute attributes using the spatial derivatives of the built surface. Specifically, the curvature algorithm constructs a quadratic surface by using a rectangle 9-node grid cell, whereas the curvature gradient algorithm builds a cubic surface by using a diamond 13-node grid cell. A dip-steering approach based on 3D complex seismic trace analysis is implemented to enhance the accuracy of surface construction and to reduce computational time. Applications to two 3D seismic surveys demonstrate the accuracy and efficiency of the new curvature and curvature gradient algorithms for characterizing faults and fractures in fractured reservoirs.

  4. Curvature constraints from large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-06-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.

  5. Kinetic characterization, optimum conditions for catalysis and substrate preference of secretory phospholipase A2 from Glycine max in model membrane systems.

    PubMed

    Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel

    2015-01-01

    Two secretory phospholipase A2 (sPLA2s) from Glycine max, GmsPLA2-IXA-1 and GmsPLA2-XIB-2, have been purified as recombinant proteins and the activity was evaluated in order to obtain the optimum conditions for catalysis using mixed micelles and lipid monolayers as substrate. Both sPLA2s showed a maximum enzyme activity at pH 7 and a requirement of Ca(2+) in the micromolar range. These parameters were similar to those found for animal sPLA2s but a surprising optimum temperature for catalysis at 60 °C was observed. The effect of negative interfacial charges on the hydrolysis of organized substrates was evaluated through initial rate measurements using short chain phospholipids with different head groups. The enzymes showed subtle differences in the specificity for phospholipids with different head groups (DLPC, DLPG, DLPE, DLPA) in presence or absence of NaCl. Both recombinant enzymes showed lower activity toward anionic phospholipids and a preference for the zwitterionic ones. The values of the apparent kinetic parameters (Vmax and KM) demonstrated that these enzymes have more affinity for phosphatidylcholine compared with phosphatidylglycerol, in contrast with the results observed for pancreatic sPLA2. A hopping mode of catalysis was proposed for the action of these sPLA2 on mixed phospholipid/triton micelles. On the other hand, Langmuir-monolayers assays indicated an optimum lateral surface pressure for activity in between 13 and 16 mN/m for both recombinant enzymes.

  6. Anomalous Coupling Between Topological Defects and Curvature

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo; Turner, Ari M.

    2004-11-01

    We investigate a counterintuitive geometric interaction between defects and curvature in thin layers of superfluids, superconductors, and liquid crystals deposited on curved surfaces. Each defect feels a geometric potential whose functional form is determined only by the shape of the surface, but whose sign and strength depend on the transformation properties of the order parameter. For superfluids and superconductors, the strength of this interaction is proportional to the square of the charge and causes all defects to be repelled (attracted) by regions of positive (negative) Gaussian curvature. For liquid crystals in the one elastic constant approximation, charges between 0 and 4π are attracted by regions of positive curvature while all other charges are repelled.

  7. Cosmic curvature from de Sitter equilibrium cosmology.

    PubMed

    Albrecht, Andreas

    2011-10-01

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  8. Detonation wave curvature of PBXN-111

    NASA Astrophysics Data System (ADS)

    Forbes, J. W.; Lemar, E. R.; Baker, R. N.

    1994-07-01

    Spherical curvatures of detonation waves were measured by streak photography over the center 50 percent of PBXN-111 charges. These curvatures range from 54 to 143 mm for charge diameters of 41 to 68 mm and are not spherical near the edges of the charges. The wave fronts appear linear over about the last 3 mm at the charges edges. The angle between the detonation wave front and the edge of the charge was about 62 degrees over this last 3 mm for all the charges. Detonation velocity and wave front curvature data of PBXN-111 were used to calculate CJ zone lengths of 2-4 mm using the Wood-Kirkwood theory.

  9. Total positive curvature of circular DNA.

    PubMed

    Bohr, Jakob; Olsen, Kasper W

    2013-11-01

    The properties of double-stranded DNA and other chiral molecules depend on the local geometry, i.e., on curvature and torsion, yet the paths of closed chain molecules are globally restricted by topology. When both of these characteristics are to be incorporated in the description of circular chain molecules, e.g., plasmids, it is shown to have implications for the total positive curvature integral. For small circular micro-DNAs it follows as a consequence of Fenchel's inequality that there must exist a minimum length for the circular plasmids to be double stranded. It also follows that all circular micro-DNAs longer than the minimum length must be concave, a result that is consistent with typical atomic force microscopy images of plasmids. Predictions for the total positive curvature of circular micro-DNAs are given as a function of length, and comparisons with circular DNAs from the literature are presented.

  10. Total positive curvature of circular DNA

    NASA Astrophysics Data System (ADS)

    Bohr, Jakob; Olsen, Kasper W.

    2013-11-01

    The properties of double-stranded DNA and other chiral molecules depend on the local geometry, i.e., on curvature and torsion, yet the paths of closed chain molecules are globally restricted by topology. When both of these characteristics are to be incorporated in the description of circular chain molecules, e.g., plasmids, it is shown to have implications for the total positive curvature integral. For small circular micro-DNAs it follows as a consequence of Fenchel's inequality that there must exist a minimum length for the circular plasmids to be double stranded. It also follows that all circular micro-DNAs longer than the minimum length must be concave, a result that is consistent with typical atomic force microscopy images of plasmids. Predictions for the total positive curvature of circular micro-DNAs are given as a function of length, and comparisons with circular DNAs from the literature are presented.

  11. Extrinsic and intrinsic curvatures in thermodynamic geometry

    NASA Astrophysics Data System (ADS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham

    2016-08-01

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  12. Substrate Curvature Gradient Drives Rapid Droplet Motion

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-01

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.

  13. Substrate curvature gradient drives rapid droplet motion.

    PubMed

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces. PMID:25062213

  14. Scaling of curvature in subcritical gravitational collapse

    NASA Astrophysics Data System (ADS)

    Garfinkle, David; Duncan, G. Comer

    1998-09-01

    We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for the black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.

  15. Wavefront reconstruction from tangential and sagittal curvature.

    PubMed

    Canales, Javier; Barbero, Sergio; Portilla, Javier; López-Alonso, José Manuel

    2014-12-10

    In a previous contribution [Appl. Opt.51, 8599 (2012)], a coauthor of this work presented a method for reconstructing the wavefront aberration from tangential refractive power data measured using dynamic skiascopy. Here we propose a new regularized least squares method where the wavefront is reconstructed not only using tangential but also sagittal curvature data. We prove that our new method provides improved quality reconstruction for typical and also for highly aberrated wavefronts, under a wide range of experimental error levels. Our method may be applied to any type of wavefront sensor (not only dynamic skiascopy) able to measure either just tangential or tangential plus sagittal curvature data.

  16. Equal-Curvature X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William

    2002-01-01

    We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We simply add a second order axial sag to the base grazing incidence cone-cone telescope. The radius of curvature of the sag terms is the same on the primary surface and on the secondary surface. The design is optimized so that the on-axis image spot at the focal plane is minimized. The on-axis RMS (root mean square) spot diameter of two studied telescopes is less than 0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 telescopes.

  17. Severe Penile Curvature following Otis Urethrotomy.

    PubMed

    Karaguzel, Ersagun; Gur, Metin; Tok, Dogan S; Kazaz, Ilke O; Eren, Huseyin; Kutlu, Omer; Ozgur, Guner K

    2013-01-01

    Urethral stricture is a common urological pathology with a high recurrence rate after treatment. Urethral manipulations are among its main causes. In this paper, urethral stricture developed secondary to urethral catheterization and was treated with cold-knife internal urethrotomy and the Otis urethrotomy procedure. During the follow-up period, severe ventral penile curvature preventing sexual intercourse developed due to fibrosis of the corpus spongiosum and tunica albuginea of the penis. This ventral penile curvature was corrected with a separate operation using a tunica vaginalis flap harvested from the left scrotum.

  18. Variable-curvature mirrors for the VLTI

    NASA Astrophysics Data System (ADS)

    Ferrari, Marc; Derie, Frederic

    1998-07-01

    A variable curvature mirror is a powerful device that can increase the field of view of optical interferometers. Such a mirror has being developed for the coherent combined focus of the European Southern Observatory Very Large Telescope Interferometer. The variable focal length permits positioning of the pupil image of an individual telescope at a precise location after the delay-line. This property is necessary to exactly remap homothetically the output pupil configuration at the image beam combiner. Given the large zoom range that is needed in the delay line, when the mirror is not stressed the optical surface is a plane while it is convex with f/2.5 at maximum stress. The mirror itself is a very small stainless steel meniscus, with a 300 micrometers thickness, because only the high elasticity of such material allows to achieve the full domain of curvature. The thickness distribution of the meniscus is calculated using elasticity theory in the case of a large deformation. The realization of this micro-optic active device requires advanced techniques in optical fabrication and in particular high precision manufacturing with numerical command lathe. This article also presents the testing of this highly variable curvature mirror and the surface quality obtained within the full curvature range.

  19. Photon Drag Effect due to Berry Curvature

    NASA Astrophysics Data System (ADS)

    Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo

    2016-08-01

    A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results.

  20. Size effect and detonation front curvature

    SciTech Connect

    Souers, P. C., LLNL

    1997-07-01

    Heat flow in a cylinder with internal heating is used as a basis for deriving a simple theory of detonation front curvature, leading to the prediction of quadratic curve shapes. A thermal conductivity of 50 MW/mm{sup 2} is found for TATB samples.

  1. Photon Drag Effect due to Berry Curvature.

    PubMed

    Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo

    2016-08-19

    A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results. PMID:27588858

  2. Curvature instability in passive diffractive resonators.

    PubMed

    Tlidi, M; Vladimirov, A G; Mandel, Paul

    2002-12-01

    We study the stability of localized structures in a passive optical bistable system. We show that there is a critical value of the input field intensity above which localized structures are unstable with respect to a curvature instability. Beyond this instability boundary, a transition from the localized branch of solutions to stable hexagons is found. PMID:12485009

  3. Strong curvature singularities and causal simplicity

    SciTech Connect

    Krolak, A. )

    1992-02-01

    Techniques of differential topology in Lorentzian manifolds developed by Geroch, Hawking, and Penrose are used to rule out a class of locally naked strong curvature singularities in strongly causal space-times. This result yields some support to the validity of Penrose's strong cosmic censorship hypothesis.

  4. Riemann curvature of a boosted spacetime geometry

    NASA Astrophysics Data System (ADS)

    Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco

    2016-10-01

    The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.

  5. Graph Curvature for Differentiating Cancer Networks

    PubMed Central

    Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen

    2015-01-01

    Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480

  6. Constraining inverse curvature gravity with supernovae

    SciTech Connect

    Mena, Olga; Santiago, Jose; Weller, Jochen; /University Coll., London /Fermilab

    2005-10-01

    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  7. Regulation of membrane-shape transitions induced by I-BAR domains.

    PubMed

    Chen, Zhiming; Shi, Zheng; Baumgart, Tobias

    2015-07-21

    I-BAR proteins are well-known actin-cytoskeleton adaptors and have been observed to be involved in the formation of plasma membrane protrusions (filopodia). I-BAR proteins contain an all-helical, crescent-shaped IRSp53-MIM domain (IMD) dimer that is believed to be able to couple with a membrane shape. This coupling could involve the sensing and even the generation of negative plasma membrane curvature. Indeed, the in vitro studies have shown that IMDs can induce inward tubulation of liposomes. While N-BAR domains, which generate positive membrane curvature, have received a considerable amount of attention from both theory and experiments, the mechanisms of curvature coupling through IMDs are comparatively less studied and understood. Here we used a membrane-shape stability assay developed recently in our lab to quantitatively characterize IMD-induced membrane-shape transitions. We determined a membrane-shape stability diagram for IMDs that reveals how membrane tension and protein density can comodulate the generation of IMD-induced membrane protrusions. From comparison to analytical theory, we determine three key parameters that characterize the curvature coupling of IMD. We find that the curvature generation capacity of IMDs is significantly stronger compared to that of endophilin, an N-BAR protein known to be involved in plasma membrane shape transitions. Contrary to N-BAR domains, where amphipathic helix insertion is known to promote its membrane curvature generation, for IMDs we find that amphipathic helices inhibit membrane shape transitions, consistent with the inverse curvature that IMDs generate. Importantly, in both of these types of BAR domains, electrostatic interactions affect membrane-binding capacity, but do not appear to affect the curvature generation capacity of the protein. These two types of BAR domain proteins show qualitatively similar membrane shape stability diagrams, suggesting an underlying ubiquitous mechanism by which peripheral proteins

  8. Viral Membrane Scission

    PubMed Central

    Rossman, Jeremy S.; Lamb, Robert A.

    2014-01-01

    Virus budding is a complex, multistep process in which viral proteins make specific alterations in membrane curvature. Many different viral proteins can deform the membrane and form a budding virion, but very few can mediate membrane scission to complete the budding process. As a result, enveloped viruses have developed numerous ways of facilitating membrane scission, including hijacking host cellular scission machinery and expressing their own scission proteins. These proteins mediate scission in very different ways, though the biophysical mechanics underlying their actions may be similar. In this review, we explore the mechanisms of membrane scission and the ways in which enveloped viruses use these systems to mediate the release of budding virions. PMID:24099087

  9. How to calculate normal curvatures of sampled geological surfaces

    NASA Astrophysics Data System (ADS)

    Bergbauer, Stephan; Pollard, David D.

    2003-02-01

    Curvature has been used both to describe geological surfaces and to predict the distribution of deformation in folded or domed strata. Several methods have been proposed in the geoscience literature to approximate the curvature of surfaces; however we advocate a technique for the exact calculation of normal curvature for single-valued gridded surfaces. This technique, based on the First and Second Fundamental Forms of differential geometry, allows for the analytical calculation of the magnitudes and directions of principal curvatures, as well as Gaussian and mean curvature. This approach is an improvement over previous methods to calculate surface curvatures because it avoids common mathematical approximations, which introduce significant errors when calculated over sloped horizons. Moreover, the technique is easily implemented numerically as it calculates curvatures directly from gridded surface data (e.g. seismic or GPS data) without prior surface triangulation. In geological curvature analyses, problems arise because of the sampled nature of geological horizons, which introduces a dependence of calculated curvatures on the sample grid. This dependence makes curvature analysis without prior data manipulation problematic. To ensure a meaningful curvature analysis, surface data should be filtered to extract only those surface wavelengths that scale with the feature under investigation. A curvature analysis of the top-Pennsylvanian horizon at Goose Egg dome, Wyoming shows that sampled surfaces can be smoothed using a moving average low-pass filter to extract curvature information associated with the true morphology of the structure.

  10. Domain Formation in Membranes Near the Onset of Instability

    NASA Astrophysics Data System (ADS)

    Fonseca, Irene; Hayrapetyan, Gurgen; Leoni, Giovanni; Zwicknagl, Barbara

    2016-04-01

    The formation of microdomains, also called rafts, in biomembranes can be attributed to the surface tension of the membrane. In order to model this phenomenon, a model involving a coupling between the local composition and the local curvature was proposed by Seul and Andelman in 1995. In addition to the familiar Cahn-Hilliard/Modica-Mortola energy, there are additional `forces' that prevent large domains of homogeneous concentration. This is taken into account by the bending energy of the membrane, which is coupled to the value of the order parameter, and reflects the notion that surface tension associated with a slightly curved membrane influences the localization of phases as the geometry of the lipids has an effect on the preferred placement on the membrane. The main result of the paper is the study of the Γ -convergence of this family of energy functionals, involving nonlocal as well as negative terms. Since the minimizers of the limiting energy have minimal interfaces, the physical interpretation is that, within a sufficiently strong interspecies surface tension and a large enough sample size, raft microdomains are not formed.

  11. Domain Formation in Membranes Near the Onset of Instability

    NASA Astrophysics Data System (ADS)

    Fonseca, Irene; Hayrapetyan, Gurgen; Leoni, Giovanni; Zwicknagl, Barbara

    2016-10-01

    The formation of microdomains, also called rafts, in biomembranes can be attributed to the surface tension of the membrane. In order to model this phenomenon, a model involving a coupling between the local composition and the local curvature was proposed by Seul and Andelman in 1995. In addition to the familiar Cahn-Hilliard/Modica-Mortola energy, there are additional `forces' that prevent large domains of homogeneous concentration. This is taken into account by the bending energy of the membrane, which is coupled to the value of the order parameter, and reflects the notion that surface tension associated with a slightly curved membrane influences the localization of phases as the geometry of the lipids has an effect on the preferred placement on the membrane. The main result of the paper is the study of the Γ -convergence of this family of energy functionals, involving nonlocal as well as negative terms. Since the minimizers of the limiting energy have minimal interfaces, the physical interpretation is that, within a sufficiently strong interspecies surface tension and a large enough sample size, raft microdomains are not formed.

  12. Lipid exchange between membranes.

    PubMed Central

    Jähnig, F

    1984-01-01

    The exchange of lipid molecules between vesicle bilayers in water and a monolayer forming at the water surface was investigated theoretically within the framework of thermodynamics. The total number of exchanged molecules was found to depend on the bilayer curvature as expressed by the vesicle radius and on the boundary condition for exchange, i.e., whether during exchange the radius or the packing density of the vesicles remains constant. The boundary condition is determined by the rate of flip-flop within the bilayer relative to the rate of exchange between bi- and monolayer. If flip-flop is fast, exchange is independent of the vesicle radius; if flip-flop is slow, exchange increases with the vesicle radius. Available experimental results agree with the detailed form of this dependence. When the theory was extended to exchange between two bilayers of different curvature, the direction of exchange was also determined by the curvatures and the boundary conditions for exchange. Due to the dependence of the boundary conditions on flip-flop and, consequently, on membrane fluidity, exchange between membranes may partially be regulated by membrane fluidity. PMID:6518251

  13. Advanced Flicker Spectroscopy of Fluid Membranes

    NASA Astrophysics Data System (ADS)

    Döbereiner, Hans-Günther; Gompper, Gerhard; Haluska, Christopher; Kroll, Daniel; Petrov, Peter; Riske, Karin

    2003-07-01

    The bending elasticity of a fluid membrane is characterized by its modulus and spontaneous curvature. We present a new method, advanced flicker spectroscopy of giant nonspherical vesicles, which makes it possible to simultaneously measure both parameters for the first time. Our analysis is based on the generation of a large set of reference data from Monte Carlo simulations of randomly triangulated surfaces. As an example of the potential of the procedure, we monitor thermal trajectories of vesicle shapes and discuss the elastic response of zwitterionic membranes to transmembrane pH gradients. Our technique makes it possible to easily characterize membrane curvature as a function of environmental conditions.

  14. Phase separation in artificial vesicles driven by light and curvature

    NASA Astrophysics Data System (ADS)

    Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration

    The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.

  15. Measuring Intrinsic Curvature of Space with Electromagnetism

    NASA Astrophysics Data System (ADS)

    Mabin, Mason; Becker, Maria; Batelaan, Herman

    2016-10-01

    The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface, the 2-sphere, is curved. The behavior of an electric field, placed on a spherical surface, is shown to be related to the intrinsic Gaussian curvature. This approach allows students to gain some understanding of Einstein's theory of general relativity, which relates the curvature of spacetime to the presence of mass and energy. Additionally, an opportunity is provided to investigate the dimensionality of Gauss's law.

  16. Tube curvature measuring probe and method

    DOEpatents

    Sokol, George J.

    1990-01-01

    The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.

  17. Streamline curvature in supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Kibens, V.

    1992-01-01

    Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

  18. Cosmological signatures of anisotropic spatial curvature

    NASA Astrophysics Data System (ADS)

    Pereira, Thiago S.; Mena Marugán, Guillermo A.; Carneiro, Saulo

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  19. Coarse-grained modeling of DNA curvature

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Hinckley, Daniel M.; Lequieu, Joshua P.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    The interaction of DNA with proteins occurs over a wide range of length scales, and depends critically on its local structure. In particular, recent experimental work suggests that the intrinsic curvature of DNA plays a significant role on its protein-binding properties. In this work, we present a coarse grained model of DNA that is capable of describing base-pairing, hybridization, major and minor groove widths, and local curvature. The model represents an extension of the recently proposed 3SPN.2 description of DNA [D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J. de Pablo, J. Chem. Phys. 139, 144903 (2013)], into which sequence-dependent shape and mechanical properties are incorporated. The proposed model is validated against experimental data including melting temperatures, local flexibilities, dsDNA persistence lengths, and minor groove width profiles.

  20. Space-time curvature and cosmology

    NASA Astrophysics Data System (ADS)

    Nurgaliev, I. S.; Ponomarev, V. N.

    1982-10-01

    The possibility is considered of obtaining a steady-state cosmological solution in the framework of the Einstein-Cartan theory. It is found that the Einstein-Cartan equations without the cosmological constant admit a solution in the form of the static de Sitter metric for a specific value of the spin-spin gravitational interaction constant, whose introduction is required by gauge theory. It is shown that the steady-state solution might serve as a model for the pre-Friedmann stage of the expansion of the universe, when the spin-curvature interaction was comparable to the interaction between space-time curvature and energy-momentum. A value of about 10 to the -20th is obtained for the spin-spin interaction constant in the case where the de Sitter stage occurs at quantum densities (10 to the 94th g/cu cm).

  1. Predicting the adsorption capacity and isotherm curvature of organic compounds onto activated carbons in natural waters.

    PubMed

    Hung, H W; Lin, T F

    2006-03-01

    A simple approach to predict the adsorption capacity and isotherm curvature of organic compounds onto activated carbon in natural water was investigated. A combination of the well-known equivalent background compound (EBC), and the simplified competitive adsorption model (SCAM) was employed to delineate the equilibrium capacity. This SCAM-EBC approach may reduce the numerical and experimental effort to obtain the parameters required to predict the adsorption capacity for a specific adsorption system. Several sets of experimental data, including weakly adsorbing (MTBE), strongly adsorbing compounds (TCP, atrazine, and chloroform), and two taste and odor causing compounds (MIB and geosmin) onto different activated carbons in three natural waters and a synthetic groundwater, were tested to verify the SCAM-EBC approach. Based on the approach, a parameter, called relative adsorptivity, describing the adsorption preference of the adsorbent between EBC and the target compound was employed to simulate the isotherm curvature in natural water. The relative adsorptivity of the SCAM-EBC approach is constant and can be directly obtained from the SCAM-EBC parameters in a specific adsorption system. The potential and extent of isotherm curvature can be simulated by only changing the parameter of relative adsorptivity. The marked isotherm curvature was found while the relative adsorptivity is larger than 2.0 to 4.0 for all the systems tested.

  2. Transformation optics, curvature and beyond (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McCall, Martin W.

    2016-04-01

    Although the transformation algorithm is very well established and implemented, some intriguing questions remain unanswered. 1) In what precise mathematical sense is the transformation optics algorithm `exact'? The invariance of Maxwell's equations is well understood, but in what sense does the same principle not apply to acoustics (say)? 2) Even if the fields are transformed in a way that apparently mimic vacuum perfectly, it is easy to construct very simple examples where the impedance of the transformed medium is no longer isotropic and homogeneous. This would seem to imply a fundamental shortcoming in any claim that electromagnetic cloaking has been reduced to technology. 3) Transformations are known to exist that introduce a discrepancy between the Poynting vector and the wave-vector. Does this distinction carry any physical significance? We have worked extensively on understanding a commonality between transformation theories that operates at the level of rays - being interpreted as geodesics of an appropriate manifold. At this level we now understand that the *key* problem underlying all attempts to unify the transformational approach to disparate areas of physics is how to relate the transformation of the base metric (be it Euclidean for spatial transformation optics, or Minkowskian for spacetime transformation optics) to the medium parameters of a given physical domain (e.g. constitutive parameters for electromagnetism, bulk modulus and mass density for acoustics, diffusion constant and number density for diffusion physics). Another misconception we will seek to address is the notion of the relationship between transformation optics and curvature. Many have indicated that transformation optics evinces similarities with Einstein's curvature of spacetime. Here we will show emphatically that transformation optics cannot induce curvature. Inducing curvature in an electromagnetic medium requires the equivalent of a gravitational source. We will propose a scheme

  3. Curvature continuity in arbitrary bicubic Bezier patches

    NASA Technical Reports Server (NTRS)

    Roach, Robert L.

    1990-01-01

    Two methods are outlined for imposing interpatch curvature continuity in existing Bezier bicubic patch surfaces. Each method assumes that coordinates of the corners of the patches can not be altered but the interior Bezier control point can. Each method also preserves outer edge slope and outer corner twist derivatives. Neither method requires intersection or C0 continuity nor slope or C1 continuity at the start. A computer program for each method is given in the appendices.

