Science.gov

Sample records for membrane fusion iii

  1. Negative Potentials Across Biological Membranes Promote Fusion by Class II and Class III Viral Proteins

    PubMed Central

    Markosyan, Ruben M.

    2010-01-01

    Voltage was investigated as a factor in the fusion of virions. Virions, pseudotyped with a class II, SFV E1 or VEEV E, or a class III protein, VSV G, were prepared with GFP within the core and a fluorescent lipid. This allowed both hemifusion and fusion to be monitored. Voltage clamping the target cell showed that fusion is promoted by a negative potential and hindered by a positive potential. Hemifusion occurred independent of polarity. Lipid dye movement, in the absence of content mixing, ceased before complete transfer for positive potentials, indicating that reversion of hemifused membranes into two distinct membranes is responsible for voltage dependence and inhibition of fusion. Content mixing quickly followed lipid dye transfer for a negative potential, providing a direct demonstration that hemifusion induced by class II and class III viral proteins is a functional intermediate of fusion. In the hemifused state, virions that fused exhibited slower lipid transfer than did nonfusing virions. All viruses with class II or III fusion proteins may utilize voltage to achieve infection. PMID:20427575

  2. The interaction of alphavirus E1 protein with exogenous domain III defines stages in virus-membrane fusion.

    PubMed

    Roman-Sosa, Gleyder; Kielian, Margaret

    2011-12-01

    Alphaviruses such as Semliki Forest virus (SFV) are enveloped viruses that infect cells through a low-pH-triggered membrane fusion reaction mediated by the transmembrane fusion protein E1. E1 drives fusion by insertion of its hydrophobic fusion loop into the cell membrane and refolding to a stable trimeric hairpin. In this postfusion conformation, the immunoglobulin-like domain III (DIII) and the stem region pack against the central core of the trimer. Membrane fusion and infection can be specifically inhibited by exogenous DIII, which binds to an intermediate in the E1 refolding pathway. Here we characterized the properties of the E1 target for interaction with exogenous DIII. The earliest target for DIII binding was an extended membrane-inserted E1 trimer, which was not detectable by assays for the stable postfusion hairpin. DIII binding provided a tool to detect this extended trimer and to define a series of SFV fusion-block mutants. DIII binding studies showed that the mutants were blocked in distinct steps in fusion protein refolding. Our results suggested that formation of the initial extended trimer was reversible and that it was stabilized by the progressive fold-back of the DIII and stem regions.

  3. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. PMID:25866377

  4. Fusion Power Demonstration III

    SciTech Connect

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  5. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  6. Viral membrane fusion.

    PubMed

    Harrison, Stephen C

    2015-05-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a "fusion loop" or "fusion peptide") engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  7. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C

    2008-01-01

    Infection by viruses having lipid-bilayer envelopes proceeds through fusion of the viral membrane with a membrane of the target cell. Viral ‘fusion proteins’ facilitate this process. They vary greatly in structure, but all seem to have a common mechanism of action, in which a ligand-triggered, large-scale conformational change in the fusion protein is coupled to apposition and merger of the two bilayers. We describe three examples—the influenza virus hemagglutinin, the flavivirus E protein and the vesicular stomatitis virus G protein—in some detail, to illustrate the ways in which different structures have evolved to implement this common mechanism. Fusion inhibitors can be effective antiviral agents. PMID:18596815

  8. Alphavirus Entry and Membrane Fusion

    PubMed Central

    Kielian, Margaret; Chanel-Vos, Chantal; Liao, Maofu

    2010-01-01

    The study of enveloped animal viruses has greatly advanced our understanding of the general properties of membrane fusion and of the specific pathways that viruses use to infect the host cell. The membrane fusion proteins of the alphaviruses and flaviviruses have many similarities in structure and function. As reviewed here, alphaviruses use receptor-mediated endocytic uptake and low pH-triggered membrane fusion to deliver their RNA genomes into the cytoplasm. Recent advances in understanding the biochemistry and structure of the alphavirus membrane fusion protein provide a clearer picture of this fusion reaction, including the protein’s conformational changes during fusion and the identification of key domains. These insights into the alphavirus fusion mechanism suggest new areas for experimental investigation and potential inhibitor strategies for anti-viral therapy. PMID:21546978

  9. Membrane fusion during poxvirus entry.

    PubMed

    Moss, Bernard

    2016-12-01

    Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.

  10. Poxvirus entry and membrane fusion

    SciTech Connect

    Moss, Bernard . E-mail: bmoss@nih.gov

    2006-01-05

    The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

  11. Herpes simplex virus Membrane Fusion.

    PubMed

    Weed, Darin J; Nicola, Anthony V

    2017-01-01

    Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.

  12. A Model for Membrane Fusion

    NASA Astrophysics Data System (ADS)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  13. Membrane fusion during phage lysis.

    PubMed

    Rajaure, Manoj; Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry

    2015-04-28

    In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG.

  14. Membrane fusion in muscle development and repair

    PubMed Central

    Demonbreun, Alexis R.; Biersmith, Bridget H.

    2015-01-01

    Mature skeletal muscle forms from the fusion of skeletal muscle precursor cells, myoblasts. Myoblasts fuse to other myoblasts to generate multinucleate myotubes during myogenesis, and myoblasts also fuse to other myotubes during muscle growth and repair. Proteins within myoblasts and myotubes regulate complex processes such as elongation, migration, cell adherence, cytoskeletal reorganization, membrane coalescence, and ultimately fusion. Recent studies have identified cell surface proteins, intracellular proteins, and extracellular signaling molecules required for the proper fusion of muscle. Many proteins that actively participate in myoblast fusion also coordinate membrane repair. Here we will review mammalian membrane fusion with specific attention to proteins that mediate myoblast fusion and muscle repair. PMID:26537430

  15. Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein.

    PubMed

    Shmulevitz, Maya; Epand, Raquel F; Epand, Richard M; Duncan, Roy

    2004-03-01

    The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.

  16. Photoinduced Fusion of Lipid Bilayer Membranes.

    PubMed

    Suzuki, Yui; Nagai, Ken H; Zinchenko, Anatoly; Hamada, Tsutomu

    2017-03-14

    We have developed a novel system for photocontrol of the fusion of lipid vesicles through the use of a photosensitive surfactant containing an azobenzene moiety (AzoTAB). Real-time microscopic observations clarified a change in both the surface area and internal volume of vesicles during fusion. We also determined the optimal cholesterol concentrations and temperature for inducing fusion. The mechanism of fusion can be attributed to a change in membrane tension, which is caused by the solubilization of lipids through the isomerization of AzoTAB. We used a micropipet technique to estimate membrane tension and discuss the mechanism of fusion in terms of membrane elastic energy. The obtained results regarding this novel photoinduced fusion could lead to a better understanding of the mechanism of membrane fusion in living cells and may also see wider applications, such as in drug delivery and biomimetic material design.

  17. Henipavirus membrane fusion and viral entry.

    PubMed

    Aguilar, Hector C; Iorio, Ronald M

    2012-01-01

    Nipah (NiV) and Hendra (HeV) viruses cause cell-cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell-cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field.

  18. Rabies Virus-Induced Membrane Fusion Pathway

    PubMed Central

    Gaudin, Yves

    2000-01-01

    Fusion of rabies virus with membranes is triggered at low pH and is mediated by the viral glycoprotein (G). The rabies virus-induced fusion pathway was studied by investigating the effects of exogenous lipids having various dynamic molecular shapes on the fusion process. Inverted cone-shaped lysophosphatidylcholines (LPCs) blocked fusion at a stage subsequent to fusion peptide insertion into the target membrane. Consistent with the stalk-hypothesis, LPC with shorter alkyl chains inhibited fusion at lower membrane concentrations and this inhibition was compensated by the presence of oleic acid. However, under suboptimal fusion conditions, short chain LPCs, which were translocated in the inner leaflet of the membranes, considerably reduced the lag time preceding membrane merging, resulting in faster kinetics of fusion. This indicated that the rate limiting step for fusion is the formation of a fusion pore in a diaphragm of restricted hemifusion. The previously described cold-stabilized prefusion complex was also characterized. This intermediate is at a well-advanced stage of the fusion process when the hemifusion diaphragm is destabilized, but lipid mixing is still restricted, probably by a ring-like complex of glycoproteins. I provide evidence that this state has a dynamic character and that its lipid organization can reverse back to two lipid bilayers. PMID:10931871

  19. Membrane fusion in vesicles of oligomerizable lipids.

    PubMed Central

    Ravoo, B J; Weringa, W D; Engberts, J B

    1999-01-01

    Membrane fusion has been examined in a model system of small unilamellar vesicles of synthetic lipids that can be oligomerized through the lipid headgroups. The oligomerization can be induced either in both bilayer leaflets or in the inner leaflet exclusively. Oligomerization leads to denser lipid headgroup packing, with concomitant reduction of lipid lateral diffusion and membrane permeability. As evidenced by lipid mixing assays, electron microscopy, and light scattering, calcium-induced fusion of the bilayer vesicles is strongly retarded and inhibited by oligomerization. Remarkably, oligomerization of only the inner leaflet of the bilayer is already sufficient to affect fusion. The efficiency of inhibition and retardation of fusion critically depend on the relative amount of oligomeric lipid present, on the concentration of calcium ions, and on temperature. Implications for the mechanism of bilayer membrane fusion are discussed in terms of lipid lateral diffusion and membrane curvature effects. PMID:9876149

  20. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion

    PubMed Central

    Russell, Charles J.; Jardetzky, Theodore S.; Lamb, Robert A.

    2001-01-01

    Peptides derived from heptad repeat regions adjacent to the fusion peptide and transmembrane domains of many viral fusion proteins form stable helical bundles and inhibit fusion specifically. Paramyxovirus SV5 fusion (F) protein-mediated fusion and its inhibition by the peptides N-1 and C-1 were analyzed. The temperature dependence of fusion by F suggests that thermal energy, destabilizing proline residues and receptor binding by the hemagglutinin–neuraminidase (HN) protein collectively contribute to F activation from a metastable native state. F-mediated fusion was reversibly arrested by low temperature or membrane-incorporated lipids, and the resulting F intermediates were characterized. N-1 inhibited an earlier F intermediate than C-1. Co-expression of HN with F lowered the temperature required to attain the N-1-inhibited intermediate, consistent with HN binding to its receptor stimulating a conformational change in F. C-1 bound and inhibited an intermediate of F that could be detected until a point directly preceding membrane merger. The data are consistent with C-1 binding a pre-hairpin intermediate of F and with helical bundle formation being coupled directly to membrane fusion. PMID:11483506

  1. Mechanical tension drives cell membrane fusion.

    PubMed

    Kim, Ji Hoon; Ren, Yixin; Ng, Win Pin; Li, Shuo; Son, Sungmin; Kee, Yee-Seir; Zhang, Shiliang; Zhang, Guofeng; Fletcher, Daniel A; Robinson, Douglas N; Chen, Elizabeth H

    2015-03-09

    Membrane fusion is an energy-consuming process that requires tight juxtaposition of two lipid bilayers. Little is known about how cells overcome energy barriers to bring their membranes together for fusion. Previously, we have shown that cell-cell fusion is an asymmetric process in which an "attacking" cell drills finger-like protrusions into the "receiving" cell to promote cell fusion. Here, we show that the receiving cell mounts a Myosin II (MyoII)-mediated mechanosensory response to its invasive fusion partner. MyoII acts as a mechanosensor, which directs its force-induced recruitment to the fusion site, and the mechanosensory response of MyoII is amplified by chemical signaling initiated by cell adhesion molecules. The accumulated MyoII, in turn, increases cortical tension and promotes fusion pore formation. We propose that the protrusive and resisting forces from fusion partners put the fusogenic synapse under high mechanical tension, which helps to overcome energy barriers for membrane apposition and drives cell membrane fusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion.

    PubMed

    Roehrig, John T; Butrapet, Siritorn; Liss, Nathan M; Bennett, Susan L; Luy, Betty E; Childers, Thomas; Boroughs, Karen L; Stovall, Janae L; Calvert, Amanda E; Blair, Carol D; Huang, Claire Y-H

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion.

  3. Mechanisms of influenza viral membrane fusion.

    PubMed

    Blijleven, Jelle S; Boonstra, Sander; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M

    2016-12-01

    Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    SciTech Connect

    Roehrig, John T.; Butrapet, Siritorn; Liss, Nathan M.; Bennett, Susan L.; Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E.; Blair, Carol D.; Huang, Claire Y.-H.

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  5. MEMBRANE FUSION IN A MODEL SYSTEM

    PubMed Central

    Satir, Birgit; Schooley, Caroline; Satir, Peter

    1973-01-01

    The freeze-fracture, freeze-etch technique can be employed to reveal new details of the process of fusion of two unit membranes For this study, mucocyst discharge in Tetrahymena pyriformis provides a model system with certain general implications The undischarged mature mucocyst is a saclike, membrane-bound, secretory vesicle containing crystalline material The organelle tip finds its way toward a special site, a rosette of 150 Å diameter particles within the plasma membrane. To match this site, the mucocyst membrane forms an annulus of 110 Å diameter particles, above whose inner edge the rosette particles sit. Discharge of some mucocysts is triggered by fixation. As discharge proceeds, the organelle becomes spherical and its content changes from crystalline to amorphous. The cytoplasm between the two matching membrane sites is squeezed away and the membranes fuse Steps in membrane reorganization can be reconstructed from changes in rosette appearance in the fracture faces. First, a depression in the rosette—the fusion pocket—forms. The rosette particles spread at the lip as the pocket deepens and enlarges from 60 to 200 nm. The annulus particles then become visible at the lip, indicating completed fusion of the A fracture faces of mucocyst and plasma membranes The remaining B faces of the two membranes have opposite polarities When the content of the mucocyst is released, the edges of these faces join so that the unit membrane runs uninterruptedly around the lip and into the pocket. PMID:4629881

  6. Separate fusion of outer and inner mitochondrial membranes

    PubMed Central

    Malka, Florence; Guillery, Olwenn; Cifuentes-Diaz, Carmen; Guillou, Emmanuelle; Belenguer, Pascale; Lombès, Anne; Rojo, Manuel

    2005-01-01

    Mitochondria are enveloped by two closely apposed boundary membranes with different properties and functions. It is known that they undergo fusion and fission, but it has remained unclear whether outer and inner membranes fuse simultaneously, coordinately or separately. We set up assays for the study of inner and outer membrane fusion in living human cells. Inner membrane fusion was more sensitive than outer membrane fusion to inhibition of glycolysis. Fusion of the inner membrane, but not of the outer membrane, was abolished by dissipation of the inner membrane potential with K+ (valinomycin) or H+ ionophores (cccp). In addition, outer and inner membrane fusion proceeded separately in the absence of any drug. The separate fusion of outer and inner membranes and the different requirements of these fusion reactions point to the existence of fusion machineries that can function separately. PMID:16113651

  7. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    PubMed

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  8. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc

    PubMed Central

    Barriga, Gonzalo P.; Villalón-Letelier, Fernando; Márquez, Chantal L.; Bignon, Eduardo A.; Acuña, Rodrigo; Ross, Breyan H.; Monasterio, Octavio; Mardones, Gonzalo A.; Vidal, Simon E.; Tischler, Nicole D.

    2016-01-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses

  9. Sequential conformational rearrangements in flavivirus membrane fusion

    PubMed Central

    Chao, Luke H; Klein, Daryl E; Schmidt, Aaron G; Peña, Jennifer M; Harrison, Stephen C

    2014-01-01

    The West Nile Virus (WNV) envelope protein, E, promotes membrane fusion during viral cell entry by undergoing a low-pH triggered conformational reorganization. We have examined the mechanism of WNV fusion and sought evidence for potential intermediates during the conformational transition by following hemifusion of WNV virus-like particles (VLPs) in a single particle format. We have introduced specific mutations into E, to relate their influence on fusion kinetics to structural features of the protein. At the level of individual E subunits, trimer formation and membrane engagement of the threefold clustered fusion loops are rate-limiting. Hemifusion requires at least two adjacent trimers. Simulation of the kinetics indicates that availability of competent monomers within the contact zone between virus and target membrane makes trimerization a bottleneck in hemifusion. We discuss the implications of the model we have derived for mechanisms of membrane fusion in other contexts. DOI: http://dx.doi.org/10.7554/eLife.04389.001 PMID:25479384

  10. Cholesterol Mediates Membrane Curvature during Fusion Events

    NASA Astrophysics Data System (ADS)

    Ivankin, Andrey; Kuzmenko, Ivan; Gidalevitz, David

    2012-06-01

    Biomembranes undergo extensive shape changes as they perform vital cellular functions. The mechanisms by which lipids and proteins control membrane curvature remain unclear. We use x-ray reflectivity, grazing incidence x-ray diffraction, and epifluorescence microscopy to study binding of HIV-1 glycoprotein gp41’s membrane-bending domain to DPPC/cholesterol monolayers of various compositions at the air-liquid interface. The results offer a new insight into how membrane curvature could be regulated by cholesterol during fusion of the viral lipid envelope and the host cell membranes.

  11. Intermediates and kinetics of membrane fusion.

    PubMed Central

    Bentz, J

    1992-01-01

    Recently, it has become clear that the influenza virus fusion protein, hemagglutinin (HA), produces membrane destabilization and fusion by a multistep process, which involves the aggregation of the HAs to form a fusion site. While the details of this process are under debate, it is important to recognize that proposing any sequence of "microscopic" fusion intermediates encumbers general "macroscopic" kinetic consequences, i.e., with respect to membrane mixing rates. Using a kinetic scheme which incorporates the essential elements of several recently proposed models, some of these measurable properties have been elucidated. First, a rigorous mathematical relationship between fusion intermediates and the fusion event itself is defined. Second, it is shown that what is measured as the macroscopic "fusion rate constant" is a simple function of all of the rate constants governing the transitions between intermediates, whether or not one of the microscopic steps is rate limiting. Third, while this kinetic scheme predicts a delay (or lag) time for fusion, as has been observed, it will be very difficult to extract reliable microscopic information from these data. Furthermore, it is predicted that the delay time can depend upon HA surface density even when the HA aggregation step is very rapid compared with fusion, i.e., the delay time need not be due to HA aggregation. Fourth, the inactivation process observed for influenza virions at low pH can be described within this kinetic scheme simply, yet rigorously, via the loss of the fusion intermediates. Fifth, predicted Arrhenius plots of fusion rates can be linear for this multistep scheme, even though there is no single rate-determining step and even when a branched step is introduced, i.e., where one pathway predominates at low temperature and the other pathway predominates at high temperature. Furthermore, the apparent activation energies obtained from these plots bear little or no quantitative resemblance to the

  12. Paleontological evidence for membrane fusion between a unit membrane and a half-unit membrane.

    PubMed

    Wang, Xin; Liu, Wenzhe; Cui, Jinzhong; Du, Kaihe

    2007-01-01

    Membrane fusion is of fundamental importance for many biological processes and has been a topic of intensive research in past decades with several models being proposed for it. Fossils had previously not been considered relevant to studies on membrane fusion. But here two different membrane fusion patterns are reported in the same well-preserved fossil plant from the Miocene (15-20 million years old) at Clarkia, Idaho, US. Scanning electron microscope, transmission electron microscope, and traditional studies reveal the vesicles in various states (even transient semi-fusion) of membrane fusion, and thus shed new light on their membrane structure and fusion during exocytoses. The new evidence suggests that vesicles in plant cells may have not only a unit membrane but also a half-unit membrane, and that a previously overlooked membrane fusion pattern exists in plant cells. This unexpected result from an unexpected material not only marks the first evidence of on-going physiological activities in fossil plants, but also raises questions on membrane fusion in recent plants.

  13. Functional relevance of transmembrane domains in membrane fusion.

    PubMed

    Nikolaus, Jörg; Herrmann, Andreas

    2012-11-01

    Membrane fusion is ubiquitous in life. Fusion of biological membranes is mediated by specialized fusion proteins anchored to the bilayers destined to fuse. Here we describe these proteins as being instrumental in viral, intracellular and developmental fusion. Next, we review experimental and theoretical evidence that points to fusion in the different systems as following a common 'fusion through hemifusion' pathway. We also focus on the structure and dynamics of the transmembrane segment that anchors the fusion proteins to the bilayer, and its role in driving fusion. In particular, we highlight the influence of this single segment on the surrounding membrane lipids and on the overall shape of the membrane along the way to fusion.

  14. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein.

    PubMed

    Kim, Irene S; Jenni, Simon; Stanifer, Megan L; Roth, Eatai; Whelan, Sean P J; van Oijen, Antoine M; Harrison, Stephen C

    2017-01-03

    The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a "class I" fusogen) and West Nile virus envelope protein ("class II"). Our study of VSV now extends this description to "class III" viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion.

  15. IM30 triggers membrane fusion in cyanobacteria and chloroplasts.

    PubMed

    Hennig, Raoul; Heidrich, Jennifer; Saur, Michael; Schmüser, Lars; Roeters, Steven J; Hellmann, Nadja; Woutersen, Sander; Bonn, Mischa; Weidner, Tobias; Markl, Jürgen; Schneider, Dirk

    2015-05-08

    The thylakoid membrane of chloroplasts and cyanobacteria is a unique internal membrane system harbouring the complexes of the photosynthetic electron transfer chain. Despite their apparent importance, little is known about the biogenesis and maintenance of thylakoid membranes. Although membrane fusion events are essential for the formation of thylakoid membranes, proteins involved in membrane fusion have yet to be identified in photosynthetic cells or organelles. Here we show that IM30, a conserved chloroplast and cyanobacterial protein of approximately 30 kDa binds as an oligomeric ring in a well-defined geometry specifically to membranes containing anionic lipids. Triggered by Mg(2+), membrane binding causes destabilization and eventually results in membrane fusion. We propose that IM30 establishes contacts between internal membrane sites and promotes fusion to enable regulated exchange of proteins and/or lipids in cyanobacteria and chloroplasts.

  16. Structures and Mechanisms of Viral Membrane Fusion Proteins

    PubMed Central

    White, Judith M.; Delos, Sue E.; Brecher, Matthew; Schornberg, Kathryn

    2009-01-01

    Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus. PMID:18568847

  17. Lipids as modulators of membrane fusion mediated by viral fusion proteins.

    PubMed

    Teissier, Elodie; Pécheur, Eve-Isabelle

    2007-11-01

    Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.

  18. Possible ways to achieve cold fusion. III

    SciTech Connect

    Tisenko, Yu.A.

    1994-12-01

    It is suggested that a deuteron {open_quotes}microaccelerator{close_quotes} be constructed in order to achieve cold fusion. This accelerator would operate on the basis of a glow discharge near a charged Pd-D powder grain in low-density gaseous D{sub 2}. Possible parameters of such an accelerator are calculated. The heat released as a result of fusion is estimated, as is the intensity of the deuteron flux.

  19. Spatial Regulation of Membrane Fusion Controlled by Modification of Phosphoinositides

    PubMed Central

    Dumas, Fabrice; Byrne, Richard D.; Vincent, Ben; Hobday, Tina M. C.; Poccia, Dominic L.; Larijani, Banafshé

    2010-01-01

    Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCγ), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P2) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism. PMID:20808914

  20. Phospholipase A2: Potential roles in native membrane fusion.

    PubMed

    Dabral, Deepti; Coorssen, Jens R

    2017-04-01

    Membrane fusion is a fundamental molecular mechanism by which two apposed membrane bilayers coalesce in rapid, transient steps that enable the successive merging of the outer and inner leaflets allowing lipid intermixing and subsequent mixing of the two previously separate compartments. The actual membrane merger mechanism - fusion, by definition - is conceptualized to be protein- or lipid-centric. According to the widely vetted stalk-pore hypothesis, membrane fusion proceeds via high curvature lipid intermediates. By cleaving membrane phospholipids at the sn-2 position, Phospholipase A2 generates metabolites that exert spontaneous curvature stress (both negative and positive) on the membrane, thus influencing local membrane bending by altering the packing and conformation of lipids and proteins, respectively. Such changes could potentially modulate priming and attachment/docking steps that precede fusion, as well as the membrane merger steps per se. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein

    PubMed Central

    Kim, Irene S.; Jenni, Simon; Stanifer, Megan L.; Roth, Eatai; Whelan, Sean P. J.; van Oijen, Antoine M.; Harrison, Stephen C.

    2017-01-01

    The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a “class I” fusogen) and West Nile virus envelope protein (“class II”). Our study of VSV now extends this description to “class III” viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion. PMID:27974607

  2. ROM-1 potentiates photoreceptor specific membrane fusion processes.

    PubMed

    Boesze-Battaglia, Kathleen; Stefano, Frank P; Fitzgerald, Catherine; Muller-Weeks, Susan

    2007-01-01

    Photoreceptor outer segment (OS) renewal requires a series of tightly regulated membrane fusion events which are mediated by a fusion complex containing protein and lipid components. The best characterized of these components, is a unique photoreceptor specific tetraspanin, peripherin/rds (P/rds, a.k.a., peripherin-2, Rds and Prph). In these studies we investigated the role of peripherin's non-glycosylated homolog, ROM-1, in OS fusion using a COS cell heterologous expression system and a well characterized cell free fusion assay system. Membranes isolated from COS-7 cells transfected with either FLAG-tagged P/rds or HA-tagged ROM-1 or both proteins were assayed for their ability to merge with fluorescently labeled OS plasma membrane (PM). Such membrane merger is one measure of membrane fusogenicity. The highest percent fusion was observed when the proteins were co-expressed. Furthermore detailed analysis of the fusion kinetics between fluorescently labeled PM and proteo-liposomes containing either, pure P/rds, pure ROM-1 or the ROM-1-P/rds complex clearly demonstrated that optimal fusion requires an ROM-1/P/rds complex. Proteo-liposomes composed of ROM-1 alone were not fusogenic. Peptide competition studies suggest that optimization of fusion may be due to the formation of a fusion competent peripherin/rds C-terminus in the presence of ROM-1. These studies provide further support for the hypothesis that a P/rds dependent membrane fusion complex is involved in photoreceptor renewal processes.

  3. Mutual control of membrane fission and fusion proteins.

    PubMed

    Peters, Christopher; Baars, Tonie L; Bühler, Susanne; Mayer, Andreas

    2004-11-24

    Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.

  4. Stalk model of membrane fusion: solution of energy crisis.

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M

    2002-01-01

    Membrane fusion proceeds via formation of intermediate nonbilayer structures. The stalk model of fusion intermediate is commonly recognized to account for the major phenomenology of the fusion process. However, in its current form, the stalk model poses a challenge. On one hand, it is able to describe qualitatively the modulation of the fusion reaction by the lipid composition of the membranes. On the other, it predicts very large values of the stalk energy, so that the related energy barrier for fusion cannot be overcome by membranes within a biologically reasonable span of time. We suggest a new structure for the fusion stalk, which resolves the energy crisis of the model. Our approach is based on a combined deformation of the stalk membrane including bending of the membrane surface and tilt of the hydrocarbon chains of lipid molecules. We demonstrate that the energy of the fusion stalk is a few times smaller than those predicted previously and the stalks are feasible in real systems. We account quantitatively for the experimental results on dependence of the fusion reaction on the lipid composition of different membrane monolayers. We analyze the dependence of the stalk energy on the distance between the fusing membranes and provide the experimentally testable predictions for the structural features of the stalk intermediates. PMID:11806930

  5. Direct observation of intermediate states in model membrane fusion

    PubMed Central

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-01-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285

  6. Direct observation of intermediate states in model membrane fusion

    NASA Astrophysics Data System (ADS)

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-03-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.

  7. Observations of membrane fusion in a liposome dispersion: the missing fusion intermediate?

    PubMed Central

    Foldvari, Marianna

    2015-01-01

    Early intermediate structures of liposome-liposome fusion events were captured by freeze-fracture electron microscopic (EM) technique. The images show the morphology of the fusion interface at several different stages of the fusion event. One of the intermediates was captured at a serendipitous stage of two vesicles’ membranes (both leaflets) merging and their contents starting to intermix clearly showing the fusion interface with a previously unseen fusion rim. From the morphological information a hypothetical sequence of the fusion event and corresponding lipid structural arrangements are described. PMID:26069726

  8. The Multifaceted Role of SNARE Proteins in Membrane Fusion

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686

  9. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    PubMed

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  10. Model cell membranes: Techniques to form complex biomimetic supported lipid bilayers via vesicle fusion

    PubMed Central

    Hardy, Gregory J.; Nayak, Rahul

    2013-01-01

    Vesicle fusion has long provided an easy and reliable method to form supported lipid bilayers (SLBs) from simple, zwitterionic vesicles on siliceous substrates. However, for complex compositions, such as vesicles with high cholesterol content and multiple lipid types, the energy barrier for the vesicle-to-bilayer transition is increased or the required vesicle-vesicle and vesicle-substrate interactions are insufficient for vesicle fusion. Thus, for vesicle compositions that more accurately mimic native membranes, vesicle fusion often fails to form SLBs. In this paper, we review three approaches to overcome these barriers to form complex, biomimetic SLBs via vesicle fusion: (i) optimization of experimental conditions (e.g., temperature, buffer ionic strength, osmotic stress, cation valency, and buffer pH), (ii) α-helical (AH) peptide-induced vesicle fusion, and (iii) bilayer edge-induced vesicle fusion. AH peptide-induced vesicle fusion can form complex SLBs on multiple substrate types without the use of additional equipment. Bilayer edge-induced vesicle fusion uses microfluidics to form SLBs from vesicles with complex composition, including vesicles derived from native cell membranes. Collectively, this review introduces vesicle fusion techniques that can be generalized for many biomimetic vesicle compositions and many substrate types, and thus will aid efforts to reliably create complex SLB platforms on a range of substrates. PMID:24031164

  11. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    SciTech Connect

    Yu, Qianlong; Blissard, Gary W.; Liu, Tong-Xian; Li, Zhaofei

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  12. The Hemifused State on the Pathway to Membrane Fusion

    NASA Astrophysics Data System (ADS)

    Warner, Jason M.; O'Shaughnessy, Ben

    2012-04-01

    Fusion of compartments enclosed by membrane bilayers enables secretion and other vital cellular processes and is widely studied in model synthetic membrane systems. Experiments suggest the fusion pathway passes through a hemifused intermediate where only outer monolayers are fused. Here we show membrane tension and divalent cations drive vesicles to hemifused equilibrium with expanded hemifusion diaphragms (HDs) where inner monolayers engage. Predicted HD sizes agree with recent measurements of Nikolaus [Biophys. J. 98, 1192 (2010).BIOJAU0006-349510.1016/j.bpj.2009.11.042]. The fusion pathway is completed by HD lysis provided HD tension is sufficiently high.

  13. Membrane Fusion Induced by Small Molecules and Ions

    PubMed Central

    Mondal Roy, Sutapa; Sarkar, Munna

    2011-01-01

    Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306

  14. Palaeontological evidence of membrane relationship in step-by-step membrane fusion

    PubMed Central

    WANG, XIN; LIU, WENZHE; DU, KAIHE

    2011-01-01

    Studies on membrane fusion in living cells indicate that initiation of membrane fusion is a transient and hard to capture process. Despite previous research, membrane behaviour at this point is still poorly understood. Recent palaeobotanical research has revealed snapshots of membrane fusion in a 15-million-year-old fossil pinaceous cone. To reveal the membrane behaviour during the fusion, we conducted more observations on the same fossil material. Several discernible steps of membrane fusion have been fixed naturally and observed in the fossil material. This observation provides transmission electron microscope (TEM) images of the transient intermediate stage and clearly shows the relationship between membranes. Observing such a transient phenomenon in fossil material implies that the fixing was most likely accomplished quickly by a natural process. The mechanism behind this phenomenon is clearly worthy of further enquiry. PMID:21190428

  15. Entry of enveloped viruses into host cells: membrane fusion.

    PubMed

    Más, Vicente; Melero, José A

    2013-01-01

    Viruses are intracellular parasites that hijack the cellular machinery for their own replication. Therefore, an obligatory step in the virus life cycle is the delivery of the viral genome inside the cell. Enveloped viruses (i.e., viruses with a lipid envelope) use a two-step procedure to release their genetic material into the cell: (i) they first bind to specific surface receptors of the target cell membrane and then, (ii) they fuse the viral and cell membranes. This last step may occur at the cell surface or after internalization of the virus particle by endocytosis or by some other route (e.g., macropinocytosis). Remarkably, the virus-cell membrane fusion process goes essentially along the same intermediate steps as other membrane fusions that occur for instance in vesicular fusion at the nerve synapsis or cell-cell fusion in yeast mating. Specialized viral proteins, fusogens, promote virus-cell membrane fusion. The viral fusogens experience drastic structural rearrangements during fusion, liberating the energy required to overcome the repulsive forces that prevent spontaneous fusion of the two membranes. This chapter describes the different types of viral fusogens and their mode of action, as are currently known.

  16. Cis and trans interactions between atlastin molecules during membrane fusion

    PubMed Central

    Liu, Tina Y.; Bian, Xin; Romano, Fabian B.; Shemesh, Tom; Rapoport, Tom A.; Hu, Junjie

    2015-01-01

    Atlastin (ATL), a membrane-anchored GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes, is required for formation of the tubular network of the peripheral ER. How exactly ATL mediates membrane fusion is only poorly understood. Here we show that fusion is preceded by the transient tethering of ATL-containing vesicles caused by the dimerization of ATL molecules in opposing membranes. Tethering requires GTP hydrolysis, not just GTP binding, because the two ATL molecules are pulled together most strongly in the transition state of GTP hydrolysis. Most tethering events are futile, so that multiple rounds of GTP hydrolysis are required for successful fusion. Supported lipid bilayer experiments show that ATL molecules sitting on the same (cis) membrane can also undergo nucleotide-dependent dimerization. These results suggest that GTP hydrolysis is required to dissociate cis dimers, generating a pool of ATL monomers that can dimerize with molecules on a different (trans) membrane. In addition, tethering and fusion require the cooperation of multiple ATL molecules in each membrane. We propose a comprehensive model for ATL-mediated fusion that takes into account futile tethering and competition between cis and trans interactions. PMID:25825753

  17. The role of the membrane-spanning domain sequence in glycoprotein-mediated membrane fusion.

    PubMed

    Taylor, G M; Sanders, D A

    1999-09-01

    The role of glycoprotein membrane-spanning domains in the process of membrane fusion is poorly understood. It has been demonstrated that replacing all or part of the membrane-spanning domain of a viral fusion protein with sequences that encode signals for glycosylphosphatidylinositol linkage attachment abrogates membrane fusion activity. It has been suggested, however, that the actual amino acid sequence of the membrane-spanning domain is not critical for the activity of viral fusion proteins. We have examined the function of Moloney murine leukemia virus envelope proteins with substitutions in the membrane-spanning domain. Envelope proteins bearing substitutions for proline 617 are processed and incorporated into virus particles normally and bind to the viral receptor. However, they possess greatly reduced or undetectable capacities for the promotion of membrane fusion and infectious virus particle formation. Our results imply a direct role for the residues in the membrane-spanning domain of the murine leukemia virus envelope protein in membrane fusion and its regulation. They also support the thesis that membrane-spanning domains possess a sequence-dependent function in other protein-mediated membrane fusion events.

  18. Reptilian reovirus utilizes a small type III protein with an external myristylated amino terminus to mediate cell-cell fusion.

    PubMed

    Corcoran, Jennifer A; Duncan, Roy

    2004-04-01

    Reptilian reovirus is one of a limited number of nonenveloped viruses that are capable of inducing cell-cell fusion. A small, hydrophobic, basic, 125-amino-acid fusion protein encoded by the first open reading frame of a bicistronic viral mRNA is responsible for this fusion activity. Sequence comparisons to previously characterized reovirus fusion proteins indicated that p14 represents a new member of the fusion-associated small transmembrane (FAST) protein family. Topological analysis revealed that p14 is a representative of a minor subset of integral membrane proteins, the type III proteins N(exoplasmic)/C(cytoplasmic) (N(exo)/C(cyt)), that lack a cleavable signal sequence and use an internal reverse signal-anchor sequence to direct membrane insertion and protein topology. This topology results in the unexpected, cotranslational translocation of the essential myristylated N-terminal domain of p14 across the cell membrane. The topology and structural motifs present in this novel reovirus membrane fusion protein further accentuate the diversity and unusual properties of the FAST protein family and clearly indicate that the FAST proteins represent a third distinct class of viral membrane fusion proteins.

  19. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas

    PubMed Central

    Liu, Yanjie; Misamore, Michael J.; Snell, William J.

    2010-01-01

    The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism. PMID:20335357

  20. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas.

    PubMed

    Liu, Yanjie; Misamore, Michael J; Snell, William J

    2010-05-01

    The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism.

  1. Temporal Control of Membrane Fusion through Photolabile PEGylation of Liposome Membranes.

    PubMed

    Kong, Li; Askes, Sven H C; Bonnet, Sylvestre; Kros, Alexander; Campbell, Frederick

    2016-01-22

    Membrane fusion results in the transport and mixing of (bio)molecules across otherwise impermeable barriers. In this communication, we describe the temporal control of targeted liposome-liposome membrane fusion and contents mixing using light as an external trigger. Our method relies on steric shielding and rapid, photoinduced deshielding of complementary fusogenic peptides tethered to opposing liposomal membranes. In an analogous approach, we were also able to demonstrate precise spatiotemporal control of liposome accumulation at cellular membranes in vitro.

  2. Cross-Inhibition of Chikungunya Virus Fusion and Infection by Alphavirus E1 Domain III Proteins

    PubMed Central

    Sánchez-San Martín, Claudia; Nanda, Soumya; Zheng, Yan; Fields, Whitney

    2013-01-01

    Alphaviruses are small enveloped RNA viruses that include important emerging human pathogens, such as chikungunya virus (CHIKV). These viruses infect cells via a low-pH-triggered membrane fusion reaction, making this step a potential target for antiviral therapies. The E1 fusion protein inserts into the target membrane, trimerizes, and refolds to a hairpin-like conformation in which the combination of E1 domain III (DIII) and the stem region (DIII-stem) pack against a core trimer composed of E1 domains I and II (DI/II). Addition of exogenous DIII proteins from Semliki Forest virus (SFV) has been shown to inhibit E1 hairpin formation and SFV fusion and infection. Here we produced and characterized DIII and DI/II proteins from CHIKV and SFV. Unlike SFV DIII, both core trimer binding and fusion inhibition by CHIKV DIII required the stem region. CHIKV DIII-stem and SFV DIII-stem showed efficient cross-inhibition of SFV, Sindbis virus, and CHIKV infections. We developed a fluorescence anisotropy-based assay for the binding of SFV DIII-stem to the core trimer and used it to demonstrate the relatively high affinity of this interaction (Kd [dissociation constant], ∼85 nM) and the importance of the stem region. Together, our results support the conserved nature of the key contacts of DIII-stem in the alphavirus E1 homotrimer and describe a sensitive and quantitative in vitro assay for this step in fusion protein refolding. PMID:23637415

  3. Measurement of membrane fusion activity from viral membrane fusion proteins based on a fusion-dependent promoter induction system in insect cells

    PubMed Central

    Slack, J. M.; Blissard, G. W.

    2013-01-01

    Summary A number of viral membrane fusion proteins can be expressed alone on the surface of host cells, then triggered to induce cell-to-cell fusion or syncytium formation. Although rapid and easily observed, syncytium formation is not easily quantified and differences in fusion activity are not easily distinguished or measured. To address this problem, we developed a rapid and quantitative cell-to-cell fusion system that is useful for comparative analysis and may be suitable for high throughput screening. In this system, expression of a reporter protein, the enhanced green fluorescent protein (EGFP), is dependent on cell-to-cell fusion. Spodoptera frugiperda (Sf9) insect cells expressing a chimeric Lac Repressor-IE1 protein were fused to Sf9 cells containing an EGFP reporter construct under the control of a responsive lac operator containing promoter. Membrane fusion efficiency was measured from the resulting EGFP fluorescence activity. Sf9 cells expressing the Orgyia pseudotsugata Multicapsid Nucleopolyhedrovirus (OpMNPV) GP64 envelope fusion protein were used as a model to test this fusion assay. Subtle changes in fusion activities of GP64 proteins containing single amino acid substitutions in a putative membrane fusion domain were distinguished, and decreases in EGFP fluorescence corresponded to decreases in the hydrophobicity in the small putative membrane fusion domain. PMID:11562545

  4. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    SciTech Connect

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-20

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  5. Membrane fusion mediated by coiled coils: a hypothesis.

    PubMed Central

    Bentz, J

    2000-01-01

    A molecular model of the low-pH-induced membrane fusion by influenza hemagglutinin (HA) is proposed based upon the hypothesis that the conformational change to the extended coiled coil creates a high-energy hydrophobic membrane defect in the viral envelope or HA expressing cell. It is known that 1) an aggregate of at least eight HAs is required at the fusion site, yet only two or three of these HAs need to undergo the "essential" conformational change for the first fusion pore to form (Bentz, J. 2000. Biophys. J. 78:000-000); 2) the formation of the first fusion pore signifies a stage of restricted lipid flow into the nascent fusion site; and 3) some HAs can partially insert their fusion peptides into their own viral envelopes at low pH. This suggests that the committed step for HA-mediated fusion begins with a tightly packed aggregate of HAs whose fusion peptides are inserted into their own viral envelope, which causes restricted lateral lipid flow within the HA aggregate. The transition of two or three HAs in the center of the aggregate to the extended coiled coil extracts the fusion peptide and creates a hydrophobic defect in the outer monolayer of the virion, which is stabilized by the closely packed HAs. These HAs are inhibited from diffusing away from the site to admit lateral lipid flow, in part because that would initially increase the surface area of hydrophobic exposure. The other obvious pathway to heal this hydrophobic defect, or some descendent, is recruitment of lipids from the outer monolayer of the apposed target membrane, i.e., fusion. Other viral fusion proteins and the SNARE fusion protein complex appear to fit within this hypothesis. PMID:10653801

  6. Herpesvirus Glycoproteins Undergo Multiple Antigenic Changes before Membrane Fusion

    PubMed Central

    Glauser, Daniel L.; Kratz, Anne-Sophie; Stevenson, Philip G.

    2012-01-01

    Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4) entry machinery—gB, gH/gL and gp150—changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion. PMID:22253913

  7. TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane.

    PubMed

    Brauchi, Sebastian; Krapivinsky, Grigory; Krapivinsky, Luba; Clapham, David E

    2008-06-17

    TRPM7, of the transient receptor potential (TRP) family, is both an ion channel and a kinase. Previously, we showed that TRPM7 is located in the membranes of acetylcholine (ACh)-secreting synaptic vesicles of sympathetic neurons, forms a molecular complex with proteins of the vesicular fusion machinery, and is critical for stimulated neurotransmitter release. Here, we targeted pHluorin to small synaptic-like vesicles (SSLV) in PC12 cells and demonstrate that it can serve as a single-vesicle plasma membrane fusion reporter. In PC12 cells, as in sympathetic neurons, TRPM7 is located in ACh-secreting SSLVs. TRPM7 knockdown by siRNA, or abolishing channel activity by expression of a dominant negative TRPM7 pore mutant, decreased the frequency of spontaneous and voltage-stimulated SSLV fusion events without affecting large dense core vesicle secretion. We conclude that the conductance of TRPM7 across the vesicle membrane is important in SSLV fusion.

  8. Mechanics of membrane fusion/pore formation.

    PubMed

    Fuhrmans, Marc; Marelli, Giovanni; Smirnova, Yuliya G; Müller, Marcus

    2015-01-01

    Lipid bilayers play a fundamental role in many biological processes, and a considerable effort has been invested in understanding their behavior and the mechanism of topological changes like fusion and pore formation. Due to the time- and length-scale on which these processes occur, computational methods have proven to be an especially useful tool in their study. With their help, a number of interesting findings about the shape of fusion intermediates could be obtained, and novel hypotheses about the mechanism of topological changes and the involvement of peptides therein were suggested. In this work, we try to present a summary of these developments together with some hitherto unpublished results, featuring, among others, the shape of stalks and fusion pores, possible modes of action of the influenza HA fusion peptide and the SNARE protein complex, the mechanism of supported lipid bilayer formation by vesicle spreading, and the free energy and transition pathway of the fusion process.

  9. Multivalent Rab interactions determine tether-mediated membrane fusion

    PubMed Central

    Lürick, Anna; Gao, Jieqiong; Kuhlee, Anne; Yavavli, Erdal; Langemeyer, Lars; Perz, Angela; Raunser, Stefan; Ungermann, Christian

    2017-01-01

    Membrane fusion at endomembranes requires cross-talk between Rab GTPases and tethers to drive SNARE-mediated lipid bilayer mixing. Several tethers have multiple Rab-binding sites with largely untested function. Here we dissected the lysosomal HOPS complex as a tethering complex with just two binding sites for the Rab7-like Ypt7 protein to determine their relevance for fusion. Using tethering and fusion assays combined with HOPS mutants, we show that HOPS-dependent fusion requires both Rab-binding sites, with Vps39 being the stronger Ypt7 interactor than Vps41. The intrinsic amphipathic lipid packaging sensor (ALPS) motif within HOPS Vps41, a target of the vacuolar kinase Yck3, is dispensable for tethering and fusion but can affect tethering if phosphorylated. In combination, our data demonstrate that a multivalent tethering complex uses its two Rab bindings to determine the place of SNARE assembly and thus fusion at endomembranes. PMID:27852901

  10. Myomaker: A membrane activator of myoblast fusion and muscle formation

    PubMed Central

    Millay, Douglas P.; O’Rourke, Jason R.; Sutherland, Lillian B.; Bezprozvannaya, Svetlana; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.

    2013-01-01

    Summary Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibers. However, the identity of myogenic proteins that directly govern this fusion process has remained elusive. Here, we discovered a muscle-specific membrane protein, named Myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is down-regulated thereafter. Over-expression of Myomaker in myoblasts dramatically enhances fusion and genetic disruption of Myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibers. Remarkably, forced expression of Myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacologic perturbation of the actin cytoskeleton abolishes the activity of Myomaker, consistent with prior studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein both necessary and sufficient for mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. PMID:23868259

  11. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    NASA Astrophysics Data System (ADS)

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution.

  12. Inner membrane fusion mediates spatial distribution of axonal mitochondria.

    PubMed

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-08

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution.

  13. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    PubMed Central

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  14. Expansion of the fusion stalk and its implication for biological membrane fusion.

    PubMed

    Risselada, Herre Jelger; Bubnis, Gregory; Grubmüller, Helmut

    2014-07-29

    Over the past 20 years, it has been widely accepted that membrane fusion proceeds via a hemifusion step before opening of the productive fusion pore. An initial hourglass-shaped lipid structure, the fusion stalk, is formed between the adjacent membrane leaflets (cis leaflets). It remains controversial if and how fusion proteins drive the subsequent transition (expansion) of the stalk into a fusion pore. Here, we propose a comprehensive and consistent thermodynamic understanding in terms of the underlying free-energy landscape of stalk expansion. We illustrate how the underlying free energy landscape of stalk expansion and the concomitant pathway is altered by subtle differences in membrane environment, such as leaflet composition, asymmetry, and flexibility. Nonleaky stalk expansion (stalk widening) requires the formation of a critical trans-leaflet contact. The fusion machinery can mechanically enforce trans-leaflet contact formation either by directly enforcing the trans-leaflets in close proximity, or by (electrostatically) condensing the area of the cis leaflets. The rate of these fast fusion reactions may not be primarily limited by the energetics but by the forces that the fusion proteins are able to exert.

