Liners for ion transport membrane systems
Carolan, Michael Francis; Miller, Christopher Francis
2010-08-10
Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.
Ion transport membrane module and vessel system with directed internal gas flow
Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh
2010-02-09
An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.
Lightweight, self-ballasting photovoltaic roofing assembly
Dinwoodie, T.L.
1998-05-05
A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.
Lightweight, self-ballasting photovoltaic roofing assembly
Dinwoodie, Thomas L.
1998-01-01
A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.
Lightweight, self-ballasting photovoltaic roofing assembly
Dinwoodie, Thomas L.
2006-02-28
A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.
Kuzmenko, Paul J.; Davis, Donald T.
1994-01-01
A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.
Ion transport membrane module and vessel system
Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson
2007-02-20
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
Ion transport membrane module and vessel system
Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT
2012-02-14
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
Ion transport membrane module and vessel system
Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT
2008-02-26
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
Kuzmenko, P.J.; Davis, D.T.
1994-05-10
A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.
Extending the life-cycle of reverse osmosis membranes: A review.
Coutinho de Paula, Eduardo; Amaral, Míriam Cristina Santos
2017-05-01
The reverse osmosis (RO) technology for desalination and demineralization serves the global water crisis context, both technically and economically, and its market is growing. However, RO membranes have a limited life-cycle and are often disposed of in landfills. The impacts caused by the disposal of thousands of tonnes per annum of RO membranes have grown dramatically around the world. Waste prevention should have a high priority and take effect before the end-of-life phase of a product is reached. In this review, a summary is presented of the main advances in the performance of the RO technology and the membrane lifespan. Afterwards, this paper reviews the most important relevant literature and summarizes the key findings of the research on reusing and recycling the discarded modules for the purpose of extending the life-cycle of the RO membranes. In addtion, there are some recent researches that indicated recycling RO membranes for use by the microfiltration or ultrafiltration separation processes is a promising solution to the disposal problem. However, there are many gaps and differences in procedures and results. This article also discusses and brings to light key parameters involved and controversies about oxidative treatment of discarded RO membranes.
LOW-COST ZEOLITE MEMBRANE MODULES FOR SOLVENT DEHYDRATION - PHASE I
A number of very high-volume liquid chemicals form azeotropes with water and can be dehydrated to required purity levels only through the use of entrainers or drying agents. The handling and disposal of these additional chemicals present significant environmental risk...
Feed gas contaminant control in ion transport membrane systems
Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA
2009-07-07
Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.
3D Printing and Assay Development for Point-of-Care Applications
NASA Astrophysics Data System (ADS)
Jagadeesh, Shreesha
Existing centralized labs do not serve patients adequately in remote areas. To enable universal timely healthcare, there is a need to develop low cost, portable systems that can diagnose multiple disease (Point-of-Care (POC) devices). Future POC diagnostics can be more multi-functional if medical device vendors can develop interoperability standards. This thesis developed the following medical diagnostic modules: Plasma from 25 microl blood was extracted through a filter membrane to demonstrate a 3D printed sample preparation module. Sepsis biomarker, C - reactive protein, was quantified through adsorption on nylon beads to demonstrate bead-based assay suitable for 3D printed disposable cartridge module. Finally, a modular fluorescent detection kit was built using 3D printed parts to detect CD4 cells in a disposable cartridge from ChipCare Corp. Due to the modularity enabled by 3D printing technique, the developed units can be easily adapted to detect other diseases.
Cable tensioned membrane solar collector module with variable tension control
Murphy, Lawrence M.
1985-01-01
Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.
Cable tensioned membrane solar collector module with variable tension control
Murphy, L.M.
1984-01-09
Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.
Polyamide nanofiltration membranes to remove aniline in aqueous solutions.
Hidalgo, A M; León, G; Gómez, M; Murcia, M D; Bernal, M D; Ortega, S
2014-01-01
Aniline is commonly used in a number of industrial processes. It is known to be a harmful and persistent pollutant and its presence in wastewater requires treatment before disposal. In this paper, the effectiveness of nanofiltration (NF) to remove aniline from aqueous solutions is studied in a flat membrane test module using two thin-layer composite membranes of polyamide (NF97 and NF99HF). The influence of different operational variables (applied pressure, feed concentration and pH) on the removal of aniline from synthetic aqueous solutions was analysed. The experimental NF results are compared with results previously obtained by reverse osmosis. Based on this comparative study, the effective order for aniline rejection is: HR98PP > NF97 > DESAL3B > SEPA-MS05 > NF99HF.
Metallization of bacterial cellulose for electrical and electronic device manufacture
Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan
2006-01-17
The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael Z.; Simpson, John T.; Aytug, Tolga
Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
Photovoltaic cell module and method of forming
Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay
2017-12-12
A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.
NASA Technical Reports Server (NTRS)
Zhang, Ye (Inventor); Wu, Honglu (Inventor)
2015-01-01
Systems and methods for preparing a sample for further analysis are provided. The system can include an enclosure. A membrane can be disposed within the enclosure. First and second reservoirs can be disposed within the enclosure, and at least one of the first and second reservoirs can be adapted to have a reagent disposed therein. A valve can be disposed within the enclosure and in fluid communication with the first or second reservoirs or both. The valve can also be in fluid communication with the membrane. The valve can be adapted to selectively regulate the flow of the reagent from the first reservoir, through the membrane, and into the second reservoir.
Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation.
Coutinho de Paula, Eduardo; Gomes, Júlia Célia Lima; Amaral, Míriam Cristina Santos
2017-07-01
The adverse impacts caused by the disposal of thousands of tonnes per annum of reverse osmosis (RO) membranes modules have grown dramatically around the world. The objective of this study was to evaluate the technical feasibility of recycling by chemical oxidation of end-of-life RO membranes for applications in other separation processes with specifications less rigorous. The recycling technique consisted in to cause a membrane exposition with oxidant solutions in order to remove its aromatic polyamide layer and subsequent conversion to a porous membrane. The recycling technique was evaluated by water permeability and salt rejection tests before and after the oxidative treatments. Initially, membranes' chemical cleaning and pretreatment procedures were assessed. Among factors evaluated, the oxidizing agent, its concentration and pH, associated with the oxidative treatment time, showed important influence on the oxidation of the membranes. Results showed that sodium hypochlorite and potassium permanganate are efficient agents for the membrane recycling. The great increased permeability and decreased salt rejection indicated changes on membranes' selective properties. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and contact angle characterization techniques revealed marked changes on the main membranes' physical-chemical properties, such as morphology, roughness and hydrophobicity. Reuse of produced effluents and fouling tendency of recycled membranes were also evaluated.
System and Method for Isolation of Samples
NASA Technical Reports Server (NTRS)
Zhang, Ye (Inventor); Wu, Honglu (Inventor)
2014-01-01
Systems and methods for isolating samples are provided. The system comprises a first membrane and a second membrane disposed within an enclosure. First and second reservoirs can also be disposed within the enclosure and adapted to contain one or more reagents therein. A first valve can be disposed within the enclosure and in fluid communication with the first reservoir, the second reservoir, or both. The first valve can also be in fluid communication with the first or second membranes or both. The first valve can be adapted to selectively regulate the flow of the reagents from the first reservoir, through at least one of the first and second membranes, and into the second reservoir.
A wide-angle camera module for disposable endoscopy
NASA Astrophysics Data System (ADS)
Shim, Dongha; Yeon, Jesun; Yi, Jason; Park, Jongwon; Park, Soo Nam; Lee, Nanhee
2016-08-01
A wide-angle miniaturized camera module for disposable endoscope is demonstrated in this paper. A lens module with 150° angle of view (AOV) is designed and manufactured. All plastic injection-molded lenses and a commercial CMOS image sensor are employed to reduce the manufacturing cost. The image sensor and LED illumination unit are assembled with a lens module. The camera module does not include a camera processor to further reduce its size and cost. The size of the camera module is 5.5 × 5.5 × 22.3 mm3. The diagonal field of view (FOV) of the camera module is measured to be 110°. A prototype of a disposable endoscope is implemented to perform a pre-clinical animal testing. The esophagus of an adult beagle dog is observed. These results demonstrate the feasibility of a cost-effective and high-performance camera module for disposable endoscopy.
Symmetric Absorber-Coupled Far-Infrared Microwave Kinetic Inductance Detector
NASA Technical Reports Server (NTRS)
U-yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Brown, Ari D. (Inventor); Stevenson, Thomas R. (Inventor); Patel, Amil A. (Inventor)
2016-01-01
The present invention relates to a symmetric absorber-coupled far-infrared microwave kinetic inductance detector including: a membrane having an absorber disposed thereon in a symmetric cross bar pattern; and a microstrip including a plurality of conductor microstrip lines disposed along all edges of the membrane, and separated from a ground plane by the membrane. The conducting microstrip lines are made from niobium, and the pattern is made from a superconducting material with a transition temperature below niobium, including one of aluminum, titanium nitride, or molybdenum nitride. The pattern is disposed on both a top and a bottom of the membrane, and creates a parallel-plate coupled transmission line on the membrane that acts as a half-wavelength resonator at readout frequencies. The parallel-plate coupled transmission line and the conductor microstrip lines form a stepped impedance resonator. The pattern provides identical power absorption for both horizontal and vertical polarization signals.
Plastic Membrane Sensor from a Disposed Combined Glass Electrode
ERIC Educational Resources Information Center
Marafie, Hayat M.; Shoukry, Adel F.; Alshatti, Laila A.
2007-01-01
The construction of combined plastic membrane electrode for hydralazinium cation from a disposed glass electrode is described. A variety of electrodes could be prepared by students using other types of polymers, plasticizers, or exchangers which could also help to study effects of pH and temperature, or environmental investigations.
Multi-stage internal gear/turbine fuel pump
Maier, Eugen; Raney, Michael Raymond
2004-07-06
A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.
Urban Environmental Education Project, Curriculum Module VI: Solid Waste - Trash or Treasure?
ERIC Educational Resources Information Center
Biglan, Barbara
Included in this module are four activities dealing with issues of solid waste disposal relative to urban concerns. Included activities are: (1) sources and composition of solid waste; (2) a "garbage game"; (3) disposal options for solid waste; and (4) an example county plan for solid waste disposal. Also included are an overview, teacher…
Method and system for compact efficient laser architecture
Bayramian, Andrew James; Erlandson, Alvin Charles; Manes, Kenneth Rene; Spaeth, Mary Louis; Caird, John Allyn; Deri, Robert J.
2015-09-15
A laser amplifier module having an enclosure includes an input window, a mirror optically coupled to the input window and disposed in a first plane, and a first amplifier head disposed along an optical amplification path adjacent a first end of the enclosure. The laser amplifier module also includes a second amplifier head disposed along the optical amplification path adjacent a second end of the enclosure and a cavity mirror disposed along the optical amplification path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, S.B.
1994-05-25
This is a final report from Bend Research, Inc., (BRI) to the U.S. Department of Energy (DOE) for work performed under Contract No. DE-AC22-92MT92005, titled {open_quotes}Development of a Membrane-Based Process for the Treatment of Oily Waste Waters.{close_quotes} This report covers the period from March 4, 1992, to March 5, 1994. The overall goal of this program was to develop an economical oily-water treatment system based on reverse osmosis (RO). The RO system would be used to (1) reduce oil production costs by reducing the volume of waste water that must be disposed of, (2) form the basis of a genericmore » waste-water treatment system that can easily be integrated into oil-field operations, especially at production facilities that are small or in remote locations; and (3) produce water clean enough to meet existing and anticipated environmental regulations. The specific focus of this program was the development of a hollow-fiber membrane module capable of treating oily waste waters.« less
This training module describes:general requirements applicable to treatment, storage, and disposal facilitiesrequirements for waste analysis and personnel training purpose of a contingency plan and list the emergency notification procedures.
Concentration and purification of plutonium or thorium
Hayden, John A.; Plock, Carl E.
1976-01-01
In this invention a first solution obtained from such as a plutonium/thorium purification process or the like, containing plutonium (Pu) and/or thorium (Th) in such as a low nitric acid (HNO.sub.3) concentration may have the Pu and/or Th separated and concentrated by passing an electrical current from a first solution having disposed therein an anode to a second solution having disposed therein a cathode and separated from the first solution by a cation permeable membrane, the Pu or Th cation permeating the cation membrane and forming an anionic complex within the second solution, and electrical current passage affecting the complex formed to permeate an anion membrane separating the second solution from an adjoining third solution containing disposed therein an anode, thereby effecting separation and concentration of the Pu and/or Th in the third solution.
Encapsulant Material For Solar Cell Module And Laminated Glass Applications
Hanoka, Jack I.
2000-09-05
An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.
High Performance Immobilized Liquid Membrane for Carbon Dioxide Separations
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2005-01-01
An immobilized liquid membrane has a substrate. A plurality of capsules is disposed on the substrate. Each of the capsules is permeable to a first gas of a mixture of gases comprising the st gas and a second gas. Each of the capsules is substantially impermeable to the second gas. A liquid is disposed in each of the capsules that is permeable to the first gas and substantially impermeable to the second gas.
Mingenbach, W.A.
1988-02-09
A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.
Electrolyte membrane, methods of manufacture thereof and articles comprising the same
Tamaki, Ryo; Rice, Steven Thomas; Yeager, Gary William
2013-11-05
Disclosed herein is a method of forming an electrolyte membrane comprising forming a mixture; the mixture comprising a polyhydroxy compound, an aromatic polyhalide compound and an alkali metal hydroxide; disposing the mixture on a porous substrate; reacting the mixture to form a crosslinked proton conductor; and sulfonating the proton conductor. Disclosed herein too is an article comprising a porous substrate; and a sulfonated crosslinked proton conductor disposed within pores of the porous substrate.
Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O'Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon
2018-02-27
Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.
Nanofiber membrane-electrode-assembly and method of fabricating same
Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew
2016-02-02
In one aspect of the present invention, a fuel cell membrane-electrode-assembly (MEA) has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode. At least one of the anode electrode, the cathode electrode and the membrane is formed of electrospun nanofibers.
Nittami, Tadashi; Hitomi, Tetsuo; Matsumoto, Kanji; Nakamura, Kazuho; Ikeda, Takaharu; Setoguchi, Yoshihiro; Motoori, Manabu
2012-01-01
This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE). A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm) was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm). On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri) i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size. PMID:24958174
Solar cell modules with improved backskin and methods for forming same
Hanoka, Jack I.
1998-04-21
A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
Electrolyte membrane, methods of manufacture thereof and articles comprising the same
Tamaki, Ryo [Santa Clarita, CA; Rice, Steven Thomas [Scotia, NY; Yeager, Gary William [Rexford, NY
2012-06-12
Disclosed herein is a method of forming an electrolyte membrane comprising forming a mixture; the mixture comprising a polyhydroxy compound, an aromatic polyhalide compound and an alkali metal hydroxide; disposing the mixture on a porous substrate; reacting the mixture to form a proton conductor; and crosslinking the proton conductor to form a cross-linked proton-conducting network. Disclosed herein too is an article comprising a porous substrate; and a crosslinked proton conductor disposed on the porous substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feizollahi, F.; Shropshire, D.
This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less
Encapsulant Material For Solar Cell Module And Laminated Glass Applications
Hanoka, Jack I.; Klemchuk, Peter P.
2001-02-13
An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module provides an overview of the requirements for landfills, surface impoundments, waste piles, and land treatment units. It summarizes the differences between interim status (Part 265) and permitted (Part 264) standards for land disposal units. It defines `surface impoundment` and distinguishes surface impoundments from tanks and describes surface impoundment retrofitting and retrofitting variance procedures. It explains the connection between land disposal standards, post-closure, and groundwater monitoring.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2017-11-28
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2016-09-06
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT
2011-06-07
Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.
Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong
2011-12-01
Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).
Kinnarinen, Teemu; Lubieniecki, Boguslaw; Holliday, Lloyd; Helsto, Jaakko-Juhani; Häkkinen, Antti
2015-03-01
Dry cake disposal is the preferred technique for the disposal of bauxite residue, when considering environmental issues together with possible future utilisation of the solids. In order to perform dry cake disposal in an economical way, the deliquoring of the residue must be carried out efficiently, and it is also important to wash the obtained solids well to minimise the amount of soluble soda within the solids. The study presented in this article aims at detecting the most important variables influencing the deliquoring and washing of bauxite residue, performed with a horizontal membrane filter press and by determining the optimal washing conditions. The results obtained from pilot-scale experiments are evaluated by considering the properties of the solids, for instance, the residual alkali and aluminium content, as well as the consumption of wash liquid. Two different cake washing techniques, namely classic washing and channel washing, are also used and their performances compared. The results show that cake washing can be performed successfully in a horizontal membrane filter press, and significant improvements in the recovery of alkali and aluminium can be achieved compared with pressure filtration carried out without washing, or especially compared with the more traditionally used vacuum filtration. © The Author(s) 2015.
Propulsion Wheel Motor for an Electric Vehicle
NASA Technical Reports Server (NTRS)
Herrera, Eduardo (Inventor); Farrell, Logan Christopher (Inventor); Guo, Raymond (Inventor); Junkin, Lucien Q. (Inventor); Bluethmann, William J. (Inventor); Vitale, Robert L. (Inventor); Weber, Steven J. (Inventor); Lee, Chunhao J. (Inventor); Eggleston, IV, Raymond Edward (Inventor); Figuered, Joshua M. (Inventor);
2016-01-01
A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.
Membrane thickening aerobic digestion processes.
Woo, Bryen
2014-01-01
Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew
In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module presents an overview of the land disposal restrictions (LDR) program. It defines the basic terms and describes the structure of the LDR regulations. It identifies the statutory basis for LDR and describes the applicability of LDR. It explains how EPA sets treatment standards and identifies treatment standards for wastes subject to land disposal restrictions and cites the CFR section. It describes and identifies how exemptions and variances from treatment requirements are obtained, including federal register citations. It defines generator and Treatment, Storage, and Disposal Facility (TSDF) requirements under the LDR program. It summarizes the schedule of existing restrictionsmore » and the plan for restricting newly identified wastes.« less
Disposable electrochemiluminescent biosensor for lactate determination in saliva.
Ballesta Claver, J; Valencia Mirón, M C; Capitán-Vallvey, L F
2009-07-01
An electrochemiluminescence-based disposable biosensor for lactate is characterized. The lactate recognition system is based on lactate oxidase (LOx) and the transduction system consists of luminol. All the needed reagents, luminol, LOx, BSA, electrolyte and buffer have been immobilized by a Methocel membrane placed on the working electrode of the screen-printed electrochemical cell. The measurement of the electrochemiluminescence (ECL) is made possible via a photocounting head when 50 microl of sample is placed into the screen-printed cell with a circular container containing the disposable sensing membrane. The compositions of the membrane and reaction conditions have been optimized to obtain adequate sensitivity. The disposable biosensor responds to lactate after 20 s when two 1 s pulses at 0.5 V are applied to obtain the analytical parameter, the ECL initial rate. The linearized double logarithmic dependence for lactate shows a dynamic range from 10(-5) to 5 x 10(-4) M with a detection limit of 5 x 10(-6) M and a sensor-to-sensor repeatability, as relative standard deviation, RSD, of 3.30% at the medium level of the range. The ECL disposable biosensor was applied to the analysis of lactate in human saliva as an alternative procedure for obtaining the lactate level in a non-invasive way. Interferences coming from components of saliva were studied and eliminated in a simple way that was easy to handle. The procedure was validated for use in human saliva, comparing the results against an enzymatic reference procedure. The proposed method is quick, inexpensive, selective and sensitive and uses conventional ECL instrumentation.
Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation
Polishchuk, Kimberly Ann
2013-03-05
The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.
Tensioning device for a stretched membrane collector
Murphy, Lawrence M.
1984-01-01
Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.
Tensioning device for a stretched membrane collector
Murphy, L.M.
1984-01-01
Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.
Preparation of lipid nanoemulsions by premix membrane emulsification with disposable materials.
Gehrmann, Sandra; Bunjes, Heike
2016-09-25
The possibility to prepare nanoemulsions as drug carrier systems on small scale was investigated with disposable materials. For this purpose premix membrane emulsification (premix ME) as a preparation method for nanoemulsions with narrow particle size distributions on small scale was used. The basic principle of premix ME is that the droplets of a coarse pre-emulsion get disrupted by the extrusion through a porous membrane. In order to implement the common preparation setup for premix ME with disposable materials, the suitability of different syringe filters (made from polyethersulfone, cellulose acetate, cellulose ester and nylon) and different pharmaceutically relevant emulsifiers (phospholipids, polysorbate 80 and sucrose laurate) for the preparation of nanoemulsions was investigated. Already the preparation of the premix could be realized by emulsification with the help of two disposable syringes. As shown for a phospholipid-stabilized emulsion, the polyethersulfone filter was the most appropriate one and was used for the study with different emulsifiers. With this syringe filter, the median particle size of all investigated emulsions was below 500nm after 21 extrusion cycles through a 200nm filter and a subsequent extrusion cycle through a 100nm filter. Furthermore, the particle size distribution of the polysorbate 80- and sucrose laurate-stabilized emulsions prepared this way was very narrow (span value of 0.7). Copyright © 2016 Elsevier B.V. All rights reserved.
Kaschemekat, Jurgen
1994-01-01
A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.F.; Schroeder, P.R.
This technical note documents the SETTLE computer program which facilitates the design of a confined disposal facility (CDF) to retain solids, provide initial storage, and meet effluent discharge limitations for suspended solids during a dredged matenal disposal operation. Detailed information can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. SETTLE is a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The management of hazardous waste at treatment, storage, and disposal facilities (TSDFs) plays a large and critical role in the Resource Conservation and Recovery Act (RCRA) regulatory scheme. The training module presents an overview of the general TSDF standards found in 40 CFR Parts 264/265, Subparts A through E.
Waveguide embedded plasmon laser with multiplexing and electrical modulation
Ma, Ren-min; Zhang, Xiang
2017-08-29
This disclosure provides systems, methods, and apparatus related to nanometer scale lasers. In one aspect, a device includes a substrate, a line of metal disposed on the substrate, an insulating material disposed on the line of metal, and a line of semiconductor material disposed on the substrate and the insulating material. The line of semiconductor material overlaying the line of metal, disposed on the insulating material, forms a plasmonic cavity.
LOCATING AND REPAIRING LEAKS IN LANDFILL/IMPOUNDMENT FLEXIBLE MEMBRANE LINERS
In the United States, the large quantities of solid and hazardous wastes generated each year are commonly disposed of in landfills and surface impoundments. Geomembrane liners (flexible membrane liners, FMLs) are often used to form an impermeable barrier to prevent migration of c...
Dust-tolerant electrical connector
NASA Technical Reports Server (NTRS)
Sadick, Shazad (Inventor); Herman, Jason (Inventor); Roberts, Dustyn (Inventor)
2011-01-01
A connector assembly includes releasably mateable plug and receptacle units. At least one socket is enclosed within the receptacle unit and is aligned with at least one permeable membrane disposed in the front end of the receptacle unit. The plug unit includes a body slidably mounted within a longitudinal bore therein. At least one pin extends from the front end of the body and is aligned with at least one permeable membrane disposed in the front end of the plug unit. The plug unit is biased toward a first, de-mate position in which the body is extended rearwardly such that the pin is enclosed with the plug unit and is slidable to a second, mate position in which the body is compressed forwardly such that the pin projects through the permeable membranes of the plug and receptacle units to electrically connect with the socket.
Kaschemekat, J.
1994-03-15
A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.
Comparing multi-module connections in membrane chromatography scale-up.
Yu, Zhou; Karkaria, Tishtar; Espina, Marianela; Hunjun, Manjeet; Surendran, Abera; Luu, Tina; Telychko, Julia; Yang, Yan-Ping
2015-07-20
Membrane chromatography is increasingly used for protein purification in the biopharmaceutical industry. Membrane adsorbers are often pre-assembled by manufacturers as ready-to-use modules. In large-scale protein manufacturing settings, the use of multiple membrane modules for a single batch is often required due to the large quantity of feed material. The question as to how multiple modules can be connected to achieve optimum separation and productivity has been previously approached using model proteins and mass transport theories. In this study, we compare the performance of multiple membrane modules in series and in parallel in the production of a protein antigen. Series connection was shown to provide superior separation compared to parallel connection in the context of competitive adsorption. Copyright © 2015 Elsevier B.V. All rights reserved.
Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
Xu, Pei; Capito, Marissa; Cath, Tzahi Y
2013-09-15
Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.
Multiple-membrane multiple-electrolyte redox flow battery design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yushan; Gu, Shuang; Gong, Ke
A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolytemore » and the positive or negative electrolyte.« less
NASA Astrophysics Data System (ADS)
García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.
2017-12-01
The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.
Composite membrane with integral rim
Routkevitch, Dmitri; Polyakov, Oleg G
2015-01-27
Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.
Electrolyte chemistry control in electrodialysis processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Thomas D.; Severin, Blaine F.
Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendren, Zachary; Choi, Young Chul
The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow formore » the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.« less
USER'S GUIDE TO FLEXIBLE MEMBRANE LINER ADVISORY EXPERT SYSTEM: FLEX VERSION 3.0
The guide is a user manual for the Flexible Membrane Liner Advisory Expert System (FLEX). The system assists in determining if a proposed synthetic liner material will be chemically resistant to a proposed or anticipated leachate from a hazardous waste land disposal site. More sp...
Wu, Qilong; Zhang, Zhenghua; Cao, Guodong; Zhang, Xihui
2017-10-15
Polymeric membrane has been widely used for the treatment of drinking water in China, and the total treating capacity has reached up to 3.8 million m 3 /d. However, the membrane breakage found in the membrane modules in many water treatment plants resulted in an increase in turbidity and bacterial amount in the membrane permeate. In this study, a membrane module running for 3 years in a full-scale application was examined in terms of the breaking positions and the numbers of the broken fibers. It was found that most of the breaking positions were mainly on the outlet side of the module and that the distance from these points to the outlet was about 1/10-2/10 length of the membrane module. The lab-scale tests showed that the increase of the numbers of the breaking fibers in the membrane module (the breaking fibers were from 1 to 4 of 75 fibers) resulted in the increase in turbidity, particle count and the amount of total bacteria and coliform bacteria. Meanwhile, the water quality after the filtration with broken membrane fibers was similar to the quality of the raw water, which indicated that once the membrane fiber breakage occurred in the membrane module, the quality of drinking water after membrane filtration was significantly affected. Furthermore, the breaking position closer to the outlet side of the membrane module exposed much higher microbiological risk than those in the middle or near the bottom side. A pilot scale test was conducted by using a membrane module with 6600 fibers, and the effect of the membrane breakage (1-4 broken fibers) on water quality was also investigated. The results indicated that periodical backwashing caused drastic fluctuation of turbidity, particle count and the bacterial amount in the permeate water, which might be due to the washing force and self-blocking action inside the hollow fibers. Moreover, there is a good quantitative relationship (R 2 = 0.945) between particle count and the bacterial amount, which indicated that an online detection of particle count can be used to evaluate the bacterial risk. It was also suggested that the online detection of particle count after backwashing within 100 s would be a quick and precise method to identify any fiber breakage in time. These results are very important for the safety issue in the application of polymeric membrane to water treatment plants.
Calcium accelerates SNARE-mediated lipid mixing through modulating α-synuclein membrane interaction.
Zhang, Zeting; Jiang, Xin; Xu, Danrui; Zheng, Wenwen; Liu, Maili; Li, Conggang
2018-04-04
α-Synuclein is involved in Parkinson's disease, and its interaction with cell membrane is vital to its pathological and physiological functions. We have shown that Ca 2+ can regulate α-synuclein membrane interaction, but the physiological role of Ca 2+ in modulating α-synuclein membrane interaction is still unexplored. Based on the previous findings that α-synuclein inhibits membrane fusion and its inhibitory effect is highly related to its membrane binding, here we employed solution state Nuclear Magnetic Resonance (NMR) spectroscopy and the ensemble fluorescence fusion assay to show that Ca 2+ can modulate the inhibitory effect of α-synuclein on SNARE-mediated membrane fusion through disrupting α-synuclein membrane interaction, resulting in acceleration of SNARE-mediated membrane fusion. These results suggest a modulatory effect of Ca 2+ on membrane mediated normal function of α-synuclein, which of importance for the study of the Parkinson's disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells
1975-01-01
The enzymatic iodination technique has been utilized in a study of the externally disposed membrane proteins of the mouse L cell. Iodination of cells in suspension results in lactoperoxidase-specific iodide incorporation with no loss of cell viability under the conditions employed, less than 3% lipid labeling, and more than 90% of the labeled species identifiable as monoiodotyrosine. 90% of the incorporated label is localized to the cell surface by electron microscope autoradiography, with 5-10% in the centrosphere region and postulated to represent pinocytic vesicles. Sodium dodecylsulfate-polyacrylamide gels of solubilized L-cell proteins reveals five to six labeled peaks ranging from 50,000 to 200,000 daltons. Increased resolution by use of gradient slab gels reveals 15-20 radioactive bands. Over 60% of the label resides in approximately nine polypeptides of 80,000 to 150,000 daltons. Various controls indicate that the labeling pattern reflects endogenous membrane proteins, not serum components. The incorporated 125-I, cholesterol, and one plasma membrane enzyme marker, alkaline phosphodiesterase I, are purified in parallel when plasma membranes are isolated from intact, iodinated L cells. The labeled components present in a plasma membrane-rich fraction from iodinated cells are identical to those of the total cell, with a 10- to 20-fold enrichment in specific activity of each radioactive peak in the membrane. PMID:163833
Four-port gas separation membrane module assembly
Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen
2010-07-20
A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.
Pervaporation process and assembly
Wynn, Nicholas P.; Huang, Yu; Aldajani, Tiem; Fulton, Donald A.
2010-07-20
The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.
Wynn, Nicholas P [Redwood City, CA; Huang, Yu [Palo Alto, CA; Aldajani, Tiem [San Jose, CA; Fulton, Donald A [Fairfield, CA
2012-02-28
The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.
Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claire Henderson; Harish Acharya; Hope Matis
2011-03-31
The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable formore » re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local disposal costs and regulations, a parametric value assessment tool was created to assess the economic attractiveness of a given flowback recovery process relative to conventional disposal for any combination of anticipated flowback TDS and local disposal cost. It is concluded that membrane systems in combination with appropriate pretreatment technologies can provide cost-effective recovery of low-TDS flow-back water for either beneficial reuse or safe surface discharge.« less
Comparing Trash Disposal and Reuse Options for Deep Space Gateway and Mars Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael; Broyan, James; Goodliff, Kandyce; Clowdsley, Martha; Singleterry, Robert
2017-01-01
Taking out the trash at NASA's newly proposed Deep Space Gateway (DSG) will not be a trivial task. While not the most important aspect of planning this cislunar outpost, there are several options that should be carefully considered since they may affect the crew as well as mission mass and volume. This study extends an earlier one, which focused on waste disposal options for a Mars Transit Vehicle. In that study, gasifying and venting trash along the way was found to noticeably reduce propellant needs and launch mass, whereas keeping processed trash on board in the form of radiation shielding tiles would significantly lower the crew's radiation dose during a solar particle event. Another favorable strategy was packing trash in a used logistics module for disposal. Since the DSG does not need much propulsion to maintain its orbit and Orion will be present with its own radiation storm shelter at the Gateway, the driving factors of the waste disposal trade study are different than for the Mars mission. Besides reviewing the propulsion and radiation shielding factors, potential drivers such as mass, power, volume, crew time, and human factors (e.g. smell) were studied. Disposal options for DSG include jettison of a used logistics module containing waste after every human stay, jettison of the same logistics module after several missions once it is full, regular disposal of trash via an airlock, or gasifying waste products for easier disposal or reuse. Conversely, a heat melt compactor device could be used to remove water and stabilize trash into tiles which could be more compactly stored on board and used as radiation shielding. Equivalent system mass analysis is used to tally the benefits and costs (mass, volume, power, crew time) of each case on an equivalent mass basis. Other more subjective factors are also discussed. Recommendations are made for DSG and Mars mission waste disposal.