  4. Dynamics and instabilities of lipid bilayer membrane shapes.

    PubMed

    Shi, Zheng; Baumgart, Tobias

    2014-06-01

    Biological membranes undergo constant shape remodeling involving the formation of highly curved structures. The lipid bilayer represents the fundamental architecture of the cellular membrane with its shapes determined by the Helfrich curvature bending energy. However, the dynamics of bilayer shape transitions, especially their modulation by membrane proteins, and the resulting shape instabilities, are still not well understood. Here, we review in a unifying manner several theories that describe the fluctuations (i.e. undulations) of bilayer shapes as well as their local coupling with lipid or protein density variation. The coupling between local membrane curvature and lipid density gives rise to a 'slipping mode' in addition to the conventional 'bending mode' for damping the membrane fluctuation. This leads to a number of interesting experimental phenomena regarding bilayer shape dynamics. More importantly, curvature-inducing proteins can couple with membrane shape and eventually render the membrane unstable. A criterion for membrane shape instability is derived from a linear stability analysis. The instability criterion reemphasizes the importance of membrane tension in regulating the stability and dynamics of membrane geometry. Recent progresses in understanding the role of membrane tension in regulating dynamical cellular processes are also reviewed. Protein density is emphasized as a key factor in regulating membrane shape transitions: a threshold density of curvature coupling proteins is required for inducing membrane morphology transitions. PMID:24529968

  5. Dynamics and instabilities of lipid bilayer membrane shapes

    PubMed Central

    Shi, Zheng; Baumgart, Tobias

    2014-01-01

    Biological membranes undergo constant shape remodeling involving the formation of highly curved structures. The lipid bilayer represents the fundamental architecture of the cellular membrane with its shapes determined by the Helfrich curvature bending energy. However, the dynamics of bilayer shape transitions, especially their modulation by membrane proteins, and the resulting shape instabilities, are still not well understood. Here, we review in a unifying manner several theories that describe the fluctuations (i.e. undulations) of bilayer shapes as well as their local coupling with lipid or protein density variation. The coupling between local membrane curvature and lipid density gives rise to a ‘slipping mode’ in addition to the conventional ‘bending mode’ for damping the membrane fluctuation. This leads to a number of interesting experimental phenomena regarding bilayer shape dynamics. More importantly, curvature-inducing proteins can couple with membrane shape and eventually render the membrane unstable. A criterion for membrane shape instability is derived from a linear stability analysis. The instability criterion reemphasizes the importance of membrane tension in regulating the stability and dynamics of membrane geometry. Recent progresses in understanding the role of membrane tension in regulating dynamical cellular processes are also reviewed. Protein density is emphasized as a key factor in regulating membrane shape transitions: a threshold density of curvature coupling proteins is required for inducing membrane morphology transitions. PMID:24529968

  6. Superintegrable systems on spaces of constant curvature

    SciTech Connect

    Gonera, Cezary Kaszubska, Magdalena

    2014-07-15

    Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.

  7. Multiple Manifold Clustering Using Curvature Constrained Path

    PubMed Central

    Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba

    2015-01-01

    The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819

  8. Membrane tension and peripheral protein density mediate membrane shape transitions

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Baumgart, Tobias

    2015-01-01

    Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins.

  9. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  10. Stable hypersurfaces with zero scalar curvature in Euclidean space

    NASA Astrophysics Data System (ADS)

    Alencar, Hilário; do Carmo, Manfredo; Neto, Gregório Silva

    2016-10-01

    In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.

  11. Distributed mean curvature on a discrete manifold for Regge calculus

    NASA Astrophysics Data System (ADS)

    Conboye, Rory; Miller, Warner A.; Ray, Shannon

    2015-09-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.

  12. The crack problem in a specially orthotropic shell with double curvature

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1983-01-01

    The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip. Previously announced in STAR as N83-16782

  13. Curvature inducing macroion condensation driven shape changes of fluid vesicles.

    PubMed

    Sreeja, K K; Ipsen, John H; Sunil Kumar, P B

    2015-11-21

    We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations.

  14. Fiber Fabry-Perot interferometer for curvature sensing

    NASA Astrophysics Data System (ADS)

    Monteiro, Catarina S.; Ferreira, Marta S.; Silva, Susana O.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando

    2016-07-01

    A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/°C to 0.89 pm/°C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.

  15. Curvature inducing macroion condensation driven shape changes of fluid vesicles.

    PubMed

    Sreeja, K K; Ipsen, John H; Sunil Kumar, P B

    2015-11-21

    We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations. PMID:26590553

  16. Curvature inducing macroion condensation driven shape changes of fluid vesicles

    NASA Astrophysics Data System (ADS)

    Sreeja, K. K.; Ipsen, John H.; Sunil Kumar, P. B.

    2015-11-01

    We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations.

  17. Interaction between bending and tension forces in bilayer membranes.

    PubMed Central

    Secomb, T W

    1988-01-01

    A theoretical analysis is presented of the bending mechanics of a membrane consisting of two tightly-coupled leaflets, each of which shears and bends readily but strongly resists area changes. Structures of this type have been proposed to model biological membranes such as red blood cell membrane. It is shown that when such a membrane is bent, anisotropic components of resultant membrane tension (shear stresses) are induced, even when the tension in each leaflet is isotropic. The induced shear stresses increase as the square of the membrane curvature, and become significant for moderate curvatures (when the radius of curvature is much larger than the distance between the leaflets). This effect has implications for the analysis of shape and deformation of freely suspended and flowing red blood cells. PMID:3224154

  18. Curvature and shape determination of growing bacteria

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ranjan; Wingreen, Ned S.

    2009-12-01

    Bacterial cells come in a variety of shapes, determined by the stress-bearing cell wall. Though many molecular details about the cell wall are known, our understanding of how a particular shape is produced during cell growth is at its infancy. Experiments on curved Escherichia coli grown in microtraps, and on naturally curved Caulobacter crescentus, reveal different modes of growth: one preserving arc length and the other preserving radius of curvature. We present a simple model for curved cell growth that relates these two growth modes to distinct but related growth rules—“hooplike growth” and “self-similar growth”—and discuss the implications for microscopic growth mechanisms.

  19. Curvature sensor for ocular wavefront measurement.

    PubMed

    Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O

    2006-08-01

    We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes. PMID:16832447

  20. Negative Gaussian curvature from induced metric changes

    NASA Astrophysics Data System (ADS)

    Modes, Carl D.; Warner, Mark

    2015-07-01

    We revisit the light or heat-induced changes in topography of initially flat sheets of a solid that elongate or contract along patterned in-plane director fields. For radial or azimuthal directors, negative Gaussian curvature is generated—so-called "anticones." We show that azimuthal material displacements are required for the distorted state to be stretch free and bend minimizing. The resultant shapes are smooth and asterlike and can become reentrant in the azimuthal coordinate for large deformations. We show that care is needed when considering elastomers rather than glasses, although the former offer huge deformations.

  1. Spacetime Curvature and Higgs Stability after Inflation.

    PubMed

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A

    2015-12-11

    We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

  2. Amplification of curvature perturbations in cyclic cosmology

    SciTech Connect

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-12-15

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  3. Spacetime Curvature and Higgs Stability after Inflation.

    PubMed

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A

    2015-12-11

    We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe. PMID:26705621

  4. Holographic entropy increases in quadratic curvature gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.

    2015-09-01

    Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.

  5. Curvature sensor for ocular wavefront measurement.

    PubMed

    Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O

    2006-08-01

    We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.

  6. Isogrid Membranes for Precise, Singly Curved Reflectors

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Lou, Michael

    2005-01-01

    A new type of composite material has been proposed for membranes that would constitute the reflective surfaces of planned lightweight, single-curvature (e.g., parabolic cylindrical) reflectors for some radar and radio-communication systems. The proposed composite materials would consist of polyimide membranes containing embedded grids of highstrength (e.g., carbon) fibers. The purpose of the fiber reinforcements, as explained in more detail below, is to prevent wrinkling or rippling of the membrane.

  7. Charge transfer and negative curvature energy in magnesium boride nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Ismail-Beigi, Sohrab

    2016-07-01

    Using first-principles calculations based on density functional theory, we study the energetics and charge transfer effects in MgBx nanotubes and two-dimensional (2D) sheets. The behavior of adsorbed Mg on 2D boron sheets is found to depend on the amount of electron transfer between the two subsystems. The amount is determined by both the density of adsorbed Mg as well as the atomic-scale structure of the boron subsystem. The degree of transfer can lead to repulsive or attractive Mg-Mg interactions. In both cases, model MgBx nanotubes built from 2D MgBx sheets can display negative curvature energy: a relatively unusual situation in nanosystems where the energy cost to curve the parent 2D sheet into a small-diameter nanotube is negative. Namely, the small-diameter nanotube is energetically preferred over the corresponding flat sheet. We also discuss how these findings may manifest themselves in experimentally synthesized MgBx nanotubes.

  8. The lemon illusion: seeing curvature where there is none

    PubMed Central

    Strother, Lars; Killebrew, Kyle W.; Caplovitz, Gideon P.

    2015-01-01

    Curvature is a highly informative visual cue for shape perception and object recognition. We introduce a novel illusion—the Lemon Illusion—in which subtle illusory curvature is perceived along contour regions that are devoid of physical curvature. We offer several perceptual demonstrations and observations that lead us to conclude that the Lemon Illusion is an instance of a more general illusory curvature phenomenon, one in which the presence of contour curvature discontinuities lead to the erroneous extension of perceived curvature. We propose that this erroneous extension of perceived curvature results from the interaction of neural mechanisms that operate on spatially local contour curvature signals with higher-tier mechanisms that serve to establish more global representations of object shape. Our observations suggest that the Lemon Illusion stems from discontinuous curvature transitions between rectilinear and curved contour segments. However, the presence of curvature discontinuities is not sufficient to produce the Lemon Illusion, and the minimal conditions necessary to elicit this subtle and insidious illusion are difficult to pin down. PMID:25755640

  9. Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen

    SciTech Connect

    Li, Dianfan; Lee, Jean; Caffrey, Martin

    2011-11-30

    The default lipid for the bulk of the crystallogenesis studies performed to date using the cubic mesophase method is monoolein. There is no good reason, however, why this 18-carbon, cis-monounsaturated monoacylglycerol should be the preferred lipid for all target membrane proteins. The latter come from an array of biomembrane types with varying properties that include hydrophobic thickness, intrinsic curvature, lateral pressure profile, lipid and protein makeup, and compositional asymmetry. Thus, it seems reasonable that screening for crystallizability based on the identity of the lipid creating the hosting mesophase would be worthwhile. For this, monoacylglycerols with differing acyl chain characteristics, such as length and olefinic bond position, must be available. A lipid synthesis and purification program is in place in the author's laboratory to serve this need. In the current study with the outer membrane sugar transporter, OprB, we demonstrate the utility of host lipid screening as a means for generating diffraction-quality crystals. Host lipid screening is likely to prove a generally useful strategy for mesophase-based crystallization of membrane proteins.

  10. How Are Preferences Revealed?

    PubMed

    Beshears, John; Choi, James J; Laibson, David; Madrian, Brigitte C

    2008-08-01

    Revealed preferences are tastes that rationalize an economic agent's observed actions. Normative preferences represent the agent's actual interests. It sometimes makes sense to assume that revealed preferences are identical to normative preferences. But there are many cases where this assumption is violated. We identify five factors that increase the likelihood of a disparity between revealed preferences and normative preferences: passive choice, complexity, limited personal experience, third-party marketing, and intertemporal choice. We then discuss six approaches that jointly contribute to the identification of normative preferences: structural estimation, active decisions, asymptotic choice, aggregated revealed preferences, reported preferences, and informed preferences. Each of these approaches uses consumer behavior to infer some property of normative preferences without equating revealed and normative preferences. We illustrate these issues with evidence from savings and investment outcomes. PMID:24761048

  11. How Are Preferences Revealed?

    PubMed Central

    Beshears, John; Choi, James J.; Laibson, David; Madrian, Brigitte C.

    2009-01-01

    Revealed preferences are tastes that rationalize an economic agent’s observed actions. Normative preferences represent the agent’s actual interests. It sometimes makes sense to assume that revealed preferences are identical to normative preferences. But there are many cases where this assumption is violated. We identify five factors that increase the likelihood of a disparity between revealed preferences and normative preferences: passive choice, complexity, limited personal experience, third-party marketing, and intertemporal choice. We then discuss six approaches that jointly contribute to the identification of normative preferences: structural estimation, active decisions, asymptotic choice, aggregated revealed preferences, reported preferences, and informed preferences. Each of these approaches uses consumer behavior to infer some property of normative preferences without equating revealed and normative preferences. We illustrate these issues with evidence from savings and investment outcomes. PMID:24761048

  12. Broaden Students' Music Preferences.

    ERIC Educational Resources Information Center

    Le Blanc, Albert

    1983-01-01

    A model of music preference theory suggests ways that teachers can broaden their students' musical preferences. Teachers can change preferences by changing something in the listener, the social environment, the music, or the ways that the listener processes information. (AM)

  13. Analysis of cornea curvature using radial basis functions - Part II: Fitting to data-set.

    PubMed

    Griffiths, G W; Płociniczak, Ł; Schiesser, W E

    2016-10-01

    In part I we discussed the solution of corneal curvature using a 2D meshless method based on radial basis functions (RBFs). In Part II we use these methods to fit a full nonlinear thin membrane model to a measured data-set in order to generate a topological mathematical description of the cornea. In addition, we show how these results can lead to estimations for corneal radius of curvature and certain physical properties of the cornea; namely, tension and elasticity coefficient. Again all calculations and graphics generation were performed using the R language programming environment. The model describes corneal topology extremely well, and the estimated properties fall well within the expected range of values. The method is straight forward to implement and offers scope for further analysis using more detailed 3D models that include corneal thickness. PMID:27570056

  14. Effects of streamline curvature on separation prediction

    NASA Astrophysics Data System (ADS)

    Arolla, Sunil K.; Durbin, Paul A.

    2009-11-01

    In this study, the effects of streamline curvature on prediction of flow separation are investigated. The geometry is a circulation control airfoil, a high-lift configuration that has been under extensive research for more than two decades. A tangential jet is blown over a thick, rounded trailing edge, using the Coanda effect to delay separation. An attempt is made to understand, through numerical simulations, the dynamics of turbulent separation and reattachment on the Coanda surface. Highly curved, attached recirculation regions are seen to form. A physics based curvature correction proposed by Pettersson-Reif et al. (1999) is used in conjunction with ζ-f turbulence model. The chord-based Reynolds number is Re = 10^6. Two jet momentum coefficients of Cμ=0.03 and 0.1 are computed. In this paper, comparisons between the computed and experimental pressure distributions, velocity profiles and the position of flow detachment are presented. Comparisons with other closures such as Menter's SST model are also discussed.

  15. ODE/PDE analysis of corneal curvature.

    PubMed

    Płociniczak, Lukasz; Griffiths, Graham W; Schiesser, William E

    2014-10-01

    The starting point for this paper is a nonlinear, two-point boundary value ordinary differential equation (BVODE) that defines corneal curvature according to a static force balance. A numerical solution to the BVODE is computed by first converting the BVODE to a parabolic partial differential equation (PDE) by adding an initial value (t, pseudo-time) derivative to the BVODE. A numerical solution to the PDE is then computed by the method of lines (MOL) with the calculation proceeding to a sufficiently large value of t such that the derivative in t reduces to essentially zero. The PDE solution at this point is also the solution for the BVODE. This procedure is implemented in R (an open source scientific programming system) and the programming is discussed in some detail. A series approximation to the solution is derived from which an estimate for the rate of convergence is obtained. This is compared to a fitted exponential model. Also, two linear approximations are derived, one of which leads to a closed form solution. Both provide solutions very close to that obtained from the full nonlinear model. An estimate for the cornea radius of curvature is also derived. The paper concludes with a discussion of the features of the solution to the ODE/PDE system.

  16. Multidimensional integrable vacuum cosmology with two curvatures

    NASA Astrophysics Data System (ADS)

    Gavrilov, V. R.; Ivashchuk, V. D.; Melnikov, V. N.

    1996-11-01

    The vacuum cosmological model on the manifold 0264-9381/13/11/018/img1 describing the evolution of n Einstein spaces of non-zero curvatures is considered. For n = 2 the Einstein equations are reduced to the Abel (ordinary differential) equation and solved, when 0264-9381/13/11/018/img2. The Kasner-like behaviour of the solutions near the singularity 0264-9381/13/11/018/img3 is considered (0264-9381/13/11/018/img4 is synchronous time). The exceptional (`Milne-type') solutions are obtained for arbitrary n. For n = 2 these solutions are attractors for other ones, when 0264-9381/13/11/018/img5. For 0264-9381/13/11/018/img6 and 0264-9381/13/11/018/img7 certain two-parametric families of solutions are obtained from n = 2 ones using the `curvature-splitting' trick. In the case n = 2, 0264-9381/13/11/018/img8 a family of non-singular solutions with the topology 0264-9381/13/11/018/img9 is found.

  17. Kinetic information from detonation front curvature

    SciTech Connect

    Souers, P. C., LLNL

    1998-06-15

    The time constants for time-dependent modeling may be estimated from reaction zone lengths, which are obtained from two sources One is detonation front curvature, where the edge lag is close to being a direct measure The other is the Size Effect, where the detonation velocity decreases with decreasing radius as energy is lost to the cylinder edge A simple theory that interlocks the two effects is given A differential equation for energy flow in the front is used, the front is described by quadratic and sixth-power radius terms The quadratic curvature comes from a constant power source of energy moving sideways to the walls Near the walls, the this energy rises to the total energy of detonation and produces the sixth-power term The presence of defects acting on a short reaction zone can eliminate the quadratic part while leaving the wall portion of the cuvature A collection of TNT data shows that the reaction zone increases with both the radius and the void fraction

  18. Vortex motion on surfaces of small curvature

    SciTech Connect

    Dorigoni, Daniele Dunajski, Maciej Manton, Nicholas S.

    2013-12-15

    We consider a single Abelian Higgs vortex on a surface Σ whose Gaussian curvature K is small relative to the size of the vortex, and analyse vortex motion by using geodesics on the moduli space of static solutions. The moduli space is Σ with a modified metric, and we propose that this metric has a universal expansion, in terms of K and its derivatives, around the initial metric on Σ. Using an integral expression for the Kähler potential on the moduli space, we calculate the leading coefficients of this expansion numerically, and find some evidence for their universality. The expansion agrees to first order with the metric resulting from the Ricci flow starting from the initial metric on Σ, but differs at higher order. We compare the vortex motion with the motion of a point particle along geodesics of Σ. Relative to a particle geodesic, the vortex experiences an additional force, which to leading order is proportional to the gradient of K. This force is analogous to the self-force on bodies of finite size that occurs in gravitational motion. -- Highlights: •We study an Abelian Higgs vortex on a surface with small curvature. •A universal expansion for the moduli space metric is proposed. •We numerically check the universality at low orders. •Vortex motion differs from point particle motion because a vortex has a finite size. •Moduli space geometry has similarities with the geometry arising from Ricci flow.

  19. Detonation Front Curvatures and Detonation Rates

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark

    2015-06-01

    We have normalized the LLNL library of detonation front curvatures by dividing lags by the edge lag and radii by the edge radius. We then fit the normalized data to the equation L = AR2 + BR8, where L is the normalized lag and R is the normalized radius. We attribute the quadratic term to thermal processes and the 8th-power term to shock processes. We compare the % of the quadratic term J at the edge with detonation rates obtained from the size effect. One class of results is made up of fine-grained, uniform explosives with large lags, where a low detonation rate leads to a high J and vice versa. This provides a rough way of estimating unknown rates if the unknown explosive is of high quality. The other, equally-large class contains rough-grained materials, often with small lags and small radii. These have curves that do not fit the equation but superfically often look quadratic. Some HMX and PETN curvatures even show a ``sombrero'' effect. Code models show that density differences of 0.03 g/cc in ram-pressed parts can cause pseudo-quadratic curves and even sombreros. Modeling is used to illustrate J at the lowest and highest possible detonation rates. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Polarized curvature radiation in pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  1. Magneto-reheating constraints from curvature perturbations

    SciTech Connect

    Ringeval, Christophe; Suyama, Teruaki; Yokoyama, Jun'ichi E-mail: suyama@resceu.s.u-tokyo.ac.jp

    2013-09-01

    As additional perturbative degrees of freedom, it is known that magnetic fields of inflationary origin can source curvature perturbations on super-Hubble scales. By requiring the magnetic generated curvature to remain smaller than its inflationary adiabatic counterpart during inflation and reheating, we derive new constraints on the maximal field value today, the reheating energy scale and its equation of state parameter. These bounds end up being stronger by a few order of magnitude than those associated with a possible backreaction of the magnetic field onto the background. Our results are readily applicable to any slow-roll single field inflationary models and any magnetic field having its energy density scaling as a{sup γ} during inflation. As an illustrative example, massive inflation is found to remain compatible with a magnetic field today B{sub 0} = 5 × 10{sup −15} G for some values of γ only if a matter dominated reheating takes place at energies larger than 10{sup 5} GeV. Conversely, assuming γ = −1, massive inflation followed by a matter dominated reheating cannot explain large scale magnetic fields larger than 10{sup −20} G today.

  2. Values and preferences: defining preference construction.

    PubMed

    Warren, Caleb; McGraw, A Peter; Van Boven, Leaf

    2011-03-01

    Extensive research in the values and preferences literature suggests that preferences are sensitive to context and calculated at the time of choice. This has led to the view that preferences are constructed. Recent work calls for a better understanding of when preferences are constructed and when they are not. We contend that the answer to this question depends on the meaning of the term constructed. Constructed can mean that a preference changes across contexts. If construction is synonymous with context sensitivity, we contend that preferences are always constructed because context influences nearly every aspect of the judgment and choice process. As a motivating example, we show that preferences are influenced by goals and goals are highly context sensitive. Constructed, however, can mean instead that a preference is calculated or formulated during the judgment and choice process. If construction is synonymous with calculation, we contend that many preferences are calculated and the more important question is to what degree preferences are calculated. We review the literature that shows that the degree to which decision makers calculate preferences is influenced by goals, cognitive constraints, and experience. WIREs Cogni Sci 2011 2 193-205 DOI: 10.1002/wcs.98 For further resources related to this article, please visit the WIREs website.

  3. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  4. The effect of in-plane arterial curvature on blood flow and oxygen transport in arterio-venous fistulae

    PubMed Central

    Iori, F.; Grechy, L.; Gedroyc, W.; Duncan, N.; Caro, C. G.; Vincent, P. E.

    2015-01-01

    Arterio-Venous Fistulae (AVF) are the preferred method of vascular access for patients with end stage renal disease who need hemodialysis. In this study, simulations of blood flow and oxygen transport were undertaken in various idealized AVF configurations. The objective of the study was to understand how arterial curvature affects blood flow and oxygen transport patterns within AVF, with a focus on how curvature alters metrics known to correlate with vascular pathology such as Intimal Hyperplasia (IH). If one subscribes to the hypothesis that unsteady flow causes IH within AVF, then the results suggest that in order to avoid IH, AVF should be formed via a vein graft onto the outer-curvature of a curved artery. However, if one subscribes to the hypothesis that low wall shear stress and/or low lumen-to-wall oxygen flux (leading to wall hypoxia) cause IH within AVF, then the results suggest that in order to avoid IH, AVF should be formed via a vein graft onto a straight artery, or the inner-curvature of a curved artery. We note that the recommendations are incompatible—highlighting the importance of ascertaining the exact mechanisms underlying development of IH in AVF. Nonetheless, the results clearly illustrate the important role played by arterial curvature in determining AVF hemodynamics, which to our knowledge has been overlooked in all previous studies. PMID:25829837

  5. The effect of in-plane arterial curvature on blood flow and oxygen transport in arterio-venous fistulae

    NASA Astrophysics Data System (ADS)

    Iori, F.; Grechy, L.; Corbett, R. W.; Gedroyc, W.; Duncan, N.; Caro, C. G.; Vincent, P. E.

    2015-03-01

    Arterio-Venous Fistulae (AVF) are the preferred method of vascular access for patients with end stage renal disease who need hemodialysis. In this study, simulations of blood flow and oxygen transport were undertaken in various idealized AVF configurations. The objective of the study was to understand how arterial curvature affects blood flow and oxygen transport patterns within AVF, with a focus on how curvature alters metrics known to correlate with vascular pathology such as Intimal Hyperplasia (IH). If one subscribes to the hypothesis that unsteady flow causes IH within AVF, then the results suggest that in order to avoid IH, AVF should be formed via a vein graft onto the outer-curvature of a curved artery. However, if one subscribes to the hypothesis that low wall shear stress and/or low lumen-to-wall oxygen flux (leading to wall hypoxia) cause IH within AVF, then the results suggest that in order to avoid IH, AVF should be formed via a vein graft onto a straight artery, or the inner-curvature of a curved artery. We note that the recommendations are incompatible—highlighting the importance of ascertaining the exact mechanisms underlying development of IH in AVF. Nonetheless, the results clearly illustrate the important role played by arterial curvature in determining AVF hemodynamics, which to our knowledge has been overlooked in all previous studies.

  6. Compact surfaces of constant Gaussian curvature in Randers manifolds

    NASA Astrophysics Data System (ADS)

    Cui, Ningwei

    2016-08-01

    The flag curvature of a Finsler surface is called the Gaussian curvature in Finsler geometry. In this paper, we characterize the surfaces of constant Gaussian curvature (CGC) in the Randers 3-manifold. Then we give a classification of the orientable closed CGC surfaces in two Randers space forms, which are the non-Euclidean Minkowski-Randers 3-space (K = 0) and the Bao-Shen sphere (K = 1).

  7. Wrinkles and splay conspire to give positive disclinations negative curvature

    PubMed Central

    Matsumoto, Elisabetta A.; Vega, Daniel A.; Pezzutti, Aldo D.; García, Nicolás A.; Chaikin, Paul M.; Register, Richard A.