  15. Expansion of the fusion stalk and its implication for biological membrane fusion

    PubMed Central

    Risselada, Herre Jelger; Bubnis, Gregory; Grubmüller, Helmut

    2014-01-01

    Over the past 20 years, it has been widely accepted that membrane fusion proceeds via a hemifusion step before opening of the productive fusion pore. An initial hourglass-shaped lipid structure, the fusion stalk, is formed between the adjacent membrane leaflets (cis leaflets). It remains controversial if and how fusion proteins drive the subsequent transition (expansion) of the stalk into a fusion pore. Here, we propose a comprehensive and consistent thermodynamic understanding in terms of the underlying free-energy landscape of stalk expansion. We illustrate how the underlying free energy landscape of stalk expansion and the concomitant pathway is altered by subtle differences in membrane environment, such as leaflet composition, asymmetry, and flexibility. Nonleaky stalk expansion (stalk widening) requires the formation of a critical trans-leaflet contact. The fusion machinery can mechanically enforce trans-leaflet contact formation either by directly enforcing the trans-leaflets in close proximity, or by (electrostatically) condensing the area of the cis leaflets. The rate of these fast fusion reactions may not be primarily limited by the energetics but by the forces that the fusion proteins are able to exert. PMID:25024174

  16. Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and beta-lactamase fusions.

    PubMed Central

    Prinz, W A; Beckwith, J

    1994-01-01

    To compare two approaches to analyzing membrane protein topology, a number of alkaline phosphatase fusions to membrane proteins were converted to beta-lactamase fusions. While some alkaline phosphatase fusions near the N terminus of cytoplasmic loops of membrane proteins have anomalously high levels of activity, the equivalent beta-lactamase fusions do not. This disparity may reflect differences in the folding of beta-lactamase and alkaline phosphatase in the cytoplasm. PMID:7929016

  17. Organelle acidification negatively regulates vacuole membrane fusion in vivo

    PubMed Central

    Desfougères, Yann; Vavassori, Stefano; Rompf, Maria; Gerasimaite, Ruta; Mayer, Andreas

    2016-01-01

    The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector. PMID:27363625

  18. Topological arrangement of the intracellular membrane fusion machinery

    PubMed Central

    Rathore, Shailendra S.; Ghosh, Nilanjan; Ouyang, Yan; Shen, Jingshi

    2011-01-01

    Soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology. PMID:21633111

  19. Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly

    PubMed Central

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon

    2010-01-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment. PMID:20926687

  20. Vesicle-membrane fusion. Observation of simultaneous membrane incorporation and content release.

    PubMed Central

    Woodbury, D J; Hall, J E

    1988-01-01

    Vesicle fusion, the central process of neurotransmitter release and hormonal secretion, is a complex process culminating in simultaneous incorporation of vesicle membrane into the plasma membrane and release of the vesicular contents extracellularly. This report describes simultaneous observation of membrane incorporation and content release using a model system composed of a planar bilayer and dye-filled vesicles. Images FIGURE 1 PMID:2462925

  1. Resolving single membrane fusion events on planar pore-spanning membranes

    PubMed Central

    Schwenen, Lando L. G.; Hubrich, Raphael; Milovanovic, Dragomir; Geil, Burkhard; Yang, Jian; Kros, Alexander; Jahn, Reinhard; Steinem, Claudia

    2015-01-01

    Even though a number of different in vitro fusion assays have been developed to analyze protein mediated fusion, they still only partially capture the essential features of the in vivo situation. Here we established an in vitro fusion assay that mimics the fluidity and planar geometry of the cellular plasma membrane to be able to monitor fusion of single protein-containing vesicles. As a proof of concept, planar pore-spanning membranes harboring SNARE-proteins were generated on highly ordered functionalized 1.2 μm-sized pore arrays in Si3N4. Full mobility of the membrane components was demonstrated by fluorescence correlation spectroscopy. Fusion was analyzed by two color confocal laser scanning fluorescence microscopy in a time resolved manner allowing to readily distinguish between vesicle docking, intermediate states such as hemifusion and full fusion. The importance of the membrane geometry on the fusion process was highlighted by comparing SNARE-mediated fusion with that of a minimal SNARE fusion mimetic. PMID:26165860

  2. Oligomerization of Fusogenic Peptides Promotes Membrane Fusion by Enhancing Membrane Destabilization

    PubMed Central

    Lau, Wai Leung; Ege, David S.; Lear, James D.; Hammer, Daniel A.; DeGrado, William F.

    2004-01-01

    A key element of membrane fusion reactions in biology is the involvement of specific fusion proteins. In many viruses, the proteins that mediate membrane fusion usually exist as homotrimers. Furthermore, they contain extended triple-helical coiled-coil domains and fusogenic peptides. It has been suggested that the coiled-coil domains present the fusogenic peptide in a conformation or geometry favorable for membrane fusion. To test the hypothesis that trimerization of fusogenic peptide is related to optimal fusion, we have designed and synthesized a triple-stranded coiled-coil X31 peptide, also known as the ccX31, which mimics the influenza virus hemagglutinin fusion peptide in the fusion-active state. We compared the membrane interactive properties of ccX31 versus the monomeric X31 fusogenic peptide. Our data show that trimerization enhances peptide-induced leakage of liposomal contents and lipid mixing. Furthermore, studies using micropipette aspiration of single vesicles reveal that ccX31 decreases lysis tension, τlysis, but not area expansion modulus, Ka, of phospholipid bilayers, whereas monomeric X31 peptide lowers both τlysis and Ka. Our results are consistent with the hypothesis that oligomerization of fusogenic peptide promotes membrane fusion, possibly by enhancing localized destabilization of lipid bilayers. PMID:14695269

  3. The Effect of Acute Microgravity on Mechanically-Induced Membrane Damage and Membrane-Membrane Fusion Events

    NASA Technical Reports Server (NTRS)

    Clarke, Mark, S. F.; Vanderburg, Charles R.; Feedback, Daniel L.

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". This response is characterized by both membrane rupture and membrane resealing events mediated by membrane-membrane fusion. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  4. The effect of acute microgravity on mechanically-induced membrane damage and membrane-membrane fusion events

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Vanderburg, C. R.; Feeback, D. L.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  5. The effect of acute microgravity on mechanically-induced membrane damage and membrane-membrane fusion events

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Vanderburg, C. R.; Feeback, D. L.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  6. HIV Fusion Peptide Penetrates, Disorders, and Softens T-Cell Membrane Mimics

    PubMed Central

    Tristram-Nagle, Stephanie; Chan, Rob; Kooijman, Edgar; Uppamoochikkal, Pradeep; Qiang, Wei; Weliky, David P.; Nagle, John F.

    2010-01-01

    This work investigates the interaction of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i) wild-type FP23 (23 N-terminal amino acids of gp41), (ii) water-soluble monomeric FP that adds six lysines on the C-terminus of FP23 (FPwsm), and (iii) the C-terminus covalently linked trimeric version (FPtri) of FPwsm. Model membranes were (i) LM3 (a T-cell mimic), (ii) 1,2-dioleoyl-sn-glycero-3-phosphocholine, (iii) 1,2-dioleoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol, (iv) 1,2-dierucoyl-sn-glycero-3-phosphocholine, and (v) 1,2-dierucoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol. Diffuse synchrotron low-angle x-ray scattering from fully hydrated samples, supplemented by volumetric data, showed that FP23 and FPtri penetrate into the hydrocarbon region and cause membranes to thin. Depth of penetration appears to depend upon a complex combination of factors including bilayer thickness, presence of cholesterol, and electrostatics. X-ray data showed an increase in curvature in hexagonal phase 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, which further indicates that FP23 penetrates into the hydrocarbon region rather than residing in the interfacial headgroup region. Low-angle x-ray scattering data also yielded the bending modulus KC, a measure of membrane stiffness, and wide-angle x-ray scattering yielded the Sxray orientational order parameter. Both FP23 and FPtri decreased KC and Sxray considerably, while the weak effect of FPwsm suggests that it did not partition strongly into LM3 model membranes. Our results are consistent with the HIV FP disordering and softening the T-cell membrane, thereby lowering the activation energy for viral membrane fusion. PMID:20655315

  7. The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane.

    PubMed

    Fontana, Juan; Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R; Cox, Reagan G; Whitbeck, J Charles; Brown, Lauren M; Eisenberg, Roselyn J; Cohen, Gary H

    2017-08-22

    All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at specific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii) incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB's conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.IMPORTANCE The herpesvirus family includes herpes simplex virus (HSV) and other human viruses that cause lifelong infections and a variety of diseases, like skin lesions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their envelope

  8. Diacylglycerol induces fusion of nuclear envelope membrane precursor vesicles.

    PubMed

    Barona, Teresa; Byrne, Richard D; Pettitt, Trevor R; Wakelam, Michael J O; Larijani, Banafshe; Poccia, Dominic L

    2005-12-16

    Purified membrane vesicles isolated from sea urchin eggs form nuclear envelopes around sperm nuclei following GTP hydrolysis in the presence of cytosol. A low density subfraction of these vesicles (MV1), highly enriched in phosphatidylinositol (PtdIns), is required for nuclear envelope formation. Membrane fusion of MV1 with a second fraction that contributes most of the nuclear envelope can be initiated without GTP by an exogenous bacterial PtdIns-specific phospholipase C (PI-PLC) which hydrolyzes PtdIns to form diacylglycerides and inositol 1-phosphate. This PI-PLC hydrolyzes a subset of sea urchin membrane vesicle PtdIns into diglycerides enriched in long chain, polyunsaturated species as revealed by a novel liquid chromatography-mass spectrometry analysis. Large unilammelar vesicles (LUVs) enriched in PtdIns can substitute for MV1 in PI-PLC induced nuclear envelope formation. Moreover, MV1 prehydrolyzed with PI-PLC and washed to remove inositols leads to spontaneous nuclear envelope formation with MV2 without further PI-PLC treatment. LUVs enriched in diacylglycerol mimic prehydrolyzed MV1. These results indicate that production of membrane-destabilizing diglycerides in membranes enriched in PtdIns may facilitate membrane fusion in a natural membrane system and suggest that MV1, which binds only to two places on the sperm nucleus, may initiate fusion locally.

  9. Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes

    PubMed Central

    2016-01-01

    Efficient delivery of drugs to living cells is still a major challenge. Currently, most methods rely on the endocytotic pathway resulting in low delivery efficiency due to limited endosomal escape and/or degradation in lysosomes. Here, we report a new method for direct drug delivery into the cytosol of live cells in vitro and invivo utilizing targeted membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane. This method thus allows for the quick and efficient delivery of drugs and is expected to have many invitro, ex vivo, and invivo applications. PMID:27725960

  10. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    SciTech Connect

    Pannuzzo, Martina; De Jong, Djurre H.; Marrink, Siewert J.; Raudino, Antonio

    2014-03-28

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca{sup 2+} by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca{sup 2+}-lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca{sup 2+} and PEG on membrane fusion.

  11. Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein

    PubMed Central

    Ader, Nadine; Brindley, Melinda; Avila, Mislay; Örvell, Claes; Horvat, Branka; Hiltensperger, Georg; Schneider-Schaulies, Jürgen; Vandevelde, Marc; Zurbriggen, Andreas; Plemper, Richard K.

    2013-01-01

    The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering. PMID:23077316

  12. Mechanism for active membrane fusion triggering by morbillivirus attachment protein.

    PubMed

    Ader, Nadine; Brindley, Melinda; Avila, Mislay; Örvell, Claes; Horvat, Branka; Hiltensperger, Georg; Schneider-Schaulies, Jürgen; Vandevelde, Marc; Zurbriggen, Andreas; Plemper, Richard K; Plattet, Philippe

    2013-01-01

    The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.

  13. Distinct functional determinants of influenza hemagglutinin-mediated membrane fusion

    PubMed Central

    Ivanovic, Tijana; Harrison, Stephen C

    2015-01-01

    Membrane fusion is the critical step for infectious cell penetration by enveloped viruses. We have previously used single-virion measurements of fusion kinetics to study the molecular mechanism of influenza-virus envelope fusion. Published data on fusion inhibition by antibodies to the 'stem' of influenza virus hemagglutinin (HA) now allow us to incorporate into simulations the provision that some HAs are inactive. We find that more than half of the HAs are unproductive even for virions with no bound antibodies, but that the overall mechanism is extremely robust. Determining the fraction of competent HAs allows us to determine their rates of target-membrane engagement. Comparison of simulations with data from H3N2 and H1N1 viruses reveals three independent functional variables of HA-mediated membrane fusion closely linked to neutralization susceptibility. Evidence for compensatory changes in the evolved mechanism sets the stage for studies aiming to define the molecular constraints on HA evolvability. DOI: http://dx.doi.org/10.7554/eLife.11009.001 PMID:26613408

  14. Lipid flow through fusion pores connecting membranes of different tensions.

    PubMed

    Chizmadzhev, Y A; Kumenko, D A; Kuzmin, P I; Chernomordik, L V; Zimmerberg, J; Cohen, F S

    1999-06-01

    When two membranes fuse, their components mix; this is usually described as a purely diffusional process. However, if the membranes are under different tensions, the material will spread predominantly by convection. We use standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible viscous media with the same shear viscosity, etas. The two monolayers interact by sliding past each other, described by an intermonolayer viscosity, etar. Combining a continuity equation with an equation that balances the work provided by the tension difference, Deltasigma, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, upsilon, and area of lipid flux, Phi. These expressions for upsilon and Phi depend on Deltasigma, etas, etar, and geometrical aspects of a toroidal pore, but the general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, rp, to a saturating value at large rp. As a result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement with available experimental data for both large and transient fusion pores.

  15. Lipid flow through fusion pores connecting membranes of different tensions.

    PubMed Central

    Chizmadzhev, Y A; Kumenko, D A; Kuzmin, P I; Chernomordik, L V; Zimmerberg, J; Cohen, F S

    1999-01-01

    When two membranes fuse, their components mix; this is usually described as a purely diffusional process. However, if the membranes are under different tensions, the material will spread predominantly by convection. We use standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible viscous media with the same shear viscosity, etas. The two monolayers interact by sliding past each other, described by an intermonolayer viscosity, etar. Combining a continuity equation with an equation that balances the work provided by the tension difference, Deltasigma, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, upsilon, and area of lipid flux, Phi. These expressions for upsilon and Phi depend on Deltasigma, etas, etar, and geometrical aspects of a toroidal pore, but the general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, rp, to a saturating value at large rp. As a result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement with available experimental data for both large and transient fusion pores. PMID:10354423

  16. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    PubMed

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  17. Field Theoretic Study of Bilayer Membrane Fusion. I. Hemifusion Mechanism

    PubMed Central

    Katsov, K.; Müller, M.; Schick, M.

    2004-01-01

    Self-consistent field theory is used to determine structural and energetic properties of metastable intermediates and unstable transition states involved in the standard stalk mechanism of bilayer membrane fusion. A microscopic model of flexible amphiphilic chains dissolved in hydrophilic solvent is employed to describe these self-assembled structures. We find that the barrier to formation of the initial stalk is much smaller than previously estimated by phenomenological theories. Therefore its creation it is not the rate-limiting process. The relevant barrier is associated with the rather limited radial expansion of the stalk into a hemifusion diaphragm. It is strongly affected by the architecture of the amphiphile, decreasing as the effective spontaneous curvature of the amphiphile is made more negative. It is also reduced when the tension is increased. At high tension the fusion pore, created when a hole forms in the hemifusion diaphragm, expands without bound. At very low membrane tension, small fusion pores can be trapped in a flickering metastable state. Successful fusion is severely limited by the architecture of the lipids. If the effective spontaneous curvature is not sufficiently negative, fusion does not occur because metastable stalks, whose existence is a seemingly necessary prerequisite, do not form at all. However if the spontaneous curvature is too negative, stalks are so stable that fusion does not occur because the system is unstable either to a phase of stable radial stalks, or to an inverted-hexagonal phase induced by stable linear stalks. Our results on the architecture and tension needed for successful fusion are summarized in a phase diagram. PMID:15326031

  18. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    PubMed Central

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  19. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    PubMed

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

  20. Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension

    PubMed Central

    Bretou, Marine; Jouannot, Ouardane; Fanget, Isabelle; Pierobon, Paolo; Larochette, Nathanaël; Gestraud, Pierre; Guillon, Marc; Emiliani, Valentina; Gasman, Stéphane; Desnos, Claire; Lennon-Duménil, Ana-Maria; Darchen, François

    2014-01-01

    Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force. PMID:25143404

  1. Effect of osmotic stress on membrane fusion on solid substrate.

    PubMed

    Zhu, Tao; Jiang, Zhongying; Nurlybaeva, El Mi Ra; Sheng, Jie; Ma, Yuqiang

    2013-05-28

    There is currently a lack of comprehensive understanding of osmotic effect on lipid vesicle fusion on solid oxide surface. The question has both biological and biomedical implications. We studied the effect by quartz crystal microbalance with dissipation monitoring using NaCl, sucrose as osmolytes, and two different osmotic stress imposition methods, which allowed us to separate the osmotic effects from the solute impacts. Osmotic stress was found to have limited influence on the fusion kinetics, independently of the direction of the gradient. Further atomic force microscopy experiments and energy consideration implied that osmotic stress spends the majority of chemical potential energy associated in directed transport of water across membrane. Its contribution to vesicle deformation and fusion on substrate is therefore small compared to that of adhesion.

  2. The Gaussian curvature elastic energy of intermediates in membrane fusion.

    PubMed

    Siegel, David P

    2008-12-01

    The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, kappa, was unknown. It is now possible to measure kappa for phospholipids that form bicontinuous inverted cubic (Q(II)) phases. Here, it is shown that one can estimate kappa for lipids that do not form Q(II) phases by studying the phase behavior of lipid mixtures. The method is used to estimate kappa for several lipid compositions in excess water. The values of kappa are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of k(B)T or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by approximately 30 k(B)T, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of k(B)T. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate

  3. Free energy analysis along the stalk mechanism of membrane fusion.

    PubMed

    Kawamoto, Shuhei; Shinoda, Wataru

    2014-05-07

    The free energy profile of the stalk model of membrane fusion has been calculated using coarse-grained molecular dynamics simulations. The proposed method guides the lipid configuration using a guiding wall potential to make the transition from two apposed membranes to a stalk and a fusion pore. The free energy profile is obtained with a thermodynamic integration scheme using the mean force working on the guiding wall as a response of the system. We applied the method to two apposed flat bilayers composed of dioleoyl phosphatidylethanolamine/dioleoyl phosphatidylcholine expanding over the simulation box under the periodic boundary conditions. The two transition states are identified as pre-stalk and pre-pore states. The free energy barrier for the latter is confirmed to be in good agreement with that estimated by the pulling method. The present method provides a practical way to calculate the free energy profile along the stalk mechanism.

  4. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc

    PubMed Central

    Stettner, Eva; Jeffers, Scott Allen; Pérez-Vargas, Jimena; Pehau-Arnaudet, Gerard; Tortorici, M. Alejandra; Jestin, Jean-Luc; England, Patrick; Tischler, Nicole D.; Rey, Félix A.

    2016-01-01

    Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single “fusion loop”. We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal “tail” that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens. PMID:27783711

  5. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc.

    PubMed

    Guardado-Calvo, Pablo; Bignon, Eduardo A; Stettner, Eva; Jeffers, Scott Allen; Pérez-Vargas, Jimena; Pehau-Arnaudet, Gerard; Tortorici, M Alejandra; Jestin, Jean-Luc; England, Patrick; Tischler, Nicole D; Rey, Félix A

    2016-10-01

    Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single "fusion loop". We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal "tail" that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens.

  6. Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis.

    PubMed

    Zhang, Zhen; Jackson, Meyer B

    2010-06-02

    A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca(2+)-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca(2+)-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca(2+)-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. An analysis of membrane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles.

    PubMed

    Yamada, Yuma; Fukuda, Yutaka; Harashima, Hideyoshi

    2015-09-01

    To achieve mitochondrial gene therapy, therapeutic molecules need to be transported through the outer and inner membranes of mitochondria into the innermost space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the construction of a MITO-Porter with a high fusogenic activity for the mitochondrial outer membrane for delivering molecules to the mitochondria of human cells. Here, we report on an investigation of a fusogenic lipid composition for the inner membrane, and an analysis of the fusogenic compositions for the outer and inner membranes. A significant relationship was found between fusion activity and the mitochondrial delivery of nucleic acids.

  8. Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation.

    PubMed

    Yang, Zhiwei; Gou, Lu; Chen, Shuyu; Li, Na; Zhang, Shengli; Zhang, Lei

    2017-01-01

    Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing) and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM) and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM), cryo-EM (cryo-EM), and molecular simulations.

  9. HIV fusion peptide penetrates, disorders, and softens T-cell membrane mimics.

    PubMed

    Tristram-Nagle, Stephanie; Chan, Rob; Kooijman, Edgar; Uppamoochikkal, Pradeep; Qiang, Wei; Weliky, David P; Nagle, John F

    2010-09-10

    This work investigates the interaction of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i) wild-type FP23 (23 N-terminal amino acids of gp41), (ii) water-soluble monomeric FP that adds six lysines on the C-terminus of FP23 (FPwsm), and (iii) the C-terminus covalently linked trimeric version (FPtri) of FPwsm. Model membranes were (i) LM3 (a T-cell mimic), (ii) 1,2-dioleoyl-sn-glycero-3-phosphocholine, (iii) 1,2-dioleoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol, (iv) 1,2-dierucoyl-sn-glycero-3-phosphocholine, and (v) 1,2-dierucoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol. Diffuse synchrotron low-angle x-ray scattering from fully hydrated samples, supplemented by volumetric data, showed that FP23 and FPtri penetrate into the hydrocarbon region and cause membranes to thin. Depth of penetration appears to depend upon a complex combination of factors including bilayer thickness, presence of cholesterol, and electrostatics. X-ray data showed an increase in curvature in hexagonal phase 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, which further indicates that FP23 penetrates into the hydrocarbon region rather than residing in the interfacial headgroup region. Low-angle x-ray scattering data also yielded the bending modulus K(C), a measure of membrane stiffness, and wide-angle x-ray scattering yielded the S(xray) orientational order parameter. Both FP23 and FPtri decreased K(C) and S(xray) considerably, while the weak effect of FPwsm suggests that it did not partition strongly into LM3 model membranes. Our results are consistent with the HIV FP disordering and softening the T-cell membrane, thereby lowering the activation energy for viral membrane fusion. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Liposome reconstitution of a minimal protein-mediated membrane fusion machine

    PubMed Central

    Top, Deniz; de Antueno, Roberto; Salsman, Jayme; Corcoran, Jennifer; Mader, Jamie; Hoskin, David; Touhami, Ahmed; Jericho, Manfred H; Duncan, Roy

    2005-01-01

    Biological membrane fusion is dependent on protein catalysts to mediate localized restructuring of lipid bilayers. A central theme in current models of protein-mediated membrane fusion involves the sequential refolding of complex homomeric or heteromeric protein fusion machines. The structural features of a new family of fusion-associated small transmembrane (FAST) proteins appear incompatible with existing models of membrane fusion protein function. While the FAST proteins function to induce efficient cell–cell fusion when expressed in transfected cells, it was unclear whether they function on their own to mediate membrane fusion or are dependent on cellular protein cofactors. Using proteoliposomes containing the purified p14 FAST protein of reptilian reovirus, we now show via liposome–cell and liposome–liposome fusion assays that p14 is both necessary and sufficient for membrane fusion. Stoichiometric and kinetic analyses suggest that the relative efficiency of p14-mediated membrane fusion rivals that of the more complex cellular and viral fusion proteins, making the FAST proteins the simplest known membrane fusion machines. PMID:16079913

  11. Selective Lysosomal Transporter Degradation by Organelle Membrane Fusion.

    PubMed

    McNally, Erin Kate; Karim, Mahmoud Abdul; Brett, Christopher Leonard

    2017-01-23

    Lysosomes rely on their resident transporter proteins to return products of catabolism to the cell for reuse and for cellular signaling, metal storage, and maintaining the lumenal environment. Despite their importance, little is known about the lifetime of these transporters or how they are regulated. Using Saccharomyces cerevisiae as a model, we discovered a new pathway intrinsic to homotypic lysosome membrane fusion that is responsible for their degradation. Transporter proteins are selectively sorted by the docking machinery into an area between apposing lysosome membranes, which is internalized and degraded by lumenal hydrolases upon organelle fusion. These proteins have diverse lifetimes that are regulated in response to protein misfolding, changing substrate levels, or TOR activation. Analogous to endocytosis for controlling surface protein levels, the "intralumenal fragment pathway" is critical for lysosome membrane remodeling required for organelle function in the context of cellular protein quality control, ion homeostasis, and metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Single residue deletions along the length of the influenza HA fusion peptide lead to inhibition of membrane fusion function

    SciTech Connect

    Langley, William A.; Thoennes, Sudha; Bradley, Konrad C.; Galloway, Summer E.; Talekar, Ganesh R.; Cummings, Sandra F.; Vareckova, Eva; Russell, Rupert J.; Steinhauer, David A.

    2009-11-25

    A panel of eight single amino acid deletion mutants was generated within the first 24 residues of the fusion peptide domain of the of the hemagglutinin (HA) of A/Aichi/2/68 influenza A virus (H3N2 subtype). The mutant HAs were analyzed for folding, cell surface transport, cleavage activation, capacity to undergo acid-induced conformational changes, and membrane fusion activity. We found that the mutant DELTAF24, at the C-terminal end of the fusion peptide, was expressed in a non-native conformation, whereas all other deletion mutants were transported to the cell surface and could be cleaved into HA1 and HA2 to activate membrane fusion potential. Furthermore, upon acidification these cleaved HAs were able to undergo the characteristic structural rearrangements that are required for fusion. Despite this, all mutants were inhibited for fusion activity based on two separate assays. The results indicate that the mutant fusion peptide domains associate with target membranes in a non-functional fashion, and suggest that structural features along the length of the fusion peptide are likely to be relevant for optimal membrane fusion activity.

  13. Vesicle fusion to planar membranes is enhanced by cholesterol and low temperature.

    PubMed

    Lee, David E; Lew, Matthew G; Woodbury, Dixon J

    2013-01-01

    Lipid composition and properties play an important role in many cellular properties such as fusion of vesicles to cell membranes, an essential process for exocytosis. Using a model system composed of artificial vesicles (liposomes) and artificial membranes (planar lipid bilayers), we observed that fusion is significantly affected by the lipid phase of the planar membrane. To determine the effect of lipid phases on fusion rates, we utilized the nystatin/ergosterol fusion assay and stimulated fusion with an osmotic gradient. Phase of the planar membrane was altered by changing cholesterol or temperature while the vesicular lipids were held constant. Liquid disordered (L(d) or L(α)) planar membranes were formed from phosphatidylethanolamine and phosphatidylcholine with unsaturated acyl chains. Addition of cholesterol shifts these membranes to the liquid ordered (L(o)) phase and increases liposome fusion. Planar membranes in the L(α) phase were also made from dipalmitoylphoshatidylcholine (DPPC) above the transition temperature (T(m)) of 41.5 ° C. Decreasing the temperature below T(m) shifts these membranes into the ripple phase (P(β')) and also increases liposome fusion. The cholesterol and temperature data are consistent with the hypothesis that fusion is promoted in membranes that have greater exposure of their lipid tails or in membranes which can form leaflet domains with negative curvature. The data are not consistent with the hypothesis that lipid mismatch drives fusion.

  14. Influenza Virus-Mediated Membrane Fusion: Determinants of Hemagglutinin Fusogenic Activity and Experimental Approaches for Assessing Virus Fusion

    PubMed Central

    Hamilton, Brian S.; Whittaker, Gary R.; Daniel, Susan

    2012-01-01

    Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future. PMID:22852045

  15. The secretory mechanisms in equine platelets are independent of cytoskeletal polymerization and occur through membrane fusion.

    PubMed

    Brunso, L; Segura, D; Monreal, L; Escolar, G; White, J G; Diaz-Ricart, M

    2010-01-01

    Studies in animal models are useful to understand the basic mechanisms involved in hemostasis and the functional differences among species. Ultrastructural observations led us to predict differences in the activation and secretion mechanisms between equine and human platelets. The potential mechanisms involved have been comparatively explored in the present study. Equine and human platelets were activated with thrombin (0.5 U/ml) and collagen (20 µg/ml), for 90 seconds, and samples processed to evaluate: i) ultrastructural changes, by electron microscopy, ii) actin polymerization and cytoskeletal assembly, by polyacrylamide gel electrophoresis, and iii) specific molecules involved in activation and secretion, by western blot. In activated human platelets, centralization of granules, cytoskeletal assembly and fusion of granules with the open canalicular system were observed. In activated equine platelets, granules fused together forming an organelle chain that fused with the surface membrane and released its content directly outside the platelets. Human platelets responded to activation with actin polymerization and the assembly of other contractile proteins to the cytoskeleton. These events were almost undetectable in equine platelets. When exploring the involvement of the synaptosomal-associated protein-23 (SNAP-23), a known regulator of secretory granule/plasma membrane fusion events, it was present in both human and equine platelets. SNAP-23 was shown to be more activated in equine platelets than human platelets in response to activation, especially with collagen. Thus, there are significant differences in the secretion mechanisms between human and equine platelets. While in human platelets, activation and secretion of granules depend on mechanisms of internal contraction and membrane fusion, in equine platelets the fusion mechanisms seem to be predominant.

  16. Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion

    PubMed Central

    Wang, Shen; Li, Yun; Ma, Cong

    2016-01-01

    Synaptotagmin-1 (Syt1) acts as a Ca2+ sensor for neurotransmitter release through its C2 domains. It has been proposed that Syt1 promotes SNARE-dependent fusion mainly through its C2B domain, but the underlying mechanism is poorly understood. In this study, we show that the C2B domain interacts simultaneously with acidic membranes and SNARE complexes via the top Ca2+-binding loops, the side polybasic patch, and the bottom face in response to Ca2+. Disruption of the simultaneous interactions completely abrogates the triggering activity of the C2B domain in liposome fusion. We hypothesize that the simultaneous interactions endow the C2B domain with an ability to deform local membranes, and this membrane-deformation activity might underlie the functional significance of the Syt1 C2B domain in vivo. DOI: http://dx.doi.org/10.7554/eLife.14211.001 PMID:27083046

  17. An Ion Switch Regulates Fusion of Charged Membranes

    PubMed Central

    Siepi, Evgenios; Lutz, Silke; Meyer, Sylke; Panzner, Steffen

    2011-01-01

    Here we identify the recruitment of solvent ions to lipid membranes as the dominant regulator of lipid phase behavior. Our data demonstrate that binding of counterions to charged lipids promotes the formation of lamellar membranes, whereas their absence can induce fusion. The mechanism applies to anionic and cationic liposomes, as well as the recently introduced amphoteric liposomes. In the latter, an additional pH-dependent lipid salt formation between anionic and cationic lipids must occur, as indicated by the depletion of membrane-bound ions in a zone around pH 5. Amphoteric liposomes fuse under these conditions but form lamellar structures at both lower and higher pH values. The integration of these observations into the classic lipid shape theory yielded a quantitative link between lipid and solvent composition and the physical state of the lipid assembly. The key parameter of the new model, κ(pH), describes the membrane phase behavior of charged membranes in response to their ion loading in a quantitative way. PMID:21575575

  18. In vitro assay using engineered yeast vacuoles for neuronal SNARE-mediated membrane fusion

    PubMed Central

    Ko, Young-Joon; Lee, Miriam; Kang, KyeongJin; Song, Woo Keun; Jun, Youngsoo

    2014-01-01

    Intracellular membrane fusion requires not only SNARE proteins but also other regulatory proteins such as the Rab and Sec1/Munc18 (SM) family proteins. Although neuronal SNARE proteins alone can drive the fusion between synthetic liposomes, it remains unclear whether they are also sufficient to induce the fusion of biological membranes. Here, through the use of engineered yeast vacuoles bearing neuronal SNARE proteins, we show that neuronal SNAREs can induce membrane fusion between yeast vacuoles and that this fusion does not require the function of the Rab protein Ypt7p or the SM family protein Vps33p, both of which are essential for normal yeast vacuole fusion. Although excess vacuolar SNARE proteins were also shown to mediate Rab-bypass fusion, this fusion required homotypic fusion and vacuole protein sorting complex, which bears Vps33p and was accompanied by extensive membrane lysis. We also show that this neuronal SNARE-driven vacuole fusion can be stimulated by the neuronal SM protein Munc18 and blocked by botulinum neurotoxin serotype E, a well-known inhibitor of synaptic vesicle fusion. Taken together, our results suggest that neuronal SNARE proteins are sufficient to induce biological membrane fusion, and that this new assay can be used as a simple and complementary method for investigating synaptic vesicle fusion mechanisms. PMID:24821814

  19. HIV gp41-Mediated Membrane Fusion Occurs at Edges of Cholesterol-Rich Lipid Domains

    PubMed Central

    Yang, Sung-Tae; Kiessling, Volker; Simmons, James A.; White, Judith M.; Tamm, Lukas K.

    2015-01-01

    Lipid rafts in plasma membranes have emerged as possible platforms for entry of HIV and other viruses into cells. However, how lipid phase heterogeneity contributes to viral entry is little known due to the fine-grained and still poorly understood complexity of biological membranes. We used model systems mimicking HIV envelopes and T-cell membranes and showed that raft-like (Lo phase) lipid domains are necessary and sufficient for efficient membrane targeting and fusion. Interestingly, membrane binding and fusion was low in homogeneous Ld and Lo phase membranes, indicating that lipid phase heterogeneity is essential. The HIV fusion peptide preferentially targeted to Lo/Ld boundary regions and promoted full fusion at the interface between ordered and disordered lipids. Ld phase vesicles proceeded only to hemifusion. Thus, we propose that the edges, but not the areas of raft-like ordered lipid domains are vital for HIV entry and membrane fusion. PMID:25915200

  20. Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    PubMed Central

    Steffen, Deborah L.; Xu, Kai; Nikolov, Dimitar B.; Broder, Christopher C.

    2012-01-01

    The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G) and class I fusion (F) envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins. PMID:22470837

  1. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics.

    PubMed

    Steffen, Deborah L; Xu, Kai; Nikolov, Dimitar B; Broder, Christopher C

    2012-02-01

    The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G) and class I fusion (F) envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.

  2. ATP-dependent membrane assembly of F-actin facilitates membrane fusion.

    PubMed

    Jahraus, A; Egeberg, M; Hinner, B; Habermann, A; Sackman, E; Pralle, A; Faulstich, H; Rybin, V; Defacque, H; Griffiths, G

    2001-01-01

    We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.

  3. Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion

    PubMed Central

    Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.

    2016-01-01

    ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While

  4. Revisit the Correlation between the Elastic Mechanics and Fusion of Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Fan, Zih-An; Tsang, Kuan-Yu; Chen, Si-Han; Chen, Yi-Fan

    2016-08-01

    Membrane fusion is a vital process in key cellular events. The fusion capability of a membrane depends on its elastic properties and varies with its lipid composition. It is believed that as the composition varies, the consequent change in C0 (monolayer spontaneous curvature) is the major factor dictating fusion, owing to the associated variation in GEs (elastic energies) of the fusion intermediates (e.g. stalk). By exploring the correlations among fusion, C0 and Kcp (monolayer bending modulus), we revisit this long-held belief and re-examine the fusogenic contributions of some relevant factors. We observe that not only C0 but also Kcp variations affect fusion, with depression in Kcp leading to suppression in fusion. Variations in GEs and inter-membrane interactions cannot account for the Kcp-fusion correlation; fusion is suppressed even as the GEs decrease with Kcp, indicating the presence of factor(s) with fusogenic importance overtaking that of GE. Furthermore, analyses find that the C0 influence on fusion is effected via modulating GE of the pre-fusion planar membrane, rather than stalk. The results support a recent proposition calling for a paradigm shift from the conventional view of fusion and may reshape our understanding to the roles of fusogenic proteins in regulating cellular fusion machineries.

  5. Revisit the Correlation between the Elastic Mechanics and Fusion of Lipid Membranes

    PubMed Central

    Fan, Zih-An; Tsang, Kuan-Yu; Chen, Si-Han; Chen, Yi-Fan

    2016-01-01

    Membrane fusion is a vital process in key cellular events. The fusion capability of a membrane depends on its elastic properties and varies with its lipid composition. It is believed that as the composition varies, the consequent change in C0 (monolayer spontaneous curvature) is the major factor dictating fusion, owing to the associated variation in GEs (elastic energies) of the fusion intermediates (e.g. stalk). By exploring the correlations among fusion, C0 and Kcp (monolayer bending modulus), we revisit this long-held belief and re-examine the fusogenic contributions of some relevant factors. We observe that not only C0 but also Kcp variations affect fusion, with depression in Kcp leading to suppression in fusion. Variations in GEs and inter-membrane interactions cannot account for the Kcp-fusion correlation; fusion is suppressed even as the GEs decrease with Kcp, indicating the presence of factor(s) with fusogenic importance overtaking that of GE. Furthermore, analyses find that the C0 influence on fusion is effected via modulating GE of the pre-fusion planar membrane, rather than stalk. The results support a recent proposition calling for a paradigm shift from the conventional view of fusion and may reshape our understanding to the roles of fusogenic proteins in regulating cellular fusion machineries. PMID:27534263

  6. Base of the Measles Virus Fusion Trimer Head Receives the Signal That Triggers Membrane Fusion*

    PubMed Central

    Apte-Sengupta, Swapna; Negi, Surendra; Leonard, Vincent H. J.; Oezguen, Numan; Navaratnarajah, Chanakha K.; Braun, Werner; Cattaneo, Roberto

    2012-01-01

    The measles virus (MV) fusion (F) protein trimer executes membrane fusion after receiving a signal elicited by receptor binding to the hemagglutinin (H) tetramer. Where and how this signal is received is understood neither for MV nor for other paramyxoviruses. Because only the prefusion structure of the parainfluenza virus 5 (PIV5) F-trimer is available, to study signal receipt by the MV F-trimer, we generated and energy-refined a homology model. We used two approaches to predict surface residues of the model interacting with other proteins. Both approaches measured interface propensity values for patches of residues. The second approach identified, in addition, individual residues based on the conservation of physical chemical properties among F-proteins. Altogether, about 50 candidate interactive residues were identified. Through iterative cycles of mutagenesis and functional analysis, we characterized six residues that are required specifically for signal transmission; their mutation interferes with fusion, although still allowing efficient F-protein processing and cell surface transport. One residue is located adjacent to the fusion peptide, four line a cavity in the base of the F-trimer head, while the sixth residue is located near this cavity. Hydrophobic interactions in the cavity sustain the fusion process and contacts with H. The cavity is flanked by two different subunits of the F-trimer. Tetrameric H-stalks may be lodged in apposed cavities of two F-trimers. Because these insights are based on a PIV5 homology model, the signal receipt mechanism may be conserved among paramyxoviruses. PMID:22859308

  7. Tethering Membrane Fusion: Common and Different Players in Myoblasts and at the Synapse

    PubMed Central

    Rust, Marco B.; Jacob, Ralf; Renkawitz-Pohl, Renate

    2014-01-01

    Drosophila Membrane fusion is essential for the communication of membrane-defined compartments, development of multicellular organisms and tissue homeostasis. Although membrane fusion has been studied extensively, still little is known about the molecular mechanisms. Especially the intercellular fusion of cells during development and tissue homeostasis is poorly understood. Somatic muscle formation in Drosophila depends on the intercellular fusion of myoblasts. In this process, myoblasts recognize each other and adhere, thereby triggering a protein machinery that leads to electron-dense plaques, vesicles and F-actin formation at apposing membranes. Two models of how local membrane stress is achieved to induce the merging of the myoblast membranes have been proposed: the electron-dense vesicles transport and release a fusogen and F-actin bends the plasma membrane. In this review, we highlight cell-adhesion molecules and intracellular proteins known to be involved in myoblast fusion. The cell-adhesion proteins also mediate the recognition and adhesion of other cell types, such as neurons that communicate with each other via special intercellular junctions, termed chemical synapses. At these synapses, neurotransmitters are released through the intracellular fusion of synaptic vesicles with the plasma membrane. As the targeting of electron-dense vesicles in myoblasts shares some similarities with the targeting of synaptic vesicle fusion, we compare molecules required for synaptic vesicle fusion to recently identified molecules involved in myoblast fusion. PMID:24957080

  8. In vitro fusion of lung lamellar bodies and plasma membrane is augmented by lung synexin.

    PubMed

    Chander, A; Wu, R D

    1991-11-05

    Lamellar bodies of lung epithelial type II cells undergo fusion with plasma membrane prior to exocytosis of surfactant into the alveolar lumen. Since synexin from adrenal glands promotes aggregation and fusion of chromaffin granules, we purified synexin-like proteins from bovine lung cytosolic fraction, and evaluated their effect on the fusion of isolated lamellar bodies and plasma membrane fractions. Synexin activity, which co-purified with an approx. 47 kDa protein (pI 6.8), was assessed by following calcium-dependent aggregation of liposomes prepared from a mixture of phosphatidylcholine:phosphatidylserine (PC:PS, 3:1, mol/mol). Lung synexin caused aggregation of liposomes approximating lung surfactant lipid-like composition, isolated lamellar bodies, or isolated plasma membrane fraction. Lung synexin promoted fusion only in the presence of calcium. It augmented fusion between lamellar bodies and plasma membranes, lamellar bodies and liposomes, or between two populations of liposomes. However, selectivity with regard to synexin-mediated fusion was observed as synexin did not promote fusion between plasma membrane and liposomes, or between liposomes of surfactant lipid-like composition and other liposomes. These observations support a role for lung synexin in membrane fusion between the plasma membrane and lamellar bodies during exocytosis of lung surfactant, and suggest that such fusion is dependent on composition of interacting membranes.

  9. Divergent pathways lead to ESCRT-III-catalyzed membrane fission.

    PubMed

    Peel, Suman; Macheboeuf, Pauline; Martinelli, Nicolas; Weissenhorn, Winfried

    2011-04-01

    Endosomal sorting complexes required for transport (ESCRT) have been implicated in topologically similar but diverse cellular and pathological processes including multivesicular body (MVB) biogenesis, cytokinesis and enveloped virus budding. Although receptor sorting at the endosomal membrane producing MVBs employs the regulated assembly of ESCRT-0 followed by ESCRT-I, -II, -III and the vacuolar protein sorting (VPS)4 complex, other ESCRT-catalyzed processes require only a subset of complexes which commonly includes ESCRT-III and VPS4. Recent progress has shed light on the pathway of ESCRT assembly and highlights the separation of tasks of different ESCRT complexes and associated partners. The emerging picture suggests that among all ESCRT-catalyzed processes, divergent pathways lead to ESCRT-III assembly within the neck of a budding structure catalyzing membrane fission.

  10. Shallow Boomerang-shaped Influenza Hemagglutinin G13A Mutant Structure Promotes Leaky Membrane Fusion*

    PubMed Central

    Lai, Alex L.; Tamm, Lukas K.

    2010-01-01

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788

  11. Insulin Stimulates Membrane Fusion and GLUT4 Accumulation in Clathrin Coats on Adipocyte Plasma Membranes▿ †

    PubMed Central

    Huang, Shaohui; Lifshitz, Larry M.; Jones, Christine; Bellve, Karl D.; Standley, Clive; Fonseca, Sonya; Corvera, Silvia; Fogarty, Kevin E.; Czech, Michael P.

    2007-01-01

    Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by ∼4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane. PMID:17339344

  12. Myomaker is a membrane activator of myoblast fusion and muscle formation.

    PubMed

    Millay, Douglas P; O'Rourke, Jason R; Sutherland, Lillian B; Bezprozvannaya, Svetlana; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N

    2013-07-18

    Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.

  13. Acidification triggers Andes hantavirus membrane fusion and rearrangement of Gc into a stable post-fusion homotrimer.

    PubMed

    Acuña, Rodrigo; Bignon, Eduardo A; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2015-11-01

    The hantavirus membrane fusion process is mediated by the Gc envelope glycoprotein from within endosomes. However, little is known about the specific mechanism that triggers Gc fusion activation, and its pre- and post-fusion conformations. We established cell-free in vitro systems to characterize hantavirus fusion activation. Low pH was sufficient to trigger the interaction of virus-like particles with liposomes. This interaction was dependent on a pre-fusion glycoprotein arrangement. Further, low pH induced Gc multimerization changes leading to non-reversible Gc homotrimers. These trimers were resistant to detergent, heat and protease digestion, suggesting characteristics of a stable post-fusion structure. No acid-dependent oligomerization rearrangement was detected for the trypsin-sensitive Gn envelope glycoprotein. Finally, acidification induced fusion of glycoprotein-expressing effector cells with non-susceptible CHO cells. Together, the data provide novel information on the Gc fusion trigger and its non-reversible activation involving lipid interaction, multimerization changes and membrane fusion which ultimately allow hantavirus entry into cells.

  14. Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures

    SciTech Connect

    Lamb, Robert A. . E-mail: ralamb@northwestern.edu; Paterson, Reay G.; Jardetzky, Theodore S.

    2006-01-05

    Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process-an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxoviruses (parainfluenza viruses 1-5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described.

  15. SARS-CoV fusion peptides induce membrane surface ordering and curvature

    PubMed Central

    Basso, Luis G. M.; Vicente, Eduardo F.; Crusca Jr., Edson; Cilli, Eduardo M.; Costa-Filho, Antonio J.

    2016-01-01

    Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed. PMID:27892522

  16. SARS-CoV fusion peptides induce membrane surface ordering and curvature.

    PubMed

    Basso, Luis G M; Vicente, Eduardo F; Crusca, Edson; Cilli, Eduardo M; Costa-Filho, Antonio J

    2016-11-28

    Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.

  17. Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity

    PubMed Central

    Zawada, Katarzyna E.; Wrona, Dominik; Rawle, Robert J.; Kasson, Peter M.

    2016-01-01

    Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol’s ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion. PMID:27431907

  18. Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity.

    PubMed

    Zawada, Katarzyna E; Wrona, Dominik; Rawle, Robert J; Kasson, Peter M

    2016-07-19

    Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol's ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion.