CuC1 thermochemical cycle for hydrogen production
Fan, Qinbai [Chicago, IL; Liu, Renxuan [Chicago, IL
2012-01-03
An electrochemical cell for producing copper having a dense graphite anode electrode and a dense graphite cathode electrode disposed in a CuCl solution. An anion exchange membrane made of poly(ethylene vinyl alcohol) and polyethylenimine cross-linked with a cross-linking agent selected from the group consisting of acetone, formaldehyde, glyoxal, glutaraldehyde, and mixtures thereof is disposed between the two electrodes.
Hirschfeld, Tomas B.
1985-01-01
A nonsaturable microdryer is provided for electrolytically removing moisture from sealed containers, particularly electronic equipment. An electrode/electrolyte assembly is disposed within a channel between the interior and exterior of a sealed container. A catalytic barrier disposed between the interior of the sealed container and the electrode/electrolyte assembly prevents the build-up of explosive concentrations of hydrogen by converting back-diffusing hydrogen and oxygen back into water, which is then recycled. A semipermeable membrane disposed between the exterior of the sealed container and the electrode/electrolyte assembly allows selective removal of hydrogen and prevents intake of water.
Hirschfeld, T.B.
1984-05-23
A nonsaturable microdryer is provided for electrolytically removing moisture from sealed containers, particularly electronic equipment. An electrode/electrolyte assembly is disposed within a channel between the interior and exterior of a sealed container. A catalytic barrier disposed between the interior of the sealed container and the electrode/electrolyte assembly prevents the build-up of explosive concentrations of hydrogen by converting back-diffusing hydrogen and oxygen back into water, which is then recycled. A semipermeable membrane disposed between the exterior of the sealed container and the electrode/electrolyte assembly allows selective removal of hydrogen and prevents intake of water.
Chalcogen catalysts for polymer electrolyte fuel cell
Alonso-Vante, Nicolas [Buxerolles, FR; Zelenay, Piotr [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Wieckowski, Andrzej [Champaign, IL; Cao, Dianxue [Urbana, IL
2009-09-15
A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.
Chalcogen catalysts for polymer electrolyte fuel cell
Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue
2010-08-24
A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.
Composite membranes and methods for making same
Routkevitch, Dmitri; Polyakov, Oleg G
2012-07-03
Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.
REDUCTION OF CONCENTRATION POLARIZATION IN PERVAPORATION USING VIBRATING MEMBRANE MODULE
A vibrating membrane module currently marketed for filtration applications was evaluated for the separation of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Preliminary screening experiments with three VOCs, four silicone membranes, and in the presenc...
Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes
Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei
2014-01-01
The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969
NASA Astrophysics Data System (ADS)
Baroroh, D. K.; Alfiah, D.
2018-05-01
The electric vehicle is one of the innovations to reduce the pollution of the vehicle. Nevertheless, it still has a problem, especially for disposal stage. In supporting product design and development strategy, which is the idea of sustainable design or problem solving of disposal stage, assessment of modularity architecture from electric vehicle in recovery process needs to be done. This research used Design Structure Matrix (DSM) approach to deciding interaction of components and assessment of modularity architecture using the calculation of value from 3 variables, namely Module Independence (MI), Module Similarity (MS), and Modularity for End of Life Stage (MEOL). The result of this research shows that existing design of electric vehicles has the architectural design which has a high value of modularity for recovery process on disposal stage. Accordingly, so it can be reused and recycled in component level or module without disassembly process to support the product that is environmentally friendly (sustainable design) and able reduce disassembly cost.
Modeling of membrane processes for air revitalization and water recovery
NASA Technical Reports Server (NTRS)
Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.
1992-01-01
Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.
The development of polymer membranes and modules for air separation
NASA Astrophysics Data System (ADS)
Vinogradov, N. E.; Kagramanov, G. G.
2016-09-01
Technology of hollow fiber membrane and modules for air separation was developed. Hollow fibers from the polyphenylene oxide (PPO) having a diameter of 500 μm were obtained. The permeability of the fibers by oxygen was up to 250 Ba, while the separation factor by O2/N2 was 4.3. The membrane module has been made by using these fibers and tested for permeability of individual gases.
Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair
Redpath, G. M. I.; Woolger, N.; Piper, A. K.; Lemckert, F. A.; Lek, A.; Greer, P. A.; North, K. N.; Cooper, S. T.
2014-01-01
Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module. PMID:25143396
Array of planar membrane modules for producing hydrogen
Vencill, Thomas R [Albuquerque, NM; Chellappa, Anand S [Albuquerque, NM; Rathod, Shailendra B [Hillsboro, OR
2012-05-08
A shared or common environment membrane reactor containing a plurality of planar membrane modules with top and bottom thin foil membranes supported by both an intermediary porous support plate and a central base which has both solid extended members and hollow regions or a hollow region whereby the two sides of the base are in fluid communication. The membrane reactor operates at elevate temperatures for generating hydrogen from hydrogen rich feed fuels.
Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho
2013-08-01
An alternating current (AC) voltage modulation was applied to ion-selective observations with plasticized poly(vinyl chloride) membranes in glass nanopipettes. The liquid confronting the membranes in the nanopipettes, the conditioning process, and AC voltage modulation play important roles in the ion-selective detection. In the AC detection system developed by us, where distilled water was used as the liquid within the nanopipettes, potassium ions were selectively detected in the sample solution of sodium and potassium ions because sodium ions were captured at the membrane containing bis(12-crown-4) ionophores, before the saturation of the ionophores. The membrane lost the selectivity after the saturation. On using sodium chloride as the liquid within the nanopipette, the membrane selectively detected potassium and sodium ions before and after the saturation of ionophores, respectively. The ion-selective detection of our system can be explained by the ion extraction-diffusion-dissolution mechanism through the bis(12-crown-4) ionophores with AC voltage modulation.
NASA Technical Reports Server (NTRS)
Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Shaw, Hali; Beeler, David
2016-01-01
FOST 2 is an integrated membrane system that incorporates a forward osmosis subsystem and a reverse osmosis subsystem working in series. It has been designed as a post treatment system to process the effluent from the Membrane Aerated Biological Reactor developed at NASA Johnson Space Center and Texas Tech University. Its function is to remove dissolved solids residual such as ammonia and suspended solids, as well as to provide a physical barrier to microbial and viral contamination. A tubular CTA membrane module from HTI and a flat-sheet lipid-base membrane module from Porifera were integrated and tested on FOST 2 in the past, using both a bioreactor's effluent and greywater as the feed solution. This paper documents the performance of FOST 2 after its upgrade with a hollow-fiber CTA membrane module from Toyobo, treating real black-water to generate the osmotic agent solution necessary to conduct growth studies of genetically engineered microorganism for the Synthetic Biological Membrane project.
Deciphering the BAR code of membrane modulators.
Salzer, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina
2017-07-01
The BAR domain is the eponymous domain of the "BAR-domain protein superfamily", a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi
This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.
Larsson, Niklas; Utterback, Karl; Toräng, Lars; Risberg, Johan; Gustafsson, Per; Mayer, Philipp; Jönsson, Jan Ke
2009-08-01
Hollow fibre (HF) membrane modules were applied in continuous mode for equilibrium sampling through membranes (ESTM) of polar organic pollutants. Phenolic compounds (chlorophenols, cresols and phenol) served as model substances and ESTM was tuned towards the measurement of freely dissolved concentrations (C(free)). HF membrane modules were constructed using thin-walled membrane, 1-m module length and low packing density in order to optimise the uptake kinetics of the analytes into the acceptor solution. Such custom made devices were tested and compared to commercially available modules. The former modules performed best for continuous ESTM. The custom made modules provided steady-state equilibrium within 20-40 min and enrichment that was in general agreement with calculated distribution ratios between acceptor and sample. In experiments during which sample concentration was changed, acceptor response time to decreased sample concentration was around 30 min for custom built modules. In the presence of commercial humic acids, analytes showed lower steady-state enrichment, which is due to a decrease in C(free). Continuous ESTM may be automated and is suggested for use in online determination of C(free) of pollutants and studies on sorption of pollutants. Future studies should include optimisation of the membrane liquid and factors regarding the residence time of the acceptor solution in the fibre lumen. Qualitative aspects of DOM should also be included, as natural DOM can be fractionated. C(free) could be correlated to DOM properties that have previously been shown to influence sorption, such as aromaticity, carboxylic acid content and molecular size.
Boundary layer control device for duct silencers
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)
1993-01-01
A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.
Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.
Cimini, Alessio; Moresi, Mauro
2016-10-01
In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, v S = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J * ) of 32 or 37 L/m 2 /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity <1 EBC unit, but a significant reduction in density, viscosity, color, extract, and foam half-life with respect to their corresponding retentates. The 0.8-μm asymmetric membrane module might be selected, its corresponding permeate having quite a good turbidity and medium reduction in the aforementioned beer quality parameters. Moreover, it exhibited J * values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m 2 /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined. © 2016 Institute of Food Technologists®.
A novel reverse-osmosis wash water recycle system for manned space stations
NASA Technical Reports Server (NTRS)
Ray, R. J.; Babcock, W. C.; Barss, R. P.; Andrews, T. A.; Lachapelle, E. D.
1984-01-01
The preliminary development of a wash water recycle system utilizing an inside-skinned hollow-fiber membrane is described. This module configuration is based on tube-side feed and is highly resistant to fouling with a minimum of pretreatment. During an ongoing research program for NASA, these modules were operated on actual wash waters with no significant fouling for a period of 40 days. Due to the tube-side-feed flow in these hollow-fiber membranes, the fibers themselves become the pressure vessels, allowing the development of extremely lightweight membrane modules. During the NASA research program, a pre-prototype membrane module capable of processing 6 gallons per day of wash water at 97 percent recovery was developed that can be dry-stored and that weighs 120 g.
Membrane treatment of liquid wastes from radiological decontamination operations.
Svittsov, A A; Khubetsov, S B; Volchek, K
2011-01-01
The paper focuses on the evaluation of membrane filtration for the treatment of liquid radioactive streams generated in area decontamination operations. In this work, semi-permeable membranes were demonstrated to be effective reducing the volume of wastewater containing cesium and cobalt by two orders of a magnitude. The efficiency of membrane separation was enhanced by employing additives that enlarged the size of target radionuclide species and improved their rejection by the membranes. This was achieved by chelation with synthetic water-soluble polymers and by adsorption on micro particles of adsorbent coupled with micelle formation. The effect of wastewater composition and that of the radionuclide-binding additives on the volume reduction was investigated. Membrane treatment is expected to help simplify further processing and decrease disposal costs.
Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...
NASA Astrophysics Data System (ADS)
Ghojaie, M.
1993-10-01
The genus of micrococcus and its main species like; M. Roseus, M. Nishinomiyansis consist of upto 10% of microbial contamination of disposable medical devices. Chemical alteration of Menuquinones Mainly [MK-7-(H2), MK-8(H2),…] from some Irradiated species of the micrococcus at different doses (500 Gy to 25 kGy; the sterilization dose) are quantitatively evaluated by HPLC.
Large-Aperture Membrane Active Phased-Array Antennas
NASA Technical Reports Server (NTRS)
Karasik, Boris; McGrath, William; Leduc, Henry
2009-01-01
Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for this article, an 8 16 passive array (not including T/R modules) and a 2 4 active array (including T/R modules) had been demonstrated, and it was planned to fabricate and test larger arrays.
Novel polymer membrane process for pre-combustion CO{sub 2} capture from coal-fired syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Tim
2011-09-14
This final report describes work conducted for the Department of Energy (DOE NETL) on development of a novel polymer membrane process for pre-combustion CO{sub 2} capture from coalfired syngas (award number DE-FE0001124). The work was conducted by Membrane Technology and Research, Inc. (MTR) from September 15, 2009, through December 14, 2011. Tetramer Technologies, LLC (Tetramer) was our subcontract partner on this project. The National Carbon Capture Center (NCCC) at Wilsonville, AL, provided access to syngas gasifier test facilities. The main objective of this project was to develop a cost-effective membrane process that could be used in the relatively near-term tomore » capture CO{sub 2} from shifted syngas generated by a coal-fired Integrated Gasification Combined Cycle (IGCC) power plant. In this project, novel polymeric membranes (designated as Proteus™ membranes) with separation properties superior to conventional polymeric membranes were developed. Hydrogen permeance of up to 800 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 50 psig, which exceeds the original project targets of 200 gpu for hydrogen permeance and 10 for H{sub 2}/CO{sub 2} selectivity. Lab-scale Proteus membrane modules (with a membrane area of 0.13 m{sup 2}) were also developed using scaled-up Proteus membranes and high temperature stable module components identified during this project. A mixed-gas hydrogen permeance of about 160 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 100 psig. We believe that a significant improvement in the membrane and module performance is likely with additional development work. Both Proteus membranes and lab-scale Proteus membrane modules were further evaluated using coal-derived syngas streams at the National Carbon Capture Center (NCCC). The results indicate that all module components, including the Proteus membrane, were stable under the field conditions (feed pressures: 150-175 psig and feed temperatures: 120-135°C) for over 600 hours. The field performance of both Proteus membrane stamps and Proteus membrane modules is consistent with the results obtained in the lab, suggesting that the presence of sulfur-containing compounds (up to 780 ppm hydrogen sulfide), saturated water vapor, carbon monoxide and heavy hydrocarbons in the syngas feed stream has no adverse effect on the Proteus membrane or module performance. We also performed an economic analysis for a number of membrane process designs developed in this project (using hydrogen-selective membranes, alone or in the combination with CO{sub 2}- selective membranes). The current field performance for Proteus membranes was used in the design analysis. The study showed the current best design has the potential to reduce the increase in Levelized Cost of Electricity (LCOE) caused by 90% CO{sub 2} capture to about 15% if co-sequestration of H{sub 2}S is viable. This value is still higher than the DOE target for increase in LCOE (10%); however, compared to the base-case Selexol process that gives a 30% increase in LCOE at 90% CO2 capture, the membrane-based process appears promising. We believe future improvements in membrane performance have the potential to reach the DOE target.« less
Kim, Yu Chang; Kim, Young; Oh, Dongwook; Lee, Kong Hoon
2013-03-19
Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m(-2)h(-1) and 1.0 W/m(2) respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wexler, Jason; Botkin, Jonathan; Culligan, Matthew
A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.
NASA Technical Reports Server (NTRS)
Smith, Ed; Dee, P. E.; Zaghloul, Hany; Filius, Krag; Rivers, Tim
2000-01-01
Since 1989 the US Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development towards establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill disposal. The emerging plasma environmental thermal treatment process has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: (1) pyrotechnic smoke assemblies, (2) thermal batteries, (3) proximity fuses, (4) cartridge actuated devices (CADs), and (5) propellant actuated devices (PADs). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilotscale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.
NASA Technical Reports Server (NTRS)
Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim
2000-01-01
Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.
Novel Inorganic/Polymer Composite Membranes for CO 2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, W.S. Winston; Dutta, Prabir K.; Schmit, Steve J.
The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO 2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustionmore » CO 2 capture is expected to achieve the DOE target of $40/tonne CO 2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO 2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10 -6 cm 3 (STP)/(cm 2 • s • cm Hg), 3000 GPU = 10-6 mol/(m 2 • s • Pa)) with a high CO 2/N 2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO 2 permeance with > 500 CO 2/N 2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in consultation with TriSep Corporation, Gradient Technology and American Electric Power (AEP). The membrane module demonstrated > 800 GPU of CO 2 permeance and > 150 CO 2/N 2 selectivity when tested with real flue gas at NCCC. The results obtained were used to update the techno-economic analysis. In addition, the EH&S assessment of the membranes for post-combustion CO 2 capture was conducted.« less
Verification testing of the Polymem UF120 S2 Ultrafiltration Membrane Module was conducted over a 46-day period at the Green Bay Water Utility Filtration Plant, Luxemburg, Wisconsin. The ETV testing described herein was funded in conjunction with a 12-month membrane pilot study f...
Gas separation membrane module assembly
Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA
2009-03-31
A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.
Fernandez, Fernando R.; Malerba, Paola; White, John A.
2015-01-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971
Fernandez, Fernando R; Malerba, Paola; White, John A
2015-04-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.
NASA Technical Reports Server (NTRS)
Rich, T. R.; Mix, T. W.
1974-01-01
Recovery of potable water from urine on manned space missions of extended duration was the objective of work aimed at the improvement of membrane performance for the vapor diffusion process (VDR). Kynar, Teflon, PVC, and polysulfone candidate membranes were evaluated from chemical, thermal, mechanical, and fabricating standpoints to determine their suitability for operation in the VDR pervaporation module. Pervaporation rates and other performance characteristics were determined in a breadboard pervaporator test rig. Kynar and Teflon membranes were demonstrated to be chemically stable at pervaporation temperatures in urine pretreated with chromic acid bactericide. The separation of the pervaporator and condenser modules, the use of a recirculating sweep gas to conduct pervaporate to the condenser, and the selection of a hollow fiber membrane configuration for pervaporator module design is recommended as a result of the investigation.
Bipolar membranes with fluid distribution passages
NASA Technical Reports Server (NTRS)
Hitchens, G. Duncan (Inventor); Archer, Shivaun (Inventor); Tennakoon, Charles L. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Cisar, Alan J. (Inventor)
1999-01-01
The present invention provides a bipolar membrane and methods for making and using the membrane. The bipolar membrane comprises a cation-selective region, an anion-selective region, an interfacial region between the anion-selective region and the cation-selective region, and means for delivering fluid directly into the interfacial region. The means for delivering fluid includes passages that may comprise a fluid-permeable material, a wicking material, an open passage disposed within the membrane or some combination thereof. The passages may be provided in many shapes, sizes and configurations, but preferably deliver fluid directly to the interfacial region so that the rate of electrodialysis is no longer limited by the diffusion of fluid through the cation- or anion-selective regions to the interfacial region.
Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.
Luján-Facundo, M J; Mendoza-Roca, J A; Cuartas-Uribe, B; Álvarez-Blanco, S
2016-11-01
Membrane cleaning is a key point for the implementation of membrane technologies in the dairy industry for proteins concentration. In this study, four ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) (5, 15, 30 and 50kDa) and materials (polyethersulfone and ceramics) were fouled with three different whey model solutions: bovine serum albumin (BSA), BSA plus CaCl2 and whey protein concentrate solution (Renylat 45). The purpose of the study was to evaluate the effect of ultrasounds (US) on the membrane cleaning efficiency. The influence of ultrasonic frequency and the US application modes (submerging the membrane module inside the US bath or applying US to the cleaning solution) were also evaluated. The experiments were performed in a laboratory plant which included the US equipment and the possibility of using two membrane modules (flat sheet and tubular). The fouling solution that caused the highest fouling degree for all the membranes was Renylat 45. Results demonstrated that membrane cleaning with US was effective and this effectiveness increased at lower frequencies. Although no significant differences were observed between the two different US applications modes tested, slightly higher cleaning efficiencies values placing the membrane module at the bottom of the tank were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.
Technical and design update in the AUBE French low-level radioactive waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marque, Y.
1989-01-01
Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less
Packaging, Transportation and Recycling of NPP Condenser Modules - 12262
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polley, G.M.
2012-07-01
Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged inmore » inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing facility. If any of these issues were not adequately resolved prior to the start of the outage, costly delays would result and the re-start of the power plant could be impacted. The main focus of this project was to find successful methods for keeping this material out of the landfills and preserving the natural resources. In addition, this operation provided a significant cost savings to the public utility by minimizing landfill disposal. The onsite portion of the project has been completed without impact to the overall outage schedule. By the date of presentation, the majority of the waste from the condenser replacement project will have been processed and recycled. The goals for this project included helping Energy Northwest maintain the outage schedule, package and characterize waste compliantly, perform transportation activities in compliance with 49CFR (Ref-1), and minimize the waste disposal volume. During this condenser replacement project, over three millions pounds of waste was generated, packaged, characterized and transported without injury or incident. It is anticipated that 95% of the waste generated during this project will not require landfill disposal. All of the waste is scheduled to be processed, decontaminated and recycled by June of 2012. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renew, Jay; Hansen, Tim
Southern Research Institute (Southern) teamed with partners Novus Energy Technologies (Novus), Carus Corporation (Carus), and Applied Membrane Technology, Inc. (AMT) to develop an innovative Geothermal ThermoElectric Generation (G-TEG) system specially designed to both generate electricity and extract high-value lithium (Li) from low-temperature geothermal brines. The process combined five modular technologies including – silica removal, nanofiltration (NF), membrane distillation (MD), Mn-oxide sorbent for Li recovery, and TEG. This project provides a proof of concept for each of these technologies. The first step in the process is silica precipitation through metal addition and pH adjustment to prevent downstream scaling in membrane processes.more » Next, the geothermal brine is concentrated with the first of a two stage MD system. The first stage MD system is made of a high-temperature material to withstand geothermal brine temperatures up to 150C.° The first stage MD is integrated with a G-TEG module for simultaneous energy generation. The release of energy from the MD permeate drives heat transfer across the TE module, producing electricity. The first stage MD concentrate is then treated utilizing an NF system to remove Ca 2+ and Mg 2+. The NF concentrate will be disposed in the well by reinjection. The NF permeate undergoes concentration in a second stage of MD (polymeric material) to further concentrate Li in the NF permeate and enhance the efficiency of the downstream Li recovery process utilizing a Mn-oxide sorbent. Permeate from both the stages of the MD can be beneficially utilized as the permeates will contain less contaminants than the feed water. The concentrated geothermal brines are then contacted with the Mn-oxide sorbent. After Li from the geothermal brine is adsorbed on the sorbent, HCl is then utilized to regenerate the sorbent and recover the Li. The research and development project showed that the Si removal goal (>80%) could be achieved by increasing the pH of the brine and adding Fe 3+ under several scenarios. The NF was also successful in achieving significant Ca 2+ and Mg 2+ removal (~80%) while retaining most Li in the permeate for high strength brines. MD experiments showed that geothermal brines could be significantly concentrated with little fouling due to pre-treatment.« less
Hinklin, Thomas Ray; Lewinsohn, Charles Arthur
2015-06-30
A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.
Membrane anchoring γ-secretase modulators with terpene-derived moieties.
Naumann, Eva Christine; Göring, Stefan; Ogorek, Isabella; Weggen, Sascha; Schmidt, Boris
2013-07-01
Modulation of γ-secretase activity is a promising therapeutic strategy for the treatment of Alzheimer's disease. Herein we report on the synthesis of carprofen- and tocopherol-derived small-molecule modulators carrying terpene moieties as lipophilic membrane anchors. Additionally, these modulators are equipped with an acidic moiety, which contributes to the desired modulatory effect on the γ-secretase with decreased formation of Aβ42 and increased Aβ38 production. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The module presents an overview of the general treatment, storage, and disposal facility (TSDF) standards found in 40 CFR parts 264/265, subparts A through E. It identifies and explains each exclusion from parts 264/265, and provides definitions of excluded units, such as wastewater treatment unit and elementary neutralization unit. It locates and describes the requirements for waste analysis and personnel training. It also describes the purpose of a contingency plan and lists the emergency notification procedures. It describes manifest procedures and responsibilities, and lists the unmanifested waste reporting requirements.
Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Kathryn
Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less
Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation
Huff, Kathryn
2017-08-01
Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less
Vitamin E: A Role in Signal Transduction.
Zingg, Jean-Marc
2015-01-01
Vitamin E modulates the activity of several signal transduction enzymes with consequent alterations of gene expression. At the molecular level, vitamin E may directly bind to these enzymes and compete with their substrates, or it may change their activity by redox regulation. The translocation of several of these enzymes to the plasma membrane is regulated by vitamin E, suggesting the modulation of protein-membrane interactions as a common mechanism for vitamin E action. Enzyme-membrane interactions can be affected by vitamin E by interference with binding to specific membrane lipids or by altering cellular structures such as membrane microdomains (lipid rafts). Moreover, competition by vitamin E for common binding sites within lipid transport proteins may alter the traffic of lipid mediators and thus affect their signaling and enzymatic conversion. In this review, the main effects of vitamin E on enzymes involved in signal transduction are summarized and possible molecular mechanisms leading to enzyme modulation are evaluated.
Membrane trafficking pathways and their roles in plant-microbe interactions.
Inada, Noriko; Ueda, Takashi
2014-04-01
Membrane trafficking functions in the delivery of proteins that are newly synthesized in the endoplasmic reticulum (ER) to their final destinations, such as the plasma membrane (PM) and the vacuole, and in the internalization of extracellular components or PM-associated proteins for recycling or degradative regulation. These trafficking pathways play pivotal roles in the rapid responses to environmental stimuli such as challenges by microorganisms. In this review, we provide an overview of the current knowledge of plant membrane trafficking and its roles in plant-microbe interactions. Although there is little information regarding the mechanism of pathogenic modulation of plant membrane trafficking thus far, recent research has identified many membrane trafficking factors as possible targets of microbial modulation.
Utilization of membranes for H2O recycle system
NASA Technical Reports Server (NTRS)
Ohya, H.; Oguchi, M.
1986-01-01
Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.
Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R
2015-12-05
Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cholesterol depletion modulates detergent resistant fraction of human serotonin(1A) receptors.
Sahu, Santosh Kumar; Saxena, Roopali; Chattopadhyay, Amitabha
2012-11-01
Insolubility of membrane components in non-ionic detergents such as Triton X-100 at low temperature is a widely used biochemical criterion to identify, isolate and characterize membrane domains. In this work, we monitored the detergent insolubility of the serotonin(1A) receptor in CHO cell membranes and its modulation by membrane cholesterol. The serotonin(1A) receptor is an important member of the G-protein coupled receptor family. It is implicated in the generation and modulation of various cognitive, behavioral and developmental functions and serves as a drug target. Our results show that a significant fraction (∼28%) of the serotonin(1A) receptor resides in detergent-resistant membranes (DRMs). Interestingly, the fraction of the serotonin(1A) receptor in DRMs exhibits a reduction upon membrane cholesterol depletion. In addition, we show that contents of DRM markers such as flotillin-1, caveolin-1 and GM₁ are altered in DRMs upon cholesterol depletion. These results assume significance since the function of the serotonin(1A) receptor has previously been shown to be affected by membrane lipids, specifically cholesterol. Our results are relevant in the context of membrane organization of the serotonin(1A) receptor in particular, and G-protein coupled receptors in general.
Qin, Lei; Fan, Zheng; Xu, Lusheng; Zhang, Guoliang; Wang, Guanghui; Wu, Dexin; Long, Xuwei; Meng, Qin
2015-05-01
In this study, a novel submerged membrane bioreactor (SMBR) with pendulum type oscillation (PTO) hollow fiber membrane modules was developed to treat oily wastewater and control the problem of membrane fouling. To assess the potential of PTO membrane modules, the effect of oscillation orientation and frequency on membrane permeability was investigated in detail. The forces exerted on sludge flocs in the oscillating SMBR were analyzed to evaluate the impact of membrane oscillating on the cake layer resistance reduction. Results showed that the optimized PTO SMBR system exhibited 11 times higher membrane permeability and better fouling controllability than the conventional MBR system. By hydrodynamic analysis, it was found that the cooperative effect of bubble-induced turbulence and membrane oscillation in PTO SMBR system generated strong shear stress at liquid-membrane interface in vertical and horizontal direction and effectively hindered the particles from depositing on membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module presents the requirements for groundwater monitoring at interim status and permitted treatment, storage, and disposal facilities (TSDFs) under the Resource Conservation and Recovery Act (RCRA). The goal of the module is to explain the standards and specific requirements for groundwater monitoring programs at interim status and permitted facilities.
Sehested, M.; Jensen, P. B.; Skovsgaard, T.; Bindslev, N.; Demant, E. J.; Friche, E.; Vindeløv, L.
1989-01-01
The multidrug resistance (MDR) phenotype is presumed to be mostly dependent on changes in the resistant cell plasma membrane, notably the emergence of a 170 kDa glycoprotein called P-glycoprotein, which facilitate increased drug efflux. We have previously demonstrated that ATP-enhanced binding of vincristine (VCR) to plasma membrane vesicles is much greater in MDR than in wild type cells. The present study has shown that VCR binding to MDR Ehrlich ascites tumour cell plasma membrane vesicles is inhibited 50% most efficiently by quinidine (0.5 microM) followed by verapamil (4.1 microM) and trifluoperazine (23.2 microM). This is the reverse order of the effect on whole cells where a ranking of efficiency in terms of enhancement of VCR accumulation, inhibition of VCR efflux, DNA perturbation and modulation of resistance in a clonogenic assay, was trifluoperazine greater than or equal to verapamil much greater than quinidine. The detergent Tween 80 inhibited VCR binding to plasma membrane vesicles at 0.001% v/v which agreed with the level which modulated resistance and increased VCR accumulation in whole cells. No effect was observed on daunorubicin binding to MDR plasma membrane vesicles after incubation with either Tween 80 (up to 0.1% v/v) or verapamil (up to 25 microM). We conclude that the effect of a modulating drug in reversing resistance to VCR correlates with its ability to raise intracellular VCR levels but not with its capability to inhibit VCR binding to the plasma membrane. Thus, enhancement of VCR accumulation in MDR cells is hardly solely due to competition for a drug binding site on P-glycoprotein. Furthermore, the lack of a demonstrable effect on daunorubicin binding to the plasma membrane by modulators points to transport mechanisms which do not utilise specific drug binding to the plasma membrane. PMID:2605092
Staged membrane oxidation reactor system
Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh
2014-05-20
Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.
Staged membrane oxidation reactor system
Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh
2013-04-16
Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.
Staged membrane oxidation reactor system
Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh
2012-09-11
Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.
DEMONSTRATION OF BULLETIN: DISC TUBE™ MODULE TECHNOLOGY ROCHEM SEPARATION SYSTEMS, INC.
The Rochem Disc Tube™ Module System uses membrane separation to treat aqueous solutions ranging from seawater to leachate contaminated with organic solvents. The system uses reverse osmosis through a semipermeable membrane to separate purified water from contaminated liquids. Osm...
SOLVENT NANOFILTRATION USING LOW-COST INORGANIC MEMBRANE MODULES - PHASE I
This Phase I project addresses: (1) development of fully inorganic nanofiltration (NF) membrane modules that have the attributes of low-cost, excellent chemical resistance in aggressive organic and aqueous media and high thermal stability; and (2) demonstration of the perfo...
Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM
2008-09-09
A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.F.; Schroeder, P.R.; Engler, R.M.
This technical note describes procedures for determining mean hydraulic retention time and efficiency of a confined disposal facility (CDF) from a dye tracer slug test. These parameters are required to properly design a CDF for solids retention and for effluent quality considerations. Detailed information on conduct and analysis of dye tracer studies can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. This technical note documents the DYECON computer program which facilitates the analysis of dye tracer concentration data and computes the hydraulic efficiency of a CDF as part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
Force Provider Solid Waste Characterization Study
2004-08-01
energy converter (WEC) and/or composter . For a five-day period in June 2000, the solid waste generated by soldiers at the Force Provider Training Module...MATERIALS REDUCTION WASTE DISPOSAL MILITARY FACILITIES SANITARY ENGINEERING DISPOSAL FORCE PROVIDER FIELD FEEDING COMPOSTS WASTES GARBAGE WASTE RECYCLING...waste reduction through onsite waste-to-energy conversion and/or composting . The work was performed by Hughes Associates, Inc., 3610 Commerce
NASA Technical Reports Server (NTRS)
Gleason, Kevin J. (Inventor); Cowley, Scott W. (Inventor); Wickham, David T. (Inventor)
2015-01-01
There is disclosed a portable life support system with a component for removal of at least one selected gas. In an embodiment, the system includes a supported liquid membrane having a first side and a second side in opposition to one another, the first side configured for disposition toward an astronaut and the second side configured for disposition toward a vacuum atmosphere. The system further includes an ionic liquid disposed between the first side and the second side of the supported liquid membrane, the ionic liquid configured for removal of at least one selected gas from a region housing the astronaut adjacent the first side of the supported liquid membrane to the vacuum atmosphere adjacent the second side of the supported liquid membrane. Other embodiments are also disclosed.
Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkey, J.G.
1993-05-01
The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.
Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.
Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G
2013-07-01
Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively controlled with even smaller superficial air velocity than the optimal value provided by a single air stone. Finally, the testing results with both inorganic and organic feeds showed that the solid particle composition and particle size distribution all contribute to the cake formation in a membrane filtration system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Taxel-addressable matrix of vertical nanowire piezotronic transistors
Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan
2015-05-05
A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.
Hydrogen purifier module with membrane support
A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.
2012-07-24
A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.
CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE*
MIKUCKI, MICHAEL; ZHOU, Y. C.
2017-01-01
This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization. PMID:29056778
Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G
2011-06-01
The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.
2008-12-01
to reduce effluent perchlorate spikes by up to 97% in comparison to a conventional MBR that was subject to sudden changes in influent conditions...biological reactor (HAMBgR). The HAMBgR process integrates a granular adsorptive media into the mixed liquor of a membrane bioreactor ( MBR ), which...although concentrated brine disposal can be problematic. In this study, we measured the performance of a conventional MBR and a HAMBgR process and
Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.
Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De
2016-10-01
In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.
Impact of lysosome status on extracellular vesicle content and release.
Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P
2016-12-01
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. Copyright © 2016. Published by Elsevier B.V.
Impact of Lysosome Status on Extracellular Vesicle Content and Release
Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P.
2016-01-01
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. PMID:27238186
Buzhynskyy, Nikolay; Golczak, Marcin; Lai-Kee-Him, Joséphine; Lambert, Olivier; Tessier, Béatrice; Gounou, Céline; Bérat, Rémi; Simon, Anne; Granier, Thierry; Chevalier, Jean-Marc; Mazères, Serge; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Brisson, Alain R
2009-10-01
Annexins are soluble proteins that bind to biological membranes in a Ca(2+)-dependent manner. Annexin-A6 (AnxA6) is unique in the annexin family as it consists of the repeat of two annexin core modules, while all other annexins consist of a single module. AnxA6 has been proposed to participate in various membrane-related processes, including endocytosis and exocytosis, yet the molecular mechanism of association of AnxA6 with biological membranes, especially its ability to aggregate membranes, is still unclear. To address this question, we studied the association of AnxA6 with model phospholipid membranes by combining the techniques of quartz crystal microbalance with dissipation monitoring (QCM-D), (cryo-) transmission electron microscopy (TEM) and atomic force microscopy (AFM). The properties of membrane binding and membrane aggregation of AnxA6 were compared to two reference systems, annexin A5 (AnxA5), which is the annexin prototype, and a chimerical AnxA5-dimer molecule, which is able to aggregate two membranes in a symmetrical manner. We show that AnxA6 presents two modes of association with lipid membranes depending on Ca(2+)-concentration. At low Ca(2+)-concentration ( approximately 60-150microM), AnxA6 binds to membranes via its two coplanar annexin modules and is not able to associate two separate membranes. At high Ca(2+)-concentration ( approximately 2mM), AnxA6 molecules are able to bind two adjacent phospholipid membranes and present a conformation similar to the AnxA6 3D crystallographic structure. Possible biological implications of these novel membrane-binding properties of AnxA6 are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palermo, M.R.; Schroeder, P.R.
This technical note describes a technique for comparison of the predicted quality of effluent discharged from confined dredged material disposal areas with applicable water quality standards. This note also serves as documentation of a computer program called EFQUAL written for that purpose as part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaehn, John; Peterson, Eric; Orme, Christopher
2013-01-01
Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H 2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H 2 gas separations at operating temperatures (~200°C).more » VTEC PI 80-051 was thoroughly analyzed for its H 2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H 2/CO 2 separation (α = 7-9) and H 2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H 2 gas separations membrane for high-temperature syngas streams.« less
Cementitious Barriers Partnership - FY2015 End-Year Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, H. H.; Flach, G. P.; Langton, C. A.
2015-09-17
The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis)more » for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.« less
Methods and apparatus for the on-site production of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Buschmann, Wayne E. (Inventor); James, Patrick I. (Inventor)
2010-01-01
Methods, apparatus, and applications for the on-site production of hydrogen peroxide are described. An embodiment of the apparatus comprises at least one anolyte chamber coupled to at least one anode, at least one catholyte chamber, wherein the at least one catholyte chamber is coupled to at least one cathode, at least one anode membrane and at least one cathode membrane, wherein the anode membrane is adjacent to the at least one anode, wherein the cathode membrane is adjacent to the at least one cathode, at least one central chamber disposed between the at least one anolyte chamber and the at least one catholyte chamber. Hydrogen peroxide is produced by reduction of an oxygen-containing gas at the cathode.
A hybrid silicon membrane spatial light modulator for optical information processing
NASA Technical Reports Server (NTRS)
Pape, D. R.; Hornbeck, L. J.
1984-01-01
A new two dimensional, fast, analog, electrically addressable, silicon based membrane spatial light modulator (SLM) was developed for optical information processing applications. Coherent light reflected from the mirror elements is phase modulated producing an optical Fourier transform of an analog signal input to the device. The DMD architecture and operating parameters related to this application are presented. A model is developed that describes the optical Fourier transform properties of the DMD.
The look of into Desalination and Natural Hazard
NASA Astrophysics Data System (ADS)
Arregoitia Sarabia, C. A.
2012-04-01
Today due to climate change and population growth, cities and especially larger cities have become more water stressed. Thus the growing demand for drinkable water due to water scarcity in different World regions and its reliable supply, have persuaded humans to construct desalination plants. Today, the implementation of different large-scale desalination methods is increasing. Desalination is a separation process that consists on the removal of salts from water (seawater or brackish water) to make it suitable for other purposes. Some important environmental aspects for a desalination plant are the location of the plant, brine disposal and energy considerations. However these issues become affected when natural adversity happens. Desalination processes used are normally classified in thermal and membrane. The energy required by these processes could be of any form of heat, electrical or mechanical depending on the separation process. These types of energy derive from fossil fuels, which conditions the desalination sustainability -environmental and economical. To improve this reality, the desalination industry is making a great research effort related to novel technologies, the use of renewable energies, and brine management. Presently desalination membrane technologies are preferred over thermal ones (based on evaporation) since they allow for continuous operations close to ambient temperatures. Moreover, the offer for a wider selection of large equipment and modules is increasing. This makes it possible to design processes according to potable needs as well as ease the use of membranes and other separation technologies together. Traditionally the location of the plant is an obvious matter where selection of site should be determined by considerations of mainly energy supply available and distance in relation to feed water intake, disposal site and end-user. This means locating these plants in coastal areas or inland locations and look for a solution to then naturally dispose their brine waste. However, a desalination plant can be affected by different natural hazards depending on where they are located and therefore they should be considered when determining the optimum site for it. A natural hazard is an unexpected or uncontrollable natural event of unusual intensity that threatens people's lives or their activities. Atmospheric hazards are weather-related events, whereas geologic hazards happen on or within the Earth's surface. However, it is important to understand that the capricious force of nature can trigger catastrophes that could impact households, communities and even threaten life across the world depending on the desalination plant location. Little work has been undertaken so far to explore the impact of desalination technology when a natural event arrives. Therefore, this paper looks at the different desalination technologies and their role and impact when a natural hazard occurs because they can either be a mitigation source for water scarcity or can be turned into a greater disaster. An example is presented Keywords: desalination, water, natural hazards and megacities
Devices, systems, and methods for microscale isoelectric fractionation
Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.
2016-08-09
Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
Devices, systems, and methods for microscale isoelectric fractionation
Sommer, Gregory J; Hatch, Anson V; Wang, Ying-Chih; Singh, Anup K
2015-04-14
Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
The US EPA’s Human Exposure Model (HEM) is an integrated modeling system to estimate human exposure to chemicals in household consumer products. HEM consists of multiple modules, which may be run either together, or independently. The Source-to-Dose (S2D) module in HEM use...
Solar module having reflector between cells
Kardauskas, Michael J.
1999-01-01
A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.
Ultrafiltration Membrane Module Virus Reduction at Different Fluxes, and with a Cut Fiber
NSF International evaluated The Dow Chemical Company SFD-2880 UF membrane module for MS2 reduction at four different fluxes, and also with and without a cut fiber, to compare MS2 log reduction under the different scenarios. All tests were conducted in accordance with the U.S. En...
Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.
Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel
2017-06-27
Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.
GEOSYNTHETIC DESIGN GUIDANCE FOR HAZARDOUS WASTE LANDFILL CELLS AND SURFACE IMPOUNDMENTS
The report provides guidance design procedures for the use of geosynthetic materials in hazardous waste land disposal cells. Primary geosynthetic components include flexible membrane liners (FML) used to limit the flow of leachate, and leachate collection and removal systems (LCR...
INVESTIGATION INTO THE REJUVENATION OF SPENT ELECTROLESS NICKEL BATHS BY ELECTRODIALYSIS
Electroless nickel plating generates substantially more waste than other metal-finishing processes due to the inherent limited bath life and the need for regular bath disposal. Electrodialysis can be used to generate electroless nickel baths, but poor membrane permselectivity, l...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, P.R.; Gibson, A.C.; Dardeau, E.A.
This technical note has a twofold purpose: to describe a technique for comparing the predicted quality of surface runoff from confined dredged material disposal areas with applicable water quality standards and to document a computer program called RUNQUAL, written for that purpose as a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
All-optical modulation in Mid-Wavelength Infrared using porous Si membranes
Park, Sung Jin; Zakar, Ammar; Zerova, Vera L.; Chekulaev, Dimitri; Canham, Leigh T.; Kaplan, Andre
2016-01-01
We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications. PMID:27440224
Principles of an enhanced MBR-process with mechanical cleaning.
Rosenberger, S; Helmus, F P; Krause, S; Bareth, A; Meyer-Blumenroth, U
2011-01-01
Up to date, different physical and chemical cleaning protocols are necessary to limit membrane fouling in membrane bioreactors. This paper deals with a mechanical cleaning process, which aims at the avoidance of hypochlorite and other critical chemicals in MBR with submerged flat sheet modules. The process basically consists of the addition of plastic particles into the loop circulation within submerged membrane modules. Investigations of two pilot plants are presented: Pilot plant 1 is equipped with a 10 m(2) membrane module and operated with a translucent model suspension; pilot plant 2 is equipped with four 50 m(2) membrane modules and operated with pretreated sewage. Results of pilot plant 1 show that the establishment of a fluidised bed with regular particle distribution is possible for a variety of particles. Particles with maximum densities of 1.05 g/cm(3) and between 3 and 5 mm diameter form a stable fluidised bed almost regardless of activated sludge concentration, viscosity and reactor geometry. Particles with densities between 1.05 g/cm(3) and 1.2 g/cm(3) form a stable fluidised bed, if the velocity at the reactor bottom is sufficiently high. Activities within pilot plant 2 focused on plant optimisation and the development of an adequate particle retention system.
Kreissel, K; Bösl, M; Lipp, P; Franzreb, M; Hambsch, B
2012-01-01
To determine the removal efficiency of ultrafiltration (UF) membranes for nano-particles in the size range of viruses the state of the art uses challenge tests with virus-spiked water. This work focuses on bench-scale and semi-technical scale experiments. Different experimental parameters influencing the removal efficiency of the tested UF membrane modules were analyzed and evaluated for bench- and semi-technical scale experiments. Organic matter in the water matrix highly influenced the removal of the tested bacteriophages MS2 and phiX174. Less membrane fouling (low ΔTMP) led to a reduced phage reduction. Increased flux positively affected phage removal in natural waters. The tested bacteriophages MS2 and phiX174 revealed different removal properties. MS2, which is widely used as a model organism to determine virus removal efficiencies of membranes, mostly showed a better removal than phiX174 for the natural water qualities tested. It seems that MS2 is possibly a less conservative surrogate for human enteric virus removal than phiX174. In bench-scale experiments log removal values (LRV) for MS2 of 2.5-6.0 and of 2.5-4.5 for phiX174 were obtained for the examined range of parameters. Phage removal obtained with differently fabricated semi-technical modules was quite variable for comparable parameter settings, indicating that module fabrication can lead to differing results. Potting temperature and module size were identified as influencing factors. In conclusion, careful attention has to be paid to the choice of experimental settings and module potting when using bench-scale or semi-technical scale experiments for UF membrane challenge tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Kedar G.; Pannu, Satinderpall S.
An integrated circuit system having an integrated circuit (IC) component which is able to have its functionality destroyed upon receiving a command signal. The system may involve a substrate with the IC component being supported on the substrate. A module may be disposed in proximity to the IC component. The module may have a cavity and a dissolving compound in a solid form disposed in the cavity. A heater component may be configured to heat the dissolving compound to a point of sublimation where the dissolving compound changes from a solid to a gaseous dissolving compound. A triggering mechanism maymore » be used for initiating a dissolution process whereby the gaseous dissolving compound is allowed to attack the IC component and destroy a functionality of the IC component.« less
Purification of oily wastewater by hybrid UF/MD.
Gryta, M; Karakulski, K; Morawski, A W
2001-10-01
Investigations on the treatment of oily wastewater by a combination of ultrafiltration (UF) and membrane distillation (MD) as a final purification method have been performed. A tubular UF module equipped with polyvinylidene fluoride (PVDF) membranes and a capillary MD module with polypropylene membranes were tested using a typical bilge water collected from a harbour without pretreatment. The permeate obtained from the UF process generally contains less than 5 ppm of oil. A further purification of the UF permeate by membrane distillation results in a complete removal of oil from wastewater and a very high reduction of the total organic carbon (99.5%) and total dissolved solids (99.9%).
Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment.
Larsen, Jannik B; Kennard, Celeste; Pedersen, Søren L; Jensen, Knud J; Uline, Mark J; Hatzakis, Nikos S; Stamou, Dimitrios
2017-09-19
Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC than POPC membranes, but inversely higher on curved POPC than DOPC membranes. This variation in the binding to both planar and curved membranes leads to a net increase in the recruitment by membrane curvature of tN-Ras when reducing the acyl chain saturation state. Additionally, we found increased recruitment by membrane curvature of tN-Ras when substituting PC for PE, and when decreasing acyl chain length from 14 to 12 carbons (DMPC versus DLPC). However, these variations in recruitment ability had different origins, with the headgroup size primarily influencing tN-Ras binding to planar membranes whereas the change in acyl chain length primarily affected binding to curved membranes. Molecular field theory calculations recapitulated these findings and revealed lateral pressure as an underlying biophysical mechanism dictating how curvature and composition synergize to modulate recruitment of lipidated proteins. Our findings suggest that the different compositions of cellular compartments could modulate the potency of membrane curvature to recruit lipidated proteins and thereby synergistically regulate the trafficking and sorting of lipidated proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yukun; Dong, Shuying; Zhu, Liang
2018-03-01
Immobilization of TiO2 is a potential approach to obtain photocatalytic membranes that could eliminate concentration polarization in sewage disposal for direct contact membrane distillation (DCMD) process. A simple non-solvent-induced phase separation (NIPS) method was proposed to prepare poly(vinylidene fluoride) (PVDF) membrane, and the double-coating technology was further used to prepare the self-cleaning membranes with different TiO2 content. The effects of TiO2 nano-particles on membrane crystal form, morphology, porosity, pore size, pore size distribution, hydrophobicity, permeation, and photocatalytic efficiency were investigated, respectively. The flux of the prepared membranes is higher than the membrane (MS) provided by Membrane Solutions, LLC, in DCMD process. The contact angle between water and membrane could be increased 22° by introducing photocatalytic layer containing TiO2. During the photocatalytic test, 65.78-96.31% degrading rate of 15 mg/L Rhodamine B (RhB) was achieved. The relative flux of the membrane T-3 can be recovered to 0.96 in photocatalysis-membrane reactor for 8 h UV radiation. The fabricated membrane has great potential in high-salty dyeing wastewater treatment due to its high hydrophobicity and photocatalytic capability. [Figure not available: see fulltext.
Membrane proteins bind lipids selectively to modulate their structure and function.
Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V
2014-06-05
Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these findings will be important not only for defining the selectivity of membrane proteins towards lipids, but also for understanding the role of lipids in modulating protein function or drug binding.
The sigma-1 receptor chaperone as an inter-organelle signaling modulator
Su, Tsung-Ping; Hayashi, Teruo; Maurice, Tangui; Buch, Shilpa; Ruoho, Arnold E.
2010-01-01
Inter-organelle signaling plays important roles in many physiological functions. Endoplasmic reticulum (ER)-mitochondrion signaling affects intra-mitochondrial calcium (Ca2+) homeostasis and cellular bioenergetics. ER-nucleus signaling attenuates ER stress. ER-plasma membrane signaling regulates cytosolic Ca2+ homeostasis, and ER-mitochondrion-plasma membrane signaling regulates hippocampal dendritic spine formation. Here we propose that the sigma-1 receptor (Sig-1R), an ER chaperone protein, acts as an inter-organelle signaling modulator. Sig-1Rs normally reside at the ER-mitochondrion contact called the MAM (mitochondrion-associated ER membrane), where Sig-1Rs regulate ER-mitochondrion signaling and the ER-nucleus cross-talk. When cells are stimulated by ligands or undergo prolonged stress, Sig-1Rs translocate from the MAM to the ER reticular network and plasmalemma/plasma membrane to regulate a variety of functional proteins, including ion channels, receptors, and kinases. Thus, the Sig-1R serves as an inter-organelle signaling modulator locally at the MAM and remotely at the plasmalemma/plasma membrane. Many pharmacological/physiological effects of Sig-1Rs may relate to this unique action of Sig-1Rs. PMID:20869780
Textural break foundation wall construction modules
Phillips, Steven J.
1990-01-01
Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.
Wuytens, Pieter; Parakhonskiy, Bogdan; Yashchenok, Alexey; Winterhalter, Mathias; Skirtach, Andre
2014-10-01
This review is devoted to pharmacological applications of principles of release from capsules to overcome the membrane barrier. Many of these principles were developed in the context of polymeric multilayer capsule membrane modulation, but they are also pertinent to liposomes, polymersomes, capsosomes, particles, emulsion-based carriers and other carriers. We look at these methods from the physical, chemical or biological driving mechanisms point of view. In addition to applicability for carriers in drug delivery, these release methods are significant for another area directly related to pharmacology - modulation of the permeability of the membranes and thus promoting the action of drugs. Emerging technologies, including ionic current monitoring through a lipid membrane on a nanopore, are also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cholesterol to phospholipid ratio is used as a representation for membrane fluidity, and predictor of cryopreservation success but results are not consistent across species and ignore the impact of membrane proteins. Therefore, this research explored the modulation of membrane fluidity and protein ...
NSAID-derived gamma-secretase modulators. Part III: Membrane anchoring.
Baumann, Stefanie; Höttecke, Nicole; Schubenel, Robert; Baumann, Karlheinz; Schmidt, Boris
2009-12-15
Selective lowering of Abeta(42) levels with small-molecule substrate targeting gamma-secretase modulators (sGSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. Here we present N-substituted carbazole- and O-substituted fenofibrate-derived sGSMs and their activity data. Seven out of 19 screened compounds exhibited promising activity against Abeta(42) secretion at a low micromolar level. We presume that the sGSMs interact with lys624 at the membrane interface and that the lipophilic substituents anchor the compound orientation in the membrane.
[Morphology of gametes in sea urchins from Peter the Great Bay, Sea of Japan].
Drozdov, A L; Vinnikova, V V
2010-01-01
The fine structure of the gametes in six sea urchin species of the Sea of Japan was studied. The spermatozoons in Strongylocentrotus nudus, S. intermedius, Echinocardium cordatum, Scaphechinus mirabilis, Sc. grizeus and Echinarachnius parma are species-specific. The conical head and symmetrically disposed ring-shape mitochondrion are common to regular sea urchin sperm cells. S. nudus is characterized by the bulb-shaped head of the zoosperm; S. intermedius, by a bullet-shaped one. The zoosperm spearhead and small amount of postacrosome material are common to irregular sea urchins; the sperm width: length ratio varies for different species, with the highest for Sc. mirabilis. The zoosperm of Sc. griseus is characterized by two lipid drops in the cell center. Asymmetrical mitochondrion disposal is usual for E. parma. Actin filaments are found in the postacrosome material in the zoosperm of cordiform sea urchins. The differences in the fine structure of zoosperm in eurybiont species Ech. cordatum inhabiting the Sea of Japan and coastal areas of the Northeast Atlantic may bear record to the complex existence of species Ech. cordatum. The fine structure of zoosperm is unique for each of the studied families, Strongylocentrotidae, Scutellidae, and Loveniidae. The eggs of all the species are characterized by vitelline and tremelloid membranes. The vitelline membrane is formed by cytoplasm protrusions; the area between them is filled with fubrillary material. The tremelloid membrane is formed by fubrillary material associated with apical parts of microvilli of the vitelline membrane. The irregular sea urchins Sc. griseus, Sc. mirabilis and E. parma are characterized by chromatophores situated in the tremelloid membrane, with the highest abundance in Sc. mirabilis.
Methods of making membrane electrode assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yu Seung; Lee, Kwan -Soo; Rockward, Tommy Q. T.
Method of making a membrane electrode assembly comprising: providing a membrane comprising a perfluorinated sulfonic acid; providing a first transfer substrate; applying to a surface of the first transfer substrate a first ink, said first ink comprising an ionomer and a catalyst; applying to the first ink a suitable non-aqueous swelling agent; forming an assembly comprising: the membrane; and the first transfer substrate, wherein the surface of the first transfer substrate comprising the first ink and the non-aqueous swelling agent is disposed upon one surface of the membrane; and heating the assembly at a temperature of 150.degree. C. or lessmore » and at a pressure of from about 250 kPa to about 3000 kPa or less for a time suitable to allow substantially complete transfer of the first ink and the second ink to the membrane; and cooling the assembly to room temperature and removing the first transfer substrate and the second transfer substrate.« less
Eliseus, A; Bilad, M R; Nordin, N A H M; Putra, Z A; Wirzal, M D H
2017-10-01
Microalgae harvesting using membrane technology is challenging because of its high fouling propensity. As an established fouling mitigation technique, efficacy of air bubbles can be improved by maximizing the impact of shear-rates in scouring foulant. In this study, it is achieved by tilting the membrane panel. We investigate the effect of tilting angle, switching period as well as aeration rate during microalgal broth filtration. Results show that higher tilting angles (up to 20°) improve permeability of up to 2.7 times of the vertical panel. In addition, operating a one-sided panel is better than a two-sided panel, in which the later involved switching mode. One-sided membrane panel only require a half of area, yet its performance is comparable with of a large-scale module. This tilted panel can lead to significant membrane cost reductions and eventually improves the competitiveness of membrane technology for microalgae harvesting application. Copyright © 2017 Elsevier Ltd. All rights reserved.
Collagen Membrane and Immune Response in Guided Bone Regeneration: Recent Progress and Perspectives.
Chu, Chenyu; Deng, Jia; Sun, Xianchang; Qu, Yili; Man, Yi
2017-10-01
Collagen is one of the important components of collagen membranes as well as the extracellular matrix (ECM). Most previous studies have focused on combining collagen membranes with various cross-linking agents, grafting materials, and cytokines to enhance their mechanical properties and bioactivities. Moreover, collagen membranes are often designed to minimize foreign body reactions involving macrophages. However, macrophages were recently found to play a pivotal role during bone regeneration based on their polarization into both proinflammatory and anti-inflammatory phenotypes. Because of the abilities to modulate macrophage polarization and mediate the balance of proinflammatory and anti-inflammatory microenvironments, immune-responsive collagen membranes may be an innovative strategy for promoting bone regeneration. Herein, following a brief review of collagen membranes and the background of macrophages, recent modulations and studies of immune-responsive collagen are described to express the potential of collagen interacting with macrophages and the necessity of further studies in the field of immune-responsive collagen membranes.
Pal, Madhubonti; Mondal, Mrinal Kanti; Paine, Tapan Kanti; Pal, Parimal
2018-06-01
A novel graphene-based nanocomposite membrane was synthesized by interfacial polymerization (IP) through chemical bonding of the graphene oxide (GO) layer to polyethersulfone surface. Detailed characterization of the composite membrane through AFM, SEM, ATR-FTIR, XRD analysis, and Raman spectroscopy indicates strong potential of the membrane in highly selective removal of the toxic contaminants like arsenic and fluoride while permeating the essential minerals like calcium and magnesium. This makes the membrane suitable for production of safe drinking water from contaminated water. The membrane applied in a flat-sheet cross-flow module succeeded in removal of more than 98% arsenic and around 80% fluoride from contaminated water while selectively retaining the useful calcium and magnesium minerals in drinking water. A sustained pure water flux of around 150 LMH (liter per square meter per hour) during operation over long hours (> 150 h) with only 3-5% drop in flux indicates antifouling character of the membrane module.
NASA Astrophysics Data System (ADS)
Farges, Bérangère; Duchez, David; Dussap, Claude-Gilles; Cornet, Jean-François
2012-01-01
In microgravity, one of the major challenge encountered in biological life support systems (BLSS) is the gas-liquid transfer with, for instance, the necessity to provide CO2 (carbon source, pH control) and to recover the evolved O2 in photobioreactors used as atmosphere bioregenerative systems.This paper describes first the development of a system enabling the accurate characterization of the mass transfer limiting step for a PTFE membrane module used as a possible efficient solution to the microgravity gas-liquid transfer. This original technical apparatus, together with a technical assessment of membrane permeability to different gases, is associated with a balance model, determining thus completely the CO2 mass transfer problem between phases. First results are given and discussed for the CO2 mass transfer coefficient kLCO obtained in case of absorption experiments at pH 8 using the hollow fiber membrane module. The consistency of the proposed method, based on a gas and liquid phase balances verifying carbon conservation enables a very accurate determination of the kLCO value as a main limiting step of the whole process. Nevertheless, further experiments are still needed to demonstrate that the proposed method could serve in the future as reference method for mass transfer coefficient determination if using membrane modules for BLSS in reduced or microgravity conditions.
Ríos, Glenda L.; Canizo, Jesica R.; Antollini, Silvia S.; Alberio, Ricardo H.
2017-01-01
Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-β-cyclodextrin (MβCD) did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane) and cholesteryl esters (stored in lipid droplets), revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MβCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs) among seasons and a dynamic organizational structure of cholesterol homeostasis within the COC. Modulation of membrane cholesterol by MβCD improved survival of bovine oocytes and preserved integrity of GM1-related rafts after vitrification. PMID:28686720
Silicon Micromachining in RF and Photonic Applications
NASA Technical Reports Server (NTRS)
Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen
1995-01-01
Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.
Self-Cleaning Tubular-Membrane Module
NASA Technical Reports Server (NTRS)
Sarbolouki, M. N.
1983-01-01
Tubular membranes made self-cleaning with aid of flow reversing valve. Sponge balls scrub membrane surfaces as they travel inside membrane tubes. A four-way flow-reversal valve automatically reverses flow in tubes at preset intervals so sponge balls reciprocate along tubes. Baskets at ends of tubes prevent sponges from escaping. Automatic cleaning feature added to existing membrane processing equipment with minimal modifications.
System and method for detecting gas
Chow, Oscar Ken; Moulthrop, Lawrence Clinton; Dreier, Ken Wayne; Miller, Jacob Andrew
2010-03-16
A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.
Inexpensive and Disposable pH Electrodes
ERIC Educational Resources Information Center
Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily
2010-01-01
Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…
Schäfer, A I; Broeckmann, A; Richards, B S
2007-02-01
In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only very limited experience exists, both with regards to efficiency as well as water quality. In this paper, this lack of knowledge is addressed by evaluating a system operated with varying parameters (pressure and flow) with constant power as a step toward defining a safe operating window, and they provide a basis for interpreting future data obtained with a renewable energy source. Field trials were performed on a brackish (5300 mg/L TDS; 8290 microS/cm) bore in Central Australia with a photovoltaic-powered membrane filtration (PV-membrane) system. Four nanofiltration and reverse osmosis membranes (BW30, ESPA4, NF90, TFC-S) and a number of operation parameter combinations (transmembrane pressure, feed flow, TFC-S) and operating parameters transmembrane pressure and feed flow were investigated to find the best operating conditions for maximum drinking water production and minimum specific energy consumption (SEC). The ESPA4 membrane performed best for this brackish source, producing 250 L/h of excellent drinking water (257 mg/L TDS; 400 microS/ cm) at an SEC of 1.2 kWh/m3. The issue of brine disposal or reuse is also discussed and the article compares the salinity of the produced brine with livestock water. Since the feedwater is disinfected physically using ultrafiltration (UF), the brine is free from bacteria and most viruses and hence can be seen more as a reusable product stream than a waste stream with a disposal problem.
MEMBRANE BIOTREATMENT OF VOC-LADEN AIR
The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...
Development of a two-stage membrane-based wash-water reclamation subsystem
NASA Technical Reports Server (NTRS)
Mccray, S. B.
1988-01-01
A two-stage membrane-based subsystem was designed and constructed to enable the recycle of wash waters generated in space. The first stage is a fouling-resistant tube-side-feed hollow-fiber ultrafiltration module, and the second stage is a spiral-wound reverse-osmosis module. Throughout long-term tests, the subsystem consistently produced high-quality permeate, processing actual wash water to 95 percent recovery.
Lim, Jae Kyu; Mayer, Florian; Kang, Sung Gyun; Müller, Volker
2014-01-01
Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H+ translocation across the cytoplasmic membrane that then drives Na+ translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na+/H+ antiporter module. The electrochemical Na+ gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na+/H+ antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains. PMID:25049407
Lim, Jae Kyu; Mayer, Florian; Kang, Sung Gyun; Müller, Volker
2014-08-05
Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H(+) translocation across the cytoplasmic membrane that then drives Na(+) translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na(+)/H(+) antiporter module. The electrochemical Na(+) gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na(+)/H(+) antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains.
Colcombet, Jean; Lelièvre, Françoise; Thomine, Sébastien; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie
2005-07-01
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.
Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette
2009-12-18
Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.
NASA Astrophysics Data System (ADS)
Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue
2014-11-01
Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.
Sun, MIn; Perry, Kevin L.
2015-11-20
A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.
Meal Module, Tray Pack 36-Persons
1987-08-27
4184 Canadian Bacon 8905-01-1 51-2488 Escal loped Potatoes 8940-01-147-6362 Grape Juice, Instant 8915-01-010-1471 Disposable Unit (Table A-2) as...Chocolate Pudding 8940-01-159-1569 Orange, Juice, Instant 8915-00-530-3414 Disposable Unit (Table A-2) as listed Condiments (Table A-3) as listed...Breakfast 3 Pineapple w/Syrup 8915-00-170-5127 Chicken ala King 8940-01-154-3525 Buttered Noodles 8940-01-151-5844 Apple Dessert 8940-01-147-7855 Grape
Membrane processes in biotechnology: an overview.
Charcosset, Catherine
2006-01-01
Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.
NASA Astrophysics Data System (ADS)
Wang, Kang; Gao, Guiqing; Qin, Yuanli; He, Xiangyong
2018-05-01
The nuclear accident emergency disposal must be supported by an efficient, real-time modularization and standardization communication system. Based on the analysis of communication system for nuclear accident emergency disposal which included many functions such as the internal and external communication, multiply access supporting and command center. Some difficult problems of the communication system were discussed such as variety access device type, complex composition, high mobility, set up quickly, multiply business support, and so on. Taking full advantages of the IP Multimedia Subsystem (IMS), a nuclear accident emergency communication system was build based on the IMS. It was studied and implemented that some key unit and module functions of communication system were included the system framework implementation, satellite access, short-wave access, load/vehicle-mounted communication units. The application tests showed that the system could provide effective communication support for the nuclear accident emergency disposal, which was of great practical value.
Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R; Russinova, Eugenia; Chaumont, François
2014-07-01
Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. © 2014 American Society of Plant Biologists. All rights reserved.
Ramachandran, Kapil V.; Margolis, Seth S.
2017-01-01
In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It remains unclear how proteasomes can acutely regulate such processes, as this is inconsistent with their canonical role in proteostasis. Here, we made the discovery of a mammalian nervous system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is tightly associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of this membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked extracellular peptide production and attenuated neuronal activity-induced calcium signaling. Moreover, membrane proteasome-derived peptides are sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes primarily function to maintain proteostasis, and highlight a form of neuronal communication through a membrane proteasome complex. PMID:28287632
Conceptual design and integration of a space station resistojet propulsion assembly
NASA Technical Reports Server (NTRS)
Tacina, Robert R.
1987-01-01
The resistojet propulsion module is designed as a simple, long life, low risk system offering operational flexibility to the space station program. It can dispose of a wide variety of typical space station waste fluids by using them as propellants for orbital maintenance. A high temperature mode offers relatively high specific impulse with long life while a low temperature mode can propulsively dispose of mixtures that contain oxygen or hydrocarbons without reducing thruster life or generating particulates in the plume. A low duty cycle and a plume that is confined to a small aft region minimizes the impacts on the users. Simple interfaces with other space station systems facilitate integration. It is concluded that there are no major obstacles and many advantages to developing, installing, and operating a resistojet propulsion module aboard the Initial Operational Capability (IOC) space station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The module presents the requirements for groundwater monitoring at interim status and permitted treatment, storage, and disposal facilities. It describes the groundwater monitoring criteria for interim status and permitted facilities. It explains monitoring well placement and outlines the three stages of the groundwater monitoring program for permitted facilities.
Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C
2016-08-22
Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. Copyright © 2016 Elsevier Inc. All rights reserved.
Thin membrane sensor with biochemical switch
NASA Technical Reports Server (NTRS)
Worley, III, Jennings F. (Inventor); Case, George D. (Inventor)
1994-01-01
A modular biosensor system for chemical or biological agent detection utilizes electrochemical measurement of an ion current across a gate membrane triggered by the reaction of the target agent with a recognition protein conjugated to a channel blocker. The sensor system includes a bioresponse simulator or biochemical switch module which contains the recognition protein-channel blocker conjugate, and in which the detection reactions occur, and a transducer module which contains a gate membrane and a measuring electrode, and in which the presence of agent is sensed electrically. In the poised state, ion channels in the gate membrane are blocked by the recognition protein-channel blocker conjugate. Detection reactions remove the recognition protein-channel blocker conjugate from the ion channels, thus eliciting an ion current surge in the gate membrane which subsequently triggers an output alarm. Sufficiently large currents are generated that simple direct current electronics are adequate for the measurements. The biosensor has applications for environmental, medical, and industrial use.
Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.
1977-01-01
A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.
Cantrell, A R; Scheuer, T; Catterall, W A
1999-07-01
Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.
Small, low cost, artificial kidney
NASA Technical Reports Server (NTRS)
Lavender, A. R.; Markley, F. W.
1972-01-01
Disposable hemodialyzer is described that can be used at home by non-medically trained personnel. Short lengths of semipermeable membrane tubes are arranged in parallel, supported by plastic mesh and encased in epoxy at ends. Tubes are connected to input and output blood manifolds which are separated by dialysate chamber. Daily dialysis requires only two hours or less.
Jeon, Jin-Woo; Kim, Jee-Hyun; Lee, Jong-Mook; Lee, Won-Ho; Lee, Do-Young; Paek, Se-Hwan
2014-02-15
To realize an inexpensive, pocket-sized immunosensor system, a rapid test devise based on cross-flow immuno-chromatography was physically combined with a lens-free CMOS image sensor (CIS), which was then applied to the detection of the food-borne pathogen, Salmonella typhimurium (S. typhimurium). Two CISs, each retaining 1.3 mega pixel array, were mounted on a printed circuit board to fabricate a disposable sensing module, being connectable with a signal detection system. For the bacterial analysis, a cellulose membrane-based immunosensing platform, ELISA-on-a-chip (EOC), was employed, being integrated with the CIS module, and the antigen-antibody reaction sites were aligned with the respective sensor. In such sensor construction, the chemiluminescent signals produced from the EOC are transferred directly into the sensors and are converted to electric signals on the detector. The EOC-CIS integrated sensor was capable of detecting a traceable amount of the bacterium (4.22 × 10(3)CFU/mL), nearly comparable to that adopting a sophisticated detector such as cooled-charge-coupled device, while having greatly reduced dimensions and cost. Upon coupling with immuno-magnetic separation, the sensor showed an additional 67-fold enhancement in the detection limit. Furthermore, a real sample test was carried out for fish muscles inoculated with a sample of 3.3CFU S. typhimurium per 10 g, which was able to be detected earlier than 6h after the onset of pre-enrichment by culture. © 2013 Elsevier B.V. All rights reserved.
Factor H: A Complement Regulator in Health and Disease, and a Mediator of Cellular Interactions
Kopp, Anne; Hebecker, Mario; Svobodová, Eliška; Józsi, Mihály
2012-01-01
Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies. PMID:24970127
One Step Biomass Gas Reforming-Shift Separation Membrane Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Michael J.; Souleimanova, Razima
2012-12-28
GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes weremore » identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from NETL showed Pd80Cu20 with the highest flux, therefore it was chosen as the initial and eventually, final candidate membrane. The criteria for choice were high hydrogen flux, long-term stability, and H2S tolerance. Results from SCHOTT using glass membranes showed a maximum of 0.25 SCFH/ft2, that is an order of magnitude better than the ceramic membrane but still two orders of magnitude lower than the metallic membrane. A membrane module was designed to be tested with an actual biomass gasifier. Some parts of the module were ordered but the work was stopped when a no go decision was made by the DOE.« less
VIBRATING PERVAPORATION MODULES: EFFECT OF MODULE DESIGN ON PERFORMANCE
A third commercial-scale vibrating pervaporation membrane module was fabricated and evaluated for the separation of volatile organic compounds (VOCs) from aqueous solutions. Experiments with surrogate solutions of four hydrophobic VOCs (1,1,1-trichloroethane (TCA), trichloroethy...
Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.
1996-11-12
A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.
Leak test fixture and method for using same
Hawk, Lawrence S.
1976-01-01
A method and apparatus are provided which are especially useful for leak testing seams such as an end closure or joint in an article. The test does not require an enclosed pressurized volume within the article or joint section to be leak checked. A flexible impervious membrane is disposed over an area of the seamed surfaces to be leak checked and sealed around the outer edges. A preselected vacuum is applied through an opening in the membrane to evacuate the area between the membrane and the surface being leak checked to essentially collapse the membrane to conform to the article surface or joined adjacent surfaces. A pressure differential is concentrated at the seam bounded by the membrane and only the seam experiences a pressure differential as air or helium molecules are drawn into the vacuum system through a leak in the seam. A helium detector may be placed in a vacuum exhaust line from the membrane to detect the helium. Alternatively, the vacuum system may be isolated at a preselected pressure and leaks may be detected by a subsequent pressure increase in the vacuum system.
Systems and methods for pressure and temperature measurement
Challener, William Albert; Airey, Li
2016-12-06
A measurement system in one embodiment includes an acquisition module and a determination module. The acquisition module is configured to acquire resonant frequency information corresponding to a sensor disposed in a remote location from the acquisition module. The resonant frequency information includes first resonant frequency information for a first resonant frequency of the sensor corresponding to environmental conditions of the remote location, and also includes second resonant frequency information for a different, second resonant frequency of the sensor corresponding to the environmental conditions of the remote location. The determination module is configured to use the first resonant frequency information and the second resonant frequency information to determine the temperature and the pressure at the remote location.
Pb2+ Modulates Ca2+ Membrane Permeability In Paramecium
NASA Astrophysics Data System (ADS)
Bernal-Martínez, Juan; Ortega Soto, Arturo
2004-09-01
Intracellular recording experiments in current clamp configuration were done to evaluate whether Pb2+ modulates ionic membrane permeability in the fresh water Paramecium tetraurelia. It was found that Pb2+ triggers in a dose-dependent manner, a burst of spontaneous action potentials followed by a robust and sustained after hyper-polarization. In addition, Pb2+ increased the frequency of firing the spontaneous Ca2+-Action Potential and also, the duration of Ca2+-Action Potential, in a dose and reversibly-dependent manner. These results suggest that Pb2+ increases calcium membrane permeability of Paramecium and probably activates a calcium-dependent-potassium conductance in the ciliate.
Metabolic fuel kinetics in fish: swimming, hypoxia and muscle membranes.
Weber, Jean-Michel; Choi, Kevin; Gonzalez, Alex; Omlin, Teye
2016-01-01
Muscle performance depends on the supply of metabolic fuels and disposal of end-products. Using circulating metabolite concentrations to infer changes in fluxes is highly unreliable because the relationship between these parameters varies greatly with physiological state. Quantifying fuel kinetics directly is therefore crucial to the understanding of muscle metabolism. This review focuses on how carbohydrates, lipids and amino acids are provided to fish muscles during hypoxia and swimming. Both stresses force white muscle to produce lactate at higher rates than it can be processed by aerobic tissues. However, lactate accumulation is minimized because disposal is also strongly stimulated. Exogenous supply shows that trout have a much higher capacity to metabolize lactate than observed during hypoxia or intense swimming. The low density of monocarboxylate transporters and their lack of upregulation with exercise explain the phenomenon of white muscle lactate retention. This tissue operates as a quasi-closed system, where glycogen stores act as an 'energy spring' that alternates between explosive power release during swimming and slow recoil from lactate in situ during recovery. To cope with exogenous glucose, trout can completely suppress hepatic production and boost glucose disposal. Without these responses, glycemia would increase four times faster and reach dangerous levels. The capacity of salmonids for glucoregulation is therefore much better than presently described in the literature. Instead of albumin-bound fatty acids, fish use lipoproteins to shuttle energy from adipose tissue to working muscles during prolonged exercise. Proteins may play an important role in fueling muscle work in fish, but their exact contribution is yet to be established. The membrane pacemaker theory of metabolism accurately predicts general properties of muscle membranes such as unsaturation, but it does not explain allometric patterns of specific fatty acids. Investigations of metabolic fuel kinetics carried out in fish to date have demonstrated that these ectotherms use several unique strategies to orchestrate energy supply to working muscles and to survive hypoxia. © 2016. Published by The Company of Biologists Ltd.
Baldelli, Pietro; Hernández-Guijo, Jesus Miguel; Carabelli, Valentina; Novara, Monica; Cesetti, Tiziana; Andrés-Mateos, Eva; Montiel, Carmen; Carbone, Emilio
2004-02-01
Understanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells. L-channels are effectively inhibited by the released content of secretory granules or by applying mixtures of exogenous ATP, opioids, and adrenaline through the activation of receptor-coupled G proteins. This unusual inhibition persists in a wide range of potentials and results from a direct (membrane-delimited) interaction of G protein subunits with the L-channels co-localized in membrane microareas. Inhibition of L-channels can be reversed when the cAMP/PKA pathway is activated by membrane permeable cAMP analog or when cells are exposed to isoprenaline (remote action), suggesting the existence of parallel and opposite effects on L-channel gating by distinctly activated membrane autoreceptors. Here, the authors review the molecular components underlying these two opposing signaling pathways and present new evidence supporting the presence of two L-channel types in rat chromaffin cells (alpha1C and alpha1D), which open new interesting issues concerning Ca(2+)-channel modulation. In light of recent findings on the regulation of exocytosis by Ca(2+)-channel modulation, the authors explore the possible role of L-channels in the autocontrol of catecholamine release.
Membrane potential dynamics of grid cells
Domnisoru, Cristina; Kinkhabwala, Amina A.; Tank, David W.
2014-01-01
During navigation, grid cells increase their spike rates in firing fields arranged on a strikingly regular triangular lattice, while their spike timing is often modulated by theta oscillations. Oscillatory interference models of grid cells predict theta amplitude modulations of membrane potential during firing field traversals, while competing attractor network models predict slow depolarizing ramps. Here, using in-vivo whole-cell recordings, we tested these models by directly measuring grid cell intracellular potentials in mice running along linear tracks in virtual reality. Grid cells had large and reproducible ramps of membrane potential depolarization that were the characteristic signature tightly correlated with firing fields. Grid cells also exhibited intracellular theta oscillations that influenced their spike timing. However, the properties of theta amplitude modulations were not consistent with the view that they determine firing field locations. Our results support cellular and network mechanisms in which grid fields are produced by slow ramps, as in attractor models, while theta oscillations control spike timing. PMID:23395984
Yamamoto, Eiji
2017-01-01
Many cellular functions, including cell signaling and related events, are regulated by the association of peripheral membrane proteins (PMPs) with biological membranes containing anionic lipids, e.g., phosphatidylinositol phosphate (PIP). This association is often mediated by lipid recognition modules present in many PMPs. Here, I summarize computational and theoretical approaches to investigate the molecular details of the interactions and dynamics of a lipid recognition module, the pleckstrin homology (PH) domain, on biological membranes. Multiscale molecular dynamics simulations using combinations of atomistic and coarse-grained models yielded results comparable to those of actual experiments and could be used to elucidate the molecular mechanisms of the formation of protein/lipid complexes on membrane surfaces, which are often difficult to obtain using experimental techniques. Simulations revealed some modes of membrane localization and interactions of PH domains with membranes in addition to the canonical binding mode. In the last part of this review, I address the dynamics of PH domains on the membrane surface. Local PIP clusters formed around the proteins exhibit anomalous fluctuations. This dynamic change in protein-lipid interactions cause temporally fluctuating diffusivity of proteins, i.e., the short-term diffusivity of the bound protein changes substantially with time, and may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:29159013
Levental, Kandice R.; Surma, Michal A.; Skinkle, Allison D.; Lorent, Joseph H.; Zhou, Yong; Klose, Christian; Chang, Jeffrey T.; Hancock, John F.; Levental, Ilya
2017-01-01
Mammalian cells produce hundreds of dynamically regulated lipid species that are actively turned over and trafficked to produce functional membranes. These lipid repertoires are susceptible to perturbations from dietary sources, with potentially profound physiological consequences. However, neither the lipid repertoires of various cellular membranes, their modulation by dietary fats, nor their effects on cellular phenotypes have been widely explored. We report that differentiation of human mesenchymal stem cells (MSCs) into osteoblasts or adipocytes results in extensive remodeling of the plasma membrane (PM), producing cell-specific membrane compositions and biophysical properties. The distinct features of osteoblast PMs enabled rational engineering of membrane phenotypes to modulate differentiation in MSCs. Specifically, supplementation with docosahexaenoic acid (DHA), a lipid component characteristic of osteoblast membranes, induced broad lipidomic remodeling in MSCs that reproduced compositional and structural aspects of the osteoblastic PM phenotype. The PM changes induced by DHA supplementation potentiated osteogenic differentiation of MSCs concurrent with enhanced Akt activation at the PM. These observations prompt a model wherein the DHA-induced lipidome leads to more stable membrane microdomains, which serve to increase Akt activity and thereby enhance osteogenic differentiation. More broadly, our investigations suggest a general mechanism by which dietary fats affect cellular physiology through remodeling of membrane lipidomes, biophysical properties, and signaling. PMID:29134198
NASA Astrophysics Data System (ADS)
Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana
2016-01-01
Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.
Thermoelectric heat exchange element
Callas, James J.; Taher, Mahmoud A.
2007-08-14
A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.
Anti-terrorist vehicle crash impact energy absorbing barrier
Swahlan, David J.
1989-01-01
An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.
Köroğlu, Emre Oğuz; Özkaya, Bestamin; Denktaş, Cenk; Çakmakci, Mehmet
2014-12-01
This study focused on using beer brewery wastewater (BBW) to evaluate membrane concentrate disposal and production of electricity in microbial fuel cells. In the membrane treatment of BBW, the membrane permeate concentration was 570 ± 30 mg/L corresponding to a chemical oxygen demand (COD) removal efficiency of 75 ± 5%, and the flux values changed between 160 and 40 L/m(2)-h for all membrane runs. For electricity production from membrane concentrate, the highest current density in the microbial fuel cell (MFC) was observed to be 1950 mA/m(2) according to electrode surface area with 36% COD removal efficiency and 2.48% CE with 60% BBW membrane concentrate. The morphologies of the cation exchange membrane and the MFC deterioration were studied using a scanning electron microscope (SEM), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). A decrease in the thermal stability of the sulfonate (-SO3H) groups was demonstrated and morphological changes were detected in the SEM analysis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Influence of ibuprofen on phospholipid membranes
NASA Astrophysics Data System (ADS)
Jaksch, Sebastian; Lipfert, Frederik; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Fischer, Stefan F.; Nickel, Bert
2015-02-01
A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α -phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.
Siegrist, H; Joss, A
2012-01-01
A brief review of the fate of micropollutants in membrane-based wastewater treatment due to sorption, stripping, biological degradation/transformation and membrane separation is discussed, to give an overview of these technologies due to the growing importance for water reuse purposes. Compared with conventional activated sludge treatment (CAS) micropollutant removal in membrane bioreactor (MBR) is slightly improved due to complete suspended solids removal and increased sludge age. For discharge to sensitive receiving waters advanced treatment, such as post-ozonation or activated carbon adsorption, is recommended. In water reuse plants nanofiltration (NF) and reverse osmosis (RO) efficiently reject micropollutants due to size exclusions as well as electrostatic and hydrophobic effects reaching potable quality. To remove micropollutants fully, additionally post-ozone or the addition of powdered activated carbon (PAC) have to be applied, which in parallel also reduce NDMA precursors. The concentrate has to be treated if disposed to sensitive receiving waters due to its high micropollutant concentration and ecotoxicity potential. The present review summarizes principles and capabilities for the most important membrane-based applications for wastewater treatment, i.e. porous membranes in MBRs (micro- or ultrafiltration) and dense membrane applications (NF and RO) for water reuse.
de Curtis, Ivan; Meldolesi, Jacopo
2012-10-01
Small GTPases are known to regulate hundreds of cell functions. In particular, Rho family GTPases are master regulators of the cytoskeleton. By regulating actin nucleation complexes, Rho GTPases control changes in cell shape, including the extension and/or retraction of surface protrusions and invaginations. Protrusion and invagination of the plasma membrane also involves the interaction between the plasma membrane and the cortical cytoskeleton. This interplay between membranes and the cytoskeleton can lead to an increase or decrease in the plasma membrane surface area and its tension as a result of the fusion (exocytosis) or internalization (endocytosis) of membranous compartments, respectively. For a long time, the cytoskeleton and plasma membrane dynamics were investigated separately. However, studies from many laboratories have now revealed that Rho GTPases, their modulation of the cytoskeleton, and membrane traffic are closely connected during the dynamic remodeling of the cell surface. Arf- and Rab-dependent exocytosis of specific vesicles contributes to the targeting of Rho GTPases and their regulatory factors to discrete sites of the plasma membrane. Rho GTPases regulate the tethering of exocytic vesicles and modulate their subsequent fusion. They also have crucial roles in the different forms of endocytosis, where they participate in the sorting of membrane domains as well as the sculpting and sealing of membrane flasks and cups. Here, we discuss how cell surface dynamics depend on the orchestration of the cytoskeleton and the plasma membrane by Rho GTPases.
Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging.
Chang, I S; Judd, S J
2003-01-01
The air sparging technique has been recognised as an effective way to control membrane fouling. However, its application to a submerged MBR (Membrane Bio-Reactor) has not yet been reported. This paper deals with the performances of air sparging on a submerged MBR for wastewater treatment. Two kinds of air sparging techniques were used respectively. First, air is injected into the membrane tube channels so that mixed liquor can circulate in the bioreactor (air-lift mode). Second, a periodic air-jet into the membrane tube is introduced (air-jet mode). Their applicability was evaluated with a series of lab-scale experiments using domestic wastewater. The flux increased from 23 to 33 l m(-2) h(-1) (43% enhancement) when air was injected for the air-lift module. But further increase of flux was not observed as the gas flow increased. The Rc/(Rc+Rf), ratio of cake resistance (Rc) to sum of Rc and Rf (internal fouling resistance), was 23%, indicating that the Rc is not the predominant resistance unlike other MBR studies. It showed that the cake layer was removed sufficiently due to the air injection. Thus, an increase of airflow could not affect the flux performance. The air-jet module suffered from a clogging problem with accumulated sludge inside the lumen. Because the air-jet module has characteristics of dead end filtration, a periodic air-jet was not enough to blast all the accumulated sludge out. But flux was greater than in the air-lift module if the clogging was prevented by an appropriate cleaning regime such as periodical backwashing.
Reuse and Biocompatibility of Hemodialysis Membranes: Clinically Relevant?
Upadhyay, Ashish; Jaber, Bertrand L
2017-03-01
The practice of reprocessing dialyzers for reuse, once predominant in the United States, has been steadily declining over the last 20 years. The professed roles of reuse in improving dialyzer membrane biocompatibility and lowering the risk of first-use syndrome have lost relevance with the advent of biocompatible dialyzer membranes and favorable sterilization techniques. The potential for cost-savings from reuse is also called into question by the easy availability of comparatively cheaper dialyzers and rising regulatory demands and operational cost of reprocessing systems. While the environmental concerns from additional dialyzer-related solid waste from rising single-use practice remains pertinent and requires development of safer dialyzer disposable system technologies, there is no meaningful medical rationale for the continued practice of dialyzer reuse in the twenty-first century. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
International Technology Education Association, Reston, VA.
This volume of Resources in Technology contains the following eight instructional modules: (1) "Processing Technology"; (2) "Water--A Magic Resource"; (3) "Hazardous Waste Disposal--The NIMBY (Not in My Backyard) Syndrome"; (4) "Processing Fibers and Fabrics"; (5) "Robotics--An Emerging…
Microwave determination of location and speed of an object inside a pipe
Sinha, Dipen N.
2010-12-14
Apparatus and method are described for measuring the location and speed of an object, such as instrumentation on a movable platform, disposed within a pipe, using continuous-wave, amplitude-modulated microwave radiation.
Ariza-Avidad, M; Agudo-Acemel, M; Salinas-Castillo, A; Capitán-Vallvey, L F
2015-05-04
A sulphide selective colorimetric metal complexing indicator-displacement assay has been developed using an immobilized copper(II) complex of the azo dye 1-(2-pyridylazo)-2-naphthol printed by inkjetting on a nylon support. The change in colour measured from the image of the disposable membrane acquired by a digital camera using the H coordinate of the HSV colour space as the analytical parameter is able to sense sulphide in aqueous solution at pH 7.4 with a dynamic range up to 145 μM, a detection limit of 0.10 μM and a precision between 2 and 11%. Copyright © 2015 Elsevier B.V. All rights reserved.
Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio
2015-01-01
Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365
Carbon nanotube-containing structures, methods of making, and processes using same
Wang, Yong [Richland, WA; Chin, Ya-Huei [Richland, WA; Gao, Yufei [Blue Bell, PA; Aardahl, Christopher L [Richland, WA; Stewart, Terri L [Richland, WA
2006-03-14
Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.
Carbon Nanotube-Containing Structures, Methods Of Making, And Processes Using Same
Wang, Yong; Chin, Ya-Huei; Gao, Yufei; Aardahl, Christopher L.; Stewart, Terri L.
2004-11-30
Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.
USDA-ARS?s Scientific Manuscript database
Nutrients, particularly nitrate (NO3), can accumulate to very high levels within low exchange recirculation aquaculture systems (RAS) and negatively impact a number of cultured species. To prevent the harmful effects of nitrate accumulation and to dispose of concentrated waste biosolids, many RAS ar...
NASA Technical Reports Server (NTRS)
Hepler, P.
1983-01-01
Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.
Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine
Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki
2016-01-01
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux to dispose of endogenous cholesterol efficiently for therapeutic purposes. PMID:27023132
Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.
Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki
2016-01-01
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux to dispose of endogenous cholesterol efficiently for therapeutic purposes.
Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.
1996-01-01
A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.
Aquaporins: important but elusive drug targets
Verkman, Alan S.; Anderson, Marc O.; Papadopoulos, Marios C.
2014-01-01
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators. PMID:24625825
Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.
2017-01-01
Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets. PMID:28593951
NASA Astrophysics Data System (ADS)
Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.
2017-06-01
Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.
Khan, Muhammad Tariq; Manes, Carmem-Lara de O; Aubry, Cyril; Croué, Jean-Philippe
2013-02-01
The complexity of Reverse Osmosis (RO) membrane fouling phenomenon has been widely studied and several factors influencing it have been reported by many researchers. This original study involves the investigation of two different fouling profiles produced at a seawater RO desalination plant installed on a floating mobile barge. The plant was moved along the coastline of the Red Sea in Saudi Arabia. The two locations where the barge was anchored showed different water quality. At the second location, two modules were harvested. One of the modules was pre-fouled by inorganics during plant operation at the previous site while the other was installed at the second site. Fouled membranes were subjected to a wide range of chemical and microbiological characterization procedures. Drastically different fouling patterns were observed in the two membranes which indicates the influence of source water quality on membrane surface modification and on fouling of RO membranes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Treatment of Simulated Shipboard Gray Water in a Lab-Scale Membrane Bioreactor
2005-12-01
bioreactors ( MBRs ). MBRs with submerged membrane modules are considered a promising wastewater technology for use aboard ships since significant treatment...system, which consisted of an equalization tank, an MBR with submerged hollow fiber membranes, and a UV disinfection system. The reactor was...1999) optimized removal of TN in an intermittently aerated MBR with submerged hollow fiber membranes. They achieved an average TN removal of 83
Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone.
Doucet, Christine M; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno
2015-01-01
Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests that the chemistry of ALPS motifs is a key parameter for membrane curvature sensitivity, which can be further modulated by the surrounding protein backbone.
Scanned Image Projection System Employing Intermediate Image Plane
NASA Technical Reports Server (NTRS)
DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)
2014-01-01
In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.
Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.
Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M
2015-04-01
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.
Specific Membrane Lipid Composition Is Important for Plasmodesmata Function in Arabidopsis
Grison, Magali S.; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M.
2015-01-01
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of “native” PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. PMID:25818623
Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties.
Bui, Michael; Gilady, Susanna Y; Fitzsimmons, Ross E B; Benson, Matthew D; Lynes, Emily M; Gesson, Kevin; Alto, Neal M; Strack, Stefan; Scott, John D; Simmen, Thomas
2010-10-08
The mitochondria-associated membrane (MAM) has emerged as an endoplasmic reticulum (ER) signaling hub that accommodates ER chaperones, including the lectin calnexin. At the MAM, these chaperones control ER homeostasis but also play a role in the onset of ER stress-mediated apoptosis, likely through the modulation of ER calcium signaling. These opposing roles of MAM-localized chaperones suggest the existence of mechanisms that regulate the composition and the properties of ER membrane domains. Our results now show that the GTPase Rab32 localizes to the ER and mitochondria, and we identify this protein as a regulator of MAM properties. Consistent with such a role, Rab32 modulates ER calcium handling and disrupts the specific enrichment of calnexin on the MAM, while not affecting the ER distribution of protein-disulfide isomerase and mitofusin-2. Furthermore, Rab32 determines the targeting of PKA to mitochondrial and ER membranes and through its overexpression or inactivation increases the phosphorylation of Bad and of Drp1. Through a combination of its functions as a PKA-anchoring protein and a regulator of MAM properties, the activity and expression level of Rab32 determine the speed of apoptosis onset.
High Efficiency Solar Integrated Roof Membrane Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partyka, Eric; Shenoy, Anil
2013-05-15
This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.
Osmotically-driven membrane processes for water reuse and energy recovery
NASA Astrophysics Data System (ADS)
Achilli, Andrea
Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to the lack of suitable membranes and membrane modules. In this investigation, for the first time, the use of a custom-made laboratory-scale membrane module enabled the collection of experimental PRO data. Results obtained with a flat-sheet cellulose triacetate FO membrane and NaCl feed and draw solutions closely matched model predictions. Power density was substantially reduced due to internal concentration polarization in the asymmetric membrane and, to a lesser degree, to salt passage. External concentration polarization was found to exhibit a relatively small effect on reducing the osmotic pressure driving force. Using the predictive PRO model, optimal membrane characteristics and module configuration can be determined in order to design a system specifically tailored for PRO processes.
Mullett, Mark; Fornarelli, Roberta; Ralph, David
2014-01-01
Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met. PMID:24957170
Solid and Liquid Waste Drying Bag
NASA Technical Reports Server (NTRS)
Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)
2009-01-01
Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.
Preliminary study on aluminum-air battery applying disposable soft drink cans and Arabic gum polymer
NASA Astrophysics Data System (ADS)
Alva, S.; Sundari, R.; Wijaya, H. F.; Majlan, E. H.; Sudaryanto; Arwati, I. G. A.; Sebayang, D.
2017-09-01
This study is in relation to preliminary investigation of aluminium-air battery using disposable soft drink cans as aluminium source for anode. The cathode uses commercial porous carbon sheet to trap oxygen from air. This work applies a commercial cashing to place carbon cathode, electrolyte, Arabic gum polymer, and aluminium anode in a sandwich-like arrangement to form the aluminium-air battery. The Arabic gum as electrolyte polymer membrane protects anode surface from corrosion due to aluminium oxide formation. The study result shows that the battery discharge test using constant current loading of 0.25 mA yields battery capacity of 0.437 mAh with over 100 minute battery life times at 4M NaOH electrolyte and 20 % Arabic gum polymer as the best performance in this investigation. This study gives significant advantage in association with beneficiation of disposable soft drink cans from municipal solid waste as aluminium source for battery anode.
Composite hydrogen separation element and module
Edlund, D.J.; Newbold, D.D.; Frost, C.B.
1997-07-08
There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane. 11 figs.
Composite hydrogen separation element and module
Edlund, David J.; Newbold, David D.; Frost, Chester B.
1997-01-01
There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane.
Molecular make-up of the Plasmodium parasitophorous vacuolar membrane.
Spielmann, Tobias; Montagna, Georgina N; Hecht, Leonie; Matuschewski, Kai
2012-10-01
Plasmodium, the causative agent of malaria, is an obligate, intracellular, eukaryotic cell that invades, replicates, and differentiates within hepatocytes and erythrocytes. Inside a host cell, a second membrane delineates the developing pathogen in addition to the parasite plasma membrane, resulting in a distinct cellular compartment, termed parasitophorous vacuole (PV). The PV membrane (PVM) constitutes the parasite-host cell interface and is likely central to nutrient acquisition, host cell remodeling, waste disposal, environmental sensing, and protection from innate defense. Over the past two decades, a number of parasite-encoded PVM proteins have been identified. They include multigene families and protein complexes, such as early-transcribed membrane proteins (ETRAMPs) and the Plasmodium translocon for exported proteins (PTEX). Nearly all Plasmodium PVM proteins are restricted to this genus and display transient and stage-specific expression. Here, we provide an overview of the PVM proteins of Plasmodium blood and liver stages. Biochemical and experimental genetics data suggest that some PVM proteins are ideal targets for novel anti-malarial intervention strategies. Copyright © 2012 Elsevier GmbH. All rights reserved.
Modeling the effect of nano-sized polymer particles on the properties of lipid membranes
NASA Astrophysics Data System (ADS)
Rossi, Giulia; Monticelli, Luca
2014-12-01
The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.
NASA Technical Reports Server (NTRS)
Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid
2010-01-01
We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinity gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. The concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.
NASA Technical Reports Server (NTRS)
Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary
2010-01-01
We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.
Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels
Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E.