    2015-01-01

    Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations. PMID:26420873

  8. Eddy-Current Measurement Of Turning Or Curvature

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.

    1993-01-01

    Rotatable conductive plate covers sensing coil to varying degree. Curvature of pipe at remote or otherwise inaccessible location inside pipe measured using relatively simple angular-displacement eddy-current probe. Crawler and sensor assemblies move along inside of pipe on wheels. Conductive plate pivots to follow curvature of pipe, partly covering one of eddy-current coils to degree depending on local curvature on pipe.

  9. The curvature index and synchronization of dynamical systems

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Sheng; Chang, Chien-Cheng

    2012-06-01

    We develop a quantity, named the curvature index, for dynamical systems. This index is defined as the limit of the average curvature of the trajectory during evolution, which measures the bending of the curve on an attractor. The curvature index has the ability to differentiate the topological change of an attractor, as its alterations exhibit the structural changes of a dynamical system. Thus, the curvature index may indicate thresholds of some synchronization regimes. The Rössler system and a time-delay system are simulated to demonstrate the effectiveness of the index, respectively.

  10. Evolving extrinsic curvature and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Capistrano, Abraão J. S.; Cabral, Luis A.

    2016-10-01

    The concept of smooth deformation of Riemannian manifolds associated with the extrinsic curvature is explained and applied to the Friedmann-Lemaître-Robertson-Walker cosmology. We show that such deformation can be derived from the Einstein-Hilbert-like dynamical principle may produce an observable effect in the sense of Noether. As a result, we show how the extrinsic curvature compensates both quantitative and qualitative differences between the cosmological constant Λ and the vacuum energy {ρ }{vac} obtaining the observed upper bound for the cosmological constant problem at electroweak scale. The topological characteristics of the extrinsic curvature are discussed showing that the produced extrinsic scalar curvature is an evolving dynamical quantity.

  11. Plane wave gravitons, curvature singularities and string physics

    SciTech Connect

    Brooks, R. . Center for Theoretical Physics)

    1991-03-21

    This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.

  12. Curvature effects in thin magnetic shells.

    PubMed

    Gaididei, Yuri; Kravchuk, Volodymyr P; Sheka, Denis D

    2014-06-27

    A magnetic energy functional is derived for an arbitrary curved thin shell on the assumption that the magnetostatic effects can be reduced to an effective easy-surface anisotropy; it can be used for solving both static and dynamic problems. General static solutions are obtained in the limit of a strong anisotropy of both signs (easy-surface and easy-normal cases). It is shown that the effect of the curvature can be treated as the appearance of an effective magnetic field, which is aligned along the surface normal for the case of easy-surface anisotropy and is tangential to the surface for the case of easy-normal anisotropy. In general, the existence of such a field excludes the solutions that are strictly tangential or strictly normal to the surface. As an example, we consider static equilibrium solutions for a cone surface magnetization.

  13. Hawking temperature of constant curvature black holes

    SciTech Connect

    Cai Ronggen; Myung, Yun Soo

    2011-05-15

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  14. Natural curvature for manifest T-duality

    NASA Astrophysics Data System (ADS)

    Poláček, Martin; Siegel, Warren

    2014-01-01

    We reformulate the manifestly T-dual description of the massless sector of the closed bosonic string, directly from the geometry associated with the (left and right) affine Lie algebra of the coset space Poincaré/Lorentz. This construction initially doubles not only the (spacetime) coordinates for translations but also those for Lorentz transformations (and their "dual"). As a result, the Lorentz connection couples directly to the string (as does the vielbein), rather than being introduced ad hoc to the covariant derivative as previously. This not only reproduces the old definition of T-dual torsion, but automatically gives a general, covariant definition of T-dual curvature (but still with some undetermined connections).

  15. Transitivity of Preferences

    ERIC Educational Resources Information Center

    Regenwetter, Michel; Dana, Jason; Davis-Stober, Clintin P.

    2011-01-01

    Transitivity of preferences is a fundamental principle shared by most major contemporary rational, prescriptive, and descriptive models of decision making. To have transitive preferences, a person, group, or society that prefers choice option "x" to "y" and "y" to "z" must prefer "x" to "z". Any claim of empirical violations of transitivity by…

  16. Risk Preference and Diagnosticity.

    ERIC Educational Resources Information Center

    Rocklin, Thomas

    Researchers have suggested two models of risk preference to account for subjects' preference for tasks of moderate difficulty. The affective model proposes that pride of success and shame of failure are responsible for the observed preference. The cognitive model suggests preference for tasks of moderate difficulty because they are the most…

  17. Canards and curvature: nonsmooth approximation by pinching

    NASA Astrophysics Data System (ADS)

    Desroches, M.; Jeffrey, M. R.

    2011-05-01

    In multiple time-scale (singularly perturbed) dynamical systems, canards are counterintuitive solutions that evolve along both attracting and repelling invariant manifolds. In two dimensions, canards result in periodic oscillations whose amplitude and period grow in a highly nonlinear way: they are slowly varying with respect to a control parameter, except for an exponentially small range of values where they grow extremely rapidly. This sudden growth, called a canard explosion, has been encountered in many applications ranging from chemistry to neuronal dynamics, aerospace engineering and ecology. Canards were initially studied using nonstandard analysis, and later the same results were proved by standard techniques such as matched asymptotics, invariant manifold theory and parameter blow-up. More recently, canard-like behaviour has been linked to surfaces of discontinuity in piecewise-smooth dynamical systems. This paper provides a new perspective on the canard phenomenon by showing that the nonstandard analysis of canard explosions can be recast into the framework of piecewise-smooth dynamical systems. An exponential coordinate scaling is applied to a singularly perturbed system of ordinary differential equations. The scaling acts as a lens that resolves dynamics across all time-scales. The changes of local curvature that are responsible for canard explosions are then analysed. Regions where different time-scales dominate are separated by hypersurfaces, and these are pinched together to obtain a piecewise-smooth system, in which curvature changes manifest as discontinuity-induced bifurcations. The method is used to classify canards in arbitrary dimensions, and to derive the parameter values over which canards form either small cycles (canards without head) or large cycles (canards with head).

  18. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, I.; Morisato, Atsushi

    1998-01-13

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  19. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, Ingo; Morisato, Atsushi

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  20. How some proteins tubulate membranes

    NASA Astrophysics Data System (ADS)

    Bassereau, Patricia

    2009-03-01

    Endocytosis, exocytosis, membrane transport between intracellular compartments, virus or toxin entry or exit out of the cell, all imply to deform membrane. Membrane deformation mechanisms of cell membranes by proteins are currently actively studied. Giant vesicles (GUV) are interesting model membrane systems because they are composed of a very limited number of components compared to cellular membranes. The deformations induced by the interaction with a specific protein or any other additional components to the system, can then be directly monitored and the deformation mechanism eventually understood. In this talk, we will focus on different tubular structures induced by proteins. We will show that the B-subunits of Shiga toxin or Cholera Toxin, binding to their lipid receptors, Gb3 or GM1 respectively, incorporated in GUV membrane, induce negative membrane curvature and form tubular invaginations, in absence of any other cellular machinery. Tubular structures can also be obtained when molecular motors walking along microtubules exert a pulling force on the membrane of GUV. The helicoidal assembly of dynamin, a protein involved in vivo in membrane fission can also produce tubular structures. This assembly has been reconstituted around membrane nanotubes of controlled diameter; we will show that the initial tube diameter strongly influences dynamin polymerisation. In each case, a physical framework for understanding deformation mechanism will be presented

  1. An analytical approach to estimate curvature effect of coseismic deformations

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Sun, Wenke; Zhou, Xin; Wang, Rongjiang

    2016-08-01

    We present an analytical approach to compute the curvature effect by the new analytical solutions of coseismic deformation derived for the homogeneous sphere model. We consider two spheres with different radii: one is the same as earth and the other with a larger radius can approximate a half-space model. Then, we calculate the coseismic displacements for the two spheres and define the relative percentage of the displacements as the curvature effect. The near-field curvature effect is defined relative to the maximum coseismic displacement. The results show that the maximum curvature effect is about 4 per cent for source depths of less than 100 km, and about 30 per cent for source depths of less than 600 km. For the far-field curvature effect, we define it relative to the observing point. The curvature effect is extremely large and sometimes exceeds 100 per cent. Moreover, this new approach can be used to estimate any planet's curvature effect quantitatively. For a smaller sphere, such as the Moon, the curvature effect is much larger than that of the Earth, with an inverse ratio to the earth's radius.

  2. Coherent gradient sensing method and system for measuring surface curvature

    NASA Technical Reports Server (NTRS)

    Rosakis, Ares J. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor); Moore, Jr., Nicholas R. (Inventor)

    2000-01-01

    A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.

  3. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies. PMID:26441355

  4. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature.

    PubMed

    Bonazzi, Daria; Haupt, Armin; Tanimoto, Hirokazu; Delacour, Delphine; Salort, Delphine; Minc, Nicolas

    2015-10-19

    Intracellular structures and organelles such as the nucleus, the centrosome, or the mitotic spindle typically scale their size to cell size [1]. Similarly, cortical polarity domains built around the active form of conserved Rho-GTPases, such as Cdc42p, exhibit widths that may range over two orders of magnitudes in cells with different sizes and shapes [2-6]. The establishment of such domains typically involves positive feedback loops based on reaction-diffusion and/or actin-mediated vesicle transport [3, 7, 8]. How these elements may adapt polarity domain size to cellular geometry is not known. Here, by tracking the width of successive oscillating Cdc42-GTP domains in fission yeast spores [9], we find that domain width scales with local cell-surface radii of curvature over an 8-fold range, independently of absolute cell volume, surface, or Cdc42-GTP concentration. This local scaling requires formin-nucleated cortical actin cables and the fusion of secretory vesicles transported along these cables with the membrane. These data suggest that reaction-diffusion may set a minimal domain size and that secretory vesicle transport along actin cables may dilute and extend polarity domains to adapt their size to local cell-surface curvature. This work reveals that actin networks may act as micrometric curvature sensors and uncovers a generic morphogenetic principle for how polarity domains define their size according to cell morphologies.

  5. Robust pupil center detection using a curvature algorithm

    NASA Technical Reports Server (NTRS)

    Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)

    1999-01-01

    Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.

  6. Curvature sensor based on a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Monteiro, Catarina; Ferreira, Marta S.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando

    2016-05-01

    A curvature sensor based on a Fabry-Perot interferometer is proposed. A capillary tube of silica is fusion spliced between two single mode fibers, producing a Fabry-Perot cavity. The light propagates in air, when passing through the capillary tube. Two different cavities are subjected to curvature and temperature. The cavity with shorter length shows insensitivity to both measurands. The larger cavity shows two operating regions for curvature measurement, where a linear response is shown, with a maximum sensitivity of 18.77pm/m-1 for the high curvature radius range. When subjected to temperature, the sensing head produces a similar response for different curvature radius, with a sensitivity of 0.87pm/°C.

  7. Elliptic inflation: generating the curvature perturbation without slow-roll

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro

    2006-09-01

    There are many inflationary models in which the inflaton field does not satisfy the slow-roll condition. However, in such models, it is always difficult to generate the curvature perturbation during inflation. Thus, to generate the curvature perturbation, one must introduce another component into the theory. To cite a case, curvatons may generate the dominant part of the curvature perturbation after inflation. However, we question whether it is realistic to consider the generation of the curvature perturbation during inflation without slow-roll. Assuming multifield inflation, we encounter the generation of curvature perturbation during inflation without slow-roll. The potential along the equipotential surface is flat by definition and thus we do not have to worry about symmetry. We also discuss KKLT (Kachru Kallosh Linde Trivedi) models, in which corrections lifting the inflationary direction may not become a serious problem if there is a symmetry enhancement at the tip (not at the moving brane) of the inflationary throat.

  8. Nastic curvatures of wheat coleoptiles that develop in true microgravity

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.

    1995-01-01

    Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.

  9. Curvature-processing network in macaque visual cortex

    PubMed Central

    Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.

    2014-01-01

    Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328

  10. Effects of Iris Surface Curvature on Iris Recognition

    SciTech Connect

    Thompson, Joseph T; Flynn, Patrick J; Bowyer, Kevin W; Santos-Villalobos, Hector J

    2013-01-01

    To focus on objects at various distances, the lens of the eye must change shape to adjust its refractive power. This change in lens shape causes a change in the shape of the iris surface which can be measured by examining the curvature of the iris. This work isolates the variable of iris curvature in the recognition process and shows that differences in iris curvature degrade matching ability. To our knowledge, no other work has examined the effects of varying iris curvature on matching ability. To examine this degradation, we conduct a matching experiment across pairs of images with varying degrees of iris curvature differences. The results show a statistically signi cant degradation in matching ability. Finally, the real world impact of these ndings is discussed

  11. Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma

    PubMed Central

    Kim, Yong Woo; Jeoung, Jin Wook; Kim, Dai Woo; Girard, Michael J. A.; Mari, Jean Martial; Park, Ki Ho; Kim, Dong Myung

    2016-01-01

    Purpose Quantitative evaluation of lamina cribrosa (LC) posterior bowing in primary open-angle glaucoma (POAG) eyes using swept-source optical coherence tomography. Methods Patients with POAG (n = 123 eyes) and healthy individuals of a similar age (n = 92 eyes) were prospectively recruited. Anterior laminar insertion depth (ALID) was defined as the vertical distance between the anterior laminar insertion and a reference plane connecting the Bruch’s membrane openings (BMO). The mean LC depth (mLCD) was approximated by dividing the area enclosed by the anterior LC, the BMO reference plane, and the two vertical lines for ALID measurement by the length between those two vertical lines. The LC curvature index was defined as the difference between the mLCD and the ALID. The factors influencing the LC curvature index were evaluated. Results The ALID and mLCD were significantly larger in POAG eyes than in healthy controls (P < 0.05). The LC curvature index was significantly larger in POAG eyes than in healthy controls on both the horizontal (85.8 ± 34.1 vs. 68.2 ± 32.3 μm) and vertical meridians (49.8 ± 38.5 vs. 32.2 ± 31.1 μm, all P < 0.001). Multivariate regression showed significant associations of greater disc area (P < 0.001), vertical C/D ratio (P < 0.001) and mLCD (P < 0.001), smaller rim area (P = 0.001), thinner average RNFLT (P < 0.001), and myopic refraction (P = 0.049) with increased LC curvature index. There was no difference in the LC curvature index between mild (MD > –6 dB) and moderate-to-advanced glaucoma (MD < –6 dB, P = 0.95). Conclusions LC posterior bowing was increased in POAG eyes, and was significantly associated with structural optic nerve head (ONH) changes but not with functional glaucoma severity. Quantitative evaluation of LC curvature can facilitate assessment of glaucomatous ONH change. PMID:26963816

  12. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  13. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  14. Interaction of peptides with cell membranes: insights from molecular modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhen-lu; Ding, Hong-ming; Ma, Yu-qiang

    2016-03-01

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.

  15. Cosmological spatial curvature probed by microwave polarization

    SciTech Connect

    Matzner, R.A.; Tolman, B.W.

    1982-11-15

    If there is a large-scale anisotropy in the expansion of the universe, the microwave background radiation is expected to be linearly polarized. This communication shows that spatial curvature is capable of rotating the polarization of the microwaves relative to its direction at last scattering, which is directly correlated with the expansion anisotropy (and so also the observed intensity anisotropy). In Friedmann-Robertson-Walker models of the universe with additional small expansion anisotropy, the observed rotation relative to the intensity anisotropy would be appreciable and constant over the celestial sphere in the closed (type IX) model, but in the flat and open models, it must either vanish (types I and V) or vary ina complicated way over the celestial sphere (type VII/sub h/). These facts suggest a clear observational test of the closure of the universe. Also, an ambiguity inherent in the homogeneity of the universe does not allow prediction of the direction of rotation; thus homogeneous universes possess a property which might be called ''handedness.''

  16. Accelerated Transonic Flow past a curvature discontinuity

    NASA Astrophysics Data System (ADS)

    de Cointet, Thomas; Ruban, Anatoly

    2014-11-01

    The aim of this talk is to investigate High Reynolds number Transonic flow past a discontinuity in body curvature. Starting with the inviscid flow outside the boundary layer, our analysis will focus on the flow in a vicinity of the point of discontinuity, where a solution of the Euler equations will be sought in self-similar form. This reduces the Euler equations to an ordinary differential equation. The analysis of this equation shows that the pressure gradient on the airfoil surface develops a strong singularity, which is proportional to (x0 - x) - 1 / 3 as the discontinuity point x0 is approached. We then study the response of the boundary layer to this extremely favourable pressure gradient. We show that the boundary layer splits into two parts, the main body of the boundary layer that becomes inviscid on approach to the singularity, and a thin viscous sublayer situated near the wall. The analysis of the behaviour of the solution in the viscous sublayer shows that Prandtl's hierarchical concept breaks down in a small region surrounding the singular point, where the viscous-inviscid interaction model should be used. In the final part of this talk we present a full formulation of the viscous-inviscid interaction problem and discuss numerical results.

  17. Mean curvature flow of a hyperbolic surface

    SciTech Connect

    Ovchinnikov, Yu. N.; Sigal, I. M.

    2011-12-15

    A four-parameter family of self-similar solutions is obtained to the mean curvature flow equation for a surface. This family is shown to be stable with respect to a small deformation of a hyperbolic surface. At time instant t*, a singular point is formed within a finite time interval, that is accompanied by a change in the topology of the surface. The solution is continued beyond the singular point. A relationship between the parameters describing the hyperbolic surface before and after the change in the surface topology is obtained. A particular case is analyzed when the unperturbed surface is a cylinder. A cylindrical surface is weakly unstable with respect to a perturbation in the form of a 'wide neck.' At the final stage of the development of the neck when its transverse size becomes much less than the cylinder radius at large distances from the neck, the surface flow in a wide region in the neighborhood of the neck is described by a universal two-parameter family of self-similar solutions. These solutions are stable with respect to small perturbations of the surface.

  18. Cosmic acceleration from matter-curvature coupling

    NASA Astrophysics Data System (ADS)

    Zaregonbadi, Raziyeh; Farhoudi, Mehrdad

    2016-10-01

    We consider f( {R,T} ) modified theory of gravity in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We indicate that in this type of the theory, the coupling energy-momentum tensor is not conserved. However, we mainly focus on a particular model that matter is minimally coupled to the geometry in the metric formalism and wherein, its coupling energy-momentum tensor is also conserved. We obtain the corresponding Raychaudhuri dynamical equation that presents the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can lead to an acceleration phase after the matter dominated phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the motion of the free test particles on their geodesics, and derive the geodesic deviation equation in this modified theory to study the accelerating universe within the spatially flat FLRW background. Actually, this equation gives the relative accelerations of adjacent particles as a measurable physical quantity, and provides an elegant tool to investigate the timelike and the null structures of spacetime geometries. Then, through the null deviation vector, we find the observer area-distance as a function of the redshift for the chosen model, and compare the results with the corresponding results obtained in the literature.

  19. Nonlinear diffusion filtering influenced by mean curvature

    NASA Astrophysics Data System (ADS)

    Kollár, Michal; Mikula, Karol; Čunderlík, Róbert

    2016-04-01

    The presentation introduces a new nonlinear diffusion filtering method on closed surfaces such as a sphere, ellipsoid or the Earth's surface. Our new model extends the regularized surface Perona-Malik model by including a local extrema detector based on a mean curvature of processed data. The model is thus represented by a nonlinear diffusion equation which filters noise while preserves main edges, local extrema and details important for a correct interpretation of data. We define a surface finite-volume method to approximate numerically the nonlinear parabolic partial differential equation on a closed surface. The closed surface is approximated by a polyhedral surface created by planar triangles representing subdivision of an initial icosahedron grid and we use a piece-wise linear approximation of a solution in space and the backward Euler time discretization. Numerical experiments present nonlinear diffusion filtering of artificial data and real measurements, namely the GOCE satellite observations. They aim to point out a main advantage of the new nonlinear model which, on the contrary of Perona-Malik model, preserves local extremal values of filtered data.

  20. Dark energy, matter creation and curvature

    NASA Astrophysics Data System (ADS)

    Cárdenas, Víctor H.

    2012-09-01

    The most studied way to explain the current accelerated expansion of the universe is to assume the existence of dark energy; a new component that fills the universe, does not form clumps, currently dominates the evolution, and has a negative pressure. In this work I study an alternative model proposed by Lima et al. (Abramo and Lima in Class. Quantum Gravity 13:2953, 1996; Zimdahl in Phys. Rev. D 53:5483, 1996; Zimdahl and Pavón in Mon. Not. R. Astron. Soc. 266:872, 1994), which does not need an exotic equation of state, but assumes instead the existence of gravitational particle creation. Because this model fits the supernova observations as well as the ΛCDM model, I perform in this work a thorough study of this model, considering an explicit spatial curvature. I found that in this scenario we can alleviate the cosmic coincidence problem, basically showing that these two components, dark matter and dark energy, are of the same nature, but they act at different scales. I also shown the inadequacy of some particle creation models, and I study a previously proposed new model that overcomes these difficulties.

  1. Geodesic Curvature Effects in the WCMs

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchun

    2015-11-01

    The favorable features of the steady state I-Regime discovered on Alcator C-Mod recently make this regime a hopeful working regime for future burning plasma experiments. Accompanying the I-regime are the weakly coherent modes (WCMs) with frequency around 200 kHz that propagate poloidally in the electron diamagnetic drift direction in the lab frame. The WCMs were interpreted as certain type of heavy impurity modes in the 3-fluid framework in a 1-D plane magnetic field geometry. Once considering in a simplified toroidal magnetic field geometry, the geodesic curvature will play important roles in that the contribution of the geodesic compression may catch up with or outweighs that of the parallel compression in the plasma edge region where the fluctuations are highly localized. This geodesic coupling to the neighboring bands modifies the marginal stability condition and mode profiles in Refs.. In the same framework, attempts will be made to interpret the concomitant low frequency (~ 20kHz) fluctuations as a type of impurity drift wave-like modes propagating in the ion diamagnetic drift direction. Supported by China National MCFE Research Program under Grant No. 2015GB11000.

  2. BICEP2, the curvature perturbation and supersymmetry

    SciTech Connect

    Lyth, David H.

    2014-11-01

    The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.

  3. An intuitive approach to measuring protein surface curvature.

    PubMed

    Coleman, Ryan G; Burr, Michael A; Souvaine, Diane L; Cheng, Alan C

    2005-12-01

    A natural way to measure protein surface curvature is to generate the least squares fitted (LSF) sphere to a surface patch and use the radius as the curvature measure. While the concept is simple, the sphere-fitting problem is not trivial and known means of protein surface curvature measurement use alternative schemes that are arguably less straightforward to interpret. We have developed an approach to solve the LSF sphere problem by turning the sphere-fitting problem into a solvable plane-fitting problem using a transformation known as geometric inversion. The approach works on any arbitrary surface patch, and returns a radius of curvature that has direct physical interpretation. Additionally, it is flexible in its ability to find the curvature of an arbitrary surface patch, and the "resolution" can be adjusted to highlight atomic features or larger features such as peptide binding sites. We include examples of applying the method to visualization of peptide recognition pockets and protein conformational change, as well as a comparison with a commonly used solid-angle curvature method showing that the LSF method produces more pronounced curvature results.

  4. 3D curvature of muscle fascicles in triceps surae

    PubMed Central

    Hamarneh, Ghassan; Wakeling, James M.

    2014-01-01

    Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (−15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus. PMID:25324510

  5. Influence of Coanda surface curvature on performance of bladeless fan

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2014-10-01

    The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.

  6. Einstein Gravity and Beyond: Aspects of Higher-Curvature Gravity and Black Holes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saugata

    This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f( R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of the null energy condition in gravity is provided. The purpose of the null energy condition is to filter out ill-behaved theories containing ghosts. Conformal transformations, which are simple redefinitions of the spacetime, introduces serious violations of the null energy condition. This violation is shown to be spurious and a prescription for obtaining a modified null energy condition, based on the universality of the second law of thermodynamics, is provided. The thermodynamic properties of the black holes are further explored using merger of extremal black holes whose horizon entropy has topological contributions coming from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent belief in the literature that the second law of black hole thermodynamics is violated in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific class of higher derivative scalar field theories called the galileons are obtained from a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condition violating theories which lead to violations of the second law of thermodynamics of black holes. These higher derivative scalar field theories which are non-minimally coupled to gravity required the development of a generalized method for obtaining the equations of motion. Utilizing this generalized method, it is shown that the inclusion of the Gauss-Bonnet term made the theory of gravity to become higher derivative, which makes it difficult to make any statements about the connection between the violation of the second law of thermodynamics and the galileon fields.

  7. Curvature and isocurvature perturbations in two-field inflation

    NASA Astrophysics Data System (ADS)

    Lalak, Z.; Langlois, D.; Pokorski, S.; Turzyński, K.

    2007-07-01

    We study cosmological perturbations in two-field inflation, allowing for non-standard kinetic terms. We calculate analytically the spectra of curvature and isocurvature modes at Hubble crossing, up to first order in the slow-roll parameters. We also compute numerically the evolution of the curvature and isocurvature modes from well within the Hubble radius until the end of inflation. We show explicitly for a few examples, including the recently proposed model of 'roulette' inflation, how isocurvature perturbations affect significantly the curvature perturbation between Hubble crossing and the end of inflation.