  19. Effects of Charge Fluctuation on Two-Membrane Instability and Fusion

    NASA Astrophysics Data System (ADS)

    Kim, Yong Woon; Sung, Wokyung

    2003-09-01

    Membrane fusion is fundamental to diverse biological processes ranging from intercellular and intracellular transport to egg fertilization. We study the effects of coupling between membrane undulation and charge fluctuation on its fusion. We find that, at concentrations of millimolar range, multivalent cations such as calcium in solution induce a strong correlated-charge fluctuation on each membrane, leading to inversion and overcondensation of surface charges. When the charge fluctuation is cooperatively coupled to undulation, two apposing membranes undergo a dynamic instability to spontaneous growth of in-phase undulation with submicron wavelengths, thereby greatly reducing fusion barrier.

  20. FUSION OF PHOSPHOLIPID VESICLES ARRESTED BY QUICK-FREEZING THE QUESTION OF LIPIDIC PARTICLES AS INTERMEDIATES IN MEMBRANE FUSION

    PubMed Central

    BEARER, E.L.; DÜZGÜNEŞ, N.; FRIEND, D.S.; PAPAHADJOPOULOS, D.

    2015-01-01

    We have examined the early events in Cai2+-induced fusion of large (0.2 μm diameter) unilamellar cardiolipin/phosphatidylcholine and phosphatidylserine/phosphatidylethanolamine vesicles by quick-freezing freeze-fracture electron microscopy, eliminating the necessity of using glycerol as a cryoprotectant. Freeze-fracture replicas of vesicle suspensions frozen after 1-2 s of stimulation revealed that the majority of vesicles had already undergone membrane fusion, as evidenced by dumbbeII-shaped structures and large vesicles. In the absence of glycerol, lipidic particles or the hexagonal H 11phase, which have been proposed to be intermediate structures in membrane fusion, were not observed at the sites of fusion. Lipidic particles were evident in less than 5% of the cardiolipin/phosphatidylcholine vesicles after long-term incubation with Ca2+, and the addition of glycerol produced more vesicles displaying the particles. We have also shown that rapid fusion occurred within seconds of Ca2+ addition by the time-course of fluorescence emission produced by the intermixing of aqueous contents of two separate vesicle populations. These studies therefore have produced no evidence that lipidic particles are necessary intermediates for membrane fusion. On the contrary, they indicate that lipidic particles are structures obtained at equilibrium long after fusion has occurred and they become particularly prevalent in the presence of glycerol. PMID:7150597

  1. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    SciTech Connect

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. )

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  2. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    PubMed Central

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  3. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction.

    PubMed

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J

    2015-03-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction.

  4. Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons

    PubMed Central

    Chang, Chuang-Rung; Kao, Mou-Chieh; Chen, Kuan-Wei; Chiu, Shih-Che; Hsu, Ming-Ling; Hsiang, I-Chou; Chen, Yu-Jen; Chen, Linyi

    2015-01-01

    High energy ionizing radiation can cause DNA damage and cell death. During clinical radiation therapy, the radiation dose could range from 15 to 60 Gy depending on targets. While 2 Gy radiation has been shown to cause cancer cell death, studies also suggest a protective potential by low dose radiation. In this study, we examined the effect of 0.2-2 Gy radiation on hippocampal neurons. Low dose 0.2 Gy radiation treatment increased the levels of MTT. Since hippocampal neurons are post-mitotic, this result reveals a possibility that 0.2 Gy irradiation may increase mitochondrial activity to cope with stimuli. Maintaining neural plasticity is an energy-demanding process that requires high efficient mitochondrial function. We thus hypothesized that low dose radiation may regulate mitochondrial dynamics and function to ensure survival of neurons. Our results showed that five days after 0.2 Gy irradiation, no obvious changes on neuronal survival, neuronal synapses, membrane potential of mitochondria, reactive oxygen species levels, and mitochondrial DNA copy numbers. Interestingly, 0.2 Gy irradiation promoted the mitochondria fusion, resulting in part from the increased level of a mitochondrial fusion protein, Mfn2, and inhibition of Drp1 fission protein trafficking to the mitochondria. Accompanying with the increased mitochondrial fusion, the expressions of complexes I and III of the electron transport chain were also increased. These findings suggest that, hippocampal neurons undergo increased mitochondrial fusion to modulate cellular activity as an adaptive mechanism in response to low dose radiation. PMID:26415228

  5. Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons.

    PubMed

    Chien, Ling; Chen, Wun-Ke; Liu, Szu-Ting; Chang, Chuang-Rung; Kao, Mou-Chieh; Chen, Kuan-Wei; Chiu, Shih-Che; Hsu, Ming-Ling; Hsiang, I-Chou; Chen, Yu-Jen; Chen, Linyi

    2015-10-13

    High energy ionizing radiation can cause DNA damage and cell death. During clinical radiation therapy, the radiation dose could range from 15 to 60 Gy depending on targets. While 2 Gy radiation has been shown to cause cancer cell death, studies also suggest a protective potential by low dose radiation. In this study, we examined the effect of 0.2-2 Gy radiation on hippocampal neurons. Low dose 0.2 Gy radiation treatment increased the levels of MTT. Since hippocampal neurons are post-mitotic, this result reveals a possibility that 0.2 Gy irradiation may increase mitochondrial activity to cope with stimuli. Maintaining neural plasticity is an energy-demanding process that requires high efficient mitochondrial function. We thus hypothesized that low dose radiation may regulate mitochondrial dynamics and function to ensure survival of neurons. Our results showed that five days after 0.2 Gy irradiation, no obvious changes on neuronal survival, neuronal synapses, membrane potential of mitochondria, reactive oxygen species levels, and mitochondrial DNA copy numbers. Interestingly, 0.2 Gy irradiation promoted the mitochondria fusion, resulting in part from the increased level of a mitochondrial fusion protein, Mfn2, and inhibition of Drp1 fission protein trafficking to the mitochondria. Accompanying with the increased mitochondrial fusion, the expressions of complexes I and III of the electron transport chain were also increased. These findings suggest that, hippocampal neurons undergo increased mitochondrial fusion to modulate cellular activity as an adaptive mechanism in response to low dose radiation.

  6. Simulation of a fusion gamma reaction history diagnostic for the Shenguang-III facility

    NASA Astrophysics Data System (ADS)

    Song, Zifeng; Chen, Jiabin; Xu, Tao; Liu, Zhongjie; Zhan, Xiayu; Tang, Qi

    2017-05-01

    The fusion gamma has an advantage to measure fusion reaction history in the deuterium-tritium (DT) fuel implosion experiments. A gas Cherenkov detector is available to measure DT fusion gamma in a high background environment. Simulation is carried out by Geant4 to evaluate the conversion efficiency and the time response of this Cherenkov detector. The background gamma rays are roughly estimated based on ENDF/B-VII.0 data, and the signal-to-noise (SNR) is evaluated based on the simulated energy response curve. The simulation result and the SNR analysis are helpful to construct the Cherenkov detector at Shenguang-III facility.

  7. Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus.

    PubMed

    Lavillette, Dimitri; Pécheur, Eve-Isabelle; Donot, Peggy; Fresquet, Judith; Molle, Jennifer; Corbau, Romuald; Dreux, Marlène; Penin, François; Cosset, François-Loïc

    2007-08-01

    Infection of eukaryotic cells by enveloped viruses requires the merging of viral and cellular membranes. Highly specific viral surface glycoproteins, named fusion proteins, catalyze this reaction by overcoming inherent energy barriers. Hepatitis C virus (HCV) is an enveloped virus that belongs to the genus Hepacivirus of the family Flaviviridae. Little is known about the molecular events that mediate cell entry and membrane fusion for HCV, although significant progress has been made due to recent developments in infection assays. Here, using infectious HCV pseudoparticles (HCVpp), we investigated the molecular basis of HCV membrane fusion. By searching for classical features of fusion peptides through the alignment of sequences from various HCV genotypes, we identified six regions of HCV E1 and E2 glycoproteins that present such characteristics. We introduced conserved and nonconserved amino acid substitutions in these regions and analyzed the phenotype of HCVpp generated with mutant E1E2 glycoproteins. This was achieved by (i) quantifying the infectivity of the pseudoparticles, (ii) studying the incorporation of E1E2 and their capacity to mediate receptor binding, and (iii) determining their fusion capacity in cell-cell and liposome/HCVpp fusion assays. We propose that at least three of these regions (i.e., at positions 270 to 284, 416 to 430, and 600 to 620) play a role in the membrane fusion process. These regions may contribute to the merging of viral and cellular membranes either by interacting directly with lipid membranes or by assisting the fusion process through their involvement in the conformational changes of the E1E2 complex at low pH.

  8. Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion.

    PubMed

    Lai, Alex L; Moorthy, Anna Eswara; Li, Yinling; Tamm, Lukas K

    2012-04-20

    The human immunodeficiency virus (HIV) gp41 fusion domain plays a critical role in membrane fusion during viral entry. A thorough understanding of the relationship between the structure and the activity of the fusion domain in different lipid environments helps to formulate mechanistic models on how it might function in mediating membrane fusion. The secondary structure of the fusion domain in small liposomes composed of different lipid mixtures was investigated by circular dichroism spectroscopy.  The fusion domain formed an α-helix in membranes containing less than 30 mol% cholesterol and  formed β-sheet secondary structure in membranes containing ≥30 mol% cholesterol. EPR spectra of spin-labeled fusion domains also indicated different conformations in membranes with and without cholesterol. Power saturation EPR data were further used to determine the orientation and depth of α-helical fusion domains in lipid bilayers. Fusion and membrane perturbation activities of the gp41 fusion domain were measured by lipid mixing and contents leakage. The fusion domain fused membranes in both its helical form and its β-sheet form. High cholesterol, which induced β-sheets, promoted fusion; however, acidic lipids, which promoted relatively deep membrane insertion as an α-helix, also induced fusion. The results indicate that the structure of the HIV gp41 fusion domain is plastic and depends critically on the lipid environment. Provided that their membrane insertion is deep, α-helical and β-sheet conformations contribute to membrane fusion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Membrane events in the acrosomal reaction of Limulus sperm. Membrane fusion, filament-membrane particle attachment, and the source and formation of new membrane surface

    PubMed Central

    1979-01-01

    The membranes of Limulus (horseshoe crab) sperm were examined before and during the acrosomal reaction by using the technique of freeze- fracturing and thin sectioning. We focused on three areas. First, we examined stages in the fusion of the acrosomal vacuole with the cell surface. Fusion takes place in a particle-free zone which is surrounded by a circlet of particles on the P face of the plasma membrane and an underlying circlet of particles on the P face of the acrosomal vauole membrane. These circlets of particles are present before induction. Up to nine focal points of fusion occur within the particle-free zone. Second, we describe a system of fine filaments, each 30 A in diameter, which lies between the acrosomal vacuole and the plasma membrane. These filaments change their orientation as the vacuole opens, a process that takes place in less than 50 ms. Membrane particles seen on the P face of the acrosomal vacuole membrane change their orientation at the same time and in the same way as do the filaments, thus indicating that the membrane particles and filaments are probably connected. Third, we examined the source and the point of fusion of new membrane needed to cover the acrosomal process. This new membrane is almost certainly derived from the outer nuclear envelope and appears to insert into the plasma membrane in a particle-free area adjacent to an area rich in particles. The latter is the region where the particles are probably connected to the cytoplasmic filaments. The relevance of these observations in relation to the process of fertilization of this fantastic sperm is discussed. PMID:582596

  10. Effects of PIP2 on membrane fusion between mast cell SNARE liposomes mediated by synaptotagmin 2.

    PubMed

    Tadokoro, Satoshi; Inoh, Yoshikazu; Nakanishi, Mamoru; Hirashima, Naohide

    2015-10-01

    Recent studies have revealed that SNARE proteins are involved in exocytotic release in mast cells. Previously, we reported that mast cell SNARE proteins induce membrane fusion between liposomes. Moreover, we found that synaptotagmin 2, a candidate Ca2+ sensor for mast cell exocytosis, enhanced SNARE-mediated membrane fusion via Ca2+ and phosphatidylserine. Phosphatidylinositol 4,5-bisphosphate (PIP2) is an acidic phospholipid like phosphatidylserine. In the present study, we investigated whether PIP2 is involved in the enhancement effect of synaptotagmin 2 on SNARE-mediated membrane fusion. PIP2 did not show any significant effect on SNARE-mediated membrane fusion by itself. In the presence of Ca2+, synaptotagmin 2 enhanced SNARE-mediated membrane fusion between liposomes containing PIP2. However, even in the presence of Ca2+, when we used 100% PC liposomes, synaptotagmin 2 did not show any significant effect on SNARE-mediated membrane fusion. These results indicated that PIP2 is involved in the enhancement effect of synaptotagmin 2 on membrane fusion between liposomes containing mast cell SNARE proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly.

    PubMed

    Harel, Amnon; Chan, Rene C; Lachish-Zalait, Aurelie; Zimmerman, Ella; Elbaum, Michael; Forbes, Douglass J

    2003-11-01

    Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.

  12. FUSION-COMPETENT STATE INDUCED BY A C-TERMINAL HIV-1 FUSION PEPTIDE IN CHOLESTEROL-RICH MEMBRANES

    PubMed Central

    Apellániz, Beatriz; Nieva, José L.

    2015-01-01

    The replicative cycle of the Human Immunodeficiency Virus type-1 begins after fusion of the viral and target-cell membranes. The envelope glycoprotein gp41 transmembrane subunit contains conserved hydrophobic domains that engage and perturb the merging lipid bilayers. In this work, we have characterized the fusion-committed state generated in vesicles by CpreTM, a synthetic peptide derived from the sequence connecting the membrane-proximal external region (MPER) and the transmembrane domain (TMD) of gp41. Pre-loading cholesterol-rich vesicles with CpreTM rendered them competent for subsequent lipid-mixing with fluorescently-labeled target vesicles. Highlighting the physiological relevance of the lasting fusion-competent state, the broadly neutralizing antibody 4E10 bound to the CpreTM-primed vesicles and inhibited lipid-mixing. Heterotypic fusion assays disclosed dependence on the lipid composition of the vesicles that acted either as virus or cell membrane surrogates. Lipid-mixing exhibited above all a critical dependence on the cholesterol content in those experiments. We infer that the fusion-competent state described herein resembles bona-fide perturbations generated by the pre-hairpin MPER-TMD connection within the viral membrane. PMID:25617671

  13. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  14. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.

    PubMed

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-06-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.

  15. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis

    PubMed Central

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-01-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein–albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug. PMID:25864124

  16. How and why intralumenal membrane fragments form during vacuolar lysosome fusion

    PubMed Central

    Mattie, Sevan; McNally, Erin K.; Karim, Mahmoud A.; Vali, Hojatollah; Brett, Christopher L.

    2017-01-01

    Lysosomal membrane fusion mediates the last step of the autophagy and endocytosis pathways and supports organelle remodeling and biogenesis. Because fusogenic proteins and lipids concentrate in a ring at the vertex between apposing organelle membranes, the encircled area of membrane can be severed and internalized within the lumen as a fragment upon lipid bilayer fusion. How or why this intralumenal fragment forms during fusion, however, is not entirely clear. To better understand this process, we studied fragment formation during homotypic vacuolar lysosome membrane fusion in Saccharomyces cerevisiae. Using cell-free fusion assays and light microscopy, we find that GTPase activation and trans-SNARE complex zippering have opposing effects on fragment formation and verify that this affects the morphology of the fusion product and regulates transporter protein degradation. We show that fragment formwation is limited by stalk expansion, a key intermediate of the lipid bilayer fusion reaction. Using electron microscopy, we present images of hemifusion diaphragms that form as stalks expand and propose a model describing how the fusion machinery regulates fragment formation during lysosome fusion to control morphology and protein lifetimes. PMID:27881666

  17. Ca(2+)-independent fusion of secretory granules with phospholipase A2-treated plasma membranes in vitro.

    PubMed Central

    Nagao, T; Kubo, T; Fujimoto, R; Nishio, H; Takeuchi, T; Hata, F

    1995-01-01

    The fusion of secretory granules with plasma membranes prepared from rat parotid gland was studied in vitro to clarify the mechanism of exocytosis. Fusion of the granules with plasma membranes was measured by a fluorescence-dequenching assay with octadecyl rhodamine B, and release of amylase was also measured to confirm the fusion as a final step of the secretory process. Plasma membranes that had been pretreated with porcine phospholipase A2 (PLA2) in the presence of 20 microM Ca2+ fused with the granules within 30 s, and induced amylase release by reacting with the membranes of granules, whereas without this pretreatment they had no significant effect. The fusion process accompanied by amylase release was induced in the presence of 10 mM EGTA, and therefore was apparently Ca(2+)-independent. On the other hand, the presence of EGTA or 100 microM quinacrine, an inhibitor of PLA2, during treatment of plasma membranes with PLA2 inhibited their fusogenic activity, suggesting the importance of activation of PLA2. Arachidonic acid and linoleic acid were released from the plasma membranes during the PLA2 treatment. The presence of albumin, an adsorbent of fatty acids, during the treatment also inhibited the activity. Pretreatment of the membranes with arachidonic acid or linoleic acid did not have any effect, but the presence of exogenously added arachidonic acid during PLA2 treatment enhanced the membrane-fusion-inducing effect of PLA2. Pretreatment of the membranes with lysophosphatidylcholine induced fusogenic activity. These findings suggest that the conformational change in the plasma-membrane phospholipids induced by PLA2 and the presence of arachidonic acid or linoleic acid produced by PLA2 are important in the process of fusion of secretory granules with the plasma membranes of rat parotid acinar cells and that the fusion process itself is independent of Ca2+. PMID:7537492

  18. Membrane Structures of the Hemifusion-Inducing Fusion Peptide Mutant G1S and the Fusion-Blocking Mutant G1V of Influenza Virus Hemagglutinin Suggest a Mechanism for Pore Opening in Membrane Fusion

    PubMed Central

    Li, Yinling; Han, Xing; Lai, Alex L.; Bushweller, John H.; Cafiso, David S.; Tamm, Lukas K.

    2005-01-01

    Influenza virus hemagglutinin (HA)-mediated membrane fusion is initiated by a conformational change that releases a V-shaped hydrophobic fusion domain, the fusion peptide, into the lipid bilayer of the target membrane. The most N-terminal residue of this domain, a glycine, is highly conserved and is particularly critical for HA function; G1S and G1V mutant HAs cause hemifusion and abolish fusion, respectively. We have determined the atomic resolution structures of the G1S and G1V mutant fusion domains in membrane environments. G1S forms a V with a disrupted “glycine edge” on its N-terminal arm and G1V adopts a slightly tilted linear helical structure in membranes. Abolishment of the kink in G1V results in reduced hydrophobic penetration of the lipid bilayer and an increased propensity to form β-structures at the membrane surface. These results underline the functional importance of the kink in the fusion peptide and suggest a structural role for the N-terminal glycine ridge in viral membrane fusion. PMID:16140782

  19. Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion

    PubMed Central

    Garcia, Natalie K.; Lee, Kelly K.

    2016-01-01

    The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system. PMID:26761026

  20. Lipid Phase Control and Secondary Structure of Viral Fusion Peptides Anchored in Monoolein Membranes.

    PubMed

    Levin, Artem; Jeworrek, Christoph; Winter, Roland; Weise, Katrin; Czeslik, Claus

    2017-09-14

    The fusion of lipid membranes involves major changes of the membrane curvatures and is mediated by fusion proteins that bind to the lipid membranes. For a better understanding of the way fusion proteins steer this process, we have studied the interaction of two different viral fusion peptides, HA2-FP and TBEV-FP, with monoolein mesophases as a function of temperature and pressure at limited hydration. The fusion peptides are derived from the influenza virus hemagglutinin fusion protein (HA2-FP) and from the tick-borne encephalitis virus envelope glycoprotein E (TBEV-FP). By using synchrotron X-ray diffraction, the changes of the monoolein phase behavior upon binding the peptides have been determined and the concomitant secondary structures of the peptides have been analyzed by FTIR spectroscopy. As main results we have found that the fusion peptides interact differently with monoolein and change the pressure and temperature dependent lipid phase behavior to different extents. However, they both destabilize the fluid lamellar phase and favor phases with negative curvature, i.e. inverse bicontinuous cubic and inverse hexagonal phases. These peptide-induced phase changes can partially be reversed by the application of high pressure, demonstrating that the promotion of negative curvature is achieved by a less dense packing of the monoolein membranes by the fusion peptides. Pressure jumps across the cubic-lamellar phase transition reveal that HA2-FP has a negligible effect on the rates of the cubic and the lamellar phase formation. Interestingly, the secondary structures of the fusion peptides appear unaffected by monoolein fluid-fluid phase transitions, suggesting that the fusion peptides are the structure dominant species in the fusion process of lipid membranes.

  1. Mitochondrial DNA Mutations Provoke Dominant Inhibition of Mitochondrial Inner Membrane Fusion

    PubMed Central

    Sauvanet, Cécile; Duvezin-Caubet, Stéphane; Salin, Bénédicte; David, Claudine; Massoni-Laporte, Aurélie; di Rago, Jean-Paul; Rojo, Manuel

    2012-01-01

    Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of

  2. Mitochondrial DNA mutations provoke dominant inhibition of mitochondrial inner membrane fusion.

    PubMed

    Sauvanet, Cécile; Duvezin-Caubet, Stéphane; Salin, Bénédicte; David, Claudine; Massoni-Laporte, Aurélie; di Rago, Jean-Paul; Rojo, Manuel

    2012-01-01

    Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of

  3. Characterization of HCoV-229E fusion core: Implications for structure basis of coronavirus membrane fusion

    SciTech Connect

    Liu Cheng; Feng Youjun; Gao Feng; Zhang Qiangmin; Wang Ming . E-mail: vetdean@cau.edu.cn

    2006-07-07

    Human coronavirus 229E (HCoV-229E), a member of group I coronaviruses, has been identified as one of the major viral agents causing respiratory tract diseases in humans for nearly 40 years. However, the detailed molecular mechanism of the membrane fusion mediated by the spike (S) protein of HCoV-229E remains elusive. Here, we report, for the first time, a rationally designed fusion core of HCoV-229E (HR1-SGGRGG-HR2), which was in vitro produced in GST prokaryotic expression system. Multiple lines of experimental data including gel-filtration, chemical cross-linking, and circular diagram (CD) demonstrated that the HCoV-229E fusion core possesses the typical properties of the trimer of coiled-coil heterodimer (six {alpha}-helix bundle). 3D structure modeling presents its most-likely structure, similar to those of coronaviruses that have been well-documented. Collectively, HCoV-229E S protein belongs to the type I fusion protein, which is characterized by the existence of two heptad-repeat regions (HR1 and HR2), furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting the membrane fusion, a crucial step of HCoV-229E infection.

  4. Drunken Membranes: Short-Chain Alcohols Alter Fusion of Liposomes to Planar Lipid Bilayers.

    PubMed

    Paxman, Jason; Hunt, Brady; Hallan, David; Zarbock, Samuel R; Woodbury, Dixon J

    2017-01-10

    Although the effects of ethanol on protein receptors and lipid membranes have been studied extensively, ethanol's effect on vesicles fusing to lipid bilayers is not known. To determine the effect of alcohols on fusion rates, we utilized the nystatin/ergosterol fusion assay to measure fusion of liposomes to a planar lipid bilayer (BLM). The addition of ethanol excited fusion when applied on the cis (vesicle) side, and inhibited fusion on the trans side. Other short-chain alcohols followed a similar pattern. In general, the inhibitory effect of alcohols (trans) occurs at lower doses than the excitatory (cis) effect, with a decrease of 29% in fusion rates at the legal driving limit of 0.08% (w/v) ethanol (IC50 = 0.2% v/v, 34 mM). Similar inhibitory effects were observed with methanol, propanol, and butanol, with ethanol being the most potent. Significant variability was observed with different alcohols when applied to the cis side. Ethanol and propanol enhanced fusion, butanol also enhanced fusion but was less potent, and low doses of methanol mildly inhibited fusion. The inhibition by trans addition of alcohols implies that they alter the planar membrane structure and thereby increase the activation energy required for fusion, likely through an increase in membrane fluidity. The cis data are likely a combination of the above effect and a proportionally greater lowering of the vesicle lysis tension and hydration repulsive pressure that combine to enhance fusion. Alternate hypotheses are also discussed. The inhibitory effect of ethanol on liposome-membrane fusion is large enough to provide a possible biophysical explanation of compromised neuronal behavior.

  5. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion

    PubMed Central

    Russell, Rupert J.; Kerry, Philip S.; Stevens, David J.; Steinhauer, David A.; Martin, Stephen R.; Gamblin, Steven J.; Skehel, John J.

    2008-01-01

    The influenza surface glycoprotein hemagglutinin (HA) is a potential target for antiviral drugs because of its key roles in the initial stages of infection: receptor binding and the fusion of virus and cell membranes. The structure of HA in complex with a known inhibitor of membrane fusion and virus infectivity, tert-butyl hydroquinone (TBHQ), shows that the inhibitor binds in a hydrophobic pocket formed at an interface between HA monomers. Occupation of this site by TBHQ stabilizes the neutral pH structure through intersubunit and intrasubunit interactions that presumably inhibit the conformational rearrangements required for membrane fusion. The nature of the binding site suggests routes for the chemical modification of TBHQ that could lead to the development of more potent inhibitors of membrane fusion and potential anti-influenza drugs. PMID:19004788

  6. Dual Split Protein (DSP) Assay to Monitor Cell-Cell Membrane Fusion.

    PubMed

    Nakane, Shuhei; Matsuda, Zene

    2015-01-01

    Fusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods. We have recently developed a pair of chimeric reporter protein composed of split Renilla luciferase (RL) and split GFP. We named this reporter dual split protein (DSP), since it recovers both RL and GFP activities upon self reassociation. By using DSP, pore formation and content mixing between the effector and target cells can be monitored upon the recovery of RL and GFP activities after the membrane fusion. This quick assay provides quantitative as well as spatial information about membrane fusion mediated by viral Env.

  7. Measuring the Strength of Interaction between the Ebola Fusion Peptide and Lipid Rafts: Implications for Membrane Fusion and Virus Infection

    PubMed Central

    Freitas, Mônica S.; Follmer, Cristian; Costa, Lilian T.; Vilani, Cecília; Bianconi, M. Lucia; Achete, Carlos Alberto; Silva, Jerson L.

    2011-01-01

    The Ebola fusion peptide (EBO16) is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO16 and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM), a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO16 to induce lipid mixing. On the other hand, EBO16 was structurally sensitive to interaction with lipid rafts (DRMs), but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO16. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO16 and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases. PMID:21249196

  8. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    PubMed

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  9. Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion

    SciTech Connect

    Totsukawa, Go; Matsuo, Ayaka; Kubota, Ayano; Taguchi, Yuya; Kondo, Hisao

    2013-04-05

    Highlights: •VCIP135 is mitotically phosphorylated on Threonine-760 and Serine-767 by Cdc2. •Phosphorylated VCIP135 does not bind to p97ATPase. •The phosphorylation of VCIP135 inhibits p97ATPase-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 and p37 phosphorylation on Serine-56 and Threonine-59 result in mitotic inhibition of the p97/p47 and the p97/p37 pathways, respectively [11,14]. In this study, we show another mechanism of mitotic inhibition of p97-mediated Golgi membrane fusion. We clarified that VCIP135, an essential factor in both p97 membrane fusion pathways, is phosphorylated on Threonine-760 and Serine-767 by Cdc2 at mitosis and that this phosphorylated VCIP135 does not bind to p97. An in vitro Golgi reassembly assay revealed that VCIP135(T760E, S767E), which mimics mitotic phosphorylation, caused no cisternal regrowth. Our results indicate that the phosphorylation of VCIP135 on Threonine-760 and Serine-767 inhibits p97-mediated Golgi membrane fusion at mitosis.

  10. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis.

    PubMed

    Weidberg, Hilla; Shpilka, Tomer; Shvets, Elena; Abada, Adi; Shimron, Frida; Elazar, Zvulun

    2011-04-19

    Autophagy is a unique membrane trafficking pathway describing the formation and targeting of double membrane autophagosomes to the vacuole/lysosome. The biogenesis of autophagosomes and their delivery to the vacuole/lysosome depend on multiple membrane fusion events. Using a cell-free system, we have investigated the ability of LC3 and GATE-16, two mammalian Atg8 orthologs, to mediate membrane fusion. We found that both proteins promote tethering and membrane fusion, mediated by the proteins' N-terminal α helices. We further show that short, 10 amino acid long synthetic peptides derived from the N terminus of LC3 or GATE-16 are sufficient to promote membrane fusion. Our data indicate that the fusion activity of LC3 is mediated by positively charged amino acids, whereas the activity of GATE-16 is mediated by hydrophobic interactions. Finally, we demonstrate that LC3 and GATE-16 N termini in general and specific residues needed for the fusion activity are essential for the proteins role in autophagosome biogenesis.

  11. Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labeling

    SciTech Connect

    Novick, S.L.; Hoekstra, D.

    1988-10-01

    The hydrophobic photoaffinity label 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine was used to label Sendai virus proteins during fusion with cardiolipin and phosphatidylserine liposomes. Preferential labeling of the viral fusion protein during the initial stages of fusion demonstrated that this protein interacts with the hydrophobic core of the target membrane as an initiating event of virus-liposome fusion. Labeling showed time, temperature, and pH dependence consistent with earlier fluorescent measurements of fusion kinetics. The present method provides conclusive evidence supporting the hypothesis that hydrophobic interaction of the fusion protein with the target bilayer is an initial event in the fusion mechanism of viral membranes.

  12. Transforaminal lumbar interbody fusion versus instrumented posterolateral fusion in Grade I/II spondylolisthesis

    PubMed Central

    Pooswamy, Shanmugasundaram; Muralidharagopalan, Niranjanan Raghavn; Subbaiah, Sivasubramaniam

    2017-01-01

    Background: Spondylolisthesis refers to slippage of one vertebra over the other, which may be caused by a variety of reasons such as degenerative, trauma, and isthmic. Surgical management forms the mainstay of treatment to prevent further slip and worsening. However, there is no consensus regarding the best surgical option to treat these patients. This study compares TLIF and instrumented PLF in patients with Grade I and II spondylolisthesis and analysis the outcome with respect to functional outcome, pain, fusion rate, adequacy of medial facetectomy for decompression, and complications. Materials and Methods: Forty patients operated for spondylolisthesis by instrumented posterolateral or transforaminal fusion between January 1, 2010, and June 30, 2012 were included in this retrospective study. They were followed up for 3 years. Twenty one cases were of instrumented posterolateral fusion (PLF) and 19 cases were of transforaminal lumbar interbody fusion (TLIF). The patients were asked to fill up the Oswestry disability index (ODI), Dallas Pain Questionnaire (DPQ), and low back pain rating scale (LBPRS) preoperatively, at 1-month postoperatively, and at 6, 12, 24, and 36 months postoperatively. Radiological parameters were assessed using radiographs. Results: No significant differences were found in DPQ, LBPRS, or ODI scores preoperative, 1-month postoperative, and at 6, 12, 24 and 36 months followup. No significant difference was found between the two groups in blood loss. The only significant difference between the two groups was in the operative time, in which the instrumented PLF group had a mean of 50 min lesser than the TLIF group (P = 0.02). Conclusions: TLIF and instrumented PLF are equally efficacious options in the treatment of Grade I and II spondylolisthesis, except lytic type. PMID:28400657

  13. Transforaminal lumbar interbody fusion versus instrumented posterolateral fusion in Grade I/II spondylolisthesis.

    PubMed

    Pooswamy, Shanmugasundaram; Muralidharagopalan, Niranjanan Raghavn; Subbaiah, Sivasubramaniam

    2017-01-01

    Spondylolisthesis refers to slippage of one vertebra over the other, which may be caused by a variety of reasons such as degenerative, trauma, and isthmic. Surgical management forms the mainstay of treatment to prevent further slip and worsening. However, there is no consensus regarding the best surgical option to treat these patients. This study compares TLIF and instrumented PLF in patients with Grade I and II spondylolisthesis and analysis the outcome with respect to functional outcome, pain, fusion rate, adequacy of medial facetectomy for decompression, and complications. Forty patients operated for spondylolisthesis by instrumented posterolateral or transforaminal fusion between January 1, 2010, and June 30, 2012 were included in this retrospective study. They were followed up for 3 years. Twenty one cases were of instrumented posterolateral fusion (PLF) and 19 cases were of transforaminal lumbar interbody fusion (TLIF). The patients were asked to fill up the Oswestry disability index (ODI), Dallas Pain Questionnaire (DPQ), and low back pain rating scale (LBPRS) preoperatively, at 1-month postoperatively, and at 6, 12, 24, and 36 months postoperatively. Radiological parameters were assessed using radiographs. No significant differences were found in DPQ, LBPRS, or ODI scores preoperative, 1-month postoperative, and at 6, 12, 24 and 36 months followup. No significant difference was found between the two groups in blood loss. The only significant difference between the two groups was in the operative time, in which the instrumented PLF group had a mean of 50 min lesser than the TLIF group (P = 0.02). TLIF and instrumented PLF are equally efficacious options in the treatment of Grade I and II spondylolisthesis, except lytic type.

  14. High Cholesterol Obviates a Prolonged Hemifusion Intermediate in Fast SNARE-Mediated Membrane Fusion

    PubMed Central

    Kreutzberger, Alex J.B.; Kiessling, Volker; Tamm, Lukas K.

    2015-01-01

    Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays. PMID:26200867

  15. High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion.

    PubMed

    Kreutzberger, Alex J B; Kiessling, Volker; Tamm, Lukas K

    2015-07-21

    Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays.

  16. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    NASA Astrophysics Data System (ADS)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  17. The Unique Transmembrane Hairpin of Flavivirus Fusion Protein E Is Essential for Membrane Fusion▿

    PubMed Central

    Fritz, Richard; Blazevic, Janja; Taucher, Christian; Pangerl, Karen; Heinz, Franz X.; Stiasny, Karin

    2011-01-01

    The fusion of enveloped viruses with cellular membranes is mediated by proteins that are anchored in the lipid bilayer of the virus and capable of triggered conformational changes necessary for driving fusion. The flavivirus envelope protein E is the only known viral fusion protein with a double membrane anchor, consisting of two antiparallel transmembrane helices (TM1 and TM2). TM1 functions as a stop-transfer sequence and TM2 as an internal signal sequence for the first nonstructural protein during polyprotein processing. The possible role of this peculiar C-terminal helical hairpin in membrane fusion has not been investigated so far. We addressed this question by studying TM mutants of tick-borne encephalitis virus (TBEV) recombinant subviral particles (RSPs), an established model system for flavivirus membrane fusion. The engineered mutations included the deletion of TM2, the replacement of both TM domains (TMDs) by those of the related Japanese encephalitis virus (JEV), and the use of chimeric TBEV-JEV membrane anchors. Using these mutant RSPs, we provide evidence that TM2 is not just a remnant of polyprotein processing but, together with TM1, plays an active role in fusion. None of the TM mutations, including the deletion of TM2, affected early steps of the fusion process, but TM interactions apparently contribute to the stability of the postfusion E trimer and the completion of the merger of the membranes. Our data provide evidence for both intratrimer and intertrimer interactions mediated by the TMDs of E and thus extend the existing models of flavivirus membrane fusion. PMID:21325407

  18. The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics.

    PubMed

    Grafmüller, Andrea; Shillcock, Julian; Lipowsky, Reinhard

    2009-04-08

    The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8-15 k(B)T. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion.

  19. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates

    PubMed Central

    Ivanovic, Tijana; Choi, Jason L; Whelan, Sean P; van Oijen, Antoine M; Harrison, Stephen C

    2013-01-01

    Influenza virus penetrates cells by fusion of viral and endosomal membranes catalyzed by the viral hemagglutinin (HA). Structures of the initial and final states of the HA trimer define the fusion endpoints, but do not specify intermediates. We have characterized these transitions by analyzing low-pH-induced fusion kinetics of individual virions and validated the analysis by computer simulation. We detect initial engagement with the target membrane of fusion peptides from independently triggered HAs within the larger virus-target contact patch; fusion then requires engagement of three or four neighboring HA trimers. Effects of mutations in HA indicate that withdrawal of the fusion peptide from a pocket in the pre-fusion trimer is rate-limiting for both events, but the requirement for cooperative action of several HAs to bring the fusing membranes together leads to a long-lived intermediate state for single, extended HA trimers. This intermediate is thus a fundamental aspect of the fusion mechanism. DOI: http://dx.doi.org/10.7554/eLife.00333.001 PMID:23550179

  20. The Fusion of Membranes and Vesicles: Pathway and Energy Barriers from Dissipative Particle Dynamics

    PubMed Central

    Grafmüller, Andrea; Shillcock, Julian; Lipowsky, Reinhard

    2009-01-01

    The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8–15 kBT. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion. PMID:19348749

  1. Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes.

    PubMed

    Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan

    2013-05-28

    Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.

  2. Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.

    PubMed

    Kiskin, Nikolai I; Babich, Victor; Knipe, Laura; Hannah, Matthew J; Carter, Tom

    2014-01-01

    Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis.

  3. Entropic forces drive self-organization and membrane fusion by SNARE proteins.

    PubMed

    Mostafavi, Hakhamanesh; Thiyagarajan, Sathish; Stratton, Benjamin S; Karatekin, Erdem; Warner, Jason M; Rothman, James E; O'Shaughnessy, Ben

    2017-05-23

    SNARE proteins are the core of the cell's fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form trans-SNARE complexes ("SNAREpins") with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREpins, but how they cooperate is unknown and reports of the number required vary widely. To capture the collective behavior on the long timescales of fusion, we developed a highly coarse-grained model that retains key biophysical SNARE properties such as the zippering energy landscape and the surface charge distribution. In simulations the ∼65-kT zippering energy was almost entirely dissipated, with fully assembled SNARE motifs but uncomplexed linker domains. The SNAREpins self-organized into a circular cluster at the fusion site, driven by entropic forces that originate in steric-electrostatic interactions among SNAREpins and membranes. Cooperative entropic forces expanded the cluster and pulled the membranes together at the center point with high force. We find that there is no critical number of SNAREs required for fusion, but instead the fusion rate increases rapidly with the number of SNAREpins due to increasing entropic forces. We hypothesize that this principle finds physiological use to boost fusion rates to meet the demanding timescales of neurotransmission, exploiting the large number of v-SNAREs available in synaptic vesicles. Once in an unfettered cluster, we estimate ≥15 SNAREpins are required for fusion within the ∼1-ms timescale of neurotransmitter release.

  4. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    SciTech Connect

    Pszon-Bartosz, Kamila; Hansen, Jesper S.; Stibius, Karin B.; Groth, Jesper S.; Helix-Nielsen, Claus

    2011-03-04

    Research highlights: {yields} We have established a vesicle fusion efficacy assay based on the major non-specific porin of Fusobacterium nucleatum (FomA). {yields} Maximal fusion obtained was almost 150,000 porin insertions during 20 min. {yields} Incorporation can be either first order or exponential kinetics which has implications for establishing protein delivery to biomimetic membranes. -- Abstract: Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR) = 50 more than 10{sup 5} FomA proteins could be incorporated in a bilayer array with a total membrane area of 2 mm{sup 2} within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.

  5. Folded monomers and hexamers of the ectodomain of the HIV gp41 membrane fusion protein: potential roles in fusion and synergy between the fusion peptide, hairpin, and membrane-proximal external region.

    PubMed

    Banerjee, Koyeli; Weliky, David P

    2014-11-25

    HIV is an enveloped virus and fusion between the HIV and host cell membranes is catalyzed by the ectodomain of the HIV gp41 membrane protein. Both the N-terminal fusion peptide (FP) and C-terminal membrane-proximal external region (MPER) are critical for fusion and are postulated to bind to the host cell and HIV membranes, respectively. Prior to fusion, the gp41 on the virion is a trimer in noncovalent complex with larger gp120 subunits. The gp120 bind host cell receptors and move away or dissociate from gp41 which subsequently catalyzes fusion. In the present work, large gp41 ectodomain constructs were produced and biophysically and structurally characterized. One significant finding is observation of synergy between the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced fusion can be very efficient with only ∼15 gp41 per vesicle, which is comparable to the number of gp41 on a virion. Conditions are found with predominant monomer or hexamer but not trimer and these may be oligomeric states during fusion. Monomer gp41 ectodomain is hyperthermostable and has helical hairpin structure. A new HIV fusion model is presented where (1) hemifusion is catalyzed by folding of gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps are catalyzed by assembly into a hexamer with FPs in an antiparallel β sheet. There is also significant interest in the gp41 MPER because it is the epitope of several broadly neutralizing antibodies. Two of these antibodies bind our gp41 ectodomain constructs and support investigation of the gp41 ectodomain as an immunogen in HIV vaccine development.

  6. Evidence for thylakoid membrane fusion during zygote formation in Chlamydomonas reinhardtii

    PubMed Central

    1991-01-01

    To understand whether fusions of thylakoid membranes from the parental chloroplasts occurred during zygote formation in Chlamydomonas reinhardtii, we performed an ultrastructural analysis of the zygotes produced by crossing mutants lacking photosystem I or II protein complexes, in the absence of de novo chloroplast protein synthesis. Thylakoid membranes from each parent could be distinguished on thin sections due to their organization in "supergrana" in mutants lacking photosystem I centers, by freeze-fracturing due to the absence of most of the exoplasmic-face (EF) particles in mutants lacking photosystem II centers, by immunocytochemistry using antibodies directed against photosystem II subunits. We demonstrate that a fusion of the thylakoid membranes occurred during zygote formation approximately 15 h after mating. These fusions allowed a lateral redistribution of the thylakoid membrane proteins. These observations provide the structural basis for the restoration of photosynthetic electron flow in the mature zygote that we observed in fluorescence induction experiments. PMID:1874788

  7. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  8. Low energy cost for optimal speed and control of membrane fusion

    PubMed Central

    François-Martin, Claire; Rothman, James E.; Pincet, Frederic

    2017-01-01

    Membrane fusion is the cell’s delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT. Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand. PMID:28115718

  9. Low energy cost for optimal speed and control of membrane fusion.

    PubMed

    François-Martin, Claire; Rothman, James E; Pincet, Frederic

    2017-02-07

    Membrane fusion is the cell's delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.

  10. Rational design of a fusion partner for membrane protein expression in E. coli

    PubMed Central

    Luo, Jianying; Choulet, Julie; Samuelson, James C

    2009-01-01

    We have designed a novel protein fusion partner (P8CBD) to utilize the co-translational SRP pathway in order to target heterologous proteins to the E. coli inner membrane. SRP-dependence was demonstrated by analyzing the membrane translocation of P8CBD-PhoA fusion proteins in wt and SRP-ffh77 mutant cells. We also demonstrate that the P8CBD N-terminal fusion partner promotes over-expression of a Thermotoga maritima polytopic membrane protein by replacement of the native signal anchor sequence. Furthermore, the yeast mitochondrial inner membrane protein Oxa1p was expressed as a P8CBD fusion and shown to function within the E. coli inner membrane. In this example, the mitochondrial targeting peptide was replaced by P8CBD. Several practical features were incorporated into the P8CBD expression system to aid in protein detection, purification, and optional in vitro processing by enterokinase. The basis of membrane protein over-expression toxicity is discussed and solutions to this problem are presented. We anticipate that this optimized expression system will aid in the isolation and study of various recombinant forms of membrane-associated protein. PMID:19530231

  11. Membrane interactions of fusogenic coiled-coil peptides: implications for lipopeptide mediated vesicle fusion.

    PubMed

    Rabe, Martin; Schwieger, Christian; Zope, Harshal R; Versluis, Frank; Kros, Alexander

    2014-07-08

    Fusion of lipid membranes is an important natural process for the intra- and intercellular exchange of molecules. However, little is known about the actual fusion mechanism at the molecular level. In this study we examine a system that models the key features of this process. For the molecular recognition between opposing membranes two membrane anchored heterodimer coiled-coil forming peptides called 'E' (EIAALEK)3 and 'K' (KIAALKE)3 were used. Lipid monolayers and IR reflection absorption spectroscopy (IRRAS) revealed the interactions of the peptides 'E', 'K', and their parallel coiled-coil complex 'E/K' with the phospholipid membranes and thereby mimicked the pre- and postfusion states, respectively. The peptides adopted α-helical structures and were incorporated into the monolayers with parallel orientation. The strength of binding to the monolayer differed for the peptides and tethering them to the membrane increased the interactions even further. Remarkably, these interactions played a role even in the postfusion state. These findings shed light on important mechanistic details of the membrane fusion process in this model system. Furthermore, their implications will help to improve the rational design of new artificial membrane fusion systems, which have a wide range of potential applications in supramolecular chemistry and biomedicine.

  12. Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18.

    PubMed

    Zick, Michael; Orr, Amy; Schwartz, Matthew L; Merz, Alexey J; Wickner, William T

    2015-05-05

    Sec17 [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein; α-SNAP] and Sec18 (NSF) perform ATP-dependent disassembly of cis-SNARE complexes, liberating SNAREs for subsequent assembly of trans-complexes for fusion. A mutant of Sec17, with limited ability to stimulate Sec18, still strongly enhanced fusion when ample Sec18 was supplied, suggesting that Sec17 has additional functions. We used fusion reactions where the four SNAREs were initially separate, thus requiring no disassembly by Sec18. With proteoliposomes bearing asymmetrically disposed SNAREs, tethering and trans-SNARE pairing allowed slow fusion. Addition of Sec17 did not affect the levels of trans-SNARE complex but triggered sudden fusion of trans-SNARE paired proteoliposomes. Sec18 did not substitute for Sec17 in triggering fusion, but ADP- or ATPγS-bound Sec18 enhanced this Sec17 function. The extent of the Sec17 effect varied with the lipid headgroup and fatty acyl composition of the proteoliposomes. Two mutants further distinguished the two Sec17 functions: Sec17(L291A,L292A) did not stimulate Sec18 to disassemble cis-SNARE complex but triggered the fusion of trans-SNARE paired membranes. Sec17(F21S,M22S), with diminished apolar character to its hydrophobic loop, fully supported Sec18-mediated SNARE complex disassembly but had lost the capacity to stimulate the fusion of trans-SNARE paired membranes. To model the interactions of SNARE-bound Sec17 with membranes, we show that Sec17, but not Sec17(F21S,M22S), interacted synergistically with the soluble SNARE domains to enable their stable association with liposomes. We propose a model in which Sec17 binds to trans-SNARE complexes, oligomerizes, and inserts apolar loops into the apposed membranes, locally disturbing the lipid bilayer and thereby lowering the energy barrier for fusion.

