Sample records for membrane phospholipid composition

  1. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    PubMed

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  2. [Peculiarities of the phospholipid and fatty acid composition of erythrocyte plasma membranes of the Black Sea fish].

    PubMed

    Silkin, Iu A; Silkina, E N; Zabelinskiĭ, S A

    2012-01-01

    The phospholipid and the fatty acid composition of the main phospholipids families of erythrocyte plasma membranes was studied in two species of cartilaginous fish: the common thrasher (Raja clavata L.) and the common stingray (Dasyatis pastinaca) and three bony fish species: the scorpion fish (Scorpaena porcus L.), the smarida (Spicara flexuosa Raf.), and the horse mackerel (Trachurus mediterraneus ponticus Aleev). It was shown that in the studied fish, 70.0-80.0 % of all membrane phospholipids were composed of phosphatidylcholine and phosphatidylethanolamine. Phosphatidylserine, monophosphoinositide, and sphingomyelin were minor components whose content in the erythrocyte membrane fluctuated from 3.0 % to 13.0 %. The fatty acid phospholipids composition was represented by a large specter of acids. From saturated acids, basic for plasma membranes are palmitic (C16: 0) and stearic (C18: 0) acids. From unsaturated acids, the larger part belong to mono-, tetra-, penta-, and hexaenoic acids in fish phospholipids. The calculation of the double bond index and of the unsaturation coefficient showed difference in the deformation ability of erythrocyte membranes of the studied fish.

  3. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    PubMed

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  4. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis*♦

    PubMed Central

    Yao, Jiangwei; Cherian, Philip T.; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome and is thought to rely on its mammalian host cell for nutrients. Although several lines of evidence suggest C. trachomatis utilizes host phospholipids, the bacterium encodes all the genes necessary for fatty acid and phospholipid synthesis found in free living Gram-negative bacteria. Bacterially derived phospholipids significantly increased in infected HeLa cell cultures. These new phospholipids had a distinct molecular species composition consisting of saturated and branched-chain fatty acids. Biochemical analysis established the role of C. trachomatis-encoded acyltransferases in producing the new disaturated molecular species. There was no evidence for the remodeling of host phospholipids and no change in the size or molecular species composition of the phosphatidylcholine pool in infected HeLa cells. Host sphingomyelin was associated with C. trachomatis isolated by detergent extraction, but it may represent contamination with detergent-insoluble host lipids rather than being an integral bacterial membrane component. C. trachomatis assembles its membrane systems from the unique phospholipid molecular species produced by its own fatty acid and phospholipid biosynthetic machinery utilizing glucose, isoleucine, and serine. PMID:25995447

  5. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane

    PubMed Central

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C.; Fradin, Cécile

    2015-01-01

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol’s condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content. PMID:26529029

  6. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane.

    PubMed

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C; Fradin, Cécile

    2015-10-30

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol's condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content.

  7. Phospholipid composition of the plasma membrane of the green alga, Hydrodictyon africanum.

    PubMed Central

    Bailey, D S; Northcote, D H

    1976-01-01

    A plasma-membrane fraction was isolated from the alga Hydrodictyon africanum by micro-dissection and its phospholipid components were analysed. Phosphatidylcholine was the major phospholipid of the preparation. Both phosphatidylserine and diphosphatidylglycerol were enriched in the fraction compared with the whole cell, but the relative amount of phosphatidylglycerol present was less than that in the whole cell. Phosphatidylinositol was absent from the plasma-membrane preparation. Images PLATE 1 PLATE 2 PMID:182144

  8. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses.

    PubMed

    Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus

    2016-12-15

    Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.

  9. Genetic manipulation of membrane phospholipid composition in Escherichia coli: pgsA mutants defective in phosphatidylglycerol synthesis.

    PubMed Central

    Miyazaki, C; Kuroda, M; Ohta, A; Shibuya, I

    1985-01-01

    Unique mutants of Escherichia coli K-12, defective in phosphatidylglycerol synthesis, have been isolated from a temperature-sensitive strain incubated at its nonpermissive temperature. The parent strain had excess phosphatidylglycerol by harboring both the pss-1 allele [coding for a temperature-sensitive phosphatidylserine synthase (EC 2.7.8.8)] and the cls- allele (responsible for a defective cardiolipin synthase). The newly acquired mutations caused better growth at higher temperatures. One of the mutations (pgsA3) has been identified in the structural gene for phosphatidylglycerophosphate synthase [glycerophosphate phosphatidyltransferase (EC 2.7.8.5)]. Phospholipid compositions of these mutants were remarkable; phosphatidylethanolamine was the sole major lipid. In media with low osmotic pressures, these cells grew more slowly than the wild-type cells. They grew normally without recovering from the phospholipid abnormality in media appropriately supplemented with sucrose and MgCl2. Formation of cardiolipin and phosphoglycerol derivatives of membrane-derived oligosaccharides was reduced in a pgsA3 mutant. E. coli strains having the pgsA3, pss-1, and cls- mutations, either individually or in combination, constitute an empirical system in which the molar ratio of three major membrane phospholipids can be variously altered. Images PMID:2999767

  10. Cholesterol:phospholipid ratio is elevated in platelet plasma membrane in patients with hypertension.

    PubMed

    Benjamin, N; Robinson, B F; Graham, J G; Wilson, R B

    1990-06-01

    The cholesterol:phospholipid ratio was measured in platelet plasma membrane, red blood cell (RBC) membranes, low density lipoprotein (LDL) and whole plasma in patients with primary hypertension and in matched normal controls. The cholesterol:phospholipid ratio was raised in the platelet membrane from hypertensive patients compared with that from normal controls (0.65 +/- 0.03 vs 0.53 +/- 0.02: mean +/- SEM; P less than 0.01). The ratio observed in RBC membranes, LDL and whole blood was similar in the two groups. If this abnormality in the lipid composition of platelet plasma membrane is present in other cells it could account for some of the changes in cell membrane function that have been described in hypertension.

  11. Effect of Selection for High Activity-Related Metabolism on Membrane Phospholipid Fatty Acid Composition in Bank Voles.

    PubMed

    Stawski, Clare; Valencak, Teresa G; Ruf, Thomas; Sadowska, Edyta T; Dheyongera, Geoffrey; Rudolf, Agata; Maiti, Uttaran; Koteja, Paweł

    2015-01-01

    Endothermy, high basal metabolic rates (BMRs), and high locomotor-related metabolism were important steps in the evolution of mammals. It has been proposed that the composition of membrane phospholipid fatty acids plays an important role in energy metabolism and exercise muscle physiology. In particular, the membrane pacemaker theory of metabolism suggests that an increase in cell membrane fatty acid unsaturation would result in an increase in BMR. We aimed to determine whether membrane phospholipid fatty acid composition of heart, liver, and gastrocnemius muscles differed between lines of bank voles selected for high swim-induced aerobic metabolism-which also evolved an increased BMR-and unselected control lines. Proportions of fatty acids significantly differed among the organs: liver was the least unsaturated, whereas the gastrocnemius muscles were most unsaturated. However, fatty acid proportions of the heart and liver did not differ significantly between selected and control lines. In gastrocnemius muscles, significant differences between selection directions were found: compared to control lines, membranes of selected voles were richer in saturated C18:0 and unsaturated C18:2n-6 and C18:3n-3, whereas the pattern was reversed for saturated C16:0 and unsaturated C20:4n-6. Neither unsaturation index nor other combined indexes of fatty acid proportions differed between lines. Thus, our results do not support the membrane pacemaker hypothesis. However, the differences between selected and control lines in gastrocnemius muscles reflect chain lengths rather than number of double bonds and are probably related to differences in locomotor activity per se rather than to differences in the basal or routine metabolic rate.

  12. Developmentally regulated changes in phospholipid composition in murine molar tooth.

    PubMed

    Dunglas, C; Septier, D; Carreau, J P; Goldberg, M

    1999-08-01

    In order to explore the possibility that phospholipids are differently expressed during the cascade of events leading to tooth formation, we decided to carry out simultaneous biochemical, histological and electron histochemical studies. High performance thin-layer chromatography and gas-liquid chromatography were used to compare the composition of embryonic mouse first molar tooth germs at day 18 of gestation (E18) and at birth (D1), erupting teeth at day 7 (D7) and erupted molars at day 21 (D21). For the latter, non-demineralized and EDTA-demineralized lipid extracts were analysed separately. Moreover, an ultrahistochemical study was carried out using the iodoplatinate reaction which retains and visualizes phospholipids. Developmentally regulated changes occurred and were closely correlated with an increase in cell membrane phospholipids. Gradual accumulation of phospholipids was identified in the extracellular matrix, at an early stage of tooth germ development within the basement membrane and later, as predentine/dentine and enamel components participating in mineralization processes. Matrix vesicles transiently present in dentine were partly responsible for the lipids that were detected. A first group of phospholipids including phosphatidylcholine as the major membrane-associated phospholipid and phosphatidylinositol as the intracellular second messenger increased by a factor of 2.3 between E18 and D21. This increase is probably associated with cell lengthening and was relatively modest compared with the higher increase detected for a second group of phospholipids, namely phosphatidylethanolamine (x4.8), phosphatidylserine (x 5.9) and sphingomyelin (x5.4). This second group of extracellular matrix-associated phospholipids constituted 68% of the demineralized lipid extract and, therefore, contributes to the mineralization of dental tissues.

  13. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.

    PubMed

    Uttlová, Petra; Pinkas, Dominik; Bechyňková, Olga; Fišer, Radovan; Svobodová, Jaroslava; Seydlová, Gabriela

    2016-12-01

    Surfactin, an anionic lipopeptide produced by Bacillus subtilis, is an antimicrobial that targets the cytoplasmic membrane. Nowadays it appears increasingly apparent that the mechanism of resistance against these types of antibiotics consists of target site modification. This prompted us to investigate whether the surfactin non-producing strain B. subtilis 168 changes its membrane composition in response to a sublethal surfactin concentration. Here we show that the exposure of B. subtilis to surfactin at concentrations of 350 and 650 μg/ml (designated as SF350 and SF650, respectively) leads to a concentration-dependent growth arrest followed by regrowth with an altered growth rate. Analysis of the membrane lipid composition revealed modifications both in the polar head group and the fatty acid region. The presence of either surfactin concentration resulted in a reduction in the content of the major membrane phospholipid phosphatidylglycerol (PG) and increase in phosphatidylethanolamine (PE), which was accompanied by elevated levels of phosphatidic acid (PA) in SF350 cultures. The fatty acid analysis of SF350 cells showed a marked increase in non-branched high-melting fatty acids, which lowered the fluidity of the membrane interior measured as the steady-state fluorescence anisotropy of DPH. The liposome leakage of carboxyfluorescein-loaded vesicles resembling the phospholipid composition of surfactin-adapted cells showed that the susceptibility to surfactin-induced leakage is strongly reduced when the PG/PE ratio decreases and/or PA is included in the target bilayer. We concluded that the modifications of the phospholipid content of B. subtilis cells might provide a self-tolerance of the membrane active surfactin. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo

    PubMed Central

    2016-01-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4–7 × 10−12 N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo. These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697

  15. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo.

    PubMed

    Dymond, Marcus K

    2016-08-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. © 2016 The Author(s).

  16. Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage

    PubMed Central

    Manni, Marco M; Tiberti, Marion L; Pagnotta, Sophie; Barelli, Hélène; Gautier, Romain

    2018-01-01

    Phospholipid membranes form cellular barriers but need to be flexible enough to divide by fission. Phospholipids generally contain a saturated fatty acid (FA) at position sn1 whereas the sn2-FA is saturated, monounsaturated or polyunsaturated. Our understanding of the impact of phospholipid unsaturation on membrane flexibility and fission is fragmentary. Here, we provide a comprehensive view of the effects of the FA profile of phospholipids on membrane vesiculation by dynamin and endophilin. Coupled to simulations, this analysis indicates that: (i) phospholipids with two polyunsaturated FAs make membranes prone to vesiculation but highly permeable; (ii) asymmetric sn1-saturated-sn2-polyunsaturated phospholipids provide a tradeoff between efficient membrane vesiculation and low membrane permeability; (iii) When incorporated into phospholipids, docosahexaenoic acid (DHA; omega-3) makes membranes more deformable than arachidonic acid (omega-6). These results suggest an explanation for the abundance of sn1-saturated-sn2-DHA phospholipids in synaptic membranes and for the importance of the omega-6/omega-3 ratio on neuronal functions. PMID:29543154

  17. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    PubMed

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  18. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives

    PubMed Central

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease. PMID:25977746

  19. Lipid chain saturation and the cholesterol in the phospholipid membrane affect the spectroscopic properties of lipophilic dye nile red

    NASA Astrophysics Data System (ADS)

    Halder, Animesh; Saha, Baishakhi; Maity, Pabitra; Kumar, Gopinatha Suresh; Sinha, Deepak Kumar; Karmakar, Sanat

    2018-02-01

    We have studied the effect of composition and the phase state of phospholipid membranes on the emission spectrum, anisotropy and lifetime of a lipophilic fluorescence probe nile red. Fluorescence spectrum of nile red in membranes containing cholesterol has also been investigated in order to get insights into the influence of cholesterol on the phospholipid membranes. Maximum emission wavelength (λem) of nile red in the fluid phase of saturated and unsaturated phospholipids was found to differ by 10 nm. The λem was also found to be independent of chain length and charge of the membrane. However, the λem is strongly dependent on the temperature in the gel phase. The λem and rotational diffusion rate decrease, whereas the anisotropy and lifetime increase markedly with increasing cholesterol concentration for saturated phosoholipids, such as, dimyristoyl phosphatidylcholine (DMPC) in the liquid ordered phase. However, these spectroscopic properties do not alter significantly in case of unsaturated phospholipids, such as, dioleoyl phosphatidylcholine (DOPC) in liquid disordered phase. Interestingly, red edge excitation shift (REES) in the presence of lipid-cholesterol membranes is the direct consequences of change in rotational diffusion due to motional restriction of lipids in the presence of cholesterol. This study provides correlations between the membrane compositions and fluorescence spectral features which can be utilized in a wide range of biophysical fields as well the cell biology.

  20. Native and dry-heated lysozyme interactions with membrane lipid monolayers: Lipid packing modifications of a phospholipid mixture, model of the Escherichia coli cytoplasmic membrane.

    PubMed

    Derde, Melanie; Nau, Françoise; Guérin-Dubiard, Catherine; Lechevalier, Valérie; Paboeuf, Gilles; Jan, Sophie; Baron, Florence; Gautier, Michel; Vié, Véronique

    2015-04-01

    Antimicrobial resistance is currently an important public health issue. The need for innovative antimicrobials is therefore growing. The ideal antimicrobial compound should limit antimicrobial resistance. Antimicrobial peptides or proteins such as hen egg white lysozyme are promising molecules that act on bacterial membranes. Hen egg white lysozyme has recently been identified as active on Gram-negative bacteria due to disruption of the outer and cytoplasmic membrane integrity. Furthermore, dry-heating (7 days and 80 °C) improves the membrane activity of lysozyme, resulting in higher antimicrobial activity. These in vivo findings suggest interactions between lysozyme and membrane lipids. This is consistent with the findings of several other authors who have shown lysozyme interaction with bacterial phospholipids such as phosphatidylglycerol and cardiolipin. However, until now, the interaction between lysozyme and bacterial cytoplasmic phospholipids has been in need of clarification. This study proposes the use of monolayer models with a realistic bacterial phospholipid composition in physiological conditions. The lysozyme/phospholipid interactions have been studied by surface pressure measurements, ellipsometry and atomic force microscopy. Native lysozyme has proved able to absorb and insert into a bacterial phospholipid monolayer, resulting in lipid packing reorganization, which in turn has lead to lateral cohesion modifications between phospholipids. Dry-heating of lysozyme has increased insertion capacity and ability to induce lipid packing modifications. These in vitro findings are then consistent with the increased membrane disruption potential of dry heated lysozyme in vivo compared to native lysozyme. Moreover, an eggPC monolayer study suggested that lysozyme/phospholipid interactions are specific to bacterial cytoplasmic membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Supercritical CO2 induces marked changes in membrane phospholipids composition in Escherichia coli K12.

    PubMed

    Tamburini, Sabrina; Anesi, Andrea; Ferrentino, Giovanna; Spilimbergo, Sara; Guella, Graziano; Jousson, Olivier

    2014-06-01

    Supercritical carbon dioxide (SC-CO2) treatment is one of the most promising alternative techniques for pasteurization of both liquid and solid food products. The inhibitory effect of SC-CO2 on bacterial growth has been investigated in different species, but the precise mechanism of action remains unknown. Membrane permeabilization has been proposed to be the first event in SC-CO2-mediated inactivation. Flow cytometry, high performance liquid chromatography–electrospray ionization–mass spectrometry and NMR analyses were performed to investigate the effect of SC-CO2 treatment on membrane lipid profile and membrane permeability in Escherichia coli K12. After 15 min of SC-CO2 treatment at 120 bar and 35 °C, the majority of bacterial cells dissipated their membrane potential (95 %) and lost membrane integrity, as 81 % become partially permeabilized and 18 % fully permeabilized. Membrane permeabilization was associated with a 20 % decrease in bacterial biovolume and to a strong (>50 %) reduction in phosphatidylglycerol (PG) membrane lipids, without altering the fatty acid composition and the degree of unsaturation of acyl chains. PGs are thought to play an important role in membrane stability, by reducing motion of phosphatidylethanolamine (PE) along the membrane bilayer, therefore promoting the formation of inter-lipid hydrogen bonds. In addition, the decrease in intracellular pH induced by SC-CO2 likely alters the chemical properties of phospholipids and the PE/PG ratio. Biophysical effects of SC-CO2 thus cause a strong perturbation of membrane architecture in E. coli, and such alterations are likely associated with its strong inactivation effect.

  2. Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography.

    PubMed

    Weerheim, A M; Kolb, A M; Sturk, A; Nieuwland, R

    2002-03-15

    Microparticles in the circulation activate the coagulation system and may activate the complement system via C-reactive protein upon conversion of membrane phospholipids by phospholipases. We developed a sensitive and reproducible method to determine the phospholipid composition of microparticles. Samples were applied to horizontal, one-dimensional high-performance thin-layer chromatography (HPTLC). Phospholipids were separated on HPTLC by chloroform:ethyl acetate:acetone:isopropanol:ethanol:methanol:water:acetic acid (30:6:6:6:16:28:6:2); visualized by charring with 7.5% Cu-acetate (w/v), 2.5% CuSO(4) (w/v), and 8% H(3)PO(4) (v/v) in water; and quantified by photodensitometric scanning. Erythrocyte membranes were used to validate the HPTLC system. Microparticles were isolated from plasma of healthy individuals (n = 10). On HPTLC, mixtures of (purified) phospholipids, i.e., lysophosphatidylcholine, phosphatidylcholine (PC), sphingomyelin (SM), lysophosphatidylserine, phosphatidylserine, lysophosphatidylethanolamine, phosphatidylethanolamine (PE), and phosphatidylinositol, could be separated and quantified. All phospholipids were detectable in erythrocyte ghosts, and their quantities fell within ranges reported earlier. Quantitation of phospholipids, including extraction, was highly reproducible (CV < 10%). Microparticles contained PC (59%), SM (20.6%), and PE (9.4%), with relatively minor (<5%) quantities of other phospholipids. HPTLC can be used to study the phospholipid composition of cell-derived microparticles and may also be a useful technique for the analysis of other samples that are available only in minor quantities. (C)2002 Elsevier Science (USA).

  3. Phospholipid composition of Dipylidium caninum.

    PubMed

    Chopra, A K; Jain, S K; Vinayak, V K; Khuller, G K

    1978-11-15

    The phospholipid composition of Dipylidium caninum has been studied. Chloroform-methanol-soluble fraction amounted to 2.4% and phospholipids to 0.5% of the wet weight of the parasite. Phosphatidyl choline and phosphatidyl ethanolamine represented the bulk of the phospholipids, whereas phosphatidyl serine, phosphatidyl inositol, lysolecithin and lysophosphatidyl ethanolamine were present in minor amounts. Sulfatides were also identified in this parasite.

  4. Phospholipid Nonwoven Electrospun Membranes

    NASA Astrophysics Data System (ADS)

    McKee, Matthew G.; Layman, John M.; Cashion, Matthew P.; Long, Timothy E.

    2006-01-01

    Nonwoven fibrous membranes were formed from electrospinning lecithin solutions in a single processing step. As the concentration of lecithin increased, the micellar morphology evolved from spherical to cylindrical, and at higher concentrations the cylindrical micelles overlapped and entangled in a fashion similar to polymers in semi-dilute or concentrated solutions. At concentrations above the onset of entanglements of the wormlike micelles, electrospun fibers were fabricated with diameters on the order of 1 to 5 micrometers. The electrospun phospholipid fibers offer the potential for direct fabrication of biologically based, high-surface-area membranes without the use of multiple synthetic steps, complicated electrospinning designs, or postprocessing surface treatments.