  8. Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis

    NASA Astrophysics Data System (ADS)

    Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful

    2016-02-01

    This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.

  9. Complete manifolds with bounded curvature and spectral gaps

    NASA Astrophysics Data System (ADS)

    Schoen, Richard; Tran, Hung

    2016-08-01

    We study the spectrum of complete noncompact manifolds with bounded curvature and positive injectivity radius. We give general conditions which imply that their essential spectrum has an arbitrarily large finite number of gaps. In particular, for any noncompact covering of a compact manifold, there is a metric on the base so that the lifted metric has an arbitrarily large finite number of gaps in its essential spectrum. Also, for any complete noncompact manifold with bounded curvature and positive injectivity radius we construct a metric uniformly equivalent to the given one (also of bounded curvature and positive injectivity radius) with an arbitrarily large finite number of gaps in its essential spectrum.

  10. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-01

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed. PMID:25615464

  11. Geometry-specific scaling of detonation parameters from front curvature

    SciTech Connect

    Jackson, Scott I; Short, Mark

    2011-01-20

    It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.

  12. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-01

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  13. Numerical studies of transverse curvature effects on transonic flow stability

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  14. Curvature perturbation and waterfall dynamics in hybrid inflation

    SciTech Connect

    Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao E-mail: firouz@mail.ipm.ir

    2011-10-01

    We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.

  15. Ion-conducting membranes

    DOEpatents

    Masel, Richard L.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-06-21

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums and pyridiniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  16. Curvature-driven assembly in soft matter.

    PubMed

    Liu, Iris B; Sharifi-Mood, Nima; Stebe, Kathleen J

    2016-07-28

    Control over the spatial arrangement of colloids in soft matter hosts implies control over a wide variety of properties, ranging from the system's rheology, optics, and catalytic activity. In directed assembly, colloids are typically manipulated using external fields to form well-defined structures at given locations. We have been developing alternative strategies based on fields that arise when a colloid is placed within soft matter to form an inclusion that generates a potential field. Such potential fields allow particles to interact with each other. If the soft matter host is deformed in some way, the potential allows the particles to interact with the global system distortion. One important example is capillary assembly of colloids on curved fluid interfaces. Upon attaching, the particle distorts that interface, with an associated energy field, given by the product of its interfacial area and the surface tension. The particle's capillary energy depends on the local interface curvature. We explore this coupling in experiment and theory. There are important analogies in liquid crystals. Colloids in liquid crystals elicit an elastic energy response. When director fields are moulded by confinement, the imposed elastic energy field can couple to that of the colloid to define particle paths and sites for assembly. By improving our understanding of these and related systems, we seek to develop new, parallelizable routes for particle assembly to form reconfigurable systems in soft matter that go far beyond the usual close-packed colloidal structures.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298434

  17. Measurement of radius of curvature of spherical optical surfaces with small curvature and aperture by optical profiler

    NASA Astrophysics Data System (ADS)

    Ma, Shuang; Yi, Shengzhen; Chen, Shenghao; Wang, Zhanshan

    2014-11-01

    Monochromatic energy multilayer Kirkpatrick-Baez microscope is one of key diagnostic tools for researches on inertial confinement fusion. It is composed by two orthogonal concave spherical mirrors with small curvature and aperture, and produce the image of an object by collecting X-rays in each orthogonal direction, independently. Accurate measurement of radius of curvature of concave spherical mirrors is very important to achieve its design optical properties including imaging quality, optical throughput and energy resolution. However, it is difficult to measure the radius of curvature of spherical optical surfaces with small curvature and aperture by conventional methods, for the produced reflective intensity of glass is too low to correctly test. In this paper, we propose an improved measuring method of optical profiler to accomplish accurate measurement of radius of curvature of spherical optical surfaces with small curvature and aperture used in the monochromatic energy multilayer Kirkpatrick-Baez microscope. Firstly, we use a standard super-smooth optical flat to calibrate reference mirror before each experiment. Following, deviation of central position between measurement area and interference pattern is corrected by the theory of Newton's rings, and the zero-order fringe position is derived from the principle of interference in which surface roughness has minimum values in the position of zero light path difference. Measured results by optical profiler show the low relative errors and high repeatability. Eventually, an imaging experiment of monochromatic energy multilayer Kirkpatrick-Baez microscope determines the measurement accuracy of radius of curvature.

  18. VLTI pupil transfer: variable curvature mirrors: II. Plasticity, hysteresis, and curvature control

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Ferrari, Marc; Mazzanti, Silvio P.; Lanzoni, Patrick; Joulie, Patrice; Leduc, Denis; Copede, Myriam

    2000-07-01

    Progress in Active Optics Methods have led to the invention of Variable Curvature Mirrors. VCMs are useful to provide optical path compensations of the imaged field of view. Preliminarily developed for Fourier transform IR spectrometers, they are now used for the coherent beam recombination of the VLT array. With the VLT Interferometer, a highly flexible VCM will be installed at the focal surface of each cat's eye delay lines. The VCM developments led to the design choice of metal substrates in a quenched state which are at least 15 times more flexible--to external loading--than gloss or vitroceram substrates and thus, have provided accurately the large zoom-range from f/(infinity) to f/2.6. Due to the very large zoom range provided by such active mirrors, it has been found necessary to take under consideration the small plastical deformation as well as the small hysterese loop deformation of the metal substrate. With the four VCMs such as now built for the 8 m telescopes, a plastical deformation model and a hysterese loop model have been determined and are presently described. Including these compensations, the VCM optical figures have been improved and the control software now performs a curvature resolution in between 10-3 and 5 10-4.

  19. Trans-Membrane Area Asymmetry Controls the Shape of Cellular Organelles

    PubMed Central

    Beznoussenko, Galina V.; Pilyugin, Sergei S.; Geerts, Willie J. C.; Kozlov, Michael M.; Burger, Koert N. J.; Luini, Alberto; Derganc, Jure; Mironov, Alexander A.

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50–60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant. PMID:25761238

  20. Trans-membrane area asymmetry controls the shape of cellular organelles.

    PubMed

    Beznoussenko, Galina V; Pilyugin, Sergei S; Geerts, Willie J C; Kozlov, Michael M; Burger, Koert N J; Luini, Alberto; Derganc, Jure; Mironov, Alexander A

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50-60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant. PMID:25761238

  1. 16. Detail of curvature of northern parapet, with 1932 concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail of curvature of northern parapet, with 1932 concrete extension of parapet in foreground, facing east. - Dubbs Bridge, Spinnerstown Road (State Route 2031) spanning Hosensack Creek, Dillingerville, Lehigh County, PA

  2. Shape Coherence and Finite-Time Curvature Evolution

    NASA Astrophysics Data System (ADS)

    Ma, Tian; Bollt, Erik M.

    We introduce a definition of finite-time curvature evolution along with our recent study on shape coherence in nonautonomous dynamical systems. Comparing to slow evolving curvature preserving the shape, large curvature growth points reveal the dramatic change on shape such as the folding behaviors in a system. Closed trough curves of low finite-time curvature (FTC) evolution field indicate the existence of shape coherent sets, and troughs in the field indicate the most significant shape coherence. Here, we will demonstrate these properties of the FTC, as well as contrast to the popular Finite-Time Lyapunov Exponent (FTLE) computation, often used to indicate hyperbolic material curves as Lagrangian Coherent Structures (LCS). We show that often the FTC troughs are in close proximity to the FTLE ridges, but in other scenarios, the FTC indicates entirely different regions.

  3. Curvature and bow of bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Foronda, Humberto M.; Romanov, Alexey E.; Young, Erin C.; Roberston, Christian A.; Beltz, Glenn E.; Speck, James S.

    2016-07-01

    We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substrates as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.

  4. Curvature-Squared Cosmology In The First-Order Formalism

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman

    1993-01-01

    Paper presents theoretical study of some of general-relativistic ramifications of gravitational-field energy density proportional to R - alpha R(exp 2) (where R is local scalar curvature of space-time and alpha is a constant).

  5. Curvature Control of Silicon Microlens for THz Dielectric Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran

    2012-01-01

    We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.

  6. Changes on the corneal thickness and curvature after orthokeratology

    NASA Astrophysics Data System (ADS)

    Mitsui, Iwane; Yamada, Yoshiya

    2004-07-01

    To evaluate the corneal thickness and curvature changes after Orthokeratology contact lens wear, using the ORBSCAN II corneal topography system, corneal thickness and corneal curvature were measured on one hundred and twenty eyes of sixty patients before and after wearing the custom rigid gas permeable contact lenses for Orthokeratology. The contact lenses were specially designed for each eye. The subjects wore the orthokeratology lenses for approximately Four hours with their eyes closed. The corneal thickness of the subjects was increased on fifty-five eyes at not only the peripheral zone but also the center of the cornea. The average increase of central and peripheral corneal thickness was 18 micrometer and 22micrometer, respectively. The mean anterior curvature of corneal surface changed 1.25D. The mean posterior curvature of corneal endothelium side changed 0.75D.

  7. The probability equation for the cosmological comoving curvature perturbation

    SciTech Connect

    Riotto, Antonio; Sloth, Martin S. E-mail: sloth@cern.ch

    2011-10-01

    Fluctuations of the comoving curvature perturbation with wavelengths larger than the horizon length are governed by a Langevin equation whose stochastic noise arise from the quantum fluctuations that are assumed to become classical at horizon crossing. The infrared part of the curvature perturbation performs a random walk under the action of the stochastic noise and, at the same time, it suffers a classical force caused by its self-interaction. By a path-interal approach and, alternatively, by the standard procedure in random walk analysis of adiabatic elimination of fast variables, we derive the corresponding Kramers-Moyal equation which describes how the probability distribution of the comoving curvature perturbation at a given spatial point evolves in time and is a generalization of the Fokker-Planck equation. This approach offers an alternative way to study the late time behaviour of the correlators of the curvature perturbation from infrared effects.

  8. Interaction of Defensins with Model Cell Membranes

    NASA Astrophysics Data System (ADS)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  9. Influence of curvature on the losses of doubly clad fibers.

    PubMed

    Marcuse, D

    1982-12-01

    The loss increase of the HE(11) mode of a doubly clad (depressed-index) fiber due to constant curvature is considered. The calculations presented in this paper are based on a simplified theory. We find that for typical fibers the leakage loss of the HE(11) mode begins to increase significantly when the radius of curvature of the fiber axis reaches the 1-10-cm range.

  10. Layered devices having surface curvature and method of constructing same

    DOEpatents

    Woodbury, Richard C.; Perkins, Raymond T.; Thorne, James M.

    1989-01-01

    A method of treating a substrate having first and second sides with corresponding oppositely facing first and second surfaces, to produce curvature in the first surface. The method includes the steps of removing material, according to a predetermined pattern, from the second side of the substrate, and applying a stress-producing film of material to at least one surface of the substrate to thereby cause the substrate to bend to produce the desired curvature in the first surface.

  11. Topology of codimension-one foliations of nonnegative curvature

    SciTech Connect

    Bolotov, Dmitry V

    2013-05-31

    We show that a transversely oriented C{sup 2}-foliation of codimension one with nonnegative Ricci curvature on a closed orientable manifold is a foliation with almost no holonomy. This allows us to decompose the manifold into blocks on which this foliation has a simple structure. We also show that a manifold homeomorphic to a 5-dimensional sphere does not admit a codimension-one C{sup 2}-foliation with nonnegative sectional curvature. Bibliography: 29 titles.

  12. Fresnel diffractive imaging: Experimental study of coherence and curvature

    NASA Astrophysics Data System (ADS)

    Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Nugent, K. A.; Peele, A. G.; Paterson, D.; de Jonge, M. D.; McNulty, I.

    2008-03-01

    A Fresnel coherent diffractive imaging experiment is performed using a pinhole as a test object. The experimental parameters of the beam curvature and coherence length of the illuminating radiation are varied to investigate their effects on the reconstruction process. It is found that a sufficient amount of curvature across the sample strongly ameliorates the effects of low coherence, even when the sample size exceeds the coherence length.

  13. FAST TRACK COMMUNICATION: Lorentzian manifolds and scalar curvature invariants

    NASA Astrophysics Data System (ADS)

    Coley, Alan; Hervik, Sigbjørn; Pelavas, Nicos

    2010-05-01

    We discuss (arbitrary-dimensional) Lorentzian manifolds and the scalar polynomial curvature invariants constructed from the Riemann tensor and its covariant derivatives. Recently, we have shown that in four dimensions a Lorentzian spacetime metric is either \\mathcal {I}-non-degenerate, and hence locally characterized by its scalar polynomial curvature invariants, or is a degenerate Kundt spacetime. We present a number of results that generalize these results to higher dimensions and discuss their consequences and potential physical applications.

  14. Thermal fluctuations of vesicles and nonlinear curvature elasticity--implications for size-dependent renormalized bending rigidity and vesicle size distribution.

    PubMed

    Ahmadpoor, Fatemeh; Sharma, Pradeep

    2016-03-01

    Both closed and open biological membranes noticeably undulate at physiological temperatures. These thermal fluctuations influence a broad range of biophysical phenomena, ranging from self-assembly to adhesion. In particular, the experimentally measured thermal fluctuation spectra also provide a facile route to the assessment of mechanical and certain other physical properties of biological membranes. The theoretical assessment of thermal fluctuations, be it for closed vesicles or the simpler case of flat open lipid bilayers, is predicated upon assuming that the elastic curvature energy is a quadratic functional of the curvature tensor. However, a qualitatively correct description of several phenomena such as binding-unbinding transition, vesicle-to-bicelle transition, appearance of hats and saddles among others, appears to require consideration of constitutively nonlinear elasticity that includes fourth order curvature contributions rather than just quadratic. In particular, such nonlinear considerations are relevant in the context of large-curvature or small-sized vesicles. In this work we discuss the statistical mechanics of closed membranes (vesicles) incorporating both constitutive and geometrical nonlinearities. We derive results for the renormalized bending rigidity of small vesicles and show that significant stiffening may occur for sub-20 nm vesicle sizes. Our closed-form results may also be used to determine nonlinear curvature elasticity properties from either experimentally measured fluctuation spectra or microscopic calculations such as molecular dynamics. Finally, in the context of our results on thermal fluctuations of vesicles and nonlinear curvature elasticity, we reexamine the problem of determining the size distribution of vesicles and obtain results that reconcile well with experimental observations. However, our results are somewhat paradoxical. Specifically, the molecular dynamics predictions for the thermo-mechanical behavior of small vesicles

  15. Shaping of parabolic cylindrical membrane reflectors for the DART precision test bed

    NASA Technical Reports Server (NTRS)

    White, C.; Salama, M.; Dragovan, M.; Schroeder, J.; Barber, D.; Dooley, J.

    2003-01-01

    The DART is a new telescope architecture consisting of two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola.

  16. Curvature Elasticities of the Micellar Nematics.

    NASA Astrophysics Data System (ADS)

    Zhou, E.

    This dissertation is concerned with the curvature elastic and viscous properties of two micellar nematic systems. The mixtures of the first system had a nematic phase (N_{rm L}) with a second order transition to a lamellar smectic phase. The second system has three different nematic phases, two uniaxial phases (N_{rm L} and N_{rm C}) and an intermediate biaxial nematic phase (N_ {rm bx}). The experimental procedures used in this research are modifications of the conventional method which is based on magnetic field induced deformations of surface aligned films. Modifications were required for measurements close to the nematic-lamellar smectic transition, where the elastic constants assume very large values, and for the biaxial nematic phase and the adjacent higher temperature uniaxial phase, where the surface by itself does not impose a homogeneous alignment. A theoretical study of limiting cases, of small deformations in general and of small deformations at high magnetic fields, proved useful to select the proper experimental conditions and to evaluate the data. The nematic-lamellar smectic transition was studied on mixtures of decylammoniumchloride (DACl), ammoniumchloride, and water. The bend elastic coefficient and the rotational viscosity were found to vary over more than three orders of magnitude due to an exponential divergence at the transition. We obtained an exponent of 1.07 +/- 0.05 for a weight ratio of DACl/NHL_4Cl = 20, and an exponent of 0.87 +/- 0.02 for a weight ratio of 10, but an unexpected thermal hysteresis interferes with a reliable determination of the critical properties. The three different nematic phases were studied on potassium laurate in mixtures with 1-decanol and D _2O. The elastic constants for bend and splay in the N_{rm L} phase are nearly equal. They are about one order of magnitude smaller than the lowest values measured in the nematic phase of the DACl system. Because of surface alignment problems, only one elastic constant could

  17. Design of a curvature sensor using a flexoelectric material

    NASA Astrophysics Data System (ADS)

    Yan, X.; Huang, W. B.; Kwon, S. R.; Yang, S. R.; Jiang, X. N.; Yuan, F. G.

    2013-04-01

    A curvature sensor based on flexoelectricity using Ba0.64Sr0.36TiO3 (BST) material is proposed and developed in this paper. The working principle of the sensor is based on the flexoelectricity, exhibiting coupling between mechanical strain gradient and electric polarization. A BST curvature sensor is lab prepared using a conventional solid state processing method. The curvature sensing is demonstrated in four point bending tests of the beam under harmonic loads. BST sensors are attached on both side surfaces of an aluminum beam, located symmetrically with respect to its neutral axis. Analyses have shown that the epoxy bonding layer plays a critical role for curvature transfer. Consequently a shear lag effect is taken into account for extracting actual curvature from the sensor measurement. Experimental results demonstrated good linearity from the charge outputs under the frequencies tests and showed a sensor sensitivity of 30.78pC•m in comparison with 32.48pC•m from theoretical prediction. The BST sensor provides a direct curvature measure instead of using traditional strain gage through interpolation and may offer an optional avenue for on-line and in-situ structural health monitoring.

  18. Budding and vesiculation induced by conical membrane inclusions

    NASA Astrophysics Data System (ADS)

    Auth, Thorsten; Gompper, Gerhard

    2009-09-01

    Conical inclusions in a lipid bilayer generate an overall spontaneous curvature of the membrane that depends on concentration and geometry of the inclusions. Examples are integral and attached membrane proteins, viruses, and lipid domains. We propose an analytical model to study budding and vesiculation of the lipid bilayer membrane, which is based on the membrane bending energy and the translational entropy of the inclusions. If the inclusions are placed on a membrane with similar curvature radius, their repulsive membrane-mediated interaction is screened. Therefore, for high inclusion density the inclusions aggregate, induce bud formation, and finally vesiculation. Already with the bending energy alone our model allows the prediction of bud radii. However, in case the inclusions induce a single large vesicle to split into two smaller vesicles, bending energy alone predicts that the smaller vesicles have different sizes whereas the translational entropy favors the formation of equal-sized vesicles. Our results agree well with those of recent computer simulations.

  19. Handedness and hobby preference.

    PubMed

    Giotakos, Orestis

    2004-06-01

    The objective of this study was to investigate the relationship between handedness and hobby preference in healthy individuals. For this reason, the Annett handedness questionnaire and a standard questionnaire on preference for hobbies were administered to 879 healthy young men (age, M = 22.3, SD = 4.8 yr.). Analysis showed more cultured individuals were much less likely to be strongly right-handed. Especially, pure right-handedness highly overrepresented among those who mainly preferred doing sports, pure left-handedness among those who preferred reading books, collecting, or going to the cinema/theater, and mixed-handedness among those who preferred arts, like playing music, drawing, or handicraft. The findings support evidence that handedness is associated with hobby preference. PMID:15209302

  20. Overriding plate thickness control on subducting slab curvature

    NASA Astrophysics Data System (ADS)

    Holt, A.; Buffett, B. A.; Becker, T. W.

    2014-12-01

    The curvature of subducting lithosphere controls deformation due to bending at the trench, which results in a force that dissipates gravitational potential energy and may affect seismic coupling. We use 2-D, thermo-mechanical subduction models to explore the dependence of the radius of curvature on the thickness of the subducting and overriding plates for models with both viscous and effectively plastic lithospheric rheologies. Such a plastic rheology has been shown to reproduce the bending stresses/moment computed using a kinematic strain rate description and a laboratory derived composite rheology. Laboratory and numerical models show that the bending geometry of subducting slabs with a viscous rheology is strongly dependent on slab thickness; thicker plates have a larger radius of curvature. However, the curvature of subducting plates on Earth, illuminated by the distribution of earthquake hypocenters, shows little to no dependence on the plate thickness or age. Such an observation is instead compatible with plates that have a plastic rheology. Indeed, our numerical models show that the radius of curvature of viscous plates has a stronger dependence on subducting plate thickness than in equivalent plastic models. In viscous plates, the bending moment produces a torque, which balances the torque exerted by buoyancy. However, for the plastic plate case the bending moment saturates at a maximum value and so cannot balance the gravitational torque. The saturation of bending moment means that, (a) the radius of curvature of the bending region is not constrained by this torque balance, and, (b) other forces are required to balance the gravitational torque. We explore the role that the overriding plate could play in controlling the subducting plate curvature in plastic plate models where the bending stresses have saturated. For such plates, we find that increasing the thickness of the overriding plate causes the radius of curvature to increase. The same correlation is

  1. Clinical workflow for spinal curvature measurement with portable ultrasound

    NASA Astrophysics Data System (ADS)

    Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.

  2. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, Barry L.; Beninga, Kelly J.

    1991-01-01

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.

  3. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, B.L.; Beninga, K.J.

    1991-05-21

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.

  4. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  5. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  6. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  7. Order, topology and preference

    NASA Technical Reports Server (NTRS)

    Sertel, M. R.

    1971-01-01

    Some standard order-related and topological notions, facts, and methods are brought to bear on central topics in the theory of preference and the theory of optimization. Consequences of connectivity are considered, especially from the viewpoint of normally preordered spaces. Examples are given showing how the theory of preference, or utility theory, can be applied to social analysis.

  8. Preference pulses without reinforcers.

    PubMed

    McLean, Anthony P; Grace, Randolph C; Pitts, Raymond C; Hughes, Christine E

    2014-05-01

    Preference pulses are thought to represent strong, short-term effects of reinforcers on preference in concurrent schedules. However, the general shape of preference pulses is substantially determined by the distributions of responses-per-visit (visit lengths) for the two choice alternatives. In several series of simulations, we varied the means and standard deviations of distributions describing visits to two concurrently available response alternatives, arranged "reinforcers" according to concurrent variable-interval schedules, and found a range of different preference pulses. Because characteristics of these distributions describe global aspects of behavior, and the simulations assumed no local effects of reinforcement, these preference pulses derive from the visit structure alone. This strongly questions whether preference pulses should continue to be interpreted as representing local effects of reinforcement. We suggest an alternative approach whereby local effects are assessed by subtracting the artifactual part, which derives from visit structure, from the observed preference pulses. This yields "residual" preference pulses. We illustrate this method in application to published data from mixed dependent concurrent schedules, revealing evidence that the delivery of reinforcers had modest lengthening effects on the duration of the current visit, a conclusion that is quantitatively consistent with early research on short-term effects of reinforcement.

  9. Paw preferences in dogs.

    PubMed

    Tan, U

    1987-02-01

    The distribution of paw preferences were studied in 28 dogs. The paw preference was assessed by counting the right and left paw movements performed to remove an adhesive plaster from the eyes. The significance of the right minus left paw reaches in percentages was evaluated statistically in each animal. There were three distinct groups in respect to paw preferences in dogs: right-preferent (57.1%), left-preferent (17.9%), and ambidextrous (25.0%). Statistical analysis showed that the observed frequencies for each group were not merely chance variations which would be expected in a random sample. It was concluded that the population bias can be expressed in a distribution skewed toward a right-hand bias as seen in man.

  10. The formation of mountain range curvature by gravitational spreading

    NASA Astrophysics Data System (ADS)

    Copley, Alex

    2012-10-01

    This paper presents a mechanism by which mountain ranges can form curved range-fronts. Gravitational spreading of mountain ranges that have been thrust onto rigid lowlands will result in the formation of curvature, provided that enough gravity-driven flow occurs to dominate the shape of the topography. Whether this mechanism can operate during the lifetime of a given mountain range depends upon the viscosity of the range, the square of the along-strike length of the range, and the cube of the elevation of the range. The curvature of the southern edge of the Tibetan Plateau is consistent with formation by gravitational spreading provided that the viscosity is similar to that previously estimated using other, independent, methods. The low elevation and young age of the Zagros mountains mean that large-scale curvature has not had time to develop. The short along-strike extent and possibly low viscosity of the Sulaiman Ranges in Pakistan may have allowed the ranges to form their distinctive arcuate shape. The formation of range-front curvature plays an important role in controlling the tectonic evolution of the interiors of the ranges, with arc-parallel extension becoming progressively more important as range-front curvature develops.