  13. Mechanism of Inhibition of Enveloped Virus Membrane Fusion by the Antiviral Drug Arbidol

    PubMed Central

    Teissier, Elodie; Zandomeneghi, Giorgia; Loquet, Antoine; Lavillette, Dimitri; Lavergne, Jean-Pierre; Montserret, Roland; Cosset, François-Loïc; Böckmann, Anja; Meier, Beat H.; Penin, François; Pécheur, Eve-Isabelle

    2011-01-01

    The broad-spectrum antiviral arbidol (Arb) inhibits cell entry of enveloped viruses by blocking viral fusion with host cell membrane. To better understand Arb mechanism of action, we investigated its interactions with phospholipids and membrane peptides. We demonstrate that Arb associates with phospholipids in the micromolar range. NMR reveals that Arb interacts with the polar head-group of phospholipid at the membrane interface. Fluorescence studies of interactions between Arb and either tryptophan derivatives or membrane peptides reconstituted into liposomes show that Arb interacts with tryptophan in the micromolar range. Interestingly, apparent binding affinities between lipids and tryptophan residues are comparable with those of Arb IC50 of the hepatitis C virus (HCV) membrane fusion. Since tryptophan residues of membrane proteins are known to bind preferentially at the membrane interface, these data suggest that Arb could increase the strength of virus glycoprotein's interactions with the membrane, due to a dual binding mode involving aromatic residues and phospholipids. The resulting complexation would inhibit the expected viral glycoprotein conformational changes required during the fusion process. Our findings pave the way towards the design of new drugs exhibiting Arb-like interfacial membrane binding properties to inhibit early steps of virus entry, i.e., attractive targets to combat viral infection. PMID:21283579

  14. Reconstituting SNARE-mediated membrane fusion at the single liposome level

    PubMed Central

    Kiessling, Volker; Liang, Binyong; Tamm, Lukas K.

    2015-01-01

    Successful reconstitutions of SNARE-mediated intracellular membrane fusion have been achieved in bulk fusion assays since 1998 and in single liposome fusion assays since 2004. Especially in neuronal presynaptic SNARE-mediated exocytosis, fusion is controlled by numerous accessory proteins, of which some functions have also been reconstituted in vitro. The development of and results obtained with two fundamentally different single liposome fusion assays, namely liposome-to-supported membrane and liposome-to-liposome, are reviewed. Both assays distinguish between liposome docking and fusion steps of the overall fusion reaction and both assays are capable of resolving hemi-and full-fusion intermediates and end states. They have opened new windows for elucidating the mechanisms of these fundamentally important cellular reactions with unprecedented time and molecular resolution. Although many of the molecular actors in this process have been discovered, we have only scratched the surface of looking at their fascinating plays, interactions, and choreographies that lead to vesicle traffic as well as neurotransmitter and hormone release in the cell. PMID:25997356

  15. Bacteriophage membrane protein P9 as a fusion partner for the efficient expression of membrane proteins in Escherichia coli.

    PubMed

    Jung, Yuna; Jung, Hyeim; Lim, Dongbin

    2015-12-01

    Despite their important roles and economic values, studies of membrane proteins have been hampered by the difficulties associated with obtaining sufficient amounts of protein. Here, we report a novel membrane protein expression system that uses the major envelope protein (P9) of phage φ6 as an N-terminal fusion partner. Phage membrane protein P9 facilitated the synthesis of target proteins and their integration into the Escherichia coli cell membrane. This system was used to produce various multi-pass transmembrane proteins, including G-protein-coupled receptors, transporters, and ion channels of human origin. Green fluorescent protein fusion was used to confirm the correct folding of the expressed proteins. Of the 14 membrane proteins tested, eight were highly expressed, three were moderately expressed, and three were barely expressed in E. coli. Seven of the eight highly expressed proteins could be purified after extraction with the mild detergent lauryldimethylamine-oxide. Although a few proteins have previously been developed as fusion partners to augment membrane protein production, we believe that the major envelope protein P9 described here is better suited to the efficient expression of eukaryotic transmembrane proteins in E. coli.

  16. Effect of physical constraints on the mechanisms of membrane fusion: bolaform lipid vesicles as model systems.

    PubMed Central

    Relini, A; Cassinadri, D; Fan, Q; Gulik, A; Mirghani, Z; De Rosa, M; Gliozzi, A

    1996-01-01

    Bolaform lipid vesicles were used to study the effect of physical constraints on membrane fusion. In these vesicles the membrane is organized in a single monolayer, because of the presence of covalent bonds in its middle plane. Therefore, the formation of fusion intermediates is subject to higher energy barriers and greater geometrical constraints than is usual in bilayer membranes. Bolaform lipids were extracted from the thermophilic archaeon Sulfolobus solfataricus. These lipids can be divided into two classes, the monosubstituted molecules, in which one of the polar heads is glycerol, and the bisubstituted molecules, endowed with two complex polar heads. The fusion process in vesicles composed of different mixtures of monosubstituted/bisubstituted molecules was studied by means of fluorescence techniques. Ca2+ or poly(ethylene glycol) was employed as a fusogenic agent. We found that fusion of such constrained membranes is still possible, provided that molecules able to mediate a structural rearrangement of the membrane are present. This condition is fulfilled by monosubstituted molecules, which are able to partition the glycerol headgroup in the apolar moiety. In addition, the presence of traces (approximately 5%) of the monopolar compound diphytanylglycerol is an important factor for fusion to occur. On the contrary, vesicles formed by bisubstituted molecules are unable to fuse, irrespective of the fusogen employed. Images FIGURE 2 PMID:8889155

  17. Otoferlin is a calcium sensor that directly regulates SNARE-mediated membrane fusion

    PubMed Central

    Johnson, Colin P.

    2010-01-01

    Otoferlin is a large multi–C2 domain protein proposed to act as a calcium sensor that regulates synaptic vesicle exocytosis in cochlear hair cells. Although mutations in otoferlin have been associated with deafness, its contribution to neurotransmitter release is unresolved. Using recombinant proteins, we demonstrate that five of the six C2 domains of otoferlin sense calcium with apparent dissociation constants that ranged from 13–25 µM; in the presence of membranes, these apparent affinities increase by up to sevenfold. Using a reconstituted membrane fusion assay, we found that five of the six C2 domains of otoferlin stimulate membrane fusion in a calcium-dependent manner. We also demonstrate that a calcium binding–deficient form of the C2C domain is incapable of stimulating membrane fusion, further underscoring the importance of calcium for the protein’s function. These results demonstrate for the first time that otoferlin is a calcium sensor that can directly regulate soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor–mediated membrane fusion reactions. PMID:20921140

  18. The Influenza Hemagglutinin Fusion Domain Is an Amphipathic Helical Hairpin That Functions by Inducing Membrane Curvature*

    PubMed Central

    Smrt, Sean T.; Draney, Adrian W.; Lorieau, Justin L.

    2015-01-01

    The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. PMID:25398882

  19. pH-dependent vesicle fusion induced by the ectodomain of the human immunodeficiency virus membrane fusion protein gp41: Two kinetically distinct processes and fully-membrane-associated gp41 with predominant β sheet fusion peptide conformation.

    PubMed

    Ratnayake, Punsisi U; Sackett, Kelly; Nethercott, Matthew J; Weliky, David P

    2015-01-01

    The gp41 protein of the Human Immunodeficiency Virus (HIV) catalyzes fusion between HIV and host cell membranes. The ~180-residue ectodomain of gp41 is outside the virion and is the most important gp41 region for membrane fusion. The ectodomain consists of an apolar fusion peptide (FP) region hypothesized to bind to the host cell membrane followed by N-heptad repeat (NHR), loop, and C-heptad repeat (CHR) regions. The present study focuses on the large gp41 ectodomain constructs "Hairpin" (HP) containing NHR+loop+CHR and "FP-Hairpin" (FP-HP) containing FP+NHR+loop+CHR. Both proteins induce rapid and extensive fusion of anionic vesicles at pH4 where the protein is positively-charged but do not induce fusion at pH7 where the protein is negatively charged. This observation, along with lack of fusion of neutral vesicles at either pH supports the significance of attractive protein/membrane electrostatics in fusion. There are two kinetically distinct fusion processes at pH4: (1) a faster ~100 ms⁻¹ process with rate strongly positively correlated with vesicle charge; and (2) a slower ~5 ms⁻¹ process with extent strongly inversely correlated with this charge. The slower process may be more physiologically relevant because HIV/host cell fusion occurs at physiologic pH with gp41 restricted to the narrow region between the two membranes. Previous solid-state NMR (SSNMR) of membrane-associated FP-HP has supported protein oligomers with FP's in an intermolecular antiparallel sheet. There was an additional population of molecules with α helical FPs and the samples likely contained a mixture of membrane-bound and -unbound proteins. For the present study, samples were prepared with fully membrane-bound FP-HP and subsequent SSNMR showed dominant β FP conformation at both low and neutral pH. SSNMR also showed close contact of the FP with the lipid headgroups at both low and neutral pH whereas the NHR+CHR regions had contact at low pH and were more distant at neutral p

  20. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion.

    PubMed

    Heidrich, Jennifer; Thurotte, Adrien; Schneider, Dirk

    2017-04-01

    The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg(2+) is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A dynamin homolog promotes the transition from hemifusion to content mixing in intracellular membrane fusion

    PubMed Central

    Kulkarni, Aditya; Alpadi, Kannan; Sirupangi, Tirupataiah; Peters, Christopher

    2014-01-01

    The convergence of the antagonistic reactions of membrane fusion and fission at the hemifusion/hemifission intermediate has generated a captivating enigma of whether SNAREs and dynamin have unusual counter-functions in fission and fusion respectively. SNARE-mediated fusion and dynamin-driven fission are fundamental membrane flux reactions known to occur during ubiquitous cellular communication events such as exocytosis, endocytosis and vesicle transport. Here we demonstrate the influence of the dynamin homolog Vps1 on lipid mixing and content mixing properties of yeast vacuoles, and on the incorporation of SNAREs into fusogenic complexes. We propose a novel concept that Vps1, through its oligomerization and SNARE domain binding, promotes the hemifusion-content mixing transition in yeast vacuole fusion by increasing the number of trans-SNAREs. PMID:24471450

  2. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    PubMed

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  3. Green fluorescence protein-based content-mixing assay of SNARE-driven membrane fusion.

    PubMed

    Heo, Paul; Kong, Byoungjae; Jung, Young-Hun; Park, Joon-Bum; Shin, Jonghyeok; Park, Myungseo; Kweon, Dae-Hyuk

    2017-06-17

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion by forming a ternary SNARE complex. A minimalist approach utilizing proteoliposomes with reconstituted SNARE proteins yielded a wealth of information pinpointing the molecular mechanism of SNARE-mediated fusion and its regulation by accessory proteins. Two important attributes of a membrane fusion are lipid-mixing and the formation of an aqueous passage between apposing membranes. These two attributes are typically observed by using various fluorescent dyes. Currently available in vitro assay systems for observing fusion pore opening have several weaknesses such as cargo-bleeding, incomplete removal of unencapsulated dyes, and inadequate information regarding the size of the fusion pore, limiting measurements of the final stage of membrane fusion. In the present study, we used a biotinylated green fluorescence protein and streptavidin conjugated with Dylight 594 (DyStrp) as a Föster resonance energy transfer (FRET) donor and acceptor, respectively. This FRET pair encapsulated in each v-vesicle containing synaptobrevin and t-vesicle containing a binary acceptor complex of syntaxin 1a and synaptosomal-associated protein 25 revealed the opening of a large fusion pore of more than 5 nm, without the unwanted signals from unencapsulated dyes or leakage. This system enabled determination of the stoichiometry of the merging vesicles because the FRET efficiency of the FRET pair depended on the molar ratio between dyes. Here, we report a robust and informative assay for SNARE-mediated fusion pore opening. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein

    SciTech Connect

    Chen, Chang Lan; Shim, Myoung Sup; Chung, Jiyeol; Yoo, Hyun-Seung; Ha, Ji Min; Kim, Jin Young; Choi, Jinmi; Zang, Shu Liang; Hou, Xiao; Carlson, Bradley A.; Hatfield, Dolph L.; Lee, Byeong Jae . E-mail: imbglmg@plaza.snu.ac.kr

    2006-10-06

    G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus of G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is First selenoprotein identified in the Golgi apparatus.

  5. Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study.

    PubMed

    Ge, Mingtao; Freed, Jack H

    2009-06-17

    A spin-labeling study of interactions of a fusion peptide from the hemagglutinin of the influenza virus, wt20, and a fusion-inactive mutant DeltaG1 with dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoyl-phosphatdylcholine bilayers was performed. We found that upon binding of wt20, the ordering of headgroups and the ordering of acyl chains near the headgroup increased significantly, in a manner consistent with a cooperative phenomenon. However, changes in the order at the end of the acyl chains were negligible. The ordering effect of wt20 on the headgroup was much stronger at pH 5 than at pH 7. No effect of DeltaG1 binding on the order of bilayers was evident. We also found that 1-palmitoyl-2-hydroxyl phosphatidylcholine, a membrane-fusion inhibitor, decreased the ordering of DMPC headgroups, whereas arachidonic acid, a membrane-fusion promoter, increased the ordering of DMPC headgroups. These results suggest that increases in headgroup ordering may be important for membrane fusion. We propose that upon binding of wt20, which is known to affect only the outer leaflet of the bilayer, this outer leaflet becomes more ordered, and thus more solid-like. Then the coupling between the hardened outer leaflet and the softer inner leaflet generates bending stresses in the bilayer, which tend to increase the negative curvature of the bilayer. We suggest that the increased ordering in the headgroup region enhances dipolar interactions and lowers electrostatic energy, which may provide an energy source for membrane fusion. Possible roles of bending stresses in promoting membrane fusion are discussed.

  6. Atomic force microscopy: Unraveling the fundamental principles governing secretion and membrane fusion in cells.

    PubMed

    Jena, Bhanu P

    2009-07-01

    The story of cell secretion and membrane fusion is as old as life itself. Without these fundamental cellular processes known to occur in yeast to humans, life would cease to exist. In the last 15 years, primarily using the atomic force microscope, a detailed understanding of the molecular process and of the molecular machinery and mechanism of secretion and membrane fusion in cells has come to light. This has led to a paradigm shift in our understanding of the underlying mechanism of cell secretion. The journey leading to the discovery of a new cellular structure the 'porosome',-the universal secretory machinery in cells, and the contributions of the AFM in our understanding of the general molecular machinery and mechanism of cell secretion and membrane fusion, is briefly discussed in this article.

  7. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity

    PubMed Central

    Marshall, Misty R.; Pattu, Varsha; Halimani, Mahantappa; Maier-Peuschel, Monika; Müller, Martha-Lena; Becherer, Ute; Hong, Wanjin; Hoth, Markus; Tschernig, Thomas

    2015-01-01

    Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated. PMID:26124288

  8. SNARE-mediated membrane fusion trajectories derived from force-clamp experiments.

    PubMed

    Oelkers, Marieelen; Witt, Hannes; Halder, Partho; Jahn, Reinhard; Janshoff, Andreas

    2016-11-15

    Fusion of lipid bilayers is usually prevented by large energy barriers arising from removal of the hydration shell, formation of highly curved structures, and, eventually, fusion pore widening. Here, we measured the force-dependent lifetime of fusion intermediates using membrane-coated silica spheres attached to cantilevers of an atomic-force microscope. Analysis of time traces obtained from force-clamp experiments allowed us to unequivocally assign steps in deflection of the cantilever to membrane states during the SNARE-mediated fusion with solid-supported lipid bilayers. Force-dependent lifetime distributions of the various intermediate fusion states allowed us to propose the likelihood of different fusion pathways and to assess the main free energy barrier, which was found to be related to passing of the hydration barrier and splaying of lipids to eventually enter either the fully fused state or a long-lived hemifusion intermediate. The results were compared with SNARE mutants that arrest adjacent bilayers in the docked state and membranes in the absence of SNAREs but presence of PEG or calcium. Only with the WT SNARE construct was appreciable merging of both bilayers observed.

  9. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion

    PubMed Central

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Murrell-Lagnado, Ruth; Zhu, Michael X.

    2015-01-01

    Intra-endolysosomal Ca2+ release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca2+ release and the downstream Ca2+ targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca2+-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca2+ release and subsequent CaM activation. PMID:26101220

  10. SNARE-mediated membrane fusion trajectories derived from force-clamp experiments

    PubMed Central

    Oelkers, Marieelen; Witt, Hannes; Halder, Partho; Janshoff, Andreas

    2016-01-01

    Fusion of lipid bilayers is usually prevented by large energy barriers arising from removal of the hydration shell, formation of highly curved structures, and, eventually, fusion pore widening. Here, we measured the force-dependent lifetime of fusion intermediates using membrane-coated silica spheres attached to cantilevers of an atomic-force microscope. Analysis of time traces obtained from force-clamp experiments allowed us to unequivocally assign steps in deflection of the cantilever to membrane states during the SNARE-mediated fusion with solid-supported lipid bilayers. Force-dependent lifetime distributions of the various intermediate fusion states allowed us to propose the likelihood of different fusion pathways and to assess the main free energy barrier, which was found to be related to passing of the hydration barrier and splaying of lipids to eventually enter either the fully fused state or a long-lived hemifusion intermediate. The results were compared with SNARE mutants that arrest adjacent bilayers in the docked state and membranes in the absence of SNAREs but presence of PEG or calcium. Only with the WT SNARE construct was appreciable merging of both bilayers observed. PMID:27807132

  11. Fusion of artificial membranes with mammalian spermatozoa. Specific involvement of the equatorial segment after acrosome reaction.

    PubMed

    Arts, E G; Kuiken, J; Jager, S; Hoekstra, D

    1993-11-01

    The fusogenic properties of bovine and human spermatozoa membranes were investigated, using phospholipid bilayers (liposomes) as target membranes. Fusion was monitored by following lipid mixing, as revealed by an assay based on resonance-energy transfer. In addition, fusion was visualized by fluorescence microscopy, using fluorescent lipid vesicles. Cryopreserved bovine sperm fused with liposomes before induction of the acrosome reaction, fluorescence being located in essentially all spermatozoa membrane domains. Fresh bovine and human spermatozoa fused with liposomes only after the induction of the acrosome reaction, as triggered by calcium ionophore A23187 or zonae pellucidae (proteins), while the fluorescence distribution was mainly restricted to the equatorial segment (ES). However, with spermatozoa that had undergone a freeze/thawing cycle, domains other than ES also became labeled. Hence, the redistribution of the lipid probes over the entire membrane occurring during lipid mixing with cryopreserved bovine sperm is probably related to membrane perturbations caused by long-term cryopreservation. Fusion with liposomes was governed by spermatozoa factors and required the presence of acidic phospholipids like cardiolipin and phosphatidylserine in the liposomal bilayer. Incorporation of the zwitterionic lipid phosphatidylcholine in the vesicles inhibited the fusion reaction. Fusion was pH dependent. The results indicate that the ES is the primary domain of spermatozoa membranes that harbours the fusogenic capacity of sperm. Liposomes appear a valuable tool in further characterizing the properties of this domain, which has been claimed [Yanagimachi, R. (1988) in The physiology of reproduction (Knobil, E. & Neill, J., eds) pp. 135-185, Raven Press, New York] to represent the putative, initial fusion site for the oocyte.

  12. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

    PubMed

    Zhang, Cuilin; Shi, Zhun; Zhang, Lingzhi; Zhou, Zehua; Zheng, Xiaoyuan; Liu, Guiying; Bu, Guojun; Fraser, Paul E; Xu, Huaxi; Zhang, Yun-Wu

    2016-03-01

    Mitochondrial morphology is regulated by fusion and fission machinery. Impaired mitochondria dynamics cause various diseases, including Alzheimer's disease. Appoptosin (encoded by SLC25A38) is a mitochondrial carrier protein that is located in the mitochondrial inner membrane. Appoptosin overexpression causes overproduction of reactive oxygen species (ROS) and caspase-dependent apoptosis, whereas appoptosin downregulation abolishes β-amyloid-induced mitochondrial fragmentation and neuronal death during Alzheimer's disease. Herein, we found that overexpression of appoptosin resulted in mitochondrial fragmentation in a manner independent of its carrier function, ROS production or caspase activation. Although appoptosin did not affect levels of mitochondrial outer-membrane fusion (MFN1 and MFN2), inner-membrane fusion (OPA1) and fission [DRP1 (also known as DNM1L) and FIS1] proteins, appoptosin interacted with MFN1 and MFN2, as well as with the mitochondrial ubiquitin ligase MITOL (also known as MARCH5) but not OPA1, FIS1 or DRP1. Appoptosin overexpression impaired the interaction between MFN1 and MFN2, and mitochondrial fusion. By contrast, co-expression of MFN1, MITOL and a dominant-negative form of DRP1, DRP1(K38A), partially rescued appoptosin-induced mitochondrial fragmentation and apoptosis, whereas co-expression of FIS1 aggravated appoptosin-induced apoptosis. Together, our results demonstrate that appoptosin can interact with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

  13. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology

    PubMed Central

    Zhang, Cuilin; Shi, Zhun; Zhang, Lingzhi; Zhou, Zehua; Zheng, Xiaoyuan; Liu, Guiying; Bu, Guojun; Fraser, Paul E.; Xu, Huaxi; Zhang, Yun-wu

    2016-01-01

    ABSTRACT Mitochondrial morphology is regulated by fusion and fission machinery. Impaired mitochondria dynamics cause various diseases, including Alzheimer's disease. Appoptosin (encoded by SLC25A38) is a mitochondrial carrier protein that is located in the mitochondrial inner membrane. Appoptosin overexpression causes overproduction of reactive oxygen species (ROS) and caspase-dependent apoptosis, whereas appoptosin downregulation abolishes β-amyloid-induced mitochondrial fragmentation and neuronal death during Alzheimer's disease. Herein, we found that overexpression of appoptosin resulted in mitochondrial fragmentation in a manner independent of its carrier function, ROS production or caspase activation. Although appoptosin did not affect levels of mitochondrial outer-membrane fusion (MFN1 and MFN2), inner-membrane fusion (OPA1) and fission [DRP1 (also known as DNM1L) and FIS1] proteins, appoptosin interacted with MFN1 and MFN2, as well as with the mitochondrial ubiquitin ligase MITOL (also known as MARCH5) but not OPA1, FIS1 or DRP1. Appoptosin overexpression impaired the interaction between MFN1 and MFN2, and mitochondrial fusion. By contrast, co-expression of MFN1, MITOL and a dominant-negative form of DRP1, DRP1K38A, partially rescued appoptosin-induced mitochondrial fragmentation and apoptosis, whereas co-expression of FIS1 aggravated appoptosin-induced apoptosis. Together, our results demonstrate that appoptosin can interact with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology. PMID:26813789

  14. In vitro fusion between Saccharomyces cerevisiae secretory vesicles and cytoplasmic-side-out plasma membrane vesicles.

    PubMed Central

    Arrastua, Lorena; San Sebastian, Eider; Quincoces, Ana F; Antony, Claude; Ugalde, Unai

    2003-01-01

    The final step in the secretory pathway, which is the fusion event between secretory vesicles and the plasma membrane, was reconstructed using highly purified secretory vesicles and cytoplasmic-side-out plasma membrane vesicles from the yeast Saccharomyces cerevisiae. Both organelle preparations were obtained from a sec 6-4 temperature-sensitive mutant. Fusion was monitored by means of a fluorescence assay based on the dequenching of the lipophilic fluorescent probe octadecylrhodamine B-chloride (R18). The probe was incorporated into the membrane of secretory vesicles, and it diluted in unlabelled cytoplasmic-side-out plasma membrane vesicles as the fusion process took place. The obtained experimental dequenching curves were found by mathematical analysis to consist of two independent but simultaneous processes. Whereas one of them reflected the fusion process between both vesicle populations as confirmed by its dependence on the assay conditions, the other represented a non-specific transfer of the probe. The fusion process may now be examined in detail using the preparation, validation and analytical methods developed in this study. PMID:12435271

  15. Intermediates in influenza virus PR/8 haemagglutinin-induced membrane fusion.

    PubMed

    Pak, C C; Krumbiegel, M; Blumenthal, R

    1994-02-01

    The fusion kinetics with erythrocyte ghosts of two influenza A virus strains, A/Aichi/2/68 (X:31) and A/PR/8/34 (PR/8), were compared and correlated with the kinetics of haemagglutinin (HA) conformational change. Previously it had been shown that X:31 fuses with liposomes or erythrocytes at 4 degrees C, pH 5 after a lag time of 5 to 10 min whereas PR/8 displayed no fusion with liposomes at that temperature. We have confirmed the absence of cold fusion by PR/8 with erythrocyte ghosts. In contrast to X:31, PR/8 could not be committed to fuse at neutral pH and 37 degrees C by a preincubation at low pH and 4 degrees C. To examine whether the lack of commitment and cold fusion were due to a failure of PR/8 HA to undergo conformational changes at low temperature and pH, we analysed susceptibility of HA to proteinase K digestion, liposome binding to the virus, and immunoprecipitations of HA with conformation-specific antibodies. Although there was little binding of PR/8 to liposomes at 4 degrees C and pH 5, we did observe exposure of the fusion peptide. This study reveals a low temperature intermediate in membrane fusion exhibited by the HA of influenza virus strain PR/8, which involves low pH-induced conformational changes including exposure of the fusion peptide with little interaction of HA with the target membrane.

  16. Viral Membrane Fusion and Nucleocapsid Delivery into the Cytoplasm are Distinct Events in Some Flaviviruses

    PubMed Central

    Nour, Adel M.; Li, Yue; Wolenski, Joseph; Modis, Yorgo

    2013-01-01

    Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion. PMID:24039574

  17. Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses.

    PubMed

    Nour, Adel M; Li, Yue; Wolenski, Joseph; Modis, Yorgo

    2013-01-01

    Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion.

  18. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    PubMed

    Ronzone, Erik; Paumet, Fabienne

    2013-01-01

    Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A) appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  19. Two Coiled-Coil Domains of Chlamydia trachomatis IncA Affect Membrane Fusion Events during Infection

    PubMed Central

    Ronzone, Erik; Paumet, Fabienne

    2013-01-01

    Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A) appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA’s fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection. PMID:23936096

  20. Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm.

    PubMed Central

    Kozlovsky, Yonathan; Chernomordik, Leonid V; Kozlov, Michael M

    2002-01-01

    Lipid bilayer fusion is thought to involve formation of a local hemifusion connection, referred to as a fusion stalk. The subsequent fusion stages leading to the opening of a fusion pore remain unknown. The earliest fusion pore could represent a bilayer connection between the membranes and could be formed directly from the stalk. Alternatively, fusion pore can form in a single bilayer, referred to as hemifusion diaphragm (HD), generated by stalk expansion. To analyze the plausibility of stalk expansion, we studied the pathway of hemifusion theoretically, using a recently developed elastic model. We show that the stalk has a tendency to expand into an HD for lipids with sufficiently negative spontaneous splay, (~)J(s)< 0. For different experimentally relevant membrane configurations we find two characteristic values of the spontaneous splay. (~)J*(s) and (~)J**(s), determining HD dimension. The HD is predicted to have a finite equilibrium radius provided that the spontaneous splay is in the range (~)J**(s)< (~)J(s)<(~)J*(s), and to expand infinitely for (~)J(s)<(~)J**(s). In the case of common lipids, which do not fuse spontaneously, an HD forms only under action of an external force pulling the diaphragm rim apart. We calculate the dependence of the HD radius on this force. To address the mechanism of fusion pore formation, we analyze the distribution of the lateral tension emerging in the HD due to the establishment of lateral equilibrium between the deformed and relaxed portions of lipid monolayers. We show that this tension concentrates along the HD rim and reaches high values sufficient to rupture the bilayer and form the fusion pore. Our analysis supports the hypothesis that transition from a hemifusion to a fusion pore involves radial expansion of the stalk. PMID:12414697

  1. The principle of membrane fusion in the cell (Nobel lecture).

    PubMed

    Rothman, James Edward

    2014-11-17

    Cells contain small membrane-enclosed vesicles which transport many kinds of cargo between the compartments of the cell. The result is a choreographed program of secretory, biosynthetic, and endocytic protein traffic that serves the cell's internal physiologic needs.

  2. Engineering hybrid exosomes by membrane fusion with liposomes

    PubMed Central

    Sato, Yuko T.; Umezaki, Kaori; Sawada, Shinichi; Mukai, Sada-atsu; Sasaki, Yoshihiro; Harada, Naozumi; Shiku, Hiroshi; Akiyoshi, Kazunari

    2016-01-01

    Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze–thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems. PMID:26911358

  3. Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer

    DTIC Science & Technology

    2008-07-01

    constitute the family Filoviridae. The most pathogenic strain ( Zaire ) of Ebola virus causes a severe form of hemorrhagic fever in humans and nonhuman...in the membrane-fusion process. Very recently, a NMR structure was reported of a 16-residue Zaire Ebola virus fusion peptide (Ebo-16) of GP2 [1...Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In

  4. pH-Dependent Vesicle Fusion Induced by the Ectodomain of the Human Immunodeficiency Virus Membrane Fusion Protein gp41: Two Kinetically Distinct Processes and Fully-Membrane-Associated gp41 with Predominant β Sheet Fusion Peptide Conformation

    PubMed Central

    Ratnayake, Punsisi U.; Sackett, Kelly; Nethercott, Matthew J.; Weliky, David P.

    2014-01-01

    The gp41 protein of the Human Immunodeficiency Virus (HIV) catalyzes fusion between HIV and host cell membranes. The ~180-residue ectodomain of gp41 is outside the virion and is the most important gp41 region for membrane fusion. The ectodomain consists of an apolar fusion peptide (FP) region followed by N-heptad repeat (NHR), loop, and C-heptad repeat (CHR) regions. The FP is critical for fusion and is hypothesized to bind to the host cell membrane. Large ectodomain constructs either with or without the FP are highly aggregated at physiologic pH but soluble in the pH 3–4 range with hyperthermostable hairpin structure with antiparallel NHR and CHR helices. The present study focuses on the large gp41 ectodomain constructs “Hairpin” (HP) containing NHR+loop+CHR and “FP-Hairpin” (FP-HP) containing FP+NHR+loop+CHR. Both proteins induce rapid and extensive fusion of anionic vesicles at pH 4 where the protein is positively-charged but do not induce fusion at pH 7 where the protein is negatively charged. This observation, along with lack of fusion of neutral vesicles at either pH supports the significance of attractive protein/membrane electrostatics in fusion. The functional role of the hydrophobic FP is supported by increases in the rate and extent of fusion for FP-HP relative to HP. There are two kinetically distinct fusion processes at pH 4: (1) a faster ~100 ms−1 process with rate strongly positively correlated with vesicle charge; and (2) a slower ~5 ms−1 process with extent strongly inversely correlated with this charge. The faster charge-dependent process is likely related to the electrostatic energy released upon initial monomer protein binding to the vesicle. After dissipation of this energy, the subsequent slower process is likely due to the equilibrium membrane-associated structure of the protein. The slower process may be more physiologically relevant because HIV/host cell fusion occurs at physiologic pH with gp41 restricted to the narrow region

  5. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization

    PubMed Central

    Jégou, Antoine; Ziyyat, Ahmed; Barraud-Lange, Virginie; Perez, Eric; Wolf, Jean Philippe; Pincet, Frédéric; Gourier, Christine

    2011-01-01

    CD9 tetraspanin is the only egg membrane protein known to be essential for fertilization. To investigate its role, we have measured, on a unique acrosome reacted sperm brought in contact with an egg, the adhesion probability and strength with a sensitivity of a single molecule attachment. Probing the binding events at different locations of wild-type egg we described different modes of interaction. Here, we show that more gamete adhesion events occur on Cd9 null eggs but that the strongest interaction mode disappears. We propose that sperm–egg fusion is a direct consequence of CD9 controlled sperm–egg adhesion properties. CD9 generates adhesion sites responsible for the strongest of the observed gamete interaction. These strong adhesion sites impose, during the whole interaction lifetime, a tight proximity of the gamete membranes, which is a requirement for fusion to take place. The CD9-induced adhesion sites would be the actual location where fusion occurs. PMID:21690351

  6. Field Theoretic Study of Bilayer Membrane Fusion: II. Mechanism of a Stalk-Hole Complex

    PubMed Central

    Katsov, K.; Müller, M.; Schick, M.

    2006-01-01

    We use self-consistent field theory to determine structural and energetic properties of intermediates and transition states involved in bilayer membrane fusion. In particular, we extend our original calculations from those of the standard hemifusion mechanism, which was studied in detail in the first article of this series, to consider a possible alternative to it. This mechanism involves non-axial stalk expansion, in contrast to the axially symmetric evolution postulated in the classical mechanism. Elongation of the initial stalk facilitates the nucleation of holes and leads to destabilization of the fusing membranes via the formation of a stalk-hole complex. We study properties of this complex in detail, and show how transient leakage during fusion, previously predicted and recently observed in experiment, should vary with lipid architecture and tension. We also show that the barrier to fusion in the alternative mechanism is lower than that of the standard mechanism by a few kBT over most of the relevant region of system parameters, so that this alternative mechanism is a viable alternative to the standard pathway. We emphasize that any mechanism, such as this alternative one, which affects, even modestly, the line tension of a hole in a membrane, affects greatly the ability of that membrane to undergo fusion. PMID:16272437

  7. De novo design of conformationally flexible transmembrane peptides driving membrane fusion

    PubMed Central

    Hofmann, Mathias W.; Weise, Katrin; Ollesch, Julian; Agrawal, Prashant; Stalz, Holger; Stelzer, Walter; Hulsbergen, Frans; de Groot, Huub; Gerwert, Klaus; Reed, Jennifer; Langosch, Dieter

    2004-01-01

    Fusion of biological membranes is mediated by distinct integral membrane proteins, e.g., soluble N-ethylmaleimide-sensitive factor attachment protein receptors and viral fusion proteins. Previous work has indicated that the transmembrane segments (TMSs) of such integral membrane proteins play an important role in fusion. Furthermore, peptide mimics of the transmembrane part can drive the fusion of liposomes, and evidence had been obtained that fusogenicity depends on their conformational flexibility. To test this hypothesis, we present a series of unnatural TMSs that were designed de novo based on the structural properties of hydrophobic residues. We find that the fusogenicity of these peptides depends on the ratio of α-helix-promoting Leu and β-sheet-promoting Val residues and is enhanced by helix-destabilizing Pro and Gly residues within their hydrophobic cores. The ability of these peptides to refold from an α-helical state to a β-sheet conformation and backwards was determined under different conditions. Membrane fusogenic peptides with mixed Leu/Val sequences tend to switch more readily between different conformations than a nonfusogenic peptide with an oligo-Leu core. We propose that structural flexibility of these TMSs is a prerequisite of fusogenicity. PMID:15456911

  8. A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion.

    PubMed

    Xu, Weiming; Nathwani, Bhavik; Lin, Chenxiang; Wang, Jing; Karatekin, Erdem; Pincet, Frederic; Shih, William; Rothman, James E

    2016-04-06

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.

  9. Mitochondrial fission and fusion in Dictyostelium discoideum: a search for proteins involved in membrane dynamics

    PubMed Central

    2012-01-01

    Background Mitochondrial morphology is maintained by two distinct membrane events -fission and fusion. Altering these conserved processes can disrupt mitochondrial morphology and distribution, thereby disrupting the organelle’s functionality and impeding cellular function. In higher eukaryotes, these processes are mediated by a family of dynamin-related proteins (DRP’s). In the lower eukaryotes, for instance Dictyostelium discoideum, mitochondrial fission and fusion have been implicated but not yet established. To understand the overall mechanism of these dynamics across organisms, we developed an assay to identify fission and fusion events in Dictyostelium and to assess the involvement of the mitochondrial proteins, MidA, CluA, and two DRP’s, DymA and DymB. Findings Using laser scanning confocal microscopy we show, for the first time, that lower eukaryotes mediate mitochondrial fission and fusion. In Dictyostelium, these processes are balanced, occurring approximately 1 event/minute. Quantification of the rates in midA-, cluA-, dymA-, or dymB- strains established that MidA appears to play an indirect role in the regulation of fission and fusion, while the DRP’s are not essential for these processes. Rates of fission and fusion were significantly reduced in cluA-cells, indicating that CluA is necessary for maintaining both fission and fusion. Conclusions We have successfully demonstrated that Dictyostelium mitochondria undergo the dynamic processes of fission and fusion. The classical mediators of membrane dynamics - the DRP’s – are not necessary for these dynamics, whereas CluA is necessary for both processes. This work contributes to our overall understanding of mitochondrial dynamics and ultimately will provide additional insight into mitochondrial disease. PMID:22980139

  10. Towards fully automated Identification of Vesicle-Membrane Fusion Events in TIRF Microscopy

    NASA Astrophysics Data System (ADS)

    Vallotton, Pascal; James, David E.; Hughes, William E.

    2007-11-01

    Total Internal Reflection Fluorescence Microscopy (TIRFM) is imposing itself as the tool of choice for studying biological activity in close proximity to the plasma membrane. For example, the exquisite selectivity of TIRFM allows monitoring the diffusion of GFP-phogrin vesicles and their recruitment to the plasma membrane in pancreatic β-cells. We present a novel computer vision system for automatically identifying the elusive fusion events of GFP-phogrin vesicles with the plasma membrane. Our method is based on robust object tracking and matched filtering. It should accelerate the quantification of TIRFM data and allow the extraction of more biological information from image data to support research in diabetes and obesity.

  11. Accelerating SNARE-mediated Membrane Fusion by DNA-lipid Tethers

    PubMed Central

    Xu, Weiming; Wang, Jing

    2015-01-01

    SNARE proteins are the core machinery to drive fusion of a vesicle with its target membrane. Inspired by the tethering proteins that bridge the membranes and thus prepare SNAREs for docking and fusion, we developed a lipid conjugated ssDNA mimic that is capable of regulating SNARE function, in situ. The DNA-lipid tethers consist of a 21 base pairs binding segment at the membrane distal end that can bridge two liposomes via specific base-pair hybridization. A linker at the membrane proximal end is used to control the separation distance between the liposomes. In the presence of these artificial tethers, SNARE-mediated lipid mixing is significantly accelerated, and the maximum fusion rate is obtained with the linker shorter than 40 nucleotides. As a programmable tool orthogonal to any native proteins, the DNA-lipid tethers can be further applied to regulate other biological processes where capturing and bridging of two membranes are the prerequisites for the subsequent protein function. PMID:26439984

  12. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission.

    PubMed

    Lorizate, Maier; Huarte, Nerea; Sáez-Cirión, Asier; Nieva, José L

    2008-01-01

    Membrane fusion and fission underlie two limiting steps of enveloped virus replication cycle: access to the interior of the host-cell (entry) and dissemination of viral progeny after replication (budding), respectively. These dynamic processes proceed mediated by specialized proteins that disrupt and bend the lipid bilayer organization transiently and locally. We introduced Wimley-White membrane-water partitioning free energies of the amino acids as an algorithm for predicting functional domains that may transmit protein conformational energy into membranes. It was found that many viral products possess unusually extended, aromatic-rich pre-transmembrane stretches predicted to stably reside at the membrane interface. Here, we review structure-function studies, as well as data reported on the interaction of representative peptides with model membranes, all of which sustain a functional role for these domains in viral fusion and fission. Since pre-transmembrane sequences also constitute antigenic determinants in a membrane-bound state, we also describe some recent results on their recognition and blocking at membrane interface by neutralizing antibodies.

  13. Modulation of non steroidal anti-inflammatory drug induced membrane fusion by copper coordination of these drugs: anchoring effect.

    PubMed

    Majumdar, Anupa; Chakraborty, Sreeja; Sarkar, Munna

    2014-12-04

    Membrane fusion, an integral event in several biological processes, is characterized by several intermediate steps guided by specific energy barriers. Hence, it requires the aid of fusogens to complete the process. Common fusogens, such as proteins/peptides, have the ability to overcome theses barriers by their conformational reorganization, an advantage not shared by small drug molecules. Hence, drug induced fusion at physiologically relevant drug concentrations is rare and occurs only in the case of the oxicam group of non steroidal anti-inflammatory drugs (NSAIDs). To use drugs to induce and control membrane fusion in various biochemical processes requires the understanding of how different parameters modulate fusion. Also, fusion efficacy needs to be enhanced. Here we have synthesized and used Cu(II) complexes of fusogenic oxicam NSAIDs, Meloxicam and Piroxicam, to induce fusion in model membranes monitored by using DSC, TEM, steady-state, and time-resolved spectroscopy. The ability of the complexes to anchor apposing model membranes to initiate/facilitate fusion has been demonstrated. This results in better fusion efficacy compared to the bare drugs. These complexes can take the fusion to its final step. Unlike other designed membrane anchors, the role of molecular recognition and strength of interaction between molecular partners is obliterated for these preformed Cu(II)-NSAIDs.

  14. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shuhei; Klein, Michael L.; Shinoda, Wataru

    2015-12-01

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  15. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    SciTech Connect

    Kawamoto, Shuhei; Shinoda, Wataru; Klein, Michael L.

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  16. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism.

    PubMed

    Kawamoto, Shuhei; Klein, Michael L; Shinoda, Wataru

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  17. Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants.

    PubMed

    Lüthje, Sabine; Meisrimler, Claudia-Nicole; Hopff, David; Möller, Benjamin

    2011-07-01

    Peroxidases are key player in the detoxification of reactive oxygen species during cellular metabolism and oxidative stress. Membrane-bound isoenzymes have been described for peroxidase superfamilies in plants and animals. Recent studies demonstrated a location of peroxidases of the secretory pathway (class III peroxidases) at the tonoplast and the plasma membrane. Proteomic approaches using highly enriched plasma membrane preparations suggest organisation of these peroxidases in microdomains, a developmentally regulation and an induction of isoenzymes by oxidative stress. Phylogenetic relations, topology, putative structures, and physiological function of membrane-bound class III peroxidases will be discussed.

  18. Calcium-mediated fusion to produce ultra large osmotically active mitochondrial inner membranes of controlled protein density.

    PubMed

    Chazotte, B; Wu, E S; Höchli, M; Hackenbrock, C R

    1985-08-08

    We have developed a new membrane fusion method which produces ultra large, spherical mitochondrial inner membranes attached to microscope slides. The fused inner membranes measured up to 200 microns in diameter. The technique fuses native inner membranes as well as inner membranes in which the protein density has been varied by enriching with exogenous phospholipid. The fusion process is accomplished through the use of calcium, low pH and elevated temperature. Characterization of the fused membranes was carried out using phase, fluorescence, and freeze-fracture electron microscopy. These ultra large, fused inner membranes were found to model the inner membranes from which they were formed. The fused inner membranes were found to be osmotically active and are large enough for measuring the lateral diffusion of membrane components by fluorescence recovery after photobleaching and are large enough for microelectrode impalement.

  19. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms.

    PubMed Central

    Siegel, D P

    1993-01-01

    To understand the mechanism of membrane fusion, we have to infer the sequence of structural transformations that occurs during the process. Here, it is shown how one can estimate the lipid composition-dependent free energies of intermediate structures of different geometries. One can then infer which fusion mechanism is the best explanation of observed behavior in different systems by selecting the mechanism that requires the least energy. The treatment involves no adjustable parameters. It includes contributions to the intermediate energy resulting from the presence of hydrophobic interstices within structures formed between apposed bilayers. Results of these calculations show that a modified form of the stalk mechanism proposed by others is a likely fusion mechanism in a wide range of lipid compositions, but a mechanism based on inverted micellar intermediates (IMIs) is not. This should be true even in the vicinity of the lamellar/inverted hexagonal phase transition, where IMI formation would be most facile. Another prediction of the calculations is that traces of apolar lipids (e.g., long-chain alkanes) in membranes should have a substantial influence on fusion rates in general. The same theoretical methods can be used to generate and refine mechanisms for protein-mediated fusion. PMID:8298039

  20. β2 Adrenergic Receptor Fluorescent Protein Fusions Traffic to the Plasma Membrane and Retain Functionality

    PubMed Central

    Bubnell, Jaclyn; Pfister, Patrick; Sapar, Maria L.; Rogers, Matthew E.; Feinstein, Paul

    2013-01-01

    Green fluorescent protein (GFP) has proven useful for the study of protein interactions and dynamics for the last twenty years. A variety of new fluorescent proteins have been developed that expand the use of available excitation spectra. We have undertaken an analysis of seven of the most useful fluorescent proteins (XFPs), Cerulean (and mCerulean3), Teal, GFP, Venus, mCherry and TagRFP657, as fusions to the archetypal G-protein coupled receptor, the β2 adrenergic receptor (β2AR). We have characterized these β2AR::XFP fusions in respect to membrane trafficking and G-protein activation. We noticed that in the mouse neural cell line, OP 6, that membrane bound β2AR::XFP fusions robustly localized in the filopodia identical to gap::XFP fusions. All β2AR::XFP fusions show responses indistinguishable from each other and the non-fused form after isoprenaline exposure. Our results provide a platform by which G-protein coupled receptors can be dissected for their functionality. PMID:24086401

  1. A quantitative model for membrane fusion based on low-energy intermediates

    NASA Astrophysics Data System (ADS)

    Kuzmin, Peter I.; Zimmerberg, Joshua; Chizmadzhev, Yuri A.; Cohen, Fredric S.

    2001-06-01

    The energetics of a fusion pathway is considered, starting from the contact site where two apposed membranes each locally protrude (as "nipples") toward each other. The equilibrium distance between the tips of the two nipples is determined by a balance of physical forces: repulsion caused by hydration and attraction generated by fusion proteins. The energy to create the initial stalk, caused by bending of cis monolayer leaflets, is much less when the stalk forms between nipples rather than parallel flat membranes. The stalk cannot, however, expand by bending deformations alone, because this would necessitate the creation of a hydrophobic void of prohibitively high energy. But small movements of the lipids out of the plane of their monolayers allow transformation of the stalk into a modified stalk. This intermediate, not previously considered, is a low-energy structure that can reconfigure into a fusion pore via an additional intermediate, the prepore. The lipids of this latter structure are oriented as in a fusion pore, but the bilayer is locally compressed. All membrane rearrangements occur in a discrete local region without creation of an extended hemifusion diaphragm. Importantly, all steps of the proposed pathway are energetically feasible.

  2. Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration.

    PubMed

    Smirnova, Yuliya G; Marrink, Siewert-Jan; Lipowsky, Reinhard; Knecht, Volker

    2010-05-19

    Membrane fusion is a key step in intracellular trafficking and viral infection. The underlying molecular mechanism is poorly understood. We have used molecular dynamics simulations in conjunction with a coarse grained model to study early metastable and transition states during the fusion of two planar palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers separated by five waters per lipid in the cis leaflets at zero tension. This system mimics the contact area between two vesicles with large diameters compared to the membrane thickness at conditions where fusion may start in the core of the contact area. At elevated temperatures, the two proximal leaflets become connected via multiple lipid molecules and form a stalklike structure. At room temperature, this structure has a free energy of 3k(B)T and is separated from the unconnected state by a significant free energy barrier of 20k(B)T. Stalk formation is initiated by the establishment of a localized hydrophobic contact between the bilayers. This contact is either formed by two partially splayed lipids or a single fully splayed one leading to the formation of a (metastable) splayed lipid bond intermediate. These findings indicate that, for low hydration, early membrane fusion kinetics is not determined by the stalk energy but by the energy of prestalk transition states involving solvent-exposed lipid tails.