  5. Connexin channels and phospholipids: association and modulation

    PubMed Central

    Locke, Darren; Harris, Andrew L

    2009-01-01

    Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to

  6. Alteration of phospholipid composition by combined defects in phosphatidylserine and cardiolipin synthases and physiological consequences in Escherichia coli.

    PubMed Central

    Shibuya, I; Miyazaki, C; Ohta, A

    1985-01-01

    Escherichia coli K-12 derivatives with a common genetic background carrying, either alone or in combination, the pss-1 allele coding for a temperature-sensitive phosphatidylserine synthase (A. Ohta and I. Shibuya, J. Bacteriol. 132:434-443, 1977) and cls- for a defective cardiolipin synthase (G. Pluschke et al., J. Biol. Chem. 253:5048-5055, 1978) were constructed. The phospholipid polar headgroup compositions of these strains were significantly different from each other depending on their genotypes and growth temperature, whereas other membrane characteristics such as the total phospholipid content, fatty acid composition, membrane protein profile, and lipopolysaccharide content were practically the same, suggesting that the phenotypes of these strains were the direct consequences of abnormalities in membrane phospholipid composition. The cls pss-1 double mutation caused an unusual accumulation of phosphatidylglycerol with an extremely low content of cardiolipin. The cls mutation alone was found to give a growth defect, and its introduction into a pss-1 mutant resulted in an enhanced temperature sensitivity of growth. Addition to a broth medium of a proper concentration of sucrose, NaCl, Mg2+, or Ca2+ allowed the growth of a pss-1 mutant at otherwise nonpermissive temperature, but a pss-1 cls double mutant required the combined addition of sucrose or NaCl and MgCl2 for full growth at 42 degrees C. The possible mechanisms for these physiological consequences of the mutations are discussed on a molecular basis. The remedial effects of culture supplements allowed the pss-1 mutants to grow at 42 degrees C resulting in enhanced abnormalities of membrane phospholipid composition. Images PMID:2982784

  7. Dietary fat and the diabetic state alter insulin binding and the fatty acyl composition of the adipocyte plasma membrane.

    PubMed Central

    Field, C J; Ryan, E A; Thomson, A B; Clandinin, M T

    1988-01-01

    Control and diabetic rats were fed on semi-purified high-fat diets providing a polyunsaturated/saturated fatty acid ratio (P/S) of 1.0 or 0.25, to examine the effect of diet on the fatty acid composition of major phospholipids of the adipocyte plasma membrane. Feeding the high-P/S diet (P/S = 1.0) compared with the low-P/S diet (P/S = 0.25) increased the content of polyunsaturated fatty acids in membrane phospholipids in both control and diabetic animals. The diabetic state decreased the content of polyunsaturated fatty acids, particularly arachidonic acid, in adipocyte membrane phospholipids. The decrease in arachidonic acid in membrane phospholipids of diabetic animals tended to be normalized to within the control values when high-P/S diets were given. For control animals, altered plasma-membrane composition was associated with change in insulin binding, suggesting that change in plasma-membrane composition may have physiological consequences for insulin-stimulated functions in the adipocyte. PMID:3052424

  8. Dietary fatty acid composition and the homeostatic regulation of mitochondrial phospholipid classes in red muscle of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Martin, Nicolas; Kraffe, Edouard; Le Grand, Fabienne; Marty, Yanic; Bureau, Dominique P; Guderley, Helga

    2015-01-01

    Although dietary lipid quality markedly affects fatty acid (FA) composition of mitochondrial membranes from rainbow trout red muscle (Oncorhynchus mykiss), mitochondrial processes are relatively unchanged. As certain classes of phospholipids interact more intimately with membrane proteins than others, we examined whether specific phospholipid classes from these muscle mitochondria were more affected by dietary FA composition than others. To test this hypothesis, we fed trout with two diets differing only in their FA composition: Diet 1 had higher levels of 18:1n-9 and 18:2n-6 than Diet 2, while 22:6n-3 and 22:5n-6 were virtually absent from Diet 1 and high in Diet 2. After 5 months, trout fed Diet 2 had higher proportions of phosphatidylcholine (PC) and less phosphatidylethanolamine (PE) in mitochondrial membranes than those fed Diet 1. The FA composition of PC, PE and cardiolipin (CL) showed clear evidence of regulated incorporation of dietary FA. For trout fed Diet 2, 22:6n-3 was the most abundant FA in PC, PE and CL. The n-6 FA were consistently higher in all phospholipid classes of trout fed Diet 1, with shorter n-6 FA being favoured in CL than in PC and PE. Despite these marked changes in individual FA levels with diet, general characteristics such as total polyunsaturated FA, total monounsaturated FA and total saturated FA were conserved in PE and CL, confirming differential regulation of the FA composition of PC, PE and CL. The regulated changes of phospholipid classes presumably maintain critical membrane characteristics despite varying nutritional quality. We postulate that these changes aim to protect mitochondrial function. © 2014 Wiley Periodicals, Inc.

  9. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    NASA Astrophysics Data System (ADS)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  10. Creation and Relaxation of Phospholipid Compositional Asymmetry in Lipid Bilayers Examined by Sum-Frequency Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anglin, Timothy C.; Brown, Krystal; Conboy, John C.

    2010-08-01

    Eukaryotic cells contain an asymmetric distribution of phospholipids in the two leaflets of the lipid bilayer which is known to contribute to cellular function. In the plasma membrane of eukaryotic cells, the aminophospholipids with phosphatidylserine (PS) and phosphatidylethanolamine (PE) headgroups are predominately located on the cytosolic leaflet while sphingolipids with phosphatidylcholine (PC) headgroups and sphingomeylin are on the extra-cellular leaflet. There have been a number of theories about the mechanism of transbilayer movement of lipids in cellular systems and the physical process by which lipid compositional asymmetry in the plasma membrane of eukaryotic cells is maintained. It is generally accepted that a significant barrier to native lipid translocation (movement between leaflets of the bilayer) exists which is related to the energetic penalty of moving the hydrophilic headgroup of a phospholipid through the hydrophobic core of the membrane. Overcoming this energetic barrier represents the rate limiting step in the spontaneous flip-flop of phospholipids in biological membranes, yet, while numerous kinetic studies of phospholipid flip-flop have been conducted, few researchers have reported thermodynamic parameters for the process. Using methods of classical surface chemistry coupled with nonlinear optical methods, we have developed a novel analytical approach, using sum-frequency vibrational spectroscopy (SFVS), to selectively probe lipid compositional asymmetry in a planar supported lipid bilayer. This new method allows for the detection of lipid flip-flop kinetics and compositional asymmetry without the need for a fluorescent or spin-labeled lipid species by exploiting the coherent nature of SFVS. The SFVS intensity arising from the terminal methyl groups of the lipid fatty acid chains is used as an internal probe to directly monitor the compositional asymmetry in planar supported lipid bilayers (PSLBs(. By selectively deuterating a sub

  11. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids

    PubMed Central

    Kim, JiHyun; Huang, Zhen; St. Clair, Johnna R.; Brown, Deborah A.; London, Erwin

    2016-01-01

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70–80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids. PMID:27872310

  12. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    PubMed

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  13. ER phospholipid composition modulates lipogenesis during feeding and in obesity.

    PubMed

    Rong, Xin; Wang, Bo; Palladino, Elisa Nd; de Aguiar Vallim, Thomas Q; Ford, David A; Tontonoz, Peter

    2017-10-02

    Sterol regulatory element-binding protein 1c (SREBP-1c) is a central regulator of lipogenesis whose activity is controlled by proteolytic cleavage. The metabolic factors that affect its processing are incompletely understood. Here, we show that dynamic changes in the acyl chain composition of ER phospholipids affect SREBP-1c maturation in physiology and disease. The abundance of polyunsaturated phosphatidylcholine in liver ER is selectively increased in response to feeding and in the setting of obesity-linked insulin resistance. Exogenous delivery of polyunsaturated phosphatidylcholine to ER accelerated SREBP-1c processing through a mechanism that required an intact SREBP cleavage-activating protein (SCAP) pathway. Furthermore, induction of the phospholipid-remodeling enzyme LPCAT3 in response to liver X receptor (LXR) activation promoted SREBP-1c processing by driving the incorporation of polyunsaturated fatty acids into ER. Conversely, LPCAT3 deficiency increased membrane saturation, reduced nuclear SREBP-1c abundance, and blunted the lipogenic response to feeding, LXR agonist treatment, or obesity-linked insulin resistance. Desaturation of the ER membrane may serve as an auxiliary signal of the fed state that promotes lipid synthesis in response to nutrient availability.

  14. Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids.

    PubMed

    Contreras, G A; O'Boyle, N J; Herdt, T H; Sordillo, L M

    2010-06-01

    The periparturient period is characterized by sudden changes in metabolic and immune cell functions that predispose dairy cows to increased incidence of disease. Metabolic changes include alterations in the energy balance that lead to increased lipomobilization with consequent elevation of plasma nonesterified fatty acids (NEFA) concentrations. The objective of this study was to establish the influence of lipomobilization on fatty acid profiles within plasma lipid fractions and leukocyte phospholipid composition. Blood samples from 10 dairy cows were collected at 14 and 7 d before due date, at calving, and at 7, 14, and 30 d after calving. Total lipids and lipid fractions were extracted from plasma and peripheral blood mononuclear cells. The degree of lipomobilization was characterized by measurement of plasma NEFA concentrations. The fatty acid profile of plasma NEFA, plasma phospholipids, and leukocyte phospholipids differed from the composition of total lipids in plasma, where linoleic acid was the most common fatty acid. Around parturition and during early lactation, the proportion of palmitic acid significantly increased in the plasma NEFA and phospholipid fractions with a concomitant increase in the phospholipid fatty acid profile of leukocytes. In contrast, the phospholipid fraction of long-chain polyunsaturated fatty acids in leukocytes was diminished during the periparturient period, especially during the first 2 wk following parturition. This study showed that the composition of total plasma lipids does not necessarily reflect the NEFA and phospholipid fractions in periparturient dairy cows. These findings are significant because it is the plasma phospholipid fraction that contributes to fatty acid composition of membrane phospholipids. Increased availability of certain saturated fatty acids in the NEFA phospholipid fractions may contribute to altered leukocyte functions during the periparturient period. 2010 American Dairy Science Association. Published

  15. Thermodynamics of Indomethacin Adsorption to Phospholipid Membranes.

    PubMed

    Fearon, Amanda D; Stokes, Grace Y

    2017-11-22

    Using second-harmonic generation, we directly monitored adsorption of indomethacin, a nonsteroidal anti-inflammatory drug, to supported lipid bilayers composed of phospholipids of varying phase, cholesterol content, and head group charge without the use of extrinsic labels at therapeutically relevant aqueous concentrations. Indomethacin adsorbed to gel-phase lipids with a high binding affinity, suggesting that like other arylacetic acid-containing drugs, it preferentially interacts with ordered lipid domains. We discovered that adsorption of indomethacin to gel-phase phospholipids was endothermic and entropically driven, whereas adsorption to fluid-phase phospholipids was exothermic and enthalpically driven. As temperature increased from 19 to 34 °C, binding affinities to gel-phase lipids increased by 7-fold but relative surface concentration decreased to one-fifth of the original value. We also compared our results to the entropies reported for indomethacin adsorbed to surfactant micelles, which are used in drug delivery systems, and assert that adsorbed water molecules in the phospholipid bilayer may be buried deeper into the acyl chains and less accessible for disruption. The thermodynamic studies reported here provide mechanistic insight into indomethacin interactions with mammalian plasma membranes in the gastrointestinal tract and inform studies of drug delivery, where indomethacin is commonly used as a prototypical, hydrophobic small-molecule drug.

  16. Phospholipase A2 activity-dependent and -independent fusogenic activity of Naja nigricollis CMS-9 on zwitterionic and anionic phospholipid vesicles.

    PubMed

    Chiou, Yi-Ling; Chen, Ying-Jung; Lin, Shinne-Ren; Chang, Long-Sen

    2011-11-01

    CMS-9, a phospholipase A(2) (PLA(2)) from Naja nigricollis venom, induced the death of human breast cancer MCF-7 cells accompanied with the formation of cell clumps without clear boundaries between cells. Annexin V-FITC staining indicated that abundant phosphatidylserine appeared on the outer membrane of MCF-7 cell clumps, implying the possibility that CMS-9 may promote membrane fusion via anionic phospholipids. To validate this proposition, fusogenic activity of CMS-9 on vesicles composed of zwitterionic phospholipid alone or a combination of zwitterionic and anionic phospholipids was examined. Although CMS-9-induced fusion of zwitterionic phospholipid vesicles depended on PLA(2) activity, CMS-9-induced fusion of vesicles containing anionic phospholipids could occur without the involvement of PLA(2) activity. Membrane-damaging activity of CMS-9 was associated with its fusogenicity. Moreover, CMS-9 induced differently membrane leakage and membrane fusion of vesicles with different compositions. Membrane fluidity and binding capability with phospholipid vesicles were not related to the fusogenicity of CMS-9. However, membrane-bound conformation and mode of CMS-9 depended on phospholipid compositions. Collectively, our data suggest that PLA(2) activity-dependent and -independent fusogenicity of CMS-9 are closely related to its membrane-bound modes and targeted membrane compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Phospholipid composition of chlorophyll-free mitochondria isolated via protoplasts from oat mesophyll cells.

    PubMed

    Fuchs, R; Haas, R; Wrage, K; Heinz, E

    1981-08-01

    Mitochondria were isolated from oat primary leaves via mesophyll protoplasts and subjected to phospholipid analysis. In mesophyll cells mitochondria account for only small proportions of cellular phospholipids (in the order of 5%) and proteins (in the order of 2%). Contamination by lipids from other membranes was insignificant as indicated by the absence or very low levels of chlorophyll, galactolipids and steryl glycosides. The absence of 3-trans-hexadecenoic acid in phosphatidylglycerol from mitochondria of green cells serves an an additional criterion of purity. The phospholipid mixture extracted from these mitochondria resembles phospholipids in mitochondria from non-green tissues regarding composition as well as fatty acid profiles. Therefore, mitochondria maintain a rather constant lipid profile and in contrast to plastids do not respond at this level to differences in the physiological status of their housing cell. Palmitic acid in mitochondrial phosphatidylcholine and phosphatidylethanolamine is primarily localized at the C-1 position of the glycerol moiety. Two enzymatic activities so far not described in mitochondria, formation of acylgalactosyl diacylglycerol and hydrolysis of acyl-CoA, were found in the purified mitochondrial fraction.

  18. Characterization of Type Three Secretion System Translocator Interactions with Phospholipid Membranes.

    PubMed

    Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E

    2017-01-01

    In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.

  19. Hydrolysis of membrane phospholipids by phospholipases of rat liver lysosomes

    PubMed Central

    Richards, Donald E.; Irvine, Robin F.; Dawson, Rex M. C.

    1979-01-01

    (1) The hydrolysis of 32P- or myo-[2-3H]inositol-labelled rat liver microsomal phospholipids by rat liver lysosomal enzymes has been studied. (2) The relative rates of hydrolysis of phospholipids at pH4.5 are: sphingomyelin>phosphatidylethanolamine>phosphatidylcholine> phosphatidylinositol. (3) The predominant products of phosphatidylcholine and phosphatidylethanolamine hydrolysis are their corresponding lyso-compounds, indicating a slow rate of total deacylation. (4) Ca2+ inhibits the hydrolysis of all phospholipids, though only appreciably at high (>5mm) concentration. The hydrolysis of sphingomyelin is considerably less sensitive to Ca2+ than that of glycerophospholipids. (5) Analysis of the water-soluble products of phosphatidylinositol hydrolysis (by using myo-[3H]inositol-labelled microsomal fraction as a substrate) produced evidence that more than 95% of the product is phosphoinositol, which was derived by direct cleavage from phosphatidylinositol, rather than by hydrolysis of glycerophosphoinositol. (6) This production of phosphoinositol, allied with negligible lysophosphatidylinositol formation and a detectable accumulation of diacylglycerol, indicates that lysosomes hydrolyse membrane phosphatidylinositol almost exclusively in a phospholipase C-like manner. (7) Comparisons are drawn between the hydrolysis by lysosomal enzymes of membrane substrates and that of pure phospholipid substrates, and also the possible role of phosphatidylinositol-specific lysosomal phospholipase C in cellular phosphatidylinositol catabolism is discussed. PMID:508301

  20. Flip-Flop of Phospholipids in Proteoliposomes Reconstituted from Detergent Extract of Chloroplast Membranes: Kinetics and Phospholipid Specificity

    PubMed Central

    Rajasekharan, Archita; Gummadi, Sathyanarayana N.

    2011-01-01

    Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6±1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents. PMID:22174798

  1. Flip-flop of phospholipids in proteoliposomes reconstituted from detergent extract of chloroplast membranes: kinetics and phospholipid specificity.

    PubMed

    Rajasekharan, Archita; Gummadi, Sathyanarayana N

    2011-01-01

    Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.

  2. Abnormal octadeca-carbon fatty acids distribution in erythrocyte membrane phospholipids of patients with gastrointestinal tumor.

    PubMed

    Lin, Shaohui; Li, Tianyu; Liu, Xifang; Wei, Shihu; Liu, Zequn; Hu, Shimin; Liu, Yali; Tan, Hongzhuan

    2017-06-01

    Fatty acid (FA) composition is closely associated with tumorigenesis and neoplasm metastasis. This study was designed to investigate the differences of phospholipid FA (PLFA) composition in erythrocyte and platelet cell membranes in both gastrointestinal (GI) tumor patients and healthy controls.In this prospective study, 50 GI tumor patients and 33 healthy volunteers were recruited between the years 2013 and 2015. Blood samples were collected from healthy volunteers and patients, and FA composition was assessed using gas chromatography-mass spectrometer (GC-MS), and data were analyzed by multifactor regression analysis.Compared with healthy controls, the percentages of C18:0 (stearic acid, SA), C22:6 (docosahexaenoic acid, DHA), and n-3 polyunsaturated FAs (n-3 PUFA) were significantly increased, while C18:1 (oleic acid, OA), C18:2 (linoleic acid, LA), and monounsaturated FAs (MUFA) decreased in erythrocyte membranes of GI tumor patients. Also, patient's platelets revealed higher levels of C20:4 (arachidonic acid, AA) and DHA, and lower levels of OA and MUFA.Our study displayed a remarkable change in the FA composition of erythrocyte and platelet membranes in GI tumor patients as compared with healthy controls. The octadeca-carbon FAs (SA, OA, and LA) in erythrocyte membranes could serve as a potential indicator for GI tumor detection.

  3. A stable planar bilayer membrane of phospholipid supported by cellulose sheets.

    PubMed

    Setaka, M; Yamamoto, T; Sato, N; Yano, M; Kwan, T

    1982-01-01

    A new method is reported for preparing a thin planar membrane of 1,2-distearoylsn-glycero-3-phosphocholine and egg yolk lecithin-cholesterol (molar ratio of 1:1) between a pair of cellulose sheets. This technique, developed from the method of the multilayer planar membrane preparation (Setaka, M., et al. (1979) J. Biochem. 86, 355-362; 1619-1622; (1980) J. Biochem. 88, 1819-1829), consisted of three experimental processes. First, a phospholipid monolayer was prepared at an air-water interface, then taken up on a stretched cellulose sheet. A thin lipid membrane, supported from both sides by cellulose sheets, was constructed by combining two of these lipid monolayer-cellulose sheets. The permeability coefficient of the thin lipid membrane was estimated by removing the effect of two outer cellulose sheets, and this permeability was found to be larger than those of other model membranes of a lipid bilayer, indicating that the present lipid membrane is not a perfect single lipid bilayer. However, certain experimental evidence suggests that the bulk of the phospholipids formed a bilayer between the two cellulose sheets. Since this lipid membrane is particularily stable, larger membranes can be prepared by the present method than other planar bilayer membranes of lipid, which are usually constructed inside a pin hole in a thin teflon sheet.

  4. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    PubMed

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  5. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    PubMed

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  6. Effects of Chain Length and Saturability of Fatty Acids on Phospholipids and Proteins in Plasma Membranes of Bovine Mammary Gland.