  11. Curvature properties of some class of warped product manifolds

    NASA Astrophysics Data System (ADS)

    Deszcz, Ryszard; Głogowska, Małgorzata; Jełowicki, Jan; Zafindratafa, Georges

    2016-10-01

    We prove that warped product manifolds with p-dimensional base, p = 1, 2, satisfy some pseudosymmetry type curvature conditions. These conditions are formed from the metric tensor g, the Riemann-Christoffel curvature tensor R, the Ricci tensor S and the Weyl conformal curvature C of the considered manifolds. The main result of the paper states that if p = 2 and the fiber is a semi-Riemannian space of constant curvature (when n is greater or equal to 5) then the (0, 6)-tensors R ṡ R - Q(S,R) and C ṡ C of such warped products are proportional to the (0, 6)-tensor Q(g,C) and the tensor C is a linear combination of some Kulkarni-Nomizu products formed from the tensors g and S. We also obtain curvature properties of this kind of quasi-Einstein and 2-quasi-Einstein manifolds, and in particular, of the Goedel metric, generalized spherically symmetric metrics and generalized Vaidya metrics.

  12. Membrane stabilizer

    DOEpatents

    Mingenbach, William A.

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  13. Gas phase fractionation method using porous ceramic membrane

    DOEpatents

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  14. Gating-by-Tilt of Mechanically Sensitive Membrane Channels

    NASA Astrophysics Data System (ADS)

    Turner, Matthew S.; Sens, Pierre

    2004-09-01

    We propose an alternative mechanism for the gating of biological membrane channels in response to membrane tension that involves a change in the slope of the membrane near the channel. Under biological membrane tensions we show that the energy difference between the closed (tilted) and open (untilted) states can far exceed kBT and is comparable to what is available under simple dilational gating. Recent experiments demonstrate that membrane leaflet asymmetries (spontaneous curvature) can strongly affect the gating of some channels. Such a phenomenon would be easier to explain under gating-by-tilt, given its novel intrinsic sensitivity to such asymmetry.

  15. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells

    PubMed Central

    Govindarajan, Sutharsan; Elisha, Yair; Nevo-Dinur, Keren; Amster-Choder, Orna

    2013-01-01

    ABSTRACT The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. PMID:24129255

  16. Studies of the effects of curvature on dilution jet mixing

    NASA Astrophysics Data System (ADS)

    Holdeman, James D.; Srinivasan, Ram; Reynolds, Robert S.; White, Craig D.

    1992-02-01

    An analytical program was conducted using both three-dimensional numerical and empirical models to investigate the effects of transition liner curvature on the mixing of jets injected into a confined crossflow. The numerical code is of the TEACH type with hybrid numerics; it uses the power-law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. From the results of the numerical calculations, an existing empirical model for the temperature field downstream of single and multiple rows of jets injected into a straight rectangular duct was extended to model the effects of curvature. Temperature distributions, calculated with both the numerical and empirical models, are presented to show the effects of radius of curvature and inner and outer wall injection for single and opposed rows of cool dilution jets injected into a hot mainstream flow.

  17. Numerical Estimation of the Curvature of Biological Surfaces

    NASA Technical Reports Server (NTRS)

    Todd, P. H.

    1985-01-01

    Many biological systems may profitably be studied as surface phenomena. A model consisting of isotropic growth of a curved surface from a flat sheet is assumed. With such a model, the Gaussian curvature of the final surface determines whether growth rate of the surface is subharmonic or superharmonic. These properties correspond to notions of convexity and concavity, and thus to local excess growth and local deficiency of growth. In biological models where the major factors controlling surface growth are intrinsic to the surface, researchers thus gained from geometrical study information on the differential growth undergone by the surface. These ideas were applied to an analysis of the folding of the cerebral cortex, a geometrically rather complex surface growth. A numerical surface curvature technique based on an approximation to the Dupin indicatrix of the surface was developed. A metric for comparing curvature estimates is introduced, and considerable numerical testing indicated the reliability of this technique.

  18. Robust disparity estimation based on color monogenic curvature phase.

    PubMed

    Zang, Di; Li, Jie; Zhang, Dongdong; Zhang, Junqi

    2012-07-01

    Disparity estimation for binocular images is an important problem for many visual tasks such as 3D environment reconstruction, digital hologram, virtual reality, robot navigation, etc. Conventional approaches are based on brightness constancy assumption to establish spatial correspondences between a pair of images. However, in the presence of large illumination variation and serious noisy contamination, conventional approaches fail to generate accurate disparity maps. To have robust disparity estimation in these situations, we first propose a model - color monogenic curvature phase to describe local features of color images by embedding the monogenic curvature signal into the quaternion representation. Then a multiscale framework to estimate disparities is proposed by coupling the advantages of the color monogenic curvature phase and mutual information. Both indoor and outdoor images with large brightness variation are used in the experiments, and the results demonstrate that our approach can achieve a good performance even in the conditions of large illumination change and serious noisy contamination. PMID:22772192

  19. An Experimental Study of Laminarization Induced by Acceleration and Curvature

    NASA Astrophysics Data System (ADS)

    Jackson, R. Brian

    The Generation IV Very High Temperature Reactor (VHTR) design is being actively studied in various countries for application due to its inherent passive safe design, higher thermal efficiencies, and proposed capability of providing high temperature process heat. The pebble bed core is one of two core designs used in gas reactors. In the pebble bed core there are mechanisms present which can cause the flow to laminarize, thus reducing its heat transfer effectiveness. Wind tunnel experiments were conducted using Particle Image Velocimetry (PIV) to investigate boundary layer laminarization due to flow acceleration and convex curvature effects. The flow was subject to acceleration and curvature both separately and together and the flow behavior characterized with velocity flow profiles, mean boundary layer parameters, and turbulence quantities. Laminarization was identified and the influence of acceleration and curvature was characterized.

  20. Waterfall field in hybrid inflation and curvature perturbation

    SciTech Connect

    Gong, Jinn-Ouk; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2011-03-01

    We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.

  1. Characterization of inherent curvature in DNA lacking polyadenine runs.

    PubMed

    McNamara, P T; Harrington, R E

    1991-07-01

    Sequence-directed DNA curvature is most commonly associated with AA dinucleotides in the form of polyadenine runs. We demonstrate inherent curvature in DNA which lacks AA/TT dinucleotides using the criteria of polyacrylamide gel mobility and efficiency of DNA cyclization. These studies are based upon two 21-base pair synthetic DNA fragments designed to exhibit fixed curvature according to deflections made to the helical axis by non-AA dinucleotide stacks. Repeats of these sequences display anomalously slow migration in polyacrylamide gels. Moreover, both sequences describe helical conformations that are closed into circles by DNA ligase at much smaller sizes than is typical of nondeformed DNA. Chemical cleavage of these DNA molecules with hydroxyl radical is also consistent with local variation in helical conformation at specific dinucleotide steps. PMID:1648100

  2. Modeling Membrane Deformations and Lipid Demixing upon Protein-Membrane Interaction: The BAR Dimer Adsorption

    PubMed Central

    Khelashvili, George; Harries, Daniel; Weinstein, Harel

    2009-01-01

    We use a self-consistent mean-field theory, designed to investigate membrane reshaping and lipid demixing upon interaction with proteins, to explore BAR domains interacting with large patches of lipid membranes of heterogeneous compositions. The computational model includes contributions to the system free energy from electrostatic interactions and elastic energies of the membrane, as well as salt and lipid mixing entropies. The results from our simulation of a single adsorbing Amphiphysin BAR dimer indicate that it is capable of stabilizing a significantly curved membrane. However, we predict that such deformations will occur only for membrane patches that have the inherent propensity for high curvature, reflected in the tendency to create local distortions that closely match the curvature of the BAR dimer itself. Such favorable preconditioning for BAR-membrane interaction may be the result of perturbations such as local lipid demixing induced by the interaction, or of a prior insertion of the BAR domain's amphiphatic N-helix. From our simulations it appears that local segregation of charged lipids under the influence of the BAR dimer cannot produce high enough asymmetry between bilayer leaflets to induce significant bending. In the absence of additional energy contributions that favor membrane asymmetry, the membrane will remain nearly flat upon single BAR dimer adsorption, relative to the undulation expected from thermal fluctuations. Thus, we conclude that the N-helix insertions have a critical mechanistic role in the local perturbation and curving of the membrane, which is then stabilized by the electrostatic interaction with the BAR dimer. We discuss how these results can be used to estimate the tendency of BARs to bend membranes in terms of a spatially nonisotropic spontaneous curvature. PMID:19751667

  3. Crystalline particle packings on constant mean curvature (Delaunay) surfaces

    NASA Astrophysics Data System (ADS)

    Bendito, Enrique; Bowick, Mark J.; Medina, Agustin; Yao, Zhenwei

    2013-07-01

    We investigate the structure of crystalline particle arrays on constant mean curvature (CMC) surfaces of revolution. Such curved crystals have been realized physically by creating charge-stabilized colloidal arrays on liquid capillary bridges. CMC surfaces of revolution, classified by Delaunay in 1841, include the 2-sphere, the cylinder, the vanishing mean curvature catenoid (a minimal surface), and the richer and less investigated unduloid and nodoid. We determine numerically candidate ground-state configurations for 1000 pointlike particles interacting with a pairwise-repulsive 1/r3 potential, with distance r measured in three-dimensional Euclidean space R3. We mimic stretching of capillary bridges by determining the equilibrium configurations of particles arrayed on a sequence of Delaunay surfaces obtained by increasing or decreasing the height at constant volume starting from a given initial surface, either a fat cylinder or a square cylinder. In this case, the stretching process takes one through a complicated sequence of Delaunay surfaces, each with different geometrical parameters, including the aspect ratio, mean curvature, and maximal Gaussian curvature. Unduloids, catenoids, and nodoids all appear in this process. Defect motifs in the ground state evolve from dislocations at the boundary to dislocations in the interior to pleats and scars in the interior and then isolated sevenfold disclinations in the interior as the capillary bridge narrows at the waist (equator) and the maximal (negative) Gaussian curvature grows. We also check theoretical predictions that the isolated disclinations are present in the ground state when the surface contains a geodesic disk with integrated Gaussian curvature exceeding -π/3. Finally, we explore minimal energy configurations on sets of slices of a given Delaunay surface, and we obtain configurations and defect motifs consistent with those seen in stretching.

  4. Curvature of the spectral energy distributions of blazars

    SciTech Connect

    Chen, Liang

    2014-06-20

    In this paper, spectral energy distributions (SED) of both synchrotron and inverse Compton (IC) components of a sample of Fermi bright blazars are fitted by a log-parabolic law. The second-degree term of the log parabola measures the curvature of an SED. We find a statistically significant correlation between the synchrotron peak frequency and its curvature. This result is in agreement with the theoretical prediction and confirms previous studies that dealt with a single source with observations at various epochs or a small sample. If a broken power law is employed to fit the SED, the difference between the two spectral indices (i.e., |α{sub 2} – α{sub 1}|) can be considered a 'surrogate' of the SED curvature. We collect data from the literature and find a correlation between the synchrotron peak frequency and the spectral difference. We do not find a significant correlation between the IC peak frequency and its curvature, which may be caused by a complicated seed photon field. It is also found that the synchrotron curvatures are on average larger than those of IC curvatures, and there is no correlation between these two parameters. As suggested by previous works, both the log-parabolic law of the SED and the above correlation can be explained by statistical and/or stochastic particle accelerations. Based on a comparison of the slops of the correlation, our result seems to favor stochastic acceleration mechanisms and emission processes. Additional evidence, including SED modeling, particle acceleration simulation, and comparisons between some predictions and empirical relations/correlations, also seems to support the idea that the electron energy distribution (and/or synchrotron SED) may be log-parabolic.

  5. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  6. [Osteoporosis and beverage preference].

    PubMed

    Tsukahara, Noriko; Ezawa, Ikuko

    2005-02-01

    Opinions regarding beverage preference ingestion and osteoporosis differ with cultural background as well as by eating habits, food customs and other lifestyle factors in addition to climate, differences in each country and area. Furthermore, it is conceivable that it differs with or depends on life stages of the individual. Currently, beverage preferences are enjoyed as part of the eating habits in, daily life considered an indispensable food to be enjoyed thoroughly. Therefore, it may be important to drink a beverage preferences in moderate but not to indulge in excessive ingestion in order to build a healthy lifestyle contributing to both a sound mind and a sound body at each individual life stage.

  7. Probing Persistence in DNA Curvature Properties with Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Moukhtar, J.; Fontaine, E.; Faivre-Moskalenko, C.; Arneodo, A.

    2007-04-01

    We elaborate on a mean-field extension of the wormlike chain model that accounts for the presence of long-range correlations (LRC) in the intrinsic curvature disorder of genomic DNA, the stronger the LRC, the smaller the persistence length. The comparison of atomic force microscopy imaging of straight, uncorrelated virus and correlated human DNA fragments with DNA simulations confirms that the observed decrease in persistence length for human DNA more likely results from a sequence-induced large-scale intrinsic curvature than from some increased flexibility.

  8. Detonation wave velocity and curvature of brass encased PBXN-111

    NASA Astrophysics Data System (ADS)

    Forbes, J. W.; Lemar, E. R.

    1996-05-01

    Detonation velocities and wave front curvatures were measured for PBXN-111 charges encased in 5 mm thick brass tubes. In all the experiments (charge diameters from 19 to 47 mm) the brass case affected the detonation properties of PBXN-111. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the unconfined failure diameter. The radii of curvature of the detonation waves at the center of the wave fronts ranged from 52 to 141 mm for charge diameters of 25 to 47 mm. The angles between the detonation wave fronts and the brass/charge interfaces were between 72 and 74 degrees.

  9. Subaperture method for aspheric surface metrology using curvature data

    NASA Astrophysics Data System (ADS)

    Lee, SeongWon; Jeon, WooKyung; Park, TaeJin; Kim, ByoungChang; Kim, GeonHee; Hyun, SangWon; Kim, IJong; Kim, Seunghyun; Kim, ChangKyu; Lee, HyungSuk

    2016-04-01

    We present a profilometry for measuring aspheric surface, which determines the curvature from the sub-aperture topography along two orthogonal directions and then reconstructs the entire surface profile from the measured curvature data. The entire surface was divided into a number of sub-apertures with overlapping zones. Each sub-aperture was measured using white-light scanning interferometry to avoid any optical alignment error along an optical axis. Simulation studies are also presented based on the mathematical model. The proposed mathematical model was also experimentally tested on freeform surfaces using white-light scanning interferometry under deveolpment.

  10. Effect of curvature on the backscattering from leaves

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.

    1988-01-01

    Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.

  11. Effect of curvature on the backscattering from a leaf

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.

    1988-01-01

    Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross-section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.

  12. Electron energy transport and magnetic curvature driven modes

    SciTech Connect

    Coppi, B.; Tang, W.M.

    1984-10-01

    A transport coefficient for anomalous electron thermal conduction is constructed on the basis of the so-called Principle of Profile Consistency. It is assumed that the relevant modes in plasma where a substantial fraction of the electron population is magnetically trapped produce magnetic reconnection at a microscopic level and are driven by the combined effects of the plasma pressure gradient and the magnetic field curvature. Consequently, the scaling for the electron energy confinement time exhibits a strongly favorable dependence on the radius of magnetic curvature.

  13. Nanoscale assembly in biological systems: from neuronal cytoskeletal proteins to curvature stabilizing lipids.

    PubMed

    Safinya, Cyrus R; Raviv, Uri; Needleman, Daniel J; Zidovska, Alexandra; Choi, Myung Chul; Ojeda-Lopez, Miguel A; Ewert, Kai K; Li, Youli; Miller, Herbert P; Quispe, Joel; Carragher, Bridget; Potter, Clinton S; Kim, Mahn Won; Feinstein, Stuart C; Wilson, Leslie

    2011-05-24

    The review will describe experiments inspired by the rich variety of bundles and networks of interacting microtubules (MT), neurofilaments, and filamentous-actin in neurons where the nature of the interactions, structures, and structure-function correlations remain poorly understood. We describe how three-dimensional (3D) MT bundles and 2D MT bundles may assemble, in cell free systems in the presence of counter-ions, revealing structures not predicted by polyelectrolyte theories. Interestingly, experiments reveal that the neuronal protein tau, an abundant MT-associated-protein in axons, modulates the MT diameter providing insight for the control of geometric parameters in bio- nanotechnology. In another set of experiments we describe lipid-protein-nanotubes, and lipid nano-tubes and rods, resulting from membrane shape evolution processes involving protein templates and curvature stabilizing lipids. Similar membrane shape changes, occurring in cells for the purpose of specific functions, are induced by interactions between membranes and proteins. The biological materials systems described have applications in bio-nanotechnology.

  14. Membrane-mediated interactions measured using membrane domains.

    PubMed

    Semrau, Stefan; Idema, Timon; Schmidt, Thomas; Storm, Cornelis

    2009-06-17

    Cell membrane organization is the result of the collective effect of many driving forces. Several of these, such as electrostatic and van der Waals forces, have been identified and studied in detail. In this article, we investigate and quantify another force, the interaction between inclusions via deformations of the membrane shape. For electrically neutral systems, this interaction is the dominant organizing force. As a model system to study membrane-mediated interactions, we use phase-separated biomimetic vesicles that exhibit coexistence of liquid-ordered and liquid-disordered lipid domains. The membrane-mediated interactions between these domains lead to a rich variety of effects, including the creation of long-range order and the setting of a preferred domain size. Our findings also apply to the interaction of membrane protein patches, which induce similar membrane shape deformations and hence experience similar interactions.

  15. Wall extensibility and gravitropic curvature of sunflower hypocotyls: correlation between timing of curvature and changes in extensibility

    NASA Technical Reports Server (NTRS)

    Bagshaw, S. L.; Cleland, R. E.

    1990-01-01

    Gravitropic curvature results from unequal growth rates on the upper and lower sides of horizontal stems. These unequal growth rates could be due to differences in wall extensibility between the two sides. To test this, the time course of curvature of horizontal sunflower (Helianthus annuus L.) hypocotyls was determined and compared with the time courses of changes in Instron-measured wall extensibility (PEx) of the upper and lower epidermal layers. As gravicurvature developed, so did the difference in PEx between the upper and lower epidermis. The enhanced growth rate on the lower side during the period of maximum increase in curvature was matched by PEx values greater than those of the vertical control, while the inhibited growth rate on the upper side was accompanied by PEx values below that of the control. The close correlation between changes in growth rates and alterations in PEx demonstrates that changes in wall extensibility play a major role in controlling gravicurvature.

  16. Preference for newspaper size.

    PubMed

    Tsang, Steve N H; Hoffmann, Errol R; Chan, Alan H S

    2014-05-01

    The past few years has seen a change in the size of newspapers, with publishers moving to a smaller size format. Five 'standard' newspaper sizes are used in different countries: Broadsheet, Rhensch, Tabloid, Tall Tabloid and Berliner. These papers vary in both width and height of pages and hence there are implications for human reading comfort, which may be dependent on reading location such as on a lounge chair or on a train. Experiments were carried out to determine preferences for the different sizes and to relate these preferences to the geometric characteristics of the newspapers. For both comfortable and cramped/uncomfortable reading conditions, the rank order of preference for paper types was, from least to most-preferred, Broadsheet, Rhensch, Berliner, Tall Tabloid and Tabloid. Preferences were much stronger when determined in cramped/uncomfortable reading conditions, where most comparisons were significantly different. There was good correlation between participant ratings on several scales and preference, where most factors were related to comfort of holding and controlling the paper. PMID:23987982

  17. Preference for newspaper size.

    PubMed

    Tsang, Steve N H; Hoffmann, Errol R; Chan, Alan H S

    2014-05-01

    The past few years has seen a change in the size of newspapers, with publishers moving to a smaller size format. Five 'standard' newspaper sizes are used in different countries: Broadsheet, Rhensch, Tabloid, Tall Tabloid and Berliner. These papers vary in both width and height of pages and hence there are implications for human reading comfort, which may be dependent on reading location such as on a lounge chair or on a train. Experiments were carried out to determine preferences for the different sizes and to relate these preferences to the geometric characteristics of the newspapers. For both comfortable and cramped/uncomfortable reading conditions, the rank order of preference for paper types was, from least to most-preferred, Broadsheet, Rhensch, Berliner, Tall Tabloid and Tabloid. Preferences were much stronger when determined in cramped/uncomfortable reading conditions, where most comparisons were significantly different. There was good correlation between participant ratings on several scales and preference, where most factors were related to comfort of holding and controlling the paper.

  18. Equilibrium models of coronal loops that involve curvature and buoyancy

    SciTech Connect

    Hindman, Bradley W.; Jain, Rekha

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  19. Determination of light beam curvature in a rotating Luneburg lens

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Bazleva, D. D.; Tereshin, A. A.; Gladysheva, T. M.

    2016-09-01

    We have determined the curvature of a beam of coherent electromagnetic radiation and its angular and linear deviation in a rotating microsatellite representing a Luneburg lens in the optical segment of accuracy augmentation for new-generation global navigation satellite systems.

  20. Symmetric curvature descriptors for label-free analysis of DNA

    NASA Astrophysics Data System (ADS)

    Buzio, Renato; Repetto, Luca; Giacopelli, Francesca; Ravazzolo, Roberto; Valbusa, Ugo

    2014-09-01

    High-resolution microscopy techniques such as electron microscopy, scanning tunnelling microscopy and atomic force microscopy represent well-established, powerful tools for the structural characterization of adsorbed DNA molecules at the nanoscale. Notably, the analysis of DNA contours allows mapping intrinsic curvature and flexibility along the molecular backbone. This is particularly suited to address the impact of the base-pairs sequence on the local conformation of the strands and plays a pivotal role for investigations relating the inherent DNA shape and flexibility to other functional properties. Here, we introduce novel chain descriptors aimed to characterize the local intrinsic curvature and flexibility of adsorbed DNA molecules with unknown orientation. They consist of stochastic functions that couple the curvatures of two nanosized segments, symmetrically placed on the DNA contour. We show that the fine mapping of the ensemble-averaged functions along the molecular backbone generates characteristic patterns of variation that highlight all pairs of tracts with large intrinsic curvature or enhanced flexibility. We demonstrate the practical applicability of the method for DNA chains imaged by atomic force microscopy. Our approach paves the way for the label-free comparative analysis of duplexes, aimed to detect nanoscale conformational changes of physical or biological relevance in large sample numbers.

  1. The influence of curvature on film cooling performance

    NASA Astrophysics Data System (ADS)

    Schwarz, S. G.; Goldstein, R. J.; Eckert, E. R. G.

    1990-06-01

    The effects of injection rate and strength of curvature on film cooling performance of gas injected through a row of holes on a convex surface is studied. Comparisons are made to film cooling of concave and flat surfaces. Three different relative strengths of curvature (ratio of radius of curvature to radius of injection hole), two density ratios (0.95 and 2.0), and a wide range of blowing rates (0.3 to 2.7) are considered. A foreign gas injection technique (mass transfer analogy) is used. The strength of curvature was controlled by varying the injection hole diameter. At low blowing rates, film cooling is more effective on the convex surface than on a flat or a concave surface. The cross stream pressure gradient present in curved flows tends to push the jet into the convex wall. As the injection rate is increased, normal and tangential jet momentum promote lift-off from the convex surface, thereby lowering performance. In contrast, previous studies show that a concave surface, tangential jet momentum, flow instabilities, and blockage improve performance on a concave surface as blowing rate is increased.

  2. Directable weathering of concave rock using curvature estimation.

    PubMed

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  3. Ultrasoft Electronics for Hyperelastic Strain, Pressure, and Direct Curvature Sensing

    NASA Astrophysics Data System (ADS)

    Majidi, Carmel; Kramer, Rebecca; Wood, Robert

    2011-03-01

    Progress in soft robotics, wearable computing, and programmable matter demands a new class of ultrasoft electronics for tactile control, contact detection, and deformation mapping. This next generation of sensors will remain electrically functional under extreme deformation without influencing the natural mechanics of the host system. Ultrasoft strain and pressure sensing has previously been demonstrated with elastomer sheets (eg. PDMS, silicone rubber) embedded with microchannels of conductive liquid (mercury, eGaIn). Building on these efforts, we introduce a novel method for direct curvature sensing that registers the location and intensity of surface curvature. An elastomer sheet is embedded with micropatterned cavities and microchannels of conductive liquid. Bending the elastomer or placing it on a curved surface leads to a change in channel cross-section and a corresponding change in its electrical resistance. In contrast to conventional methods of curvature sensing, this approach does not depend on semi-rigid components or differential strain measurement. Direct curvature sensing completes the portfolio of sensing elements required to completely map hyperelastic deformation for future soft robotics and computing. NSF MRSEC DMR-0820484.

  4. Effect of Asymmetric Auxin Application on Helianthus Hypocotyl Curvature 1

    PubMed Central

    Migliaccio, Fernando; Rayle, David L.

    1989-01-01

    Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution. PMID:11537460

  5. Frustration and curvature - Glasses and the cholesteric blue phase

    NASA Technical Reports Server (NTRS)

    Sethna, J. P.

    1983-01-01

    An analogy is drawn between continuum elastic theories of the blue phase of cholesteric liquid crystals and recent theories of frustration in configurational glasses. Both involve the introduction of a lattice of disclination lines to relieve frustration; the frustration is due to an intrinsic curvature in the natural form of parallel transport. A continuum theory of configurational glasses is proposed.

  6. Wormhole geometries supported by a nonminimal curvature-matter coupling

    SciTech Connect

    Garcia, Nadiezhda Montelongo; Lobo, Francisco S. N.