  3. A quantitative model for membrane fusion based on low-energy intermediates.

    PubMed

    Kuzmin, P I; Zimmerberg, J; Chizmadzhev, Y A; Cohen, F S

    2001-06-19

    The energetics of a fusion pathway is considered, starting from the contact site where two apposed membranes each locally protrude (as "nipples") toward each other. The equilibrium distance between the tips of the two nipples is determined by a balance of physical forces: repulsion caused by hydration and attraction generated by fusion proteins. The energy to create the initial stalk, caused by bending of cis monolayer leaflets, is much less when the stalk forms between nipples rather than parallel flat membranes. The stalk cannot, however, expand by bending deformations alone, because this would necessitate the creation of a hydrophobic void of prohibitively high energy. But small movements of the lipids out of the plane of their monolayers allow transformation of the stalk into a modified stalk. This intermediate, not previously considered, is a low-energy structure that can reconfigure into a fusion pore via an additional intermediate, the prepore. The lipids of this latter structure are oriented as in a fusion pore, but the bilayer is locally compressed. All membrane rearrangements occur in a discrete local region without creation of an extended hemifusion diaphragm. Importantly, all steps of the proposed pathway are energetically feasible.

  4. Regulation of membrane fusion and secretory events in the sea urchin embryo

    SciTech Connect

    Roe, J.L.

    1990-01-01

    Membrane fusion and secretory events play a key role in fertilization and early development in the sea urchin embryo. To investigate the mechanism of membrane fusion, the effect of inhibitors of metalloendoprotease activity was studied on two model systems of cell fusion; fertilization and spiculogenesis by primary mesenchyme cells in the embryo. Both the zinc chelator, 1,10-phenanthroline, and peptide metalloprotease substrates were found to inhibit both fertilization and gamete fusion, while peptides that are not substrates of metalloproteases did not affect either process. Primary mesenchyme cells form the larval skeleton in the embryo by deposition of mineral and an organic matrix into a syncytial cavity formed by fusion of filopodia of these cells. Metalloprotease inhibitors were found to inhibit spiculogenesis both in vivo and in cultures of isolated primary mesenchyme cells, and the activity of a metalloprotease of the appropriate specificity was found in the primary mesenchyme cells. These two studies implicate the activity of a metalloprotease in a necessary step in membrane fusion. Following fertilization, exocytosis of the cortical granules results in the formation of the fertilization envelope and the hyaline layer, that surround the developing embryo. The hatching enzyme is secreted by the blastula stage sea urchin embryo, which proteolyzes the fertilization envelope surrounding the embryo, allowing the embryo to hatch. Using an assay that measures {sup 125}I-fertilization envelope degradation, the hatching enzyme was identified as a 33 kDa metalloprotease, and was purified by ion-exchange and affinity chromatography from the hatching media of Strongylocentrotus purpuratus embryos. The hatching enzyme showed a substrate preference for only a minor subset of fertilization envelope proteins.

  5. Sendai virus-erythrocyte membrane interaction: quantitative and kinetic analysis of viral binding, dissociation, and fusion.

    PubMed

    Hoekstra, D; Klappe, K

    1986-04-01

    A kinetic and quantitative analysis of the binding and fusion of Sendai virus with erythrocyte membranes was performed by using a membrane fusion assay based on the relief of fluorescence self-quenching. At 37 degrees C, the process of virus association displayed a half time of 2.5 min; at 4 degrees C, the half time was 3.0 min. The fraction of the viral dose which became cell associated was independent of the incubation temperature and increased with increasing target membrane concentration. On the average, one erythrocyte ghost can accommodate ca. 1,200 Sendai virus particles. The stability of viral attachment was sensitive to a shift in temperature: a fraction of the virions (ca. 30%), attached at 4 degrees C, rapidly (half time, ca. 2.5 min) eluted from the cell surface at 37 degrees C, irrespective of the presence of free virus in the medium. The elution can be attributed to a spontaneous, temperature-induced release, rather than to viral neuraminidase activity. Competition experiments with nonlabeled virus revealed that viruses destined to fuse do not exchange with free particles in the medium but rather bind in a rapid and irreversible manner. The fusion rate of Sendai virus was affected by the density of the virus particles on the cell surface and became restrained when more than 170 virus particles were attached per ghost. In principle, all virus particles added displayed fusion activity. However, at high virus-to-ghost ratios, only a fraction actually fused, indicating that a limited number of fusion sites exist on the erythrocyte membrane. We estimate that ca. 180 virus particles maximally can fuse with one erythrocyte ghost.

  6. The tail domain of tomosyn controls membrane fusion through tomosyn displacement by VAMP2

    SciTech Connect

    Yamamoto, Yasunori; Fujikura, Kohei; Sakaue, Mio; Okimura, Kenjiro; Kobayashi, Yuta; Nakamura, Toshihiro; Sakisaka, Toshiaki

    2010-08-13

    Research highlights: {yields} The tail domain of tomosyn has no effect on the tomosyn-SNARE complex formation. {yields} The tail domain binding to the VAMP-like domain allows VAMP2 to displace tomosyn. {yields} Tomosyn displacement by VAMP2 leads to SNARE complex formation. {yields} The SNARE complex formation drives membrane fusion. -- Abstract: Neurotransmitter release is regulated by SNARE complex-mediated synaptic vesicle fusion. Tomosyn sequesters target SNAREs (t-SNAREs) through its C-terminal VAMP-like domain (VLD). Cumulative biochemical results suggest that the tomosyn-SNARE complex is so tight that VAMP2 cannot displace tomosyn. Based on these results, the tomosyn-SNARE complex has been believed to be a dead-end complex to inhibit neurotransmitter release. On the other hand, some studies using siRNA depletion of tomosyn suggest that tomosyn positively regulates exocytosis. Therefore, it is still controversial whether tomosyn is a simple inhibitor for neurotransmitter release. We recently reported that the inhibitory activity of tomosyn is regulated by the tail domain binding to the VLD. In this study, we employed the liposome fusion assay in order to further understand modes of action of tomosyn in detail. The tail domain unexpectedly had no effect on binding of the VLD to t-SNARE-bearing liposomes. Nonetheless, the tail domain decreased the inhibitory activity of the VLD on the SNARE complex-mediated liposome fusion. These results indicate that the tail domain controls membrane fusion through tomosyn displacement by VAMP2. Deletion of the tail domain-binding region in the VLD retained the binding to t-SNAREs and promoted the liposome fusion. Together, we propose here a novel mechanism of tomosyn that controls synaptic vesicle fusion positively by serving as a placeholder for VAMP2.

  7. Membrane Binding by CHMP7 Coordinates ESCRT-III-Dependent Nuclear Envelope Reformation.

    PubMed

    Olmos, Yolanda; Perdrix-Rosell, Anna; Carlton, Jeremy G

    2016-10-10

    In addition to its role in membrane abscission during cytokinesis, viral budding, endosomal sorting, and plasma membrane repair [1], the endosomal sorting complex required for transport-III (ESCRT-III) machinery has recently been shown to seal holes in the reforming nuclear envelope (NE) during mitotic exit [2, 3]. ESCRT-III also acts during interphase to repair the NE upon migration-induced rupture [4, 5], highlighting its key role as an orchestrator of membrane integrity at this organelle. While NE localization of ESCRT-III is dependent upon the ESCRT-III component CHMP7 [3], it is unclear how this complex is able to engage nuclear membranes. Here we show that the N terminus of CHMP7 acts as a novel membrane-binding module. This membrane-binding ability allows CHMP7 to bind to the ER, an organelle continuous with the NE, and it provides a platform to direct NE recruitment of ESCRT-III during mitotic exit. CHMP7's N terminus comprises tandem Winged-Helix domains [6], and, by using homology modeling and structure-function analysis, we identify point mutations that disrupt membrane binding and prevent both ER localization of CHMP7 and its subsequent enrichment at the reforming NE. These mutations also prevent assembly of downstream ESCRT-III components at the reforming NE and proper establishment of post-mitotic nucleo-cytoplasmic compartmentalization. These data identify a novel membrane-binding activity within an ESCRT-III subunit that is essential for post-mitotic nuclear regeneration.

  8. Crystal Structure of Dengue Virus Type 1 Envelope Protein in the Postfusion Conformation and Its Implications for Membrane Fusion

    SciTech Connect

    Nayak, Vinod; Dessau, Moshe; Kucera, Kaury; Anthony, Karen; Ledizet, Michel; Modis, Yorgo

    2009-07-31

    Dengue virus relies on a conformational change in its envelope protein, E, to fuse the viral lipid membrane with the endosomal membrane and thereby deliver the viral genome into the cytosol. We have determined the crystal structure of a soluble fragment E (sE) of dengue virus type 1 (DEN-1). The protein is in the postfusion conformation even though it was not exposed to a lipid membrane or detergent. At the domain I-domain III interface, 4 polar residues form a tight cluster that is absent in other flaviviral postfusion structures. Two of these residues, His-282 and His-317, are conserved in flaviviruses and are part of the 'pH sensor' that triggers the fusogenic conformational change in E, at the reduced pH of the endosome. In the fusion loop, Phe-108 adopts a distinct conformation, forming additional trimer contacts and filling the bowl-shaped concavity observed at the tip of the DEN-2 sE trimer.

  9. Membrane-Anchored Inhibitory Peptides Capture Human Immunodeficiency Virus Type 1 gp41 Conformations That Engage the Target Membrane prior to Fusion

    PubMed Central

    Melikyan, Gregory B.; Egelhofer, Marc; von Laer, Dorothee

    2006-01-01

    Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled coil domain of gp41 and preventing formation of the final six-helix bundle structure. However, interactions of target MACs with gp41 must be restricted to a subset of trimers that have their hydrophobic fusion peptides inserted into the target membrane. This unique feature of MACs was used to identify the intermediate step of fusion at which gp41 engaged the target membrane. Fusion between HIV envelope-expressing effector cells and target cells was measured by fluorescence microscopy. Expression of MACs in target cells led to less than twofold reduction in the extent of fusion. However, when reaction was first arrested by adding lysolipids that disfavored membrane merger, and the lipids were subsequently removed by washing, control cells supported fusion, whereas those that expressed MACs did not. The drastically improved potency of MACs implies that, at lipid-arrested stage, gp41 bridges the viral and target cell membranes and therefore more optimally binds the membrane-anchored peptides. Experimental demonstration of this intermediate shows that, similar to fusion induced by many other viral glycoproteins, engaging the target membrane by HIV-1 gp41 permits coupling between six-helix bundle formation and membrane merger. PMID:16537592

  10. Sequential Conformational Changes in the Morbillivirus Attachment Protein Initiate the Membrane Fusion Process

    PubMed Central

    Ader-Ebert, Nadine; Khosravi, Mojtaba; Herren, Michael; Avila, Mislay; Alves, Lisa; Bringolf, Fanny; Örvell, Claes; Langedijk, Johannes P.; Zurbriggen, Andreas; Plemper, Richard K.; Plattet, Philippe

    2015-01-01

    Despite large vaccination campaigns, measles virus (MeV) and canine distemper virus (CDV) cause major morbidity and mortality in humans and animals, respectively. The MeV and CDV cell entry system relies on two interacting envelope glycoproteins: the attachment protein (H), consisting of stalk and head domains, co-operates with the fusion protein (F) to mediate membrane fusion. However, how receptor-binding by the H-protein leads to F-triggering is not fully understood. Here, we report that an anti-CDV-H monoclonal antibody (mAb-1347), which targets the linear H-stalk segment 126-133, potently inhibits membrane fusion without interfering with H receptor-binding or F-interaction. Rather, mAb-1347 blocked the F-triggering function of H-proteins regardless of the presence or absence of the head domains. Remarkably, mAb-1347 binding to headless CDV H, as well as standard and engineered bioactive stalk-elongated CDV H-constructs treated with cells expressing the SLAM receptor, was enhanced. Despite proper cell surface expression, fusion promotion by most H-stalk mutants harboring alanine substitutions in the 126-138 “spacer” section was substantially impaired, consistent with deficient receptor-induced mAb-1347 binding enhancement. However, a previously reported F-triggering defective H-I98A variant still exhibited the receptor-induced “head-stalk” rearrangement. Collectively, our data spotlight a distinct mechanism for morbillivirus membrane fusion activation: prior to receptor contact, at least one of the morbillivirus H-head domains interacts with the membrane-distal “spacer” domain in the H-stalk, leaving the F-binding site located further membrane-proximal in the stalk fully accessible. This “head-to-spacer” interaction conformationally stabilizes H in an auto-repressed state, which enables intracellular H-stalk/F engagement while preventing the inherent H-stalk’s bioactivity that may prematurely activate F. Receptor-contact disrupts the

  11. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology.

    PubMed

    Russell, Charles J

    2014-01-01

    Membrane fusion is not spontaneous. Therefore, enveloped viruses have evolved membrane-fusion mediating glycoproteins that, once activated, refold, and release energy that fuses viral and cellular membranes. The influenza A virus hemagglutinin (HA) protein is a prototypic structural class I viral fusion glycoprotein that, once primed by proteolytic cleavage, is activated by endosomal low pH to form a fusogenic "leash-in-grooves" hairpin structure. Low-pH induced HA protein refolding is an irreversible process, so acid exposure in the absence of a target membrane leads to virus inactivation. The HA proteins of diverse influenza virus subtypes isolated from a variety of species differ in their acid stabilities, or pH values at which irreversible HA protein conformational changes are triggered. Recently, efficient replication of highly pathogenic avian influenza (HPAI) viruses such as H5N1 in avian species has been associated with a relatively high HA activation pH. In contrast, a decrease in H5N1 HA activation pH has been shown to enhance replication and airborne transmission in mammals. Mutations that alter the acid stabilities of H1 and H3 HA proteins have also been discovered that influence the amantadine susceptibilities, replication rates, and pathogenicities of human influenza viruses. An understanding of the role of HA acid stability in influenza virus biology is expected to aid in identifying emerging viruses with increased pandemic potential and assist in developing live attenuated virus vaccines. Acid-induced HA protein activation, which has provided a paradigm for protein-mediated membrane fusion, is now identified as a novel determinant of influenza virus biology.

  12. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    PubMed

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  13. Membrane-on-a-chip: microstructured silicon/silicon-dioxide chips for high-throughput screening of membrane transport and viral membrane fusion.

    PubMed

    Kusters, Ilja; van Oijen, Antoine M; Driessen, Arnold J M

    2014-04-22

    Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with physiological relevant lipid compositions on microstructured Si/SiO2 chips that allow for high-throughput screening of both membrane transport and viral membrane fusion. Simultaneous observation of hundreds of single-membrane channels yields statistical information revealing population heterogeneities of the pore assembly and conductance of the bacterial toxin α-hemolysin (αHL). The influence of lipid composition and ionic strength on αHL pore formation was investigated at the single-channel level, resolving features of the pore-assembly pathway. Pore formation is inhibited by a specific antibody, demonstrating the applicability of the platform for drug screening of bacterial toxins and cell-penetrating agents. Furthermore, fusion of H3N2 influenza viruses with suspended lipid bilayers can be observed directly using a specialized chip architecture. The presented micropore arrays are compatible with fluorescence readout from below using an air objective, thus allowing high-throughput screening of membrane transport in multiwell formats in analogy to plate readers.

  14. Destabilization of a model membrane by a predicted fusion peptide of fertilin α

    NASA Astrophysics Data System (ADS)

    Schanck, A.; Brasseur, R.; Peuvot, J.

    1998-02-01

    The subunit of the guinea pig fertilin (previously known as PH-30, an integral membrane protein involved in sperm-egg binding and fusion) is predicted to be a potential fusion protein. The structure of this putative fusion protein was analysed by molecular modeling and we have found a peptidic sequence of 17 residues (D83{-P99}) organized in helix that inserts obliquely in lipid phases. The effect of this synthesized peptide was studied on a model membrane by 31P NMR and light scattering. It appears to increase the size of lipid vesicles and induces structural modifications. We interpret these observations as a destabilization of the lipid organization by this peptide because of its tilted insertion in phospholipid layers. This destabilization could favor membrane fusion. La sous-unité α de la fertiline du cochon d'inde (précédemment appelée PH-30, une protéine membranaire impliquée dans la liaison et la fusion ovule-spermatozoïde) est prédite comme étant une protéine de fusion potentielle. Nous avons analysé la structure de cette protéine par modélisation moléculaire et nous avons trouvé une séquence peptidique de 17 résidus (D83 P99) organisée en hélice qui s'insère de façon oblique dans une phase lipidique. L'effet de ce peptide synthétique a été étudié sur membrane modèle par RMN du 31P et par diffusion de la lumière. Il provoque une augmentation de taille de vésicules lipidiques et induit des modifications structurales. Nous interprétons ces observations en termes de déstabilisation de l'organisation lipidique par ce peptide à cause de son insertion oblique dans la couche lipidique. Cette déstabilisation pourrait favoriser la fusion membranaire.

  15. Tri-membrane nanoparticles produced by combining liposome fusion and a novel patchwork of bicelles to overcome endosomal and nuclear membrane barriers to cargo delivery.

    PubMed

    Yamada, Asako; Mitsueda, Asako; Hasan, Mahadi; Ueda, Miho; Hama, Susumu; Warashina, Shota; Nakamura, Takashi; Harashima, Hideyoshi; Kogure, Kentaro

    2016-03-01

    Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.

  16. Interaction of the herbicide atrazine with model membranes. II: Effect of atrazine on fusion of phospholipid vesicles.

    PubMed

    Zolese, G; Ambrosini, A; Bertoli, E; Curatola, G; Tanfani, F

    1990-12-01

    The effect of atrazine on Ca2+ induced fusion of cardiolipin(CL) and phosphatidylserine (PS) vesicles is studied by Tb3+/dipicolinic acid fluorescence and turbidity measurements. The interaction of herbicide with CL and PS membranes is studied by DPH fluorescence polarization. At low concentrations the pesticide partially inhibits fusion, especially in CL vesicles. Higher concentrations of atrazine decrease inhibition of fusion in CL, while fusion is slightly increased in PS. The Ca2(+)-induced increase of turbidity is not affected by atrazine in both PS and CL aggregation experiments. DPH polarization measurements show a perturbation only of the membrane hydrophobic core of PS, in presence of Ca2+. It is hypothesized that this biphasic effect shown by low and high atrazine concentrations on Ca2(+)-induced fusion of vesicles is due to a different localization of the pesticide in the membrane.

  17. Helicobacter pylori TlyA agglutinates liposomes and induces fusion and permeabilization of the liposome membranes.

    PubMed

    Lata, Kusum; Chattopadhyay, Kausik

    2014-06-10

    Helicobacter pylori TlyA is a pore-forming hemolysin with potent cytotoxic activity. To explore the potential membrane-damaging activity of H. pylori TlyA, we have studied its interaction with the synthetic liposome vesicles. In our study, H. pylori TlyA shows a prominent ability to associate with the liposome vesicles without displaying an obligatory requirement for any protein receptor on the liposome membranes. Interaction of TlyA triggers agglutination of the liposome vesicles. Such agglutinating activity of TlyA could also be observed with erythrocytes before the induction of its pore-forming hemolytic activity. In addition to its agglutinating activity against liposomes, TlyA also induces fusion and disruption of the liposome membranes. Altogether, our study highlights novel membrane-damaging properties of H. pylori TlyA that have not been documented previously with any other TlyA family protein.

  18. Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes

    PubMed Central

    Song, Hongki; Orr, Amy; Duan, Mengtong; Merz, Alexey J; Wickner, William

    2017-01-01

    At physiological protein levels, the slow HOPS- and SNARE-dependent fusion which occurs upon complete SNARE zippering is stimulated by Sec17 and Sec18:ATP without requiring ATP hydrolysis. To stimulate, Sec17 needs its central residues which bind the 0-layer of the SNARE complex and its N-terminal apolar loop. Adding a transmembrane anchor to the N-terminus of Sec17 bypasses this requirement for apolarity of the Sec17 loop, suggesting that the loop functions for membrane binding rather than to trigger bilayer rearrangement. In contrast, when complete C-terminal SNARE zippering is prevented, fusion strictly requires Sec18 and Sec17, and the Sec17 apolar loop has functions beyond membrane anchoring. Thus Sec17 and Sec18 act twice in the fusion cycle, binding to trans-SNARE complexes to accelerate fusion, then hydrolyzing ATP to disassemble cis-SNARE complexes. DOI: http://dx.doi.org/10.7554/eLife.26646.001 PMID:28718762

  19. Role of Menaquinones in Fe(III) Reduction by Membrane Fractions of Shewanella putrefaciens

    PubMed Central

    Saffarini, Daad A.; Blumerman, Seth L.; Mansoorabadi, Karen J.

    2002-01-01

    Two Tn5-generated mutants of Shewanella putrefaciens with insertions in menD and menB were isolated and analyzed. Both mutants were deficient in the use of several terminal electron acceptors, including Fe(III). This deficiency was overcome by the addition of menaquinone (vitamin K2). Isolated membrane fractions from both mutants were unable to reduce Fe(III) in the absence of added menaquinone when formate was used as the electron donor. These results indicate that menaquinones are essential components for the reduction of Fe(III) by both whole cells and purified membrane fractions when formate or lactate is used as the electron donor. PMID:11790756

  20. Refining the Mechanisms of Heniparvirus-Mediated Membrane Fusion Through Mutagenesis of Hendra virus Envelope Glycoproteins

    DTIC Science & Technology

    2007-09-06

    membrane, followed by tightly controlled conformational changes. Prototypical Class I fusion glycoproteins include Influenza HA and HIV Env... Influenza virus HA and Human Immunodeficiency Virus (HIV) Env (73). The presence of HRA and HRB domains is conserved across the family of...studied for as many years as other viruses, such as Influenza and HIV. Therefore, fewer antibodies have been available for use in characterizing the

  1. Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations.

    PubMed Central

    McIntosh, T J; Kulkarni, K G; Simon, S A

    1999-01-01

    It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion. PMID:10096904

  2. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion

    PubMed Central

    Yue, Peng; Zhang, Yubo; Mei, Kunrong; Wang, Shaoxiao; Lesigang, Johannes; Zhu, Yueyao; Dong, Gang; Guo, Wei

    2017-01-01

    The soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs) constitute the core machinery for membrane fusion during eukaryotic cell vesicular trafficking. However, how the assembly of the SNARE complex is initiated is unknown. Here we report that Sec3, a component of the exocyst complex that mediates vesicle tethering during exocytosis, directly interacts with the t-SNARE protein Sso2. This interaction promotes the formation of an Sso2-Sec9 ‘binary' t-SNARE complex, the early rate-limiting step in SNARE complex assembly, and stimulates membrane fusion. The crystal structure of the Sec3-Sso2 complex suggests that Sec3 binding induces conformational changes of Sso2 that are crucial for the relief of its auto-inhibition. Interestingly, specific disruption of the Sec3–Sso2 interaction in cells blocks exocytosis without affecting the function of Sec3 in vesicle tethering. Our study reveals an activation mechanism for SNARE complex assembly, and uncovers a role of the exocyst in promoting membrane fusion in addition to vesicle tethering. PMID:28112172

  3. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-09-11

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Regulation of yeast ESCRT-III membrane scission activity by the Doa4 ubiquitin hydrolase.

    PubMed

    Johnson, Natalie; West, Matt; Odorizzi, Greg

    2017-03-01

    ESCRT-III executes membrane scission during the budding of intralumenal vesicles (ILVs) at endosomes. The scission mechanism is unknown but appears to be linked to the cycle of assembly and disassembly of ESCRT-III complexes at membranes. Regulating this cycle is therefore expected to be important for determining the timing of ESCRT-III-mediated membrane scission. We show that in Saccharomyces cerevisiae, ESCRT-III complexes are stabilized and ILV membrane scission is delayed by Doa4, which is the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. These results suggest a mechanism to delay ILV budding while cargoes undergo deubiquitination. We further show that deubiquitination of ILV cargoes is inhibited via Doa4 binding to Vps20, which is the subunit of ESCRT-III that initiates assembly of the complex. Current models suggest that ESCRT-III complexes surround ubiquitinated cargoes to trap them at the site of ILV budding while the cargoes undergo deubiquitination. Thus our results also propose a mechanism to prevent the onset of ILV cargo deubiquitination at the initiation of ESCRT-III complex assembly.

  5. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion

    SciTech Connect

    Rowe, Cynthia L.; Connolly, Sarah A.; Chen, Jia; Jardetzky, Theodore S.; Longnecker, Richard

    2013-02-05

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.

  6. III-V/Si hybrid photonic devices by direct fusion bonding

    PubMed Central

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  7. III-V/Si hybrid photonic devices by direct fusion bonding

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-04-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C sufficiently low to inhibit active material degradation. We have demonstrated 1.3 μm InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration.

  8. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes.

    PubMed

    Jäger, Jens; Keese, Susanne; Roessle, Manfred; Steinert, Michael; Schromm, Andra B

    2015-05-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small-angle X-ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co-incubation experiments showed a dose- and time-dependent binding of fluorophore-labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4 °C. Purified OMVs induced tumour necrosis factor-α production in human macrophages at concentrations starting at 300 ng ml(-1). Experiments on HEK293-TLR2 and TLR4/MD-2 cell lines demonstrated a dominance of TLR2-dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells. © 2014 John Wiley & Sons Ltd.

  9. Dynamic light scattering analysis of SNARE-driven membrane fusion and the effects of SNARE-binding flavonoids.

    PubMed

    Yang, Yoosoo; Heo, Paul; Kong, Byoungjae; Park, Jun-Bum; Jung, Young-Hun; Shin, Jonghyeok; Jeong, Cherlhyun; Kweon, Dae-Hyuk

    2015-10-02

    Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins generate energy required for membrane fusion. They form a parallelly aligned four-helix bundle called the SNARE complex, whose formation is initiated from the N terminus and proceeds toward the membrane-proximal C terminus. Previously, we have shown that this zippering-like process can be controlled by several flavonoids that bind to the intermediate structures formed during the SNARE zippering. Here, our aim was to test whether the fluorescence resonance energy transfer signals that are observed during the inner leaflet mixing assay indeed represent the hemifused vesicles. We show that changes in vesicle size accompanying the merging of bilayers is a good measure of progression of the membrane fusion. Two merging vesicles with the same size D in diameter exhibited their hydrodynamic diameters 2D + d (d, intermembrane distance), 2D and 2D as membrane fusion progressed from vesicle docking to hemifusion and full fusion, respectively. A dynamic light scattering assay of membrane fusion suggested that myricetin stopped membrane fusion at the hemifusion state, whereas delphinidin and cyanidin prevented the docking of the vesicles. These results are consistent with our previous findings in fluorescence resonance energy transfer assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Membrane proteins in human erythrocytes during cell fusion induced by oleoylglycerol

    PubMed Central

    Quirk, Susan J.; Ahkong, Quet Fah; Botham, Gaynor M.; Vos, Jan; Lucy, Jack A.

    1978-01-01

    1. The fusion of human erythrocytes into multicellular bodies that is induced by microdroplets of oleoylglycerol was investigated by optical and electron microscopy, and by gel electrophoresis of membrane proteins. 2. At the highest concentrations of oleoylglycerol and Ca2+ used, at least 80% of the cells fused after 30min at 37°C and only about 5% of the cells had completely lysed; the shapes of fused multicellular bodies were usually retained in `ghosts' prepared by hypo-osmotic lysis. 3. The rate of cell fusion was related to the concentration of Ca2+, although some cells fused when no exogenous Ca2+ was present. 4. Interactions of microdroplets of oleoylglycerol with the cells led to abnormalities in the structural appearance of the erythrocyte membrane; subsequent membrane fusion occurred, at least in some instances, at the sites of the microdroplets. 5. The intramembranous particles on the P-fracture face of the treated cells were more randomly distributed, but not significantly increased in number by comparison with the control cells. 6. Gel electrophoresis of the proteins of `ghosts' prepared from fused human erythrocytes showed a production of material of very high molecular weight, the development of a new component in the band-3 region, an increased staining of bands 4.3 and 4.5, and a new component moving slightly faster than band 6. 7. Bands 2.1–2.3 were altered, band 3 was decreased and band 4.1 was lost. 8. Most, but not all, of the changes in the membrane proteins appeared to result from the entry of Ca2+ into the cell. 9. 1-Chloro-4-phenyl-3-l-toluene-p-sulphonamidobutan-2-one partially inhibited both cell fusion and the associated decrease in band-3 protein. 10. The possibility that proteolytic degradation of membrane proteins may be involved in cell fusion induced by oleoylglycerol is considered, and some implications of this possibility are discussed. ImagesPLATE 4PLATE 1PLATE 2PLATE 3 PMID:728105

  11. Interaction of anionic phenylene ethynylene polymers with lipids: from membrane embedding to liposome fusion.

    PubMed

    Karam, Pierre; Hariri, Amani A; Calver, Christina F; Zhao, Xiaoyong; Schanze, Kirk S; Cosa, Gonzalo

    2014-09-09

    Here we report spectroscopic studies on the interaction of negatively charged, amphiphilic polyphenylene ethynylene (PPE) polymers with liposomes prepared either from negative, positive or zwitterionic lipids. Emission spectra of PPEs of 7 and 49 average repeat units bearing carboxylate terminated side chains showed that the polymer embeds within positively charged lipids where it exists as free chains. No interaction was observed between PPEs and negatively charged lipids. Here the polymer remained aggregated giving rise to broad emission spectra characteristic of the aggregate species. In zwitterionic lipids, we observed that the majority of the polymer remained aggregated yet a small fraction readily embedded within the membrane. Titration experiments revealed that saturation of zwitterionic lipids with polymer typically occurred at a polymer repeat unit to lipid mole ratio close to 0.05. No further membrane embedding was observed above that point. For liposomes prepared from positively charged lipids, saturation was observed at a PPE repeat unit to lipid mole ratio of ∼0.1 and liposome precipitation was observed above this point. FRET studies showed that precipitation was preceded by lipid mixing and liposome fusion induced by the PPEs. This behavior was prominent for the longer polymer and negligible for the shorter polymer at a repeat unit to lipid mole ratio of 0.05. We postulate that fusion is the consequence of membrane destabilization whereby the longer polymer gives rise to more extensive membrane deformation than the shorter polymer.

  12. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  13. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  14. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments.

    PubMed

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-12-15

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling.

  15. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

    PubMed Central

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling. DOI: http://dx.doi.org/10.7554/eLife.12548.001 PMID:26670543

  16. Development of an aqueous-space mixing assay for fusion of granules and plasma membranes from human neutrophils.

    PubMed Central

    Blackwood, R A; Smolen, J E; Hessler, R J; Harsh, D M; Transue, A

    1996-01-01

    Several models have been developed to study neutrophil degranulation. At the most basic level, phospholipid vesicles have been used to investigate the lipid interactions occurring during membrane fusion. The two major forms of assays used to measure phospholipid vesicle fusion are based either on the dilution of tagged phospholipids within the membrane of the two fusing partners or the mixing of the aqueous contents of the vesicles. Although problems exist with both methods, the latter is considered to be more accurate and representative of true fusion. Using 8-aminonaphthalene-1,3,6-trisulphonic acid (ANTS) as a fluorescent marker, we have taken advantage of the quenching properties of p-xylenebispyridinium bromide ('DPX') to develop a simple aqueous-space mixing assay that can be used with any sealed vesicle. We compared our new assay with more conventional assays using liposomes composed of phosphatidic acid (PA) and phosphatidylethanolamine (PE), obtaining comparable results with respect to Ca2+-dependent fusion. We extended our studies to measure the fusion of neutrophil plasma-membrane vesicles as well as azurophil and specific granules with PA/PE (1:3) liposomes. Both specific granules and plasma-membrane vesicles fused with PA/PE liposomes at [Ca2+] as low as 500 microM, while azurophil granules showed no fusion at [Ca2+] as high as 12 mM. These differences in the ability of Ca2+ to induce fusion may be related to differences observed in whole cells with respect to secretion. PMID:8670059

  17. Effects of ionic liquids on membrane fusion and lipid aggregation of egg-PC liposomes.

    PubMed

    Galletti, Paola; Malferrari, Danilo; Samorì, Chiara; Sartor, Giorgio; Tagliavini, Emilio

    2015-01-01

    In this study we have explored the effects of different groups of ionic liquids (ILs) on membrane fusion. The ILs used contain different head groups: N-methylimidazolium, 3-methylpyridinium and N-methylpyrrolidinium; short alkyl or ether functionalized side chains (with one or two ethoxy functionalities), paired with chloride anion. These ILs have been compared with 1-dodecyl-3-methylimidazolium bromide as example of a highly lipophilic IL. The effect of ILs on membrane fusion was investigated through pyrene steady state fluorescence probing, using the IE factor and excimer/monomer ratio (IE/IM) as parameters. The ratio between the vibronic bands of pyrene (I1/I3 ratio) has been used to monitor the effect of ILs on the aggregation properties of egg-PC liposomes. The effect of different ILs' families was evident; the pyridinium ILs induced a greater extent of fusion than pyrrolidinium and imidazolium ILs having the same side chain. Marginal effect could be attributed to different anions. ILs with short alkyl chains were usually more effective than ether functionalized ones. The aggregation behaviors of ILs having dioxygenated chains have been measured in buffer solution.

  18. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion.

    PubMed

    Li, Zhuo; Hung, Cher; Paterson, Reay G; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J; Lamb, Robert A; He, Biao

    2015-10-06

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.

  19. Free energy landscape of rim-pore expansion in membrane fusion.

    PubMed

    Risselada, Herre Jelger; Smirnova, Yuliya; Grubmüller, Helmut

    2014-11-18

    The productive fusion pore in membrane fusion is generally thought to be toroidally shaped. Theoretical studies and recent experiments suggest that its formation, in some scenarios, may be preceded by an initial pore formed near the rim of the extended hemifusion diaphragm (HD), a rim-pore. This rim-pore is characterized by a nontoroidal shape that changes with size. To determine this shape as well as the free energy along the pathway of rim-pore expansion, we derived a simple analytical free energy model. We argue that dilation of HD material via expansion of a rim-pore is favored over a regular, circular pore. Further, the expanding rim-pore faces a free energy barrier that linearly increases with HD size. In contrast, the tension required to expand the rim-pore decreases with HD size. Pore flickering, followed by sudden opening, occurs when the tension in the HD competes with the line energy of the rim-pore, and the rim-pore reaches its equilibrium size before reaching the critical pore size. The experimental observation of flickering and closing fusion pores (kiss-and-run) is very well explained by the observed behavior of rim-pores. Finally, the free energy landscape of rim-pore expansion/HD dilation may very well explain why some cellular fusion reactions, in their attempt to minimize energetic costs, progress via alternative formation and dilation of microscopic hemifusion intermediates.

  20. Time Resolved Neutron Reflectivity During Supported Membrane Formation by Vesicle Fusion.

    PubMed

    Koutsioubas, Alexandros; Appavou, Marie-Sousai; Lairez, Didier

    2017-09-05

    The formation of supported lipid bilayers (SLB) on hydrophilic substrates through the method of unilamelar vesicle fusion is used routinely in a wide range of biophysical studies. In an effort to control and better understand the fusion process on the substrate, many experimental studies employing different techniques have been devoted to the elucidation of the fusion mechanism. In the present work we follow the kinetics of membrane formation using time-resolved (TR) neutron reflectivity, focussing at the structural changes near the solid/liquid interface. A clear indication of stacked bilayer structure is observed during the intermediate phase of SLB formation. Adsorbed lipid mass decrease is also measured at the final stage of the process. We have found that it is essential for the analysis of the experimental results to treat theoretically the shape of adsorbed lipid vesicles on an attractive substrate. The overall findings are discussed in relation to proposed fusion mechanisms from previous literature, while we argue that our observations favour a model involving enhanced adhesion of incoming vesicles on the edges of already formed bilayer patches.

  1. Role of a Putative gp41 Dimerization Domain in Human Immunodeficiency Virus Type 1 Membrane Fusion

    SciTech Connect

    Liu, J.; Deng, Y; Li, Q; Dey, A; Moore, J; Lu, M

    2010-01-01

    The entry of human immunodeficiency virus type 1 (HIV-1) into a target cell entails a series of conformational changes in the gp41 transmembrane glycoprotein that mediates the fusion of the viral and target cell membranes. A trimer-of-hairpins structure formed by the association of two heptad repeat (HR) regions of the gp41 ectodomain has been implicated in a late step of the fusion pathway. Earlier native and intermediate states of the protein are postulated to mediate the antiviral activity of the fusion inhibitor enfuvirtide and of broadly neutralizing monoclonal antibodies (NAbs), but the details of these structures remain unknown. Here, we report the identification and crystal structure of a dimerization domain in the C-terminal ectodomain of gp41 (residues 630 to 683, or C54). Two C54 monomers associate to form an asymmetric, antiparallel coiled coil with two distinct C-terminal {alpha}-helical overhangs. This dimer structure is conferred largely by interactions within a central core that corresponds to the sequence of enfuvirtide. The mutagenic alteration of the dimer interface severely impairs the infectivity of Env-pseudotyped viruses. Moreover, the C54 structure binds tightly to both the 2F5 and 4E10 NAbs and likely represents a potential intermediate conformation of gp41. These results should enhance our understanding of the molecular basis of the gp41 fusogenic structural transitions and thereby guide rational, structure-based efforts to design new fusion inhibitors and vaccine candidates intended to induce broadly neutralizing antibodies.

  2. Free Energy Landscape of Rim-Pore Expansion in Membrane Fusion

    PubMed Central

    Risselada, Herre Jelger; Smirnova, Yuliya; Grubmüller, Helmut

    2014-01-01

    The productive fusion pore in membrane fusion is generally thought to be toroidally shaped. Theoretical studies and recent experiments suggest that its formation, in some scenarios, may be preceded by an initial pore formed near the rim of the extended hemifusion diaphragm (HD), a rim-pore. This rim-pore is characterized by a nontoroidal shape that changes with size. To determine this shape as well as the free energy along the pathway of rim-pore expansion, we derived a simple analytical free energy model. We argue that dilation of HD material via expansion of a rim-pore is favored over a regular, circular pore. Further, the expanding rim-pore faces a free energy barrier that linearly increases with HD size. In contrast, the tension required to expand the rim-pore decreases with HD size. Pore flickering, followed by sudden opening, occurs when the tension in the HD competes with the line energy of the rim-pore, and the rim-pore reaches its equilibrium size before reaching the critical pore size. The experimental observation of flickering and closing fusion pores (kiss-and-run) is very well explained by the observed behavior of rim-pores. Finally, the free energy landscape of rim-pore expansion/HD dilation may very well explain why some cellular fusion reactions, in their attempt to minimize energetic costs, progress via alternative formation and dilation of microscopic hemifusion intermediates. PMID:25418297

  3. Large Plasma Membrane Disruptions Are Rapidly Resealed by Ca2+-dependent Vesicle–Vesicle Fusion Events

    PubMed Central

    Terasaki, Mark; Miyake, Katsuya; McNeil, Paul L.

    1997-01-01

    A microneedle puncture of the fibroblast or sea urchin egg surface rapidly evokes a localized exocytotic reaction that may be required for the rapid resealing that follows this breach in plasma membrane integrity (Steinhardt, R.A,. G. Bi, and J.M. Alderton. 1994. Science (Wash. DC). 263:390–393). How this exocytotic reaction facilitates the resealing process is unknown. We found that starfish oocytes and sea urchin eggs rapidly reseal much larger disruptions than those produced with a microneedle. When an ∼40 by 10 μm surface patch was torn off, entry of fluorescein stachyose (FS; 1,000 mol wt) or fluorescein dextran (FDx; 10,000 mol wt) from extracellular sea water (SW) was not detected by confocal microscopy. Moreover, only a brief (∼5–10 s) rise in cytosolic Ca2+ was detected at the wound site. Several lines of evidence indicate that intracellular membranes are the primary source of the membrane recruited for this massive resealing event. When we injected FS-containing SW deep into the cells, a vesicle formed immediately, entrapping within its confines most of the FS. DiI staining and EM confirmed that the barrier delimiting injected SW was a membrane bilayer. The threshold for vesicle formation was ∼3 mM Ca2+ (SW is ∼10 mM Ca2+). The capacity of intracellular membranes for sealing off SW was further demonstrated by extruding egg cytoplasm from a micropipet into SW. A boundary immediately formed around such cytoplasm, entrapping FDx or FS dissolved in it. This entrapment did not occur in Ca2+-free SW (CFSW). When egg cytoplasm stratified by centrifugation was exposed to SW, only the yolk platelet–rich domain formed a membrane, suggesting that the yolk platelet is a critical element in this response and that the ER is not required. We propose that plasma membrane disruption evokes Ca2+ regulated vesicle–vesicle (including endocytic compartments but possibly excluding ER) fusion reactions. The function in resealing of this cytoplasmic fusion

  4. SNARE-fusion mediated insertion of membrane proteins into native and artificial membranes.

    PubMed

    Nordlund, Gustav; Brzezinski, Peter; von Ballmoos, Christoph

    2014-07-02

    Membrane proteins carry out functions such as nutrient uptake, ATP synthesis or transmembrane signal transduction. An increasing number of reports indicate that cellular processes are underpinned by regulated interactions between these proteins. Consequently, functional studies of these networks at a molecular level require co-reconstitution of the interacting components. Here, we report a SNARE protein-based method for incorporation of multiple membrane proteins into artificial membrane vesicles of well-defined composition, and for delivery of large water-soluble substrates into these vesicles. The approach is used for in vitro reconstruction of a fully functional bacterial respiratory chain from purified components. Furthermore, the method is used for functional incorporation of the entire F1F0 ATP synthase complex into native bacterial membranes from which this component had been genetically removed. The novel methodology offers a tool to investigate complex interaction networks between membrane-bound proteins at a molecular level, which is expected to generate functional insights into key cellular functions.

  5. Real-time analysis of human immunodeficiency virus type 1 Env-mediated membrane fusion by fluorescence resonance energy transfer.

    PubMed

    Furuta, Rika A; Nishikawa, Masao; Fujisawa, Jun-ichi

    2006-02-01

    Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-mediated membrane fusion occurs as a sequence of events that is triggered by CD4 binding to the Env gp120 subunit. In this study, we analyzed the dynamics of Env-mediated membrane fusion at the single-cell level using fluorescent fusion proteins and confocal laser fluorescent microscopy. Either enhanced cyan or yellow fluorescent protein (CFP and YFP, respectively) was fused to the end of the cytoplasmic regions of the HIV-1 receptors (CD4 and CCR5) and Env proteins. Real-time imaging of membrane fusion mediated by these recombinant proteins revealed that the kinetics of fusion in our system was faster than that previously reported. Analysis of the receptor interaction by fluorescence resonance energy transfer (FRET) at the single-cell level demonstrated a tendency for oligomerization of CD4-CD4, but not of CD4-CCR5, in the absence of Env-expressing cells. However, when Env-expressing cells attached to the receptor cells, FRET produced by CD4-CCR5 interaction was increased; the FRET intensity began to decline before the formation of the fusion pore. These changes in FRET may represent the temporal association of these receptors, triggered by gp120 binding, and their dissociation during the formation of the fusion pore. In addition, the FRET analysis of receptor interactions in the presence of fusion inhibitors showed that not only inhibitors acting on CCR5 but also the gp41-derived peptide T-20 interfered with CD4-CCR5 interaction during fusion. These data suggest that T-20 could affect the formation of Env-receptors complexes during the membrane fusion.

  6. Membrane permeability transition and dysfunction of rice mitochondria effected by Er(III).

    PubMed

    Gao, Jia-ling; Wu, Man; Wang, Xuan; Zhang, Ye-zhong; Jiang, Feng-lei; Liu, Yi; Dai, Jie

    2015-02-01

    Herein, the biological effects of heavy rare earth ion Er(III) on rice mitochondria were comprehensively investigated mainly by spectroscopic methods. The experimental results demonstrated that Er(III) could lead to the swelling of rice mitochondria, collapse of mitochondrial transmembrane potential, decrease of membrane fluidity, promotion of H(+) permeability and suppression of K(+) permeability. These further indicated that Er(III) could induce the mitochondrial permeability transition (MPT) and the dysfunction of rice mitochondria. The ultra-structure change of mitochondria observed by transmission electron microscopy (TEM) also proved that Er(III) induced MPT. Moreover, the testing results of the protective effect of four different agents on mitochondrial swelling implied that the thiol chelation on the mitochondrial inner membrane was the main reason that caused the MPT.

  7. Membrane Requirement for Folding of the Herpes Simplex Virus 1 gB Cytodomain Suggests a Unique Mechanism of Fusion Regulation

    PubMed Central

    Silverman, Jessica L.; Greene, Neil G.; King, David S.

    2012-01-01

    Herpes simplex virus type 1 (HSV-1) enters cells by fusion of its envelope with a host cell membrane, which requires four viral glycoproteins and a cellular receptor. Viral fusion glycoprotein B (gB) mediates membrane fusion through the action of its ectodomain, while its cytoplasmic domain (cytodomain) regulates fusion from the opposite face of the membrane by an unknown mechanism. The gB cytodomain appears to restrict fusion, because point or truncation mutations within it increase the extent of fusion (syn mutations). Previously, we showed that the hyperfusion phenotype correlated with reduced membrane binding in gB syn truncation mutants and proposed that membrane binding was important in regulating fusion. Here, we extended our analysis to three syn point mutants: A855V, R858H, and A874P. These mutations produce local conformational changes, with some affecting membrane interaction, which suggests that while syn mutants may deregulate fusion by somewhat different mechanisms, maintaining the wild-type (WT) conformation is critical for fusion regulation. We further show that the presence of a membrane is necessary for the cytodomain to achieve its fully folded conformation and propose that the membrane-bound form of the cytodomain represents its native conformation. Taken together, our data suggest that the cytodomain of gB regulates fusion by a novel mechanism in which membrane interaction plays a key role. PMID:22623783

  8. Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion.

    PubMed

    Gordón-Alonso, Mónica; Yañez-Mó, María; Barreiro, Olga; Alvarez, Susana; Muñoz-Fernández, M Angeles; Valenzuela-Fernández, Agustín; Sánchez-Madrid, Francisco

    2006-10-15

    Protein organization on the membrane of target cells may modulate HIV-1 transmission. Since the tetraspanin CD81 is associated to CD4, the receptor of HIV-1 envelope protein (Env; gp120/gp41), we have explored the possibility that this molecule may modulate the initial steps of HIV-1 infection. On the other hand, CD81 belongs to the tetraspanin family, which has been described as organizers of protein microdomains on the plasma membrane. Therefore, the role of CD81 and other related tetraspanin, CD9, on the cell-to-cell fusion process mediated by HIV-1 was studied. We found that anti-tetraspanin Abs enhanced the syncytia formation induced by HIV-1 envelope proteins and viral entry in human T lymphoblasts. In addition, anti-CD81 Abs triggered its clustering in patches, where CD4 and CXCR4 were included. Moreover, the knocking down of CD81 and CD9 expression resulted in an increase in syncytia formation and viral entry. Accordingly, overexpression of CD81 and CD9 rendered cells less susceptible to Env-mediated syncytia formation. These data indicate that CD9 and CD81 have an important role in membrane fusion induced by HIV-1 envelope.