    PubMed

    Yan, Qiongxian; Tang, Shaoxun; Han, Xuefeng; Bamikole, Musibau Adungbe; Zhou, Chuanshe; Kang, Jinhe; Wang, Min; Tan, Zhiliang

    2016-12-01

    Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined. The mammary cells PMs at 38 and 39.5 °C showed different adsorption capacities: acetic acid (Ac) > stearic acid (SA) > β-hydroxybutyric acid (BHBA) > trans10, cis12 CLA. In the FTIR spectrum, the major adsorption peaks appeared at 2920 and 2850 cm -1 for phospholipids, and at 1628 and 1560 cm -1 for membrane proteins. The intensities of PMs-FFAs complexes were varied with the FFAs species and their initial concentrations. The β-sheet and turn structures of membrane proteins were transferred into random coil and α-helix after BHBA, SA and trans10, cis12 CLA treatments compared with Ac treatment. The quenching effects on the fluorescence of endogenous membrane protein, 1, 8-ANS, NBD-PE, and DHPE entrapped in PMs by LCFA were different from those of short chain FFAs. These results indicate that the adsorption of FFAs could change membrane protein conformation and polarity of head group in phospholipids. This variation of the mammary cells PMs was regulated by carbon chain length and saturability of FFAs.

  7. Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation.

    PubMed

    Quon, Evan; Sere, Yves Y; Chauhan, Neha; Johansen, Jesper; Sullivan, David P; Dittman, Jeremy S; Rice, William J; Chan, Robin B; Di Paolo, Gilbert; Beh, Christopher T; Menon, Anant K

    2018-05-01

    Tether proteins attach the endoplasmic reticulum (ER) to other cellular membranes, thereby creating contact sites that are proposed to form platforms for regulating lipid homeostasis and facilitating non-vesicular lipid exchange. Sterols are synthesized in the ER and transported by non-vesicular mechanisms to the plasma membrane (PM), where they represent almost half of all PM lipids and contribute critically to the barrier function of the PM. To determine whether contact sites are important for both sterol exchange between the ER and PM and intermembrane regulation of lipid metabolism, we generated Δ-super-tether (Δ-s-tether) yeast cells that lack six previously identified tethering proteins (yeast extended synatotagmin [E-Syt], vesicle-associated membrane protein [VAMP]-associated protein [VAP], and TMEM16-anoctamin homologues) as well as the presumptive tether Ice2. Despite the lack of ER-PM contacts in these cells, ER-PM sterol exchange is robust, indicating that the sterol transport machinery is either absent from or not uniquely located at contact sites. Unexpectedly, we found that the transport of exogenously supplied sterol to the ER occurs more slowly in Δ-s-tether cells than in wild-type (WT) cells. We pinpointed this defect to changes in sterol organization and transbilayer movement within the PM bilayer caused by phospholipid dysregulation, evinced by changes in the abundance and organization of PM lipids. Indeed, deletion of either OSH4, which encodes a sterol/phosphatidylinositol-4-phosphate (PI4P) exchange protein, or SAC1, which encodes a PI4P phosphatase, caused synthetic lethality in Δ-s-tether cells due to disruptions in redundant PI4P and phospholipid regulatory pathways. The growth defect of Δ-s-tether cells was rescued with an artificial "ER-PM staple," a tether assembled from unrelated non-yeast protein domains, indicating that endogenous tether proteins have nonspecific bridging functions. Finally, we discovered that sterols play a role

  8. Phospholipid Diffusion Coefficients of Cushioned Model Membranes determined via Z-Scan Fluorescence Correlation Spectroscopy

    PubMed Central

    Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.

    2013-01-01

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855

  9. COMPOSITION OF CELLULAR MEMBRANES IN THE PANCREAS OF THE GUINEA PIG

    PubMed Central

    Meldolesi, J.; Jamieson, J. D.; Palade, G. E.

    1971-01-01

    The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ∼20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant. PMID:5555573

  10. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus.

    PubMed

    Koštál, Vladimír; Urban, Tomáš; Rimnáčová, Lucie; Berková, Petra; Simek, Petr

    2013-09-01

    Ectotherm animals including insects are known to undergo seasonal restructuring of the cell membranes in order to keep their functionality and/or protect their structural integrity at low body temperatures. Studies on insects so far focused either on fatty acids or on composition of molecular species in major phospholipid classes. Here we extend the scope of analysis and bring results on seasonal changes in minor phospholipid classes, lysophospholipids (LPLs), free fatty acids, phytosterols and tocopherols in heteropteran insect, Pyrrhocoris apterus. We found that muscle tissue contains unusually high amounts of LPLs. Muscle and fat body tissues also contain high amounts of β-sitosterol and campesterol, two phytosterols derived from plant food, while only small amounts of cholesterol are present. In addition, two isomers (γ and δ) of tocopherol (vitamin E) are present in quantities comparable to, or even higher than phytosterols in both tissues. Distinct seasonal patterns of sterol and tocopherol concentrations were observed showing a minimum in reproductively active bugs in summer and a maximum in diapausing, cold-acclimated bugs in winter. Possible adaptive meanings of such changes are discussed including: preventing the unregulated transition of membrane lipids from functional liquid crystalline phase to non-functional gel phase; decreasing the rates of ion/solute leakage; silencing the activities of membrane bound enzymes and receptors; and counteracting the higher risk of oxidative damage to PUFA in winter membranes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. [Comparison of long-chain polyunsaturated fatty acids in plasma and erythrocyte phospholipids for biological monitoring].

    PubMed

    Kawabata, Terue; Nakai, Kunihiko; Hagiwara, Chie; Kurokawa, Naoyuki; Murata, Katsuyuki; Yaginuma, Kozue; Satoh, Hiroshi

    2011-01-01

    Previous data have indicated that the erythrocyte membrane may be the preferred sample type for assessing long-chain polyunsaturated fatty acid (LCPUFA) contents in cardiac and cerebral membranes. In this epidemiological study, we examined whether plasma phospholipids can be used for accurate biological monitoring of the LCPUFA state or whether analysis of erythrocyte membrane phospholipids is indispensable. (1) The analysis of LCPUFA contents in erythrocyte membrane phospholipids was conducted at baseline and after 1 and 3 days at 4°C, and 21 days at -40°C, after blood drawing, and the changes in LCPUFA content were examined. (2) The LCPUFA compositions of plasma and erythrocyte phospholipids in 133 young women (18-30 years old) were examined and the relationships between the sample type and the levels of LCPUFAs were determined. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and DHA/arachidonic acid (AA) and (EPA+DHA)/AA ratios in erythrocyte membrane phospholipids after 21 days of blood drawing significantly decreased compared with the corresponding baseline data. Regarding AA, EPA and DHA, a significant positive correlation was shown between levels of erythrocyte membrane phospholipids and plasma phospholipids (AA, r=0.364; EPA, r=0.709; DHA, r=0.653). The predictive value of plasma phospholipids for determining the highest concentration quartile in erythrocyte phospholipids was better in EPA (70%) than in DHA (55%) and AA (42%). The measurement of LCPUFA content in erythrocyte membrane phospholipids is necessary for accurate biological monitoring. We also found that LCPUFA in erythrocyte membrane phospholipids is stable in cold storage (4°C) for 3 days after blood drawing.

  12. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.

    PubMed

    Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J

    2016-01-01

    Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.

  13. Phospholipid and fatty acid compositions of Rhizobium leguminosarum biovar trifolii ANU843 in relation to flavone-activated pSym nod gene expression.

    PubMed

    Orgambide, G G; Huang, Z H; Gage, D A; Dazzo, F B

    1993-11-01

    The phospholipid and associated fatty acid compositions of the bacterial symbiont of clover, Rhizobium leguminosarum biovar trifolii wild-type ANU843, was analyzed by two-dimensional silica thin-layer chromatography, fast atom bombardment-mass spectrometry, flame-ionization detection gas-liquid chromatography and combined gas-liquid chromatography/mass spectrometry. The phospholipid composition included phosphatidylethanolamine (15%), N-methylphosphatidylethanolamine (47%), N,N-dimethylphosphatidylethanolamine (9%), phosphatidylglycerol (19%), cardiolipin (5%) and phosphatidylcholine (2%). Fatty acid composition included predominantly cis-11-octadecenoic acid, lower levels of cis-9-hexadecenoic acid, hexadecanoic acid, 11-methyl-11-octadecenoic acid, octadecanoic acid, 11,12-methyleneoctadecanoic acid, eicosanoic acid and traces of branched, and di- and triunsaturated fatty acids. The influence of expression of the "nodulation" genes encoding symbiotic functions on the composition of these membrane lipids was examined in wild-type cells grown with or without the flavone inducer, 4',7-dihydroxyflavone and in mutated cells lacking the entire symbiotic plasmid where these genes reside, or containing single transposon insertions in selected nodulation genes. No significant changes in phospholipid or associated fatty acid compositions were detected by the above methods of analysis.

  14. Characterization of Phospholipids in Insulin Secretory Granules and Mitochondria in Pancreatic Beta Cells and Their Changes with Glucose Stimulation*

    PubMed Central

    MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.

    2015-01-01

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724

  15. Effects of PEO-PPO-PEO Triblock Copolymers on Phospholipid Membrane Integrity under Osmotic Stress

    PubMed Central

    Wang, Jia-Yu; Chin, Jaemin; Marks, Jeremy D.; Lee, Ka Yee C.

    2010-01-01

    The effects of PEO-PPO-PEO triblock copolymers, mainly Poloxamer 188, on phospholipid membrane integrity under osmotic gradients were explored using giant unilamellar vesicles (GUVs). Fluorescence leakage assays showed two opposing effects of P188 on the structural integrity of GUVs depending on the duration of their incubation time. A two-state transition mechanism of interaction between the triblock copolymers and the phospholipid membrane is proposed: an adsorption (I) and an insertion (II) state. While the triblock copolymer in state I acts to moderately retard the leakage, their insertion in state II perturbs the lipid packing, thus increasing the membrane permeability. Our results suggest that the biomedical application of PEO-PPO-PEO triblock copolymers, either as cell membrane resealing agents or as accelerators for drug delivery, is directed by the delicate balance between these two states. PMID:20666423

  16. Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit.

    PubMed

    Cesari, A B; Paulucci, N S; Biasutti, M A; Reguera, Y B; Gallarato, L A; Kilmurray, C; Dardanelli, M S

    2016-01-01

    We study the Azospirillum brasilense tolerance to water deficit and the dynamics of adaptive process at the level of the membrane. Azospirillum brasilense was exposed to polyethylene glycol (PEG) growth and PEG shock. Tolerance, phospholipids and fatty acid (FA) composition and membrane fluidity were determined. Azospirillum brasilense was able to grow in the presence of PEG; however, its viability was reduced. Cells grown with PEG showed membrane fluidity similar to those grown without, the lipid composition was modified, increasing phosphatidylcholine and decreasing phosphatidylethanolamine amounts. The unsaturation FAs degree was reduced. The dynamics of the adaptive response revealed a decrease in fluidity 20 min after the addition of PEG, indicating that the PEG has a fluidizing effect on the hydrophobic region of the cell membrane. Fluidity returned to initial values after 60 min of PEG exposure. Azospirillum brasilense is able to perceive osmotic changes by changing the membrane fluidity. This effect is offset by changes in the composition of membrane phospholipid and FA, contributing to the homeostasis of membrane fluidity under water deficit. This knowledge can be used to develop new Azospirillum brasilense formulations showing an adapted membrane to water deficit. © 2015 The Society for Applied Microbiology.

  17. Rooster sperm plasma membrane protein and phospholipid organization and reorganization attributed to cooling and cryopreservation

    USDA-ARS?s Scientific Manuscript database

    Cholesterol to phospholipid ratio is used as a representation for membrane fluidity, and predictor of cryopreservation success but results are not consistent across species and ignore the impact of membrane proteins. Therefore, this research explored the modulation of membrane fluidity and protein ...

  18. Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming.

    PubMed

    Sprícigo, José F W; Diógenes, Mateus N; Leme, Ligiane O; Guimarães, Ana L; Muterlle, Carolle V; Silva, Bianca Damiani Marques; Solà-Oriol, David; Pivato, Ivo; Silva, Luciano Paulino; Dode, Margot A N

    2015-01-01

    The objective of this study was to evaluate the effects of different maturation systems on oocyte resistance after vitrification and on the phospholipid profile of the oocyte plasma membrane (PM). Four different maturation systems were tested: 1) in vitro maturation using immature oocytes aspirated from slaughterhouse ovaries (CONT; n = 136); 2) in vitro maturation using immature oocytes obtained by ovum pick-up (OPU) from unstimulated heifers (IMA; n = 433); 3) in vitro maturation using immature oocytes obtained by OPU from stimulated heifers (FSH; n = 444); and 4) in vivo maturation using oocytes obtained from heifers stimulated 24 hours prior by an injection of GnRH (MII; n = 658). A sample of matured oocytes from each fresh group was analyzed by matrix associated laser desorption-ionization (MALDI-TOF) to determine their PM composition. Then, half of the matured oocytes from each group were vitrified/warmed (CONT VIT, IMA VIT, FSH VIT and MII VIT), while the other half were used as fresh controls. Afterwards, the eight groups underwent IVF and IVC, and blastocyst development was assessed at D2, D7 and D8. A chi-square test was used to compare embryo development between the groups. Corresponding phospholipid ion intensity was expressed in arbitrary units, and following principal components analyses (PCA) the data were distributed on a 3D graph. Oocytes obtained from superstimulated animals showed a greater rate of developmental (P<0.05) at D7 (MII = 62.4±17.5% and FSH = 58.8±16.1%) compared to those obtained from unstimulated animals (CONT = 37.9±8.5% and IMA = 50.6±14.4%). However, the maturation system did not affect the resistance of oocytes to vitrification because the blastocyst rate at D7 was similar (P>0.05) for all groups (CONT VIT = 2.8±3.5%, IMA VIT = 2.9±4.0%, FSH VIT = 4.3±7.2% and MII VIT = 3.6±7.2%). MALDI-TOF revealed that oocytes from all maturation groups had similar phospholipid contents, except for 760.6 ([PC (34:1) + H]+), which was

  19. Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming

    PubMed Central

    Sprícigo, José F. W.; Diógenes, Mateus N.; Leme, Ligiane O.; Guimarães, Ana L.; Muterlle, Carolle V.; Silva, Bianca Damiani Marques; Solà-Oriol, David; Pivato, Ivo; Silva, Luciano Paulino; Dode, Margot A. N.

    2015-01-01

    The objective of this study was to evaluate the effects of different maturation systems on oocyte resistance after vitrification and on the phospholipid profile of the oocyte plasma membrane (PM). Four different maturation systems were tested: 1) in vitro maturation using immature oocytes aspirated from slaughterhouse ovaries (CONT; n = 136); 2) in vitro maturation using immature oocytes obtained by ovum pick-up (OPU) from unstimulated heifers (IMA; n = 433); 3) in vitro maturation using immature oocytes obtained by OPU from stimulated heifers (FSH; n = 444); and 4) in vivo maturation using oocytes obtained from heifers stimulated 24 hours prior by an injection of GnRH (MII; n = 658). A sample of matured oocytes from each fresh group was analyzed by matrix associated laser desorption-ionization (MALDI-TOF) to determine their PM composition. Then, half of the matured oocytes from each group were vitrified/warmed (CONT VIT, IMA VIT, FSH VIT and MII VIT), while the other half were used as fresh controls. Afterwards, the eight groups underwent IVF and IVC, and blastocyst development was assessed at D2, D7 and D8. A chi-square test was used to compare embryo development between the groups. Corresponding phospholipid ion intensity was expressed in arbitrary units, and following principal components analyses (PCA) the data were distributed on a 3D graph. Oocytes obtained from superstimulated animals showed a greater rate of developmental (P<0.05) at D7 (MII = 62.4±17.5% and FSH = 58.8±16.1%) compared to those obtained from unstimulated animals (CONT = 37.9±8.5% and IMA = 50.6±14.4%). However, the maturation system did not affect the resistance of oocytes to vitrification because the blastocyst rate at D7 was similar (P>0.05) for all groups (CONT VIT = 2.8±3.5%, IMA VIT = 2.9±4.0%, FSH VIT = 4.3±7.2% and MII VIT = 3.6±7.2%). MALDI-TOF revealed that oocytes from all maturation groups had similar phospholipid contents, except for 760.6 ([PC (34:1) + H]+), which was

  20. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.

    PubMed

    Turk, Martina; Méjanelle, Laurence; Sentjurc, Marjeta; Grimalt, Joan O; Gunde-Cimerman, Nina; Plemenitas, Ana

    2004-02-01

    The halophilic melanized yeast-like fungi Hortaea werneckii, Phaeotheca triangularis, and the halotolerant Aureobasidium pullulans, isolated from salterns as their natural environment, were grown at different NaCl concentrations and their membrane lipid composition and fluidity were examined. Among sterols, besides ergosterol, which was the predominant one, 23 additional sterols were identified. Their total content did not change consistently or significantly in response to raised NaCl concentrations in studied melanized fungi. The major phospholipid classes were phosphatidylcholine and phosphatidylethanolamine, followed by anionic phospholipids. The most abundant fatty acids in phospholipids contained C16 and C18 chain lengths with a high percentage of C18:2Delta9,12. Salt stress caused an increase in the fatty acid unsaturation in the halophilic H. werneckii and halotolerant A. pullulans but a slight decrease in halophilic P. triangularis. All the halophilic fungi maintained their sterol-to-phospholipid ratio at a significantly lower level than did the salt-sensitive Saccharomyces cerevisiae and halotolerant A. pullulans. Electron paramagnetic resonance (EPR) spectroscopy measurements showed that the membranes of all halophilic fungi were more fluid than those of the halotolerant A. pullulans and salt-sensitive S. cerevisiae, which is in good agreement with the lipid composition observed in this study.

  1. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importancemore » of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.« less

  2. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    PubMed

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Protein-Phospholipid Interactions in Nonclassical Protein Secretion: Problem and Methods of Study

    PubMed Central

    Prudovsky, Igor; Kumar, Thallapuranam Krishnaswamy Suresh; Sterling, Sarah; Neivandt, David

    2013-01-01

    Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release. PMID:23396106

  4. Lipid Composition of Cell Membranes and Its Relevance in Type 2 Diabetes Mellitus

    PubMed Central

    Weijers, Rob N.M.

    2012-01-01

    Identifying the causative relationship between the fatty acid composition of cell membranes and type 2 diabetes mellitus fundamentally contributes to the understanding of the basic pathophysiological mechanisms of the disease. Important outcomes of the reviewed studies appear to support the hypotheses that the flexibility of a membrane determined by the ratio of (poly)unsaturated to saturated fatty acyl chains of its phospholipids influences the effectiveness of glucose transport by insulin-independent glucose transporters (GLUTs) and the insulin-dependent GLUT4, and from the prediabetic stage on a shift from unsaturated towards saturated fatty acyl chains of membrane phospholipids directly induces a decrease in glucose effectiveness and insulin sensitivity. In addition, it has become evident that a concomitant increase in stiffness of both plasma and erythrocyte membranes may decrease the microcirculatory flow, leading ultimately to tissue hypoxia, insufficient tissue nutrition, and diabetes-specific microvascular pathology. As to the etiology of type 2 diabetes mellitus, a revised hypothesis that attempts to accommodate the reviewed findings is presented. PMID:22698081

  5. Biochemical characterization and membrane fluidity of membranous vesicles isolated from boar seminal plasma.

    PubMed

    Piehl, Lidia L; Cisale, Humberto; Torres, Natalia; Capani, Francisco; Sterin-Speziale, Norma; Hager, Alfredo

    2006-05-01

    Mammalian seminal plasma contains membranous vesicles (MV), which differ in composition and origin. Among these particles, human prostasomes and equine prostasome-like MV have been the most studied. The aim of the present work is to characterize the biochemical composition and membrane fluidity of MV isolated from boar seminal plasma. The MV from boar seminal plasma were isolated by ultracentrifugation and further purification by gel filtration on Sephadex G-200. The MV were examined by electron microscopy (EM), amount of cholesterol, total phospholipid, protein content, and phospholipid composition were analyzed. Membrane fluidity of MV and spermatozoa were estimated from the electron spin resonance (ESR) spectra of the 5-doxilstearic acid incorporated into the vesicle membranes by the order parameter (S). The S parameter gives a measure of degree of structural order in the membrane and is defined as the ratio of the spectral anisotropy in the membranes to the maximum anisotropy obtained in a rigidly oriented system. The S parameter takes into consideration that S = 1 for a rapid spin-label motion of about only one axis and S = 0 for a rapid isotropic motion. Intermediate S values between S = 0 and S = 1 represents the consequence of decreased membrane fluidity. The EM revealed the presence of bilaminar and multilaminar electron-dense vesicles. Cholesterol to phospholipid molar ratio from the isolated MV was 1.8. Phospholipid composition showed a predominance of sphingomyelin. The S parameter for porcine MV and for boar spermatozoa was 0.73 +/- 0.02 and 0.644 +/- 0.008, respectively, with the S for MV being greater (p < 0.001) than the S for spermatozoa. The high order for S found for boar MV was in agreement with the greater cholesterol/phospholipids ratio and the lesser ratio for phosphatidylcholine/sphingomyelin. Results obtained in the present work indicate that MV isolated from boar semen share many biochemical and morphological characteristics with equine

  6. The effect of membrane composition on the hemostatic balance.

    PubMed

    Smirnov, M D; Ford, D A; Esmon, C T; Esmon, N L

    1999-03-23

    The phospholipid composition requirements for optimal prothrombin activation and factor Va inactivation by activated protein C (APC) anticoagulant were examined. Vesicles composed of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) supported factor Va inactivation relatively well. However, optimal factor Va inactivation still required relatively high concentrations of phosphatidylserine (PS). In addition, at a fixed concentration of phospholipid, PS, and APC, vesicles devoid of PE never attained a rate of factor Va inactivation achievable with vesicles containing PE. Polyunsaturation of any vesicle component also contributed significantly to APC inactivation of factor Va. Thus, PE makes an important contribution to factor Va inactivation that cannot be mimicked by PS. In the absence of polyunsaturation in the other membrane constituents, this contribution was dependent upon the presence of both the PE headgroup per se and unsaturation of the 1,2 fatty acids. Although PE did not affect prothrombin activation rates at optimal PS concentrations, PE reduced the requirement for PS approximately 10-fold. The Km(app) for prothrombin and the Kd(app) for factor Xa-factor Va decreased as a function of increasing PS concentration, reaching optimal values at 10-15% PS in the absence of PE but only 1% PS in the presence of PE. Fatty acid polyunsaturation had minimal effects. A lupus anticoagulant immunoglobulin was more inhibitory to both prothrombinase and factor Va inactivation in the presence of PE. The degree of inhibition of APC was significantly greater and much more dependent on the phospholipid composition than that of prothrombinase. Thus, subtle changes in the phospholipid composition of cells may control procoagulant and anticoagulant reactions differentially under both normal and pathological conditions.