2011-01-01
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ1- and σ2-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na+ channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na+ channel Nav1.5. Patch-clamp recording in this cell line tested Na+ current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ1-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ2-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ1-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions. PMID:21084640
Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.
Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B
2011-02-01
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.
The Koch Membrane Systems Targa 10-48-35-PMC UF membrane module is used for the first treatment step in the US Navy Office of Naval Research’s Expeditionary Unit Water Purifier (EUWP). Two used UF cartridges from the EUWP were tested for removal of endospores of the bacteria Bac...
Evaluation of 165 deg F reverse osmosis modules for washwater purification.
NASA Technical Reports Server (NTRS)
Hossain, S.; Goldsmith, R. L.; Tan, M.; Wydeven, T.; Leban, M. I.
1973-01-01
Three membrane systems have been evaluated for concentration at 165 F of wash-water contaminants. Membranes tested are polybenzimidazole (hollow fibers), cellulose acetate blend (spiral wound), and sulfonated polyphenylene oxide (plate-and-frame). Detailed membrane flux and rejection data are presented for 200-hr life tests with synthetic wash water, at two concentrations, and real wash water, at one concentration. Advantages and limitations of the membrane configurations, are discussed.
Connexin channels and phospholipids: association and modulation
Locke, Darren; Harris, Andrew L
2009-01-01
Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents. PMID:19686581
Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Paul
2012-05-01
IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of themore » capital cost and ~27% parasitic energy consumption. Ideally, a one-box process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor's behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered 90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promising process scheme has been developed for power generation and/or hydrogen coproduction with CCS based upon our proposed "one-box" process. Our preliminary economic analysis indicates about 10% reduction in the required electricity selling price and ~40% cost reduction in CCS on per ton CO{sub 2} can be achieved in comparison with the base case involving conventional WGS with a two-stage Selexsol® for CCS. Long term field tests (e.g., >1,000 hrs) with the incorporation of the catalyst for the WGS membrane reactor and more in-depth analysis of the process scheme are recommended for the future study.« less
Judkins, Roddie R [Knoxville, TN
2009-02-03
A water filter includes a porous support characterized by a mean porosity in the range of 20 to 50% and a mean pore size of 2 to 5 .mu.m; and a carbon filter membrane disposed thereon which is characterized by a mean particle size of no more than 50 .mu.m and a mean pore size of no more than 7.2 .mu.m.
Fecal Coliform Determinations. Training Module 5.115.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with multiple tube and membrane filter techniques for determining fecal coliform concentrations in a wastewater sample. Included are objectives, instructor guides, student handouts and transparency masters. This module considers proper…
Total Coliform Determinations. Training Module 5.205.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with multiple tube and membrane filter techniques for determining total coliform concentration of a water supply. Included are objectives, instructor guides, student handouts and transparency masters. This module considers proper…
Zhang, Xinjie; Zhu, Zhixian; Ni, Zhonghua; Xiang, Nan; Yi, Hong
2017-06-01
This work presents the fabrication of a microfluidic autoregulatory valve which is composed of several layers of thin polymer films (i.e., polyvinyl chloride (PVC), polyethylene terephthalate (PET) double-sided tape, and polydimethylsiloxane (PDMS)). Briefly, pulsed UV laser is employed to cut the microstructures of through grooves or holes in the thermoplastic polymer films, and then the polymer-film valves are precisely assembled through laminating the PDMS membranes to the thermoplastic polymer films through the roll-lamination method. The effective bonding between the PVC film and the PDMS membrane is realized using the planar seal method, and the valve is sandwiched and compressed by a home-made housing to achieve the good seal effect. Then, the flow performances of the prototype valve are examined, and constant flow autoregulation is realized under the static or dynamic test pressures. The long-term response of the valve is also studied and minimum flow-rate decrements are found over a long actuation time. The fabrication method proposed in this work is successful for the low-cost and fast prototyping of the polymer-film valve. We believe our method will also be broadly applicable for fabrication of other low-cost and disposable polymer-film microfluidic devices.
Pa, Parimal; Manna, Ajay Kumar; Linnanen, Lassi
2013-01-01
A modeling and simulation study was carried out on a new flux-enhancing and solar-driven membrane distillation module for removal of arsenic from contaminated groundwater. The developed new model was validated with rigorous experimental investigations using arsenic-contaminated groundwater. By incorporating flash vaporization dynamics, the model turned out to be substantially different from the existing direct contact membrane distillation models and could successfully predict (with relative error of only 0.042 and a Willmott d-index of 0.997) the performance of such an arsenic removal unit where the existing models exhibited wide variation with experimental findings in the new design. The module with greater than 99% arsenic removal efficiency and greater than 50 L/m2 x h flux could be implemented in arsenic-affected villages in Southeast Asian countries with abundant solar energy, and thus could give relief to millions of affected people. These encouraging results will raise scale-up confidence.
Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadesse, Semere A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455; Li, Huan
2015-11-16
Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Ourmore » system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.« less
Membrane guanylate cyclase is a beautiful signal transduction machine: overview.
Sharma, Rameshwar K
2010-01-01
This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.
Shape matters in protein mobility within membranes
Quemeneur, François; Sigurdsson, Jon K.; Renner, Marianne; Atzberger, Paul J.; Bassereau, Patricia; Lacoste, David
2014-01-01
The lateral mobility of proteins within cell membranes is usually thought to be dependent on their size and modulated by local heterogeneities of the membrane. Experiments using single-particle tracking on reconstituted membranes demonstrate that protein diffusion is significantly influenced by the interplay of membrane curvature, membrane tension, and protein shape. We find that the curvature-coupled voltage-gated potassium channel (KvAP) undergoes a significant increase in protein mobility under tension, whereas the mobility of the curvature-neutral water channel aquaporin 0 (AQP0) is insensitive to it. Such observations are well explained in terms of an effective friction coefficient of the protein induced by the local membrane deformation. PMID:24706877
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R.E.
1994-11-02
This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.
Prevention and management of silica scaling in membrane distillation using pH adjustment
Bush, John A.; Vanneste, Johan; Gustafson, Emily M.; ...
2018-02-27
Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustmentmore » was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.« less
Prevention and management of silica scaling in membrane distillation using pH adjustment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, John A.; Vanneste, Johan; Gustafson, Emily M.
Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustmentmore » was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.« less
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor)
1991-01-01
A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.
DEMONSTRATION BULLETIN: MEMBRANE FILTRATION - SBP TECHNOLOGIES, INC.
SBP Technologies Inc. (SBP) has developed a membrane-based separation technology that can reduce the volume of contaminated groundwater requiring treatment. The SBP Filtration Unit consists of porous, sintered, stainless steel tubes arranged in a shell-and-tube module configurati...
Apparatus and method for selectively channeling a fluid
Rightley, Michael Joseph [Albuquerque, NM
2008-01-01
An apparatus for selectively channeling a high temperature fluid without chemically reacting with the fluid. The apparatus includes an inlet and a membrane positioned adjacent to the inlet, each composed of a chemically inert material. The membrane is formed by compressive preloading techniques. The apparatus further includes a seat disposed on the inlet adjacent to the membrane. The seat is composed of a heat resistant and chemically inert material. Operation of the apparatus requires that the temperature of the fluid remains below the chemical characteristic melting point of the seat. The apparatus further includes an actuator coupled to the membrane for rendering the membrane in an open and a closed position with respect to the seat. Specifically, the actuator supplies a load in the normal direction to the membrane to selectively engage the membrane in a plurality of predetermined configurations. Operatively, the apparatus receives the fluid at the inlet. The fluid is received at a high temperature and is directed from the inlet to the membrane. In the closed position, the actuator engages the membrane to prevent the fluid from flowing from the inlet between the membrane and the seat. Alternatively, in the open position, the actuator engages the membrane to permit fluid flow from the inlet between the membrane and the seat to at least one outlet provided by the apparatus. In one exemplary embodiment, the fluid may be discharged from the at least one outlet to a sensor in fluid communication with the at least one outlet. Accordingly, the sensor may measure the fluid channeled through the heat resistant and chemically inert environment provided by the apparatus.
Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.
Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko
2014-01-01
The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.
Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily
Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael
2015-01-01
The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702
Rungaldier, Stefanie; Oberwagner, Walter; Salzer, Ulrich; Csaszar, Edina; Prohaska, Rainer
2013-01-01
The widely expressed, homo-oligomeric, lipid raft-associated, monotopic integral membrane protein stomatin and its homologues are known to interact with and modulate various ion channels and transporters. Stomatin is a major protein of the human erythrocyte membrane, where it associates with and modifies the glucose transporter GLUT1; however, previous attempts to purify hetero-oligomeric stomatin complexes for biochemical analysis have failed. Because lateral interactions of membrane proteins may be short-lived and unstable, we have used in situ chemical cross-linking of erythrocyte membranes to fix the stomatin complexes for subsequent purification by immunoaffinity chromatography. To further enrich stomatin, we prepared detergent-resistant membranes either before or after cross-linking. Mass spectrometry of the isolated, high molecular, cross-linked stomatin complexes revealed the major interaction partners as glucose transporter-1 (GLUT1), anion exchanger (band 3), and water channel (aquaporin-1). Moreover, ferroportin-1 (SLC40A1), urea transporter-1 (SLC14A1), nucleoside transporter (SLC29A1), the calcium-pump (Ca-ATPase-4), CD47, and flotillins were identified as stomatin-interacting proteins. These findings are in line with the hypothesis that stomatin plays a role as membrane-bound scaffolding protein modulating transport proteins. PMID:23219802
Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.
Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung
2015-11-16
In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.
Monitoring and modulating ion traffic in hybrid lipid/polymer vesicles
Paxton, Walter F.; McAninch, Patrick T.; Achyuthan, Komandoor E.; ...
2017-08-01
Controlling the traffic of molecules and ions across membranes is a critical feature in a number of biologically relevant processes and highly desirable for the development of technologies based on membrane materials. In this study, ion transport behavior of hybrid lipid/polymer membranes was studied in the absence and presence of ion transfer agents. A pH-sensitive fluorophore was used to investigate ion (H +/OH -) permeability across hybrid lipid/polymer membranes as a function of the fraction of amphiphilic block copolymer. It was observed that vesicles with intermediate lipid/polymer ratios tend to be surprisingly more permeable to ion transport than the puremore » lipid or pure polymer vesicles. Hybrid vesicle permeability could be further modulated with valinomycin, nigericin, or gramicidin A, which significantly expedite the dissipation of externally-imposed pH gradients by facilitating the transport of the rate-limiting co-ions (e.g. K +) ions across the membrane. For gramicidin A, ion permeability decreased with increasing polymer mole fraction, and the method of introduction of gramicidin A into the membrane played an important role. Finally, strategies to incorporate biofunctional molecules and facilitate their activity in synthetic systems are highly desirable for developing artificial organelles or other synthetic compartmentalized structures requiring control over molecular traffic across biomimetic membranes.« less
Electrically heated DPF start-up strategy
Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI
2012-04-10
An exhaust system that processes exhaust generated by an engine has a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates in the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates. Heat generated by combustion of particulates in the heater induces combustion of particulates within the DPF. A control module selectively enables current flow to the electrical heater for an initial period of a DPF regeneration cycle, and limits exhaust flow while the electrical heater is heating to a predetermined soot combustion temperature.
Non-intrusive beam power monitor for high power pulsed or continuous wave lasers
Hawsey, Robert A.; Scudiere, Matthew B.
1993-01-01
A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.
Lajevardipour, Alireza; Chon, James W M; Chattopadhyay, Amitabha; Clayton, Andrew H A
2016-11-22
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C 6 -NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.
NASA Technical Reports Server (NTRS)
Shaw, Hali L.; Howard, Kevin; Flynn, Michael T.; Beeler, David; Kawashima, Brian; Andersen, Thomas A. E.; Kleinschmidt, Kim; Vogel, Jorg; Parodi, Jurek
2017-01-01
The Multifiltration Bed system in the International Space Station (ISS) Water Processor Assembly (WPA) needs to be improved by reducing or eliminating the usage rate of expendable media, removing dimethylsilanediol (DMSD), and reducing the overall system mass. The WPA contains two multifiltration beds, each with a mass of approximately 50 kg. Reducing the mass of the WPA is an important part of evolving the ISS system for future exploration missions. The Multifiltration Bed Replacement (MFBR) technology is based on biomimetic membranes, which derive their unique characteristics from aquaporins, or water channel proteins. Aquaporin membranes were commercialized by the company Aquaporin AS. Tests were conducted using the Aquaporin Inside Hollow Fiber Module to determine the maximum water recovery ratio and membrane life. Samples were analyzed for total organic carbon (TOC), DMSD, acetate, ions, and volatiles such as ethanol and acetone. The results indicate that at a 97.498.1 water recovery ratio, the membrane module can reject approximately 50 of the TOC and specific conductance using the simulated ISS MSFC humidity condensate ersatz. Additionally, the life of the membrane was determined to be a minimum of 7103 hours.
Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons.
Meng, Wei; Wang, Song-Hua; Li, Dong-Feng
2016-01-01
Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production.
Toward high-resolution computational design of helical membrane protein structure and function
Barth, Patrick; Senes, Alessandro
2016-01-01
The computational design of α-helical membrane proteins is still in its infancy but has made important progress. De novo design has produced stable, specific and active minimalistic oligomeric systems. Computational re-engineering can improve stability and modulate the function of natural membrane proteins. Currently, the major hurdle for the field is not computational, but the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress PMID:27273630
Advanced Fuel Cycle Cost Basis – 2017 Edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B. W.; Ganda, F.; Williams, K. A.
This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less
Development of Advanced Membranes Technology Platform for Hydrocarbon Separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalthod, Dr Dilip
2010-03-01
Virtually all natural gas is dehydrated during its production, transmission and storage, mostly by absorption processes. Membranes offer many potential advantages over absorption, including smaller footprints, lighter-weight packages, packaging flexibility, minimal electrical power duty, amenability to expansion due to system modularity, reduced maintenance costs, reduced emissions of heavy hydrocarbons, no liquid waste streams, and amenability to unmanned operation. The latter is particularly valuable because new natural gas sources are generally located in remote onshore and offshore sites. Most commercially-available membranes for natural gas upgrading involve high capital costs, high methane loss and performance degradation from operational upsets – all ofmore » which are barriers to their widespread adoption by the industry. The original focus of the project was to develop and demonstrate robust, high-performance membranes for natural gas dehydration. The first task completed was a user needs-and-wants study to 1) clarify the expectations of system fabricators and end users of the new separations equipment, and 2) establish the required technical and commercial targets for the membrane products. Following this, membrane system modeling and membrane development in the lab proceeded in parallel. Membrane module diameter and length, as well as and the fiber outer and inner fiber diameter, were optimized from a mathematical model that accounts for the relevant fluid dynamics and permeation phenomena. Module design was evaluated in the context of overall system design, capital costs and energy consumption, including the process scheme (particularly sweep generation), feed pretreatment, system layout, and process control. This study provided targets for membrane permeation coefficients and membrane geometry in a commercial offering that would be competitive with absorption systems. A commercially-available polymer with good tensile strength and chemical resistance was selected for membrane development. A novel dope composition and spinning process were developed, which provide a new approach to controlling membrane porosity and wall and skin morphology. A hollow-fiber membrane with an external dense “skin” was produced that has a high water vapor permeation coefficient and selectivity, durability when in operation at 1000 psig and 70°C, and the ability to withstand aromatic and aliphatic hydrocarbon vapors for an extended period. The fiber meets the technical requirements for a commercial product offering in gas dehydration. It can be readily manufactured with some changes in process equipment and process conditions, and is an excellent candidate for scale-up to full-size membrane modules.« less
Chakravarthy, B R; Wong, J; Durkin, J P
1995-10-01
Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.
Delgado-Ramírez, Mayra; Sánchez-Armass, Sergio; Meza, Ulises; Rodríguez-Menchaca, Aldo A
2018-05-01
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels. Copyright © 2018 Elsevier B.V. All rights reserved.
Semiconductor nanowire thermoelectric materials and devices, and processes for producing same
Lagally, Max G [Madison, WI; Evans, Paul G [Madison, WI; Ritz, Clark S [Middleton, WI
2011-02-15
The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic longitudinal modulation, which may be a compositional modulation or a strain-induced modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."
Kim, Mikyung; Song, Likai; Moon, James; Sun, Zhen-Yu J.; Bershteyn, Anna; Hanson, Melissa; Cain, Derek; Goka, Selasie; Kelsoe, Garnett; Wagner, Gerhard; Irvine, Darrell; Reinherz, Ellis L.
2013-01-01
Structural characterization of epitope-paratope pairs has contributed to the understanding of antigenicity. By contrast, few structural studies relate to immunogenicity, the process of antigen-induced immune responses in vivo. Using a lipid-arrayed membrane-proximal external region (MPER) of HIV-1 glycoprotein 41 as a model antigen, we investigated the influence of physicochemical properties on immunogenicity in relation to structural modifications of MPER/liposome vaccines. Anchoring the MPER to the membrane via an alkyl tail or transmembrane domain retained the MPER on liposomes in vivo, while preserving MPER secondary structure. However, structural modifications that affected MPER membrane orientation and antigenic residue accessibility strongly impacted induced antibody responses. The solvent-exposed MPER tryptophan residue (Trp-680) was immunodominant, focusing immune responses, despite sequence variability elsewhere. Nonetheless, immunogenicity could be readily manipulated using site-directed mutagenesis or structural constraints to modulate amino acid surface display. These studies provide fundamental insights for immunogen design aimed at targeting B cell antibody responses. PMID:24047898
Demonstration of Next-Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, John; Fritz Intwala, Katrina
Plug Power and BASF have conducted eight years of development work prior to this project, demonstrating the potential of PBI membranes to exceed many DOE technical targets. This project consisted of; 1.The development of a worldwide system architecture; 2.Stack and balance of plant module development; 3.Development of an improved, lower cost MEA electrode; 4.Receipt of an improved MEA from the EU consortium; 5.Integration of modules into a system; and 6.Delivery of system to EU consortium for additional integration of technologies and testing.
1975-05-20
across the anode side of the membrane -electrode assembly. Flow distribution of the hydrogen gas from cell to cell is not a problem as that system is...DOCUMENTATION PAGE RiEAI T C OMPLETING FORM V ~i 12.BR NUMVE AccEisioN NO4 II T AAO UM811" 4. TITL[ (Wd SibItl@) ... . I YPE or REPORT I PERIOD COVERED...instructions for Fuel Cell Module FS-2. The ion exchange membrane fuel cell module is produced by the General Electric Company, Direct Energy
Churn, S B; DeLorenzo, R J
1998-10-26
gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.
Behind the curtain: cellular mechanisms for allosteric modulation of calcium-sensing receptors
Cavanaugh, Alice; Huang, Ying; Breitwieser, Gerda E
2012-01-01
Calcium-sensing receptors (CaSR) are integral to regulation of systemic Ca2+ homeostasis. Altered expression levels or mutations in CaSR cause Ca2+ handling diseases. CaSR is regulated by both endogenous allosteric modulators and allosteric drugs, including the first Food and Drug Administration-approved allosteric agonist, Cinacalcet HCl (Sensipar®). Recent studies suggest that allosteric modulators not only alter function of plasma membrane-localized CaSR, but regulate CaSR stability at the endoplasmic reticulum. This brief review summarizes our current understanding of the role of membrane-permeant allosteric agonists in cotranslational stabilization of CaSR, and highlights additional, indirect, signalling-dependent role(s) for membrane-impermeant allosteric drugs. Overall, these studies suggest that allosteric drugs act at multiple cellular organelles to control receptor abundance and hence function, and that drug hydrophobicity can bias the relative contributions of plasma membrane and intracellular organelles to CaSR abundance and signalling. LINKED ARTICLES This article is part of a themed section on the Molecular Pharmacology of G Protein-Coupled Receptors (GPCRs). To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-6. To view the 2010 themed section on the same topic visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2010.159.issue-5/issuetoc PMID:21470201
Evaluation of innovative operation concept for flat sheet MBR filtration system.
Weinrich, L; Grélot, A
2008-01-01
One of the most limiting factors for the extension and acceptance of MBR filtration systems for municipal and industrial wastewater is the impact of membrane fouling on maintenance, operation and cleaning efforts. One field of action in the European Research Project "AMEDEUS" is the development and testing of MBR module concepts with innovative fouling-prevention technology from three European module manufacturers. This article deals with the performances of the flat-sheet modules by A3 Water Solutions GmbH in double-deck configuration evaluated over 10 months in Anjou Recherche under typical biological operation conditions for MBR systems (MLSS = 10 g/l; SRT = 25 days). By using a double-deck configuration, it is possible to operate with a net flux of 25.5 l/m2.h at 20 degrees C, a membrane air flow rate of 0.21 Nm3/h.m2 of membrane to achieve a stable permeability of around 500-600 l/m2.h.bar. Additionally, it was observed that it is possible to recover the membrane performance after biofouling during operation without intensive cleaning and to maintain stable permeability during peak flows. The evaluated concepts for equipping and operating MBR systems will be applied to several full-scale plants constructed by A3 Water Solutions GmbH.
Pal, Madhubonti; Chakrabortty, Sankha; Pal, Parimal; Linnanen, Lassi
2015-08-01
For purifying fluoride-contaminated water, a new forward osmosis scheme in horizontal flat-sheet cross flow module was designed and investigated. Effects of pressure, cross flow rate, draw solution and alignment of membrane module on separation and flux were studied. Concentration polarization and reverse salt diffusion got significantly reduced in the new hydrodynamic regime. This resulted in less membrane fouling, better solute separation and higher pure water flux than in a conventional module. The entire scheme was completed in two stages-an upstream forward osmosis for separating pure water from contaminated water and a downstream nanofiltration operation for continuous recovery and recycle of draw solute. Synchronization of these two stages of operation resulted in a continuous, steady-state process. From a set of commercial membranes, two polyamide composite membranes were screened out for the upstream and downstream filtrations. A 0.3-M NaCl solution was found to be the best one for forward osmosis draw solution. Potable water with less than 1% residual fluoride could be produced at a high flux of 60-62 L m(-2) h(-1) whereas more than 99% draw solute could be recovered and recycled in the downstream nanofiltration stage from where flux was 62-65 L m(-2) h(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
Owners/operators of facilities that treat, store, or dispose of hazardous waste must obtain an operating permit, as required by Subtitle C of the Resource Conservation and Recovery Act (RCRA). The module presents an overview of the RCRA permitting process and the requirements that apply to TSDFs operating under interim status until a permit is issued. The regulations governing the permit process are found in 40 CFR Parts 124 through 270.
Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shiguang; Shou, S.; Pyrzynski, Travis
2013-12-31
This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at leastmore » 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.« less
NASA Astrophysics Data System (ADS)
Crock, Christopher A.
Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.
Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana; Le-Clech, Pierre; Vrouwenvelder, Johannes; Saikaly, Pascal E
2016-05-15
Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m(2) h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m(2) h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered in future studies for evaluating the development and impact of biofouling on membrane performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Veiga, Salomé; Henriques, Sónia; Santos, Nuno C; Castanho, Miguel
2004-01-01
Partition of the intrinsically fluorescent HIV fusion inhibitor enfuvirtide into lipidic membranes is relatively high (Delta G =6.6 kcal x mol(-1)) and modulated by cholesterol. A shallow position in the lipidic matrix makes it readily available for interaction with gp41. No conformational energetic barrier prevents enfuvirtide from being active in both aqueous solution and lipidic membranes. Lipidic membranes may play a key role in the enfuvirtide biochemical mode of action. PMID:14514352
Organic membrane photonic integrated circuits (OMPICs).
Amemiya, Tomohiro; Kanazawa, Toru; Hiratani, Takuo; Inoue, Daisuke; Gu, Zhichen; Yamasaki, Satoshi; Urakami, Tatsuhiro; Arai, Shigehisa
2017-08-07
We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.
Membrane Transfer Phenomena (MTP)
NASA Technical Reports Server (NTRS)
Mason, Larry
1996-01-01
Progress has been made in several areas of the definition, design, and development of the Membrane Transport Apparatus (MTA) instrument and associated sensors and systems. Progress is also reported in the development of software modules for instrument control, experimental image and data acquisition, and data analysis.
Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P
2009-02-01
The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.
Crescentini, Marco; Thei, Frederico; Bennati, Marco; Saha, Shimul; de Planque, Maurits R R; Morgan, Hywel; Tartagni, Marco
2015-06-01
Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.
The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems.
Su, Tsung-Ping; Su, Tzu-Chieh; Nakamura, Yoki; Tsai, Shang-Yi
2016-04-01
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems. Published by Elsevier Ltd.
Castelnovo, Luca F; Magnaghi, Valerio; Thomas, Peter
2017-09-28
The role played by progestogens in modulating Schwann cell pathophysiology is well established. Progestogens exert their effects in these cells through both classical genomic and non-genomic mechanisms, the latter mediated by the GABA-A receptor. However, there is evidence that other receptors may be involved. Membrane progesterone receptors (mPRs) are novel 7-transmembrane receptors coupled to G proteins that have been characterized in different tissues and cells, including the central nervous system (CNS). The mPRs were shown to mediate some of progestogens' neuroprotective effects in the CNS, and to be upregulated in glial cells after traumatic brain injury. Based on this evidence, this paper investigated the possible involvement of mPRs in mediating progestogen actions in S42 Schwann cells. All five mPR isoforms and progesterone receptor membrane component 1 (PGRMC1) were detected in Schwann cells, and were present on the cell membrane. Progesterone and the mPR-specific agonist, Org-OD-02-0 (02) bound to these membranes, indicating the presence of functional mPRs. The mPR agonist 02 rapidly increased cell migration in an in vitro assay, suggesting a putative role of mPRs in the nerve regeneration process. Treatment with pertussis toxin and 8-Br-cAMP blocked 02-induced cell migration, suggesting this progestogen action is mediated by activation of an inhibitory G protein, leading to a decrease in intracellular cAMP levels. In contrast, long-term mPR activation led to increased expression levels of myelin associated glycoprotein (MAG). Taken together, these findings show that mPRs are present and active in Schwann cells and have a role in modulating their physiological processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Hönlinger, A; Bömer, U; Alconada, A; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Pfanner, N
1996-01-01
The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase. Images PMID:8641278
Chemical Munitions Dumped at Sea near the Hawaiian Islands
NASA Astrophysics Data System (ADS)
Edwards, M.; Bissonnette, M. C.; Briggs, C. W.; Shjegstad, S. M.
2016-12-01
Sea disposal was once internationally accepted as an appropriate method for disposal of excess, obsolete, and unserviceable conventional and chemical munitions. The past decade has seen an increase in the number and complexity of studies to assess the effects of historical munitions disposal in the oceans. The Hawai`i Undersea Military Munitions Assessment (HUMMA) is a comprehensive deep-water (300-600 meter) investigation designed to determine the potential impact of sea-disposed munitions on the ocean environment, and vice versa, at a disposal site south of Pearl Harbor, Oahu, Hawaii. Historical records indicated that as many as 16,000 mustard-filled bombs were disposed in this area following World War II. A secondary objective of HUMMA is to determine best practices and technologies for mapping and sampling sea-disposed munitions. The overarching result from five HUMMA field programs conducted over a decade is that the greatest risk from munitions derives from direct contact; there is little evidence that leakage from munitions into the surrounding environment has a direct pathway to affect human health and the impact on the surrounding environment in Hawaii is detectable only at trace levels. This finding should be modulated based on the quantity of physical samples, which were collected around <1% of the potential 16,000 bombs. In 2014 when the Jason 2 remotely operated vehicle (ROV) directly sampled the internal constituents of bombs, distilled mustard was recovered. Additionally, inconsistent with results from the 2009 and 2012 HUMMA sampling programs, during the ROV-based 2014 field program trace amounts of mustard agent and its breakdown products were detected at control sites. Both findings support a hypothesis that the impacts of sea-disposed munitions change over time. This presentation will describe the technical approach and results of the 2014 HUMMA field program using Jason 2.
Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong
2017-01-01
Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030
Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M.; Murillo, Ma Divina; Gálvez, José A.; Díaz-de-Villegas, María D.; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf
2017-01-01
Opening of intermediate-conductance calcium-activated potassium channels (KCa3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KCa3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KCa3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KCa currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KCa3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KCa3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KCa3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KCa3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. PMID:26821335
The purpose of this verification was a cut fiber challenge study for the Dow Chemical Company SFD-2880 UF membrane module. MS2 coliphage virus was the surrogate challenge organism. The challenge tests followed the requirements of the Department of Health Victoria (Australia) Dr...
Pathogen trafficking pathways and host phosphoinositide metabolism.
Weber, Stefan S; Ragaz, Curdin; Hilbi, Hubert
2009-03-01
Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila, Brucella abortus, Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells.
West, P A
1988-04-01
An improved membrane filtration procedure for use on board ship to enumerate Escherichia coli and Group D faecal streptococci in marine sediments is described. Ultrasonication extraction combined with resuscitation of sublethally-injured cells yielded significantly higher counts of E. coli than sediments shaken by hand. Counts of E. coli were also higher on mFC agar (without rosalic acid) after a period of resuscitation on tryptone-soy agar supplemented with 0.1% yeast extract than on a 4% Teepol-lactose medium. Ultrasonication of sediments made no significant difference to counts of Group D faecal streptococci on KF-streptococcus agar. These improved isolation procedures allowed better discrimination of the area affected by sewage sludge at a disposal site off the northeast coast of England.
High voltage design structure for high temperature superconducting device
Tekletsadik, Kasegn D [Rexford, NY
2008-05-20
In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.
NASA Astrophysics Data System (ADS)
Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao
2015-05-01
The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes.
On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification
Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio
2015-01-01
Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), as well as membrane bioreactors (MBR) and non-conventional membrane processes such as vacuum distillation (VD), osmotic distillation (OD) and forward osmosis (FO). Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided. PMID:26426062
Rungaldier, Stefanie; Oberwagner, Walter; Salzer, Ulrich; Csaszar, Edina; Prohaska, Rainer
2013-03-01
The widely expressed, homo-oligomeric, lipid raft-associated, monotopic integral membrane protein stomatin and its homologues are known to interact with and modulate various ion channels and transporters. Stomatin is a major protein of the human erythrocyte membrane, where it associates with and modifies the glucose transporter GLUT1; however, previous attempts to purify hetero-oligomeric stomatin complexes for biochemical analysis have failed. Because lateral interactions of membrane proteins may be short-lived and unstable, we have used in situ chemical cross-linking of erythrocyte membranes to fix the stomatin complexes for subsequent purification by immunoaffinity chromatography. To further enrich stomatin, we prepared detergent-resistant membranes either before or after cross-linking. Mass spectrometry of the isolated, high molecular, cross-linked stomatin complexes revealed the major interaction partners as glucose transporter-1 (GLUT1), anion exchanger (band 3), and water channel (aquaporin-1). Moreover, ferroportin-1 (SLC40A1), urea transporter-1 (SLC14A1), nucleoside transporter (SLC29A1), the calcium-pump (Ca-ATPase-4), CD47, and flotillins were identified as stomatin-interacting proteins. These findings are in line with the hypothesis that stomatin plays a role as membrane-bound scaffolding protein modulating transport proteins. Copyright © 2012 Elsevier B.V. All rights reserved.
Hollow Fiber Membrane Dehumidification Device for Air Conditioning System
Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung
2015-01-01
In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660
Engineered Aptamers to Probe Molecular Interactions on the Cell Surface
Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E.; Mallikaratchy, Prabodhika
2017-01-01
Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics. PMID:28850067
Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense
2017-04-12
Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.
MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim Merkel; Karl Amo; Richard Baker
2009-03-31
The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plantmore » energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.« less
Bueso, Eduardo; Rodriguez, Lesia; Lorenzo-Orts, Laura; Gonzalez-Guzman, Miguel; Sayas, Enric; Muñoz-Bertomeu, Jesús; Ibañez, Carla; Serrano, Ramón; Rodriguez, Pedro L
2014-12-01
Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single-subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1-PYL4 and RSL1-PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Dizge, Nadir
2014-01-01
The objectives of this investigation were to perform a series of lab-scale membrane separation experiments under various operating conditions to investigate the performance behaviour of nanofiltration membrane (NF 270) for wastewater reuse from the wood-panels industry. The operating condition effects, e.g. cross-flow velocity (CFV), trans membrane pressure (TMP) and temperature, on the permeate flux and contaminant rejection efficiency were investigated. Moreover, three different samples: (1) raw wastewater collected from the wood-panels industry; (2) ultrafiltration pre-treated wastewater (UF-NF); and (3) coagulation/flocculation pre-treated wastewater (CF-NF) were employed in this study. The UF-NF was proposed as a pre-treatment process because it could reduce the chemical oxygen demand (COD) effectively with lower energy consumption than CF-NF. The performance of NF 270 membrane was assessed by measurements of the many parameters (pH, conductivity, total dissolved solids, COD, suspended solids, total nitrogen, nitrite, nitrate, and total phosphate) under various operating conditions. It was noted that the contaminant rejection was affected by changing TMP and CFV. It was concluded that the purified water stream can be recycled into the process for water reuse or safely disposed to the river.
A versatile modular bioreactor platform for Tissue Engineering
Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike
2016-01-01
Abstract Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue‐specific, non‐disposable bioreactor systems. To ensure a high level of standardization, a suitable cost‐effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. PMID:27492568
A versatile modular bioreactor platform for Tissue Engineering.
Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike; Hansmann, Jan
2017-02-01
Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue-specific, non-disposable bioreactor systems. To ensure a high level of standardization, a suitable cost-effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Modification of red cell membranes with perftoran in papaine emphysema in rats].
Zoirova, N I; Arifkhanov, S I; Rakhmatullaev, Kh U; Tadzhikhodzhaev, Iu Kh
2006-01-01
Papaine emphysema model on 75 mongrel mature white male rats (10 intact rats were control) was used to study the size, form, surface architechtonics, deformability and state of membrane-receptor erythrocyte complex before and after perftoran intraperitoneal administration. Perftoran emulsion produced a membrane-modulating effect with recovery of hormonal reception sensitivity, PHA-, cAMP-receptor systems as well as restoration of erythrocytic normocytosis and diskocytosis.
Tannert, Astrid; Töpfer-Petersen, Edda; Herrmann, Andreas; Müller, Karin; Müller, Peter
2007-10-16
The bovine seminal plasma protein PDC-109 exerts an essential influence on the sperm cell plasma membrane during capacitation. However, by any mechanism, it has to be ensured that this function of the protein on sperm cells is not initiated too early, that is, upon ejaculation when PDC-109 and sperm cells come into first contact, but rather at later stages of sperm genesis in the female genital tract. To answer the question of whether changes of the bovine sperm lipid composition can modulate the effect of PDC-109 on sperm membranes, we have investigated the influence of PDC-109 on the integrity of (i) differently composed lipid vesicles and of (ii) membranes from human red blood cells and bovine spermatozoa. PDC-109 most effectively disturbed lipid membranes composed of choline-containing phospholipids and in the absence of cholesterol. The impact of the protein on lipid vesicles was attenuated in the presence of cholesterol or of noncholine-containing phospholipids, such as phosphatidylethanolamine or phosphatidylserine. An extraction of cholesterol from lipid or biological membranes using methyl-beta-cyclodextrin caused an increased membrane perturbation by PDC-109. Our results argue for a oppositional effect of PDC-109 during sperm cell genesis. We hypothesize that the lipid composition of ejaculated bull sperm cells allows a binding of PDC-109 without leading to an impairment of the plasma membrane. At later stages of sperm cell genesis upon release of cholesterol from sperm membranes, PDC-109 triggers a destabilization of the cells.
Lateral Membrane Diffusion Modulated by a Minimal Actin Cortex
Heinemann, Fabian; Vogel, Sven K.; Schwille, Petra
2013-01-01
Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diffusion of a lipid and a protein probe at varying densities of membrane-bound actin was characterized by fluorescence correlation spectroscopy (FCS). A clear correlation of actin density and reduction in mobility was observed for both the lipid and the protein probe. At high actin densities, the effect on the protein probe was ∼3.5-fold stronger compared to the lipid. Moreover, addition of myosin filaments, which contract the actin mesh, allowed switching between fast and slow diffusion in the minimal system. Spot variation FCS was in accordance with a model of fast microscopic diffusion and slower macroscopic diffusion. Complementing Monte Carlo simulations support the analysis of the experimental FCS data. Our results suggest a stronger interaction of the actin mesh with the larger protein probe compared to the lipid. This might point toward a mechanism where cortical actin controls membrane diffusion in a strong size-dependent manner. PMID:23561523
Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons
Meng, Wei; Wang, Song-Hua; Li, Dong-Feng
2016-01-01
Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production. PMID:26904300
From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.
Farinha, Carlos M; Canato, Sara
2017-01-01
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
Selkrig, Joel; Belousoff, Matthew J.; Headey, Stephen J.; Heinz, Eva; Shiota, Takuya; Shen, Hsin-Hui; Beckham, Simone A.; Bamert, Rebecca S.; Phan, Minh-Duy; Schembri, Mark A.; Wilce, Matthew C.J.; Scanlon, Martin J.; Strugnell, Richard A.; Lithgow, Trevor
2015-01-01
The biogenesis of membranes from constituent proteins and lipids is a fundamental aspect of cell biology. In the case of proteins assembled into bacterial outer membranes, an overarching question concerns how the energy required for protein insertion and folding is accessed at this remote location of the cell. The translocation and assembly module (TAM) is a nanomachine that functions in outer membrane biogenesis and virulence in diverse bacterial pathogens. Here we demonstrate the interactions through which TamA and TamB subunits dock to bridge the periplasm, and unite the outer membrane aspects to the inner membrane of the bacterial cell. We show that specific functional features in TamA have been conserved through evolution, including residues surrounding the lateral gate and an extensive surface of the POTRA domains. Analysis by nuclear magnetic resonance spectroscopy and small angle X-ray scattering document the characteristic structural features of these POTRA domains and demonstrate rigidity in solution. Quartz crystal microbalance measurements pinpoint which POTRA domain specifically docks the TamB subunit of the nanomachine. We speculate that the POTRA domain of TamA functions as a lever arm in order to drive the activity of the TAM, assembling proteins into bacterial outer membranes. PMID:26243377
De Rosa, Maria Cristina; Carelli Alinovi, Cristiana; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno
2008-02-01
Within the red blood cell the hemoglobin molecule is subjected to modulation mechanisms, namely homo- and heterotropic interactions, which optimize its functional behavior to the specific physiological requirements. At the cellular level, these modulation mechanisms are utilized to perform a number of other functions that are not minor with respect to the basic function of oxygen transport. Here we report some key examples concerning: (i) the interaction of hemoglobin with band 3 and its influence on glucose metabolism; (ii) the role of the ligand-linked quaternary transition of hemoglobin in the control of "NO bioactivity" and of gas diffusion; (iii) the interaction of plasma membrane with the various oxidative derivatives of the hemoglobin molecule. (c) 2008 IUBMB.
Membrane permeable local anesthetics modulate NaV1.5 mechanosensitivity
Beyder, Arthur; Strege, Peter R.; Bernard, Cheryl; Farrugia, Gianrico
2012-01-01
Voltage-gated sodium selective ion channel NaV1.5 is expressed in the heart and the gastrointestinal tract, which are mechanically active organs. NaV1.5 is mechanosensitive at stimuli that gate other mechanosensitive ion channels. Local anesthetic and antiarrhythmic drugs act upon NaV1.5 to modulate activity by multiple mechanisms. This study examined whether NaV1.5 mechanosensitivity is modulated by local anesthetics. NaV1.5 channels wereexpressed in HEK-293 cells, and mechanosensitivity was tested in cell-attached and excised inside-out configurations. Using a novel protocol with paired voltage ladders and short pressure pulses, negative patch pressure (-30 mmHg) in both configurations produced a hyperpolarizing shift in the half-point of the voltage-dependence of activation (V1/2a) and inactivation (V1/2i) by about -10 mV. Lidocaine (50 µM) inhibited the pressure-induced shift of V1/2a but not V1/2i. Lidocaine inhibited the tonic increase in pressure-induced peak current in a use-dependence protocol, but it did not otherwise affect use-dependent block. The local anesthetic benzocaine, which does not show use-dependent block, also effectively blocked a pressure-induced shift in V1/2a. Lidocaine inhibited mechanosensitivity in NaV1.5 at the local anesthetic binding site mutated (F1760A). However, a membrane impermeable lidocaine analog QX-314 did not affect mechanosensitivity of F1760A NaV1.5 when applied from either side of the membrane. These data suggest that the mechanism of lidocaine inhibition of the pressure-induced shift in the half-point of voltage-dependence of activation is separate from the mechanisms of use-dependent block. Modulation of NaV1.5 mechanosensitivity by the membrane permeable local anesthetics may require hydrophobic access and may involve membrane-protein interactions. PMID:22874086
Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N
2006-01-01
A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.
ERIC Educational Resources Information Center
Ellis Associates, Inc., College Park, MD.
This training package is designed to present the basic principles of pesticide use, handling, and application. Included in this package is information on federal laws and regulations, personal safety, environmental implications, storage and disposal considerations, proper application procedures, and fundamentals of pest management. Successful…
ERIC Educational Resources Information Center
Ellis Associates, Inc., College Park, MD.
The training package is designed to present the basic principles of pesticide use, handling, and application. Included in this package is information on Federal laws and regulations, personal safety, environmental implications, storage and disposal considerations, proper application procedures, and fundamentals of pest management. Successful…
Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate.
Nishi, Hidetaka; Fujii, Takuro; Takeda, Koji; Hasebe, Koichi; Kakitsuka, Takaaki; Tsuchizawa, Tai; Yamamoto, Tsuyoshi; Yamada, Koji; Matsuo, Shinji
2016-08-08
We demonstrate monolithic integration of a 50-μm-long-cavity membrane distributed-reflector laser with a spot-size converter, consisting of a tapered InP wire waveguide and an SiOx waveguide, on SiO2/Si substrate. The device exhibits 9.4-GHz/mA0.5 modulation efficiency with a 2.2-dB fiber coupling loss. We demonstrate 25.8-Gbit/s direct modulation with a bias current of 2.5 mA, resulting in a low energy cost of 132 fJ/bit.
Integration of biological method and membrane technology in treating palm oil mill effluent.
Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia
2008-01-01
Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.
Hyperforin modifies neuronal membrane properties in vivo.
Eckert, Gunter P; Keller, Jan-Henning; Jourdan, Claudia; Karas, Michael; Volmer, Dietrich A; Schubert-Zsilavecz, Manfred; Müller, Walter E
2004-09-02
Hyperforin, the major active constituent of St. John Wort (SJW) extract, affects several neurotransmitter systems in the brain putatively by modulation of the physical state of neuronal membranes. Accordingly, we tested the effects of SJW extract and of hyperforin on the properties of murine brain membrane fluidity. Oral administration of SJW extract and of hyperforin sodium salt results in significant hyperforin brain levels. Treatment of mice with hyperforin leads to decreased annular- and bulk fluidity and increased acyl-chain flexibility of brain membranes. All hyperforin related changes of membrane properties were significantly correlated with the corresponding hyperforin brain levels. Our data emphasises a membrane interaction of hyperforin that possibly contributes to its pharmacological effects.
Sensing small molecule interactions with lipid membranes by local pH modulation.
Huang, Da; Zhao, Tao; Xu, Wei; Yang, Tinglu; Cremer, Paul S
2013-11-05
Herein, we utilized a label-free sensing platform based on pH modulation to detect the interactions between tetracaine, a positively charged small molecule used as a local anesthetic, and planar supported lipid bilayers (SLBs). The SLBs were patterned inside a flow cell, allowing for various concentrations of tetracaine to be introduced over the surface in a buffer solution. Studies with membranes containing POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) yielded an equilibrium dissociation constant value of Kd = 180 ± 47 μm for this small molecule-membrane interaction. Adding cholesterol to the SLBs decreased the affinity between tetracaine and the bilayers, while this interaction tightened when POPE (1-hexadecanoyl-2-(9-Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine) was added. Studies were also conducted with three negatively charged membrane lipids, POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)), POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (sodium salt)), and ganglioside GM1. All three measurements gave rise to a similar tightening of the apparent Kd value compared with pure POPC membranes. The lack of chemical specificity with the identity of the negatively charged lipid indicated that the tightening was largely electrostatic. Through a direct comparison with ITC measurements, it was found that the pH modulation sensor platform offers a facile, inexpensive, highly sensitive, and rapid method for the detection of interactions between putative drug candidates and lipid bilayers. As such, this technique may potentially be exploited as a screen for drug development and analysis.
Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*
Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis
2014-01-01
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514
Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.
Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis
2014-09-12
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
The interactions of peripheral membrane proteins with biological membranes
Johs, Alexander; Whited, A. M.
2015-07-29
The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less
Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.
Mansourizadeh, A; Ismail, A F
2009-11-15
Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.
Pure keratin membrane and fibers from chicken feather.
Ma, Bomou; Qiao, Xue; Hou, Xiuliang; Yang, Yiqi
2016-08-01
In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber. Compared with the raw chicken feather, the regenerated keratin materials retain its chemical structure and thermal stability, their relative crystallinity is a little different depend on the shaping method, which leads to the difference in moisture regain. The mechanical results show that tensile strength of the keratin membrane researches 3.5MPa, have potential application in biomedical fields. However, the keratin fiber presents low tenacity, i.e. 0.5cN/dtex, this problem should be solved in order to apply the new fiber in textile and material science. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, John; Fanselow, Dan; Abbas, Charles
2014-08-06
3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.
Sterol Regulation of Voltage-Gated K+ Channels.
Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan
2017-01-01
Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.
Ramírez-Anguita, Juan Manuel; Rodríguez-Espigares, Ismael; Guixà-González, Ramon; Bruno, Agostino; Torrens-Fontanals, Mariona; Varela-Rial, Alejandro; Selent, Jana
2018-01-01
The serotonin 5-hydroxytryptamine 2A (5-HT 2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT 2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
Márquez, A; Jiménez-Jorquera, C; Domínguez, C; Muñoz-Berbel, X
2017-11-15
Simple and disposable point of care systems are usually the best solution for chronic patients to get a rapid diagnosis in home care context. However, their main drawback relies on the poor reliability derived from the low stability of the bio-recognition elements and low quality of the transducers. In the current work, we study the use of electrodeposited calcium alginate hydrogels as a biocompatible matrix in the development of enzymatic amperometric biosensors for whole blood analysis, to enhance the enzymes stability and to protect the transducer from biofouling. The alginate electrodeposition involves the controlled Ca 2+ release, so the gel thickness can be modulated. In the biosensor, horseradish peroxidase (HRP) and glucose oxidase (GOD) were electrodeposited within the hydrogel and the activity of the bi-enzymatic system was analyzed chronoamperometrically using 3,3',5,5'-Tetramethylbenzidine (TMB) as the mediator. Besides enzyme entrapment, the obtained gels protected the transducer from biofouling, enabling the reuse of the transducer after hydrogel removal and re-electrodeposition. The biosensors showed good analytical characteristics to glucose determination in whole blood samples, discriminating among healthy and hyperglycemic samples, with good sensitivity (- 0.27µAcm -2 mM -1 ), low limit of detection (126µM) and long lineal range (2-12mM). Copyright © 2017. Published by Elsevier B.V.
An electromagnetic microvalve for pneumatic control of microfluidic systems.
Liu, Xuling; Li, Songjing
2014-10-01
An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.
Structured Nanowires for Spectra-Tuned and Spectra-Multiplexed Sensing THZ Generation
2015-04-08
anodic aluminum oxide membranes ( AAO ) as templates. We...nanowires were fabricated by direct current electrochemical deposition technique using diameter-modulated anodic aluminum oxide membranes ( AAO ) as...throughout this project was the technique of atomic layer deposition (ALD) into anodized alumina oxide ( AAO ) templates. Aluminum , when
Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayancsik, B.A.
1994-10-13
During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less
Equipment testing and verification of PCI Membrane Systems Inc. Fyne Process nanofiltraton systems Model ROP 1434 equipped with a C10 module containing AFC-30 tubular membranes was conducted from 3/16-5/11/2000 in Barrow, AS. The source water was a moderate alkalinity, moderately...
High pressure water jet mining machine
Barker, Clark R.
1981-05-05
A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less
Apparatus and Method for Generating Thrust Using a Two Dimensional, Asymmetrical Capacitor Module
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2001-01-01
A capacitor module system is provided for creating a thrust force. The system includes a capacitor module provided with a first conductive element having a cylindrical geometry. The first conductive element can be a hollow cylinder or a solid cylinder. The capacitor module also includes a second conductive element axially spaced from the first conductive element and of smaller axial extent. The second conductive element can be a flat disk, a dome, or a conductive tip at the end of a dielectric rod. A dielectric element is disposed between the first conductive element and the second conductive element. The system also includes a high voltage source having first and second terminals connected respectively to the first and second conductive elements. The high voltage source applies a high voltage to the conductive elements of sufficient value to create a thrust force on the module inducing movement thereof.
Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M; Murillo, M Divina; Gálvez, José A; Díaz-de-Villegas, María D; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf
2016-08-01
Opening of intermediate-conductance calcium-activated potassium channels (KC a 3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KC a 3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KC a 3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KC a currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KC a 3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KC a 3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KC a 3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KC a 3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Selvais, Charlotte; D'Auria, Ludovic; Tyteca, Donatienne; Perrot, Gwenn; Lemoine, Pascale; Troeberg, Linda; Dedieu, Stéphane; Noël, Agnès; Nagase, Hideaki; Henriet, Patrick; Courtoy, Pierre J.; Marbaix, Etienne; Emonard, Hervé
2011-01-01
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa β-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.—Selvais, C., D'Auria, L., Tyteca, D., Perrot, G, Lemoine, P., Troeberg, L., Dedieu, S., Noël, A., Nagase, H., Henriet, P., Courtoy, P. J., Marbaix, E., Emonard, H. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. PMID:21518850
Thomas, Audrey; Mariani-Floderer, Charlotte; López-Huertas, Maria Rosa; Gros, Nathalie; Hamard-Péron, Elise; Favard, Cyril; Ohlmann, Theophile; Alcamí, José; Muriaux, Delphine
2015-08-01
During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Thomas, Audrey; Mariani-Floderer, Charlotte; López-Huertas, Maria Rosa; Gros, Nathalie; Hamard-Péron, Elise; Favard, Cyril; Ohlmann, Theophile; Alcamí, José
2015-01-01
ABSTRACT During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. IMPORTANCE During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes. PMID:26018170
OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER
Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...
Chen, Chiao-Chen; Baker, Lane A
2011-01-07
Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.
Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I.; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A.; Cepeda, Carlos; Concha, Ilona I.; Brauchi, Sebastián; Castro, Maite A.
2016-01-01
Failure in energy metabolism and oxidative damage are associated with Huntington’s disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058
Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang
2014-01-01
γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca2+-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca2+ increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca2+-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca2+-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes. PMID:24799560
Prestin modulates mechanics and electromechanical force of the plasma membrane.
Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A; Brownell, William E; Anvari, Bahman
2007-07-01
The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane.
Prestin Modulates Mechanics and Electromechanical Force of the Plasma Membrane
Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A.; Brownell, William E.; Anvari, Bahman
2007-01-01
The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane. PMID:17468166
Zhu, Yijing; Wang, Yayi; Zhou, Shuai; Jiang, Xuxin; Ma, Xiao; Liu, Chao
2018-03-01
Antibiotic resistance genes (ARGs) are an emerging concern in wastewater treatment plants (WWTPs), as dissemination of ARGs can pose a serious risk to human health. Few studies, however, have quantified ARGs in membrane bioreactors (MBRs), although MBRs have been widely used for both municipal and industrial wastewater treatment. To reveal the capacity of MBRs for removal of ARGs and the response of membrane fouling after antibiotic exposure, five typical ARG subtypes (sulI, sulII, tetC, tetX and ereA) and int1 were quantified affiliated by systematic membrane foulants analysis in a laboratory-scale anoxic/aerobic membrane bioreactor (A/O-MBR). Sulfamethoxazole and tetracycline hydrochloride additions increased ARG abundances by 0.5-1.4 orders of magnitude in the activated sludge, while the ARG removal performance of the membrane module remained stable (or even increased with ARG absolute abundance in several cases), with the abundance of removed ARGs ranging from 0.6 to 5.6 orders of magnitude. Specifically, the distribution of ARGs in membrane foulants accounted for 13%-25% of the total absolute abundance of all tested MBR samples. Indeed, substantial fouling occurred after the antibiotic additions, with the mean concentrations of soluble microbial product (SMP) and extracellular polymeric substance (EPS) increasing by 340% and 220%, respectively, in a membrane fouling cycle; moreover, the contents of EPS and SMP in the membrane foulants were significantly correlated with the ARG absolute abundance of membrane foulants (p < 0.05), among which more significant correlations occurred between both the protein and polysaccharide of foulants than that with humic acid. The dense membrane fouling layer and the membrane itself constituted dual barriers that effectively avoided the leakage of ARGs from the membrane module. Our findings provide fundamental insights into the proliferation and removal of ARGs in MBR systems, and highlight the contribution of membrane fouling to ARG removals in terms of the potential of MBR as an effective strategy to reduce ARG levels in WWTP effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cell Membrane Softening in Cancer Cells
NASA Astrophysics Data System (ADS)
Schmidt, Sebastian; Händel, Chris; Käs, Josef
Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.
Hindlimb motion during steady flight of the lesser dog-faced fruit bat, Cynopterus brachyotis.
Cheney, Jorn A; Ton, Daniel; Konow, Nicolai; Riskin, Daniel K; Breuer, Kenneth S; Swartz, Sharon M
2014-01-01
In bats, the wing membrane is anchored not only to the body and forelimb, but also to the hindlimb. This attachment configuration gives bats the potential to modulate wing shape by moving the hindlimb, such as by joint movement at the hip or knee. Such movements could modulate lift, drag, or the pitching moment. In this study we address: 1) how the ankle translates through space during the wingbeat cycle; 2) whether amplitude of ankle motion is dependent upon flight speed; 3) how tension in the wing membrane pulls the ankle; and 4) whether wing membrane tension is responsible for driving ankle motion. We flew five individuals of the lesser dog-faced fruit bat, Cynopterus brachyotis (Family: Pteropodidae), in a wind tunnel and documented kinematics of the forelimb, hip, ankle, and trailing edge of the wing membrane. Based on kinematic analysis of hindlimb and forelimb movements, we found that: 1) during downstroke, the ankle moved ventrally and during upstroke the ankle moved dorsally; 2) there was considerable variation in amplitude of ankle motion, but amplitude did not correlate significantly with flight speed; 3) during downstroke, tension generated by the wing membrane acted to pull the ankle dorsally, and during upstroke, the wing membrane pulled laterally when taut and dorsally when relatively slack; and 4) wing membrane tension generally opposed dorsoventral ankle motion. We conclude that during forward flight in C. brachyotis, wing membrane tension does not power hindlimb motion; instead, we propose that hindlimb movements arise from muscle activity and/or inertial effects.
Lipid nanotechnologies for structural studies of membrane-associated proteins.
Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy
2014-11-01
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.
Lee, Jung-Gil; Kim, Woo-Seung; Choi, June-Seok; Ghaffour, Noreddine; Kim, Young-Deuk
2016-12-15
An economic desalination system with a small scale and footprint for remote areas, which have a limited and inadequate water supply, insufficient water treatment and low infrastructure, is strongly demanded in the desalination markets. Here, a direct contact membrane distillation (DCMD) process has the simplest configuration and potentially the highest permeate flux among all of the possible MD processes. This process can also be easily instituted in a multi-stage manner for enhanced compactness, productivity, versatility and cost-effectiveness. In this study, an innovative, multi-stage, DCMD module under countercurrent-flow configuration is first designed and then investigate both theoretically and experimentally to identify its feasibility and operability for desalination application. Model predictions and measured data for mean permeate flux are compared and shown to be in good agreement. The effect of the number of module stages on the mean permeate flux, performance ratio and daily water production of the MDCMD system has been theoretically identified at inlet feed and permeate flow rates of 1.5 l/min and inlet feed and permeate temperatures of 70 °C and 25 °C, respectively. The daily water production of a three-stage DCMD module with a membrane area of 0.01 m 2 at each stage is found to be 21.5 kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Novel Class of Modular Transporters for Vitamins in Prokaryotes ▿ †
Rodionov, Dmitry A.; Hebbeln, Peter; Eudes, Aymerick; ter Beek, Josy; Rodionova, Irina A.; Erkens, Guus B.; Slotboom, Dirk J.; Gelfand, Mikhail S.; Osterman, Andrei L.; Hanson, Andrew D.; Eitinger, Thomas
2009-01-01
The specific and tightly controlled transport of numerous nutrients and metabolites across cellular membranes is crucial to all forms of life. However, many of the transporter proteins involved have yet to be identified, including the vitamin transporters in various human pathogens, whose growth depends strictly on vitamin uptake. Comparative analysis of the ever-growing collection of microbial genomes coupled with experimental validation enables the discovery of such transporters. Here, we used this approach to discover an abundant class of vitamin transporters in prokaryotes with an unprecedented architecture. These transporters have energy-coupling modules comprised of a conserved transmembrane protein and two nucleotide binding proteins similar to those of ATP binding cassette (ABC) transporters, but unlike ABC transporters, they use small integral membrane proteins to capture specific substrates. We identified 21 families of these substrate capture proteins, each with a different specificity predicted by genome context analyses. Roughly half of the substrate capture proteins (335 cases) have a dedicated energizing module, but in 459 cases distributed among almost 100 gram-positive bacteria, including numerous human pathogens, different and unrelated substrate capture proteins share the same energy-coupling module. The shared use of energy-coupling modules was experimentally confirmed for folate, thiamine, and riboflavin transporters. We propose the name energy-coupling factor transporters for the new class of membrane transporters. PMID:18931129
Membrane order in the plasma membrane and endocytic recycling compartment.
Iaea, David B; Maxfield, Frederick R
2017-01-01
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.
Membrane order in the plasma membrane and endocytic recycling compartment
Iaea, David B.; Maxfield, Frederick R.
2017-01-01
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles. PMID:29125865
Molecular modeling of biomembranes and their complexes with protein transmembrane α-helices
NASA Astrophysics Data System (ADS)
Kuznetsov, Andrey S.; Smirnov, Kirill V.; Antonov, Mikhail Yu.; Nikolaev, Ivan N.; Efremov, Roman G.
2017-11-01
Helical segments are common structural elements of membrane proteins. Dimerization and oligomerization of transmembrane (TM) α-helices provides the framework for spatial structure formation and protein-protein interactions. The membrane itself also takes part in the protein functioning. There are some examples of the mutual influence of the lipid bilayer properties and embedded membrane proteins. This work aims at the detail investigation of protein-lipid interactions using model systems: TM peptides corresponding to native protein segments. Three peptides were considered corresponding to TM domains of human glycophorin A (GpA), epidermal growth factor receptor (EGFR) and proposed TM-segment of human neuraminidase-1 (Neu1). A computational analysis of structural and dynamical properties was performed using molecular dynamics method. Monomers of peptides were considered incorporated into hydrated lipid bilayers. It was confirmed, that all these TM peptides have stable helical conformation in lipid environment, and the mutual adaptation of peptides and membrane was observed. It was shown that incorporation of the peptide into membrane results in the modulation of local and mean structural properties of the bilayer. Each peptide interacts with lipid acyl chains having special binding sites on the surface of central part of α-helix that exist for at least 200 ns. However, lipid acyl chains substitute each other faster occupying the same site. The formation of a special pattern of protein-lipid interactions may modulate the association of TM domains of membrane proteins, so membrane environment should be considered when proposing new substances targeting cell receptors.
Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Tim; Wei, Xiaotong; Firat, Bilgen
2012-03-31
This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE).more » Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and low-cost CO{sub 2} compression equipment, an incremental LCOE of $33/MWh at 90% capture can be achieved (40% lower than the advanced MEA case). Even with lower cost compression, it appears unlikely that a membrane process using high feed compression (>5 bar) can be competitive with amine absorption, due to the capital cost and energy consumption of this equipment. Similarly, low vacuum pressure (<0.2 bar) cannot be used due to poor efficiency and high cost of this equipment. High membrane permeance is important to reduce the capital cost and footprint of the membrane unit. CO{sub 2}/N{sub 2} selectivity is less important because it is too costly to generate a pressure ratio where high selectivity can be useful. A potential cost ?sweet spot? exists for use of membrane-based technology, if 50-70% CO{sub 2} capture is acceptable. There is a minimum in the cost of CO{sub 2} avoided/ton that membranes can deliver at 60% CO{sub 2} capture, which is 20% lower than the cost at 90% capture. Membranes operating with no feed compression are best suited for lower capture rates. Currently, it appears that the biggest hurdle to use of membranes for post-combustion CO{sub 2} capture is compression equipment cost. An alternative approach is to use sweep membranes in parallel with another CO{sub 2} capture technology that does not require feed compression or vacuum equipment. Hybrid designs that utilize sweep membranes for selective CO{sub 2} recycle show potential to significantly reduce the minimum energy of CO{sub 2} separation.« less
Lightweight diaphragm mirror module system for solar collectors
Butler, Barry L.
1985-01-01
A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.
Lightweight diaphragm mirror module system for solar collectors
Butler, B.L.
1984-01-01
A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.
The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.
Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao
2018-05-15
Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.
NASA Astrophysics Data System (ADS)
Collins, Mary Kayla; Anctil, Annick
2017-07-01
The appropriateness of regulatory methods to characterise the toxicity of photovoltaic (PV) modules was investigated to quantify potential environmental impacts for modules disposed of in landfills. Because solar energy is perceived as a green technology, it is important to ensure that end-of-life issues will not be detrimental to solar energy's success. United States Environmental Protection Agency Method 1311, California waste extraction test, and modified versions of both were performed on a multi-crystalline silicon module and cells and a copper indium gallium diselenide (CIGS) module. Variations in metal leachate concentrations were found with changes in testing parameters. Lead concentrations from the multi-crystalline module ranged from 16.2 to 50.2 mg/L. Cadmium concentrations from the CIGS module ranged from 0.1 to 3.52 mg/L. This raises doubt that regulatory methods can adequately characterise PV modules. The results are useful for developing end-of-life procedures, which is a positive step towards avoiding an e-waste problem and continuing trends of increasing installation and cost reduction in the PV market.
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., pyrotechnic for technical purposes” as specified in Special Provision 161 (see § 172.102 of this subchapter... Class 9 material. (4) Shipments to recycling or waste disposal facilities. When offered for domestic...) of this section. However, when these articles are shipped to a recycling facility, the word “Recycled...
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., pyrotechnic for technical purposes” as specified in Special Provision 161 (see § 172.102 of this subchapter... Class 9 material. (4) Shipments to recycling or waste disposal facilities. When offered for domestic...) of this section. However, when these articles are shipped to a recycling facility, the word “Recycled...
SITE program demonstration of the Rochem Disc Tube™ Module (DTM) developed by Rochem Separation systems Inc. The demonstration test was conducted at the central landfill Superfund site in Johnston, Rhode Island in August 1994. The DTM technology is an innovative membrane filtra...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Liang; Nachtergaele, Sigrid; Seddon, Annela M.