  9. Membrane Fusion Mediated by pH-Low-Insertion-Peptide (pHLIP)

    NASA Astrophysics Data System (ADS)

    Daniels, Jennifer; Yao, Lan; Engelman, Donald; Andreev, Oleg; Reshetnyak, Yana

    2012-02-01

    Liposomes are traditionally used as drug delivery carriers. The major mechanism of liposome entry into cell is endocytotic. First, the endocytotic pathway of cellular entry is non-specific: the delivery of therapeutics occurs to cells in both diseased and healthy tissues. Second, liposomes are usually trapped in endosome/lysosome, which prevents delivery of therapeutics to cytoplasm. We proposed to use pHLIP (pH-Low-Insertion-Peptide) to promote selective delivery of the liposome content to cytoplasm of cancer cells. We showed that liposomes coated with PEG polymer and pHLIP peptide enhance membrane fusion in acidic environments. pHLIP promotes fusion between lipid bilayer of liposome and plasma membrane or membrane of endosome/lysosome, which results in intracellular delivery of payload. Liposomes composed of 5 % pHLIP and 5 % PEG were ideal for the delivery. Since cancer and other pathological states produce an acid extracellular environment, this allows the liposome to target diseased tissue while avoiding healthy tissue (with neutral pH in extracellular space). The work is supported by NIH grants CA133890 to OAA, DME, YRK.

  10. Conformation of trimeric envelope glycoproteins: the CD4-dependent membrane fusion mechanism of HIV-1.

    PubMed

    Yingliang, Wu; Hong, Yi; Zhijian, Cao; Wenxin, Li

    2007-08-01

    The HIV-1 envelope glycoproteins are assembled by the trimeric gp120s and gp41s proteins. The gp120 binds sequentially to CD4 and coreceptor for initiating virus entry. Because of noncovalent interaction and heavy glycosylation for envelope glycoproteins, it is highly difficult to determine entire envelope glycoproteins structure now. Such question extremely limits our good understanding of HIV-1 membrane fusion mechanism. Here, a novel and reasonable assembly model of trimeric gp120s and gp41s was proposed based on the conformational dynamics of trimeric gp120-gp41 complex and gp41, respectively. As for gp41, the heptad repeat sequences in the gp41 C-terminal is of enormous flexibility. On the contrary, the heptad repeat sequences in the gp41 N-terminal likely present stable three-helical bundle due to strong nonpolar interaction, and they were predicted to associate three alpha1 helixes from the non-neutralizing face of the gp120 inner domain, which is quite similar to gp41 fusion core structure. Such interaction likely leads to the formation of noncovalent gp120-gp41 complex. In the proposed assembly of trimeric gp120-gp41 complex, three gp120s present not only perfectly complementary and symmetrical distribution around the gp41, but also different flexibility degree in the different structural domains. Thus, the new model can well explain numerous experimental phenomena, present plenty of structural information, elucidate effectively HIV-1 membrane fusion mechanism, and direct to further develop vaccine and novel fusion inhibitors.

  11. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis.

    PubMed Central

    Stenmark, H; Parton, R G; Steele-Mortimer, O; Lütcke, A; Gruenberg, J; Zerial, M

    1994-01-01

    Small GTPases of the rab family control distinct steps of intracellular transport. The function of their GTPase activity is not completely understood. To investigate the role of the nucleotide state of rab5 in the early endocytic pathway, the effects of two mutants with opposing biochemical properties were tested. The Q79L mutant of rab5, analogous with the activating Q61L mutant of p21-ras, was found to have a strongly decreased intrinsic GTPase activity and was, unlike wild-type rab5, found mainly in the GTP-bound form in vivo. Expression of this protein in BHK and HeLa cells led to a dramatic change in cell morphology, with the appearance of unusually large early endocytic structures, considerably larger than those formed upon overexpression of wild-type rab5. An increased rate of transferrin internalization was observed in these cells, whereas recycling was inhibited. Cytosol containing rab5 Q79L stimulated homotypic early endosome fusion in vitro, even though it contained only a small amount of the isoprenylated protein. A different mutant, rab5 S34N, was found, like the inhibitory p21-ras S17N mutant, to have a preferential affinity for GDP. Overexpression of rab5 S34N induced the accumulation of very small endocytic profile and inhibited transferrin endocytosis. This protein inhibited fusion between early endosomes in vitro. The opposite effects of the rab5 Q79L and S34N mutants suggest that rab5:GTP is required prior to membrane fusion, whereas GTP hydrolysis by rab5 occurs after membrane fusion and functions to inactivate the protein. Images PMID:8137813

  12. Structure and membrane remodeling activity of ESCRT-III helical polymers

    DOE PAGES

    McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; ...

    2015-12-18

    The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecturemore » and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. In conclusion, our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.« less

  13. Structure and membrane remodeling activity of ESCRT-III helical polymers

    SciTech Connect

    McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; Skowyra, Michael L.; Saunders, Marissa G.; Naismith, Teresa V.; Colf, Leremy A.; Afonine, Pavel; Arthur, Christopher; Sundquist, Wesley I.; Hanson, Phyllis I.; Frost, Adam

    2015-12-18

    The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecture and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. In conclusion, our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.

  14. Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation

    PubMed Central

    Chiaruttini, Nicolas; Redondo-Morata, Lorena; Colom, Adai; Humbert, Frédéric; Lenz, Martin; Scheuring, Simon; Roux, Aurélien

    2015-01-01

    Summary ESCRT-III is required for lipid membrane remodeling in many cellular processes, from abscission to viral budding and multi-vesicular body biogenesis. However, how ESCRT-III polymerization generates membrane curvature remains debated. Here, we show that Snf7, the main component of ESCRT-III, polymerizes into spirals at the surface of lipid bilayers. When covering the entire membrane surface, these spirals stopped growing when densely packed: they had a polygonal shape, suggesting that lateral compression could deform them. We reasoned that Snf7 spirals could function as spiral springs. By measuring the polymerization energy and the rigidity of Snf7 filaments, we showed that they were deformed while growing in a confined area. Furthermore, we observed that the elastic expansion of compressed Snf7 spirals generated an area difference between the two sides of the membrane and thus curvature. This spring-like activity underlies the driving force by which ESCRT-III could mediate membrane deformation and fission. PMID:26522593

  15. Structure and membrane remodeling activity of ESCRT-III helical polymers.

    PubMed

    McCullough, John; Clippinger, Amy K; Talledge, Nathaniel; Skowyra, Michael L; Saunders, Marissa G; Naismith, Teresa V; Colf, Leremy A; Afonine, Pavel; Arthur, Christopher; Sundquist, Wesley I; Hanson, Phyllis I; Frost, Adam

    2015-12-18

    The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises "open" CHMP1B subunits that interlock in an elaborate domain-swapped architecture and is encircled by an outer strand of "closed" IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. Our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.

  16. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission.

    PubMed

    Alonso Y Adell, Manuel; Migliano, Simona M; Teis, David

    2016-09-01

    Complex molecular machineries bud, scission and repair cellular membranes. Components of the multi-subunit endosomal sorting complex required for transport (ESCRT) machinery are enlisted when multivesicular bodies are generated, extracellular vesicles are formed, the plasma membrane needs to be repaired, enveloped viruses bud out of host cells, defective nuclear pores have to be cleared, the nuclear envelope must be resealed after mitosis and for final midbody abscission during cytokinesis. While some ESCRT components are only required for specific processes, the assembly of ESCRT-III polymers on target membranes and the action of the AAA-ATPase Vps4 are mandatory for every process. In this review, we summarize the current knowledge of structural and functional features of ESCRT-III/Vps4 assemblies in the growing pantheon of ESCRT-dependent pathways. We describe specific recruitment processes for ESCRT-III to different membranes, which could be useful to selectively inhibit ESCRT function during specific processes, while not affecting other ESCRT-dependent processes. Finally, we speculate how ESCRT-III and Vps4 might function together and highlight how the characterization of their precise spatiotemporal organization will improve our understanding of ESCRT-mediated membrane budding and scission in vivo.

  17. Chemical studies of viral entry mechanisms: I. Hydrophobic protein-lipid interactions during Sendai virus membrane fusion. II. Kinetics of bacteriophage. lambda. DNA injection

    SciTech Connect

    Novick, S.L.

    1990-01-01

    Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator 3-(trifluoromethyl)-3-(m({sup 125}I) iodophenyl)diazirine. During Sendai virus fusion with liposomes composed of cardiolipin or phosphatidylserine, the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F{sub 1} subunit with the target membrane is an initiating event in fusion. Correlation of hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. The F{sub 1} subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and the F{sub 2} subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions. Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion.

  18. Membrane Cholesterol Regulates Lysosome-Plasma Membrane Fusion Events and Modulates Trypanosoma cruzi Invasion of Host Cells

    PubMed Central

    Hissa, Bárbara; Duarte, Jacqueline G.; Kelles, Ludmila F.; Santos, Fabio P.; del Puerto, Helen L.; Gazzinelli-Guimarães, Pedro H.; de Paula, Ana M.; Agero, Ubirajara; Mesquita, Oscar N.; Guatimosim, Cristina; Chiari, Egler; Andrade, Luciana O.

    2012-01-01

    Background Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages) and non-professional (epithelial) phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. Methodology/Principal Finding In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. Conclusion/Significance Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of lysosomes are

  19. Interaction between the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Human Parainfluenza Virus Type III Regulates Viral Growth In Vivo

    PubMed Central

    Xu, Rui; Palmer, Samantha G.; Porotto, Matteo; Palermo, Laura M.; Niewiesk, Stefan; Wilson, Ian A.; Moscona, Anne

    2013-01-01

    ABSTRACT Paramyxoviruses, enveloped RNA viruses that include human parainfluenza virus type 3 (HPIV3), cause the majority of childhood viral pneumonia. HPIV3 infection starts when the viral receptor-binding protein engages sialic acid receptors in the lung and the viral envelope fuses with the target cell membrane. Fusion/entry requires interaction between two viral surface glycoproteins: tetrameric hemagglutinin-neuraminidase (HN) and fusion protein (F). In this report, we define structural correlates of the HN features that permit infection in vivo. We have shown that viruses with an HN-F that promotes growth in cultured immortalized cells are impaired in differentiated human airway epithelial cell cultures (HAE) and in vivo and evolve in HAE into viable viruses with less fusogenic HN-F. In this report, we identify specific structural features of the HN dimer interface that modulate HN-F interaction and fusion triggering and directly impact infection. Crystal structures of HN, which promotes viral growth in vivo, show a diminished interface in the HN dimer compared to the reference strain’s HN, consistent with biochemical and biological data indicating decreased dimerization and decreased interaction with F protein. The crystallographic data suggest a structural explanation for the HN’s altered ability to activate F and reveal properties that are critical for infection in vivo. IMPORTANCE Human parainfluenza viruses cause the majority of childhood cases of croup, bronchiolitis, and pneumonia worldwide. Enveloped viruses must fuse their membranes with the target cell membranes in order to initiate infection. Parainfluenza fusion proceeds via a multistep reaction orchestrated by the two glycoproteins that make up its fusion machine. In vivo, viruses adapt for survival by evolving to acquire a set of fusion machinery features that provide key clues about requirements for infection in human beings. Infection of the lung by parainfluenzavirus is determined by

  20. Serotype specificity of recombinant fusion protein containing domain III and capsid protein of dengue virus 2.

    PubMed

    Izquierdo, Alienys; Valdés, Iris; Gil, Lázaro; Hermida, Lisset; Gutiérrez, Sheila; García, Angélica; Bernardo, Lidice; Pavón, Alekis; Guillén, Gerardo; Guzmán, María G

    2012-07-01

    Recombinant fusion protein containing domain III of the dengue envelope protein fused to capsid protein from dengue 2 virus was immunogenic and conferred protection in mice against lethal challenge in previously report. Here, the antigenic specificity of this recombinant protein using anti-dengue antibodies from mice and humans and the cross-reactive humoral and cellular response induced in immunized mice were evaluated. The homologous anti-dengue antibodies showed a higher reactivity to the recombinant protein compared to the wide cross-reactivity observed for viral antigen as determined by ELISA. The IgG anti-dengue and functional antibodies, induced by the recombinant proteins in mice, were highly serotype specific by ELISA, hemaglutination inhibition and plaque reduction neutralizing tests. Accordingly, the cellular immune response determined by the IFNγ and TNFα secretion, was serotype specific. The specificity of serotype associated to this recombinant protein in addition to its high antigenicity, immunogenicity and protecting capacity suggest its advantage as a possible functional and safe vaccine candidate against dengue in a future tetravalent formulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo.

    PubMed

    Paddock, Brie E; Wang, Zhao; Biela, Laurie M; Chen, Kaiyun; Getzy, Michael D; Striegel, Amelia; Richmond, Janet E; Chapman, Edwin R; Featherstone, David E; Reist, Noreen E

    2011-02-09

    The vesicle protein synaptotagmin I is the Ca(2+) sensor that triggers fast, synchronous release of neurotransmitter. Specifically, Ca(2+) binding by the C(2)B domain of synaptotagmin is required at intact synapses, yet the mechanism whereby Ca(2+) binding results in vesicle fusion remains controversial. Ca(2+)-dependent interactions between synaptotagmin and SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment receptor) complexes and/or anionic membranes are possible effector interactions. However, no effector-interaction mutations to date impact synaptic transmission as severely as mutation of the C(2)B Ca(2+)-binding motif, suggesting that these interactions are facilitatory rather than essential. Here we use Drosophila to show the functional role of a highly conserved, hydrophobic residue located at the tip of each of the two Ca(2+)-binding pockets of synaptotagmin. Mutation of this residue in the C(2)A domain (F286) resulted in a ∼50% decrease in evoked transmitter release at an intact synapse, again indicative of a facilitatory role. Mutation of this hydrophobic residue in the C(2)B domain (I420), on the other hand, blocked all locomotion, was embryonic lethal even in syt I heterozygotes, and resulted in less evoked transmitter release than that in syt(null) mutants, which is more severe than the phenotype of C(2)B Ca(2+)-binding mutants. Thus, mutation of a single, C(2)B hydrophobic residue required for Ca(2+)-dependent penetration of anionic membranes results in the most severe disruption of synaptotagmin function in vivo to date. Our results provide direct support for the hypothesis that plasma membrane penetration, specifically by the C(2)B domain of synaptotagmin, is the critical effector interaction for coupling Ca(2+) binding with vesicle fusion.

  2. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development

    PubMed Central

    Stith, Bradley J.

    2015-01-01

    This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412

  3. The lipid composition of Legionella dumoffii membrane modulates the interaction with Galleria mellonella apolipophorin III.

    PubMed

    Palusińska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Reszczyńska, Emilia; Luchowski, Rafał; Kania, Magdalena; Gisch, Nicolas; Waldow, Franziska; Mak, Paweł; Danikiewicz, Witold; Gruszecki, Wiesław I; Cytryńska, Małgorzata

    2016-07-01

    Apolipophorin III (apoLp-III), an insect homologue of human apolipoprotein E (apoE), is a widely used model protein in studies on protein-lipid interactions, and anti-Legionella activity of Galleria mellonella apoLp-III has been documented. Interestingly, exogenous choline-cultured Legionella dumoffii cells are considerably more susceptible to apoLp-III than non-supplemented bacteria. In order to explain these differences, we performed, for the first time, a detailed analysis of L. dumoffii lipids and a comparative lipidomic analysis of membranes of bacteria grown without and in the presence of exogenous choline. (31)P NMR analysis of L. dumoffii phospholipids (PLs) revealed a considerable increase in the phosphatidylcholine (PC) content in bacteria cultured on choline medium and a decrease in the phosphatidylethanolamine (PE) content in approximately the same range. The interactions of G. mellonella apoLp-III with lipid bilayer membranes prepared from PLs extracted from non- and choline-supplemented L. dumoffii cells were examined in detail by means of attenuated total reflection- and linear dichroism-Fourier transform infrared spectroscopy. Furthermore, the kinetics of apoLp-III binding to liposomes formed from L. dumoffii PLs was analysed by fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy using fluorescently labelled G. mellonella apoLp-III. Our results indicated enhanced binding of apoLp-III to and deeper penetration into lipid membranes formed from PLs extracted from the choline-supplemented bacteria, i.e. characterized by an increased PC/PE ratio. This could explain, at least in part, the higher susceptibility of choline-cultured L. dumoffii to G. mellonella apoLp-III.

  4. Potential electrostatic interactions in multiple regions affect human metapneumovirus F-mediated membrane fusion.

    PubMed

    Chang, Andres; Hackett, Brent A; Winter, Christine C; Buchholz, Ursula J; Dutch, Rebecca Ellis

    2012-09-01

    The recently identified human metapneumovirus (HMPV) is a worldwide respiratory virus affecting all age groups and causing pneumonia and bronchiolitis in severe cases. Despite its clinical significance, no specific antiviral agents have been approved for treatment of HMPV infection. Unlike the case for most paramyxoviruses, the fusion proteins (F) of a number of strains, including the clinical isolate CAN97-83, can be triggered by low pH. We recently reported that residue H435 in the HRB linker domain acts as a pH sensor for HMPV CAN97-83 F, likely through electrostatic repulsion forces between a protonated H435 and its surrounding basic residues, K295, R396, and K438, at low pH. Through site-directed mutagenesis, we demonstrated that a positive charge at position 435 is required but not sufficient for F-mediated membrane fusion. Arginine or lysine substitution at position 435 resulted in a hyperfusogenic F protein, while replacement with aspartate or glutamate abolished fusion activity. Studies with recombinant viruses carrying mutations in this region confirmed its importance. Furthermore, a second region within the F(2) domain identified as being rich in charged residues was found to modulate fusion activity of HMPV F. Loss of charge at residues E51, D54, and E56 altered local folding and overall stability of the F protein, with dramatic consequences for fusion activity. As a whole, these studies implicate charged residues and potential electrostatic interactions in function, pH sensing, and overall stability of HMPV F.

  5. Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments.

    PubMed

    Varghese, Finny S; Rausalu, Kai; Hakanen, Marika; Saul, Sirle; Kümmerer, Beate M; Susi, Petri; Merits, Andres; Ahola, Tero

    2017-03-01

    As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 μM) and Semliki Forest virus (SFV; EC50 = 0.11 μM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.

  6. Potential Electrostatic Interactions in Multiple Regions Affect Human Metapneumovirus F-Mediated Membrane Fusion

    PubMed Central

    Chang, Andres; Hackett, Brent A.; Winter, Christine C.; Buchholz, Ursula J.

    2012-01-01

    The recently identified human metapneumovirus (HMPV) is a worldwide respiratory virus affecting all age groups and causing pneumonia and bronchiolitis in severe cases. Despite its clinical significance, no specific antiviral agents have been approved for treatment of HMPV infection. Unlike the case for most paramyxoviruses, the fusion proteins (F) of a number of strains, including the clinical isolate CAN97-83, can be triggered by low pH. We recently reported that residue H435 in the HRB linker domain acts as a pH sensor for HMPV CAN97-83 F, likely through electrostatic repulsion forces between a protonated H435 and its surrounding basic residues, K295, R396, and K438, at low pH. Through site-directed mutagenesis, we demonstrated that a positive charge at position 435 is required but not sufficient for F-mediated membrane fusion. Arginine or lysine substitution at position 435 resulted in a hyperfusogenic F protein, while replacement with aspartate or glutamate abolished fusion activity. Studies with recombinant viruses carrying mutations in this region confirmed its importance. Furthermore, a second region within the F2 domain identified as being rich in charged residues was found to modulate fusion activity of HMPV F. Loss of charge at residues E51, D54, and E56 altered local folding and overall stability of the F protein, with dramatic consequences for fusion activity. As a whole, these studies implicate charged residues and potential electrostatic interactions in function, pH sensing, and overall stability of HMPV F. PMID:22761366

  7. Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments

    PubMed Central

    Rausalu, Kai; Hakanen, Marika; Saul, Sirle; Kümmerer, Beate M.; Susi, Petri; Merits, Andres

    2016-01-01

    ABSTRACT As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 μM) and Semliki Forest virus (SFV; EC50 = 0.11 μM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate. PMID:27993855

  8. Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion

    PubMed Central

    Kleinfelter, Lara M.; Jangra, Rohit K.; Jae, Lucas T.; Herbert, Andrew S.; Mittler, Eva; Stiles, Katie M.; Wirchnianski, Ariel S.; Kielian, Margaret; Brummelkamp, Thijn R.

    2015-01-01

    ABSTRACT Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. PMID:26126854

  9. A residue located at the junction of the head and stalk regions of measles virus fusion protein regulates membrane fusion by controlling conformational stability.

    PubMed

    Satoh, Yuto; Yonemori, Saeka; Hirose, Mitsuhiro; Shogaki, Hiroko; Wakimoto, Hiroshi; Kitagawa, Yoshinori; Gotoh, Bin; Shirai, Tsuyoshi; Takahashi, Ken-Ichi; Itoh, Masae

    2017-02-01

    The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.

  10. NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: Implications in membrane fusion.

    PubMed

    Mahajan, Mukesh; Bhattacharjya, Surajit

    2015-02-01

    Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) poses a serious public health hazard. The S2 subunit of the S glycoprotein of SARS-CoV carries out fusion between the virus and the host cells. However, the exact mechanism of the cell fusion process is not well understood. Current model suggests that a conformational transition, upon receptor recognition, of the two heptad core regions of S2 may expose the hydrophobic fusogenic peptide or fusion peptide for membrane insertion. Three regions of the S2 subunit have been proposed to be involved in cell-cell fusion. The N-terminal fusion peptide (FP, residues 770-788), an internal fusion peptide (IFP, residues 873-888) and the pre-transmembrane region (PTM, residues 1185-1202) demonstrated interactions with model lipid membranes and potentially involved in the fusion process. Here, we have determined atomic resolution structures of these three peptides in DPC detergent micelles by solution NMR. FP assumes α-helical conformation with significant distortion at the central Gly residues; enabling a close packing among sidechains of aromatic residues including W, Y and F. The 3-D structure of PMT is characterized by a helix-loop-helix with extensive aromatic interactions within the helices. IFP adopts a rather straight α-helical conformation defined by packing among sidechains of aromatic and aliphatic residues. Paramagnetic spin labeled NMR has demonstrated surface localization of PMT whereas FP and IFP inserted into the micelles. Collectively, data presented in this study will aid in understanding fusion mechanism of SARS-CoV. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion.

    PubMed

    Kleinfelter, Lara M; Jangra, Rohit K; Jae, Lucas T; Herbert, Andrew S; Mittler, Eva; Stiles, Katie M; Wirchnianski, Ariel S; Kielian, Margaret; Brummelkamp, Thijn R; Dye, John M; Chandran, Kartik

    2015-06-30

    Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. Although hantaviruses cause important human diseases worldwide, no specific antiviral treatments are available. One of the major obstacles to the development of new therapies is a lack of understanding of how hantaviruses hijack our own host factors to enter cells. Here, we identified multiple cellular genes that control the levels of cholesterol in cellular membranes to be

  12. Role for the Terminal Clasp of HIV-1 gp41 Glycoprotein in the Initiation of Membrane Fusion*

    PubMed Central

    Lay, Chan-Sien; Ludlow, Louise E.; Stapleton, David; Bellamy-McIntyre, Anna K.; Ramsland, Paul A.; Drummer, Heidi E.; Poumbourios, Pantelis

    2011-01-01

    The binding by HIV-1 gp120 to CD4 and a chemokine receptor activates the membrane fusion glycoprotein, gp41. The fusion function of gp41 involves the refolding of its core into a 6-helix bundle, which apposes the lipophilic termini (the fusion peptide and transmembrane domain) and the associated cell and viral membranes, leading to their fusion. In this study, we examined the functional role of the polar segment and membrane proximal external region (MPER), which link the fusion peptide and transmembrane domain, respectively, to the core domain and interact to form a terminal clasp adjacent to the core. Limited proteolysis indicated that the terminal clasp is destabilized by simultaneous I535A/V539G mutations within the polar segment and mutations within the MPER. The destabilizing effects of I535A/V539G correlated with defective cell-cell fusion, viral entry, and viral replication. By using lipophilic and cytoplasmic fluorescent dye transfer assays, we found that terminal clasp destabilization is linked to a block in the lipid mixing/hemifusion phase of the membrane fusion cascade. Because the biosynthesis of the prefusion gp120-gp41 complex did not appear to be affected by I535A/V539G, we infer that the hemifusion block is due to a specific effect on the trimer of hairpins conformation of gp41. By contrast, the decreased fusion function of the MPER mutants correlated with a decrease in the interfacial hydropathy of the MPER sequence, suggesting that the prefusion Env complex had been adversely affected in these cases. These findings reveal a novel conserved functional target for the discovery of fusion inhibitors. PMID:21976663

  13. [Prokaryotic expression of S2 extracellular domain of SARS coronavirus spike protein and its fusion with Hela cell membrane].

    PubMed

    Liu, Yun; Liu, Ai-Hua; Deng, Peng; Wu, Xiang-Ling; Li, Tao; Liu, Ya-Wei; Xu, Jia; Jiang, Yong

    2009-03-01

    To construct the expression plasmid of S2 extracellular domain (S2ED) of SARS-coronavirus (SARS- Cov) spike protein (S protein) and enhanced green fluorescent protein (EGFP) to obtain the fusion protein expressed in prokaryotic cells. S2ED based on bioinformatics prediction and EGFP sequence were amplified by PCR and inserted into pET-14b plasmid. The recombinant protein His-S2ED-EGFP was expressed in E. coli by IPTG induction. After purification by Ni-NTA agarose beads, the soluble fractions of the fusion protein were collected and identified by SDS-PAGE and Western blotting. The fusion of S2ED with Hela cell membranes was observed with fluorescent microscope. The pET-14b-S2ED-EGFP plasmid was correctly constructed and highly expressed in BL21 (DE3). When incubated with Hela cells, the purified protein could not internalize through membrane fusion. The expression plasmid containing S2ED of SARS-Cov S protein and EGFP sequence is constructed successfully. Although the recombinant protein obtained has not shown the expected fusion effect with Hela cell membrane, this work may enrich the understanding of the process of membrane fusion mediated by S2 protein and lay the foundation for future study of targeting cell transport system based on cell-specific binding peptide.

  14. Membrane Fusion Protein Annexin 7: A Common Site of Action for Calcium, Guanosine Triphosphate, Protein Kinase C and Botulinum Toxin Type C in Regulated Exocytosis

    DTIC Science & Technology

    2002-01-01

    approaches to directly test the effects of these agents on annexin 7. Annexin 7 (ANX7) is a calcium-dependent GTP-activated membrane fusion protein. In a...research project, we combined both in vitro and in vivo approaches to directly test the effects of these agents on annexin 7. Annexin 7 (ANX7) is a...exocytotic membrane fusion process. The experimental strategies designed to test this hypothesis include the reconstituted membrane fusion system using

  15. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division.

    PubMed

    Samson, Rachel Y; Obita, Takayuki; Hodgson, Ben; Shaw, Michael K; Chong, Parkson Lee-Gau; Williams, Roger L; Bell, Stephen D

    2011-01-21

    Members of the crenarchaeal kingdom, such as Sulfolobus, divide by binary fission yet lack genes for the otherwise near-ubiquitous tubulin and actin superfamilies of cytoskeletal proteins. Recent work has established that Sulfolobus homologs of the eukaryotic ESCRT-III and Vps4 components of the ESCRT machinery play an important role in Sulfolobus cell division. In eukaryotes, several pathways recruit ESCRT-III proteins to their sites of action. However, the positioning determinants for archaeal ESCRT-III are not known. Here, we identify a protein, CdvA, that is responsible for recruiting Sulfolobus ESCRT-III to membranes. Overexpression of the isolated ESCRT-III domain that interacts with CdvA results in the generation of nucleoid-free cells. Furthermore, CdvA and ESCRT-III synergize to deform archaeal membranes in vitro. The structure of the CdvA/ESCRT-III interface gives insight into the evolution of the more complex and modular eukaryotic ESCRT complex.

  16. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences.

    PubMed

    Wu, Jian; Xu, Yingke; Feng, Zhouyan; Zheng, Xiaoxiang

    2015-01-01

    Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs) and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  17. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  18. Fusion of phospholipid vesicles with a planar membrane depends on the membrane permeability of the solute used to create the osmotic pressure

    PubMed Central

    1989-01-01

    Phospholipid vesicles fuse with a planar membrane when they are osmotically swollen. Channels in the vesicle membrane are required for swelling to occur when the vesicle-containing compartment is made hyperosmotic by adding a solute (termed an osmoticant). We have studied fusion using two different channels, porin, a highly permeable channel, and nystatin, a much less permeable channel. We report that an osmoticant's ability to support fusion (defined as the magnitude of osmotic gradient necessary to obtain sustained fusion) depends on both its permeability through lipid bilayer as well as its permeability through the channel by which it enters the vesicle interior. With porin as the channel, formamide requires an osmotic gradient about ten times that required with urea, which is approximately 1/40th as permeant as formamide through bare lipid membrane. When nystatin is the channel, however, fusion rates sustained by osmotic gradients of formamide are within a factor of two of those obtained with urea. Vesicles containing a porin-impermeant solute can be induced to swell and fuse with a planar membrane when the impermeant bathing the vesicles is replaced by an isosmotic quantity of a porin-permeant solute. With this method of swelling, formamide is as effective as urea in obtaining fusion. In addition, we report that binding of vesicles to the planar membrane does not make the contact region more permeable to the osmoticant than is bare lipid bilayer. In the companion paper, we quantitatively account for the observation that the ability of a solute to promote fusion depends on its permeability properties and the method of swelling. We show that the intravesicular pressure developed drives fusion. PMID:2539429

  19. SNARE Molecules in Marchantia polymorpha: Unique and Conserved Features of the Membrane Fusion Machinery.

    PubMed

    Kanazawa, Takehiko; Era, Atsuko; Minamino, Naoki; Shikano, Yu; Fujimoto, Masaru; Uemura, Tomohiro; Nishihama, Ryuichi; Yamato, Katsuyuki T; Ishizaki, Kimitsune; Nishiyama, Tomoaki; Kohchi, Takayuki; Nakano, Akihiko; Ueda, Takashi

    2016-02-01

    The membrane trafficking pathway has been diversified in a specific way for each eukaryotic lineage, probably to fulfill specific functions in the organisms. In green plants, comparative genomics has supported the possibility that terrestrialization and/or multicellularization could be associated with the elaboration and diversification of membrane trafficking pathways, which have been accomplished by an expansion of the numbers of genes required for machinery components of membrane trafficking, including soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, information regarding membrane trafficking pathways in basal land plant lineages remains limited. In the present study, we conducted extensive analyses of SNARE molecules, which mediate membrane fusion between target membranes and transport vesicles or donor organelles, in the liverwort, Marchantia polymorpha. The M. polymorpha genome contained at least 34 genes for 36 SNARE proteins, comprising fundamental sets of SNARE proteins that are shared among land plant lineages with low degrees of redundancy. We examined the subcellular distribution of a major portion of these SNARE proteins by expressing Citrine-tagged SNARE proteins in M. polymorpha, and the results showed that some of the SNARE proteins were targeted to different compartments from their orthologous products in Arabidopsis thaliana. For example, MpSYP12B was localized to the surface of the oil body, which is a unique organelle in liverworts. Furthermore, we identified three VAMP72 members with distinctive structural characteristics, whose N-terminal extensions contain consensus sequences for N-myristoylation. These results suggest that M. polymorpha has acquired unique membrane trafficking pathways associated with newly acquired machinery components during evolution. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For

  20. Fusion of a New World Alphavirus with Membrane Microdomains Involving Partially Reversible Conformational Changes in the Viral Spike Proteins.

    PubMed

    Sousa, Ivanildo P; Carvalho, Carlos A Marques; Mendes, Ygara Silva; Weissmuller, Gilberto; Oliveira, Andréa C; Gomes, Andre M O

    2017-09-28

    Alphaviruses are enveloped arboviruses mainly proposed to infect host cells by receptor-mediated endocytosis followed by fusion between the viral envelope and the endosomal membrane. The fusion reaction is triggered by low pH and requires the presence of both cholesterol and sphingolipids in the target membrane, suggesting the involvement of lipid rafts in the cell entry mechanism. In this study, we show for the first time the interaction of an enveloped virus with membrane microdomains isolated from living cells. Using Mayaro virus (MAYV), a New World alphavirus, we verified that virus fusion to these domains occurred to a significant extent upon acidification, although its kinetics was quite slow when compared to that of fusion with artificial liposomes demonstrated on a previous work. Surprisingly, when virus was previously exposed to acidic pH, a condition previously shown to inhibit alphavirus binding and fusion to target membranes as well as infectivity, and then reneutralized, its ability of fusing with membrane microdomains at low pH was retained. Interestingly, this observation correlated with a partial reversion of low pH-induced conformational changes in viral proteins and retention of virus infectivity upon reneutralization. Our results suggest that MAYV entry into host cells could alternatively involve internalization via lipid rafts, and that the conformational changes triggered by low pH in the viral spike proteins during the entry process are partially reversible.

  1. Reassessment of the lineage fusion hypothesis for the origin of double membrane bacteria.

    PubMed

    Swithers, Kristen S; Fournier, Gregory P; Green, Anna G; Gogarten, J Peter; Lapierre, Pascal

    2011-01-01

    In 2009, James Lake introduced a new hypothesis in which reticulate phylogeny reconstruction is used to elucidate the origin of gram-negative bacteria (Nature 460: 967-971). The presented data supported the gram-negative bacteria originating from an ancient endosymbiosis between the Actinobacteria and Clostridia. His conclusion was based on a presence-absence analysis of protein families that divided all prokaryotes into five groups: Actinobacteria, Double Membrane bacteria (DM), Clostridia, Archaea and Bacilli. Of these five groups, the DM are by far the largest and most diverse group compared to the other groupings. While the fusion hypothesis for the origin of double membrane bacteria is enticing, we show that the signal supporting an ancient symbiosis is lost when the DM group is broken down into smaller subgroups. We conclude that the signal detected in James Lake's analysis in part results from a systematic artifact due to group size and diversity combined with low levels of horizontal gene transfer.

  2. HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth

    PubMed Central

    Blondelle, Jordan; Ohno, Yusuke; Gache, Vincent; Guyot, Stéphane; Storck, Sébastien; Blanchard-Gutton, Nicolas; Barthélémy, Inès; Walmsley, Gemma; Rahier, Anaëlle; Gadin, Stéphanie; Maurer, Marie; Guillaud, Laurent; Prola, Alexandre; Ferry, Arnaud; Aubin-Houzelstein, Geneviève; Demarquoy, Jean; Relaix, Frédéric; Piercy, Richard J.; Blot, Stéphane; Kihara, Akio; Tiret, Laurent; Pilot-Storck, Fanny

    2015-01-01

    The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness. Through analysis of HACD1-deficient Labradors, Hacd1-knockout mice, and Hacd1-deficient myoblasts, we provide evidence that HACD1 promotes myoblast fusion during muscle development and regeneration. We further demonstrate that in normal differentiating myoblasts, expression of the catalytically active HACD1 isoform, which is encoded by a muscle-enriched splice variant, yields decreased lysophosphatidylcholine content, a potent inhibitor of myoblast fusion, and increased concentrations of ≥C18 and monounsaturated fatty acids of phospholipids. These lipid modifications correlate with a reduction in plasma membrane rigidity. In conclusion, we propose that fusion impairment constitutes a novel, non-exclusive pathological mechanism operating in congenital myopathies and reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism. PMID:26160855

  3. Effects of retroviral envelope-protein cleavage upon trafficking, incorporation, and membrane fusion

    SciTech Connect

    Apte, Swapna; Sanders, David Avram

    2010-09-15

    Retroviral envelope glycoproteins undergo proteolytic processing by cellular subtilisin-like proprotein convertases at a polybasic amino-acid site in order to produce the two functional subunits, SU and TM. Most previous studies have indicated that envelope-protein cleavage is required for rendering the protein competent for promoting membrane fusion and for virus infectivity. We have investigated the role of proteolytic processing of the Moloney murine leukemia virus envelope-protein through site-directed mutagenesis of the residues near the SU-TM cleavage site and have established that uncleaved glycoprotein is unable either to be incorporated into virus particles efficiently or to induce membrane fusion. Additionally, the results suggest that cleavage of the envelope protein plays an important role in intracellular trafficking of protein via the cellular secretory pathway. Based on our results it was concluded that a positively charged residue located at either P2 or P4 along with the arginine at P1 is essential for cleavage.

  4. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    SciTech Connect

    Willms, R.S.; Wilhelm, R.; Okuno, K.

    1994-07-01

    The palladium membrane reactor (PNM) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water-gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study was to systematically assess the performance of the PMR using a nickel catalyst over a range of temperatures, feed compositions and flowrates. Reactions which were studied are the water-gas shift reaction and steam reforming.

  5. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion

    PubMed Central

    Hui, Enfu; Johnson, Colin P.; Yao, Jun; Dunning, F. Mark; Chapman, Edwin R.

    2009-01-01

    Summary Decades ago it was proposed that exocytosis involves invagination of the target membrane, resulting in a highly localized site of contact between the bilayers destined to fuse. The vesicle protein synaptotagmin-I (syt) bends membranes in response to Ca2+, but whether this drives localized invagination of the target membrane to accelerate fusion has not been determined; previous studies relied on reconstituted vesicles that were already highly curved and used mutations in syt that were not selective for membrane-bending activity. Here, we directly address this question by utilizing vesicles with different degrees of curvature. A tubulation-defective syt mutant was able to promote fusion between highly curved SNARE-bearing liposomes, but exhibited a marked loss of activity when the membranes were relatively flat. Moreover, bending of flat membranes by adding an N-BAR domain rescued the function of the tubulation-deficient syt mutant. Hence, syt-mediated membrane bending is a critical step in membrane fusion. PMID:19703397

  6. Asymmetric Requirements for a Rab Gtpase and Snare Proteins in Fusion of Copii Vesicles with Acceptor Membranes

    PubMed Central

    Cao, Xiaochun; Barlowe, Charles

    2000-01-01

    Soluble NSF attachment protein receptor (SNARE) proteins are essential for membrane fusion in transport between the yeast ER and Golgi compartments. Subcellular fractionation experiments demonstrate that the ER/Golgi SNAREs Bos1p, Sec22p, Bet1p, Sed5p, and the Rab protein, Ypt1p, are distributed similarly but localize primarily with Golgi membranes. All of these SNARE proteins are efficiently packaged into COPII vesicles and suggest a dynamic cycling of SNARE machinery between ER and Golgi compartments. Ypt1p is not efficiently packaged into vesicles under these conditions. To determine in which membranes protein function is required, temperature-sensitive alleles of BOS1, BET1, SED5, SLY1, and YPT1 that prevent ER/Golgi transport in vitro at restrictive temperatures were used to selectively inactivate these gene products on vesicles or on Golgi membranes. Vesicles bearing mutations in Bet1p or Bos1p inhibit fusion with wild-type acceptor membranes, but acceptor membranes containing these mutations are fully functional. In contrast, vesicles bearing mutations in Sed5p, Sly1p, or Ypt1p are functional, whereas acceptor membranes containing these mutations block fusion. Thus, this set of SNARE proteins is symmetrically distributed between vesicle and acceptor compartments, but they function asymmetrically such that Bet1p and Bos1p are required on vesicles and Sed5p activity is required on acceptor membranes. We propose the asymmetry in SNARE protein function is maintained by an asymmetric distribution and requirement for the Ypt1p GTPase in this fusion event. When a transmembrane-anchored form of Ypt1p is used to restrict this GTPase to the acceptor compartment, vesicles depleted of Ypt1p remain competent for fusion. PMID:10747087

  7. A comparison of coarse-grained and continuum models for membrane bending in lipid bilayer fusion pores.

    PubMed

    Yoo, Jejoong; Jackson, Meyer B; Cui, Qiang

    2013-02-19

    To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. A Comparison of Coarse-Grained and Continuum Models for Membrane Bending in Lipid Bilayer Fusion Pores

    PubMed Central

    Yoo, Jejoong; Jackson, Meyer B.; Cui, Qiang

    2013-01-01

    To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. PMID:23442963

  9. Tuning the serum persistence of human serum albumin domain III:diabody fusion proteins

    PubMed Central

    Kenanova, Vania E.; Olafsen, Tove; Salazar, Felix B.; Williams, Lawrence E.; Knowles, Scott; Wu, Anna M.

    2010-01-01

    The long circulation persistence of human serum albumin (HSA) is enabled by its domain III (DIII) interaction with the neonatal Fc receptor (FcRn). A protein scaffold based on HSA DIII was designed. To modify the serum half life of the scaffold, residues H535, H510, and H464 were individually mutated to alanine. HSA DIII wild type (WT) and variants were fused to the anti-carcinoembryonic antigen (CEA) T84.66 diabody (Db), radiolabeled with 124I and injected into xenografted athymic mice for serial PET/CT imaging. All proteins targeted the CEA-positive tumor. The mean residence times (MRT) of the proteins, calculated by quantifying blood activity from the PET images, were: Db-DIII WT (56.7 h), H535A (25 h), H510A (20 h), H464A (17 h), compared with Db (2.9 h). Biodistribution confirmed the order of blood clearance from slow to fast: Db-DIII WT > H535A > H510A > H464A > Db with 4.0, 2.0, 1.8, 1.6 and 0.08 %ID/g of remaining blood activity at 51 h, respectively. This study demonstrates that attenuating the DIII–FcRn interaction provides a way of controlling the pharmacokinetics of the entire Db-DIII fusion protein without compromising tumor targeting. H464 appears to be most crucial for FcRn binding (greatest reduction in MRT), followed by H510 and H535. By mutating the DIII scaffold, we can dial serum kinetics for imaging or therapy applications. PMID:20802234

  10. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    PubMed

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins.IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN

  11. The hr1 and Fusion Peptide Regions of the Subgroup B Avian Sarcoma and Leukosis Virus Envelope Glycoprotein Influence Low pH-Dependent Membrane Fusion

    PubMed Central

    Babel, Angeline Rose; Bruce, James; Young, John A.T.

    2007-01-01

    The avian sarcoma and leukosis virus (ASLV) envelope glycoprotein (Env) is activated to trigger fusion by a two-step mechanism involving receptor-priming and low pH fusion activation. In order to identify regions of ASLV Env that can regulate this process, a genetic selection method was used to identify subgroup B (ASLV-B) virus-infected cells resistant to low pH-triggered fusion when incubated with cells expressing the cognate TVB receptor. The subgroup B viral Env (envB) genes were then isolated from these cells and characterized by DNA sequencing. This led to identification of two frequent EnvB alterations which allowed TVB receptor-binding but altered the pH-threshold of membrane fusion activation: a 13 amino acid deletion in the host range 1 (hr1) region of the surface (SU) EnvB subunit, and the A32V amino acid change within the fusion peptide of the transmembrane (TM) EnvB subunit. These data indicate that these two regions of EnvB can influence the pH threshold of fusion activation. PMID:17245447

  12. Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion.

    PubMed

    Messina, Emily L; York, Joanne; Nunberg, Jack H

    2012-06-01

    The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition.

  13. Dissection of the Role of the Stable Signal Peptide of the Arenavirus Envelope Glycoprotein in Membrane Fusion

    PubMed Central

    Messina, Emily L.; York, Joanne

    2012-01-01

    The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition. PMID:22438561

  14. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly.

    PubMed

    Lee, Il-Hyung; Kai, Hiroyuki; Carlson, Lars-Anders; Groves, Jay T; Hurley, James H

    2015-12-29

    The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nanofabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membrane concavities. ESCRT-II and CHMP6 accelerate CHMP4B assembly by increasing the concentration of nucleation seeds. Superresolution imaging was used to visualize CHMP4B/Snf7 concentration in a negatively curved annulus at the rim of the invagination. Although Snf7 assemblies nucleate slowly on flat membranes, outward growth onto the flat membrane is efficiently nucleated at invaginations. The nucleation behavior provides a biophysical explanation for the timing of ESCRT-III recruitment and membrane scission in HIV-1 budding.

  15. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma.

    PubMed

    Płaszczyca, Anna; Nilsson, Jenny; Magnusson, Linda; Brosjö, Otte; Larsson, Olle; Vult von Steyern, Fredrik; Domanski, Henryk A; Lilljebjörn, Henrik; Fioretos, Thoas; Tayebwa, Johnbosco; Mandahl, Nils; Nord, Karolin H; Mertens, Fredrik

    2014-08-01

    Benign fibrous histiocytoma (BFH) is a mesenchymal tumor that most often occurs in the skin (so-called dermatofibroma), but may also appear in soft tissues (so-called deep BFH) and in the skeleton (so-called non-ossifying fibroma). The origin of BFH is unknown, and it has been questioned whether it is a true neoplasm. Chromosome banding, fluorescence in situ hybridization, single nucleotide polymorphism arrays, RNA sequencing, RT-PCR and quantitative real-time PCR were used to search for recurrent somatic mutations in a series of BFH. BFHs were found to harbor recurrent fusions of genes encoding membrane-associated proteins (podoplanin, CD63 and LAMTOR1) with genes encoding protein kinase C (PKC) isoforms PRKCB and PRKCD. PKCs are serine-threonine kinases that through their many phosphorylation targets are implicated in a variety of cellular processes, as well as tumor development. When inactive, the amino-terminal, regulatory domain of PKCs suppresses the activity of their catalytic domain. Upon activation, which requires several steps, they typically translocate to cell membranes, where they interact with different signaling pathways. The detected PDPN-PRKCB, CD63-PRKCD and LAMTOR1-PRKCD gene fusions are all predicted to result in chimeric proteins consisting of the membrane-binding part of PDPN, CD63 or LAMTOR1 and the entire catalytic domain of the PKC. This novel pathogenetic mechanism should result in constitutive kinase activity at an ectopic location. The results show that BFH indeed is a true neoplasm, and that distorted PKC activity is essential for tumorigenesis. The findings also provide means to differentiate BFH from other skin and soft tissue tumors. This article is part of a Directed Issue entitled: Rare cancers.