  7. Chronic cigarette smoking alters erythrocyte membrane lipid composition and properties in male human volunteers.

    PubMed

    Padmavathi, Pannuru; Reddy, Vaddi Damodara; Kavitha, Godugu; Paramahamsa, Maturu; Varadacharyulu, Nallanchakravarthula

    2010-11-01

    Cigarette smoking is a major lifestyle factor influencing the health of human beings. The present study investigates smoking induced alterations on the erythrocyte membrane lipid composition, fluidity and the role of nitric oxide. Thirty experimental and control subjects (age 35+/-8) were selected for the study. Experimental subjects smoke 12+/-2 cigarettes per day for 7-10 years. In smokers elevated nitrite/nitrate levels in plasma and red cell lysates were observed. Smokers showed increased hemolysis, erythrocyte membrane lipid peroxidation, protein carbonyls, C/P ratio (cholesterol and phospholipid ratio), anisotropic (gamma) value with decreased Na(+)/K(+)-ATPase activity and sulfhydryl groups. Alterations in smokers erythrocyte membrane individual phospholipids were also evident from the study. Red cell lysate nitric oxide positively correlated with C/P ratio (r=0.565) and fluorescent anisotropic (gamma) value (r=0.386) in smokers. Smoking induced generation of reactive oxygen/nitrogen species might have altered erythrocyte membrane physico-chemical properties. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Force Spectroscopy Reveals the Effect of Different Ions in the Nanomechanical Behavior of Phospholipid Model Membranes: The Case of Potassium Cation

    PubMed Central

    Redondo-Morata, Lorena; Oncins, Gerard; Sanz, Fausto

    2012-01-01

    How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes. PMID:22225799

  9. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Enhancement by cytidine of membrane phospholipid synthesis

    NASA Technical Reports Server (NTRS)

    G-Coviella, I. L.; Wurtman, R. J.

    1992-01-01

    Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.

  11. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  12. Skeletal muscle membrane lipid composition is related to adiposity and insulin action.

    PubMed Central

    Pan, D A; Lillioja, S; Milner, M R; Kriketos, A D; Baur, L A; Bogardus, C; Storlien, L H

    1995-01-01

    The cellular basis of insulin resistance is still unknown; however, relationships have been demonstrated between insulin action in muscle and the fatty acid profile of the major membrane structural lipid (phospholipid). The present study aimed to further investigate the hypothesis that insulin action and adiposity are associated with changes in the structural lipid composition of the cell. In 52 adult male Pima Indians, insulin action (euglycemic clamp), percentage body fat (pFAT; underwater weighing), and muscle phospholipid fatty acid composition (percutaneous biopsy of vastus lateralis) were determined. Insulin action (high-dose clamp; MZ) correlated with composite measures of membrane unsaturation (% C20-22 polyunsaturated fatty acids [r= 0.463, P < 0.001], unsaturation index [r= -0.369, P < 0.01]), a number of individual fatty acids and with delta5 desaturase activity (r= 0.451, P < 0.001). pFAT (range 14-53%) correlated with a number of individual fatty acids and delta5 desaturase activity (r= -0.610, P < 0.0001). Indices of elongase activity (r= -0.467, P < 0.001), and delta9 desaturase activity (r= 0.332, P < 0.05) were also related to pFAT but not insulin action. The results demonstrate that delta5 desaturase activity is independently related to both insulin resistance and obesity. While determining the mechanisms underlying this relationship is important for future investigations, strategies aimed at restoring "normal" enzyme activities, and membrane unsaturation, may have therapeutic importance in the "syndromes of insulin resistance." PMID:8675650

  13. Alteration of the lipid composition of rat testicular plasma membranes by dietary (n-3) fatty acids changes the responsiveness of Leydig cells and testosterone synthesis.

    PubMed

    Sebokova, E; Garg, M L; Wierzbicki, A; Thomson, A B; Clandinin, M T

    1990-06-01

    Experiments were conducted to assess whether changing dietary fat composition altered phospholipid composition of rat testicular plasma membranes in a manner that altered receptor-mediated action of luteinizing hormone (LH)/human chorionic gonadotropin (hCG). Weanling rats were fed diets that provided high or low cholesterol intakes and that were enriched with linseed oil, fish oil or beef tallow for 4 wk. Feeding diets high in (n-3) fatty acids decreased plasma and testicular plasma membrane 20:4(n-6) content. A marked reduction of the 22:5(n-6) content and an increase in the 22:6(n-3) content of testicular plasma membrane was found only in animals fed fish oil. A decrease in binding capacity of the gonadotropin (LH/hCG) receptor in the plasma membrane, with no change in receptor affinity, was observed for animals fed either linseed oil or fish oil diets. Dietary treatments that raised plasma membrane cholesterol content and the cholesterol to phospholipid ratio in the membrane were associated with increased binding capacity of the gonadotropin receptor. Feeding diets high in 18:3(n-3) vs. those high in fish oil altered receptor-mediated adenylate cyclase activity in a manner that depended on the level of dietary cholesterol. Feeding diets high in cholesterol or fish oil increased basal and LH-stimulated testosterone synthesis relative to that in animals fed the low cholesterol diet containing linseed oil. It is concluded that changing the fat composition of the diet alters the phospholipid composition of rat testicular plasma membranes and that this change in composition influences membrane-mediated unmasking of gonadotropin receptor-mediated action in testicular tissue.

  14. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  15. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    PubMed

    Ghosh, Manik C; Ray, Arun K

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  16. Phospholipid and Respiratory Quinone Analyses From Extreme Environments

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.

    2008-12-01

    Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.

  17. Slaved diffusion in phospholipid bilayers

    PubMed Central

    Zhang, Liangfang; Granick, Steve

    2005-01-01

    The translational diffusion of phospholipids in supported fluid bilayers splits into two populations when polyelectrolytes adsorb at incomplete surface coverage. Spatially resolved measurements using fluorescence correlation spectroscopy show that a slow mode, whose magnitude scales inversely with the degree of polymerization of the adsorbate, coexists with a fast mode characteristic of naked lipid diffusion. Inner and outer leaflets of the bilayer are affected nearly equally. Mobility may vary from spot to spot on the membrane surface, despite the lipid composition being the same. This work offers a mechanism to explain how nanosized domains with reduced mobility arise in lipid membranes. PMID:15967988

  18. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  19. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  20. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis

    PubMed Central

    Sanchez-Alvarez, Miguel; Zhang, Qifeng; Finger, Fabian; Wakelam, Michael J. O.; Bakal, Chris

    2015-01-01

    We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. PMID:26333836

  1. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    NASA Astrophysics Data System (ADS)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  2. The lipid composition modulates the influence of the bovine seminal plasma protein PDC-109 on membrane stability.

    PubMed

    Tannert, Astrid; Töpfer-Petersen, Edda; Herrmann, Andreas; Müller, Karin; Müller, Peter

    2007-10-16

    The bovine seminal plasma protein PDC-109 exerts an essential influence on the sperm cell plasma membrane during capacitation. However, by any mechanism, it has to be ensured that this function of the protein on sperm cells is not initiated too early, that is, upon ejaculation when PDC-109 and sperm cells come into first contact, but rather at later stages of sperm genesis in the female genital tract. To answer the question of whether changes of the bovine sperm lipid composition can modulate the effect of PDC-109 on sperm membranes, we have investigated the influence of PDC-109 on the integrity of (i) differently composed lipid vesicles and of (ii) membranes from human red blood cells and bovine spermatozoa. PDC-109 most effectively disturbed lipid membranes composed of choline-containing phospholipids and in the absence of cholesterol. The impact of the protein on lipid vesicles was attenuated in the presence of cholesterol or of noncholine-containing phospholipids, such as phosphatidylethanolamine or phosphatidylserine. An extraction of cholesterol from lipid or biological membranes using methyl-beta-cyclodextrin caused an increased membrane perturbation by PDC-109. Our results argue for a oppositional effect of PDC-109 during sperm cell genesis. We hypothesize that the lipid composition of ejaculated bull sperm cells allows a binding of PDC-109 without leading to an impairment of the plasma membrane. At later stages of sperm cell genesis upon release of cholesterol from sperm membranes, PDC-109 triggers a destabilization of the cells.

  3. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival.

    PubMed

    Lam, Sin Man; Wang, Zehua; Li, Jie; Huang, Xun; Shui, Guanghou

    2017-08-01

    Mechanistic basis governing the extreme longevity and developmental quiescence of dauer juvenile, a "non-ageing" developmental variant of Caenorhabditis elegans, has remained largely obscure. Using a lipidomic approach comprising multiple reaction monitoring transitions specific to distinct fatty acyl moieties, we demonstrated that in comparison to other developmental stages, the membrane phospholipids of dauer larva contain a unique enrichment of polyunsaturated fatty acids (PUFAs). Esterified PUFAs in phospholipids exhibited temporal accumulation throughout the course of dauer endurance, followed by sharp reductions prior to termination of diapause. Reductions in esterified PUFAs were accompanied by concomitant increases in unbound PUFAs, as well as their corresponding downstream oxidized derivatives (i.e. eicosanoids). Global phospholipidomics has unveiled that PUFA sequestration in membrane phospholipids denotes an essential aspect of dauer dormancy, principally via suppression of eicosanoid production; and a failure to upkeep membrane lipid homeostasis is associated with termination of dauer endurance. Copyright © 2017. Published by Elsevier B.V.

  4. Plasma and erythrocyte membrane phospholipids and fatty acids in Italian general population and hemodialysis patients.

    PubMed

    Dessì, Mariarita; Noce, Annalisa; Bertucci, Pierfrancesco; Noce, Gianluca; Rizza, Stefano; De Stefano, Alessandro; Manca di Villahermosa, Simone; Bernardini, Sergio; De Lorenzo, Antonino; Di Daniele, Nicola

    2014-03-21

    Dyslipidemia and abnormal phospholipid metabolism are frequent in uremic patients and increase their risk of cardiovascular disease (CVD): ω-3 polyunsaturated fatty acids (PUFAs) may reduce this risk in the general population. In this study we compared the plasma and erythrocyte cell membrane composition of PUFAs in a group of Caucasian hemodialysis (HD) patients and in a control group of healthy subjects and evaluated the erythrocyte/cell membrane fatty acid ratio as a marker of the dietary intake of phospholipids. The relationship between ω-3 and ω-6 fatty acids and the possible differences in PUFAs concentrations were also investigated. After obtaining a fully informed consent, a total of ninety-nine HD patients and 160 non uremic control subjects from "Tor Vergata" University Hospital were enrolled into the study. None of them took antioxidant drugs or dietary supplements for at least 90 days prior to the observation. Blood samples were analysed by gas-chromatographic coupled to a mass spectrometric detector.The daily intake of total calories, proteins, lipids and carbohydrates is significantly lower in HD patients than in controls (p < 0.001). Most plasma and erythrocyte PUFA were also reduced significantly in HD patients (p < 0.001). Our results suggest that many classes of PUFAs are lacking in HD patients, due to the removal of nutrients during the dialysis and to persistent malnutrition. A dietary treatment addressed to increase plasma ω-3 PUFAs and to optimize ω-6/ω-3 ratio may exert a protective action and reduce the risk of CVD in HD patient.

  5. Modifications in plasma membrane lipid composition and morphological features of AH-130 hepatoma cells by polyenylphosphatidylcholine in vivo treatment.

    PubMed

    Cinosi, Vincenzo; Antonini, Roberto; Crateri, Pasqualina; Arancia, Giuseppe

    2011-07-01

    The plasma membrane lipid composition in AH-130 hepatoma cells was found to change remarkably after polyenylphosphatidylcholine (PPC) treatment. Plasma membranes from cells grown in rats treated for 7 days i.v. with 20 mg/kg/day PPC, when compared to those of control cells, did not show significantly different amounts of cholesterol or phospholipids relative to protein content, but, surprisingly, the individual phospholipid distribution inside the two membrane leaflets changed dramatically. Phosphatidylcholine (PC), the major phospholipid in the external membrane leaflet, increased ~47% (p<0.001). By contrast, phosphatidylethanolamine (PE), the most important component of the inner leaflet, decreased nearly 37% (p<0.001), while sphingomyelin (SM) also decreased ~17%, (p=0.1). Tumor cells collected from control rats at the same time interval and observed by scanning electron microscopy, exhibited a spherical shape with numerous and randomly distributed long microvilli, the same morphological and ultrastructural features displayed by the implanted cells. Conversely, tumor cells from PPC-treated rats no longer showed the roundish cell profile, and microvilli appeared shortened and enlarged, with the formation of surface blebs. Transmission electron microscopy observations confirmed the morphological and ultrastructural cell changes, mainly seen as loss of microvilli and intense cytoplasmic vacuolization. Taken together, these results indicate that the new phospholipid class distribution in the plasma membrane leaflets, modifying tumor cell viable structures, produced heavy cell damage and in many cases brought about complete cellular disintegration.

  6. Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis

    PubMed Central

    Zhang, Zhenlu; He, Guijuan; Catanzaro, Nicholas; Wu, Zujian; Xie, Lianhui

    2018-01-01

    Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes

  7. Herpes simplex virus 1 induces de novo phospholipid synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, Esther; Oliveira, Anna Paula de; Tobler, Kurt

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and thatmore » de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.« less

  8. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis.

    PubMed

    Sanchez-Alvarez, Miguel; Zhang, Qifeng; Finger, Fabian; Wakelam, Michael J O; Bakal, Chris

    2015-09-01

    We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. © 2015 The Authors.

  9. Fatty acids and plasmalogens of the phospholipids of the sperm membranes and their relation with the post-thaw quality of stallion spermatozoa.

    PubMed

    Macías García, B; González Fernández, L; Ortega Ferrusola, C; Morillo Rodríguez, A; Gallardo Bolaños, J M; Rodríguez Martinez, H; Tapia, J A; Morcuende, D; Peña, F J

    2011-03-15

    Fatty acids and plasmalogens were extracted from the phospholipids of the plasma membrane of stallion spermatozoa, to determine their relation with sperm quality after freezing and thawing. Sperm quality was rated using a quality index that combined the results of the analysis of sperm motility and velocity (CASA analysis), membrane status and mitochondrial membrane potential (flow cytometry) post thaw. Receiving operating system (ROC) curves were used to evaluate the value of specific lipid components of the sperm membrane herein studied as forecast of potential freezeability. From all parameters studied the ratio of percentage of C16 plasmalogens related to total phospholipids was the one with the better diagnostic value. For potentially bad freezers, the significant area under the ROC-curve was 0.74, with 75% sensitivity and 79.9% specificity for a cut off value of 26.9. Also the percentage of plasmalogens respect to total phospholipids gave good diagnostic value for bad freezers. On the other hand, the percentage of C18 fatty aldehydes related to total phospholipids of the sperm membrane properly forecasted freezeability with an area under the ROC curve of 0.70 with 70% sensitivity and 62.5% specificity for a cut off value of 0.32. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    PubMed

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma.

    PubMed

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine; Halvorsen, Trine Grønhaug; Øiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2016-09-10

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation of phosphatidylcholines (PC), sphingomyelins (SM), and lysophosphatidylcholines (Lyso-PC). In both generic methods, no phospholipids were detected in the acceptor solutions. Thus, PALME appeared to be highly efficient for phospholipid removal. To further support this, qualitative (post-column infusion) and quantitative matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Phospholipid composition of oligodendroglial cells during normal development and in 18 day old hyperthyroid and malnourished rats.

    PubMed

    Kreda, S M; Pasquini, J M; Soto, E F

    1992-09-01

    The phospholipid composition of isolated oligodendroglial cell perikarya was studied in normal rats during development and in 18 day old malnourished and hyperthyroid rats. Phosphatidyl choline and phosphatidyl ethanolamine were found to be the major phospholipid constituents of oligodendroglial cells. Phospholipid content increased during development, mainly due to an increase of the above mentioned phospholipids. The major changes were observed in sphingomyelin, phosphatidyl serine, phosphatidyl inositol and phosphatidyl ethanolamine between 18 and 30 days of age. The phospholipid and protein content per cell was significantly decreased in the oligodendroglial cells isolated from malnourished rats as compared to controls. When data were expressed as a function of total proteins, the composition was similar to that of normal animals. In the hyperthyroid rats on the other hand, there were no changes in the amount of phospholipids per cell, while phospholipids per milligram of total oligodendroglial cell protein were markedly decreased. The changes in myelin composition produced by hyperthyroidism that we have previously described, do not follow closely those produced by this experimental condition in oligodendroglial cells, suggesting that the metabolism of myelin might be to a certain extent, independent of that in the parent cell.

  13. On the effect of serum on the transport of reactive oxygen species across phospholipid membranes.

    PubMed

    Szili, Endre J; Hong, Sung-Ha; Short, Robert D

    2015-06-24

    The transport of plasma generated reactive oxygen species (ROS) across a simple phospholipid membrane mimic of a (real) cell was investigated. Experiments were performed in cell culture media (Dulbecco's modified Eagle's medium, DMEM), with and without 10% serum. A (broad spectrum) ROS reporter dye, 2,7-dichlorodihydrofluorescein (DCFH), was used to detect the generation of ROS by a helium (He) plasma jet in DMEM using free DCFH and with DCFH encapsulated inside phospholipid membrane vesicles dispersed in DMEM. The authors focus on the concentration and on the relative rates (arbitrary units) for oxidation of DCFH [or the appearance of the oxidized product 2,7-dichlorofluorescein (DCF)] both in solution and within vesicles. In the first 1 h following plasma exposure, the concentration of free DCF in DMEM was ~15× greater in the presence of serum (cf. to the serum-free DMEM control). The DCF in vesicles was ~2× greater in DMEM containing serum compared to the serum-free DMEM control. These data show that serum enhances plasma ROS generation in DMEM. As expected, the role of the phospholipid membrane was to reduce the rate of oxidation of the encapsulated DCFH (with and without serum). And the efficiency of ROS transport into vesicles was lower in DMEM containing serum (at 4% efficiency) when compared to serum-free DMEM (at 32% efficiency). After 1 h, the rate of DCFH oxidation was found to have significantly reduced. Based upon a synthesis of these data with results from the open literature, the authors speculate on how the components of biological fluid and cellular membranes might affect the kinetics of consumption of plasma generated ROS.

  14. Fish Oil Supplementation in Humans: Effects on Platelet Responses, Phospholipid Composition and Metabolism.

    NASA Astrophysics Data System (ADS)

    Skeaff, Clark Murray

    Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity

  15. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    PubMed

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  16. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+, K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats.