    2010-11-15

    Wormhole geometries in curvature-matter coupled modified gravity are explored, by considering an explicit nonminimal coupling between an arbitrary function of the scalar curvature, R, and the Lagrangian density of matter. It is the effective stress-energy tensor containing the coupling between matter and the higher order curvature derivatives that is responsible for the null energy condition violation, and consequently for supporting the respective wormhole geometries. The general restrictions imposed by the null energy condition violation are presented in the presence of a nonminimal R-matter coupling. Furthermore, obtaining exact solutions to the gravitational field equations is extremely difficult due to the nonlinearity of the equations, although the problem is mathematically well defined. Thus, we outline several approaches for finding wormhole solutions, and deduce an exact solution by considering a linear R nonmiminal curvature-matter coupling and by considering an explicit monotonically decreasing function for the energy density. Although it is difficult to find exact solutions of matter threading the wormhole satisfying the energy conditions at the throat, an exact solution is found where the nonminimal coupling does indeed minimize the violation of the null energy condition of normal matter at the throat.

  7. Compound Schmidt telescope designs with nonzero Petzval curvatures.

    PubMed

    Sigler, R D

    1975-09-01

    A variety of aplanatic and anastigmatic Schmidt Cassegrain and Schmidt Gregorian telescope designs with nonzero Petzval curvatures are investigated. Relaxing the Petzval constraint permits the development of high performance photo/visual instruments which are capable of diffraction limited imaging over fields of view of 1-2 degrees . PMID:20155004

  8. Simple partitions of a hyperbolic plane of positive curvature

    SciTech Connect

    Romakina, Lyudmila N

    2012-09-30

    We construct special monohedral isotropic partitions with symmetries of the hyperbolic plane H of positive curvature with a simple 4-contour as a cell. An analogue of mosaic in these partitions called a tiling is introduced. Also we consider some fractal tilings. The existence of band tilings in each homological series with code (m, n) is proved. Bibliography: 14 titles.

  9. Negative voltage bandgap reference with multilevel curvature compensation technique

    NASA Astrophysics Data System (ADS)

    Xi, Liu; Qian, Liu; Xiaoshi, Jin; Yongrui, Zhao; Lee, Jong-Ho

    2016-05-01

    A novel high-order curvature compensation negative voltage bandgap reference (NBGR) based on a novel multilevel compensation technique is introduced. Employing an exponential curvature compensation (ECC) term with many high order terms in itself, in a lower temperature range (TR) and a multilevel curvature compensation (MLCC) term in a higher TR, a flattened and better effect of curvature compensation over the TR of 165 °C (‑40 to 125 °C) is realised. The MLCC circuit adds two convex curves by using two sub-threshold operated NMOS. The proposed NBGR implemented in the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm BCD technology demonstrates an accurate voltage of ‑1.183 V with a temperature coefficient (TC) as low as 2.45 ppm/°C over the TR of 165 °C at a ‑5.0 V power supply; the line regulation is 3 mV/V from a ‑5 to ‑2 V supply voltage. The active area of the presented NBGR is 370 × 180 μm2. Project supported by the Fund of Liaoning Province Education Department (No. L2013045).

  10. Effect of asymmetric auxin application on Helianthus hypocotyl curvature

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Rayle, D. L.

    1989-01-01

    Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution.

  11. Curvature and torsion estimation for coronary-artery motion analysis

    NASA Astrophysics Data System (ADS)

    Medina, Ruben; Wahle, Andreas; Olszewski, Mark E.; Sonka, Milan

    2004-04-01

    The dynamics of curvature and torsion are important for the geometric description of arteries and for the distribution of accumulating plaque. In this research, two methods for estimating curvature and torsion are analyzed with respect to their accuracy. The first method is based on estimating the curvature and torsion of the artery centerline using the Fourier transform. Since the centerline always represents an open curve, extensions ensuring a minimal spectral energy are added on both ends to obtain a closed curve suitable for Fourier analysis. The second method has been previously used for analyzing the motion of coronary arteries and is based on the least squares fitting of a cubic polynomial to the centerline of the artery. Validation is performed using two mathematical, time-varying phantoms as well as 4-D (3-D plus time) in-vivo data of coronary arteries reconstructed by fusion of biplane angiograms and intravascular ultrasound images. Results show that both methods are accurate for estimating curvature and torsion, and that both methods have average errors below 2.15%.

  12. Geometric optics radome analysis wall incorporating effects of wall curvature

    NASA Astrophysics Data System (ADS)

    Kozakoff, Dennis J.

    1993-07-01

    In this research, a principal unmodeled error contributor in radome analysis is identified as the local plane approximation at the ray intercept point. An improved approach to modeling and computing the effects of the radome wall was developed which improves the radome wall transmission wall analysis in three respects: use of surface integration, utilization of a divergence factor (DF) to account for wall curvature, and incorporation of the effects of multiple refraction (MR). Modeling an incident plane wave on an external reference plane as an ensemble of Huygen's sources, geometric optics is used to trace the fields from the reference plane through the radome wall to a receiving monopulse antenna, where the wall transmissions on each ray are collected. The fact that the integration of a bundle of rays through the radome wall, as opposed to a single ray, more densely samples the curvature variation results in a more robust model. A DF derived from Snell's law for spherical shells accounts for the local wall curvature at the ray intercept point. To validate the approach, a microwave measurement setup was assembled around a network analyzer. Swept frequency data were obtained for similar monolithic wall dielectric panels but with different wall curvatures. Comparisons were then with measured data and the predictions of the model herein.

  13. Analysis of models for curvature driven motion of interfaces

    NASA Astrophysics Data System (ADS)

    Swartz, Drew E.

    Interfacial energies frequently appear in models arising in materials science and engineering. To dissipate energy in these systems, the interfaces will often move by a curvature dependent velocity. The present work details the mathematical analysis of some models for curvature dependent motion of interfaces. In particular we focus on two types, thresholding schemes and phase field models. With regard to thresholding schemes, we give a new proof of the convergence of the Merriman-Bence-Osher thresholding algorithm to motion by mean curvature. This new proof does not rely on the scheme satisfying a comparison principle. The technique shows promise in proving the convergence of thresholding schemes for more general motions, such as fourth-order motions and motions of higher codimension interfaces. The application of the proof technique to these more general schemes is discussed, along with rigorous consistency estimates. With regard to phase-field models, we examine the L 2-gradient flow of a second order gradient model for phase transitions, introduced by Fonseca and Mantegazza. In the case of radial symmetry we demonstrate that the diffuse interfacial dynamics converge to motion by mean curvature as the width of the interface decreases to zero. This is in accordance with the first-order Allen-Cahn model for phase transitions. But unlike the Allen-Cahn model, the gradient flow for the Fonseca-Mantegazza model is a fourth-order parabolic PDE. This creates new and novel difficulties in its analysis.

  14. On the Surprising Salience of Curvature in Grouping by Proximity

    ERIC Educational Resources Information Center

    Strother, Lars; Kubovy, Michael

    2006-01-01

    The authors conducted 3 experiments to explore the roles of curvature, density, and relative proximity in the perceptual organization of ambiguous dot patterns. To this end, they developed a new family of regular dot patterns that tend to be perceptually grouped into parallel contours, dot-sampled structured grids (DSGs). DSGs are similar to the…

  15. Focus retrocollimated interferometry for long-radius-of-curvature measurement

    NASA Astrophysics Data System (ADS)

    Xiang, Yang

    2001-12-01

    Focus retrocollimated interferometry is described for measuring long radius of curvature (>1 m), and achievable accuracy is discussed. It is shown that this method can be applied to both concave and convex spherical surfaces and can provide measurement to accuracy of 0.01-0.1%.

  16. Compound Schmidt telescope designs with nonzero Petzval curvatures.

    PubMed

    Sigler, R D

    1975-09-01

    A variety of aplanatic and anastigmatic Schmidt Cassegrain and Schmidt Gregorian telescope designs with nonzero Petzval curvatures are investigated. Relaxing the Petzval constraint permits the development of high performance photo/visual instruments which are capable of diffraction limited imaging over fields of view of 1-2 degrees .

  17. Effect of track asymmetry and curvature on shingle writing scheme

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Shaoping; Bai, Daniel; Mendez, Hector; Pan, Tao; Han, Dehua; Mao, Sining

    2011-04-01

    Written transition curvature in perpendicular magnetic recording is generally understood to result in increased transition jitter noise and degraded signal to noise ratio or byte error rate (BER) performance. For the shingle writing scheme, asymmetry or curvature in written tracks is considered inherent due to the erasure and track edge writing characteristics. It is proposed that such a track asymmetry is more prominent at high track density/smaller track pitch recording conditions. In this report we present spin stand experimental results to study the effect of the possible track asymmetry or curvature by shingle writing and reading back in different skews. By comparing shingle writing BER bathtub profiles in different writing skew conditions 0°, +/-2°, +/-4°, +/-6°, the effect of varying shingle track asymmetry and curvature is analyzed via subsequent skewed reading process. The shingle writing BER bathtub profiles as well as the read back amplitude cross track profile are generally symmetric upon one sided erasure at different track pitches. We found that the 0° skew writing and reading process provides both the maximum BER and amplitude.

  18. The flow curvature method applied to canard explosion

    NASA Astrophysics Data System (ADS)

    Ginoux, Jean-Marc; Llibre, Jaume

    2011-11-01

    The aim of this work is to establish that the bifurcation parameter value leading to a canard explosion in dimension 2 obtained by the so-called geometric singular perturbation method can be found according to the flow curvature method. This result will be then exemplified with the classical Van der Pol oscillator.

  19. Intracellular magnetophoresis of amyloplasts and induction of root curvature

    NASA Technical Reports Server (NTRS)

    Kuznetsov, O. A.; Hasenstein, K. H.

    1996-01-01

    High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.

  20. Quasi-Maxwell interpretation of the spin-curvature coupling

    NASA Astrophysics Data System (ADS)

    Natário, José

    2007-09-01

    We write the Mathisson-Papapetrou equations of motion for a spinning particle in a stationary spacetime using the quasi-Maxwell formalism and give an interpretation of the coupling between spin and curvature. The formalism is then used to compute equilibrium positions for spinning particles in the NUT spacetime.

  1. Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy

    NASA Astrophysics Data System (ADS)

    Hindman, Bradley W.; Jain, Rekha

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  2. Spherical nanoparticle supported lipid bilayers for the structural study of membrane geometry-sensitive molecules.

    PubMed

    Fu, Riqiang; Gill, Richard L; Kim, Edward Y; Briley, Nicole E; Tyndall, Erin R; Xu, Jie; Li, Conggang; Ramamurthi, Kumaran S; Flanagan, John M; Tian, Fang

    2015-11-11

    Many essential cellular processes including endocytosis and vesicle trafficking require alteration of membrane geometry. These changes are usually mediated by proteins that can sense and/or induce membrane curvature. Using spherical nanoparticle supported lipid bilayers (SSLBs), we characterize how SpoVM, a bacterial development factor, interacts with differently curved membranes by magic angle spinning solid-state NMR. Our results demonstrate that SSLBs are an effective system for structural and topological studies of membrane geometry-sensitive molecules.

  3. Mechano-capacitive properties of polarized membranes.

    PubMed

    Mosgaard, Lars D; Zecchi, Karis A; Heimburg, Thomas

    2015-10-28

    Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is quadratic in voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However, this is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called 'flexoelectricity'. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. Here, we introduce a generalized theoretical framework, that treats capacitance, polarization, flexoelectricity, piezoelectricity and thermoelectricity in the same language. We show applications to electrostriction, membrane permeability and piezoelectricity and thermoelectricity close to melting transitions, where such effects are especially pronounced. PMID:26324950

  4. Stimulation of root elongation and curvature by calcium.

    PubMed

    Takahashi, H; Scott, T K; Suge, H

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms. PMID:11537880

  5. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  6. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  7. Membrane stabilizer

    DOEpatents

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  8. Electrokinetic effects near a membrane

    NASA Astrophysics Data System (ADS)

    Lacoste, David

    2009-03-01

    We discuss the electrostatic and electrokinetic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., 77, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; we predict similar ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions.

  9. The preference for potential.

    PubMed

    Tormala, Zakary L; Jia, Jayson S; Norton, Michael I

    2012-10-01

    When people seek to impress others, they often do so by highlighting individual achievements. Despite the intuitive appeal of this strategy, we demonstrate that people often prefer potential rather than achievement when evaluating others. Indeed, compared with references to achievement (e.g., "this person has won an award for his work"), references to potential (e.g., "this person could win an award for his work") appear to stimulate greater interest and processing, which can translate into more favorable reactions. This tendency creates a phenomenon whereby the potential to be good at something can be preferred over actually being good at that very same thing. We document this preference for potential in laboratory and field experiments, using targets ranging from athletes to comedians to graduate school applicants and measures ranging from salary allocations to online ad clicks to admission decisions.

  10. Son preference in Vietnam.

    PubMed

    Haughton, J; Haughton, D

    1995-01-01

    This article assesses the strength of son preference in Vietnam, as reflected in fertility behavior. It formulates and estimates a proportional hazards model applied to birth intervals, and a contraceptive prevalence model, using household survey data from 2,636 ever-married women aged 15-49 with at least one living child who were interviewed for the Vietnam Living Standards Survey 1992-1993. Son preference is found to be strong by world standards, but nevertheless, it has a minor effect on fertility; in its absence, the total fertility rate would fall by roughly 10 percent from the current level of about 3.2 children per woman of reproductive age.

  11. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  12. Physical basis of some membrane shaping mechanisms.

    PubMed

    Simunovic, Mijo; Prévost, Coline; Callan-Jones, Andrew; Bassereau, Patricia

    2016-07-28

    In vesicular transport pathways, membrane proteins and lipids are internalized, externalized or transported within cells, not by bulk diffusion of single molecules, but embedded in the membrane of small vesicles or thin tubules. The formation of these 'transport carriers' follows sequential events: membrane bending, fission from the donor compartment, transport and eventually fusion with the acceptor membrane. A similar sequence is involved during the internalization of drug or gene carriers inside cells. These membrane-shaping events are generally mediated by proteins binding to membranes. The mechanisms behind these biological processes are actively studied both in the context of cell biology and biophysics. Bin/amphiphysin/Rvs (BAR) domain proteins are ideally suited for illustrating how simple soft matter principles can account for membrane deformation by proteins. We review here some experimental methods and corresponding theoretical models to measure how these proteins affect the mechanics and the shape of membranes. In more detail, we show how an experimental method employing optical tweezers to pull a tube from a giant vesicle may give important quantitative insights into the mechanism by which proteins sense and generate membrane curvature and the mechanism of membrane scission.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.

  13. Physical basis of some membrane shaping mechanisms.

    PubMed

    Simunovic, Mijo; Prévost, Coline; Callan-Jones, Andrew; Bassereau, Patricia

    2016-07-28

    In vesicular transport pathways, membrane proteins and lipids are internalized, externalized or transported within cells, not by bulk diffusion of single molecules, but embedded in the membrane of small vesicles or thin tubules. The formation of these 'transport carriers' follows sequential events: membrane bending, fission from the donor compartment, transport and eventually fusion with the acceptor membrane. A similar sequence is involved during the internalization of drug or gene carriers inside cells. These membrane-shaping events are generally mediated by proteins binding to membranes. The mechanisms behind these biological processes are actively studied both in the context of cell biology and biophysics. Bin/amphiphysin/Rvs (BAR) domain proteins are ideally suited for illustrating how simple soft matter principles can account for membrane deformation by proteins. We review here some experimental methods and corresponding theoretical models to measure how these proteins affect the mechanics and the shape of membranes. In more detail, we show how an experimental method employing optical tweezers to pull a tube from a giant vesicle may give important quantitative insights into the mechanism by which proteins sense and generate membrane curvature and the mechanism of membrane scission.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298443

  14. Inservice Education Preferences of Teachers.

    ERIC Educational Resources Information Center

    Schreiber, Fred O.; Anderson, Robert L.

    A teacher inservice preference questionnaire was used to identify, categorize, and compare inservice preferences of educators, and findings indicated that workshops were ranked first as the inservice activity most preferred with conventions and professional conferences least preferred. Other categorical analysis indicated that professional…

  15. Cognitive Preferences and Ethnicity.

    ERIC Educational Resources Information Center

    O'Donnell, William J.; O'Donnell, Teresa Flores

    This document reports on a study into the relationships between cognitive preferences, achievement, and ethnicity of first year algebra students. The sample consisted of 175 students from two high schools in the Denver (Colorado) metropolitan area. The two schools were chosen because of the diversity of ethnic groups in the student populations.…

  16. Membrane trafficking: decoding vesicle identity with contrasting chemistries.

    PubMed

    Frost, Adam

    2011-10-11

    Proteins involved in membrane traffic must distinguish between different classes of vesicles. New work now shows that α-synuclein and ALPS motifs represent two extreme types of amphipathic helix that are tuned to detect both the curvature of transport vesicles as well as their bulk lipid content.

  17. Separation of metals by supported liquid membranes

    SciTech Connect

    Takigawa, D.Y.

    1990-12-31

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  18. Separation of components in lipid membranes induced by shape transformation

    NASA Astrophysics Data System (ADS)

    Góźdź, W. T.; Bobrovska, N.; Ciach, A.

    2012-07-01

    Vesicles composed of a two component membrane with each component characterized by different spontaneous curvature are investigated by minimization of the free energy consisting of Helfrich elastic energy and entropy of mixing. The results show that mixing and demixing of membrane components can be induced by elongating a vesicle or changing its volume, if one of the components forms a complex with macromolecules on the outer monolayer. The influence of elastic coefficients on the separation of components is also examined.

  19. Membrane tension and membrane fusion.

    PubMed

    Kozlov, Michael M; Chernomordik, Leonid V

    2015-08-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually large membrane tensions or, alternatively, low line tensions of the pore resulting from accumulation in the pore rim of membrane-bending proteins. Increase of the inter-membrane distance facilitates the reaction. PMID:26282924

  20. Membrane Tension Inhibits Deformation by Coat Proteins in Clathrin-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Hassinger, Julian; Drubin, David; Oster, George; Rangamani, Padmini

    2016-02-01

    In clathrin-mediated endocytosis (CME), clathrin and various adaptor proteins coat a patch of the plasma membrane, which is reshaped to form a budded vesicle. Experimental studies have demonstrated that elevated membrane tension can inhibit bud formation by a clathrin coat. In this study, we investigate the impact of membrane tension on the mechanics of membrane budding by simulating clathrin coats that either grow in area or progressively induce greater curvature. At low membrane tension, progressively increasing the area of a curvature-generating coat causes the membrane to smoothly evolve from a flat to budded morphology, whereas the membrane remains essentially flat at high membrane tensions. Interestingly, at physiologically relevant, intermediate membrane tensions, the shape evolution of the membrane undergoes a snapthrough instability in which increasing coat area causes the membrane to "snap" from an open, U-shaped bud to a closed, $\\Omega$-shaped bud. This instability is accompanied by a large energy barrier, which could cause a developing endocytic pit to stall if the binding energy of additional coat is insufficient to overcome this barrier. Similar results were found for a coat of constant area in which the spontaneous curvature progressively increases. Additionally, a pulling force on the bud, simulating a force from actin polymerization, is sufficient to drive a transition from an open to closed bud, overcoming the energy barrier opposing this transition.

  1. Detonation wave velocity and curvature of brass encased PBXN-111

    SciTech Connect

    Forbes, J.W.; Lemar, E.R.

    1996-05-01

    Detonation velocities and wave front curvatures were measured for PBXN-111 charges encased in 5 mm thick brass tubes. In all the experiments (charge diameters from 19 to 47 mm) the brass case affected the detonation properties of PBXN-111. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the unconfined failure diameter. The radii of curvature of the detonation waves at the center of the wave fronts ranged from 52 to 141 mm for charge diameters of 25 to 47 mm. The angles between the detonation wave fronts and the brass/charge interfaces were between 72 and 74 degrees. {copyright} {ital 1996 American Institute of Physics.}

  2. Turbulent boundary layers with large streamline curvature effects

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1978-01-01

    It has been shown that turbulent flows are greatly affected by streamline curvature. In spite of this and the fact that curved shear flows are frequently encountered in engineering applications, the predictions of such flows are relatively less developed than the predictions of two-dimensional plane flows. Recently, various attempts were made by different investigators; however, their methods are only successful when the product of the boundary layer thickness to the local surface curvature is approximately 0.05. The present paper investigates the more general case where this product is in the range from 0.1 to 0.5. Results show that the calculated boundary-layer characteristics for arbitrary free stream conditions are in good agreement with measurements.

  3. Generating ekpyrotic curvature perturbations before the big bang

    SciTech Connect

    Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.

    2007-11-15

    We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n{sub s} tends to range from slightly blue to red, with 0.97

  4. Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors

    SciTech Connect

    Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.

    2011-01-31

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

  5. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Gogotsi, Yury G.; Yushin, Gleb; Portet, Cristelle

    2010-01-01

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

  6. DNA Origami with Complex Curvatures in Three-Dimensional Space

    SciTech Connect

    Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao

    2011-04-14

    We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.

  7. The role of gravity in leaf blade curvatures

    NASA Technical Reports Server (NTRS)

    Hayes, A. B.

    1984-01-01

    In the past year we have gained useful information on several aspects of leaf blade growth. The most important observations are as follows: The C(14)-1AA moves preferentially in a gravipositive dorsiventral direction through the blade. This movement is inhibited by inversion of the blade. The responding cells in leaf blade hyponasty are in the lower epidermis and bundle sheath cells. Two additional responses in the leaf were characterized. In addition to blade curvature, the leaf shows petiole curvature and changes in the liminal angle subtended by the pulvinus. Ethylene production was studied under a number of conditions. The blade, rather than the petiole or pulvinus, is the principal site of auxin-promoted ethylene synthesis. The effects of a variety of agents on the blade, including gibberellic acid, abscisic acid, vanadate, low pH buffers, and blue light were reviewed.

  8. Constructing Graphs over with Small Prescribed Mean-Curvature

    NASA Astrophysics Data System (ADS)

    Carley, Holly; Kiessling, Michael K.-H.

    2015-12-01

    In this paper nonlinear Hodge theory and Banach algebra estimates are employed to construct a convergent series expansion which solves the prescribed mean curvature equation for n-dimensional hypersurfaces in (+ sign) and (- sign) which are graphs of a smooth function , and whose mean curvature function H is α-Hölder continuous and integrable, with small norm. The radius of convergence is estimated explicitly from below. Our approach is inspired by, and applied to, the Maxwell-Born-Infeld theory of electromagnetism in , for which our method yields the first systematic way of explicitly computing the electrostatic potential for regular charge densities and small Born parameter, with explicit error estimates at any order of truncation of the series. In particular, our results level the ground for a controlled computation of Born-Infeld effects on the Hydrogen spectrum.

  9. Quantitative morphological characterization of bicontinuous Pickering emulsions via interfacial curvatures

    NASA Astrophysics Data System (ADS)

    Reeves, Matthew; Stratford, Kevin; Thijssen, Job H. J.

    Bicontinuous Pickering emulsions (bijels) are a physically interesting class of soft materials with many potential applications including catalysis, microfluidics and tissue engineering. They are created by arresting the spinodal decomposition of a partially-miscible liquid with a (jammed) layer of interfacial colloids. Porosity $L$ (average interfacial separation) of the bijel is controlled by varying the radius ($r$) and volume fraction ($\\phi$) of the colloids ($L \\propto r/\\phi$). However, to optimize the bijel structure with respect to other parameters, e.g. quench rate, characterizing by $L$ alone is insufficient. Hence, we have used confocal microscopy and X-ray CT to characterize a range of bijels in terms of local and area-averaged interfacial curvatures. In addition, the curvatures of bijels have been monitored as a function of time, which has revealed an intriguing evolution up to 60 minutes after bijel formation, contrary to previous understanding.

  10. On M-theory fourfold vacua with higher curvature terms

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Pugh, Tom G.; Weißenbacher, Matthias

    2015-04-01

    We study solutions to the eleven-dimensional supergravity action, including terms quartic and cubic in the Riemann curvature, that admit an eight-dimensional compact space. The internal background is found to be a conformally Kähler manifold with vanishing first Chern class. The metric solution, however, is non-Ricci-flat even when allowing for a conformal rescaling including the warp factor. This deviation is due to the possible non-harmonicity of the third Chern-form in the leading order Ricci-flat metric. We present a systematic derivation of the background solution by solving the Killing spinor conditions including higher curvature terms. These are translated into first-order differential equations for a globally defined real two-form and complex four-form on the fourfold. We comment on the supersymmetry properties of the described solutions.