  16. R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion.

    PubMed

    Kulma, Magdalena; Kacprzyk-Stokowiec, Aleksandra; Kwiatkowska, Katarzyna; Traczyk, Gabriela; Sobota, Andrzej; Dadlez, Michał

    2017-06-01

    Perfringolysin O (PFO) belongs to the family of cholesterol-dependent cytolysins. Upon binding to a cholesterol-containing membrane, PFO undergoes a series of structural changes that result in the formation of a β-barrel pore and cell lysis. Recognition and binding to cholesterol are mediated by the D4 domain, one of four domains of PFO. The D4 domain contains a conserved tryptophan-rich loop named undecapeptide (E458CTGLAWEWWR468) in which arginine 468 is essential for retaining allosteric coupling between D4 and other domains during interaction of PFO with the membrane. In this report we studied the impact of R468A mutation on the whole protein structure using hydrogen-deuterium exchange coupled with mass spectrometry. We found that in aqueous solution, compared to wild type (PFO), PFO(R468A) showed increased deuterium uptake due to exposure of internal toxin regions to the solvent. This change reflected an overall structural destabilization of PFO(R468A) in solution. Conversely, upon binding to cholesterol-containing membranes, PFO(R468A) revealed a profound decrease of hydrogen-deuterium exchange when compared to PFO. This block of deuterium uptake resulted from PFO(R468A)-induced aggregation and fusion of liposomes, as found by dynamic light scattering, microscopic observations and FRET measurements. In the result of liposome aggregation and fusion, the entire PFO(R468A) molecule became shielded from aqueous solution and thereby was protected against proteolytic digestion and deuteration. We have established that structural changes induced by the R468A mutation lead to exposure of an additional cholesterol-independent liposome-binding site in PFO that confers its fusogenic property, altering the mode of the toxin action. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Membrane Penetration by Synaptotagmin is Required for Coupling Calcium Binding to Vesicle Fusion In Vivo

    PubMed Central

    Paddock, Brie E.; Wang, Zhao; Biela, Laurie M.; Chen, Kaiyun; Getzy, Michael D.; Striegel, Amelia; Richmond, Janet E.; Chapman, Edwin R.; Featherstone, David E.; Reist, Noreen E.

    2011-01-01

    The vesicle protein, synaptotagmin I, is the Ca2+ sensor that triggers fast, synchronous release of neurotransmitter. Specifically, Ca2+ binding by the C2B domain of synaptotagmin is required at intact synapses. Yet the mechanism whereby Ca2+ binding results in vesicle fusion remains controversial. Ca2+-dependent interactions between synaptotagmin and SNARE complexes and/or anionic membranes are possible effector interactions. However, no effector-interaction mutations to date impact synaptic transmission as severely as mutation of the C2B Ca2+-binding motif suggesting that these interactions are facilitatory rather than essential. Here we use Drosophila to show the functional role of a highly-conserved, hydrophobic residue located at the tip of each of synaptotagmin’s two Ca2+-binding pockets. Mutation of this residue in the C2A domain (F286) resulted in a ~50% decrease in evoked transmitter release at an intact synapse, again indicative of a facilitatory role. Mutation of this hydrophobic residue in the C2B domain (I420), on the other hand, blocked all locomotion, was embryonic lethal even in syt I heterozygotes, and resulted in less evoked transmitter release than that in sytnull mutants, which is more severe than the phenotype of C2B Ca2+-binding mutants. Thus mutation of a single, C2B hydrophobic residue required for Ca2+-dependent penetration of anionic membranes, results in the most severe disruption of synaptotagmin function in vivo to date. Our results provide direct support for the hypothesis that plasma membrane penetration, specifically by synaptotagmin’s C2B domain, is the critical effector interaction for coupling Ca2+ binding with vesicle fusion. PMID:21307261

  18. The outer membrane phospholipase A is essential for membrane integrity and type III secretion in Shigella flexneri.

    PubMed

    Wang, Xia; Jiang, Feng; Zheng, Jianhua; Chen, Lihong; Dong, Jie; Sun, Lilian; Zhu, Yafang; Liu, Bo; Yang, Jian; Yang, Guowei; Jin, Qi

    2016-09-01

    Outer membrane phospholipase A (OMPLA) is an enzyme located in the outer membrane of Gram-negative bacteria. OMPLA exhibits broad substrate specificity, and some of its substrates are located in the cellular envelope. Generally, the enzymatic activity can only be induced by perturbation of the cell envelope integrity through diverse methods. Although OMPLA has been thoroughly studied as a membrane protein in Escherichia coli and is constitutively expressed in many other bacterial pathogens, little is known regarding the functions of OMPLA during the process of bacterial infection. In this study, the proteomic and transcriptomic data indicated that OMPLA in Shigella flexneri, termed PldA, both stabilizes the bacterial membrane and is involved in bacterial infection under ordinary culture conditions. A series of physiological assays substantiated the disorganization of the bacterial outer membrane and the periplasmic space in the ΔpldA mutant strain. Furthermore, the ΔpldA mutant strain showed decreased levels of type III secretion system expression, contributing to the reduced internalization efficiency in host cells. The results of this study support that PldA, which is widespread across Gram-negative bacteria, is an important factor for the bacterial life cycle, particularly in human pathogens.

  19. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III

    PubMed Central

    Einstein, Mark H.; Kadish, Anna S.; Burk, Robert D.; Kim, Mimi Y.; Wadler, Scott; Streicher, Howard; Goldberg, Gary L.; Runowicz, Carolyn D.

    2007-01-01

    Objectives SGN-00101 (HspE7, Nventa, San Diego, CA) is a novel therapeutic vaccine consisting of a fusion protein containing an M. bovis BCG heat shock protein (Hsp65) covalently linked to the entire sequence of HPV 16 E7. This trial was designed to evaluate the efficacy and toxicities of HspE7 in women with CIN III. Methods HIV (−) women with biopsy-proven CIN III were eligible. Two cohorts were accrued; one cohort to establish efficacy and a second cohort with a longer follow-up period to improve the precision of the trial to estimate response rates. Each patient underwent 3 monthly subcutaneous vaccinations with 500 µg of HspE7 followed by monthly colposcopic follow-up for 1 month in cohort 1 and an extended observation period (2 months) in cohort 2. All patients then underwent a LEEP or cone biopsy of the cervix. A complete pathologic response (pCR) was defined as no evidence of CIN or CIN I (only HPV changes). A partial response (PR) was defined as colposcopic lesion regression of >50% in size. Cervicovaginal lavage samples were obtained at each visit for HPV typing using MY09/ MY11 HPV PCR. Results Seventy-two patients were registered and screened, of whom 64 were eligible. Fifty-eight patients completed the trial and were evaluable (31 in cohort 1, 27 in cohort 2). There were no significant epidemiologic or HPV type differences between the 2 cohorts so responses were combined for analysis. Of the 58 evaluable patients, 13 (22.5%) had a pCR; 32 (55%) had a PR and 11 (19%) had stable disease. Two (3.5%) patients in cohort 2 had microinvasive disease and were defined as progressive disease. Thirty-three of 58 (57%) of the patients were infected with HPV 16 prior to vaccination or in subsequent visits. There was no significant difference in regression in women infected with HPV 16 compared to those without HPV 16 infection (88% vs. 70%; p=0.12). Women who had a previous LEEP or ablation for CIN were 2.7 times more likely to have a complete response compared

  20. Evidence that electrostatic interactions between vesicle-associated membrane protein 2 and acidic phospholipids may modulate the fusion of transport vesicles with the plasma membrane.

    PubMed

    Williams, Dumaine; Vicôgne, Jérome; Zaitseva, Irina; McLaughlin, Stuart; Pessin, Jeffrey E

    2009-12-01

    The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in beta cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.

  1. Sensor fusion III; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    SciTech Connect

    Harney, R.C.

    1990-01-01

    Multisensor image segmentation algorithms, scene descriptions from radar and infrared images, and combination of evidences with dependency information in distributed sensor systems are discussed. Preference voting for sensor fusion, a simulation-based test bed for data-association algorithms, receiver operating characteristics for various sensor fusion schemes, and adaptive multisensor change detection are analyzed. A tree-structured sensor fusion architecture for distributed sensor networks and performance modeling of multisensor networks is covered, along with components for sensor fusion systems, including high-precision line-of-sight stabilization for a 1-m space telescope with onboard image processing. The continuous mode of operation of a space-time light modulator is addressed, as well as an embedded knowledge-based system for automatic target recognition and multisensor data fusion for mine detection.

  2. A Structurally Unresolved Head Segment of Defined Length Favors Proper Measles Virus Hemagglutinin Tetramerization and Efficient Membrane Fusion Triggering

    PubMed Central

    Navaratnarajah, Chanakha K.; Rosemarie, Quincy

    2015-01-01

    ABSTRACT Paramyxoviruses include several insidious and ubiquitous pathogens of humans and animals, with measles virus (MeV) being a prominent one. The MeV membrane fusion apparatus consists of a receptor binding protein (hemagglutinin [H]) tetramer and a fusion (F) protein trimer. Four globular MeV H heads are connected to a tetrameric stalk through flexible linkers. We sought here to characterize the function of a 17-residue H-head segment proximal to the stalk that was unresolved in all five MeV H-head crystal or cocrystal structures. In particular, we assessed whether its primary sequence and length are critical for proper protein oligomerization and intracellular transport or for membrane fusion triggering. Extensive alanine substitutions had no effect on fusion triggering, suggesting that sequence identity is not critical for this function. Excessive shortening of this segment reduced or completely abrogated fusion trigger function, while length compensation restored it. We then characterized the mechanism of function loss. Mutated H proteins were efficiently transported to the cell surface, but certain alterations enhancing linker flexibility resulted in accumulation of high-molecular-weight H oligomers. Some oligomers had reduced fusion trigger capacity, while others retained this function. Thus, length and rigidity of the unresolved head segment favor proper H tetramerization and counteract interactions between subunits from different tetramers. The structurally unresolved H-head segment, together with the top of the stalk, may act as a leash to provide the right degree of freedom for the heads of individual tetramers to adopt a triggering-permissive conformation while avoiding improper contacts with heads of neighboring tetramers. IMPORTANCE Understanding the molecular mechanism of membrane fusion triggering may allow development of new antiviral strategies. The fusion apparatus of paramyxoviruses consists of a receptor binding tetramer and a fusion

  3. Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy

    PubMed Central

    Griffin, Danielle A.; Johnson, Ryan W.; Whitlock, Jarred M.; Pozsgai, Eric R.; Heller, Kristin N.; Grose, William E.; Arnold, W. David; Sahenk, Zarife; Hartzell, H. Criss; Rodino-Klapac, Louise R.

    2016-01-01

    Limb-girdle muscular dystrophies are a genetically diverse group of diseases characterized by chronic muscle wasting and weakness. Recessive mutations in ANO5 (TMEM16E) have been directly linked to several clinical phenotypes including limb-girdle muscular dystrophy type 2L and Miyoshi myopathy type 3, although the pathogenic mechanism has remained elusive. ANO5 is a member of the Anoctamin/TMEM16 superfamily that encodes both ion channels and regulators of membrane phospholipid scrambling. The phenotypic overlap of ANO5 myopathies with dysferlin-associated muscular dystrophies has inspired the hypothesis that ANO5, like dysferlin, may be involved in the repair of muscle membranes following injury. Here we show that Ano5-deficient mice have reduced capacity to repair the sarcolemma following laser-induced damage, exhibit delayed regeneration after cardiotoxin injury and suffer from defective myoblast fusion necessary for the proper repair and regeneration of multinucleated myotubes. Together, these data suggest that ANO5 plays an important role in sarcolemmal membrane dynamics. Genbank Mouse Genome Informatics accession no. 3576659. PMID:26911675

  4. Use of gene fusions to study outer membrane protein localization in Escherichia coli.

    PubMed Central

    Silhavy, T J; Shuman, H A; Beckwith, J; Schwartz, M

    1977-01-01

    Escherichia coli strains have been isolated that produce hybrid proteins comprised of an NH2-terminal sequence from the lamB gene product (an outer membrane protein) and a major portion of the COOH-terminal sequence of beta-galactosidase (beta-D-galactoside galactohydrolase, EC 3.2.1.23; a cytoplasmic protein). These proteins exhibit beta-galactosidase activity. One such strain, pop 3105, produces a hybrid protein containing very little of the lamB gene protein; the protein is found in the cytoplasm. The protein found in a second strain, pop 3186, contains much more of the lamB gene protein; a substantial fraction of the beta-galactosidase activity is found in the outer membrane, probably facing outward. These results indicate that information necessary to direct the lamB gene product to its outer membrane location is located within the lamB gene itself. The properties of such fusion strains open up the prospect of a precise genetic analysis of the genetic components involved in protein transport. Images PMID:414221

  5. Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion

    PubMed Central

    Kiessling, Volker; Liang, Binyong; Kreutzberger, Alex J. B.; Tamm, Lukas K.

    2017-01-01

    Synaptic vesicle membrane fusion, the process by which neurotransmitter gets released at the presynaptic membrane is mediated by a complex interplay between proteins and lipids. The realization that the lipid bilayer is not just a passive environment where other molecular players like SNARE proteins act, but is itself actively involved in the process, makes the development of biochemical and biophysical assays particularly challenging. We summarize in vitro assays that use planar supported membranes and fluorescence microscopy to address some of the open questions regarding the molecular mechanisms of SNARE-mediated membrane fusion. Most of the assays discussed in this mini-review were developed in our lab over the last 15 years. We emphasize the sample requirements that we found are important for the successful application of these methods. PMID:28360838

  6. Effects of synaptotagmin 2 on membrane fusion between liposomes that contain SNAREs involved in exocytosis in mast cells.

    PubMed

    Nagai, Yumiko; Tadokoro, Satoshi; Sakiyama, Hiroki; Hirashima, Naohide

    2011-10-01

    Mast cells play a pivotal role in allergic responses. Antigen stimulation causes elevation of the intracellular Ca(2+) concentration, which triggers the exocytotic release of inflammatory mediators such as histamine. Recent research, including our own, has revealed that SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins such as syntaxin-3, -4, SNAP-23, and VAMP-8 are involved in exocytosis. Although exocytosis in mast cells is Ca(2+) dependent, the target molecule that interacts with Ca(2+) is not clear. Synaptotagmin is a Ca(2+) sensor and regulates exocytosis in neuronal cells. However, the role of synaptotagmin 2, a member of the synaptotagmin family, in exocytosis in mast cells remains controversial. In this study, we investigated the role of synaptotagmin 2 by a liposome-based fusion assay. SNARE proteins (SNAP-23, syntaxin-3, VAMP-8) and synaptotagmin 2 were expressed in Escherichia coli and purified as GST-tagged or His-tagged fusion proteins. These SNARE proteins were incorporated by a detergent dialysis method. Membrane fusion between liposomes was monitored by fluorescence resonance energy transfer between fluorescent-labeled phospholipids. In the presence of Ca(2+), low synaptotagmin 2 concentration inhibited membrane fusion between SNARE-containing liposomes, while high synaptotagmin 2 concentration enhanced membrane fusion. This enhancement required phosphatidylserine as a membrane component. These results suggest that synaptotagmin 2 regulates membrane fusion of SNARE-containing liposomes involved in exocytosis in mast cells, and that this regulation is dependent on synaptotagmin 2 concentration, Ca(2+), and phosphatidylserine. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Binding of Cerebratulus cytolysin A-III to human erythrocyte membranes.

    PubMed

    Blumenthal, K M

    1985-01-10

    Binding of Cerebratulus lacteus cytolysin A-III to intact human erythrocytes and erythrocyte membranes has been investigated. Binding to ghosts is essentially complete within 2.5 min of mixing which is slightly faster than the rate of hemolysis measured with intact cells. Approximately 4 X 10(4) binding sites per cell, exhibiting a K 0.5 of 0.7 microM exist; this compares with 50% hematocrit of about 0.3 microM for A-III. Binding is absent in ghosts extracted with Nonidet P-40, but is unaffected by pretreatment of ghosts with either trypsin or elastase.

  8. Live Salmonella Recruits N-Ethylmaleimide–Sensitive Fusion Protein on Phagosomal Membrane and Promotes Fusion with Early Endosome

    PubMed Central

    Mukherjee, Konark; Siddiqi, Shadab A.; Hashim, Shehla; Raje, Manoj; Basu, Sandip K.; Mukhopadhyay, Amitabha

    2000-01-01

    To understand intracellular trafficking modulations by live Salmonella, we investigated the characteristics of in vitro fusion between endosomes and phagosomes containing live (LSP) or dead Salmonella (DSP). We observed that fusion of both DSP and LSP were time, temperature and cytosol dependent. GTPγS and treatment of the phagosomes with Rab-GDI inhibited fusion, indicating involvement of Rab-GTPases. LSP were rich in rab5, α-SNAP, and NSF, while DSP mainly contained rab7. Fusion of endosomes with DSP was inhibited by ATP depletion, N-ethylmaleimide (NEM) treatment, and in NEM-sensitive factor (NSF)–depleted cytosol. In contrast, fusion of endosomes with LSP was not inhibited by ATP depletion or NEM treatment, and occurred in NSF-depleted cytosol. However, ATPγS inhibited both fusion events. Fusion of NEM-treated LSP with endosomes was abrogated in NSF- depleted cytosol and was restored by adding purified NSF, whereas no fusion occurred with NEM-treated DSP, indicating that NSF recruitment is dependent on continuous signals from live Salmonella. Binding of NSF with LSP required prior presence of rab5 on the phagosome. We have also shown that rab5 specifically binds with Sop E, a protein from Salmonella. Our results indicate that live Salmonella help binding of rab5 on the phagosomes, possibly activate the SNARE which leads to further recruitment of α-SNAP for subsequent binding with NSF to promote fusion of the LSP with early endosomes and inhibition of their transport to lysosomes. PMID:10684255

  9. Early Events in Chikungunya Virus Infection—From Virus Cell Binding to Membrane Fusion

    PubMed Central

    van Duijl-Richter, Mareike K. S.; Hoornweg, Tabitha E.; Rodenhuis-Zybert, Izabela A.; Smit, Jolanda M.

    2015-01-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research. PMID:26198242

  10. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    SciTech Connect

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-05-28

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  11. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry

    PubMed Central

    Lee, Jihye; Kim, Jinhee; Son, Kidong; d’Alexandry d’Orengiani, Anne-Laure Pham Humg; Min, Ji-Young

    2017-01-01

    Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry. PMID:28272419

  12. Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion

    PubMed Central

    Li, Feng; Tiwari, Neeraj; Rothman, James E.; Pincet, Frederic

    2016-01-01

    Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state. PMID:27601655

  13. DNA Duplexes with Hydrophobic Modifications Inhibit Fusion between HIV-1 and Cell Membranes

    PubMed Central

    Xu, Liang; Cai, Lifeng; Chen, Xueliang; Jiang, Xifeng; Chong, Huihui; Zheng, Baohua; Wang, Kun; He, Junlin; Chen, Wei; Zhang, Tao; Cheng, Maosheng; He, Yuxian

    2013-01-01

    Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 and human cell membranes at micro- or submicromolar concentrations. Respective inhibitors adopted an aptamer pattern instead of a base-pairing interaction pattern. Structure-activity relationship studies of the respective DNA duplexes showed that the rigid and negatively charged DNA skeletons, in addition to the presence of hydrophobic groups, were crucial to the anti-HIV-1 activity of these compounds. A fluorescent resonance energy transfer (FRET)-based inhibitory assay showed that these duplex inhibitors interacted with the primary pocket in the gp41 N-terminal heptad repeat (NHR) instead of interacting with the lipid bilayers. PMID:23896466

  14. Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion.

    PubMed

    Li, Feng; Tiwari, Neeraj; Rothman, James E; Pincet, Frederic

    2016-09-20

    Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.

  15. Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis

    PubMed Central

    York, Joanne

    2016-01-01

    ABSTRACT Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. IMPORTANCE Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact

  16. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  18. The influenza fusion peptide promotes lipid polar head intrusion through hydrogen bonding with phosphates and N-terminal membrane insertion depth.

    PubMed

    Légaré, Sébastien; Lagüe, Patrick

    2014-09-01

    Influenza infection requires fusion between the virus envelope and a host cell endosomal membrane. The influenza hemagglutinin fusion peptide (FP) is essential to viral membrane fusion. It was recently proposed that FPs would fuse membranes by increasing lipid tail protrusion, a membrane fusion transition state. The details of how FPs induce lipid tail protrusion, however, remain to be elucidated. To decipher the molecular mechanism by which FPs promote lipid tail protrusion, we performed molecular dynamics simulations of the wild-type (WT) FP, fusogenic mutant F9A, and nonfusogenic mutant W14A in model bilayers. This article presents the peptide-lipid interaction responsible for lipid tail protrusion and a related lipid perturbation, polar head intrusion, where polar heads are sunk under the membrane surface. The backbone amides from the four N-terminal peptide residues, deeply inserted in the membrane, promoted both perturbations through H bonding with lipid phosphates. Polar head intrusion correlated with peptides N-terminal insertion depth and activity: the N-termini of WT and F9A were inserted deeper into the membrane than nonfusogenic W14A. Based on these results, we propose that FP-induced polar head intrusion would complement lipid tail protrusion in catalyzing membrane fusion by reducing repulsions between juxtaposed membranes headgroups. The presented model provides a framework for further research on membrane fusion and influenza antivirals.

  19. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    SciTech Connect

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C.

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.

  20. Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of Legionella effectors

    PubMed Central

    Shi, Xingqi; Halder, Partho; Yavuz, Halenur; Shuman, Howard A.

    2016-01-01

    Legionella pneumophila, the Gram-negative pathogen causing Legionnaires’ disease, infects host cells by hijacking endocytic pathways and forming a Legionella-containing vacuole (LCV) in which the bacteria replicate. To promote LCV expansion and prevent lysosomal targeting, effector proteins are translocated into the host cell where they alter membrane traffic. Here we show that three of these effectors [LegC2 (Legionella eukaryotic-like gene C2)/YlfB (yeast lethal factor B), LegC3, and LegC7/YlfA] functionally mimic glutamine (Q)-SNARE proteins. In infected cells, the three proteins selectively form complexes with the endosomal arginine (R)-SNARE vesicle-associated membrane protein 4 (VAMP4). When reconstituted in proteoliposomes, these proteins avidly fuse with liposomes containing VAMP4, resulting in a stable complex with properties resembling canonical SNARE complexes. Intriguingly, however, the LegC/SNARE hybrid complex cannot be disassembled by N-ethylmaleimide-sensitive factor. We conclude that LegCs use SNARE mimicry to divert VAMP4-containing vesicles for fusion with the LCV, thus promoting its expansion. In addition, the LegC/VAMP4 complex avoids the host’s disassembly machinery, thus effectively trapping VAMP4 in an inactive state. PMID:27436892

  1. Effect of the mounting membrane on shape in inertial confinement fusion implosions

    SciTech Connect

    Nagel, S. R. Haan, S. W.; Rygg, J. R.; Barrios, M.; Benedetti, L. R.; Bradley, D. K.; Field, J. E.; Hammel, B. A.; Izumi, N.; Jones, O. S.; Khan, S. F.; Ma, T.; Pak, A. E.; Tommasini, R.; Town, R. P. J.

    2015-02-15

    The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-off position of the membranes used to hold the capsule within the hohlraum. Here, we describe a systematic study of this membrane or “tent” thickness and its impact on the measured low modes for in-flight and self-emission images. The low mode amplitudes of the shell in-flight shape (P{sub 2} and P{sub 4}) are weakly affected by the tent feature in time-resolved, backlit data. By contrast, time integrated self-emission images along the same axis exhibit a reversal in perceived P{sub 4} mode due to growth of a feature seeded by the tent, which can explain prior inconsistencies between the in-flight P{sub 4} and core P{sub 4}, leading to a reevaluation of optimum hohlraum length. Simulations with a tent-like feature normalized to match the feature seen in the backlit images predict a very large impact on the capsule performance from the tent feature.

  2. Reassessment of the Lineage Fusion Hypothesis for the Origin of Double Membrane Bacteria

    PubMed Central

    Swithers, Kristen S.; Fournier, Gregory P.; Green, Anna G.; Gogarten, J. Peter; Lapierre, Pascal

    2011-01-01

    In 2009, James Lake introduced a new hypothesis in which reticulate phylogeny reconstruction is used to elucidate the origin of Gram-negative bacteria (Nature 460: 967–971). The presented data supported the Gram-negative bacteria originating from an ancient endosymbiosis between the Actinobacteria and Clostridia. His conclusion was based on a presence-absence analysis of protein families that divided all prokaryotes into five groups: Actinobacteria, Double Membrane bacteria (DM), Clostridia, Archaea and Bacilli. Of these five groups, the DM are by far the largest and most diverse group compared to the other groupings. While the fusion hypothesis for the origin of double membrane bacteria is enticing, we show that the signal supporting an ancient symbiosis is lost when the DM group is broken down into smaller subgroups. We conclude that the signal detected in James Lake's analysis in part results from a systematic artifact due to group size and diversity combined with low levels of horizontal gene transfer. PMID:21876769

  3. DNA Release from Lipoplexes by Anionic Lipids: Correlation with Lipid Mesomorphism, Interfacial Curvature, and Membrane Fusion

    PubMed Central

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C.

    2004-01-01

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells. PMID:15298910

  4. Effect of the mounting membrane on shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Haan, S. W.; Rygg, J. R.; Barrios, M.; Benedetti, L. R.; Bradley, D. K.; Field, J. E.; Hammel, B. A.; Izumi, N.; Jones, O. S.; Khan, S. F.; Ma, T.; Pak, A. E.; Tommasini, R.; Town, R. P. J.

    2015-02-01

    The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-off position of the membranes used to hold the capsule within the hohlraum. Here, we describe a systematic study of this membrane or "tent" thickness and its impact on the measured low modes for in-flight and self-emission images. The low mode amplitudes of the shell in-flight shape (P2 and P4) are weakly affected by the tent feature in time-resolved, backlit data. By contrast, time integrated self-emission images along the same axis exhibit a reversal in perceived P4 mode due to growth of a feature seeded by the tent, which can explain prior inconsistencies between the in-flight P4 and core P4, leading to a reevaluation of optimum hohlraum length. Simulations with a tent-like feature normalized to match the feature seen in the backlit images predict a very large impact on the capsule performance from the tent feature.

  5. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli.

    PubMed

    Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H J

    2013-01-01

    Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system.

  6. Using Haloarcula marismortui Bacteriorhodopsin as a Fusion Tag for Enhancing and Visible Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H. J.

    2013-01-01

    Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system. PMID:23457558

  7. Crystal Structure of the Membrane Fusion Protein CusB from Escherichia coli

    SciTech Connect

    Su, Chih-Chia; Yang, Feng; Long, Feng; Reyon, Deepak; Routh, Mathew D.; Kuo, Dennis W.; Mokhtari, Adam K.; Van Ornam, Jonathan D.; Rabe, Katherine L.; Hoy, Julie A.; Lee, Young Jin; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2010-03-29

    Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes belonging to the resistance-nodulation-division family to expel diverse toxic compounds from the cell. These systems contain a periplasmic membrane fusion protein (MFP) that is critical for substrate transport. We here present the x-ray structures of the CusB MFP from the copper/silver efflux system of E. coli. This is the first structure of any MFPs associated with heavy-metal efflux transporters. CusB bridges the inner-membrane efflux pump CusA and outer-membrane channel CusC to mediate resistance to Cu{sup +} and Ag{sup +} ions. Two distinct structures of the elongated molecules of CusB were found in the asymmetric unit of a single crystal, which suggests the flexible nature of this protein. Each protomer of CusB can be divided into four different domains, whereby the first three domains are mostly {beta}-strands and the last domain adopts an entirely helical architecture. Unlike other known structures of MFPs, the {alpha}-helical domain of CusB is folded into a three-helix bundle. This three-helix bundle presumably interacts with the periplasmic domain of CusC. The N- and C-termini of CusB form the first {beta}-strand domain, which is found to interact with the periplasmic domain of the CusA efflux pump. Atomic details of how this efflux protein binds Cu{sup +} and Ag{sup +} were revealed by the crystals of the CusB-Cu(I) and CusB-Ag(I) complexes. The structures indicate that CusB consists of multiple binding sites for these metal ions. These findings reveal novel structural features of an MFP in the resistance-nodulation-division efflux system and provide direct evidence that this protein specifically interacts with transported substrates.

  8. Fusion of liposomes with the plasma membrane of epithelial cells: fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections

    PubMed Central

    1988-01-01

    The fusion of liposomes with the plasma membrane of influenza virus- infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry. 24:3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apical and basolateral plasma membrane domains after fusion was assessed by autoradiography of liposomal [3H]dipalmitoylphosphatidylcholine after rapid freezing or chemical fixation and further processing by freeze substitution and low temperature embedding. Before fusion, radioactivity was solely detected on the apical cell surface, indicating the absence of redistribution artifacts and demonstrating the reliability of lipid autoradiography on both a light and electron microscopical level. After induction of fusion by a low pH treatment, the basolateral plasma membrane domain became progressively labeled, indicative of rapid lateral diffusion of [3H]dipalmitoylphosphatidylcholine in the plasma membrane. Analysis of individual fusion events by freeze fracture after rapid freezing confirmed the rapid diffusion of the liposomal lipids into the plasma membrane, as intramembrane particle-free lipid patches were never observed. After the induction of liposome-cell fusion, well-defined intramembrane particles were present on the otherwise smooth liposomal fracture faces and on the fracture faces of the plasma membrane. Morphological evidence thus was obtained in favor of a local point fusion mechanism with an intramembrane particle as a specific structural fusion intermediate. PMID:3204118

  9. Full-Length Trimeric Influenza Virus Hemagglutinin II Membrane Fusion Protein and Shorter Constructs Lacking the Fusion Peptide or Transmembrane Domain: Hyperthermostability of the Full-Length Protein and the Soluble Ectodomain and Fusion Peptide Make Significant Contributions to Fusion of Membrane Vesicles†

    PubMed Central

    Ratnayake, Punsisi U.; Ekanayaka, E. A. Prabodha; Komanduru, Sweta S.; Weliky, David P.

    2015-01-01

    Influenza virus is a Class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5–6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ~25, ~160, ~25, and ~10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP + SE, and SHA2-TM ≡ SE + TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm > 90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. PMID:26297995

  10. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms.

    PubMed Central

    Siegel, D P; Epand, R M

    1997-01-01

    We studied the mechanism of the lamellar-to-inverted hexagonal (L alpha/H[II]) phase transition, using time-resolved cryotransmission electron microscopy (TRC-TEM), 31P-NMR, and differential scanning calorimetry. The transition was initiated in dispersions of large unilamellar vesicles of dipalmitoleoyl phosphatidylethanolamine (DiPoPE). We present evidence that the transition proceeds in three steps. First, many small connections form between apposed membranes. Second, the connections aggregate within the planes of the bilayers, forming arrays with hexagonal order in some projections. Third, these quasihexagonal structures elongate into small domains of H(II) phase, acquiring lipid molecules by diffusion from contiguous bilayers. A previously proposed membrane fusion mechanism rationalizes these results. The modified stalk theory predicts that the L alpha/H(II) phase transition involves some of the same intermediate structures as membrane fusion. The small interbilayer connections observed via TRC-TEM are compatible with the structure of a critical intermediate in the modified stalk mechanism: the trans monolayer contact (TMC). The theory predicts that 1) TMCs should form starting at tens of degrees below TH; 2) when TMCs become sufficiently numerous, they should aggregate into transient arrays like the quasihexagonal arrays observed here by TRC-TEM; and 3) these quasihexagonal arrays can then elongate directly into H(II) phase domains. These predictions rationalize the principal features of our data, which are incompatible with the other transition mechanisms proposed to date. Thus these results support the modified stalk mechanism for both membrane fusion and the L alpha/H(II) phase transition. We also discuss some implications of the modified stalk theory for fusion in protein-containing systems. Specifically, we point out that recent data on the effects of hydrophobic peptides and viral fusion peptides on lipid phase behavior are consistent with an effect of

  11. Different requirements for membrane fusion mediated by the envelopes of human immunodeficiency virus types 1 and 2.

    PubMed Central

    Dragic, T; Alizon, M

    1993-01-01

    CD4+ cells derived from the human cell lines U87MG and SCL1 cannot be infected by human immunodeficiency virus type 1 (HIV-1) or fuse with cells expressing the HIV-1 envelope. This block was complemented in heterokaryons with HeLa cells and probably reflects the absence of cellular factors necessary for membrane fusion. Since U87MG cells expressing CD4 are permissive to HIV-2, distinct cellular factors could be required for fusion mediated by two related human retroviruses. Images PMID:8095307

  12. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    SciTech Connect

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T.

    2008-06-20

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the Yxx{phi} domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1{sub NL4.3} compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and

  13. Magnesium-induced lipid bilayer microdomain reorganizations: implications for membrane fusion.

    PubMed

    Schultz, Zachary D; Pazos, Ileana M; McNeil-Watson, Fraser K; Lewis, E Neil; Levin, Ira W

    2009-07-23

    Interactions between dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS), combined both as binary lipid bilayer assemblies and separately, under the influence of divalent Mg2+, a membrane bilayer fusogenic agent, are reported. Infrared vibrational spectroscopic analyses of the lipid acyl chain methylene symmetric stretching modes indicate that aggregates of the two phospholipid components exist as domains heterogeneously distributed throughout the binary bilayer system. In the presence of Mg2+, DPPS maintains an ordered orthorhombic subcell gel phase structure through the phase transition temperature, while the DPPC component is only minimally perturbed with respect to the gel to liquid crystalline phase change. The addition of Mg2+ induces a reorganization of the lipid domains in which the gel phase acyl chain planes rearrange from a hexagonal configuration toward a triclinic, parallel chain subcell. Examination of the acyl chain methylene deformation modes at low temperatures allows a determination of DPPS microdomain sizes, which decrease upon the addition of DPPC-d62 in the absence of Mg2+. On adding Mg2+, a uniform DPPS domain size is observed in the binary mixtures. In either the presence or absence of Mg2+, DPPC-d62 aggregates remain in a configuration for which microdomain sizes are not spectroscopically measurable. Analysis of the acyl chain methylene deformation modes for DPPC-d62 in the binary system suggests that clusters of the deuterated lipids are distributed throughout the DPPS matrix. Light scattering and fluorescence measurements indicate that Mg2+ induces both the aggregation and the fusion of the lipid assemblies as a function of the ratio of DPPS to DPPC. The structural reorganizations of the lipid microdomains within the DPPS-DPPC bilayer are interpreted in the context of current concepts regarding lipid bilayer fusion.

  14. Atomic data for controlled fusion research. Volume III. Particle interactions with surfaces

    SciTech Connect

    Thomas, E.W.

    1985-02-01

    This report provides a handbook of data concerning particle solid interactions that are relevant to plasma-wall interactions in fusion devices. Published data have been collected, assessed, and represented by a single functional relationship which is presented in both tabular and graphical form. Mechanisms reviewed here include sputtering, secondary electron emission, particle reflection, and trapping.

  15. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition.

    PubMed

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Gao, Ying; Zhang, Yongli

    2015-06-02

    HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼-23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention.

  16. Sodium Chloride Triggered the Fusion of Vesicle Composed of Fatty Acid Modified Protic Ionic Liquid: A New Insight into the Membrane Fusion Monitored through Fluorescence Lifetime Imaging Microscopy.

    PubMed

    Kundu, Niloy; Banerjee, Pavel; Kundu, Sangita; Dutta, Rupam; Sarkar, Nilmoni

    2017-01-12

    The development of stable vesicular assemblies and the understanding of their interaction and dynamics in aqueous solution are long-standing topics in the research of chemistry and biology. Fatty acids are known to form vesicle structure in aqueous solution depending on the pH of the medium. Protic ionic liquid of fatty acid with ethyl amine (oleate ethyl amine, OEA) as a component spontaneously forms a vesicle in aqueous solution. The general comparison of dynamics and interaction of these two vesicles have been drawn using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging microscopy (FLIM) measurements. Further, FLIM images of a single vesicle are taken at multiple wavelengths, and the solvation of the probe molecules has been observed from the multiwavelength FLIM images. The lifetime of the probe molecule in OEA vesicle is higher than that in simple fatty acid vesicles. Therefore, it suggests that the membrane of the OEA vesicle is more dehydrated compared to that of fatty acid vesicles, and it facilitates OEA vesicles to fuse themselves in the presence of electrolyte, sodium chloride (NaCl). However, under the same conditions, only fatty acid vesicles do not fuse. The fusion of OEA vesicles is successfully demonstrated by the time scan FLIM measurements. The different events in the fusion process are analyzed in the light of the reported model of vesicle fusion. Finally, the local viscosity of the water pool of the vesicle is determined using kiton red, as a molecular rotor. With addition of NaCl, the fluidity in the interior of the vesicle is increased which leads to disassembly of vesicle. The rich dynamic properties of this vesicular assembly and the FLIM based approach of vesicle fusion will provide better insight into the growth of a protocell membrane.

  17. Role of the Simian Virus 5 Fusion Protein N-Terminal Coiled-Coil Domain in Folding and Promotion of Membrane Fusion

    PubMed Central

    West, Dava S.; Sheehan, Michael S.; Segeleon, Patrick K.; Dutch, Rebecca Ellis

    2005-01-01

    Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt α-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion. PMID:15650180

  18. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    SciTech Connect

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.; Santos, Nuno C.

    2010-12-17

    Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended the study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.

  19. Crystal Structure of Dengue Type 1 Envelope Protein in the Postfusion Conformation and its Implication for Receptor Binding, Membrane Fusion and Antibody Recognition

    SciTech Connect

    Nayak, V.; Dessau, M; Kucera, K; Anthony, K; Ledizet, M; Modis, Y

    2009-01-01

    Dengue virus relies on a conformational change in its envelope protein, E, to fuse the viral lipid membrane with the endosomal membrane and thereby deliver the viral genome into the cytosol. We have determined the crystal structure of a soluble fragment E (sE) of dengue virus type 1 (DEN-1). The protein is in the postfusion conformation even though it was not exposed to a lipid membrane or detergent. At the domain I-domain III interface, 4 polar residues form a tight cluster that is absent in other flaviviral postfusion structures. Two of these residues, His-282 and His-317, are conserved in flaviviruses and are part of the pH sensor that triggers the fusogenic conformational change in E, at the reduced pH of the endosome. In the fusion loop, Phe-108 adopts a distinct conformation, forming additional trimer contacts and filling the bowl-shaped concavity observed at the tip of the DEN-2 sE trimer.

  20. A Novel Mode of Poxvirus Superinfection Exclusion That Prevents Fusion of the Lipid Bilayers of Viral and Cellular Membranes

    PubMed Central

    Laliberte, Jason P.

    2014-01-01

    ABSTRACT Superinfection exclusion is a widespread phenomenon that prevents secondary infections by closely related viruses. The vaccinia virus A56 and K2 proteins in the cell membrane can prevent superinfection by interacting with the entry-fusion complex of subsequent viruses. Here, we described another form of exclusion that is established earlier in infection and does not require the A56 or K2 protein. Cells infected with one or more infectious virions excluded hundreds of superinfecting vaccinia virus particles. A related orthopoxvirus, but neither a flavivirus nor a rhabdovirus, was also excluded, indicating selectivity. Although superinfecting vaccinia virus bound to cells, infection was inhibited at the membrane fusion step, thereby preventing core entry into the cytoplasm and early gene expression. In contrast, A56/K2 protein-mediated exclusion occurred subsequent to membrane fusion. Induction of resistance to superinfection depended on viral RNA and protein synthesis by the primary virus but did not require DNA replication. Although superinfection resistance correlated with virus-induced changes in the cytoskeleton, studies with mutant vaccinia viruses indicated that the cytoskeletal changes were not necessary for resistance to superinfection. Interferon-inducible transmembrane proteins, which can inhibit membrane fusion in other viral systems, did not prevent vaccinia virus membrane fusion, suggesting that these interferon-inducible proteins are not involved in superinfection exclusion. While the mechanism remains to be determined, the early establishment of superinfection exclusion may provide a “winner-take-all” reward to the first poxvirus particles that successfully initiate infection and prevent the entry and genome reproduction of defective or less fit particles. IMPORTANCE The replication of a virus usually follows a defined sequence of events: attachment, entry into the cytoplasm or nucleus, gene expression, genome replication, assembly of

  1. Ovine Herpesvirus 2 Glycoproteins B, H, and L Are Sufficient for, and Viral Glycoprotein Ov8 Can Enhance, Cell-Cell Membrane Fusion.

    PubMed

    AlHajri, Salim M; Cunha, Cristina W; Nicola, Anthony V; Aguilar, Hector C; Li, Hong; Taus, Naomi S

    2017-03-15

    Ovine herpesvirus 2 (OvHV-2) is a gammaherpesvirus in the genus Macavirus that is carried asymptomatically by sheep. Infection of poorly adapted animals with OvHV-2 results in sheep-associated malignant catarrhal fever, a fatal disease characterized by lymphoproliferation and vasculitis. There is no treatment or vaccine for the disease and no cell culture system to propagate the virus. The lack of cell culture has hindered studies of OvHV-2 biology, including its entry mechanism. As an alternative method to study OvHV-2 glycoproteins responsible for membrane fusion as a part of the entry mechanism, we developed a virus-free cell-to-cell membrane fusion assay to identify the minimum required OvHV-2 glycoproteins to induce membrane fusion. OvHV-2 glycoproteins B, H, and L (gB, gH, and gL) were able to induce membrane fusion together but not when expressed individually. Additionally, open reading frame Ov8, unique to OvHV-2, was found to encode a transmembrane glycoprotein that can significantly enhance membrane fusion. Thus, OvHV-2 gB, gH, and gL are sufficient to induce membrane fusion, while glycoprotein Ov8 plays an enhancing role by an unknown mechanism.IMPORTANCE Herpesviruses enter cells via attachment of the virion to the cellular surface and fusion of the viral envelope with cellular membranes. Virus-cell membrane fusion is an important step for a successful viral infection. Elucidating the roles of viral glycoproteins responsible for membrane fusion is critical toward understanding viral entry. Entry of ovine herpesvirus 2 (OvHV-2), the causative agent of sheep associated-malignant catarrhal fever, which is one of the leading causes of death in bison and other ungulates, has not been well studied due to the lack of a cell culture system to propagate the virus. The identification of OvHV-2 glycoproteins that mediate membrane fusion may help identify viral and/or cellular factors involved in OvHV-2 cell tropism and will advance investigation of cellular

  2. Outer Membrane c-Type Cytochromes Required for Fe(III) and Mn(IV) Oxide Reduction in Geobacter sulfurreducens

    PubMed Central

    Mehta, T.; Coppi, M. V.; Childers, S. E.; Lovley, D. R.

    2005-01-01

    The potential role of outer membrane proteins in electron transfer to insoluble Fe(III) oxides by Geobacter sulfurreducens was investigated because this organism is closely related to the Fe(III) oxide-reducing organisms that are predominant in many Fe(III)-reducing environments. Two of the most abundant proteins that were easily sheared from the outer surfaces of intact cells were c-type cytochromes. One, designated OmcS, has a molecular mass of ca. 50 kDa and is predicted to be an outer membrane hexaheme c-type cytochrome. Transcripts for omcS could be detected during growth on Fe(III) oxide, but not on soluble Fe(III) citrate. The omcS mRNA consisted primarily of a monocistronic transcript, and to a lesser extent, a longer transcript that also contained the downstream gene omcT, which is predicted to encode a second hexaheme outer membrane cytochrome with 62.6% amino acid sequence identity to OmcS. The other abundant c-type cytochrome sheared from the outer surface of G. sulfurreducens, designated OmcE, has a molecular mass of ca. 30 kDa and is predicted to be an outer membrane tetraheme c-type cytochrome. When either omcS or omcE was deleted, G. sulfurreducens could no longer reduce Fe(III) oxide but could still reduce soluble electron acceptors, including Fe(III) citrate. The mutants could reduce Fe(III) in Fe(III) oxide medium only if the Fe(III) chelator, nitrilotriacetic acid, or the electron shuttle, anthraquinone 2,6-disulfonate, was added. Expressing omcS or omcE in trans restored the capacity for Fe(III) oxide reduction. OmcT was not detected among the sheared proteins, and genetic studies indicated that G. sulfurreducens could not reduce Fe(III) oxide when omcT was expressed but OmcS was absent. In contrast, Fe(III) oxide was reduced when omcS was expressed in the absence of OmcT. These results suggest that OmcS and OmcE are involved in electron transfer to Fe(III) oxides in G. sulfurreducens. They also emphasize the importance of evaluating mechanisms

  3. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents

    SciTech Connect

    Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta; Duncan, Roy

    2010-02-05

    The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

  4. [Development of the MITO-porter, a nano device for mitochondrial drug delivery via membrane fusion].

    PubMed

    Yamada, Yuma

    2014-01-01

    Many human diseases have been reported to be associated with mitochondrial dysfunction. Therefore, mitochondrial therapy would be expected to be useful and productive in the treatment of various diseases. To achieve such an innovative therapy, it will be necessary to deliver therapeutic agents into mitochondria. However, only a limited number of methods are available for accomplishing this. We previously developed the MITO-Porter, a liposome-based carrier that permits macromolecular cargos to be transported into mitochondria via membrane fusion. Intracellular observations using the green fluorescence protein as a model macromolecule confirmed the mitochondrial delivery of a macromolecule by the MITO-Porter. Moreover, when we attempted the mitochondrial delivery of bongkrekic acid (BKA), an antiapoptosis agent, the MITO-Porter enhanced the antiapoptosis effect compared with naked BKA. To construct a device with enhanced performance, the MITO-Porter was coated with cell membrane-fusogenic outer envelopes to produce the dual function (DF)-MITO-Porter. Intracellular observations indicated that the DF-MITO-Porter was more effective in delivering exogenous macromolecules into mitochondria than the conventional MITO-Porter. Furthermore, when biomacromolecules were delivered using the DF-MITO-Porter to estimate the mitochondrial gene targeting of the carrier, the results confirmed that the MITO-Porter system has the potential for use in therapies aimed at mitochondrial DNA. This paper sumarizes our findings on mitochondrial drug delivery systems that are directed toward mitochondrial medicine development and mitochondrial gene therapy. It is expected that the MITO-Porter system will open new research areas in mitochondrial drug delivery systems and have a significant impact on the medical and life sciences.

  5. The Highly Conserved Proline at Position 438 in Pseudorabies Virus gH Is Important for Regulation of Membrane Fusion

    PubMed Central

    Schröter, Christina; Klupp, Barbara G.; Fuchs, Walter; Gerhard, Marika; Backovic, Marija; Rey, Felix A.