    PubMed

    Coste, T; Pierlovisi, M; Leonardi, J; Dufayet, D; Gerbi, A; Lafont, H; Vague, P; Raccah, D

    1999-07-01

    Metabolic and vascular abnormalities are implicated in the pathogenesis of diabetic neuropathy. Two principal metabolic defects are altered lipid metabolism resulting from the impairment of delta-6-desaturase, which converts linoleic acid (LA) into gamma linolenic acid (GLA), and reduced nerve Na+, K+ ATPase activity. This reduction may be caused by a lack of incorporation of (n-6) fatty acids in membrane phospholipids. Because this ubiquitous enzyme maintains the membrane electrical potential and allows repolarization, disturbances in its activity can alter the process of nerve conduction velocity (NCV). We studied the effects of supplementation with GLA (260 mg per day) on NCV, fatty acid phospholipid composition, and Na+, K+ ATPase activity in streptozotocin-diabetic rats. Six groups of 10 rats were studied. Two groups served as controls supplemented with GLA or sunflower oil (GLA free). Two groups with different durations of diabetes were studied: 6 weeks with no supplementation and 12 weeks supplemented with sunflower oil. To test the ability of GLA to prevent or reverse the effects of diabetes, two groups of diabetic rats were supplemented with GLA, one group for 12 weeks and one group for 6 weeks, starting 6 weeks after diabetes induction. Diabetes resulted in a 25% decrease in NCV (P < 0.0001), a 45% decrease in Na+, K+ ATPase activity (P < 0.0001), and an abnormal phospholipid fatty acid composition. GLA restored NCV both in the prevention and reversal studies and partially restored Na+, K+ ATPase activity in the preventive treatment group (P < 0.0001). These effects were accompanied by a modification of phospholipid fatty acid composition in nerve membranes. Overall, the results suggest that membrane fatty acid composition plays a direct role in NCV and confirm the beneficial effect of GLA supplementation in diabetic neuropathy.

  17. Interactions of amelogenin with phospholipids

    DOE PAGES

    Bekshe Lokappa, Sowmya; Chandrababu, Karthik Balakrishna; Dutta, Kaushik; ...

    2014-11-22

    Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. In this paper, we investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin–cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (~334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexationmore » of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder–order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS-bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Finally, our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities.« less

  18. Nanomechanical properties of phospholipid microbubbles.

    PubMed

    Buchner Santos, Evelyn; Morris, Julia K; Glynos, Emmanouil; Sboros, Vassilis; Koutsos, Vasileios

    2012-04-03

    This study uses atomic force microscopy (AFM) force-deformation (F-Δ) curves to investigate for the first time the Young's modulus of a phospholipid microbubble (MB) ultrasound contrast agent. The stiffness of the MBs was calculated from the gradient of the F-Δ curves, and the Young's modulus of the MB shell was calculated by employing two different mechanical models based on the Reissner and elastic membrane theories. We found that the relatively soft phospholipid-based MBs behave inherently differently to stiffer, polymer-based MBs [Glynos, E.; Koutsos, V.; McDicken, W. N.; Moran, C. M.; Pye, S. D.; Ross, J. A.; Sboros, V. Langmuir2009, 25 (13), 7514-7522] and that elastic membrane theory is the most appropriate of the models tested for evaluating the Young's modulus of the phospholipid shell, agreeing with values available for living cell membranes, supported lipid bilayers, and synthetic phospholipid vesicles. Furthermore, we show that AFM F-Δ curves in combination with a suitable mechanical model can assess the shell properties of phospholipid MBs. The "effective" Young's modulus of the whole bubble was also calculated by analysis using Hertz theory. This analysis yielded values which are in agreement with results from studies which used Hertz theory to analyze similar systems such as cells.

  19. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles.

    PubMed

    Kitt, Jay P; Bryce, David A; Minteer, Shelley D; Harris, Joel M

    2018-06-05

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.

  20. Optimization of transversal relaxation of nitroxides for pulsed electron-electron double resonance spectroscopy in phospholipid membranes.

    PubMed

    Dastvan, Reza; Bode, Bela E; Karuppiah, Muruga Poopathi Raja; Marko, Andriy; Lyubenova, Sevdalina; Schwalbe, Harald; Prisner, Thomas F

    2010-10-28

    Pulsed electron-electron double resonance (PELDOR) spectroscopy is increasingly applied to spin-labeled membrane proteins. However, after reconstitution into liposomes, spin labels often exhibit a much faster transversal relaxation (T(m)) than in detergent micelles, thus limiting application of the method in lipid bilayers. In this study, the main reasons for enhanced transversal relaxation in phospholipid membranes were investigated systematically by use of spin-labeled derivatives of stearic acid and phosphatidylcholine as well as spin-labeled derivatives of the channel-forming peptide gramicidin A under the conditions typically employed for PELDOR distance measurements. Our results clearly show that dephasing due to instantaneous diffusion that depends on dipolar interaction among electron spins is an important contributor to the fast echo decay in cases of high local concentrations of spin labels in membranes. The main difference between spin labels in detergent micelles and membranes is their local concentration. Consequently, avoiding spin clustering and suppressing instantaneous diffusion is the key step for maximizing PELDOR sensitivity in lipid membranes. Even though proton spin diffusion is an important relaxation mechanism, only in samples of low local concentrations does deuteration of acyl chains and buffer significantly prolong T(m). In these cases, values of up to 7 μs have been achieved. Furthermore, our study revealed that membrane composition and labeling position in the membrane can also affect T(m), either by promoting the segregation of spin-labeled species or by altering their exposure to matrix protons. Effects of other experimental parameters including temperature (<50 K), presence of oxygen, and cryoprotectant type are negligible under our experimental conditions.

  1. Lateral microheterogeneity of diphenylhexatriene-labeled choline phospholipids in the erythrocyte ghost membrane as determined by time-resolved fluorescence spectroscopy.

    PubMed

    Prenner, E; Sommer, A; Maurer, N; Glatter, O; Gorges, R; Paltauf, F; Hermetter, A

    2000-04-01

    Choline phospholipids are the major constituents of the outer layer of the erythrocyte membrane. To investigate their lateral membrane organization we determined the fluorescence lifetime properties of diphenylhexatriene analogues of phosphatidylcholine, choline plasmalogen, (the respective enolether derivative), and sphingomyelin inserted into the outer layer of hemoglobin-free ghosts. Fluorescence lifetimes were recorded by time-resolved phase and modulation fluorometry and analyzed in terms of Continuous Lorentzian distributions. To assess the influence of membrane proteins on the fluorescence lifetime of the labeled lipids in the biomembrane, lipid vesicles were used as controls. In general, the lifetime distributions in the ghost membranes are broad compared to vesicles. Phosphatidylcholine and sphingomyelin exhibit very similar lifetime distributions in contrast to an increased plasmalogen lifetime heterogeneity in both systems. Orientational effects of side chain mobilities on the observed lifetimes can be excluded. Fluorescence anisotropies revealed identical values for all three labeled phospholipids in the biomembrane.

  2. Effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E-115 neuroblastoma cells.

    PubMed

    Murphy, E J; Horrocks, L A

    1993-04-07

    The effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E-115 neuroblastoma cells were determined. The cellular lipids were extracted on days 0, 3 and 7, following the addition of 1.2% dimethylsulfoxide to induce cellular differentiation. Proportions of ethanolamine glycerophospholipids (EtnGpl), phosphatidylinositol (PtdIns) and sphingomyelin (CerPCho) were significantly elevated following differentiation. The mole percentage of choline glycerophospholipids (ChoGpl) decreased with differentiation. The plasmalogens, both choline and ethanolamine, increased by 1.3- and 2.3-fold, respectively, during differentiation. The fatty acid composition of the phospholipid classes was also altered. PtdIns and ChoGpl had decreased proportions of polyenoic fatty acids, while these proportions were increased in EtnGpl. Both ChoGpl and EtnGpl had increased n-3/n-6 series fatty acid ratios, but this ratio was decreased in PtdIns. The mole percentage of arachidonic acid was significantly decreased in both PtdIns and ChoGpl, but elevated in EtnGpl and may be a result of the increase in ethanolamine plasmalogen. Thus, differentiation did not increase the overall mole percentage of polyenoic FA in the cells nor increase the n-6 series fatty acid proportions. We speculate plasmalogens may have a role in the differentiation process or in maintaining the cell in the differentiated state.

  3. A novel mixed phospholipid functionalized monolithic column for early screening of drug induced phospholipidosis risk.

    PubMed

    Zhao, XiangLong; Chen, WeiJia; Liu, ZhengHua; Guo, JiaLiang; Zhou, ZhengYin; Crommen, Jacques; Moaddel, Ruin; Jiang, ZhengJin

    2014-11-07

    Drug-induced phospholipidosis (PLD) is characterized by the excessive accumulation of phospholipids, resulting in multilamellar vesicle structure within lysosomes. In the present study, a novel mixed phospholipid functionalized monolithic column was developed for the first time through a facile one-step co-polymerization approach. The phospholipid composition of the monolith can be adjusted quantitatively and accurately to mimic the mixed phospholipid environment of different biomembranes on a solid matrix. The mixed phospholipid functionalized monolith as a promising immobilized artificial membrane technique was used to study drug-phospholipid interaction. Scanning electron microscopy, elemental analysis, FT-IR spectra, ζ-potential analysis and micro-HPLC were carried out to characterize the physicochemical properties and separation performance of the monolith. Mechanism studies revealed that both hydrophobic and electrostatic interactions play an important role in the retention of analytes. The ratio of their contributions to retention can be easily manipulated by adjusting the composition of the mixed phospholipids, in order to better mimic the interaction between drugs and cell membrane. The obtained mixed phospholipid functionalized monolithic columns were applied to the screening of drug-induced PLD potency. Data from 79 drugs on the market demonstrated that the chromatographic hydrophobicity index referring to the mixed phospholipid functionalized monolith at pH 7.4 (CHI IAM7.4) for the selected drugs were highly correlated with the drug-induced PLD potency data obtained from other in vivo or in vitro assays. Moreover, the effect of the acidic phospholipid phosphatidylserine proportion on prediction accuracy was also investigated. The monolith containing 20% phosphatidylserine and 80% phosphatidylcholine exhibited the best prediction ability for the drug-induced PLD potency of the tested compounds. This research has led to the successful development of a

  4. Confocal Raman Microscopy for In-situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less

  5. Confocal Raman Microscopy for In-situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles

    DOE PAGES

    Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.; ...

    2018-05-14

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less

  6. Aqueous magnesium as an environmental selection pressure in the evolution of phospholipid membranes on early earth

    NASA Astrophysics Data System (ADS)

    Dalai, Punam; Ustriyana, Putu; Sahai, Nita

    2018-02-01

    Early compartmentalization of simple biomolecules by membrane bilayers was, presumably, a critical step in the emergence of the first cell-like entities, protocells. Their membranes were likely composed of single chain amphiphiles (SCAs), but pure SCA membranes especially those with short-chains are highly unstable towards divalent cations, which are ubiquitous in aqueous environments. The prebiotic synthesis of phospholipids (PLs), even in only trace amounts, may also have been possible. PL membranes are much more stable towards divalent cations. Here, we show the transition of fatty acid membranes to mixed fatty acid-PL and, finally, to PL membranes in the presence of Mg2+, which acts as an environmental selection pressure, and we propose different mechanisms for the observed increased Mg2+-immunity. The "fatal" concentration ([Mg2+]fatal) at which vesicles are disrupted increased dramatically by an order of magnitude from OA to mixed to POPC vesicles. Two mechanisms for the increasing immunity were determined. The negative charge density of the vesicles decreased with increasing POPC content, so more Mg2+ was required for disruption. More interestingly, Mg2+ preferentially bound to and abstracted OA from mixed lipid membranes, resulting in relatively POPC-enriched vesicles compared to the initial ratio. The effect was the most dramatic for the largest initial OA-POPC ratio representing the most primitive protocells. Thus, Mg2+ acted to evolve the mixed membrane composition towards PL enrichment. To the best of our knowledge, this is the first report of selective lipid abstraction from mixed SCA-PL vesicles. These results may hold implications for accommodating prebiotic Mg2+-promoted processes such as non-enzymatic RNA polymerization on early Earth.

  7. [Change in the lipid composition of the inner mitochondrial membranes in rat organs during adaptation to heat].

    PubMed

    Zubareva, E V; Seferova, R I; Denisova, N A

    1991-01-01

    Under conditions of adaptation to heating lipid composition in mitochondrial membranes of rat inner tissues was altered as follows: an increase in relative concentration of plasmalogenous forms of phospholipids (kidney, heart) and in content of saturated fatty acids (liver tissue), a decrease in the index of fatty acids unsaturation and in the ratio of fatty acids omega-3/omega-6. The alterations observed enabled the membranes to keep sufficient amount of liquidity essential for functional activity of mitochondria in heating.

  8. Interaction of tachykinins with phospholipid membranes: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Darkes, Malcolm J. M.; Davies, Sarah M. A.; Bradshaw, Jeremy P.

    Tachykinins are a group of peptides which bind to G-protein-coupled receptors. Receptor affinity appears to depend on different secondary structures of tachykinin which share the same hydrophobic carboxy-terminal sequence, FXGLM. Receptor activation is thought to be due to the carboxy-terminal submerging into the bilayer and the amino-terminal binding on the surface. Binding of tachykinins to phospholipid bilayers may take place both on the aqueous membrane surface and in the hydrophobic region. The two-state equilibrium appears to depend on the surface charge of the membrane. Deuterating substance P and neurokinin A at their carboxy-terminals, our results show two populations of label for each peptide. One is very close to the water-hydrocarbon interface, the other some 13 Å deeper. We report that the bilayer location of the two tachykinins is remarkably similar, thereby inferring that receptor specifity must be controlled by finer levels of structure.

  9. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin.

    PubMed

    Jin, Hong-Hao; Lu, Qun; Jiang, Jian-Guo

    2016-03-01

    Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. [The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity].

    PubMed

    Onopchenko, O V; Kosiakova, H V; Horid'ko, T M; Klimashevskyĭ, V M; Hula, N M

    2014-01-01

    We used alimentary obesity-induced insulin resistance (IR) model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic) and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic) fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight) caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influence of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.

  11. Phospholipid fatty acid composition of Gorgonia mariae and Gorgonia ventalina.

    PubMed

    Carballeira, Néstor M; Miranda, Carlos; Rodríguez, Abimael D

    2002-01-01

    The phospholipid fatty acid composition of the Caribbean gorgonians Gorgonia mariae (Bayer) and Gorgonia ventalina (Linnaeus) is described for the first time. The main phospholipids identified were phosphatidylethanolamine, phosphatidylcholine, and phosphatidylserine. The main fatty acids were 14:0, 16:0, 18:3(n-6), 18:4(n-3), 18:2(n-6), 20:4(n-6), 22:6(n-3), and 24:5(n-6). In both G. mariae and G. ventalina n-6 polyunsaturated fatty acids predominated over the n-3 family. In addition, the 7-methyl-6(E)-hexadecenoic acid was identified in both gorgonians. The occurrence of tetracosapolyenoic fatty acids in the genus Gorgonia is also reported for the first time.

  12. An Unconventional Diacylglycerol Kinase That Regulates Phospholipid Synthesis and Nuclear Membrane Growth*♦

    PubMed Central

    Han, Gil-Soo; O'Hara, Laura; Carman, George M.; Siniossoglou, Symeon

    2008-01-01

    Changes in nuclear size and shape during the cell cycle or during development require coordinated nuclear membrane remodeling, but the underlying molecular events are largely unknown. We have shown previously that the activity of the conserved phosphatidate phosphatase Pah1p/Smp2p regulates nuclear structure in yeast by controlling phospholipid synthesis and membrane biogenesis at the nuclear envelope. Two screens for novel regulators of phosphatidate led to the identification of DGK1. We show that Dgk1p is a unique diacylglycerol kinase that uses CTP, instead of ATP, to generate phosphatidate. DGK1 counteracts the activity of PAH1 at the nuclear envelope by controlling phosphatidate levels. Overexpression of DGK1 causes the appearance of phosphatidate-enriched membranes around the nucleus and leads to its expansion, without proliferating the cortical endoplasmic reticulum membrane. Mutations that decrease phosphatidate levels decrease nuclear membrane growth in pah1Δ cells. We propose that phosphatidate metabolism is a critical factor determining nuclear structure by regulating nuclear membrane biogenesis. PMID:18458075

  13. Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms.

    PubMed

    Turner, Nigel; Hulbert, A J; Else, Paul L

    2005-02-01

    Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms.

  14. Methylmercury Increases and Eicosapentaenoic Acid Decreases the Relative Amounts of Arachidonic Acid-Containing Phospholipids in Mouse Brain.

    PubMed

    Zeng, Ying-Xu; Du, Zhen-Yu; Mjøs, Svein Are; Grung, Bjørn; Midtbø, Lisa K

    2016-01-01

    The membrane phospholipid composition in mammalian brain can be modified either by nutrients such as dietary fatty acids, or by certain toxic substances such as methylmercury (MeHg), leading to various biological and toxic effects. The present study evaluated the effects of eicosapentaenoic acid (EPA) and MeHg on the composition of the two most abundant membrane phospholipid classes, i.e., phosphatidylcholines (PtdCho) and phosphatidylethanolamines (PtdEtn), in mouse brain by using a two-level factorial design. The intact membrane PtdCho and PtdEtn species were analyzed by liquid chromatography-mass spectrometry. The effects of EPA and MeHg on the PtdCho and PtdEtn composition were evaluated by principal component analysis and ANOVA. The results showed that EPA and MeHg had different effects on the composition of membrane PtdCho and PtdEtn species in brain, where EPA showed strongest impact. EPA led to large reductions in the levels of arachidonic acid (ARA)-containing PtdCho and PtdEtn species in brain, while MeHg tended to elevate the levels of ARA-containing PtdCho and PtdEtn species. EPA also significantly increased the levels of PtdCho and PtdEtn species with n-3 fatty acids. Our results indicate that EPA may to some degree counteract the alterations of the PtdCho and PtdEtn pattern induced by MeHg, and thus alleviate the MeHg neurotoxicity in mouse brain through the inhibition of ARA-derived pro-inflammatory factors. These results may assist in the understanding of the interaction between MeHg, EPA and phospholipids, as well as the risk and benefits of a fish diet.

  15. Effects of DHA-phospholipids, melatonin and tryptophan supplementation on erythrocyte membrane physico-chemical properties in elderly patients suffering from mild cognitive impairment.

    PubMed

    Cazzola, Roberta; Rondanelli, Mariangela; Faliva, Milena; Cestaro, Benvenuto

    2012-12-01

    A randomized, double-blind placebo-controlled clinical trial was carried out to assess the efficacy of a docosahexenoic acid (DHA)-phospholipids, melatonin and tryptophan supplemented diet in improving the erythrocyte oxidative stress, membrane fluidity and membrane-bound enzyme activities of elderly subjects suffering from mild cognitive impairment (MCI). These subjects were randomly assigned to the supplement group (11 subjects, 9F and 2M; age 85.3±5.3y) or placebo group (14-matched subjects, 11F and 3M; 86.1±6.5). The duration of the treatment was 12weeks. The placebo group showed no significant changes in erythrocyte membrane composition and function. The erythrocyte membranes of the supplement group showed a significant increase in eicosapentenoic acid, docosapentenoic acid and DHA concentrations and a significant decrease in arachidonic acid, malondialdehyde and lipofuscin levels. These changes in membrane composition resulted in an increase in the unsaturation index, membrane fluidity and acetylcholine esterase activity. Moreover, a significant increase in the ratio between reduced and oxidized glutathione was observed in the erythrocyte of the supplement group. Although this study is a preliminary investigation, we believe these findings to be of great speculative and interpretative interest to better understand the complex and multi-factorial mechanisms behind the possible links between diets, their functional components and possible molecular processes that contribute to increasing the risk of developing MCI and Alzheimer's. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Temperature-induced changes in lecithin model membranes detected by novel covalent spin-labelled phospholipids.

    PubMed

    Stuhne-Sekalec, L; Stanacev, N Z

    1977-02-01

    Several spin-labelled phospholipids carrying covalently bound 5-doxylstearic acid (2-(3-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl) were intercalated in liposomes of saturated and unsaturated lecithins. Temperature-induced changes of these liposomes, detected by the spin-labelled phospholipids, were found to be in agreement with the previously described transitions of hydrocarbon chains of host lecithins detected by different probes and different techniques, establishing that spin-labelled phosopholipids are sensitive probes for the detection of temperature-induced changes in lecithin model membranes. In addition to the detection of already-known transitions in lecithin liposomes, the coexistence of two distinctly different enviroments was observed above the characteristic transition temperature. This phenomenon was tentatively attributed to the influence of the lecithin polar group on the fluidity of fatty acyl chains near the polar group. Combined with other results from the literature, the coexistence of two environments could be associated with the coexistence of two conformational isomers of lecithin, differing in the orientation of the polar head group with respect to the plane of bilayer. These findings have been discussed in view of the present state of knowledge regarding temperature-induced changes in model membranes.