This paper utilizes cyclodextrin-based host-guest chemistry in a microfluidic device to modulate the crystallization of membrane proteins and the process of concentration of membrane protein samples. Methyl-{beta}-cyclodextrin (MBCD) can efficiently capture a wide variety of detergents commonly used for the stabilization of membrane proteins by sequestering detergent monomers. Reaction Center (RC) from Blastochloris viridis was used here as a model system. In the process of concentrating membrane protein samples, MBCD was shown to break up free detergent micelles and prevent them from being concentrated. The addition of an optimal amount of MBCD to the RC sample captured loosely bound detergentmore » from the protein-detergent complex and improved sample homogeneity, as characterized by dynamic light scattering. Using plug-based microfluidics, RC crystals were grown in the presence of MBCD, giving a different morphology and space group than crystals grown without MBCD. The crystal structure of RC crystallized in the presence of MBCD was consistent with the changes in packing and crystal contacts hypothesized for removal of loosely bound detergent. The incorporation of MBCD into a plug-based microfluidic crystallization method allows efficient use of limited membrane protein sample by reducing the amount of protein required and combining sparse matrix screening and optimization in one experiment. The use of MBCD for detergent capture can be expanded to develop cyclodextrin-derived molecules for fine-tuned detergent capture and thus modulate membrane protein crystallization in an even more controllable way.« less
Kessels, Michael M; Qualmann, Britta
2015-09-01
A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions. © 2015. Published by The Company of Biologists Ltd.
Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol.
Verstraeten, Sandra V; Jaggers, Grayson K; Fraga, Cesar G; Oteiza, Patricia I
2013-11-01
Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-β-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology. © 2013 Elsevier B.V. All rights reserved.
PKCε Phosphorylates and Mediates the Cell Membrane Localization of RhoA
Su, Tizhi; Bao, Liwei; Xie, Xiujie; Lehner, Caryn L.; Cavey, Greg S.; Teknos, Theodoros N.
2013-01-01
Protein kinase Cε (PKCε) signals through RhoA to modulate cell invasion and motility. In this study, the multifaceted interaction between PKCε and RhoA was defined. Phosphopeptide mapping revealed that PKCε phosphorylates RhoA at T127 and S188. Recombinant PKCε bound to recombinant RhoA in the absence of ATP indicating that the association between PKCε and RhoA does not require an active ATP-docked PKCε conformation. Activation of PKCε resulted in a dramatic coordinated translocation of PKCε and RhoA from the cytoplasm to the cell membrane using time-lapse fluorescence microscopy. Stoichiometric FRET analysis revealed that the molecular interaction between PKCε and RhoA is a biphasic event, an initial peak at the cytoplasm and a gradual prolonged increase at the cell membrane for the entire time-course (12.5 minutes). These results suggest that the PKCε-RhoA complex is assembled in the cytoplasm and subsequently recruited to the cell membrane. Kinase inactive (K437R) PKCε is able to recruit RhoA to the cell membrane indicating that the association between PKCε and RhoA is proximal to the active catalytic site and perhaps independent of a PKCε-RhoA phosphorylation event. This work demonstrates, for the first time, that PKCε phosphorylates and modulates the cell membrane translocation of RhoA. PMID:24191200
Assessing anesthetic activity through modulation of the membrane dipole potential.
Davis, Benjamin Michael; Brenton, Jonathan; Davis, Sterenn; Shamsher, Ehtesham; Sisa, Claudia; Grgic, Ljuban; Cordeiro, M Francesca
2017-10-01
There is great individual variation in response to general anesthetics (GAs) leading to difficulties in optimal dosing and sometimes even accidental awareness during general anesthesia (AAGA). AAGA is a rare, but potentially devastating, complication affecting between 0.1% and 2% of patients undergoing surgery. The development of novel personalized screening techniques to accurately predict a patient's response to GAs and the risk of AAGA remains an unmet clinical need. In the present study, we demonstrate the principle of using a fluorescent reporter of the membrane dipole potential, di-8-ANEPPs, as a novel method to monitor anesthetic activity using a well-described inducer/noninducer pair. The membrane dipole potential has previously been suggested to contribute a novel mechanism of anesthetic action. We show that the fluorescence ratio of di-8-ANEPPs changed in response to physiological concentrations of the anesthetic, 1-chloro-1,2,2-trifluorocyclobutane (F 3 ), but not the structurally similar noninducer, 1,2-dichlorohexafluorocyclobutane (F 6 ), to artificial membranes and in vitro retinal cell systems. Modulation of the membrane dipole provides an explanation to overcome the limitations associated with the alternative membrane-mediated mechanisms of GA action. Furthermore, by combining this technique with noninvasive retinal imaging technologies, we propose that this technique could provide a novel and noninvasive technique to monitor GA susceptibility and identify patients at risk of AAGA. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Rea, Suzanne M.; Stevenson, Andrew W.; Wood, Fiona M.; Fear, Mark W.
2012-01-01
Topographic modulation of tissue response is an important consideration in the design and manufacture of a biomaterial. In developing new tissue therapies for skin, all levels of architecture, including the nanoscale need to be considered. Here we show that keratinocyte phenotype is affected by nanoscale changes in topography with cell morphology, proliferation, and migration influenced by the pore size in anodic aluminum oxide membranes. A membrane with a pore size of 300 nm, which enhanced cell phenotype in vitro, was used as a dressing to cover a partial thickness burn injury in the pig. Wounds dressed with the membrane showed evidence of advanced healing with significantly less organizing granulation tissue and more mature epidermal layers than control wounds dressed with a standard burns dressing. The results demonstrate the importance of nanoscale topography in modulating keratinocyte phenotype and skin wound healing. PMID:21988618
Ludwig, T; Kern, P; Bongards, M; Wolf, C
2011-01-01
The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.
Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia
Sun, Hong-shuo; Feng, Zhong-ping
2013-01-01
ATP-sensitive potassium (KATP) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical activity, thus modulating many cellular functions. An increase in the ADP/ATP ratio opens KATP channels, leading to membrane hyperpolarization. KATP channels are ubiquitously expressed in neurons located in different regions of the brain, including the hippocampus and cortex. Brief hypoxia triggers membrane hyperpolarization in these central neurons. In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the KATP channels increases ischemic infarction, and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults. These findings provide the basis for a practical strategy whereby activation of endogenous KATP channels reduces cellular damage resulting from cerebral ischemic stroke. KATP channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future. PMID:23123646
Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula
2013-01-01
Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365
Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.
Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C
2016-05-01
Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.
Kim, Hyun-Woo; Cheng, Jing; Rittmann, Bruce E
2016-03-01
An advanced-material photobioreactor, the direct membrane-carbonation photobioreactor (DMCPBR), was tested to investigate the impact of directly submerging a membrane carbonation (MC) module of hollow-fiber membranes inside the photobioreactor. Results demonstrate that the DMCPBR utilized over 90% of the supplied CO2 by matching the CO2 flux to the C demand of photoautotrophic biomass growth. The surface area of the submerged MC module was the key to control CO2 delivery and biomass productivity. Tracking the fate of supplied CO2 explained how the DMCPBR reduced loss of gaseous CO2 while matching the inorganic carbon (IC) demand to its supply. Accurate fate analysis required that the biomass-associated C include soluble microbial products as a sink for captured CO2. With the CO2 supply matched to the photosynthetic demand, light attenuation limited the rate microalgal photosynthesis. The DMCPBR presents an opportunity to improve CO2-deliver efficiency and make microalgae a more effective strategy for C-neutral resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zeng, Rui; Smith, Erin; Barrientos, Antoni
2018-03-06
Mitoribosomes are specialized for the synthesis of hydrophobic membrane proteins encoded by mtDNA, all essential for oxidative phosphorylation. Despite their linkage to human mitochondrial diseases and the recent cryoelectron microscopy reconstruction of yeast and mammalian mitoribosomes, how they are assembled remains obscure. Here, we dissected the yeast mitoribosome large subunit (mtLSU) assembly process by systematic genomic deletion of 44 mtLSU proteins (MRPs). Analysis of the strain collection unveiled 37 proteins essential for functional mtLSU assembly, three of which are critical for mtLSU 21S rRNA stability. Hierarchical cluster analysis of mtLSU subassemblies accumulated in mutant strains revealed co-operative assembly of protein sets forming structural clusters and preassembled modules. It also indicated crucial roles for mitochondrion-specific membrane-binding MRPs in anchoring newly transcribed 21S rRNA to the inner membrane, where assembly proceeds. Our results define the yeast mtLSU assembly landscape in vivo and provide a foundation for studies of mitoribosome assembly across evolution. Copyright © 2018 Elsevier Inc. All rights reserved.
Family of pH-Low-Insertion-Peptides (pHLIPs)
NASA Astrophysics Data System (ADS)
Weerakkody, Dhammika; Moshnikova, Anna; Moshnikova, Valentina; Thakur, Mak; Rossi, Bethany; Engelman, Donald; Andreev, Oleg; Reshetnyak, Yana
2012-02-01
pHLIP (pH (Low) Insertion Peptide) is a novel delivery system for targeting of acidic diseased tissue such as solid tumors, sites of inflammation, arthritis and other pathological states. The molecular mechanism of pHLIP action is based on pH-dependent insertion and folding of pHLIP in membrane. We performed sequence variation and investigated 16 pHLIP variants with main goals of understanding the main principles of peptide-lipid interactions and tune delivery capability of pHLIP. The biophysical studies including thermodynamics and kinetics of the peptides interaction with a lipid bilayer of liposomes and cellular membranes were carried out. We found that peptides association to membrane at neutral and low pH could be modulated by 3-4 times. The apparent pK of transition from surface bound to membrane-inserted state could be tuned from 6.5 to 4.5. The rate of peptide's insertion across a bilayer could be enhanced 100 times compared to parent pHLIP. As a result, blood clearance and tumor targeting were modulated in a significant degree. The work is supported by NIH grants CA133890 to OAA, DME, YRK.
NASA Astrophysics Data System (ADS)
Hieu, Nguyen Huu
2017-09-01
Pervaporation is a potential process for the final step of ethanol biofuel production. In this study, a mathematical model was developed based on the resistance-in-series model and a simulation was carried out using the specialized simulation software COMSOL Multiphysics to describe a tubular type pervaporation module with membranes for the dehydration of ethanol solution. The permeance of membranes, operating conditions, and feed conditions in the simulation were referred from experimental data reported previously in literature. Accordingly, the simulated temperature and density profiles of pure water and ethanol-water mixture were validated based on existing published data.
Fujita, Miki; Lechner, Bettina; Barton, Deborah A; Overall, Robyn L; Wasteneys, Geoffrey O
2012-02-01
Cellulose production is a crucial aspect of plant growth and development. It is functionally linked to cortical microtubules, which self-organize into highly ordered arrays often situated in close proximity to plasma membrane-bound cellulose synthase complexes (CSCs). Although most models put forward to explain the microtubule-cellulose relationship have considered mechanisms by which cortical microtubule arrays influence the orientation of cellulose microfibrils, little attention has been paid to how microtubules affect the physicochemical properties of cellulose. A recent study using the model system Arabidopsis, however, indicates that microtubules can modulate the crystalline and amorphous content of cellulose microfibrils. Microtubules are required during rapid growth for reducing crystalline content, which is predicted to increase the degree to which cellulose is tethered by hemicellulosic polysaccharides. Such tethering is, in turn, critical for maintaining unidirectional cell expansion. In this article, we hypothesize that cortical microtubules influence the crystalline content of cellulose either by controlling plasma membrane fluidity or by modulating the deposition of noncellulosic wall components in the vicinity of the CSCs. We discuss the current limitations of imaging technology to address these hypotheses and identify the image acquisition and processing strategies that will integrate live imaging with super resolution three-dimensional information.
Yu, W; Seo, W; Tan, T; Jung, B; Ziaie, B
2016-08-01
This paper reports a low-cost solution to the early detection of urinary nitrite, a common surrogate for urinary tract infection (UTI). We present a facile method to fabricate a disposable and flexible colorimetric [1] nitrite sensor and its urine-activated power source [2] on a hydrophobic (wax) paper through laser-assisted patterning and lamination. Such device, integrated with interface circuitry and a Bluetooth low energy (BLE) module can be embedded onto a diaper, and transmit semi-quantitative UTI monitoring information in a point-of-care and autonomous fashion. The proposed nitrite sensing platform achieves a sensitivity of 1.35 ms/(mg/L) and a detection limit of 4 mg/L.
IFITM proteins-cellular inhibitors of viral entry.
Smith, Se; Weston, S; Kellam, P; Marsh, M
2014-02-01
Interferon inducible transmembrane (IFITM) proteins are a recently discovered family of cellular anti-viral proteins that restrict the replication of a number of enveloped and non-enveloped viruses. IFITM proteins are located in the plasma membrane and endosomal membranes, the main portals of entry for many viruses. Biochemical and membrane fusion studies suggest IFITM proteins have the ability to inhibit viral entry, possibly by modulating the fluidity of cellular membranes. Here we discuss the IFITM proteins, recent work on their mode of action, and future directions for research. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.
1993-10-01
A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.
Khare, Vineeta; Lang, Michaela; Dammann, Kyle; Campregher, Christoph; Lyakhovich, Alex; Gasche, Christoph
2014-01-01
Genome wide association studies have implicated intestinal barrier function genes in the pathogenesis of ulcerative colitis. One of such loci CDH1, encoding E-cadherin, a transmembrane glycoprotein with known tumor suppressor functions, is also linked to the susceptibility to colorectal cancer. Loss of membranous E-cadherin expression is common in both colitis and cancer. We have recently demonstrated that mesalamine (5-ASA); the anti-inflammatory drug used to treat ulcerative colitis, induces membranous expression of E-cadherin and increases intercellular adhesion. Using colorectal cancer epithelial cells with aberrant E-cadherin expression, we investigated the mechanism underlying such an effect of 5-ASA. Post-translational modification of E-cadherin glycosylation was analyzed by biotin/streptavidin detection of sialylated glycoproteins. GnT-III (N-acetylglucosaminyltransferase III) expression was assessed by qRT-PCR, Western blot and immunofluorescence. GnT-III activity was analyzed by reactivity with E-4/L-4-PHA. Expression, localization and interaction of E-cadherin and β-catenin were analyzed by Western blot, immunocytochemistry and RNA interference. 5-ASA activity modulated E-cadherin glycosylation and increased both mRNA and protein levels of GnT-III and its activity as detected by increased E4-lectin reactivity. Intestinal APCMin polyps in mice showed low expression of GnT-III and 5-ASA was effective in increasing its expression. The data demonstrated that remodeling of glycans by GnT-III mediated bisect glycosylation, contributes to the membranous retention of E-cadherin by 5-ASA; facilitating intercellular adhesion. Induction of membranous expression of E-cadherin by 5-ASA is a novel mechanism for mucosal healing in colitis that might impede tumor progression by modulation of GnT-III expression. PMID:24184502
Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio
2015-01-01
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM. PMID:26236192
Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels.
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio
2015-01-01
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
NASA Astrophysics Data System (ADS)
Said, A. A.; Mustafa
2018-02-01
A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.
How Lipid Membranes Affect Pore Forming Toxin Activity.
Rojko, Nejc; Anderluh, Gregor
2015-12-15
Pore forming toxins (PFTs) evolved to permeate the plasma membrane of target cells. This is achieved in a multistep mechanism that usually involves binding of soluble protein monomer to the lipid membrane, oligomerization at the plane of the membrane, and insertion of part of the polypeptide chain across the lipid membrane to form a conductive channel. Introduced pores allow uncontrolled transport of solutes across the membrane, inflicting damage to the target cell. PFTs are usually studied from the perspective of structure-function relationships, often neglecting the important role of the bulk membrane properties on the PFT mechanism of action. In this Account, we discuss how membrane lateral heterogeneity, thickness, and fluidity influence the pore forming process of PFTs. In general, lipid molecules are more accessible for binding in fluid membranes due to steric reasons. When PFT specifically binds ordered domains, it usually recognizes a specific lipid distribution pattern, like sphingomyelin (SM) clusters or SM/cholesterol complexes, and not individual lipid species. Lipid domains were also suggested to act as an additional concentration platform facilitating PFT oligomerization, but this is yet to be shown. The last stage in PFT action is the insertion of the transmembrane segment across the membranes to build the transmembrane pore walls. Conformational changes are a spontaneous process, and sufficient free energy has to be available for efficient membrane penetration. Therefore, fluid bilayers are permeabilized more readily in comparison to highly ordered and thicker liquid ordered lipid phase (Lo). Energetically more costly insertion into the Lo phase can be driven by the hydrophobic mismatch between the thinner liquid disordered phase (Ld) and large protein complexes, which are unable to tilt like single transmembrane segments. In the case of proteolipid pores, membrane properties can directly modulate pore size, stability, and even selectivity. Finally, events associated with pore formation can modulate properties of the lipid membrane and affect its organization. Model membranes do not necessarily reproduce the physicochemical properties of the native cellular membrane, and caution is needed when transferring results from model to native lipid membranes. In this context, the utilization of novel approaches that enable studying PFTs on living cells at a single molecule level should reveal complex protein-lipid membrane interactions in greater detail.
Membrane Protein Production in E. coli Lysates in Presence of Preassembled Nanodiscs.
Rues, Ralf-Bernhardt; Gräwe, Alexander; Henrich, Erik; Bernhard, Frank
2017-01-01
Cell-free expression allows to synthesize membrane proteins in completely new formats that can relatively easily be customized for particular applications. Amphiphilic superstructures such as micelles, lipomicelles, or nanodiscs can be provided as nano-devices for the solubilization of membrane proteins. Defined empty bilayers in the form of nanodiscs offer native like environments for membrane proteins, supporting functional folding, proper oligomeric assembly as well as stability. Even very difficult and detergent-sensitive membrane proteins can be addressed by the combination of nanodisc technology with efficient cell-free expression systems as the direct co-translational insertion of nascent membrane proteins into supplied preassembled nanodiscs is possible. This chapter provides updated protocols for the synthesis of membrane proteins in presence of preassembled nanodiscs suitable for emerging applications such as screening of lipid effects on membrane protein function and the modulation of oligomeric complex formation.
Barrientos, G.; Sánchez-Aguilera, P.; Jaimovich, E.; Hidalgo, C.
2017-01-01
Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions. PMID:28367451
Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus
Heylen, Kim; Keltjens, Jan
2012-01-01
The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581T and B. bataviensis LMG 21833T. In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nitrite reduction enabling a life style as a denitrifier and as an ammonifying bacterium. PMID:23087684
Membrane shape modulates transmembrane protein distribution.
Aimon, Sophie; Callan-Jones, Andrew; Berthaud, Alice; Pinot, Mathieu; Toombes, Gilman E S; Bassereau, Patricia
2014-01-27
Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.
Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.
Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre
2017-01-01
Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.
Membrane-targeted strategies for modulating APP and Aβ-mediated toxicity
Price, Katherine A; Crouch, Peter J; Donnelly, Paul S; Masters, Colin L; White, Anthony R; Curtain, Cyril C
2009-01-01
Abstract Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-β (Aβ) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Aβ is formed is a membrane-bound protein, and Aβ production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Aβ/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD. PMID:19278455
NASA Astrophysics Data System (ADS)
Mukramah; Syawaliah; Mulyati, S.; Arahman, N.
2017-03-01
This study proposes a modification of polyether sulfone (PES) membrane by blending the polymer with a hydrophilic additive of Brij-58. Flat-sheet PES membrane was prepared through a non-solvent induced phase separation (NIPS) method using dimethylformamide (DMF) as a solvent. PES membrane was modified by adding Brij-58 into dope solution at a different concentration, i.e 1, 3, 5, 7, and 10 wt %. The fabricated membranes were characterized by means of Scanning Electron Microscopy (SEM) and Fourier Transform Infra-Red (FTIR) spectroscopy. Filtration performance of membrane was analyzed by using a dead-end module. It is found that the addition of a small amount of Brij into polymer solution brought about the increase of water flux. FT-IR investigation showed that the additive exist on the surface of a blended membrane.
Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.
Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf
2018-05-10
Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.
Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C
2016-09-01
Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.
Kalyvianaki, Konstantina; Gebhart, Veronika; Peroulis, Nikolaos; Panagiotopoulou, Christina; Kiagiadaki, Fotini; Pediaditakis, Iosif; Aivaliotis, Michalis; Moustou, Eleni; Tzardi, Maria; Notas, George; Castanas, Elias; Kampa, Marilena
2017-01-01
Accumulating evidence during the last decades revealed that androgen can exert membrane initiated actions that involve signaling via specific kinases and the modulation of significant cellular processes, important for prostate cancer cell growth and metastasis. Results of the present work clearly show that androgens can specifically act at the membrane level via the GPCR oxoeicosanoid receptor 1 (OXER1) in prostate cancer cells. In fact, OXER1 expression parallels that of membrane androgen binding in prostate cancer cell lines and tumor specimens, while in silico docking simulation of OXER1 showed that testosterone could bind to OXER1 within the same grove as 5-OxoETE, the natural ligand of OXER1. Interestingly, testosterone antagonizes the effects of 5-oxoETE on specific signaling pathways and rapid effects such as actin cytoskeleton reorganization that ultimately can modulate cell migration and metastasis. These findings verify that membrane-acting androgens exert specific effects through an antagonistic interaction with OXER1. Additionally, this interaction between androgen and OXER1, which is an arachidonic acid metabolite receptor expressed in prostate cancer, provides a novel link between steroid and lipid actions and renders OXER1 as new player in the disease. These findings should be taken into account in the design of novel therapeutic approaches in prostate cancer. PMID:28290516
Electrolytes for Low Impedance, Wide Operating Temperature Range Lithium-Ion Battery Module
NASA Technical Reports Server (NTRS)
Hallac, Boutros (Inventor); Krause, Frederick C. (Inventor); Jiang, Junwei (Inventor); Smart, Marshall C. (Inventor); Metz, Bernhard M. (Inventor); Bugga, Ratnakumar V. (Inventor)
2018-01-01
A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte.
Adams, Michael C; Hurt, Emily E; Barbano, David M
2015-11-01
Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode. Performance of the membrane with round flow channels was compared with and without UTP. Using UTP with round flow channel MF membranes increased the LF by 5% when compared with not using UTP, but SP removal was not affected by the use of UTP. Using membranes with round channels instead of diamond-shaped channels in UTP mode increased the LF by 24%. This increase was associated with a 25% increase in Reynolds number and can be explained by lower shear at the vertices of the diamond-shaped channel's surface. The SP removal factor of the diamond channel system was higher than the SP removal factor of the round channel system below the LF. However, the diamond channel system passed more casein into the MF permeate than the round channel system. Because only one batch of each membrane was tested in our study, it was not possible to determine if the differences in protein rejection between channel geometries were due to the membrane design or random manufacturing variation. Despite the lower LF of the diamond channel system, the 47% increase in membrane module surface area of the diamond channel system produced a modular permeate removal rate that was at least 19% higher than the round channel system. Consequently, using diamond channel membranes instead of round channel membranes could reduce some of the costs associated with ceramic MF of skim milk if fewer membrane modules could be used to attain the required membrane area. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.
Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H
2016-01-01
Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles.
NASA Astrophysics Data System (ADS)
Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore
2015-10-01
A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.
Suladze, Saba; Cinar, Suleyman; Sperlich, Benjamin; Winter, Roland
2015-10-07
Phospholipases A2 (PLA2) catalyze the hydrolysis reaction of sn-2 fatty acids of membrane phospholipids and are also involved in receptor signaling and transcriptional pathways. Here, we used pressure modulation of the PLA2 activity and of the membrane's physical-chemical properties to reveal new mechanistic information about the membrane association and subsequent enzymatic reaction of PLA2. Although the effect of high hydrostatic pressure (HHP) on aqueous soluble and integral membrane proteins has been investigated to some extent, its effect on enzymatic reactions operating at the water/lipid interface has not been explored, yet. This study focuses on the effect of HHP on the structure, membrane binding and enzymatic activity of membrane-associated bee venom PLA2, covering a pressure range up to 2 kbar. To this end, high-pressure Fourier-transform infrared and high-pressure stopped-flow fluorescence spectroscopies were applied. The results show that PLA2 binding to model biomembranes is not significantly affected by pressure and occurs in at least two kinetically distinct steps. Followed by fast initial membrane association, structural reorganization of α-helical segments of PLA2 takes place at the lipid water interface. FRET-based activity measurements reveal that pressure has a marked inhibitory effect on the lipid hydrolysis rate, which decreases by 75% upon compression up to 2 kbar. Lipid hydrolysis under extreme environmental conditions, such as those encountered in the deep sea where pressures up to the kbar-level are encountered, is hence markedly affected by HHP, rendering PLA2, next to being a primary osmosensor, a good candidate for a sensitive pressure sensor in vivo.
Annaba, Fadi; Sarwar, Zaheer; Kumar, Pradeep; Saksena, Seema; Turner, Jerrold R.; Dudeja, Pradeep K.; Gill, Ravinder K.; Alrefai, Waddah A.
2016-01-01
Apical sodium-dependent bile acid transporter (ASBT) represents a highly efficient conservation mechanism of bile acids via mediation of their active transport across the luminal membrane of terminal ileum. To gain insight into the cellular regulation of ASBT, we investigated the association of ASBT with cholesterol and sphingolipid-enriched specialized plasma membrane microdomains known as lipid rafts and examined the role of membrane cholesterol in maintaining ASBT function. Human embryonic kidney (HEK)-293 cells stably transfected with human ASBT, human ileal brush-border membrane vesicles, and human intestinal epithelial Caco-2 cells were utilized for these studies. Floatation experiments on Optiprep density gradients demonstrated the association of ASBT protein with lipid rafts. Disruption of lipid rafts by depletion of membrane cholesterol with methyl-β-cyclodextrin (MβCD) significantly reduced the association of ASBT with lipid rafts, which was paralleled by a decrease in ASBT activity in Caco-2 and HEK-293 cells treated with MβCD. The inhibition in ASBT activity by MβCD was blocked in the cells treated with MβCD-cholesterol complexes. Kinetic analysis revealed that MβCD treatment decreased the Vmax of the transporter, which was not associated with alteration in the plasma membrane expression of ASBT. Our study illustrates that cholesterol content of lipid rafts is essential for the optimal activity of ASBT and support the association of ASBT with lipid rafts. These findings suggest a novel mechanism by which ASBT activity may be rapidly modulated by alterations in cholesterol content of plasma membrane and thus have important implications in processes related to maintenance of bile acid and cholesterol homeostasis. PMID:18063707
Erazo-Oliveras, Alfredo; Fuentes, Natividad R; Wright, Rachel C; Chapkin, Robert S
2018-06-02
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.; Wilmarth, B.; Restivo, M.
2017-03-13
Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation ormore » exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.« less
USDA-ARS?s Scientific Manuscript database
Sphingolipid (SL4) composition can influence the biophysical properties of cell membranes. Additionally, specific SL modulate signaling pathways involved in proliferation, senescence, and apoptosis. We investigated age-dependent changes in the SL composition of CD4+ T cells, and the impact of these ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow.« less
Transfer buffer containing methanol can be reused multiple times in protein electrotransfer.
Pettegrew, Colin J; Jayini, Renuka; Islam, M Rafiq
2009-04-01
We investigated the feasibility of repeated use of transfer buffer containing methanol in electrotransfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to polyvinylidene difluoride (PVDF) membrane using a prestained protein marker of broad molecular sizes. Transfer of the antitumor protein p53 in HEK293T cell extracts, using fresh and used transfer buffer, followed by detection with anti-p53 antibody was also performed to test detectability in immunoblot. Results from these experiments indicate that the transfer buffer can be reused at least five times and maintain a similar extent of protein transfer to PVDF membrane. Repeated use of the transfer buffer containing methanol will significantly reduce the volume of hazardous waste generated and its disposal cost as well as its adverse effect on environment.
Torricelli, Andre A. M.; Singh, Vivek; Agrawal, Vandana; Santhiago, Marcony R.; Wilson, Steven E.
2013-01-01
Purpose. To assess the ultrastructure of the epithelial basement membrane using transmission electron microscopy (TEM) in rabbit corneas with and without subepithelial stroma opacity (haze). Methods. Two groups of eight rabbits each were included in this study. Photorefractive keratectomy (PRK) was performed using an excimer laser. The first group had −4.5-diopter (−4.5D) PRK and the second group had −9.0D PRK. Contralateral eyes were unwounded controls. Rabbits were sacrificed at 4 weeks after surgery. Immunohistochemical analysis was performed to detect the myofibroblast marker α-smooth muscle actin (SMA). TEM was performed to analyze the ultrastructure of the epithelial basement membrane and stroma. Results. At 4 weeks after PRK, α-SMA+ myofibroblasts were present at high density in the subepithelial stroma of rabbit eyes that had −9.0D PRK, along with prominent disorganized extracellular matrix, whereas few myofibroblasts and little disorganized extracellular matrix were noted in eyes that had −4.5D PRK. The epithelial basement membrane was irregular and discontinuous and lacking typical morphology in all corneas at 1 month after −9D PRK compared to corneas at 1 month in the −4.5D PRK group. Conclusions. The epithelial basement membrane acts as a critical modulator of corneal wound healing. Structural and functional defects in the epithelial basement membrane correlate to both stromal myofibroblast development from precursor cells and continued myofibroblast viability, likely through the modulation of epithelial–stromal interactions mediated by cytokines. Prolonged stromal haze in the cornea is associated with abnormal regeneration of the epithelial basement membrane. PMID:23696606
ERIC Educational Resources Information Center
Carnegie, John W.
Laboratory tests used to determine status and to evaluate and/or maintain process control of the various sludge treatment processes are introduced in this lesson. Neither detailed test procedures nor explanations of how the tests should be applied to every unit are explained; this information is provided in other modules. The instructor's manual…
Plastic, Fantastic? What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
This module provides information about plastics, focusing on the uses of plastic bags in particular. Topic areas considered include: (1) making plastic bags; (2) transparency of plastic bags; (3) plastic bags and food odors; (4) food containers (before and since plastics); and (5) disposing of plastic bags and other plastic products. The text is…
Toxin Pores Endocytosed During Plasma Membrane Repair Traffic into the Lumen of MVBs for Degradation
Corrotte, Matthias; Fernandes, Maria Cecilia; Tam, Christina; Andrews, Norma W.
2012-01-01
Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca2+-dependent manner. Resealing involves Ca2+-dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes. PMID:22212686
C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein
Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis
2011-01-01
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223
Kokoris, M; Nabavi, M; Lancaster, C; Clemmens, J; Maloney, P; Capadanno, J; Gerdes, J; Battrell, C F
2005-09-01
One current challenge facing point-of-care cancer detection is that existing methods make it difficult, time consuming and too costly to (1) collect relevant cell types directly from a patient sample, such as blood and (2) rapidly assay those cell types to determine the presence or absence of a particular type of cancer. We present a proof of principle method for an integrated, sample-to-result, point-of-care detection device that employs microfluidics technology, accepted assays, and a silica membrane for total RNA purification on a disposable, credit card sized laboratory-on-card ('lab card") device in which results are obtained in minutes. Both yield and quality of on-card purified total RNA, as determined by both LightCycler and standard reverse transcriptase amplification of G6PDH and BCR-ABL transcripts, were found to be better than or equal to accepted standard purification methods.
The impact of physiological crowding on the diffusivity of membrane bound proteins.
Houser, Justin R; Busch, David J; Bell, David R; Li, Brian; Ren, Pengyu; Stachowiak, Jeanne C
2016-02-21
Diffusion of transmembrane and peripheral membrane-bound proteins within the crowded cellular membrane environment is essential to diverse biological processes including cellular signaling, endocytosis, and motility. Nonetheless we presently lack a detailed understanding of the influence of physiological levels of crowding on membrane protein diffusion. Utilizing quantitative in vitro measurements, here we demonstrate that the diffusivities of membrane bound proteins follow a single linearly decreasing trend with increasing membrane coverage by proteins. This trend holds for homogenous protein populations across a range of protein sizes and for heterogeneous mixtures of proteins of different sizes, such that protein diffusivity is controlled by the total coverage of the surrounding membrane. These results demonstrate that steric exclusion within the crowded membrane environment can fundamentally limit the diffusive rate of proteins, regardless of their size. In cells this "speed limit" could be modulated by changes in local membrane coverage, providing a mechanism for tuning the rate of molecular interaction and assembly.