  11. Control of repeat protein curvature by computational protein design

    PubMed Central

    Park, Keunwan; Shen, Betty W.; Parmeggiani, Fabio; Huang, Po-Ssu; Stoddard, Barry L.; Baker, David

    2014-01-01

    Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat protein scaffolds, and apply it to leucine rich repeat proteins. First, a set of self-compatible building block modules are designed that when polymerized each generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom designed shapes are generated by appropriately combining building block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat protein curvature. PMID:25580576

  12. On the breakdown of the curvature perturbation ζ during reheating

    NASA Astrophysics Data System (ADS)

    Tarman Algan, Merve; Kaya, Ali; Seyma Kutluk, Emine

    2015-04-01

    It is known that in single scalar field inflationary models the standard curvature perturbation ζ, which is supposedly conserved at superhorizon scales, diverges during reheating at times 0dot phi=, i.e. when the time derivative of the background inflaton field vanishes. This happens because the comoving gauge 0varphi=, where varphi denotes the inflaton perturbation, breaks down when 0dot phi=. The issue is usually bypassed by averaging out the inflaton oscillations but strictly speaking the evolution of ζ is ill posed mathematically. We solve this problem in the free theory by introducing a family of smooth gauges that still eliminates the inflaton fluctuation varphi in the Hamiltonian formalism and gives a well behaved curvature perturbation ζ, which is now rigorously conserved at superhorizon scales. At the linearized level, this conserved variable can be used to unambiguously propagate the inflationary perturbations from the end of inflation to subsequent epochs. We discuss the implications of our results for the inflationary predictions.

  13. Robust contour decomposition using a constant curvature criterion

    NASA Technical Reports Server (NTRS)

    Wuescher, Daniel M.; Boyer, Kim L.

    1991-01-01

    The problem of decomposing an extended boundary or contour into simple primitives is addressed with particular emphasis on Laplacian-of-Gaussian (LoG) zero-crossing contours. A technique is introduced for partitioning such contours into constant curvature segments. A nonlinear `blip' filter matched to the impairment signature of the curvature computation process, an overlapped voting scheme, and a sequential contiguous segment extraction mechanism are used. This technique is insensitive to reasonable changes in algorithm parameters and robust to noise and minor viewpoint-induced distortions in the contour shape, such as those encountered between stereo image pairs. The results vary smoothly with the data, and local perturbations induce only local changes in the result. Robustness and insensitivity are experimentally verified.

  14. Effect of nano-scale curvature on the intrinsic blood coagulation system.

    PubMed

    Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M

    2014-11-01

    The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation 'silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.

  15. Impact of local vessel curvature on the circumferential plaque distribution in coronary arteries

    NASA Astrophysics Data System (ADS)

    Wahle, Andreas; Medina, Ruben; Braddy, Kathleen C.; Fox, James M.; Brennan, Theresa M. H.; Lopez, John J.; Rossen, James D.; Sonka, Milan

    2003-05-01

    Plaque in native coronary arteries is hypothesized to accumulate more likely along the inner curvature of a vessel segment as compared to its outer curvature. This behavior is likely associated with differences in local shear stress, which tends to be lower on the inner bend of a curved vessel than on the outer bend. The reported in-vivo study evaluated how the circumferential plaque distribution depends on local vessel curvature in coronaries from a limited set of 12 patients. Geometrically correct models of the vessel segments were generated utilizing fusion between biplane angiography and intravascular ultrasound. The plaque thickness was derived from the 3-D borders of the lumen/plaque and media/adventitia interfaces. Within each frame, plaque thickness was classified into "below-average" and "above-average" regions. A local curvature index was defined for each point: A positive value indicates the "inner" curvature, a negative value the "outer" curvature, with the magnitude determined from differential geometry. In the majority of the examined vessels, regions of "below-average/outer-curvature" and "above-average/inner-curvature" combined outweighed the "below-average/inner-curvature" and "above-average/outer-curvature" regions. The ratio increased with the threshold to exclude lower-curvature regions, confirming the hypothesis that plaque is more likely to accumulate on the luminal surface along the inner curvature of the coronary segment.

  16. A three-dimensional validation of crack curvature in muscovite mica

    SciTech Connect

    J. C. Hill; J. W. Foulk III; P. A. Klein; E. P. Chen

    2001-01-07

    Experimental and computational efforts focused on characterizing crack tip curvature in muscovite mica. Wedge-driven cracks were propagated under monochromatic light. Micrographs verified the subtle curvature of the crack front near the free surface. A cohesive approach was employed to model mixed-mode fracture in a three-dimensional framework. Finite element calculations captured the crack curvature observed in experiment.

  17. CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION

    SciTech Connect

    Kaganovich, Alexander; Lyubarsky, Yuri

    2010-10-01

    The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.

  18. Global and local curvature in density functional theory

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.

    2016-08-01

    Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.

  19. Relative stability and local curvature analysis in carbon nanotori

    NASA Astrophysics Data System (ADS)

    Chuang, Chern; Guan, Jie; Witalka, David; Zhu, Zhen; Jin, Bih-Yaw; Tománek, David

    2015-04-01

    We introduce a concise formalism to characterize nanometer-sized tori based on carbon nanotubes and to determine their stability by combining ab initio density functional calculations with a continuum elasticity theory approach that requires only shape information. We find that the high strain energy in nanotori containing only hexagonal rings is significantly reduced in nanotori containing also other polygons. Our approach allows to determine local curvature and link it to local strain energy, which is correlated with local stability and chemical reactivity.

  20. Digital elevation model visibility including Earth's curvature and atmosphere refraction

    NASA Astrophysics Data System (ADS)

    Santossilva, Ewerton; Vieiradias, Luiz Alberto

    1990-03-01

    There are some instances in which the Earth's curvature and the atmospheric refraction, optical or electronic, are important factors when digital elevation models are used for visibility calculations. This work deals with this subject, suggesting a practical approach to solve this problem. Some examples, from real terrain data, are presented. The equipment used was an IBM-PC like computer with a SITIM graphic card.

  1. Intrinsic DNA curvature of double-crossover tiles

    NASA Astrophysics Data System (ADS)

    Kim, Seungjae; Kim, Junghoon; Qian, Pengfei; Shin, Jihoon; Amin, Rashid; Ahn, Sang Jung; LaBean, Thomas H.; Kim, Moon Ki; Park, Sung Ha

    2011-06-01

    A theoretical model which takes into account the structural distortion of double-crossover DNA tiles has been studied to investigate its effect on lattice formation sizes. It has been found that a single vector appropriately describes the curvature of the tiles, of which a higher magnitude hinders lattice growth. In conjunction with these calculations, normal mode analysis reveals that tiles with relative higher frequencies have an analogous effect. All the theoretical results are shown to be in good agreement with experimental data.

  2. Organelle morphogenesis by active membrane remodeling

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, N.; Ipsen, John H.; Rao, Madan; Kumar, P. B. Sunil

    Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming transport processes. Active fission and fusion are promoted by GTPases, e.g., Arf-Coatamer and the Rab-Snare complexes, which both sense and generate local membrane curvature. Here we investigate through Dynamical Triangulation Monte Carlo simulations, the role that these active processes play in determining the morphology and compositional segregation in closed membranes. Our results suggest that the ramified morphologies of organelles observed in-vivo are a consequence of driven nonequilibrium processes rather than equilibrium forces.

  3. Direct involvement of hydrogen peroxide in curvature of wheat coleoptile in blue-light-treated and dark-grown coleoptiles.

    PubMed

    Chandrakuntal, Kumar; Kumar, Pradeep G; Laloraya, Malini; Laloraya, Manmohan M

    2004-07-01

    Blue-light-induced photomorphogenesis is the sum total of a sequence of phenomena involving absorption of light by specific receptors, generation of a signal, processing transmembrane transport of signal, and the activation of a cascade of reactions in the cell interior. Though four blue-light receptors cryptochrome1, cryptochrome2, phototropin1, and phototropin2 have been identified, the signal transduction events associated with blue-light receptor activation are not understood. In this report, we demonstrate the generation and spatiotemporal distribution of H(2)O(2) in wheat coleoptile in response to blue light. Interception of the free-radical generation pathways dithiothreitol and propyl gallate rendered wheat coleoptile tips phototropically non-responsive. Unilateral application of H(2)O(2) onto the sub-apical region of a growing coleoptile brought about curvature in dark. Blue light also caused lipid peroxidation and augmented membrane rigidity of coleoptile cell membranes. We conclude that H(2)O(2) can act as a translocating second messenger that could bring about coleoptile curvature, and the signaling events may trigger Ca(2+) signaling cascades, changes in gene expression, and protein modifications.

  4. Berry Curvature and Chiral Plasmons in Massive Dirac Materials

    NASA Astrophysics Data System (ADS)

    Song, Justin; Rudner, Mark

    2015-03-01

    In the semiclassical model of carrier dynamics, quasiparticles are described as nearly free electrons with modified characteristics modified characteristics such as effective masses which may differ significantly from those of an electron in vacuum. In addition to being influenced by external electric and magnetic fields, the trajectories of electrons in topological materials are also affected by the presence of an interesting quantum mechanical field - the Berry curvature - which is responsible for a number of anomalous transport phenomena recently observed in Dirac materials including G/hBN, and MoS2. Here we discuss how Berry curvature can affect the collective behavior of electrons in these systems. In particular, we show that the collective electronic excitations in metallic massive Dirac materials can feature a chirality even in the absence of an applied magnetic field. The chirality of these plasmons arises from the Berry curvature of the massive Dirac bands. The corresponding dispersion is split between left- and right-handed modes. We also discuss experimental manifestations.

  5. Formation of Curvature Subunit of Carbon in Combustion.

    PubMed

    Wu, Xin-Zhou; Yao, Yang-Rong; Chen, Miao-Miao; Tian, Han-Rui; Xiao, Jun; Xu, Yun-Yan; Lin, Min-Song; Abella, Laura; Tian, Cheng-Bo; Gao, Cong-Li; Zhang, Qianyan; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-08-01

    Curvature prevalently exists in the world of carbon materials (e.g., fullerenes, buckyl bowls, carbon nanotubes, and onions), but traditional C2-addition mechanisms fail to elucidate the mechanism responsible for the formation of carbon curvature starting from a pentagonal carbon ring in currently available chemical-physical processes such as combustion. Here, we show a complete series of nascent pentagon-incorporating C5-C18 that are online produced in the flame of acetylene-cyclopentadiene-oxygen and in situ captured by C60 or trapped as polycyclic aromatic hydrocarbons for clarifying the growth of the curved subunit of C20H10. A mechanism regarding C1-substitution and C2-addition has been proposed for understanding the formation of curvature in carbon materials, as exemplified by the typical curved molecule containing a single pentagon completely surrounded by five hexagons. The present mechanism, supported by the intermediates characterized by X-ray crystallography as well as NMR, has been experimentally validated for the rational synthesis of curved molecule in the commercially useful combustion process.

  6. Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids

    PubMed Central

    Mostajeran, Cyrus; Ware, Taylor H.; White, Timothy J.

    2016-01-01

    We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains. PMID:27279777

  7. Voronoi-Based Curvature and Feature Estimation from Point Clouds.

    PubMed

    Mérigot, Quentin; Ovsjanikov, Maks; Guibas, Leonidas

    2011-06-01

    We present an efficient and robust method for extracting curvature information, sharp features, and normal directions of a piecewise smooth surface from its point cloud sampling in a unified framework. Our method is integral in nature and uses convolved covariance matrices of Voronoi cells of the point cloud which makes it provably robust in the presence of noise. We show that these matrices contain information related to curvature in the smooth parts of the surface, and information about the directions and angles of sharp edges around the features of a piecewise-smooth surface. Our method is applicable in both two and three dimensions, and can be easily parallelized, making it possible to process arbitrarily large point clouds, which was a challenge for Voronoi-based methods. In addition, we describe a Monte-Carlo version of our method, which is applicable in any dimension. We illustrate the correctness of both principal curvature information and feature extraction in the presence of varying levels of noise and sampling density on a variety of models. As a sample application, we use our feature detection method to segment point cloud samplings of piecewise-smooth surfaces.

  8. Generic properties of curvature sensing through vision and touch.

    PubMed

    Dresp-Langley, Birgitta

    2013-01-01

    Generic properties of curvature representations formed on the basis of vision and touch were examined as a function of mathematical properties of curved objects. Virtual representations of the curves were shown on a computer screen for visual scaling by sighted observers (experiment 1). Their physical counterparts were placed in the two hands of blindfolded and congenitally blind observers for tactile scaling. The psychophysical data show that curvature representations in congenitally blind individuals, who never had any visual experience, and in sighted observers, who rely on vision most of the time, are statistically linked to the same mathematical properties of the curves. The perceived magnitude of object curvature, sensed through either vision or touch, is related by a mathematical power law, with similar exponents for the two sensory modalities, to the aspect ratio of the curves, a scale invariant geometric property. This finding supports biologically motivated models of sensory integration suggesting a universal power law for the adaptive brain control and balance of motor responses to environmental stimuli from any sensory modality.

  9. Curvature wavefront sensing for the large synoptic survey telescope.

    PubMed

    Xin, Bo; Claver, Chuck; Liang, Ming; Chandrasekharan, Srinivasan; Angeli, George; Shipsey, Ian

    2015-10-20

    The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from four curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1 mm on either side of focus. In this paper, we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intrafocal and extrafocal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing. PMID:26560396

  10. Formation of Curvature Subunit of Carbon in Combustion.

    PubMed

    Wu, Xin-Zhou; Yao, Yang-Rong; Chen, Miao-Miao; Tian, Han-Rui; Xiao, Jun; Xu, Yun-Yan; Lin, Min-Song; Abella, Laura; Tian, Cheng-Bo; Gao, Cong-Li; Zhang, Qianyan; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-08-01

    Curvature prevalently exists in the world of carbon materials (e.g., fullerenes, buckyl bowls, carbon nanotubes, and onions), but traditional C2-addition mechanisms fail to elucidate the mechanism responsible for the formation of carbon curvature starting from a pentagonal carbon ring in currently available chemical-physical processes such as combustion. Here, we show a complete series of nascent pentagon-incorporating C5-C18 that are online produced in the flame of acetylene-cyclopentadiene-oxygen and in situ captured by C60 or trapped as polycyclic aromatic hydrocarbons for clarifying the growth of the curved subunit of C20H10. A mechanism regarding C1-substitution and C2-addition has been proposed for understanding the formation of curvature in carbon materials, as exemplified by the typical curved molecule containing a single pentagon completely surrounded by five hexagons. The present mechanism, supported by the intermediates characterized by X-ray crystallography as well as NMR, has been experimentally validated for the rational synthesis of curved molecule in the commercially useful combustion process. PMID:27377559

  11. Curvature-dependent excitation propagation in cultured cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kadota, S.; Kay, M. W.; Magome, N.; Agladze, K.

    2012-02-01

    The geometry of excitation wave front may play an important role on the propagation block and spiral wave formation. The wave front which is bent over the critical value due to interaction with the obstacles may partially cease to propagate and appearing wave breaks evolve into rotating waves or reentry. This scenario may explain how reentry spontaneously originates in a heart. We studied highly curved excitation wave fronts in the cardiac tissue culture and found that in the conditions of normal, non-inhibited excitability the curvature effects do not play essential role in the propagation. Neither narrow isthmuses nor sharp corners of the obstacles, being classical objects for production of extremely curved wave front, affect non-inhibited wave propagation. The curvature-related phenomena of the propagation block and wave detachment from the obstacle boundary were observed only after partial suppression of the sodium channels with Lidocaine. Computer simulations confirmed the experimental observations. The explanation of the observed phenomena refers to the fact that the heart tissue is made of finite size cells so that curvature radii smaller than the cardiomyocyte size loses sense, and in non-inhibited tissue the single cell is capable to transmit excitation to its neighbors.

  12. Instability in bacterial populations and the curvature tensor

    NASA Astrophysics Data System (ADS)

    Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia

    2016-09-01

    In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.

  13. Finger vein extraction using gradient normalization and principal curvature

    NASA Astrophysics Data System (ADS)

    Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan

    2009-02-01

    Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.

  14. Curvature wavefront sensing for the large synoptic survey telescope.

    PubMed

    Xin, Bo; Claver, Chuck; Liang, Ming; Chandrasekharan, Srinivasan; Angeli, George; Shipsey, Ian

    2015-10-20

    The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from four curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1 mm on either side of focus. In this paper, we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intrafocal and extrafocal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.

  15. Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids

    NASA Astrophysics Data System (ADS)

    Mostajeran, Cyrus; Warner, Mark; Ware, Taylor H.; White, Timothy J.

    2016-05-01

    We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains.

  16. Membrane Mechanics of Endocytosis in Cells with Turgor.

    PubMed

    Dmitrieff, Serge; Nédélec, François

    2015-10-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane deformations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck constriction by actin may not be required, while its pulling role is essential. Finally, the theory shows that anisotropic curvature effectors stabilize membrane invaginations, and the loss of crescent-shaped BAR domain proteins such as Rvs167 could therefore trigger membrane scission.

  17. Non-uniform dispersion of the source-sink relationship alters wavefront curvature.

    PubMed

    Romero, Lucia; Trenor, Beatriz; Ferrero, Jose M; Starmer, C Frank

    2013-01-01

    The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2). Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront) leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB) definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the safety factor

  18. What can the observation of nonzero curvature tell us?

    NASA Astrophysics Data System (ADS)

    Guth, Alan H.; Nomura, Yasunori

    2012-07-01

    The eternally inflating multiverse provides a consistent framework to understand coincidences and fine-tuning in the Universe. As such, it provides the possibility of finding another coincidence: if the amount of slow-roll inflation in our past was only slightly more than the anthropic threshold, then spatial curvature might be measurable. We study this issue in detail, particularly focusing on the question: “If future observations reveal nonzero curvature, what can we conclude?” We find that whether an observable signal arises or not depends crucially on three issues: the cosmic history just before the observable inflation, the measure adopted to define probabilities in the eternally inflating spacetime, and the sign and strength of the correlation between the tunneling and slow-roll parts of the potential. We find that if future measurements find positive curvature at the level Ωk≲-10-4, then the framework of the eternally inflating multiverse, as currently understood, is excluded with high significance. If the measurements instead reveal negative curvature at the level Ωk≳10-4, then we can conclude that (1) diffusive (new or chaotic type) eternal inflation did not occur in our immediate past; (2) our pocket universe was born by a bubble nucleation; (3) the probability measure does not reward volume increase; and (4) the origin of the observed slow-roll inflation is an accidental feature of the potential, presumably selected by anthropic conditions, and not due to a theoretical mechanism ensuring the flatness of the potential. Discovery of Ωk≳10-4 would also give us nontrivial information about the correlation between the tunneling and slow-roll parts of the potential; for example, a strong correlation favoring large N would be ruled out in certain measures. We also address the question of whether the current constraint on Ωk is consistent with multiverse expectations; we find the answer to be yes, except that current observations, for many choices

  19. Membrane distillation

    NASA Astrophysics Data System (ADS)

    Bryk, Mikhail T.; Nigmatullin, R. R.

    1994-12-01

    Studies in the field of membrane distillation are analysed. A critical analysis of the theoretical and experimental investigations of membrane distillation is presented. Attention is concentrated on the mechanism of mass transfer and the influence of various external factors on the process characteristics. Questions concerning the creation of modules and apparatus for membrane distillation and aspects of the practical employment of such distillation in order to obtain pure water, for the purification of waste water, and for the concentration of technological solutions in various branches of industry are considered quite fully. The advantages and disadvantages of membrane distillation compared with other membrane methods are analysed. The bibliography includes 97 references.

  20. Preferences, needs and QALYs.

    PubMed

    Cohen, J

    1996-10-01

    Quality Adjusted Life Years (QALYs) have become a household word among health economists. Their use as a means of comparing the value of health programmes and medical interventions has stirred up controversy in the medical profession and the academic community. In this paper, I argue that QALY analysis does not adequately take into account the differentiated nature of the health state values it measures. Specifically, it does not distinguish between needs and preferences with respect to its valuation of health states. I defend the view that needs and preferences are clearly distinguishable, and that the concept of needs cannot be dispensed with, as many health economists suggest. It is argued that the scale along which health states are measured in QALY analysis is not a continuous interval scale, but one which concerns two distinctly different value dimensions. Measuring the values of health state intervals may reveal the weighting attached to the different value dimensions. PMID:8910777

  1. Nanolaminate Membranes as Cylindrical Telescope Reflectors

    NASA Technical Reports Server (NTRS)

    Dooley, Jennifer; Dragovan, Mark; Hickey, Gregory; Lih, Shyh-Shiu Lih

    2010-01-01

    A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors.

  2. Stress and fold localization in thin elastic membranes

    SciTech Connect

    Pocivavsek, Luka; Dellsy, Robert; Kern, Andrew; Johnson, Sebastián; Lin, Binhua; Lee, Ka Yee C.; Cerda, Enrique

    2010-11-08

    Thin elastic membranes supported on a much softer elastic solid or a fluid deviate from their flat geometries upon compression. We demonstrate that periodic wrinkling is only one possible solution for such strained membranes. Folds, which involve highly localized curvature, appear whenever the membrane is compressed beyond a third of its initial wrinkle wavelength. Eventually the surface transforms into a symmetry-broken state with flat regions of membrane coexisting with locally folded points, reminiscent of a crumpled, unsupported membrane. We provide general scaling laws for the wrinkled and folded states and proved the transition with numerical and experimental supported membranes. Our work provides insight into the interfacial stability of such diverse systems as biological membranes such as lung surfactant and nanoparticle thin films.

  3. Geometric conservation laws for cells or vesicles with membrane nanotubes or singular points.

    PubMed

    Yin, Yajun; Yin, Jie

    2006-07-12

    On the basis of the integral theorems about the mean curvature and Gauss curvature, geometric conservation laws for cells or vesicles are proved. These conservation laws may depict various special bionano structures discovered in experiments, such as the membrane nanotubes and singular points grown from the surfaces of cells or vesicles. Potential applications of the conservation laws to lipid nanotube junctions that interconnect cells or vesicles are discussed.

  4. Clay Mineral Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Day-Stirrat, R. J.

    2014-12-01

    Anisotropy of the orientation of clay minerals, often referred to as texture, may be unique to sediments' deposition, composition, deformation or diagenetic history. The literature is rich with studies that include preferred orientation generation in fault gouge, low-grade metamorphic rocks, sediments with variable clay content and during the smectite-to-illite transformation. Untangling the interplay between many competing factors in any one geologic situation has proven a significant challenge over many years. Understanding how, where and when clay minerals develop a preferred orientation has significant implications for permeability anisotropy in shallow burial, the way mechanical properties are projected from shallower to deeper settings in basin modeling packages and the way velocity anisotropy is accounted for in seismic data processing. The assessment of the anisotropic properties of fine-grained siliciclastic rocks is gaining significant momentum in rock physics research. Therefore, a fundamental understanding of how clay minerals develop a preferred orientation in space and time is crucial to the understanding of anisotropy of physical properties. The current study brings together a wealth of data that may be used in a predictive sense to account for fabric anisotropy that may impact any number of rock properties.

  5. Coaching preferences of athletes.

    PubMed

    Terry, P C; Howe, B L

    1984-12-01

    The study examined the coaching preferences of 80 male and 80 female athletes, as measured by the Leadership Scale for Sports (Chelladurai and Saleh, 1978, 1980). In addition, it attempted to assess the applicability to sport of the Life-cycle and Path-goal theories of leadership. Comparisons between groups were made on the basis of sex, age, and type of sport. A MANOVA indicated that athletes in independent sports preferred more democratic behaviour (p less than .001) and less autocratic behaviour (p = .028) than athletes in interdependent sports. No differences in coaching preferences were found which could be attributed to the age or sex of the athlete, or the variability of the sports task. These results partially supported the Path-goal theory, but did not support the Life-cycle theory. Athletes of all groups tended to favour coaches who displayed training behaviour and rewarding behaviour "often", democratic behaviour and social support behaviour "occasionally", and autocratic behaviour "seldom". This consistency may be a useful finding for those organizations and institutions interested in preparing coaches.

  6. A sensor for the direct measurement of curvature based on flexoelectricity

    NASA Astrophysics Data System (ADS)

    Yan, Xiang; Huang, Wenbin; Ryung Kwon, Seol; Yang, Shaorui; Jiang, Xiaoning; Yuan, Fuh-Gwo

    2013-08-01

    A direct curvature sensing measurement based on the flexoelectricity of Ba0.64Sr0.36TiO3 (BST) material through electromechanical coupling is proposed and developed in this paper. The curvature sensing was demonstrated in four point bending tests of a beam with bonded BST curvature sensors under different applied loads with low time-harmonic frequencies from 0.5 to 3 Hz. A shear lag concept which describes the efficiency of the loading transfer from the epoxy bonding layer was taken into account in extracting the actual curvature from the sensor measurement. A finite element analysis has been performed to estimate the curvature transfer efficiency and the bonding layer thickness is found to be a critical parameter in determining the curvature transfer. Experimental results showed a good linearity of charge output dependence on curvature inputs in a limited frequency range and showed a curvature sensitivity of 30.78 pC m, in comparison with 32.48 pC m from theoretical predictions. Using the measured curvature, the bending stiffness of the beam was then obtained from the experimentally obtained moment-curvature curve. This work demonstrated that the flexoelectric BST sensor provides a direct curvature measurement instead of using a traditional strain gage sensor through interpolation, and thus offers an important avenue for on-line and in situ structural health monitoring.

  7. Pearling instability of membrane tubes driven by curved proteins and actin polymerization

    NASA Astrophysics Data System (ADS)

    Jelerčič, U.; Gov, N. S.