  17. Fluorescent probes sensitive to changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during atherosclerosis

    NASA Astrophysics Data System (ADS)

    Posokhov, Yevgen

    2016-09-01

    Environment-sensitive fluorescent probes were used for the spectroscopic visualization of pathological changes in human platelet membranes during cerebral atherosclerosis. It has been estimated that the ratiometric probes 2-(2‧-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and 2-phenyl-phenanthr[9,10]oxazole can detect changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during the disease.

  18. MinD and MinE Interact with Anionic Phospholipids and Regulate Division Plane Formation in Escherichia coli*

    PubMed Central

    Renner, Lars D.; Weibel, Douglas B.

    2012-01-01

    The Min proteins (MinC, MinD, and MinE) form a pole-to-pole oscillator that controls the spatial assembly of the division machinery in Escherichia coli cells. Previous studies identified that interactions of MinD with phospholipids positioned the Min machinery at the membrane. We extend these studies by measuring the affinity, kinetics, and ATPase activity of E. coli MinD, MinE, and MinDE binding to supported lipid bilayers containing varying compositions of anionic phospholipids. Using quartz crystal microbalance measurements, we found that the binding affinity (Kd) for the interaction of recombinant E. coli MinD and MinE with lipid bilayers increased with increasing concentration of the anionic phospholipids phosphatidylglycerol and cardiolipin. The Kd for MinD (1.8 μm) in the presence of ATP was smaller than for MinE (12.1 μm) binding to membranes consisting of 95:5 phosphatidylcholine/cardiolipin. The simultaneous binding of MinD and MinE to membranes revealed that increasing the concentration of anionic phospholipid stimulates the initial rate of adsorption (kon). The ATPase activity of MinD decreased in the presence of anionic phospholipids. These results indicate that anionic lipids, which are concentrated at the poles, increase the retention of MinD and MinE and explain its dwell time at this region of bacterial cells. These studies provide insight into interactions between MinD and MinE and between these proteins and membranes that are relevant to understanding the process of bacterial cell division, in which the interaction of proteins and membranes is essential. PMID:23012351

  19. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes.

    PubMed

    Bennett, W F Drew; Shea, Joan-Emma; Tieleman, D Peter

    2018-06-05

    Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. A Bacillus subtilis Gene Induced by Cold Shock Encodes a Membrane Phospholipid Desaturase

    PubMed Central

    Aguilar, Pablo S.; Cronan, John E.; de Mendoza, Diego

    1998-01-01

    Bacillus subtilis grown at 37°C synthesizes saturated fatty acids with only traces of unsaturated fatty acids (UFAs). However, when cultures growing at 37°C are transferred to 20°C, UFA synthesis is induced. We report the identification and characterization of the gene encoding the fatty acid desaturase of B. subtilis. This gene, called des, was isolated by complementation of Escherichia coli strains with mutations in either of two different genes of UFA synthesis. The des gene encodes a polypeptide of 352 amino acid residues containing the three conserved histidine cluster motifs and two putative membrane-spanning domains characteristic of the membrane-bound desaturases of plants and cyanobacteria. Expression of the des gene in E. coli resulted in desaturation of palmitic acid moieties of the membrane phospholipids to give the novel mono-UFA cis-5-hexadecenoic acid, indicating that the B. subtilis des gene product is a Δ5 acyl-lipid desaturase. The des gene was disrupted, and the resulting null mutant strains were unable to synthesize UFAs upon a shift to low growth temperatures. The des null mutant strain grew as well as its congenic parent at 20 or 37°C but showed severely reduced survival during stationary phase. Analysis of operon fusions in which the des promoter directed the synthesis of a lacZ reporter gene showed that des expression is repressed at 37°C, but a shift of cultures from 37 to 20°C resulted in a 10- to 15-fold increase in transcription. This is the first report of a membrane phospholipid desaturase in a nonphotosynthetic organism and the first direct evidence for cold induction of a desaturase. PMID:9555904

  1. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids.

    PubMed

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-05-25

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.

  2. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    PubMed Central

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  3. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering.

    PubMed

    Kontro, Inkeri; Svedström, Kirsi; Duša, Filip; Ahvenainen, Patrik; Ruokonen, Suvi-Katriina; Witos, Joanna; Wiedmer, Susanne K

    2016-12-01

    The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. HPLC study on the 'history' dependence of gramicidin A conformation in phospholipid model membranes.

    PubMed

    Bañó, M C; Braco, L; Abad, C

    1989-06-19

    A novel HPLC methodology for the study of gramicidin A reconstituted in model membranes has been tested in comparison with circular dichroism data. It is shown that this chromatographic technique not only corroborates most of the recent spectroscopic results but allows one to explain them in terms of mass fractions of different actual conformational species of GA in the phospholipid assemblies. In particular, the dependence of the inserted peptide configuration on the organic solvent and other parameters involved in the 'history' of the sample preparation and handling has been analyzed by HPLC in two phospholipid model systems: small unilamellar vesicles and micelles. Moreover, a slow conformational transition of GA towards a beta 6.3-helical configuration, accelerated by heat incubation, has been also chromatographically visualized and quantitatively interpreted.

  5. [Effect of total hypothermia on the fatty acid composition of blood phospholipids of rats and sousliks and light irradiation on chemical processes in lipid extract].

    PubMed

    Zabelinskiĭ, S A; Chebotareva, M A; Kalandarov, A M; Feĭzulaev, B A; Klichkhanov, N K; Krivchenko, A I; Kazennov, A M

    2011-01-01

    Effect of hypothermia on the fatty acid composition of rat and souslik blood phospholipids is studied. Different reaction of these animals to cooling is revealed: in rats no changes were observed in the fatty acid composition of blood phospholipids, whereas in the hibernating there were significant changes in the content of individual fatty acids (FA). The content of monoenic acids in sousliks decreased almost by 50%, while the content of saturated acid (C18) and of polyenic acids C18 : 2omega6 and C20 : 4omega6 rose significantly. Such changes seem to be the mechanism that promotes maintenance of the organism viability under conditions of a decreased level of metabolism, heart rhythm, and body temperature and is evolutionarily acquired. At the same time, the observed changes in the content of individual FA do not lead to sharp changes in such integrative parameters as the total non-saturation of phospholipids, which determines liquid properties of chylomicrons and other lipolipoprotein transport particles of the souslik blood. There are studied absorption spectra of blood lipid extracts of rats and sousliks under effect of light as well as effect of light upon the FA composition of lipid extracts of these animals. The FA composition of lipid extracts has been established to remain practically constant, whereas the character of changes of spectra under action of light indicates the presence in the extracts of oxidation-reduction reactions. The obtained data allow suggesting that in the lipid extract there occurs cooperation both of the phospholipid molecules themselves and of them with other organic molecules, which makes it possible for fatty acids to participate in processes of transport both of electrons and of protons. This novel role of FA as a participant of the electron transfer might probably be extrapolated to chemical reactions (processes) occurring inside the membrane.

  6. Asymmetric phospholipid: lipopolysaccharide bilayers; a Gram-negative bacterial outer membrane mimic

    PubMed Central

    Clifton, Luke A.; Skoda, Maximilian W. A.; Daulton, Emma L.; Hughes, Arwel V.; Le Brun, Anton P.; Lakey, Jeremy H.; Holt, Stephen A.

    2013-01-01

    The Gram-negative bacterial outer membrane (OM) is a complex and highly asymmetric biological barrier but the small size of bacteria has hindered advances in in vivo examination of membrane dynamics. Thus, model OMs, amenable to physical study, are important sources of data. Here, we present data from asymmetric bilayers which emulate the OM and are formed by a simple two-step approach. The bilayers were deposited on an SiO2 surface by Langmuir–Blodgett deposition of phosphatidylcholine as the inner leaflet and, via Langmuir–Schaefer deposition, an outer leaflet of either Lipid A or Escherichia coli rough lipopolysaccharides (LPS). The membranes were examined using neutron reflectometry (NR) to examine the coverage and mixing of lipids between the bilayer leaflets. NR data showed that in all cases, the initial deposition asymmetry was mostly maintained for more than 16 h. This stability enabled the sizes of the headgroups and bilayer roughness of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and Lipid A, Rc-LPS and Ra-LPS to be clearly resolved. The results show that rough LPS can be manipulated like phospholipids and used to fabricate advanced asymmetric bacterial membrane models using well-known bilayer deposition techniques. Such models will enable OM dynamics and interactions to be studied under in vivo-like conditions. PMID:24132206

  7. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  8. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  9. Regulation of membrane proteins by dietary lipids: effects of cholesterol and docosahexaenoic acid acyl chain-containing phospholipids on rhodopsin stability and function.

    PubMed

    Bennett, Michael P; Mitchell, Drake C

    2008-08-01

    Purified bovine rhodopsin was reconstituted into vesicles consisting of 1-stearoyl-2-oleoyl phosphatidylcholine or 1-stearoyl-2-docosahexaenoyl phosphatidylcholine with and without 30 mol % cholesterol. Rhodopsin stability was examined using differential scanning calorimetry (DSC). The thermal unfolding transition temperature (T(m)) of rhodopsin was scan rate-dependent, demonstrating the presence of a rate-limited component of denaturation. The activation energy of this kinetically controlled process (E(a)) was determined from DSC thermograms by four separate methods. Both T(m) and E(a) varied with bilayer composition. Cholesterol increased the T(m) both the presence and absence of docosahexaenoic acid acyl chains (DHA). In contrast, cholesterol lowered E(a) in the absence of DHA, but raised E(a) in the presence of 20 mol % DHA-containing phospholipid. The relative acyl chain packing order was determined from measurements of diphenylhexatriene fluorescence anisotropy decay. The T(m) for thermal unfolding was inversely related to acyl chain packing order. Rhodopsin kinetic stability (E(a)) was reduced in highly ordered or disordered membranes. Maximal kinetic stability was found within the range of acyl chain order found in native bovine rod outer segment disk membranes. The results demonstrate that membrane composition has distinct effects on the thermal versus kinetic stabilities of membrane proteins, and suggests that a balance between membrane constituents with opposite effects on acyl chain packing, such as DHA and cholesterol, may be required for maximum protein stability.

  10. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane - a minimally invasive investigation by STED-FCS

    NASA Astrophysics Data System (ADS)

    Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian

    2015-06-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.

  11. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane--a minimally invasive investigation by STED-FCS.

    PubMed

    Andrade, Débora M; Clausen, Mathias P; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E; Hell, Stefan W; Lagerholm, B Christoffer; Eggeling, Christian

    2015-06-29

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.

  12. Effect of sex and dietary fat intake on the fatty acid composition of phospholipids and triacylglycerol in rat heart

    PubMed Central

    Slater-Jefferies, Joanne L.; Hoile, Samuel P.; Lillycrop, Karen A.; Townsend, Paul A.; Hanson, Mark A.; Burdge, Graham C.

    2010-01-01

    Variations in the fatty acid composition of lipids in the heart alter its function and susceptibility to ischaemic injury. We investigated the effect of sex and dietary fat intake on the fatty acid composition of phospholipids and triacylglycerol in rat heart. Rats were fed either 40 or 100 g/kg fat (9:1 lard:soybean oil) from weaning until day 105. There were significant interactive effects of sex and fat intake on the proportions of fatty acids in heart phospholipids, dependent on phospholipid classes. 20:4n-6, but not 22:6n-3, was higher in phospholipids in females than males fed a low, but not a high, fat diet. There was no effect of sex on the composition of triacylglycerol. These findings suggest that sex is an important factor in determining the incorporation of dietary fatty acids into cardiac lipids. This may have implications for sex differences in susceptibility to heart disease. PMID:20719489

  13. Changes in the lipid composition of Bradyrhizobium cell envelope reveal a rapid response to water deficit involving lysophosphatidylethanolamine synthesis from phosphatidylethanolamine in outer membrane.

    PubMed

    Cesari, Adriana B; Paulucci, Natalia S; Biasutti, María A; Morales, Gustavo M; Dardanelli, Marta S

    2018-06-02

    We evaluate the behavior of the membrane of Bradyrhizobium sp. SEMIA6144 during adaptation to polyethylene glycol (PEG). A dehydrating effect on the morphology of the cell surface, as well as a fluidizing effect on the membrane was observed 10 min after PEG shock; however, the bacteria were able to restore optimal membrane fluidity. Shock for 1 h caused an increase of lysophosphatidylethanolamine in the outer membrane at the expense of phosphatidylcholine and phosphatidylethanolamine (PE), through an increase in phospholipase activity. The amount of lysophosphatidylethanolamine did not remain constant during PEG shock, but after 24 h the outer membrane was composed of large amounts of phosphatidylcholine and less amount of lysophosphatidylethanolamine similar to the control. The inner membrane composition was also modified after 1 h of shock, observing an increase of phosphatidylcholine at the expense of PE, the proportions of these phospholipids were then modified to reach 24 h of shock values similar to the control. Vesicles prepared with the lipids of cells exposed to 1 h shock presented higher rigidity compared to the control, indicating that changes in the composition of phospholipids after 1 h of shock restoring fluidity after the PEG effect and would allow cells to maintain surface morphology. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    PubMed

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Improvement of pharmacokinetic and antitumor activity of layered double hydroxide nanoparticles by coating with PEGylated phospholipid membrane

    PubMed Central

    Yan, Mina; Zhang, Zhaoguo; Cui, Shengmiao; Lei, Ming; Zeng, Ke; Liao, Yunhui; Chu, Weijing; Deng, Yihui; Zhao, Chunshun

    2014-01-01

    Layered double hydroxide (LDH) has attracted considerable attention as a drug carrier. However, because of its poor in vivo behavior, polyethylene glycolylated (PEGylated) phospholipid must be used as a coformer to produce self-assembled core–shell nanoparticles. In the present study, we prepared a PEGylated phospholipid-coated LDH (PLDH) (PEG-PLDH) delivery system. The PEG-PLDH nanoparticles had an average size of 133.2 nm. Their core–shell structure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. In vitro liposome-cell-association and cytotoxicity experiments demonstrated its ability to be internalized by cells. In vivo studies showed that PEGylated phospholipid membranes greatly reduced the blood clearance rate of LDH nanoparticles. PEG-PLDH nanoparticles demonstrated a good control of tumor growth and increased the survival rate of mice. These results suggest that PEG-PLDH nanoparticles can be a useful drug delivery system for cancer therapy. PMID:25364245

  16. A study of carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine, an inhibitor of membrane fusion, in phospholipid bilayers with multinuclear magnetic resonance.

    PubMed

    Dentino, A R; Westerman, P W; Yeagle, P L

    1995-05-04

    The anti-viral and membrane fusion inhibitor, carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine (ZfFG), was studied in phospholipid bilayers, where earlier studies had indicated this peptide functioned. Multinuclear magnetic resonance (NMR) studies were performed with isotopically labeled peptide. A peptide labeled in the glycine carboxyl with 13C was synthesized, and the isotropic 13C-NMR chemical shift of that carbon was measured as a function of pH. A pKa of 3.6 for the carboxyl was determined from the peptide bound to a phosphatidylcholine bilayer. ZfFG inhibits the formation by sonication of highly curved, small unilamellar vesicles. Experiments as a function of pH revealed that this ability of ZfFG was governed by a pKa of 3.7. Therefore the protonation state of the carboxyl of ZfFG appeared to regulate the effectiveness of this anti-viral peptide at destabilizing highly curved phospholipid assemblies. Such destabilization had previously been discovered to be related to the mechanism of the anti-fusion and anti-viral activity of this peptide. The location of the carboxyl of ZfFG in the membrane was probed with paramagnetic relaxation enhancement of the 13C spin lattice relaxation of the carboxyl carbon in the glycine of ZfFG (enriched in 13C). Results suggested that this carboxyl is at or above the surface of the phospholipid bilayer. The dynamics of the molecule in the membrane were examined with 2H-NMR studies of ZfFG, deuterated in the alpha-carbon protons of the glycine. When ZfFG was bound to membranes of phosphatidylcholine, a sharp 2H-NMR spectral component was observed, consistent with a disordering of the glycine methylene segment of the peptide. When ZfFG was bound to N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE) bilayers at temperatures below 30 degrees C, a large quadrupole splitting was observed. These results suggest that ZfFG likely inhibits membrane fusion from the surface of the lipid bilayer, but not by forming a tight

  17. PUFA levels in erythrocyte membrane phospholipids are differentially associated with colorectal adenoma risk.

    PubMed

    Rifkin, Samara B; Shrubsole, Martha J; Cai, Qiuyin; Smalley, Walter E; Ness, Reid M; Swift, Larry L; Zheng, Wei; Murff, Harvey J

    2017-06-01

    Dietary intake of PUFA has been associated with colorectal neoplasm risk; however, results from observational studies have been inconsistent. Most prior studies have utilised self-reported dietary measures to assess fatty acid exposure which might be more susceptible to measurement error and biases compared with biomarkers. The purpose of this study was to determine whether erythrocyte phospholipid membrane PUFA percentages are associated with colorectal adenoma risk. We included data from 904 adenoma cases and 835 polyp-free controls who participated in the Tennessee Colorectal Polyp Study, a large colonoscopy-based case-control study. Erythrocyte membrane PUFA percentages were measured using GC. Conditional logistic regression was used to calculate adjusted OR for risk of colorectal adenomas with erythrocyte membrane PUFA. Higher erythrocyte membrane percentages of arachidonic acid was associated with an increased risk of colorectal adenomas (adjusted OR 1·66; 95 % CI 1·05, 2·62, P trend=0·02) comparing the highest tertile to the lowest tertile. The effect size for arachidonic acid was more pronounced when restricting the analysis to advanced adenomas only. Higher erythrocyte membrane EPA percentages were associated with a trend towards a reduced risk of advanced colorectal adenomas (P trend=0·05). Erythrocyte membrane arachidonic acid percentages are associated with an increased risk of colorectal adenomas.

  18. Cell signalling and phospholipid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, W.F.

    1989-01-01

    Our research for the past two years has involved the study of phosphoinositides and their potential role in regulating plant growth and development. Our initial goal was to document the sequence of events involved in inositol phospholipid metabolism in response to external stimuli. Our working hypothesis was that phosphatidylinositol bisphosphate (PIP/sub 2/) was in the plasma membrane of plants cells and would be hydrolyzed by phospholipase C to yield the second messengers inositol triphosphate (IP/sub 3/) and diacyglycerol (DAG) and that IP/sub 3/ would mobilize intracellular calcium as has been shown for animal cells. Our results with both carrot suspensionmore » culture cells and sunflower hypocotyl indicate that this paradigm is not the primary mechanism of signal transduction in these systems. We have observed very rapid, within 5 sec, stimulation of phosphatidylinositol monophosphate (PIP) kinase which resulted in an increase in PIP/sub 2/. However, there was no evidence for activation of phospholipase C. In addition, we have shown that PIP and PIP/sub 2/ can activate the plasma membrane ATPase. The results of these studies are described briefly in the paragraphs below. Inositol phospholipids are localized in distinct membrane fractions. If PIP and PIP/sub 2/ play a role in the transduction of external signals, they should be present in the plasma membrane. We used the fusogenic carrot suspension culture cells as a model system to study the distribution of inositol phospholipids in various membrane fractions and organelles. Cells were labeled 12 to 18 h with myo(2-/sup 3/H) inositol and the membranes were isolated by aqueous two-phase partitioning. The plasma membrane was enriched in PIP and PIP/sub 2/ compared to the intracellular membranes.« less

  19. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.