Measuring ECS Interaction with Biomembranes.
Angelucci, Clotilde B; Sabatucci, Annalaura; Dainese, Enrico
2016-01-01
Understanding the correct interaction among the different components of the endocannabinoid system (ECS) is fundamental for a proper assessment of the function of endocannabinoids (eCBs) as signaling molecules. The knowledge of how membrane environment is able to modulate intracellular trafficking of eCBs and their interacting proteins holds a huge potential in unraveling new mechanisms of ECS modulation.Here, fluorescence resonance energy transfer (FRET) technique is applied to measure the binding affinity of ECS proteins to model membranes (i.e., large unilamellar vesicles, LUVs). In particular, we describe in details the paradigmatic example of the interaction of recombinant rat FAAH-ΔTM with LUVs constituted by 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).
Modulation of hyaluronan synthase activity in cellular membrane fractions.
Vigetti, Davide; Genasetti, Anna; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Bartolini, Barbara; Moretto, Paola; De Luca, Giancarlo; Hascall, Vincent C; Passi, Alberto
2009-10-30
Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.
Drobnik, Wolfgang; Borsukova, Hana; Böttcher, Alfred; Pfeiffer, Alexandra; Liebisch, Gerhard; Schütz, Gerhard J; Schindler, Hansgeorg; Schmitz, Gerd
2002-04-01
We have investigated whether a raft heterogeneity exists in human monocyte-derived macrophages and fibroblasts and whether these microdomains are modulated by lipid efflux. Triton X-100 (Triton) or Lubrol WX (Lubrol) detergent-resistant membranes from cholesterol-loaded monocytes were associated with the following findings: (i) Lubrol-DRM contained most of the cellular cholesterol and at least 75% of Triton-detergent-resistant membranes. (ii) 'Lubrol rafts', defined by their solubility in Triton but insolubility in Lubrol, were enriched in unsaturated phosphatidylcholine and showed a lower cholesterol to choline-phospholipid ratio compared to Triton rafts. (iii) CD14 and CD55 were recovered in Triton- and Lubrol-detergent-resistant membranes, whereas CD11b was found exclusively in Triton DRM. ABCA1 implicated in apo AI-mediated lipid efflux and CDC42 were partially localized in Lubrol- but not in Triton-detergent-resistant membranes. (iv) Apo AI preferentially depleted cholesterol and choline-phospholipids from Lubrol rafts, whereas HDL3 additionally decreased the cholesterol content of Triton rafts. In fibroblasts, neither ABCA1 nor CDC42 was found in Lubrol rafts, and both apo AI and HDL3 reduced the lipid content in Lubrol- as well as in Triton-detergent-resistant membranes. In summary, we provide evidence for the existence of compositionally distinct membrane microdomains in human cells and their modulation by apo AI/ABCA1-dependent and HDL3-mediated lipid efflux.
Naim, R; Ismail, A F
2013-04-15
A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor. Copyright © 2013 Elsevier B.V. All rights reserved.
Chemical cleaning/disinfection and ageing of organic UF membranes: a review.
Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P
2014-06-01
Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions, cleaning/disinfection/aging agents/conditions/protocols. The third and last part will be developed the parameters, methods and ways of characterization at our disposal and commonly used to develop and implement membrane cleaning and/or ageing studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi
2014-01-22
Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.
Nanofibrous membrane-based absorption refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isfahani, RN; Sampath, K; Moghaddam, S
2013-12-01
This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less
CO2 Permeability of Biological Membranes and Role of CO2 Channels
Endeward, Volker; Arias-Hidalgo, Mariela; Al-Samir, Samer; Gros, Gerolf
2017-01-01
We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO2 permeabilities in various tissues; (b) the physiological significance of the value of the CO2 permeability; (c) the mechanisms by which membrane CO2 permeability is modulated; (d) the role of the intracellular diffusivity of CO2 for the quantitative significance of cell membrane CO2 permeability; (e) the available evidence for the existence of CO2 channels in mammalian and artificial systems, with a brief view on CO2 channels in fishes and plants; and, (f) the possible significance of CO2 channels in mammalian systems. PMID:29064458
Sulfur control in ion-conducting membrane systems
Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis
2003-08-05
A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
Dielectric waveguide gas-filled stark shift modulator
Hutchinson, Donald P.; Richards, Roger K.
2003-07-22
An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.
Kamthan, Shweta; Gomes, James; Roychoudhury, Pradip K
2014-08-01
Spin-filters have been primarily used for producing therapeutic proteins from mammalian cells. However, disposability and/or high filter clogging of the existing spin-filter systems affect the process economy and productivity. Hence, to address these drawbacks a reusable dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells was designed. Two non-woven Bombyx mori silk layers were used as filter screen; the outer layer was conducive to cell attachment whilst the inner was non-conducive. Adherent cells can be cultured either in suspended mode using its inner single module or as monolayer of cells using its dual concentric module. We achieved 30 % higher urokinase productivity as compared to the stainless-steel spin-filter during perfusion experiments of adherent human kidney cells in suspended mode. This was due to the hydrophobic and negatively-charged silk screen that allows clog-free perfusion culture for prolonged periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogash, Kevin
2015-12-15
Air Products carried out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications” with subcontractors Ceramatec, Penn State, and WorleyParsons. The scope of work under this award was aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration-scale facility known as the Oxygen Development Facility (ODF). Specific activities will help to enable design and construction of the ODF through advancement of a number of challenging technical elements that are required to manage risk in the initial deployment of ITMmore » technology. Major objectives of the work included developing ITM Oxygen ceramic membrane materials with improved performance and reliability, optimizing ceramic module geometry and fabrication methods, testing module performance, trialing the improved fabrication process at commercial scale in the Ceramic Membrane Module Fabrication Facility (CerFab), and advancing engineering development of the ITM oxygen production process, including vessel design and contaminant control measures to prepare for deployment of the ODF. The comprehensive report that follows details the team’s work, which includes several notable accomplishments: 1) compressive creep, a likely limiter of ceramic module lifetime in service, was demonstrated to be retarded by an order of magnitude by changes in material formulation, module joining dimensions, and internal wafer geometry; 2) two promising new materials were shown to be superior to the incumbent ITM material in a key material parameter related to oxygen flux; 3) module degradation mechanisms were identified following operation in large pilot-scale equipment; 4) options for utilizing ITM in a coal-to-liquids (CTL) facility to enable liquids production with carbon capture were identified and studied; and 5) the benefits of potential improvements to the technology were assessed for their cost impact on ITM Oxygen applications to clean power, fuels, and other applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogash, Kevin
Air Products carried out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications” with subcontractors Ceramatec, Penn State, and WorleyParsons. The scope of work under this award was aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration-scale facility known as the Oxygen Development Facility (ODF). Specific activities will help to enable design and construction of the ODF through advancement of a number of challenging technical elements that are required to manage risk in the initial deployment of ITMmore » technology. Major objectives of the work included developing ITM Oxygen ceramic membrane materials with improved performance and reliability, optimizing ceramic module geometry and fabrication methods, testing module performance, trialing the improved fabrication process at commercial scale in the Ceramic Membrane Module Fabrication Facility (CerFab), and advancing engineering development of the ITM oxygen production process, including vessel design and contaminant control measures to prepare for deployment of the ODF. The comprehensive report that follows details the team’s work, which includes several notable accomplishments: 1) compressive creep, a likely limiter of ceramic module lifetime in service, was demonstrated to be retarded by an order of magnitude by changes in material formulation, module joining dimensions, and internal wafer geometry; 2) two promising new materials were shown to be superior to the incumbent ITM material in a key material parameter related to oxygen flux; 3) module degradation mechanisms were identified following operation in large pilot-scale equipment; 4) options for utilizing ITM in a coal-to-liquids (CTL) facility to enable liquids production with carbon capture were identified and studied; and 5) the benefits of potential improvements to the technology were assessed for their cost impact on ITM Oxygen applications to clean power, fuels, and other applications.« less
Oxygen separation from air using zirconia solid electrolyte membranes
NASA Technical Reports Server (NTRS)
Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.
1988-01-01
Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.
Minetti, Giampaolo; Achilli, Cesare; Perotti, Cesare; Ciana, Annarita
2018-01-01
Within the context of erythropoiesis and the possibility of producing artificial red blood cells (RBCs) in vitro, a most critical step is the final differentiation of enucleated erythroblasts, or reticulocytes, to a fully mature biconcave discocyte, the RBC. Reviewed here is the current knowledge about this fundamental maturational process. By combining literature data with our own experimental evidence we propose that the early phase in the maturation of reticulocytes to RBCs is driven by a membrane raft-based mechanism for the sorting of disposable membrane proteins, mostly the no longer needed transferrin receptor (TfR), to the multivesicular endosome (MVE) as cargo of intraluminal vesicles that are subsequently exocytosed as exosomes, consistently with the seminal and original observation of Johnstone and collaborators of more than 30 years ago (Pan BT, Johnstone RM. Cell. 1983;33:967-978). According to a strikingly selective sorting process, the TfR becomes cargo destined to exocytosis while other molecules, including the most abundant RBC transmembrane protein, band 3, are completely retained in the cell membrane. It is also proposed that while this process could be operating in the early maturational steps in the bone marrow, additional mechanism(s) must be at play for the final removal of the excess reticulocyte membrane that is observed to occur in the circulation. This processing will most likely require the intervention of the spleen, whose function is also necessary for the continuous remodeling of the RBC membrane all along this cell's circulatory life. PMID:29632498
Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua
2017-04-06
In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos, Joao M. M.; Jones, Brynmor E.; Schlosser, Peter J.; Watson, Scott; Herrnsdorf, Johannes; Guilhabert, Benoit; McKendry, Jonathan J. D.; De Jesus, Joel; Garcia, Thor A.; Tamargo, Maria C.; Kelly, Anthony E.; Hastie, Jennifer E.; Laurand, Nicolas; Dawson, Martin D.
2015-03-01
The rapid emergence of gallium-nitride (GaN) light-emitting diodes (LEDs) for solid-state lighting has created a timely opportunity for optical communications using visible light. One important challenge to address this opportunity is to extend the wavelength coverage of GaN LEDs without compromising their modulation properties. Here, a hybrid source for emission at 540 nm consisting of a 450 nm GaN micro-sized LED (micro-LED) with a micron-thick ZnCdSe/ZnCdMgSe multi-quantum-well color-converting membrane is reported. The membrane is liquid-capillary-bonded directly onto the sapphire window of the micro-LED for full hybridization. At an injection current of 100 mA, the color-converted power was found to be 37 μW. At this same current, the -3 dB optical modulation bandwidth of the bare GaN and hybrid micro-LEDs were 79 and 51 MHz, respectively. The intrinsic bandwidth of the color-converting membrane was found to be power-density independent over the range of the micro-LED operation at 145 MHz, which corresponds to a mean carrier lifetime of 1.9 ns.
Mitochondrial rhodanese: membrane-bound and complexed activity.
Ogata, K; Volini, M
1990-05-15
We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.
Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F
2015-06-01
In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Takeuchi, Kinya; Fukuda, Atsuo; Kanayama, Naohiro
2004-01-01
Amniotic fluid contains a significant level of urinary trypsin inhibitor (UTI). Previously, we reported that UTI inhibits calcium influx of myometrium and it is effective in preventing uterine contraction. This study examined the effects of UTI upon potassium channels, which is important for membrane excitability. Whole-cell patch-clamp recordings were performed in fibroblasts derived from human fetal skin. Potassium currents were recorded and the effects of exogenous UTI and/or cadmium determined. Tetraethylammonium sensitive potassium currents were elicited by step or ramp stimulations at depolarized membrane potentials (over +30 mV). Administration of 1 micro M UTI significantly increased these potassium currents by 16.9%. When calcium channels were blocked by the administration of cadmium, UTI increased the rest of the potassium currents by 4.8%. This indicates that UTI increased calcium-dependent potassium currents by 94.8% but only increased voltage-dependent potassium currents by 4.8%. Urinary trypsin inhibitor is a physiological substance of fetal origin that modulates calcium-dependent and voltage-dependent potassium channels. These data suggest that UTI is capable of regulating the membrane properties of the fetal and myometrial cells in contact with amniotic fluid.
Song, Qun-Li; Li, Ping; Li, Yu-Min
2012-01-01
A method for the preparation of porosity osmotic pump granules was obtained by modulating carvedilol solubility with tartaric acid. Controlled porosity of the membrane was accomplished by the use of pore-forming agent in the coating. In this study, carvedilol was chosen as a model drug with an aim to develop a zero-order release system; tartaric acid was used as the solubility promoter; NaCl was used as the osmotic agent; cellulose acetate (CA) was used as the materials of semipermeable membrane; and PEG-400 was used as the pore-forming agent in the semipermeable membrane. The influence of different factors or levels on the in vitro release was studied. In order to simulate the gastrointestinal tract environments, two kinds of pH media (pH 1.5 and 6.8) on drug release were studied in this research, respectively. This porosity osmotic pump was optimized by single factor design experiments, and it was found to deliver carvedilol at a zero-order rate within 12 h and controlled release for 24 h. We drew a conclusion that the solubility-modulated porosity osmotic pump system is simple to prepare and might be used for the preparation of osmotic pump system of other poorly water-soluble drugs with alkaline or acid groups.
Pilot scale test of a produced water-treatment system for initial removal of organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Enid J; Kwon, Soondong; Katz, Lynn
A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to removemore » volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.« less
Lipid-lipid and lipid-drug interactions in biological membranes
NASA Astrophysics Data System (ADS)
Martynowycz, Michael W.
Interactions between lipids and drug molecules in biological membranes help govern proper biological function in organisms. The mechanisms responsible for hydrophobic drug permeation remain elusive. Many small molecule drugs are hydrophobic. These drugs inhibit proteins in the cellular interior. The rise of antibiotic resistance in bacteria is thought to be caused by mutations in protein structure, changing drug kinetics to favor growth. However, small molecule drugs have been shown to have different mechanisms depending in the structure of the lipid membrane of the target cell. Biological membranes are investigated using Langmuir monolayers at the air-liquid interface. These offer the highest level of control in the mimetic system and allow them to be investigated using complementary techniques. Langmuir isotherms and insertion assays are used to determine the area occupied by each lipid in the membrane and the change in area caused by the introduction of a drug molecule, respectively. Specular X-ray reflectivity is used to determine the electron density of the monolayer, and grazing incidence X-ray diffraction is used to determine the in-plane order of the monolayer. These methods determine the affinity of the drug and the mechanism of action. Studies are presented on hydrophobic drugs with mammalian membrane mimics using warfarin along with modified analogues, called superwarfarins. Data shows that toxicity of these modified drugs are modulated by the membrane cholesterol content in cells; explaining several previously unexplained effects of the drugs. Membrane mimics of bacteria are investigated along with their interactions with a hydrophobic antibiotic, novobiocin. Data suggests that permeation of the drug is mediated by modifications to the membrane lipids, and completely ceases translocation under certain circumstances. Circumventing deficiencies in small, hydrophobic drugs is approached by using biologically mimetic oligomers. Peptoids, mimetic of host defense peptides from the innate immune system, are active against bacteria, and avoid developed antibiotic resistance. Optimization of peptoids by modulation of hydrophobicity and structural rigidity are explored.
Colorimetric Detection and Identification of Natural and Artificial Sweeteners
Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.
2009-01-01
A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402
Colorimetric detection and identification of natural and artificial sweeteners.
Musto, Christopher J; Lim, Sung H; Suslick, Kenneth S
2009-08-01
A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments that are comprised of indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations, as well as commonly used individual-serving sweetener packets. The array has shown excellent reproducibility and long shelf life and has been optimized to work in the biological pH regime.
Wu, Chin-San
2017-09-01
The structural, antioxidant and cytocompatibility properties of membranes prepared from polyhydroxyalkanoate (PHA) and spent coffee ground (SCG) blends (PHA/SCG) were studied. Acrylic acid-grafted PHA (PHA-g-AA) was used to enhance the desirable characteristics of these membranes, which had better tensile properties than the corresponding PHA/SCG membranes. The water resistance of the PHA-g-AA/SCG membranes was greater than that of the PHA/SCG membranes, and a cytocompatibility evaluation with mouse normal tail fibroblasts (FBs) indicated that both materials were nontoxic. Cell cycle assays of FBs on PHA/SCG and PHA-g-AA/SCG membrane samples were not affected by the DNA content related to damage. Moreover, SCG enhanced the saccharide and polyphenol contents, and antioxidant properties, of the PHA-g-AA/SCG and PHA/SCG membranes. Therefore, we analysed the effects of these compounds' membranes on melanogenesis in B16-F10 melanoma cells. The results demonstrated that PHA/SCG and PHA-g-AA/SCG membranes reduced cellular tyrosinase activities in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
An Autopsy of Nanofiltration Membrane Used for Landfill Leachate Treatment
Demir, Ibrahim; Koyuncu, Ismail; Guclu, Serkan; Yildiz, Senol; Balahorli, Vahit; Caglar, Suphi; Turken, Turker; Pasaoglu, Mehmet E.; Kaya, Recep; Sengur-Tasdemir, Reyhan
2015-01-01
Komurcuoda leachate treatment plant, Istanbul, which consists of membrane bioreactor (MBR) and nanofiltration (NF) system, faced rapid flux decline in membranes after 3-year successful operation. To compensate rapid flux decline in membranes, the fouled membranes were renewed but replacement of the membranes did not solve the problem. To find the reasons and make a comprehensive analysis, membrane autopsy was performed. Visual and physical inspection of the modules and some instrumental analysis were conducted for membrane autopsy. Membranes were found severely fouled with organic and inorganic foulants. Main foulant was iron which was deposited on surface. The main reason was found to be the changing of aerator type of MBR. When surface aerators were exchanged with bottom diffusers which led to increasing of dissolved oxygen (DO) level of the basin, iron particles were oxidized and they converted into particulate insoluble form. It was thought that probably this insoluble form of the iron particles was the main cause of decreased membrane performance. After the diagnosis, a new pretreatment alternative including a new iron antiscalant was suggested and system performance has been recovered. PMID:26137593
Agwa, Akello J; Peigneur, Steve; Chow, Chun Yuen; Lawrence, Nicole; Craik, David J; Tytgat, Jan; King, Glenn F; Henriques, Sonia Troeira; Schroeder, Christina I
2018-04-27
Gating modifier toxins (GMTs) are venom-derived peptides isolated from spiders and other venomous creatures that modulate activity of disease-relevant voltage-gated ion channels and are therefore being pursued as therapeutic leads. The amphipathic surface profile of GMTs has prompted the proposal that some GMTs simultaneously bind to the cell membrane and voltage-gated ion channels in a trimolecular complex. Here we examined whether there is a relationship among spider GMT amphipathicity, membrane binding and potency or selectivity for voltage-gated sodium (NaV) channels. We used NMR spectroscopy and in silico calculations to examine the structures and physicochemical properties of a panel of nine GMTs and deployed surface plasmon resonance to measure GMT affinity for lipids putatively found in proximity to NaV channels. Electrophysiology was used to quantify GMT activity on NaV1.7, an ion channel linked to chronic pain. Selectivity of the peptides was further examined against a panel of NaV channel subtypes. We show that GMTs adsorb to the outer leaflet of anionic lipid bilayers through electrostatic interactions. We did not observe a direct correlation between GMT amphipathicity and affinity for lipid bilayers. Furthermore, GMT-lipid bilayer interactions did not correlate with potency or selectivity for NaVs. We therefore propose that increased membrane binding is unlikely to improve subtype selectivity and that the conserved amphipathic GMT surface profile is an adaptation that facilitates simultaneous modulation of multiple NaVs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Seleznev, Iu M; Martynov, A V; Smirnov, V N
1982-05-01
In vivo administration of propranolol considerably inhibits the isoproterenol-stimulated increase in 45Ca accumulation by the myocardium and completely eliminates the potentiation of isoproterenol effect by hydrocortisone. A significant lowering of the concentration of high affinity binding sites for calcium in the sarcolemmal membranes can be produced by propranolol in vitro. Under these conditions, the glucocorticoids do not change the sarcolemmal Ca2+-binding parameters or modulate the propranolol effect. Therefore, for the manifestation of glucocorticoid action to be brought about, the integrity of the cells is apparently required, while propranolol seems to change calcium binding by direct interaction with the sarcolemmal membranes. It is suggested that in vivo propranolol inhibition of catecholamine effect on calcium ion accumulation by the myocardium depends on the interaction with the beta-receptors and direct modulation of the concentration of high affinity binding sites for calcium ions on the surface of the sarcolemma.
Membrane Cholesterol Modulates Superwarfarin Toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan
Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but notmore » warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.« less
NASA Astrophysics Data System (ADS)
Jho, Jae Y.; Han, Man J.; Park, Jong H.; Lee, Jang Y.; Wang, Hyuck S.
2005-05-01
On purpose to overcome the limit of conventional ionic polymer-metal composites (IPMC) using the commercial ionic membranes, novel IPMCs with radiation-grafted ion-exchange membranes were prepared. Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-co-HFP) and poly(ethylene-co-tetrafluoroethylene) (ETFE) were radiation-grafted with styrene, and then sulfonated. The properties of the membranes were modulated by controlling the amount of polystyrene sulfonic acid (PSSA) groups in the membranes. The amount of PSSA groups were tuned by controlling the total absorbed dose of γ-ray. The membranes were characterized by measuring the water-uptake, the ion-exchange capacity, and the ion conductivity. The performance of the IPMCs using these membranes were analyzed with laser displacement meter. They exhibited much larger bending displacement in comparison with Nafion-based IPMC. With increasing the amount of PSSA groups, the maximum displacement and the bending speed were remarkably increased. The results made sure that the property of ion-exchange membrane was the key element affecting the actuation performance of IPMC.
Zea mays Annexins Modulate Cytosolic Free Ca2+ and Generate a Ca2+-Permeable Conductance[W
Laohavisit, Anuphon; Mortimer, Jennifer C.; Demidchik, Vadim; Coxon, Katy M.; Stancombe, Matthew A.; Macpherson, Neil; Brownlee, Colin; Hofmann, Andreas; Webb, Alex A.R.; Miedema, Henk; Battey, Nicholas H.; Davies, Julia M.
2009-01-01
Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+]cyt) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+]cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+]cyt, and may function as peroxidases in vitro. PMID:19234085
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaum, S.R.
1988-01-01
The project consisted of two related studies: (1) the characterization of serotonin binding sites in crude and purified synaptic membranes prepared from the rat spinal cord, and (2) the association of serotonin binding sites with functional 5-HT receptor responses in the modulation of nociceptive information at the level of the spinal cord. The first series of experiments involved the preparation of membranes from the dorsal and ventral halves of the rat spinal cord and the demonstration of specific ({sup 3}H)serotonin binding to these membranes. High affinity binding sites which conformed to the 5-HT{sub 3} subtype were identified in dorsal, butmore » not ventral spinal cord synaptic membranes. These experiments also confirmed the presence of high affinity ({sup 3}H)5-HT binding sites in dorsal spinal cord synaptic membranes of the 5-HT{sub 1} subtype. The second group of studies demonstrated the ability of selective 5-HT{sub 3} antagonists to inhibit the antinociceptive response to intrathecally administered 5-HT, as measured by a change in tail flick and hot plate latencies. Intrathecal pretreatment with the selective 5-HT{sub 3} antagonists ICS 205-930 or MDL 72222 abolished the antinociceptive effects of 5-HT. Furthermore, the selective 5-HT{sub 3} agonist 2-methyl-5-HT mimicked the antinociceptive effects of 5-HT.« less
Elucidating the structure and function of S100 proteins in membranes
NASA Astrophysics Data System (ADS)
Valenzuela, Stella M.; Berkahn, Mark; Martin, Donald K.; Huynh, Thuan; Yang, Zheng; Geczy, Carolyn L.
2006-01-01
S100 proteins are important Ca 2+-binding proteins involved in vital cellular functions including the modulation of cell growth, migration and differentiation, regulation of intracellular signal transduction/phosphorylation pathways, energy metabolism, cytoskeletal interactions and modulation of ion channels. Furthermore, they are implicated in oncogenesis and numerous other disease states. Three S100 proteins: S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and monocytes. At low levels of intracellular Ca 2+, S100A8 and S100A9 are located predominantly in the cytosol but when Ca 2+ concentrations are elevated as a consequence of activation, they translocate to membranes and complex with cytoskeletal components such as vimentin. The functions of S100A8 and S100A9 at the plasma membrane remain unclear. A possible role may be the regulation of ion channel proteins. The current study uses the techniques of Atomic Force Microscopy and production of artificial lipid membranes in the form of liposomes to investigate possible mechanisms for the insertion of these proteins into membranes in order to elucidate their structure and stoichiometry in the transmembrane state. We have successfully imaged the liposomes as a lipid bilayer, the S100A8/A9 protein complex in solution and the S100A8/A9 complex associating with lipid, using tapping-mode atomic force microscopy, in buffer.
Studies on improved integrated membrane-based chromatographic process for bioseparation
NASA Astrophysics Data System (ADS)
Xu, Yanke
To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model considering the feed-side concentration polarization and the permeate-side concentration gradient formed by the adsorption. The permeate-side adsorption can enhance the observed protein transmission through the membrane considerably at low permeate flux. But the enhancement effect can be neglected at higher permeate flux when convection dominates the total mass transfer process or the proteins are very highly rejected by the membrane.
Semiconductor diode with external field modulation
Nasby, Robert D.
2000-01-01
A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.
Goodbye, Waste! What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Science Education Center.
This module: (1) discusses the need for disposing of waste safely; (2) provides information and activities on wet and dry wastes; and (3) shows how to prepare, maintain, and study a fertilizer basket (in which fertilizer is made from wet waste). Information on the biology of the basket (including role of bacteria and fungi in the decay process) is…
Apparatus and method for microwave processing of materials using field-perturbing tool
Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.
2001-01-01
A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.
Low temperature storage container for transporting perishables to space station
NASA Technical Reports Server (NTRS)
Owen, James W. (Inventor); Dean, William G. (Inventor)
1989-01-01
Two storage containers are disclosed within which food or biological samples may be stored for transfer in a module by the space shuttle to a space station while maintaining the food or samples at very low temperatures. The container is formed in two parts, each part having an inner shell and an outer shell disposed about the inner shell. The space between the shells is filled with a continuous wrap multi-layer insulation and a getter material. The two parts of the container have interlocking members and when connected together are sealed for preventing leakage from the space between the shells. After the two parts are filled with frozen food or samples they are connected together and a vacuum is drawn in the space between the shells and the container is stored in the module. For the extremely low temperature requirements of biological samples, an internal liner having a phase change material charged by a refrigerant coil is disposed in the space between the shells, and the container is formed from glass fiber material including honeycomb structural elements. All surfaces of the glass fiber which face the vacuum space are lined with a metal foil.
Samad, Mehdi Bin; Mohsin, Md Nurul Absar Bin; Razu, Bodiul Alam; Hossain, Mohammad Tashnim; Mahzabeen, Sinayat; Unnoor, Naziat; Muna, Ishrat Aklima; Akhter, Farjana; Kabir, Ashraf Ul; Hannan, J M A
2017-08-09
[6]-Gingerol, a major component of Zingiber officinale, was previously reported to ameliorate hyperglycemia in type 2 diabetic mice. Endocrine signaling is involved in insulin secretion and is perturbed in db/db Type-2 diabetic mice. [6]-Gingerol was reported to restore the disrupted endocrine signaling in rodents. In this current study on Lepr db/db diabetic mice, we investigated the involvement of endocrine pathway in the insulin secretagogue activity of [6]-Gingerol and the mechanism(s) through which [6]-Gingerol ameliorates hyperglycemia. Lepr db/db type 2 diabetic mice were orally administered a daily dose of [6]-Gingerol (200 mg/kg) for 28 days. We measured the plasma levels of different endocrine hormones in fasting and fed conditions. GLP-1 levels were modulated using pharmacological approaches, and cAMP/PKA pathway for insulin secretion was assessed by qRT-PCR and ELISA in isolated pancreatic islets. Total skeletal muscle and its membrane fractions were used to measure glycogen synthase 1 level and Glut4 expression and protein levels. 4-weeks treatment of [6]-Gingerol dramatically increased glucose-stimulated insulin secretion and improved glucose tolerance. Plasma GLP-1 was found to be significantly elevated in the treated mice. Pharmacological intervention of GLP-1 levels regulated the effect of [6]-Gingerol on insulin secretion. Mechanistically, [6]-Gingerol treatment upregulated and activated cAMP, PKA, and CREB in the pancreatic islets, which are critical components of GLP-1-mediated insulin secretion pathway. [6]-Gingerol upregulated both Rab27a GTPase and its effector protein Slp4-a expression in isolated islets, which regulates the exocytosis of insulin-containing dense-core granules. [6]-Gingerol treatment improved skeletal glycogen storage by increased glycogen synthase 1 activity. Additionally, GLUT4 transporters were highly abundant in the membrane of the skeletal myocytes, which could be explained by the increased expression of Rab8 and Rab10 GTPases that are responsible for GLUT4 vesicle fusion to the membrane. Collectively, our study reports that GLP-1 mediates the insulinotropic activity of [6]-Gingerol, and [6]-Gingerol treatment facilitates glucose disposal in skeletal muscles through increased activity of glycogen synthase 1 and enhanced cell surface presentation of GLUT4 transporters.
Nanoscale manipulation of membrane curvature for probing endocytosis in live cells.
Zhao, Wenting; Hanson, Lindsey; Lou, Hsin-Ya; Akamatsu, Matthew; Chowdary, Praveen D; Santoro, Francesca; Marks, Jessica R; Grassart, Alexandre; Drubin, David G; Cui, Yi; Cui, Bianxiao
2017-08-01
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.
Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You
2017-09-01
A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.
Alli, Abdel A; Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S; Ma, He-Ping; Eaton, Douglas C
2015-09-01
Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. Copyright © 2015 the American Physiological Society.
Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A.; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T.; Ruggles, Kelly V.; DeGiorgis, Joseph A.; Kohlwein, Sepp D.; Schon, Eric A.; Sturley, Stephen L.
2015-01-01
A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53–36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.—Gulati, S., Balderes, D., Kim, C., Guo, Z. A., Wilcox, L., Area-Gomez, E., Snider, J., Wolinski, H., Stagljar, I., Granato, J. T., Ruggles, K. V., DeGiorgis, J. A., Kohlwein, S. D., Schon, E. A., Sturley, S. L. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. PMID:26220175
Structural basis for modulation and agonist specificity of HCN pacemaker channels.
Zagotta, William N; Olivier, Nelson B; Black, Kevin D; Young, Edgar C; Olson, Rich; Gouaux, Eric
2003-09-11
The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.
Simple and fast method for fabrication of endoscopic implantable sensor arrays.
Tahirbegi, I Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep
2014-06-26
Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.
Chitra, Subramaniam; Shyamaladevi, Chennam Srinivasulu
2011-03-01
To investigate the possible effects of α-tocopherol on erythrocyte membrane adenosine triphosphatases against radiation damage in oral cancer patients. Adenosine triphosphatase activities were analysed in oral cancer patients before and after radiotherapy (at a dosage of 6000 cGY in five fractions per week for a period of six weeks) and after supplemented with α-tocopherol (400 IU per day for entire period of radiotherapy). The membrane bound enzymes such as Na(+)/K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and some trace elements were altered in oral cancer patients before and after radiotherapy. Supplemented with α-tocopherol modulates the erythrocyte membrane which is damaged by radiotherapy which suggests that α-tocopherol protects the erythrocyte membrane from radiation damage in oral cancer patients.