    2014-01-01

    ABSTRACT Membrane fusion in herpesviruses requires viral glycoproteins (g) gB and gH/gL. While gB is considered the actual fusion protein but is nonfusogenic per se, the function of gH/gL remains enigmatic. Crystal structures for different gH homologs are strikingly similar despite only moderate amino acid sequence conservation. A highly conserved sequence motif comprises the residues serine-proline-cysteine corresponding to positions 437 to 439 in pseudorabies virus (PrV) gH. The PrV-gH structure shows that proline438 induces bending at the end of an alpha-helix, thereby placing cysteine404 and cysteine439 in juxtaposition to allow formation of a strictly conserved disulfide bond. However, PrV vaccine strain Bartha unexpectedly carries a serine at this conserved position. To test the influence of this substitution, we constructed different gH chimeras carrying proline or serine at position 438 in gH derived from either PrV strain Kaplan or strain Bartha. Mutants expressing gH with serine438 showed reduced fusion activity in transient-fusion assays and during infection, with delayed penetration kinetics and a small-plaque phenotype which indicates that proline438 is important for efficient fusion. A more drastic effect was observed when disulfide bond formation was completely blocked by mutation of cysteine404 to serine. Although PrV expressing gHC404S was viable, plaque size and penetration kinetics were drastically reduced. Alteration of serine438 to proline in gH of strain Bartha enhanced cell-to-cell spread and penetration kinetics, but restoration of full activity required additional alteration of aspartic acid to valine at position 59. IMPORTANCE The role of the gH/gL complex in herpesvirus membrane fusion is still unclear. Structural studies predicted a critical role for proline438 in PrV gH to allow the formation of a conserved disulfide bond and correct protein folding. Functional analyses within this study corroborated these structural predictions

  6. Ribozyme Targeting the Novel Fusion Junction of EGFRvIII in Breast Cancer

    DTIC Science & Technology

    2003-07-01

    targeting the novel junction of EGFRvyII. * Demonstrate the therapeutic efficacy of an anti-EGFRvIll hammerhead ribozyme targeting the endogenous...first demonstration of the therapeutic efficacy of an anti-EGFRvlII hammerhead ribozyme targeting the endogenous EGFRvAII expression against human...202-687-7505.designed and generated a tumor specific hammerhead ribozyme E-mail: Tangc@georgetown.edu targeted to the novel fusion junction of

  7. Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion

    PubMed Central

    Halldorsson, Steinar; Behrens, Anna-Janina; Harlos, Karl; Huiskonen, Juha T.; Elliott, Richard M.; Crispin, Max; Brennan, Benjamin; Bowden, Thomas A.

    2016-01-01

    An emergent viral pathogen termed severe fever with thrombocytopenia syndrome virus (SFTSV) is responsible for thousands of clinical cases and associated fatalities in China, Japan, and South Korea. Akin to other phleboviruses, SFTSV relies on a viral glycoprotein, Gc, to catalyze the merger of endosomal host and viral membranes during cell entry. Here, we describe the postfusion structure of SFTSV Gc, revealing that the molecular transformations the phleboviral Gc undergoes upon host cell entry are conserved with otherwise unrelated alpha- and flaviviruses. By comparison of SFTSV Gc with that of the prefusion structure of the related Rift Valley fever virus, we show that these changes involve refolding of the protein into a trimeric state. Reverse genetics and rescue of site-directed histidine mutants enabled localization of histidines likely to be important for triggering this pH-dependent process. These data provide structural and functional evidence that the mechanism of phlebovirus–host cell fusion is conserved among genetically and patho-physiologically distinct viral pathogens. PMID:27325770

  8. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    SciTech Connect

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  9. Three conserved C-terminal residues of influenza fusion peptide alter its behavior at the membrane interface.

    PubMed

    Worch, Remigiusz; Krupa, Joanna; Filipek, Alicja; Szymaniec, Anna; Setny, Piotr

    2017-02-01

    The N-terminal fragment of the viral hemagglutinin HA2 subunit is termed a fusion peptide (HAfp). The 23-amino acid peptide (HAfp1-23) contains three C-terminal W21-Y22-G23 residues which are highly conserved among serotypes of influenza A and has been shown to form a tight helical hairpin very distinct from the boomerang structure of HAfp1-20. We studied the effect of peptide length on fusion properties, structural dynamics, and binding to the membrane interface. We developed a novel fusion visualization assay based on FLIM microscopy on giant unilamellar vesicles (GUV). By means of molecular dynamics simulations and spectroscopic measurements, we show that the presence of the three C-terminal W21-Y22-G23 residues promotes the hairpin formation, which orients perpendicularly to the membrane plane and induces more disorder in the surrounding lipids than the less structured HAfp1-20. Moreover, we report cholesterol-enriched domain formation induced exclusively by the longer fusion peptide.

  10. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation.

    PubMed

    Adell, Manuel Alonso Y; Vogel, Georg F; Pakdel, Mehrshad; Müller, Martin; Lindner, Herbert; Hess, Michael W; Teis, David

    2014-04-14

    Five endosomal sorting complexes required for transport (ESCRTs) mediate the degradation of ubiquitinated membrane proteins via multivesicular bodies (MVBs) in lysosomes. ESCRT-0, -I, and -II interact with cargo on endosomes. ESCRT-II also initiates the assembly of a ringlike ESCRT-III filament consisting of Vps20, Snf7, Vps24, and Vps2. The AAA-adenosine triphosphatase Vps4 disassembles and recycles the ESCRT-III complex, thereby terminating the ESCRT pathway. A mechanistic role for Vps4 in intraluminal vesicle (ILV) formation has been unclear. By combining yeast genetics, biochemistry, and electron tomography, we find that ESCRT-III assembly on endosomes is required to induce or stabilize the necks of growing MVB ILVs. Yet, ESCRT-III alone is not sufficient to complete ILV biogenesis. Rather, binding of Vps4 to ESCRT-III, coordinated by interactions with Vps2 and Snf7, is coupled to membrane neck constriction during ILV formation. Thus, Vps4 not only recycles ESCRT-III subunits but also cooperates with ESCRT-III to drive distinct membrane-remodeling steps, which lead to efficient membrane scission at the end of ILV biogenesis in vivo.

  11. Selective Fusion of Heterogeneous Classifiers for Predicting Substrates of Membrane Transporters.

    PubMed

    Shaikh, Naeem; Sharma, Mahesh; Garg, Prabha

    2017-03-27

    Membrane transporters play a crucial role in determining fate of administered drugs in a biological system. Early identification of plausible transporters for a drug molecule can provide insights into its therapeutic, pharmacokinetic, and toxicological profiles. In the present study, predictive models for classifying small molecules into substrates and nonsubstrates of various pharmaceutically important membrane transporters were developed using quantitative structure-activity relationship (QSAR) and proteochemometric (PCM) approaches. For this purpose, 4575 substrate interactions for these transporters were collected from the Metabolism and Transport Database (Metrabase) and the literature. The transporters selected for this study include (i) six efflux transporters, viz., breast cancer resistance protein (BCRP/ABCG2), P-glycoprotein (P-gp/MDR1), and multidrug resistance proteins (MRP1, MRP2, MRP3, and MRP4), and (ii) seven influx transporters, viz., organic cation transporter (OCT1/SO22A1), peptide transporter (PEPT1/SO15A1), apical sodium-bile acid transporter (ASBT/NTCP2), and organic anion transporting peptides (OATP1A2/SO1A2, OATP1B/SO1B1, OATP1B3/SO1B3, and OATP2B1/SO2B1). Various types of descriptors and machine learning methods (classifiers) were evaluated for the development of robust predictive models. Additionally, ensemble models were developed by bagging of homogeneous classifiers and selective fusion of heterogeneous classifiers. It was observed that the latter approach improves the accuracy of substrate/nonsubstrate prediction for transporters (average correct classification rate of more than 0.80 for external validation). Moreover, structural fragments important in determining the substrate specificity across the various transporters were identified. To demonstrate these fragments on the query molecule, contour maps were generated. The prediction efficacy of the developed models was illustrated by a good correlation between the reported logBB value

  12. DsbA directs efficient expression of outer membrane secretin EscC of the enteropathogenic Escherichia coli type III secretion apparatus.

    PubMed

    Miki, Tsuyoshi; Okada, Nobuhiko; Kim, Yeongsuk; Abe, Akio; Danbara, Hirofumi

    2008-02-01

    The formation of disulfide bond is essential for the folding, activity, and stability of many secreted proteins of Gram-negative bacteria. The disulfide oxidoreductase, DsbA, introduces disulfide bonds into exported proteins from the cytoplasm. In pathogenic bacteria, DsbA is required to process virulence determinants for their folding and assembly. In this study, we investigated the role of DsbA in enteropathogenic Escherichia coli. Here, we show that the DsbA is required for stable expression of outer membrane secretin EscC. DsbA has no effect on LEE transcription as measured with LEE-lacZ fusions. Replacement of either cysteine residue 136 or 155 of EscC with a serine resulted in reduced level of EscC, similar to the effect of the dsbA mutation. These results demonstrate the role of DsbA in assembly of the type III secretion apparatus.

  13. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission.

    PubMed

    Zhao, Jian; Liu, Tong; Jin, Shaobo; Wang, Xinming; Qu, Mingqi; Uhlén, Per; Tomilin, Nikolay; Shupliakov, Oleg; Lendahl, Urban; Nistér, Monica

    2011-06-24

    Mitochondrial morphology is controlled by two opposing processes: fusion and fission. Drp1 (dynamin-related protein 1) and hFis1 are two key players of mitochondrial fission, but how Drp1 is recruited to mitochondria and how Drp1-mediated mitochondrial fission is regulated in mammals is poorly understood. Here, we identify the vertebrate-specific protein MIEF1 (mitochondrial elongation factor 1; independently identified as MiD51), which is anchored to the outer mitochondrial membrane. Elevated MIEF1 levels induce extensive mitochondrial fusion, whereas depletion of MIEF1 causes mitochondrial fragmentation. MIEF1 interacts with and recruits Drp1 to mitochondria in a manner independent of hFis1, Mff (mitochondrial fission factor) and Mfn2 (mitofusin 2), but inhibits Drp1 activity, thus executing a negative effect on mitochondrial fission. MIEF1 also interacts with hFis1 and elevated hFis1 levels partially reverse the MIEF1-induced fusion phenotype. In addition to inhibiting Drp1, MIEF1 also actively promotes fusion, but in a manner distinct from mitofusins. In conclusion, our findings uncover a novel mechanism which controls the mitochondrial fusion-fission machinery in vertebrates. As MIEF1 is vertebrate-specific, these data also reveal important differences between yeast and vertebrates in the regulation of mitochondrial dynamics.

  14. Role of Metastability and Acidic pH in Membrane Fusion by Tick-Borne Encephalitis Virus

    PubMed Central

    Stiasny, Karin; Allison, Steven L.; Mandl, Christian W.; Heinz, Franz X.

    2001-01-01

    The envelope protein E of the flavivirus tick-borne encephalitis (TBE) virus is, like the alphavirus E1 protein, a class II viral fusion protein that differs structurally and probably mechanistically from class I viral fusion proteins. The surface of the native TBE virion is covered by an icosahedrally symmetrical network of E homodimers, which mediate low-pH-induced fusion in endosomes. At the pH of fusion, the E homodimers are irreversibly converted to a homotrimeric form, which we have found by intrinsic fluorescence measurements to be more stable than the native dimers. Thus, the TBE virus E protein is analogous to the prototypical class I fusion protein, the influenza virus hemagglutinin (HA), in that it is initially synthesized in a metastable state that is energetically poised to be converted to the fusogenic state by exposure to low pH. However, in contrast to what has been observed with influenza virus HA, this transition could not be triggered by input of heat energy alone and membrane fusion could be induced only when the virus was exposed to an acidic pH. In a previous study we showed that the dimer-to-trimer transition appears to be a two-step process involving a reversible dissociation of the dimer followed by an irreversible trimerization of the dissociated monomeric subunits. Because the dimer-monomer equilibrium in the first step apparently depends on the protonation state of E, the lack of availability of monomers for the trimerization step at neutral pH could explain why low pH is essential for fusion in spite of the metastability of the native E dimer. PMID:11462011

  15. In vivo topological analysis of Ste2, a yeast plasma membrane protein, by using beta-lactamase gene fusions.

    PubMed Central

    Cartwright, C P; Tipper, D J

    1991-01-01

    Gene fusions were constructed between Ste2, the receptor for the Saccharomyces cerevisiae alpha-factor, and beta la, the secreted form of beta-lactamase encoded by the bla gene of pBR322. The Ste2 and beta la components were linked by a processing fragment (P) from the yeast killer preprotoxin containing a C-terminal lysine-arginine site for cleavage by the Golgi-associated Kex2 protease. Ste2 is predicted to have a rhodopsinlike topology, with an external N terminus and seven transmembrane segments. Fusions to three of the four Ste2 domains predicted to be external resulted in beta la secretion from yeast cells. A fusion at a site just preceding the first transmembrane segment was an exception; the product was cell associated, indicating that the first 44 residues of Ste2 are insufficient to direct secretion of beta la; translocation of this domain presumably requires the downstream transmembrane segment. Expression of fusions located in two domains predicted to be cytoplasmic failed to result in beta la secretion. Following insertion of the preprotoxin signal peptide (S) between the Ste2 and P components of these cytoplasmic fusions, secretion of beta la activity occurred, which is consistent with inversion of the orientation of the beta la reporter. Conversely, insertion of S between Ste2 and P in an external fusion sharply reduced beta la secretion. Complementary information about both cytoplasmic and external domains of Ste2 was therefore provided, and most aspects of the predicted topology were confirmed. The steady-state levels of beta la detected were low, presumably because of efficient degradation of the fusions in the secretory pathway; levels, however, were easily detectable. This method should be valuable in the analysis of in vivo topologies of both homologous and foreign plasma membrane proteins expressed in yeast cells. Images PMID:2017168

  16. Proteolytic Cleavage of the Fusion Protein but Not Membrane Fusion Is Required for Measles Virus-Induced Immunosuppression In Vitro

    PubMed Central

    Weidmann, Armin; Maisner, Andrea; Garten, Wolfgang; Seufert, Marion; ter Meulen, Volker; Schneider-Schaulies, Sibylle

    2000-01-01

    Immunosuppression induced by measles virus (MV) is associated with unresponsiveness of peripheral blood lymphocytes (PBL) to mitogenic stimulation ex vivo and in vitro. In mixed lymphocyte cultures and in an experimental animal model, the expression of the MV glycoproteins on the surface of UV-inactivated MV particles, MV-infected cells, or cells transfected to coexpress the MV fusion (F) and the hemagglutinin (H) proteins was found to be necessary and sufficient for this phenomenon. We now show that MV fusion-inhibitory peptides do not interfere with the induction of immunosuppression in vitro, indicating that MV F-H-mediated fusion is essentially not involved in this process. Proteolytic cleavage of MV F0 protein by cellular proteases, such as furin, into the F1-F2 subunits is, however, an absolute requirement, since (i) the inhibitory activity of MV-infected BJAB cells was significantly impaired in the presence of a furin-inhibitory peptide and (ii) cells expressing or viruses containing uncleaved F0 proteins revealed a strongly reduced inhibitory activity which was improved following trypsin treatment. The low inhibitory activity of effector structures containing mainly F0 proteins was not due to an impaired F0-H interaction, since both surface expression and cocapping efficiencies were similar to those found with the authentic MV F and H proteins. These results indicate that the fusogenic activity of the MV F-H complexes can be uncoupled from their immunosuppressive activity and that the immunosuppressive domains of these proteins are exposed only after proteolytic activation of the MV F0 protein. PMID:10644371

  17. Decoding distinct membrane interactions of HIV-1 fusion inhibitors using a combined atomic force and fluorescence microscopy approach.

    PubMed

    Franquelim, Henri G; Gaspar, Diana; Veiga, A Salomé; Santos, Nuno C; Castanho, Miguel A R B

    2013-08-01

    Enfuvirtide and T-1249 are two potent HIV-1 fusion inhibitor peptides. Recent studies indicate that lipids play an important role in the mode of action of those bioactive molecules. Using a combined tandem atomic force microscopy (AFM)-epifluorescence microscopy approach, we studied the interaction of both enfuvirtide and T-1249 with supported lipid bilayers. Fluid (ld)-gel (so) and ld-liquid ordered (lo) phase-separated membrane systems were tested. Results, especially for T-1249, show significant lipid membrane activity at a 15μM peptide concentration. T-1249, in opposition to enfuvirtide, induces an increase in membrane surface roughness, decrease in membrane fluidity, bilayer thinning at ld domains and disruption of the so domain borders. In terms of structural properties, both enfuvirtide and T-1249 possess distinct functional hydrophobic and amphipathic domains of HIV gp41. While enfuvirtide only yields the tryptophan-rich domain (TRD), T-1249 possesses both TRD and pocket-binding domain (PBD). TRD increases the hydrophobicity of the peptide while PBD enhances the amphipathic characteristics. As such, the enhanced membrane activity of T-1249 may be explained by a synergism between its amphipathic N-terminal segment and its hydrophophic C-terminal. Our findings provide valuable insights on the molecular-level mode of action of HIV-1 fusion inhibitors, unraveling the correlation between their structural properties and membrane interactions as a factor influencing their antiviral activity. Ultimately, this work validates the applicability of a combined AFM and fluorescence approach to evaluate the mechanic and structural properties of supported lipid bilayers upon interaction with membrane-active peptides.

  18. Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis

    PubMed Central

    Zucchi, Paola C.; Zick, Michael

    2011-01-01

    The fusion of sealed biological membranes joins their enclosed aqueous compartments while mixing their membrane bilayers. Reconstituted fusion reactions are commonly assayed by lipid mixing, which can result from either true fusion or from lysis and its attendant reannealing of membranes. Fusion is also frequently assayed by the mixing of lumenal aqueous compartments, using probes of low molecular weight. With several probes (biotin, methylumbelliferyl-N-acetyl-α-d-neuraminic acid, and dithionite), we find that yeast vacuolar SNAREs (SNAP [Soluble NSF attachment protein] Receptors) increase the permeability of membranes to small molecules and that this permeabilization is enhanced by homotypic fusion and vacuole protein sorting complex (HOPS) and Sec17p/Sec18p, the vacuolar tethering and SNARE chaperone proteins. We now report the development of a novel assay that allows the parallel assessment of lipid mixing, the mixing of intact lumenal compartments, any lysis that occurs, and the membrane permeation of small molecules. Applying this assay to an all-purified reconstituted system consisting of vacuolar lipids, the four vacuolar SNAREs, the SNARE disassembly chaperones Sec17p and Sec18p, the Rab Ypt7p, and the Rab effector/SM protein complex HOPS, we show that true fusion is accompanied by strongly enhanced membrane permeability to small molecules and a measurable rate of lysis. PMID:21976702

  19. Vesicular PtdIns(3,4,5)P3 and Rab7 are key effectors of sea urchin zygote nuclear membrane fusion.

    PubMed

    Lete, Marta G; Byrne, Richard D; Alonso, Alicia; Poccia, Dominic; Larijani, Banafshé

    2017-01-15

    Regulation of nuclear envelope dynamics is an important example of the universal phenomena of membrane fusion. The signalling molecules involved in nuclear membrane fusion might also be conserved during the formation of both pronuclear and zygote nuclear envelopes in the fertilised egg. Here, we determine that class-I phosphoinositide 3-kinases (PI3Ks) are needed for in vitro nuclear envelope formation. We show that, in vivo, PtdIns(3,4,5)P3 is transiently located in vesicles around the male pronucleus at the time of nuclear envelope formation, and around male and female pronuclei before membrane fusion. We illustrate that class-I PI3K activity is also necessary for fusion of the female and male pronuclear membranes. We demonstrate, using coincidence amplified Förster resonance energy transfer (FRET) monitored using fluorescence lifetime imaging microscopy (FLIM), a protein-lipid interaction of Rab7 GTPase and PtdIns(3,4,5)P3 that occurs during pronuclear membrane fusion to create the zygote nuclear envelope. We present a working model, which includes several molecular steps in the pathways controlling fusion of nuclear envelope membranes. © 2017. Published by The Company of Biologists Ltd.

  20. The construction and characterization of Neisseria gonorrhoeae lacking protein III in its outer membrane

    PubMed Central

    1989-01-01

    Protein III (PIII) is a highly conserved, antigenically stable gonococcal outer membrane protein that is closely associated with the major outer membrane protein, protein I (PI). We have previously reported the cloning of the PIII gene. This gene was inserted into the Eco RI site of the runaway plasmid pMOB45. The beta-lactamase (beta la) Bam HI restriction fragment from the gonococcal plasmid pFA3 was inserted at the Xba I site in the PIII gene. The plasmid construct was Hae III methylated and the PIII/beta la insert was excised with Eco RI and used to transform gonococcal strain F62. One beta la+, ampicillin- resistant transformant was isolated and designated 2D. A Western blot of 2D whole cell lysate was probed with affinity-purified polyclonal PIII antisera. No PIII reactivity was detected. Southern blot analysis was performed on F62 and 2D chromosomal DNA that were cut with Eco RI or Cla I. A PIII DNA probe hybridized with fragments 2.2 kb larger in strain 2D than strain F62. This corresponds to the size of the beta la insert. A beta la-specific probe hybridized with the same 2D restriction fragments as above, but did not react with any F62 fragments, confirming that homologous recombination had occurred. There were minimal phenotypic changes between 2D and its parent strain, F62. Chromosomal DNA from 2D was able to transform gonococcal strains F62, UU1, and Pgh 3-2, rendering these PIII-. 2D and other PIII- transformants can now be used to study the role of PIII in gonococcal physiology, metabolism, membrane structure, and pathogenesis. Moreover, we now have organisms from which we can purify gonococcal proteins without PIII contamination. PMID:2499656

  1. Structure of a bacterial type III secretion system in contact with a host membrane in situ

    NASA Astrophysics Data System (ADS)

    Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R.; Hayward, Richard D.

    2015-12-01

    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking `pump-action' conformational changes that underpin effector injection.

  2. The IM30/Vipp1 C-terminus associates with the lipid bilayer and modulates membrane fusion.

    PubMed

    Hennig, Raoul; West, Ana; Debus, Martina; Saur, Michael; Markl, Jürgen; Sachs, Jonathan N; Schneider, Dirk

    2017-02-01

    IM30/Vipp1 proteins are crucial for thylakoid membrane biogenesis in chloroplasts and cyanobacteria. A characteristic C-terminal extension distinguishes these proteins from the homologous bacterial PspA proteins, and this extension has been discussed to be key for the IM30/Vipp1 activity. Here we report that the extension of the Synechocystis IM30 protein is indispensable, and argue that both, the N-terminal PspA-domain as well as the C-terminal extension are needed in order for the IM30 protein to conduct its in vivo function. In vitro, we show that the PspA-domain of IM30 is vital for stability/folding and oligomer formation of IM30 as well as for IM30-triggered membrane fusion. In contrast, the IM30 C-terminal domain is involved in and necessary to stabilize defined contacts to negatively charged membrane surfaces, and to modulate the IM30-induced membrane fusion activity. Although the two IM30 protein domains have distinct functional roles, only together they enable IM30 to work properly.

  3. Membrane insertion of fusion peptides from Ebola and Marburg viruses studied by replica-exchange molecular dynamics simulations.

    PubMed

    Olson, Mark A; Lee, Michael S; Yeh, In-Chul

    2017-01-28

    This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc.

  4. Dual Wavelength Imaging Allows Analysis of Membrane Fusion of Influenza Virus inside Cells

    PubMed Central

    Sakai, Tatsuya; Ohuchi, Masanobu; Imai, Masaki; Mizuno, Takafumi; Kawasaki, Kazunori; Kuroda, Kazumichi; Yamashina, Shohei

    2006-01-01

    Influenza virus hemagglutinin (HA) is a determinant of virus infectivity. Therefore, it is important to determine whether HA of a new influenza virus, which can potentially cause pandemics, is functional against human cells. The novel imaging technique reported here allows rapid analysis of HA function by visualizing viral fusion inside cells. This imaging was designed to detect fusion changing the spectrum of the fluorescence-labeled virus. Using this imaging, we detected the fusion between a virus and a very small endosome that could not be detected previously, indicating that the imaging allows highly sensitive detection of viral fusion. PMID:16439557

  5. Membrane damage-induced vesicle–vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin

    PubMed Central

    McDade, Joel R.; Michele, Daniel E.

    2014-01-01

    Mutations in the dysferlin gene resulting in dysferlin-deficiency lead to limb-girdle muscular dystrophy 2B and Myoshi myopathy in humans. Dysferlin has been proposed as a critical regulator of vesicle-mediated membrane resealing in muscle fibers, and localizes to muscle fiber wounds following sarcolemma damage. Studies in fibroblasts and urchin eggs suggest that trafficking and fusion of intracellular vesicles with the plasma membrane during resealing requires the intracellular cytoskeleton. However, the contribution of dysferlin-containing vesicles to resealing in muscle and the role of the cytoskeleton in regulating dysferlin-containing vesicle biology is unclear. Here, we use live-cell imaging to examine the behavior of dysferlin-containing vesicles following cellular wounding in muscle cells and examine the role of microtubules and kinesin in dysferlin-containing vesicle behavior following wounding. Our data indicate that dysferlin-containing vesicles move along microtubules via the kinesin motor KIF5B in muscle cells. Membrane wounding induces dysferlin-containing vesicle–vesicle fusion and the formation of extremely large cytoplasmic vesicles, and this response depends on both microtubules and functional KIF5B. In non-muscle cell types, lysosomes are critical mediators of membrane resealing, and our data indicate that dysferlin-containing vesicles are capable of fusing with lysosomes following wounding which may contribute to formation of large wound sealing vesicles in muscle cells. Overall, our data provide mechanistic evidence that microtubule-based transport of dysferlin-containing vesicles may be critical for resealing, and highlight a critical role for dysferlin-containing vesicle–vesicle and vesicle–organelle fusion in response to wounding in muscle cells. PMID:24203699

  6. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    PubMed

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool.

  7. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells.

    PubMed

    Ishihara, Naotada; Jofuku, Akihiro; Eura, Yuka; Mihara, Katsuyoshi

    2003-02-21

    Mitochondria are dynamic organelles that undergo frequent fission and fusion or branching. To analyze the mitochondrial fusion reaction, mitochondria were separately labeled with green or red fluorescent protein (GFP and RFP, respectively) in HeLa cells, and the cells were fused using hemagglutinating virus of Japan (HVJ). The resulting mixing of the fluorescent reporters was then followed using fluorescence microscopy. This system revealed that mitochondria fuse frequently in mammalian cells, and the fusion depends on the membrane potential across the inner membrane. The protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), led to fragmentation of the mitochondria and inhibited the fusion reaction. Removal of CCCP recovered the fusion activity to reform filamentous mitochondrial networks. Analysis of the effects of GTP-binding proteins, DRP1 and two FZO1 isoforms, and the GTPase-domain mutants on the CCCP-induced mitochondrial morphologic changes revealed that DRP1 and FZO1 are involved in membrane budding and fusion, respectively. Furthermore, a HVJ-dependent cell fusion assay combined with RNA interference (RNAi) demonstrated that both FZO1 isoforms are essential and must be acting in cis for the mitochondrial fusion reaction to occur.

  8. Exploring the membrane fusion mechanism through force-induced disassembly of HIV-1 six-helix bundle

    SciTech Connect

    Gao, Kai; Zhang, Yong; Lou, Jizhong

    2016-05-13

    Enveloped virus, such as HIV-1, employs membrane fusion mechanism to invade into host cell. HIV-1 gp41 ectodomain uses six-helix bundle configuration to accomplish this process. Using molecular dynamic simulations, we confirmed the stability of this six-helix bundle by showing high occupancy of hydrogen bonds and hydrophobic interactions. Key residues and interactions important for the bundle integration were characterized by force-induced unfolding simulations of six-helix bundle, exhibiting the collapse order of these groups of interactions. Moreover, our results in some way concerted with a previous theory that the formation of coiled-coil choose a route which involved cooperative interactions between the N-terminal and C-terminal helix. -- Highlights: •Unfolding of HIV-1 gp41 six-helix bundle is studied by molecular dynamics simulations. •Specific interactions responsible for the stability of HIV-1 envelope post-fusion conformation were identified. •The gp41 six-helix bundle transition inducing membrane fusion might be a cooperative process of the three subunits.

  9. Structural Rearrangements of the Central Region of the Morbillivirus Attachment Protein Stalk Domain Trigger F Protein Refolding for Membrane Fusion*

    PubMed Central

    Ader, Nadine; Brindley, Melinda A.; Avila, Mislay; Origgi, Francesco C.; Langedijk, Johannes P. M.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plemper, Richard K.; Plattet, Philippe

    2012-01-01

    It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91–115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111–118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism. PMID:22431728

  10. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    SciTech Connect

    Martin-Garcia, Fernando; Mendieta-Moreno, Jesus Ignacio; Mendieta, Jesus

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. Black-Right-Pointing-Pointer HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. Black-Right-Pointing-Pointer HRS domains of F protein form three single {alpha}-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from {beta}-sheet conformation to an elongated coil and then spontaneously to an {alpha}-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  11. Development of new cloning vectors for the production of immunogenic outer membrane fusion proteins in Escherichia coli

    SciTech Connect

    Cornelis, P.; Sierra, J.C.; Lim, A. Jr.; Malur, A.

    1996-02-01

    The Pseudomonas aeruginosa lipoprotein gene (oprI) was modified by cloning an in-frame polylinker in both orientations at the end of oprI. The resulting plasmids pVUBI and pVUB2 allow high lipoprotein production in E. coli after IPTG induction. The modified lipoproteins are present in the outer membrane and surface-exposed. Outer membrane-bound fusion proteins of different sizes were produced and used to generate antibodies without use of adjuvant. An 87 bp DNA fragment from the vp72 capsid protein gene of African Swine Fever virus (ASFV) and the entire Leishmania major glycoprotein gp63 gene were expressed in this system. Finally, a fusion lipoprotein containing a 16 amino acid epitope from the preS2b region of Hepatitis B virus (HBV) was presented by an antigen-presenting cell line to a T-cell hybridoma while the corresponding cross-linked S2b peptide was not. The results suggest that OprI-based fusion proteins can be used to generate both humoral and cellular immune responses. 44 refs., 7 figs.

  12. Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion.

    PubMed Central

    Basanez, G; Nieva, J L; Rivas, E; Alonso, A; Goni, F M

    1996-01-01

    Changes in steady-state fluorescence anisotropy of 1 -(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene TMA-DPH) are applied to the detection of lamellar-hexagonal transitions in egg phosphatidylethanolamine. Even low (2 mole%) proportions of diacylglycerol decrease the hexagonal transition temperature considerably, as confirmed by differential scanning calorimetry. Diacylglycerol is also found to promote a lamellar to "isotropic" (Q(224) cubic) transition in mixtures of phosphatidylcholine: phosphatidylethanolamine:cholesterol. This nonreversible transition is also observed by (31)P nuclear magnetic resonance and detected as a large increase in TMA-DPH steady-state anisotropy. The same technique reveals as well that lysophosphatidylcholine counteracts the effect of diacylglycerol and stabilizes the lamellar phase in both transitions. Diacylglycerol and lysophosphatidylcholine are known to respectively promote and inhibit membrane fusion in a variety of systems. These data are interpreted in support of the hypothesis of a highly bent structural fusion intermediate ("stalk"). They also show the interest of lipid-phase studies in predicting and rationalizing membrane fusion mechanisms. PMID:9172753

  13. Characterization of Xenopus egg membrane microdomains containing uroplakin Ib/III complex: roles of their molecular interactions for subcellular localization and signal transduction.

    PubMed

    Mahbub Hasan, A K M; Ou, Zhize; Sakakibara, Keiichi; Hirahara, Shino; Iwasaki, Tetsushi; Sato, Ken-ichi; Fukami, Yasuo

    2007-02-01

    A single-transmembrane protein uroplakin III (UPIII) and its tetraspanin binding-partner uroplakin Ib (UPIb) are members of the UP proteins that were originally identified in mammalian urothelium. In Xenopus laevis eggs, these proteins: xUPIII and xUPIb, are components of the cholesterol-enriched membrane microdomains or "rafts" and involved in the sperm-egg membrane interaction and subsequent egg activation signaling via Src tyrosine kinase at fertilization. Here, we investigate whether the xUPIII-xUPIb complex is in close proximity to CD9, a tetraspanin that has been implicated in the sperm-egg fusion in the mouse and GM1, a ganglioside typically enriched in egg rafts. Preparation of the egg membrane microdomains using different non-ionic detergents (Brij 98 and Triton X-100), chemical cross-linking, co-immunoprecipitation, in vitro kinase assay and in vitro fertilization experiments demonstrated that GM1, but not CD9, is in association with the xUPIII-xUPIb complex and contributes to the sperm-dependent egg activation. Transfection experiments using HEK293 cells demonstrated that xUPIII and xUPIb localized efficiently to the cholesterol-dependent membrane microdomains when they were co-expressed, whereas co-expression of xUPIII and CD9, instead of xUPIb, did not show this effect. Furthermore, xUPIII and xUPIb were shown to suppress kinase activity of the wild type, but not a constitutively active form of, Xenopus Src protein co-expressed in HEK293 cells. These results provide novel insight into the molecular architecture of the egg membrane microdomains containing xUPIII, xUPIb and Src, which may contribute to the understanding of sperm-egg interaction and signaling during Xenopus fertilization.

  14. Conservation of proteo-lipid nuclear membrane fusion machinery during early embryogenesis.

    PubMed

    Byrne, Richard D; Veeriah, Selvaraju; Applebee, Christopher J; Larijani, Banafshé

    2014-01-01

    The fusogenic lipid diacylglycerol is essential for remodeling gamete and zygote nuclear envelopes (NE) during early embryogenesis. It is unclear whether upstream signaling molecules are likewise conserved. Here we demonstrate PLCγ and its activator SFK1, which co-operate during male pronuclear envelope formation, also promote the subsequent male and female pronuclear fusion. PLCγ and SFK1 interact directly at the fusion site leading to PLCγ activation. This is accompanied by a spatially restricted reduction of PtdIns(4,5)P2. Consequently, pronuclear fusion is blocked by PLCγ or SFK1 inhibition. These findings identify new regulators of events in the early embryo and suggest a conserved "toolkit" of fusion machinery drives successive NE fusion events during embryogenesis.

  15. AS160 Phosphotyrosine-binding Domain Constructs Inhibit Insulin-stimulated GLUT4 Vesicle Fusion with the Plasma Membrane*

    PubMed Central

    Koumanov, Françoise; Richardson, Judith D.; Murrow, Beverley A.; Holman, Geoffrey D.

    2011-01-01

    AS160 (TBC1D4) is a known Akt substrate that is phosphorylated downstream of insulin action and that leads to regulated traffic of GLUT4. As GLUT4 vesicle fusion with the plasma membrane is a highly regulated step in GLUT4 traffic, we investigated whether AS160 and 14-3-3 interactions are involved in this process. Fusion was inhibited by a human truncated AS160 variant that encompasses the first N-terminal phosphotyrosine-binding (PTB) domain, by either of the two N-terminal PTB domains, and by a tandem construct of both PTB domains of rat AS160. We also found that in vitro GLUT4 vesicle fusion was strongly inhibited by the 14-3-3-quenching inhibitors R18 and fusicoccin. To investigate the mode of interaction of AS160 and 14-3-3, we examined insulin-dependent increases in the levels of these proteins on GLUT4 vesicles. 14-3-3γ was enriched on insulin-stimulated vesicles, and its binding to AS160 on GLUT4 vesicles was inhibited by the AS160 tandem PTB domain construct. These data suggest a model for PTB domain action on GLUT4 vesicle fusion in which these constructs inhibit insulin-stimulated 14-3-3γ interaction with AS160 rather than AS160 phosphorylation. PMID:21454690

  16. Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay.

    PubMed

    Yamamoto, Mizuki; Matsuyama, Shutoku; Li, Xiao; Takeda, Makoto; Kawaguchi, Yasushi; Inoue, Jun-Ichiro; Matsuda, Zene

    2016-11-01

    Middle East respiratory syndrome (MERS) is an emerging infectious disease associated with a relatively high mortality rate of approximately 40%. MERS is caused by MERS coronavirus (MERS-CoV) infection, and no specific drugs or vaccines are currently available to prevent MERS-CoV infection. MERS-CoV is an enveloped virus, and its envelope protein (S protein) mediates membrane fusion at the plasma membrane or endosomal membrane. Multiple proteolysis by host proteases, such as furin, transmembrane protease serine 2 (TMPRSS2), and cathepsins, causes the S protein to become fusion competent. TMPRSS2, which is localized to the plasma membrane, is a serine protease responsible for the proteolysis of S in the post-receptor-binding stage. Here, we developed a cell-based fusion assay for S in a TMPRSS2-dependent manner using cell lines expressing Renilla luciferase (RL)-based split reporter proteins. S was stably expressed in the effector cells, and the corresponding receptor for S, CD26, was stably coexpressed with TMPRSS2 in the target cells. Membrane fusion between these effector and target cells was quantitatively measured by determining the RL activity. The assay was optimized for a 384-well format, and nafamostat, a serine protease inhibitor, was identified as a potent inhibitor of S-mediated membrane fusion in a screening of about 1,000 drugs approved for use by the U.S. Food and Drug Administration. Nafamostat also blocked MERS-CoV infection in vitro Our assay has the potential to facilitate the discovery of new inhibitors of membrane fusion of MERS-CoV as well as other viruses that rely on the activity of TMPRSS2.

  17. Surface Density of the Hendra G Protein Modulates Hendra F Protein-Promoted Membrane Fusion: Role for Hendra G Protein Trafficking and Degradation

    PubMed Central

    Whitman, Shannon D.; Dutch, Rebecca Ellis

    2007-01-01

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F. PMID:17328935

  18. Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: Role for Hendra G protein trafficking and degradation

    SciTech Connect

    Whitman, Shannon D.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2007-07-05

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.

  19. Fig1 facilitates calcium influx and localizes to membranes destined to undergo fusion during mating in Candida albicans.

    PubMed

    Yang, Meng; Brand, Alexandra; Srikantha, Thyagarajan; Daniels, Karla J; Soll, David R; Gow, Neil A R

    2011-03-01

    Few mating-regulated genes have been characterized in Candida albicans. C. albicans FIG1 (CaFIG1) is a fungus-specific and mating-induced gene encoding a putative 4-transmembrane domain protein that shares sequence similarities with members of the claudin superfamily. In Saccharomyces cerevisiae, Fig1 is required for shmoo fusion and is upregulated in response to mating pheromones. Expression of CaFIG1 was also strongly activated in the presence of cells of the opposite mating type. CaFig1-green fluorescent protein (GFP) was visible only during the mating response, when it localized predominantly to the plasma membrane and perinuclear zone in mating projections and daughter cells. At the plasma membrane, CaFig1-GFP was visualized as discontinuous zones, but the distribution of perinuclear CaFig1-GFP was homogeneous. Exposure to pheromone induced a 5-fold increase in Ca(2+) uptake in mating-competent opaque cells. Uptake was reduced substantially in the fig1Δ null mutant. CaFig1 is therefore involved in Ca(2+) influx and localizes to membranes that are destined to undergo fusion during mating.

  20. A novel tridentate bis(phosphinic acid)phosphine oxide based europium(III)-selective Nafion membrane luminescent sensor.

    PubMed

    Sainz-Gonzalo, F J; Popovici, C; Casimiro, M; Raya-Barón, A; López-Ortiz, F; Fernández, I; Fernández-Sánchez, J F; Fernández-Gutiérrez, A

    2013-10-21

    A new europium(III) membrane luminescent sensor based on a new tridentate bis(phosphinic acid)phosphine oxide (3) system has been developed. The synthesis of this new ligand is described and its full characterization by NMR, IR and elemental analyses is provided. The luminescent complex formed between europium(III) chloride and ligand 3 was evaluated in solution, observing that its spectroscopic and chemical characteristics are excellent for measuring in polymer inclusion membranes. Included in a Nafion membrane, all the parameters (ligand and ionic additives) that can affect the sensitivity and selectivity of the sensing membrane as well as the instrumental conditions were carefully optimized. The best luminescence signal (λexc = 229.06 nm and λem = 616.02 nm) was exhibited by the sensing film having a Nafion : ligand composition of 262.3 : 0.6 mg mL(-1). The membrane sensor showed a short response time (t95 = 5.0 ± 0.2 min) and an optimum working pH of 5.0 (25 mM acetate buffer solution). The membrane sensor manifested a good selectivity toward europium(III) ions with respect to other trivalent metals (iron, chromium and aluminium) and lanthanide(III) ions (lanthanum, samarium, terbium and ytterbium), although a small positive interference of terbium(III) ions was observed. It provided a linear range from 1.9 × 10(-8) to 5.0 × 10(-6) M with a very low detection limit (5.8 × 10(-9) M) and sensitivity (8.57 × 10(-7) a.u. per M). The applicability of this sensing film has been demonstrated by analyzing different kinds of spiked water samples obtaining recovery percentages of 95-97%.

  1. A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes

    PubMed Central

    Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.

    2016-01-01

    An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ∼10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures. PMID:27708275

  2. A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.

    2016-10-01

    An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ~10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.

  3. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending–dependent manner

    PubMed Central

    Yu, Haijia; Rathore, Shailendra S.; Davis, Eric M.; Ouyang, Yan; Shen, Jingshi

    2013-01-01

    The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca2+. The stimulatory activity of Doc2b requires intact Ca2+-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca2+- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca2+ sensors may possess divergent mechanisms in regulating vesicle fusion. PMID:23427263

  4. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner.

    PubMed

    Yu, Haijia; Rathore, Shailendra S; Davis, Eric M; Ouyang, Yan; Shen, Jingshi

    2013-04-01

    The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca(2+). The stimulatory activity of Doc2b requires intact Ca(2+)-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca(2+)- and membrane bending-dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca(2+) sensors may possess divergent mechanisms in regulating vesicle fusion.

  5. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    PubMed

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sensor fusion III: 3-D perception and recognition; Proceedings of the Meeting, Boston, MA, Nov. 5-8, 1990

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1991-01-01

    The volume on data fusion from multiple sources discusses fusing multiple views, temporal analysis and 3D motion interpretation, sensor fusion and eye-to-hand coordination, and integration in human shape perception. Attention is given to surface reconstruction, statistical methods in sensor fusion, fusing sensor data with environmental knowledge, computational models for sensor fusion, and evaluation and selection of sensor fusion techniques. Topics addressed include the structure of a scene from two and three projections, optical flow techniques for moving target detection, tactical sensor-based exploration in a robotic environment, and the fusion of human and machine skills for remote robotic operations. Also discussed are K-nearest-neighbor concepts for sensor fusion, surface reconstruction with discontinuities, a sensor-knowledge-command fusion paradigm for man-machine systems, coordinating sensing and local navigation, and terrain map matching using multisensing techniques for applications to autonomous vehicle navigation.

  7. The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion.

    PubMed

    Chen, Jia; Zhang, Xianming; Jardetzky, Theodore S; Longnecker, Richard

    2014-10-01

    The entry of enveloped viruses into host cells is preceded by membrane fusion, which in Epstein-Barr virus (EBV) is thought to be mediated by the refolding of glycoprotein B (gB) from a prefusion to a postfusion state. In our current studies, we characterized a gB C-terminal tail domain (CTD) mutant truncated at amino acid 843 (gB843). This truncation mutant is hyperfusogenic as monitored by syncytium formation and in a quantitative fusion assay and is dependent on gH/gL for fusion activity. gB843 can rescue the fusion function of other glycoprotein mutants that have null or decreased fusion activity in epithelial and B cells. In addition, gB843 requires less gp42 and gH/gL for fusion, and can function in fusion at a lower temperature than wild-type gB, indicating a lower energy requirement for fusion activation. Since a key step in fusion is the conversion of gB from a prefusion to an active postfusion state by gH/gL, gB843 may access this activated gB state more readily. Our studies indicate that the gB CTD may participate in the fusion function by maintaining gB in an inactive prefusion form prior to activation by receptor binding. Importance: Diseases resulting from Epstein-Barr virus (EBV) infection in humans range from the fairly benign disease infectious mononucleosis to life-threatening cancer. As an enveloped virus, EBV must fuse with a host cell membrane for entry and infection by using glycoproteins gH/gL, gB, and gp42. Among these glycoproteins, gB is thought to be the protein that executes fusion. To further characterize the function of the EBV gB cytoplasmic C-terminal tail domain (CTD) in fusion, we used a previously constructed CTD truncation mutant and studied its fusion activity in the context of other EBV glycoprotein mutants. From these studies, we find that the gB CTD regulates fusion by altering the energy requirements for the triggering of fusion mediated by gH/gL or gp42. Overall, our studies may lead to a better understanding of EBV fusion

  8. The Epstein-Barr Virus (EBV) Glycoprotein B Cytoplasmic C-Terminal Tail Domain Regulates the Energy Requirement for EBV-Induced Membrane Fusion

    PubMed Central

    Chen, Jia; Zhang, Xianming; Jardetzky, Theodore S.

    2014-01-01

    ABSTRACT The entry of enveloped viruses into host cells is preceded by membrane fusion, which in Epstein-Barr virus (EBV) is thought to be mediated by the refolding of glycoprotein B (gB) from a prefusion to a postfusion state. In our current studies, we characterized a gB C-terminal tail domain (CTD) mutant truncated at amino acid 843 (gB843). This truncation mutant is hyperfusogenic as monitored by syncytium formation and in a quantitative fusion assay and is dependent on gH/gL for fusion activity. gB843 can rescue the fusion function of other glycoprotein mutants that have null or decreased fusion activity in epithelial and B cells. In addition, gB843 requires less gp42 and gH/gL for fusion, and can function in fusion at a lower temperature than wild-type gB, indicating a lower energy requirement for fusion activation. Since a key step in fusion is the conversion of gB from a prefusion to an active postfusion state by gH/gL, gB843 may access this activated gB state more readily. Our studies indicate that the gB CTD may participate in the fusion function by maintaining gB in an inactive prefusion form prior to activation by receptor binding. IMPORTANCE Diseases resulting from Epstein-Barr virus (EBV) infection in humans range from the fairly benign disease infectious mononucleosis to life-threatening cancer. As an enveloped virus, EBV must fuse with a host cell membrane for entry and infection by using glycoproteins gH/gL, gB, and gp42. Among these glycoproteins, gB is thought to be the protein that executes fusion. To further characterize the function of the EBV gB cytoplasmic C-terminal tail domain (CTD) in fusion, we used a previously constructed CTD truncation mutant and studied its fusion activity in the context of other EBV glycoprotein mutants. From these studies, we find that the gB CTD regulates fusion by altering the energy requirements for the triggering of fusion mediated by gH/gL or gp42. Overall, our studies may lead to a better understanding of EBV

  9. Extraction of lutetium(III) from aqueous solutions by employing a single fibre-supported liquid membrane.

    PubMed

    Trtić-Petrović, Tatjana M; Kumrić, Ksenija R; Dordević, Jelena S; Vladisavljević, Goran T

    2010-07-01

    Transport behaviour of Lu(III) across a polypropylene hollow fibre-supported liquid membrane containing di(2-ethylhexyl)phosphoric acid (DEHPA) in dihexyl ether as a carrier has been studied. The donor phase was LuCl(3) in the buffer solution consisting of 0.2 M sodium acetate at pH 2.5-5.0. A miniaturised system with a single hollow fibre has been operated in a batch mode. The concentration of Lu(III) was determined by indirect voltammetric method using Zn-EDTA complex. The effect of pH and volume of the donor phase, DEHPA concentration in the organic (liquid membrane) phase, the time of extraction and the content of the acceptor phase on the Lu(III) extraction and stripping behaviour was investigated. The results were discussed in terms of the pertraction and removal efficiency, the memory effect and the mean flux o