    PubMed

    Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise

    2014-04-01

    Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Inositol Depletion Restores Vesicle Transport in Yeast Phospholipid Flippase Mutants

    PubMed Central

    Yamagami, Kanako; Yamamoto, Takaharu; Sakai, Shota; Mioka, Tetsuo; Sano, Takamitsu; Igarashi, Yasuyuki; Tanaka, Kazuma

    2015-01-01

    In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases. PMID:25781026

  1. Global structural rearrangement of the cell penetrating ribonuclease colicin E3 on interaction with phospholipid membranes

    PubMed Central

    Mosbahi, Khédidja; Walker, Daniel; James, Richard; Moore, Geoffrey R.; Kleanthous, Colin

    2006-01-01

    Nuclease type colicins and related bacteriocins possess the unprecedented ability to translocate an enzymatic polypeptide chain across the Gram-negative cell envelope. Here we use the rRNase domain of the cytotoxic ribonuclease colicin E3 to examine the structural changes on its interaction with the membrane. Using phospholipid vesicles as model membranes we show that anionic membranes destabilize the nuclease domain of the rRNase type colicin E3. Intrinsic tryptophan fluorescence and circular dichroism show that vesicles consisting of pure DOPA act as a powerful protein denaturant toward the rRNase domain, although this interaction can be entirely prevented by the addition of salt. Binding of E3 rRNase to DOPA vesicles is an endothermic process (ΔH = 24 kcal mol−1), reflecting unfolding of the protein. Consistent with this, binding of a highly destabilized mutant of the E3 rRNase to DOPA vesicles is exothermic. With mixed vesicles containing anionic and neutral phospholipids at a ratio of 1:3, set to mimic the charge of the Escherichia coli inner membrane, destabilization of E3 rRNase is lessened, although the melting temperature of the protein at pH 7.0 is greatly reduced from 50°C to 30°C. The interaction of E3 rRNase with 1:3 DOPA:DOPC vesicles is also highly dependent on both ionic strength and temperature. We discuss these results in terms of the likely interaction of the E3 rRNase and the related E9 DNase domains with the E. coli inner membrane and their subsequent translocation to the cell cytoplasm. PMID:16452623

  2. Evaluation of Ultrafiltration Performance for Phospholipid Separation

    NASA Astrophysics Data System (ADS)

    Aryanti, N.; Wardhani, D. H.; Maulana, Z. S.; Roberto, D.

    2017-11-01

    Ultrafiltration membrane for degumming of crude palm oil has been applied as an alternative method since the membrane process required less procedure than the conventional degumming. This research focused on the examination of ultrafiltration performance for phospholipid separation from model crude palm oil degumming. Specifically, profile flux and rejection, as well as blocking mechanism, were investigated. Feed consisting of Refined Crude Palm Oil - Isopropanol - Lecithin mixtures were represented as crude palm oil degumming. Lecithin was denoted a phospholipid component, and the concentrations of lecithin in feed were varied to 0.1%, 0.2%, and 0.3%. The concentration of phospholipid was determined as phosphor content. At the concentration of lecithin in feed representing phospholipid concentration of 8,45 mg/kg, 8,45 mg/kg, 24,87 mg/kg and 57,58 mg/kg, respectively. Flux profiles confirmed that there was a flux decline during filtration. In addition, the lecithin concentrations do not significantly effect on further flux decline. Rejection characteristic and phospholipid concentration in the permeate showed that the phospholipid rejections by ultrafiltration were in the range of 23-79,5% representing permeate’s phospholipid concentration of 1,73 - 44,25 mg/kg. Evaluation of fouling mechanism by Hermia’s blocking model confirmed that the standard blocking is the dominant mechanism in the ultrafiltration of lecithin mixture.

  3. Annexin-A6 presents two modes of association with phospholipid membranes. A combined QCM-D, AFM and cryo-TEM study.

    PubMed

    Buzhynskyy, Nikolay; Golczak, Marcin; Lai-Kee-Him, Joséphine; Lambert, Olivier; Tessier, Béatrice; Gounou, Céline; Bérat, Rémi; Simon, Anne; Granier, Thierry; Chevalier, Jean-Marc; Mazères, Serge; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Brisson, Alain R

    2009-10-01

    Annexins are soluble proteins that bind to biological membranes in a Ca(2+)-dependent manner. Annexin-A6 (AnxA6) is unique in the annexin family as it consists of the repeat of two annexin core modules, while all other annexins consist of a single module. AnxA6 has been proposed to participate in various membrane-related processes, including endocytosis and exocytosis, yet the molecular mechanism of association of AnxA6 with biological membranes, especially its ability to aggregate membranes, is still unclear. To address this question, we studied the association of AnxA6 with model phospholipid membranes by combining the techniques of quartz crystal microbalance with dissipation monitoring (QCM-D), (cryo-) transmission electron microscopy (TEM) and atomic force microscopy (AFM). The properties of membrane binding and membrane aggregation of AnxA6 were compared to two reference systems, annexin A5 (AnxA5), which is the annexin prototype, and a chimerical AnxA5-dimer molecule, which is able to aggregate two membranes in a symmetrical manner. We show that AnxA6 presents two modes of association with lipid membranes depending on Ca(2+)-concentration. At low Ca(2+)-concentration ( approximately 60-150microM), AnxA6 binds to membranes via its two coplanar annexin modules and is not able to associate two separate membranes. At high Ca(2+)-concentration ( approximately 2mM), AnxA6 molecules are able to bind two adjacent phospholipid membranes and present a conformation similar to the AnxA6 3D crystallographic structure. Possible biological implications of these novel membrane-binding properties of AnxA6 are discussed.

  4. Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies.

    PubMed

    Freudenthal, Oona; Quilès, Fabienne; Francius, Grégory; Wojszko, Kamila; Gorczyca, Marcelina; Korchowiec, Beata; Rogalska, Ewa

    2016-11-01

    Colistin (Polymyxin E), an antimicrobial peptide, is increasingly put forward as salvage for severe multidrug-resistant infections. Unfortunately, colistin is potentially toxic to mammalian cells. A better understanding of the interaction with specific components of the cell membranes may be helpful in controlling the factors that may enhance toxicity. Here, we report a physico-chemical study of model phospholipid (PL) mono- and bilayers exposed to colistin at different concentrations by Langmuir technique, atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The effect of colistin on chosen PL monolayers was examined. Insights into the topographical and elastic changes in the PL bilayers within time after peptide injection are presented via AFM imaging and force spectra. Finally, changes in the PL bilayers' ATR-FTIR spectra as a function of time within three bilayer compositions, and the influence of colistin on their spectral fingerprint are examined together with the time-evolution of the Amide II and νCO band integrated intensity ratios. Our study reveals a great importance in the role of the PL composition as well as the peptide concentration on the action of colistin on PL model membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Understanding of Relationship between Phospholipid Membrane Permeability and Self-Diffusion Coefficients of Some Drugs and Biologically Active Compounds in Model Solvents.

    PubMed

    Blokhina, Svetlana V; Volkova, Tatyana V; Golubev, Vasiliy A; Perlovich, German L

    2017-10-02

    In this work we measured self-diffusion coefficients of 5 drugs (aspirin, caffeine, ethionamide, salicylic acid, and paracetamol) and 11 biologically active compounds of similar structure in deuterated water and 1-octanol by NMR. It has been found that an increase in the van der Waals volume of the molecules of the studied substances result in reduction of their diffusion mobility in both solvents. The analysis of the experimental data showed the influence of chemical nature and structural isomerization of the molecules on the diffusion mobility. Apparent permeability coefficients of the studied compounds were determined using an artificial phospholipid membrane made of egg lecithin as a model of in vivo absorption. Distribution coefficients in 1-octanol/buffer pH 7.4 system were measured. For the first time the model of the passive diffusion through the phospholipid membrane was validated based on the experimental data. To this end, the passive diffusion was considered as an additive process of molecule passage through the aqueous boundary layer before the membrane and 1-octanol barrier simulating the lipid layer of the membrane.

  6. Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Anbazhagan, V; Sankhala, Rajeshwer S; Singh, Bhanu Pratap; Swamy, Musti J

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.

  7. Isothermal Titration Calorimetric Studies on the Interaction of the Major Bovine Seminal Plasma Protein, PDC-109 with Phospholipid Membranes

    PubMed Central

    Anbazhagan, V.; Sankhala, Rajeshwer S.; Singh, Bhanu Pratap; Swamy, Musti J.

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process. PMID:22022488

  8. Blistering of langmuir-blodgett bilayers containing anionic phospholipids as observed by atomic force microscopy.

    PubMed Central

    Rinia, H A; Demel, R A; van der Eerden, J P; de Kruijff, B

    1999-01-01

    Asymmetric bilayers of different phospholipid compositions have been prepared by the Langmuir-Blodgett (L-B) method, and imaged by atomic force microscopy (AFM). Such bilayers can function as a model for biological membranes. The first leaflet consisted of zwitterionic phospholipids phosphatidylcholine (PC) or phosphatidylethanolamine (PE). The second leaflet consisted of the anionic phospholipid phosphatidylglycerol (PG), in either the condensed or liquid phase or, for comparison, of PC. Different bilayers showed different morphology. In all bilayers defects in the form of holes were present. In some bilayers with a first leaflet consisting of PC, polygonal line-shaped defects were observed, whereas when the first leaflet consisted of PE, mainly round defects were seen. Not only the shape, but also the amount of defects varied, depending on the condition and the composition of the second leaflet. In most of the PG-containing systems the defects were surrounded by elevations, which reversibly disappeared in the presence of divalent cations. This is the first time that such elevations have been observed on phospholipid bilayers. We propose that they are induced by phospholipid exchange between the two leaflets around the defects, leading to the presence of negatively charged phospholipids in the first leaflet. Because the substrate is also negatively charged, the bilayer around the edges is repelled and lifted up. Since it was found that the elevations are indeed detached from the substrate, we refer to this effect as bilayer blistering. PMID:10465778

  9. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  10. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  11. Interaction of Viscotoxins A3 and B with Membrane Model Systems: Implications to Their Mechanism of Action

    PubMed Central

    Giudici, Marcela; Pascual, Roberto; de la Canal, Laura; Pfüller, Karola; Pfüller, Uwe; Villalaín, José

    2003-01-01

    Viscotoxins are small proteins that are thought to interact with biomembranes, displaying different toxic activities against a varied number of cell types, being viscotoxin A3 (VtA3) the most cytotoxic whereas viscotoxin B (VtB) is the less potent. By using infrared and fluorescence spectroscopies, we have studied the interaction of VtA3 and VtB, both wild and reduced ones, with model membranes containing negatively charged phospholipids. Both VtA3 and VtB present a high conformational stability, and a similar conformation both in solution and when bound to membranes. In solution, the infrared spectra of the reduced proteins show an increase in bandwidth compared to the nonreduced ones indicating a greater flexibility. VtA3 and VtB bind with high affinity to membranes containing negatively charged phospholipids and are motional restricted, their binding being dependent on phospholipid composition. Whereas nonreduced proteins maintain their structure when bound to membranes, reduced ones aggregate. Furthermore, leakage experiments show that wild proteins were capable of disrupting membranes whereas reduced proteins were not. The effect of VtA3 and VtB on membranes having different phospholipid composition is diverse, affecting the cooperativity and fluidity of the membranes. Viscotoxins interact with membranes in a complex way, most likely organizing themselves at the surface inducing the appearance of defects that lead to the destabilization and disruption of the membrane bilayer. PMID:12885644

  12. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain.

    PubMed

    Fadhlaoui, Mariem; Pierron, Fabien; Couture, Patrice

    2018-02-01

    In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers

    USDA-ARS?s Scientific Manuscript database

    Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde, 2-hydroxy-5-methoxybenzaldehyde and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be...

  14. Interaction of KMP-11 with Phospholipid Membranes and Its Implications in Leishmaniasis: Effects of Single Tryptophan Mutations and Cholesterol.

    PubMed

    Sannigrahi, Achinta; Maity, Pabitra; Karmakar, Sanat; Chattopadhyay, Krishnananda

    2017-03-02

    KMP-11 is a small protein that is believed to control the overall bilayer pressure of the Leishmania parasite. Recent results have suggested that membrane binding and the presence of cholesterol affect the efficacy of Leishmanial infection, in which KMP-11 plays an important role. Nevertheless, there exists no systematic study of membrane interaction with KMP-11 either in the absence or presence of cholesterol. In this article, we investigated the interaction between KMP-11 and phospholipid membranes using an unsaturated (PC 18:1; 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and saturated (PC 12:0; 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) lipid as membrane mimics. Additionally, we studied the effect of cholesterol on the protein-membrane interaction. Steady-state as well as time-resolved fluorescence spectroscopy, isothermal titration calorimetry (ITC), and ζ-potential measurements were used for the determination of the binding constants for the wild-type (WT) and single-site tryptophan mutants. Single-site tryptophan mutants were designed to make sure that the tryptophan residues sample different surface exposures in different mutants. In the absence of cholesterol, the membrane-binding affinities of the partially exposed and buried tryptophan mutants (Y5W and Y48W, respectively) were found to be greater than those of the WT protein. In the presence of cholesterol, the binding constants of the WT and Y48W mutant were found to decrease with an increase in cholesterol concentration. This was in contrast to that in the Y5W and F77W mutants, in which the binding constants increased on adding cholesterol. The present study highlights the interplay among the conformational architecture of a protein, its interaction with the membrane, and membrane composition in modulating the survival of a Leishmania parasite inside host macrophages.

  15. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations.

    PubMed

    Timmer, Niels; Droge, Steven T J

    2017-03-07

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (D MW,PBS ) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log D MW values above 4. Renewal of the medium resulted in linear sorption isotherms. D MW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed D MW,PBS . Log D MW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the D MW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

  16. LRH-1 regulates hepatic lipid homeostasis and maintains arachidonoyl phospholipid pools critical for phospholipid diversity

    PubMed Central

    Miranda, Diego A.; Krause, William C.; Suzawa, Miyuki; Escusa, Hazel; Foo, Juat Chin; Shihadih, Diyala S.; Stahl, Andreas; Nyangau, Edna; Hellerstein, Marc; Wenk, Markus R.; Silver, David L.; Ingraham, Holly A.

    2018-01-01

    Excess lipid accumulation is an early signature of nonalcoholic fatty liver disease (NAFLD). Although liver receptor homolog 1 (LRH-1) (encoded by NR5A2) is suppressed in human NAFLD, evidence linking this phospholipid-bound nuclear receptor to hepatic lipid metabolism is lacking. Here, we report an essential role for LRH-1 in hepatic lipid storage and phospholipid composition based on an acute hepatic KO of LRH-1 in adult mice (LRH-1AAV8-Cre mice). Indeed, LRH-1–deficient hepatocytes exhibited large cytosolic lipid droplets and increased triglycerides (TGs). LRH-1–deficient mice fed high-fat diet displayed macrovesicular steatosis, liver injury, and glucose intolerance, all of which were reversed or improved by expressing wild-type human LRH-1. While hepatic lipid synthesis decreased and lipid export remained unchanged in mutants, elevated circulating free fatty acid helped explain the lipid imbalance in LRH-1AAV8-Cre mice. Lipidomic and genomic analyses revealed that loss of LRH-1 disrupts hepatic phospholipid composition, leading to lowered arachidonoyl (AA) phospholipids due to repression of Elovl5 and Fads2, two critical genes in AA biosynthesis. Our findings reveal a role for the phospholipid sensor LRH-1 in maintaining adequate pools of hepatic AA phospholipids, further supporting the idea that phospholipid diversity is an important contributor to healthy hepatic lipid storage. PMID:29515023

  17. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane – a minimally invasive investigation by STED-FCS

    PubMed Central

    Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian

    2015-01-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes. PMID:26118385

  18. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids.

    PubMed

    Breton, Marie; Amirkavei, Mooud; Mir, Lluis M

    2015-10-01

    Giant unilamellar vesicles (GUV) are widely used cell membrane models. GUVs have a cell-like diameter and contain the same phospholipids that constitute cell membranes. The most frequently used protocol to obtain these vesicles is termed electroformation, since key steps of this protocol consist in the application of an electric field to a phospholipid deposit. The potential oxidation of unsaturated phospholipids due to the application of an electric field has not yet been considered even though the presence of oxidized lipids in the membrane of GUVs could impact their permeability and their mechanical properties. Thanks to mass spectrometry analyses, we demonstrated that the electroformation technique can cause the oxidation of polyunsaturated phospholipids constituting the vesicles. Then, using flow cytometry, we showed that the amplitude and the duration of the electric field impact the number and the size of the vesicles. According to our results, the oxidation level of the phospholipids increases with their level of unsaturation as well as with the amplitude and the duration of the electric field. However, when the level of lipid oxidation exceeds 25 %, the diameter of the vesicles is decreased and when the level of lipid oxidation reaches 40 %, the vesicles burst or reorganize and their rate of production is reduced. In conclusion, the classical electroformation method should always be optimized, as a function of the phospholipid used, especially for producing giant liposomes of polyunsaturated phospholipids to be used as a cell membrane model.

  19. Characterization of Hydrophobic Interactions of Polymers with Water and Phospholipid Membranes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Drenscko, Mihaela

    small membranes using all atomistic and coarse-grained methods. The molecular interaction between common polymer chains used in biomedical applications and the cell membrane is unknown. This interaction may affect the biocompatibility of the polymer chains. Molecular dynamics simulations offer an emerging tool to characterize the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. We systematically characterize with long-time all-atomistic molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a model phospholipid membrane. We find that the length of polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilize advanced sampling techniques in molecular dynamics to characterize the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. These results can be used to design polymer chain lengths and chemistries to optimize their interaction with cell membranes at the molecular level.

  20. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach.

    PubMed

    Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian

    2004-02-17

    A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.

  1. Relationship between red cell membrane fatty acids and adipokines in individuals with varying insulin sensitivity.

    PubMed

    Min, Y; Lowy, C; Islam, S; Khan, F S; Swaminathan, R

    2011-06-01

    Plasma leptin and adiponectin, and membrane phospholipid fatty acid composition are implicated into the mechanism of insulin resistance but no clear pattern has emerged. Hence, this study examined these variables in subjects presenting to the diabetic clinic for a diagnostic glucose tolerance test. Body composition, glucose, glycated hemoglobin, insulin, leptin, adiponectin, and red cell and plasma phospholipid fatty acids were assessed from 42 normal and 28 impaired glucose tolerant subjects. Insulin sensitivity was determined by homeostatic model assessment. The plasma phosphatidylcholine fatty acid composition of the impaired glucose tolerant subjects was similar to that of normal subjects. However, the impaired glucose tolerant subjects had significantly lower linoleic (P<0.05), eicosapentaenoic (P<0.05) and docosahexaenoic (P<0.01) acids in the red cell phosphatidylcholine and phosphatidylethanolamine compared with the normal subjects. Moreover, red cell phosphatidylcholine docosahexaenoic acid correlated positively with adiponectin (r=0.290, P<0.05) but negatively with leptin (r=-0.252, P<0.05), insulin (r=-0.335, P<0.01) and insulin resistance (r=-0.322, P<0.01). Plasma triglycerides, leptin and glucose combined predicted about 60% of variation in insulin level whereas insulin was the only component that predicted the membrane fatty acids. We postulate that membrane phospholipids fatty acids have an indirect role in determining insulin concentration but insulin has a major role in determining membrane fatty acid composition.

  2. Composite membrane with integral rim

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  3. Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn-glycerol 3-phosphate acyltransferase Km mutant.

    PubMed

    Bell, R M

    1974-03-01

    sn-Glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli have been selected from a strain which cannot aerobically catabolize G3P. The auxotrophy resulted from loss of the biosynthetic G3P dehydrogenase (EC 1.1.1.8) or from a defective membranous G3P acyltransferase. The apparent K(m) of the acyltransferase for G3P was 11- to 14-fold higher (from about 90 mum to 1,000 to 1,250 mum) in membrane preparations from the mutants than those of the parent. All extracts prepared from revertants of the G3P dehydrogenase mutants showed G3P dehydrogenase activity, but most contained less than 10% of the wild-type level. Membrane preparations from revertants of the acyltransferase mutants had apparent K(m)'s for G3P similar to that of the parent. Strains have been derived in which the G3P requirement can be satisfied with glycerol in the presence of glucose, presumably because the glycerol kinase was desensitized to inhibition by fructose 1,6-diphosphate. Investigations on the growth and macromolecular synthesis in a G3P acyltransferase K(m) mutant revealed that upon glycerol deprivation, net phospholipid synthesis stopped immediately; growth continued for about one doubling; net ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein nearly doubled paralleling the growth curve; the rate of phospholipid synthesis assessed by labeling cells with (32)P-phosphate, (14)C-acetate, or (3)H-serine was reduced greater than 90%; the rates of RNA and DNA synthesis increased as the cells grew and then decreased as the cells stopped growing; the rate of protein synthesis showed no increase and declined more slowly than the rates of RNA and DNA synthesis when the cells stopped growing. The cells retained and gained in the capacity to synthesize phospholipids upon glycerol deprivation. These data indicate that net phospholipid synthesis is not required for continued macromolecular synthesis for about one doubling, and that the rates of these processes are not coupled during this

  4. Interaction of phospholipid vesicles with cells. Endocytosis and fusion as alternate mechanisms for the uptake of lipid-soluble and water-soluble molecules

    PubMed Central

    1975-01-01

    Depending on their phospholipid composition, liposomes are endocytosed by, or fuse with, the plasma membrane, of Acanthamoeba castellanii. Unilamellar egg lecithin vesicles are endocytosed by amoeba at 28 degrees C with equal uptake of the phospholipid bilayer and the contents of the internal aqueous space of the vesicles. Uptake is inhibited almost completely by incubation at 4 degrees C or in the presence of dinitrophenol. After uptake at 28 degrees C, the vesicle phospholipid can be visualized by electron microscope autoradiography within cytoplasmic vacuoles. In contrast, uptake of unilamellar dipalmitoyl lecithin vesicles and multilamellar dipalmitoyl lecithin liposomes is only partially inhibited at 4 degrees C, by dinitrophenol and by prior fixation of the amoebae with glutaraldehyde, each of which inhibits pinocytosis. Vesicle contents are taken up only about 40% as well as the phospholipid bilayer. Electron micrographs are compatible with the interpretation that dipalmitoyl lecithin vesicles fuse with the amoeba plasma membrane, adding their phospholipid to the cell surface, while their contents enter the cell cytoplasm. Dimyristoyl lecithin vesicles behave like egg lecithin vesicles while distearoyl lecithin vesicles behave like dipalmitoyl lecithin vesicles. PMID:1174130

  5. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1992-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the perselective layer. The invention also provides high performance membranes with optimized properties.