    2015-12-01

    Membrane deformation inside living cells is crucial for the proper shaping of various intracellular organelles and is necessary during the fission/fusion processes that allow membrane recycling and transport (e.g. endocytosis). Proteins that induce membrane curvature play a key role in such processes, mostly by adsorbing to the membrane and forming a scaffold that deforms the membrane according to the curvature of the proteins. In this paper we explore the possibility of membrane tube destabilization through a pearling mechanism enabled by the combined effects of the adsorbed curved proteins and the actin polymerization that they recruit. The pearling instability can serve as the initiation for fission of the tube into vesicles. We find that adsorbed curved proteins are more likely to stabilize the tubes, while the actin polymerization can provide the additional constrictive force needed for the robust instability. We discuss the relevance of the theoretical results to in vivo and in vitro experiments.

  8. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures

    SciTech Connect

    Pykäläinen, Anette; Boczkowska, Malgorzata; Zhao, Hongxia; Saarikangas, Juha; Rebowski, Grzegorz; Jansen, Maurice; Hakanen, Janne; Koskela, Essi V.; Peränen, Johan; Vihinen, Helena; Jokitalo, Eija; Salminen, Marjo; Ikonen, Elina; Dominguez, Roberto; Lappalainen, Pekka

    2013-05-29

    Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.

  9. Reconstituting ring-rafts in bud-mimicking topography of model membranes

    NASA Astrophysics Data System (ADS)

    Ryu, Yong-Sang; Lee, In-Ho; Suh, Jeng-Hun; Park, Seung Chul; Oh, Soojung; Jordan, Luke R.; Wittenberg, Nathan J.; Oh, Sang-Hyun; Jeon, Noo Li; Lee, Byoungho; Parikh, Atul N.; Lee, Sin-Doo

    2014-07-01

    During vesicular trafficking and release of enveloped viruses, the budding and fission processes dynamically remodel the donor cell membrane in a protein- or a lipid-mediated manner. In all cases, in addition to the generation or relief of the curvature stress, the buds recruit specific lipids and proteins from the donor membrane through restricted diffusion for the development of a ring-type raft domain of closed topology. Here, by reconstituting the bud topography in a model membrane, we demonstrate the preferential localization of cholesterol- and sphingomyelin-enriched microdomains in the collar band of the bud-neck interfaced with the donor membrane. The geometrical approach to the recapitulation of the dynamic membrane reorganization, resulting from the local radii of curvatures from nanometre-to-micrometre scales, offers important clues for understanding the active roles of the bud topography in the sorting and migration machinery of key signalling proteins involved in membrane budding.

  10. Microtubule Motors Power Plasma Membrane Tubulation in Clathrin-Independent Endocytosis

    PubMed Central

    Day, Charles A; Baetz, Nicholas W; Copeland, Courtney A; Kraft, Lewis J; Han, Bing; Tiwari, Ajit; Drake, Kimberly R; De Luca, Heidi; Chinnapen, Daniel J-F; Davidson, Michael W; Holmes, Randall K; Jobling, Michael G; Schroer, Trina A; Lencer, Wayne I; Kenworthy, Anne K

    2015-01-01

    How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis. PMID:25690058

  11. Trench curvature and deformation of the subducting lithosphere

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Tassi, Luca

    2012-01-01

    The subduction of oceanic lithosphere is generally accompanied by downdip and lateral deformation. The downdip component of strain is associated with external forces that are applied to the slab during its sinking, namely the gravitational force and the mantle resistance to penetration. Here, we present theoretical arguments showing that a tectonic plate is also subject to a predictable amount of lateral deformation as a consequence of its bending along an arcuate trench zone, independently from the long-term physical processes that have determined the actual curvature of the subduction zone. In particular, we show that the state of lateral strain and the lateral strain rate of a subducting slab depend from geometric and kinematic parameters, such as trench curvature, dip function and subduction velocity. We also demonstrate that the relationship between the state of lateral strain in a subducting slab and the geometry of bending at the corresponding active margin implies a small component of lateral shortening at shallow depths, and may include large extensional lateral deformation at intermediate depths, whereas a state of lateral mechanical equilibrium can only represent a localized exception. Our formulation overcomes the flaws of the classic 'ping-pong ball' model for the bending of the lithosphere at subduction zones, which lead to severe discrepancies with the observed geometry and style of deformation of the modern subducting slabs. A study of the geometry and seismicity of eight modern subduction zones is performed, to assess the validity of the theoretical relationship between trench curvature, slab dip function, and lateral strain rate. The strain pattern within the eight present-day slabs, which is reconstructed through an analysis of Harvard CMT solutions, shows that tectonic plates cannot be considered as flexible-inextensible spherical caps, whereas the lateral intraslab deformation which is accommodated through seismic slip can be explained in terms

  12. Determination of biplane geometry and centerline curvature in vascular imaging

    NASA Astrophysics Data System (ADS)

    Nazareth, Daryl; Hoffmann, Kenneth R.; Walczak, Alan; Dmochowski, Jacek; Guterman, Lee R.; Rudin, Stephen; Bednarek, Daniel R.

    2002-05-01

    Three-dimensional (3-D) vessel trees can provide useful visual and quantitative information during interventional procedures. To calculate the 3-D vasculature from biplane images, the transformation relating the imaging systems (i.e., the rotation matrix R and the translation vector t) must be determined. We have developed a technique to calculate these parameters, which requires only the identification of approximately corresponding vessel regions in the two images. Initial estimates of R and t are generated based on the gantry angles, and then refined using an optimization technique. The objective function to be minimized is determined as follows. For each endpoint of each vessel in the first image, an epipolar line in the second image is generated. The intersection points between these two epipolar lines and the corresponding vessel centerline in the second image are determined. The vessel arclength between these intersection points is calculated as a fraction of the entire vessel region length in the image. This procedure is repeated for every vessel in each image. The value of the objective function is calculated from the sum of these fractions, and is smallest when the total fractional arclength is greatest. The 3-D vasculature is obtained from the optimal R and t using triangulation, and vessel curvature is then determined. This technique was evaluated using simulated curves and vessel centerlines obtained from clinical images, and provided rotational, magnification and relative curvature errors of 1 degree(s), 1% and 14% respectively. Accurate 3-D and curvature measures may be useful in clinical decision making, such as in assessing vessel tortuousity and access, during interventional procedures.

  13. The influence of pipe organ reed curvature on tone quality.

    PubMed

    Plitnik, George R; Angster, Judit

    2012-11-01

    Although organ flue pipes have been widely studied, the same claim cannot be made for pipe organ reed stops. Given certain design constraints, such as the type of reed stop being voiced and the desired tone quality, the reed voicer must use consummate skill to curve the reed tongue so as to produce the best and most stable tone as well as to guarantee that each pipe blends with its neighbors. The amount and type of curve given to a reed tongue influences not only the harmonic structure of the steady-state sound but also the attack. There are two fundamentally different types of curvature that can be given to a reed tongue, the trompette (chorus reed) curve (which gives a bright sound) and the smooth-toned curve employed for clarinet pipes. This study investigated the effect of reed curvature on the vibration and tone (as assessed by professionals) on reed tongues of both types. Two F2 (8'F, 87.3 Hz) pipes (a trompette and a clarinet) were constructed and voiced with differently curved tongues to produce a variety of tones. The vibration of the reed tongue was measured under typical conditions by laser vibrometer; the pressure waves in the boot and in the shallot were measured by means of one-quarter inch microphones, and the pipe's sound was recorded at the egress. By performing various measurements simultaneously, phase differences were also determined, the extreme sensitivity of tone to reed curvature was demonstrated, and a recently proposed theory of reed vibration was shown to be more accurate than the standard model. PMID:23145630

  14. Curvature singularities from gravitational contraction in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Reverberi, Lorenzo

    2013-04-01

    The discovery of the accelerated expansion of the Universe has had a vast resonance on a number of physical disciplines. In recent years several viable modified gravity models have been proposed, which naturally lead to a late-time de Sitter stage while basically reducing to General Relativity in the early Universe. We consider a contracting cloud of pressureless dust, having arbitrary mass and initial density, and study some aspects of these modified gravity models. We show how the increasing energy/mass density may lead to a curvature singularity and discuss the typical time scales for its development.

  15. Curvature spectra and nongaussianities in the roulette inflation model

    NASA Astrophysics Data System (ADS)

    Vincent, Aaron C.; Cline, James M.

    2008-10-01

    Using the gradient expansion method of Rigopoulos, Shellard and van Tent which treats cosmological perturbations as gradients on top of a homogeneous and isotropic FRW background, we study the production of nongaussianities in the roulette model of inflation. Investigating a number of trajectories within this two-field model of inflation, we find that while the superhorizon influence of the isocurvature modes on the curvature bispectrum produces nonzero contribution to fNL, the effect is negligible next to the standard inflationary prediction |fNL| ~ ns-1. This is the case in both the squeezed and equilateral configurations of the bispectrum, although the former is slightly larger in the trajectories under consideration.

  16. Closeness to spheres of hypersurfaces with normal curvature bounded below

    SciTech Connect

    Borisenko, A A; Drach, K D

    2013-11-30

    For a Riemannian manifold M{sup n+1} and a compact domain Ω⊂ M{sup n+1} bounded by a hypersurface ∂Ω with normal curvature bounded below, estimates are obtained in terms of the distance from O to ∂Ω for the angle between the geodesic line joining a fixed interior point O in Ω to a point on ∂Ω and the outward normal to the surface. Estimates for the width of a spherical shell containing such a hypersurface are also presented. Bibliography: 9 titles.

  17. Curvature effect on tearing modes in presence of neoclassical friction

    NASA Astrophysics Data System (ADS)

    Maget, Patrick; Mellet, Nicolas; Lütjens, Hinrich; Meshcheriakov, Dmytro; Garbet, Xavier

    2013-11-01

    Neoclassical physics (here associated to the poloidal variation of the magnetic field strength along field lines in a tokamak) is well known for driving self-generated plasma current and nonlinear magnetic islands associated to it in high performance, ITER relevant plasma discharges. It is demonstrated that the neoclassical friction between a magnetic perturbation and plasma flow already impacts magnetic islands in the linear regime, by inducing a weakening of curvature stabilization for tearing modes. This conclusion holds in particular for regimes where convection is influencing the pressure dynamics, as shown using a simple analytical model and confirmed in full Magneto-Hydro-Dynamics simulations.

  18. Detonation wave curvature of cast Comp B and PBXN-111

    NASA Astrophysics Data System (ADS)

    Lemar, E. R.; Forbes, J. W.

    1994-07-01

    Detonation wave profiles for cast Comp B and PBXN-111 have been fitted accurately over the entire wave fronts using a series expansion of the natural logarithm of a Bessel function. The fit equation has been used to obtain the angle of the detonation front as a function of position and the radii of curvature used in Wood-Kirkwood zone length calculations. The results obtained from the fit equation agree with results obtained previously for PBXN-111. Since the fit equation gives a functional form for the detonation wave across the whole charge diameter, it can be used to test the results obtained from detonation theories and code calculations.

  19. Direct and alignment-insensitive measurement of cantilever curvature

    SciTech Connect

    Hermans, Rodolfo I.; Aeppli, Gabriel; Bailey, Joe M.

    2013-07-15

    We analytically derive and experimentally demonstrate a method for the simultaneous measurement of deflection for large arrays of cantilevers. The Fresnel diffraction patterns of a cantilever independently reveal tilt, curvature, cubic, and higher order bending of the cantilever. It provides a calibrated absolute measurement of the polynomial coefficients describing the cantilever shape, without careful alignment and could be applied to several cantilevers simultaneously with no added complexity. We show that the method is easily implemented, works in both liquid media and in air, for a broad range of displacements and is especially suited to the requirements for multi-marker biosensors.

  20. Influence of curvature in regenerative cooling system of rocket engine

    NASA Astrophysics Data System (ADS)

    Torres, Y.; Stefanini, L.; Suslov, D.

    2009-09-01

    Thermomechanical loads in rocket engines can be drastically reduced by a reliable cooling system. The regenerative cooling system uses propellants as coolant which flows through milled cooling channels in the chamber walls. Due to centrifugal forces, dynamic secondary motions appear in cooling-channel curvatures, which strongly modify heat transfer. Three-dimensional (3D) numerical calculations have been performed in order to compare this heat flux modification with empirical correlations. Different turbulence models and wall treatments have been tested to develop a complete numerical data base about asymmetrical (concave side) heat transfer in curved cooling channels of rocket engine.

  1. 2008 ULTRASONIC BENCHMARK STUDIES OF INTERFACE CURVATURE--A SUMMARY

    SciTech Connect

    Schmerr, L. W.; Huang, R.; Raillon, R.; Mahaut, S.; Leymarie, N.; Lonne, S.; Spies, M.; Lupien, V.

    2009-03-03

    In the 2008 QNDE ultrasonic benchmark session researchers from five different institutions around the world examined the influence that the curvature of a cylindrical fluid-solid interface has on the measured NDE immersion pulse-echo response of a flat-bottom hole (FBH) reflector. This was a repeat of a study conducted in the 2007 benchmark to try to determine the sources of differences seen in 2007 between model-based predictions and experiments. Here, we will summarize the results obtained in 2008 and analyze the model-based results and the experiments.

  2. New modes from higher curvature corrections in holography

    NASA Astrophysics Data System (ADS)

    Aksteiner, Steffen; Korovin, Yegor

    2016-03-01

    In gravitational theories involving higher curvature corrections the metric describes additional degrees of freedom beyond the graviton. Holographic duality maps these to operators in the dual CFT. We identify infinite families of theories for which these new modes cannot be truncated and the usual Fefferman-Graham expansion needs to be modified. New massive gravity in three dimensions and critical gravity in four dimensions are particular representatives of these families. We propose modified expansion, study the near-boundary behaviour of the metric and derive fall-off properties of the additional modes in theories involving higher derivative corrections.

  3. Scattering of force-free electrodynamic waves by spacetime curvature

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; McWilliams, Sean

    2014-03-01

    The electromagnetic fields E and B are vectors that couple to spacetime curvatures via Ricci identities, and so force-free electrodynamic waves will in general be scattered. However, Brennan, Gralla and Jacobson found a family of exact solutions that escape scattering. We analytically and numerically study these solutions and their alterations, in order to provide more details as to what features allow them to possess this property. We hope our results will be useful when searching for other solutions of this type. We also provide physical intuition for some commonly encountered theoretical constructs.

  4. Curvature effect on tearing modes in presence of neoclassical friction

    SciTech Connect

    Maget, Patrick; Mellet, Nicolas; Meshcheriakov, Dmytro; Garbet, Xavier; Lütjens, Hinrich

    2013-11-15

    Neoclassical physics (here associated to the poloidal variation of the magnetic field strength along field lines in a tokamak) is well known for driving self-generated plasma current and nonlinear magnetic islands associated to it in high performance, ITER relevant plasma discharges. It is demonstrated that the neoclassical friction between a magnetic perturbation and plasma flow already impacts magnetic islands in the linear regime, by inducing a weakening of curvature stabilization for tearing modes. This conclusion holds in particular for regimes where convection is influencing the pressure dynamics, as shown using a simple analytical model and confirmed in full Magneto-Hydro-Dynamics simulations.

  5. Constant mean curvature slicings of Kantowski-Sachs spacetimes

    SciTech Connect

    Heinzle, J. Mark

    2011-04-15

    We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.

  6. Curvature and geometric modules of noncommutative spheres and tori

    SciTech Connect

    Arnlind, Joakim

    2014-04-15

    When considered as submanifolds of Euclidean space, the Riemannian geometry of the round sphere and the Clifford torus may be formulated in terms of Poisson algebraic expressions involving the embedding coordinates, and a central object is the projection operator, projecting tangent vectors in the ambient space onto the tangent space of the submanifold. In this note, we point out that there exist noncommutative analogues of these projection operators, which implies a very natural definition of noncommutative tangent spaces as particular projective modules. These modules carry an induced connection from Euclidean space, and we compute its scalar curvature.

  7. Vorticity, gyroscopic precession, and spin-curvature force

    NASA Astrophysics Data System (ADS)

    Liang, Wei Chieh; Lee, Si Chen

    2013-02-01

    In investigating the relationship between vorticity and gyroscopic precession, we calculate the vorticity vector in Godel, Kerr, Lewis, Schwarzschild, and Minkowski metrics and find that the vorticity vector of the specific observers is the angular velocity of the gyroscopic precession. Furthermore, when space-time torsion is included, the vorticity and spin-curvature force change sign. This result is very similar to the behavior of the positive and negative helicities of quantum spin in the Stern-Gerlach force. It implies that the inclusion of torsion will lead to an analogous property of quantum spin even in classical treatment.

  8. Information content in F (R ) brane models with nonconstant curvature

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; Moraes, P. H. R. S.; Dutra, A. de Souza; da Rocha, Roldão

    2015-12-01

    In this work we investigate the entropic information measure in the context of braneworlds with nonconstant curvature. The braneworld entropic information is studied for gravity modified by the square of the Ricci scalar, besides the usual Einstein-Hilbert term. We showed that the minimum value of the brane configurational entropy provides a stricter bound on the parameter that is responsible for the F (R ) model differing from the Einstein-Hilbert standard one. Our results are moreover consistent to a negative bulk cosmological constant.

  9. Intrinsic DNA curvature of double-crossover tiles.

    PubMed

    Kim, Seungjae; Kim, Junghoon; Qian, Pengfei; Shin, Jihoon; Amin, Rashid; Ahn, Sang Jung; LaBean, Thomas H; Kim, Moon Ki; Park, Sung Ha

    2011-06-17

    A theoretical model which takes into account the structural distortion of double-crossover DNA tiles has been studied to investigate its effect on lattice formation sizes. It has been found that a single vector appropriately describes the curvature of the tiles, of which a higher magnitude hinders lattice growth. In conjunction with these calculations, normal mode analysis reveals that tiles with relative higher frequencies have an analogous effect. All the theoretical results are shown to be in good agreement with experimental data. PMID:21543827

  10. Classical and Quantum features of the spin-curvature coupling

    NASA Astrophysics Data System (ADS)

    Cianfrani, Francesco; Montani, Giovanni

    2007-04-01

    We analyze the behavior of a spinning particle in gravity, both from a quantum and a classical perspective point of view. We infer that, since the interaction between the space-time curvature and a spinning test particle is expected, then the main features of such an interaction can get light on which degrees of freedom have physical meaning in a quantum gravity theory with fermions. Finally, the dimensional reduction of Papapetrou equations is performed in a 5-dimensional Kaluza-Klein background and Dixon-Souriau results for the motion of a charged spinning body are obtained.

  11. An algorithm for prescribed mean curvature using isogeometric methods

    NASA Astrophysics Data System (ADS)

    Chicco-Ruiz, Aníbal; Morin, Pedro; Pauletti, M. Sebastian

    2016-07-01

    We present a Newton type algorithm to find parametric surfaces of prescribed mean curvature with a fixed given boundary. In particular, it applies to the problem of minimal surfaces. The algorithm relies on some global regularity of the spaces where it is posed, which is naturally fitted for discretization with isogeometric type of spaces. We introduce a discretization of the continuous algorithm and present a simple implementation using the recently released isogeometric software library igatools. Finally, we show several numerical experiments which highlight the convergence properties of the scheme.

  12. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Sadler, Mary E; Greiner, Anthony D; Aguinaldo, Jorge; Min, Kyungnan; Zhang, Kai; Arabi, Sara; Burbano, Marie S; Kent, Fraser; Shoaf, Robert

    2015-10-01

    This review, for literature published in 2014, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:26420079

  13. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Burbano, Marie S; Sadler, Mary E; Diamond, Jason; Baker, Simon; Greiner, Anthony D; Arabi, Sara; Wong, Joseph; Doody, Alexandra; Padhye, Lokesh P; Sears, Keith; Kistenmacher, Peter; Kent, Fraser; Tootchi, Leila; Aguinaldo, Jorge; Saddredini, Sara; Schilling, Bill; Min, Kyungnan; McCandless, Robert; Danker, Bryce; Gamage, Neranga P; Wang, Sunny; Aerts, Peter

    2016-10-01

    This review, for literature published in 2015, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:27620084

  14. Cognitive Preference and Student Performance.

    ERIC Educational Resources Information Center

    McDaniel, Ernest D.; Barnes, Shelba

    As early as 1964, cognitive preference was introduced as a way of describing an individual's preference for applying, relating or questioning information. To determine the role of cognitive preference in the pattern of variables predicting teachers' ratings of students' performance, 44 high school students completed a 61-item cognitive preference…

  15. Cognitive Preferences: A Validation Study.

    ERIC Educational Resources Information Center

    Van den Berg, Euwe, Ed.; And Others

    1978-01-01

    This study successfully replicated and extended previous research on cognitive preferences of talented high school students, using the Science Cognitive Preference Inventory (SCPI). Four modes of cognitive preference were interpreted: (1) factual information or recall; (2) principles; (3) questioning; and (4) practical applications. (CP)

  16. Numerical computations of the dynamics of fluidic membranes and vesicles.

    PubMed

    Barrett, John W; Garcke, Harald; Nürnberg, Robert

    2015-11-01

    Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid bilayers. The dynamical behavior of vesicles is very complex and a variety of forms and shapes appear. Lipid bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the surface (Navier-)Stokes equations, which in particular take the membrane viscosity into account. The evolution is driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations are coupled to bulk (Navier-)Stokes equations. We introduce a parametric finite-element method to solve this complex free boundary problem and present the first three-dimensional numerical computations based on the full (Navier-)Stokes system for several different scenarios. For example, the effects of the membrane viscosity, spontaneous curvature, and area difference elasticity (ADE) are studied. In particular, it turns out, that even in the case of no viscosity contrast between the bulk fluids, the tank treading to tumbling transition can be obtained by increasing the membrane viscosity. Besides the classical tank treading and tumbling motions, another mode (called the transition mode in this paper, but originally called the vacillating-breathing mode and subsequently also called trembling, transition, and swinging mode) separating these classical modes appears and is studied by us numerically. We also study how features of equilibrium shapes in the ADE and spontaneous curvature models, like budding behavior or starfish forms, behave in a shear flow. PMID:26651720

  17. Numerical computations of the dynamics of fluidic membranes and vesicles

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2015-11-01

    Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid bilayers. The dynamical behavior of vesicles is very complex and a variety of forms and shapes appear. Lipid bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the surface (Navier-)Stokes equations, which in particular take the membrane viscosity into account. The evolution is driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations are coupled to bulk (Navier-)Stokes equations. We introduce a parametric finite-element method to solve this complex free boundary problem and present the first three-dimensional numerical computations based on the full (Navier-)Stokes system for several different scenarios. For example, the effects of the membrane viscosity, spontaneous curvature, and area difference elasticity (ADE) are studied. In particular, it turns out, that even in the case of no viscosity contrast between the bulk fluids, the tank treading to tumbling transition can be obtained by increasing the membrane viscosity. Besides the classical tank treading and tumbling motions, another mode (called the transition mode in this paper, but originally called the vacillating-breathing mode and subsequently also called trembling, transition, and swinging mode) separating these classical modes appears and is studied by us numerically. We also study how features of equilibrium shapes in the ADE and spontaneous curvature models, like budding behavior or starfish forms, behave in a shear flow.

  18. Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude

    NASA Astrophysics Data System (ADS)

    Grandis, S.; Rapetti, D.; Saro, A.; Mohr, J. J.; Dietrich, J. P.

    2016-08-01

    Recent measurements of the Cosmic Microwave Background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat ΛCDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15) prefer any of eight commonly used one-parameter model extensions with respect to flat ΛCDM. We find a clear preference for models with free curvature, ΩK, or free amplitude of the CMB lensing potential, AL. We also further develop statistical tools to measure tension between datasets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15 CMB data and six other CMB and distance datasets. In flat ΛCDM we find a 4.8σ tension between the base P15 CMB data and a distance ladder measurement, whereas the former are consistent with the other datasets. In the curved ΛCDM model we find significant tensions in most of the cases, arising from the well-known low power of the low-ℓ multipoles of the CMB data. In the flat ΛCDM+AL model, however, all datasets are consistent with the base P15 CMB observations except for the CMB lensing measurement, which remains in significant tension. This tension is driven by the increased power of the CMB lensing potential derived from the base P15 CMB constraints in both models, pointing at either potentially unresolved systematic effects or the need for new physics beyond the standard flat ΛCDM model.

  19. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  20. Membrane Fission: Model for Intermediate Structures

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M.

    2003-01-01

    Membrane budding-fission is a fundamental process generating intracellular carriers of proteins. Earlier works were focused only on formation of coated buds connected to the initial membrane by narrow membrane necks. We present the theoretical analysis of the whole pathway of budding-fission, including the crucial stage where the membrane neck undergoes fission and the carrier separates from the donor membrane. We consider two successive intermediates of the reaction: 1), a constricted membrane neck coming out of aperture of the assembling protein coat, and 2), hemifission intermediate resulting from self-fusion of the inner monolayer of the neck, while its outer monolayer remains continuous. Transformation of the constricted neck into the hemifission intermediate is driven by the membrane stress produced in the neck by the protein coat. Although apparently similar to hemifusion, the fission is predicted to have an opposite dependence on the monolayer spontaneous curvature. Analysis of the further stages of the process demonstrates that in all practically important cases the hemifission intermediate decays spontaneously into two separate membranes, thereby completing the fission process. We formulate the “job description” for fission proteins by calculating the energy they have to deliver and the radii of the protein coat aperture which have to be reached to drive the fission process. PMID:12829467