  6. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1991-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  7. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1990-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  8. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  9. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  10. Influence of membrane composition on osmosensing by the betaine carrier BetP from Corynebacterium glutamicum.

    PubMed

    Schiller, Dirk; Ott, Vera; Krämer, Reinhard; Morbach, Susanne

    2006-03-24

    The glycine betaine carrier BetP from Corynebacterium glutamicum was recently shown to function as both an osmosensor and osmoregulator in proteoliposomes made from Escherichia coli phospholipids by sensing changes in the internal K+ concentration as a measure of hyperosmotic stress (Rübenhagen, R., Morbach, S., and Krämer, R. (2001) EMBO J. 20, 5412-5420). Furthermore, evidence was provided that a stretch of 25 amino acids of the C-terminal domain of BetP is critically involved in K+ sensing. This K+-sensitive region has been further characterized. Glu572 turned out to be important for osmosensing in E. coli cells and in proteoliposomes made from E. coli phospholipids. BetP mutants E572K, E572P, and E572A/H573A/R574A were unable to detect an increase in the internal K+ concentration in this membrane environment. However, these BetP variants regained their ability to detect osmotic stress in membranes with increased phosphatidylglycerol content, i.e. in intact C. glutamicum cells or in proteoliposomes mimicking the composition of the C. glutamicum membrane. Mutants E572P and Y550P were still insensitive to osmotic stress also in this membrane background. These results led to the following conclusions. (i) The K+ sensor in mutants E572Q, E572D, and E572K is only partially impaired. (ii) Restoration of activity regulation is not possible if the correct conformation or orientation of the C-terminal domain is compromised by a proline residue at position 572 or 550. (iii) Phosphatidylglycerol in the membrane of C. glutamicum seems to stabilize the inactive conformation of BetP C252T and other mutants.

  11. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    DOE PAGES

    Calero, Carles; Stanley, H.; Franzese, Giancarlo

    2016-04-27

    Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs). We calculate the rotational and translational slowdown of the dynamics of water confinedmore » in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i) to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii) to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii) to the higher probability of water–lipid HBs as the hydration decreases. Lastly, our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.« less

  12. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  13. Polyarylether composition and membrane

    DOEpatents

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  14. The solubilisation of boar sperm membranes by different detergents - a microscopic, MALDI-TOF MS, 31P NMR and PAGE study on membrane lysis, extraction efficiency, lipid and protein composition

    PubMed Central

    2009-01-01

    Background Detergents are often used to isolate proteins, lipids as well as "detergent-resistant membrane domains" (DRMs) from cells. Different detergents affect different membrane structures according to their physico-chemical properties. However, the effects of different detergents on membrane lysis of boar spermatozoa and the lipid composition of DRMs prepared from the affected sperm membranes have not been investigated so far. Results Spermatozoa were treated with the selected detergents Pluronic F-127, sodium cholate, CHAPS, Tween 20, Triton X-100 and Brij 96V. Different patterns of membrane disintegration were observed by light and electron microscopy. In accordance with microscopic data, different amounts of lipids and proteins were released from the cells by the different detergents. The biochemical methods to assay the phosphorus and cholesterol contents as well as 31P NMR to determine the phospholipids were not influenced by the presence of detergents since comparable amounts of lipids were detected in the organic extracts from whole cell suspensions after exposure to each detergent. However, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry applied to identify phospholipids was essentially disturbed by the presence of detergents which exerted particular suppression effects on signal intensities. After separation of the membrane fractions released by detergents on a sucrose gradient only Triton X-100 and sodium cholate produced sharp turbid DRM bands. Only membrane solubilisation by Triton X-100 leads to an enrichment of cholesterol, sphingomyelin, phosphatidylinositol and phosphatidylethanolamine in a visible DRM band accompanied by a selective accumulation of proteins. Conclusion The boar sperm membranes are solubilised to a different extent by the used detergents. Particularly, the very unique DRMs isolated after Triton X-100 exposure are interesting candidates for further studies regarding the architecture of sperm. PMID

  15. Phospholipid Regulation of the Nuclear Receptor Superfamily

    PubMed Central

    Crowder, Mark K.; Seacrist, Corey D.; Blind, Raymond D.

    2016-01-01

    Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can “present” a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid / nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors. PMID:27838257

  16. Solubility and diffusion of oxygen in phospholipid membranes.

    PubMed

    Möller, Matías N; Li, Qian; Chinnaraj, Mathivanan; Cheung, Herbert C; Lancaster, Jack R; Denicola, Ana

    2016-11-01

    The transport of oxygen and other nonelectrolytes across lipid membranes is known to depend on both diffusion and solubility in the bilayer, and to be affected by changes in the physical state and by the lipid composition, especially the content of cholesterol and unsaturated fatty acids. However, it is not known how these factors affect diffusion and solubility separately. Herein we measured the partition coefficient of oxygen in liposome membranes of dilauroyl-, dimiristoyl- and dipalmitoylphosphatidylcholine in buffer at different temperatures using the equilibrium-shift method with electrochemical detection. The apparent diffusion coefficient was measured following the fluorescence quenching of 1-pyrenedodecanoate inserted in the liposome bilayers under the same conditions. The partition coefficient varied with the temperature and the physical state of the membrane, from below 1 in the gel state to above 2.8 in the liquid-crystalline state in DMPC and DPPC membranes. The partition coefficient was directly proportional to the partial molar volume and was then associated to the increase in free-volume in the membrane as a function of temperature. The apparent diffusion coefficients were corrected by the partition coefficients and found to be nearly the same, with a null dependence on viscosity and physical state of the membrane, probably because the pyrene is disturbing the surrounding lipids and thus becoming insensitive to changes in membrane viscosity. Combining our results with those of others, it is apparent that both solubility and diffusion increase when increasing the temperature or when comparing a membrane in the gel to one in the fluid state. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes.

    PubMed

    Wang, Ying; Tang, Yanli; Zhou, Zhijun; Ji, Eunkyung; Lopez, Gabriel P; Chi, Eva Y; Schanze, Kirk S; Whitten, David G

    2010-08-03

    Poly(phenylene ethyneylene) (PPE)-based cationic conjugated polyelectrolytes (CPEs) and cationic phenylene ethynylene oligomers (OPEs) exhibit broad-spectrum antimicrobial activity, and their main target is believed to be the cell membrane. To understand better how these antimicrobial molecules interact with membranes, a series of PPE-based CPEs and OPEs with different side chains were studied. Large unilamellar vesicles with lipid compositions mimicking those of mammalian or bacterial membranes were used as model membranes. Among the CPEs and OPEs tested, the anionic CPE, PPE-SO(3)(2-) and the smallest cationic OPE-1 are inactive against all vesicles. Other cationic CPEs and OPEs show significant membrane perturbation ability against bacterial membrane mimics but are inactive against a mammalian cell membrane mimic with the exception of PPE-DABCO and two end-only-functionalized OPEs, which also disrupted a mammalian cell membrane mimic. The results suggest that the phospholipid composition of vesicles dominates the interaction of CPE and OPE with lipid membranes.

  18. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.

    PubMed

    Wang, Zhangxin; Hou, Deyin; Lin, Shihong

    2016-04-05

    In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.

  19. Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer's Disease

    PubMed Central

    Bennett, Steffany A. L.; Valenzuela, Nicolas; Xu, Hongbin; Franko, Bettina; Fai, Stephen; Figeys, Daniel

    2013-01-01

    Not all of the mysteries of life lie in our genetic code. Some can be found buried in our membranes. These shells of fat, sculpted in the central nervous system into the cellular (and subcellular) boundaries of neurons and glia, are themselves complex systems of information. The diversity of neural phospholipids, coupled with their chameleon-like capacity to transmute into bioactive molecules, provides a vast repertoire of immediate response second messengers. The effects of compositional changes on synaptic function have only begun to be appreciated. Here, we mined 29 neurolipidomic datasets for changes in neuronal membrane phospholipid metabolism in Alzheimer's Disease (AD). Three overarching metabolic disturbances were detected. We found that an increase in the hydrolysis of platelet activating factor precursors and ethanolamine-containing plasmalogens, coupled with a failure to regenerate relatively rare alkyl-acyl and alkenyl-acyl structural phospholipids, correlated with disease severity. Accumulation of specific bioactive metabolites [i.e., PC(O-16:0/2:0) and PE(P-16:0/0:0)] was associated with aggravating tau pathology, enhancing vesicular release, and signaling neuronal loss. Finally, depletion of PI(16:0/20:4), PI(16:0/22:6), and PI(18:0/22:6) was implicated in accelerating Aβ42 biogenesis. Our analysis further suggested that converging disruptions in platelet activating factor, plasmalogen, phosphoinositol, phosphoethanolamine (PE), and docosahexaenoic acid metabolism may contribute mechanistically to catastrophic vesicular depletion, impaired receptor trafficking, and morphological dendritic deformation. Together, this analysis supports an emerging hypothesis that aberrant phospholipid metabolism may be one of multiple critical determinants required for Alzheimer disease conversion. PMID:23882219

  20. Visualization of Ca2+-Induced Phospholipid Domains

    NASA Astrophysics Data System (ADS)

    Haverstick, Doris M.; Glaser, Michael

    1987-07-01

    Large vesicles (5-15 μ m) were formed by hydrating a dried lipid film containing phospholipids labeled with a fluorophore in one fatty acid chain. By using a fluorescence microscope attached to a low-light-intensity charge-coupled-device camera and digital-image processor, the vesicles were easily viewed and initially showed uniform fluorescence intensity across the surface. The fluorescence pattern of vesicles made with a fluorophore attached to phosphatidylcholine or phosphatidylethanolamine was unaffected by the presence of divalent cations such as Ca2+, Mg2+, Mn2+, Zn2+, or Cd2+. The fluorescence pattern of vesicles containing a fluorophore attached to the acidic phospholipids phosphatidylserine or phosphatidic acid showed distinct differences when treated with Ca2+ or Cd2+, although they were unaffected by Mg2+, Mn2+, or Zn2+. Treatment with 2.0 mM Ca2+ or Cd2+ resulted in the movement of the fluorophore to a single large patch on the surface of the vesicle. When vesicles were formed in the presence of 33 mol% cholesterol, patching was seen at a slightly lower Ca2+ concentration (1.0 mM). The possibility of interactions between Ca2+ and acidic phospholipids in plasma membranes was investigated by labeling erythrocytes and erythrocyte ghosts with fluorescent phosphatidic acid. When Ca2+ was added, multiple (five or six) small patches were seen per individual cell. The same pattern was observed when vesicles formed from whole lipid extracts of erythrocytes were labeled with fluorescent phosphatidic acid and then treated with Ca2+. This shows that the size and distribution of the Ca2+-induced domains depend on phospholipid composition.

  1. Ionophores at work: Exploring the interaction of guanosine-based amphiphiles with phospholipid membranes.

    PubMed

    Vitiello, Giuseppe; Musumeci, Domenica; Koutsioubas, Alexandros; Paduano, Luigi; Montesarchio, Daniela; D'Errico, Gerardino

    2017-12-01

    An amphiphilic derivative of guanosine, carrying a myristoyl group at the 5'-position and two methoxy(triethylene glycol) appendages at the 2' and 3'-positions (1), endowed with high ionophoric activity, has been here studied in its interaction mode with a model lipid membrane along with its 5'-spin-labelled analogue 2, bearing the 5-doxyl-stearic in lieu of the myristic residue. Electron spin resonance spectra, carried out on the spin-labelled nucleolipid 2 in mixture with a DOPC/DOPG phospholipid bilayer, on one side, and on spin-labelled lipids mixed with 1, on the other, integrated with dynamic light scattering and neutron reflectivity measurements, allowed getting an in-depth picture of the effect of the ionophores on membrane structure, relevant to clarify the ion transport mechanism through lipid bilayers. Particularly, dehydration of lipid headgroups and lowering of both the local polarity and acyl chains order across the bilayer, due to the insertion of the oligo(ethylene glycol) chains in the bilayer hydrophobic core, have been found to be the main effects of the amphiphilic guanosines interaction with the membrane. These results furnish directions to rationally implement future ionophores design. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of Development and Dietary Phospholipid Content and Composition on Intestinal Transcriptome of Atlantic Salmon (Salmo salar)

    PubMed Central

    De Santis, Christian; Taylor, John F.; Martinez-Rubio, Laura; Boltana, Sebastian; Tocher, Douglas R.

    2015-01-01

    The inclusion of intact phospholipids in the diet is essential during larval development and can improve culture performance of many fish species. The effects of supplementation of dietary phospholipid from marine (krill) or plant (soy lecithin) sources were investigated in Atlantic salmon, Salmo salar. First feeding fry were fed diets containing either krill oil or soybean lecithin supplying phospholipid at 2.6%, 3.2%, 3.6% and 4.2% of diet. Fish were sampled at ~ 2.5 g (~1,990°day post fertilization, dpf) and ~10 g (2,850°dpf). By comparison of the intestinal transcriptome in specifically chosen contrasts, it was determined that by 2,850°dpf fish possessed a profile that resembled that of mature and differentiated intestinal cell types with a number of changes specific to glycerophospholipid metabolism. It was previously shown that intact phospholipids and particularly phosphatidylcholine are essential during larval development and that this requirement is associated with the inability of enterocytes in young fry to endogenously synthesize sufficient phospholipid for the efficient export of dietary lipid. In the immature phase (~1,990°dpf), the dietary phospholipid content as well as its class composition impacted on several biochemical and morphological parameters including growth, but these differences were not associated with differences in intestinal transcriptomes. The results of this study have made an important contribution to our understanding of the mechanisms associated with lipid transport and phospholipid biosynthesis in early life stages of fish. PMID:26488165

  3. Cellular Membrane Phospholipids Act as a Depository for Quaternary Amine containing Drugs thus competing with the Acetylcholine / Nicotinic Receptor

    PubMed Central

    Barbacci, Damon; Jackson, Shelley N.; Muller, Ludovic; Egan, Thomas; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.

    2014-01-01

    We previously demonstrated that ammonium- or guanidinium- phosphate interactions are key to forming non-covalent complexes (NCXs) through salt bridge formation with G-protein coupled receptors (GPCR), which are immersed in the cell membrane's lipids. The present work highlights MALDI ion mobility coupled to orthogonal time-of-flight mass spectrometry (MALDI IM oTOF MS) as a method to determine qualitative and relative quantitative affinity of drugs to form NCXs with targeted GPCRs' epitopes in a model system using, bis-quaternary amine based drugs, α- and β- subunit epitopes of the nicotinic acetylcholine receptor' (nAChR) and phospholipids. Bis-quaternary amines proved to have a strong affinity for all nAChR epitopes and negatively charged phospholipids, even in the presence of the physiological neurotransmitter acetylcholine. Ion mobility baseline separated isobaric phosphatidyl ethanolamine and a matrix cluster, providing an accurate estimate for phospholipid counts. Overall this technique is a powerful method for screening drugs' interactions with targeted lipids and protein respectively containing quaternary amines and guanidinium moieties. PMID:22506649

  4. Constitutive phospholipid scramblase activity of a G protein-coupled receptor

    NASA Astrophysics Data System (ADS)

    Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.

    2014-10-01

    Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.

  5. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  6. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE PAGES

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; ...

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  7. Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes.

    PubMed

    Haddad, Laura Saade; Kelbert, Louie; Hulbert, A J

    2007-07-01

    In the honey bee (Apis mellifera), depending on what they are fed, female eggs become either workers or queens. Although queens and workers share a common genome, the maximum lifespan of queens is an order-of-magnitude longer than workers. The mechanistic basis of this longevity difference is unknown. In order to test if differences in membrane composition could be involved we have compared the fatty acid composition of phospholipids of queen and worker honey bees. The cell membranes of both young and old honey bee queens are highly monounsaturated with very low content of polyunsaturates. Newly emerged workers have a similar membrane fatty acid composition to queens but within the first week of hive life, they increase the polyunsaturate content and decrease the monounsaturate content of their membranes, probably as a result of pollen consumption. This means their membranes likely become more susceptible to lipid peroxidation in this first week of hive life. The results support the suggestion that membrane composition might be an important factor in the determination of maximum lifespan. Assuming the same slope of the relationship between membrane peroxidation index and maximum lifespan as previously observed for mammal and bird species, we propose that the 3-fold difference in peroxidation index of phospholipids of queens and workers is large enough to account for the order-of-magnitude difference in their longevity.

  8. Diffusion in phospholipid bilayer membranes: dual-leaflet dynamics and the roles of tracer–leaflet and inter-leaflet coupling

    PubMed Central

    Hill, Reghan J.; Wang, Chih-Ying

    2014-01-01

    A variety of observations—sometimes controversial—have been made in recent decades when attempting to elucidate the roles of interfacial slip on tracer diffusion in phospholipid membranes. Evans–Sackmann theory (1988) has furnished membrane viscosities and lubrication-film thicknesses for supported membranes from experimentally measured lateral diffusion coefficients. Similar to the Saffman and Delbrück model, which is the well-known counterpart for freely supported membranes, the bilayer is modelled as a single two-dimensional fluid. However, the Evans–Sackman model cannot interpret the mobilities of monotopic tracers, such as individual lipids or rigidly bound lipid assemblies; neither does it account for tracer–leaflet and inter-leaflet slip. To address these limitations, we solve the model of Wang and Hill, in which two leaflets of a bilayer membrane, a circular tracer and supports are coupled by interfacial friction, using phenomenological friction/slip coefficients. This furnishes an exact solution that can be readily adopted to interpret the mobilities of a variety of mosaic elements—including lipids, integral monotopic and polytopic proteins, and lipid rafts—in supported bilayer membranes. PMID:25002822

  9. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.

    PubMed

    Takeda, Miyoko; Yamagami, Kanako; Tanaka, Kazuma

    2014-03-01

    Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.

  10. Med15B Regulates Acid Stress Response and Tolerance in Candida glabrata by Altering Membrane Lipid Composition

    PubMed Central

    Qi, Yanli; Liu, Hui; Yu, Jiayin; Chen, Xiulai

    2017-01-01

    ABSTRACT Candida glabrata is a promising producer of organic acids. To elucidate the physiological function of the Mediator tail subunit Med15B in the response to low-pH stress, we constructed a deletion strain, C. glabrata med15BΔ, and an overexpression strain, C. glabrata HTUΔ/CgMED15B. Deletion of MED15B caused biomass production, glucose consumption rate, and cell viability to decrease by 28.3%, 31.7%, and 26.5%, respectively, compared with those of the parent (HTUΔ) strain at pH 2.0. Expression of lipid metabolism-related genes was significantly downregulated in the med15BΔ strain, whereas key genes of ergosterol biosynthesis showed abnormal upregulation. This caused the proportion of C18:1 fatty acids, the ratio of unsaturated to saturated fatty acids (UFA/SFA), and the total phospholipid content to decrease by 11.6%, 27.4%, and 37.6%, respectively. Cells failed to synthesize fecosterol and ergosterol, leading to the accumulation and a 60.3-fold increase in the concentration of zymosterol. Additionally, cells showed reductions of 69.2%, 11.6%, and 21.8% in membrane integrity, fluidity, and H+-ATPase activity, respectively. In contrast, overexpression of Med15B increased the C18:1 levels, total phospholipids, ergosterol content, and UFA/SFA by 18.6%, 143.5%, 94.5%, and 18.7%, respectively. Membrane integrity, fluidity, and H+-ATPase activity also increased by 30.2%, 6.9%, and 51.8%, respectively. Furthermore, in the absence of pH buffering, dry weight of cells and pyruvate concentrations were 29.3% and 61.2% higher, respectively, than those of the parent strain. These results indicated that in C. glabrata, Med15B regulates tolerance toward low pH via transcriptional regulation of acid stress response genes and alteration in lipid composition. IMPORTANCE This study explored the role of the Mediator tail subunit Med15B in the metabolism of Candida glabrata under acidic conditions. Overexpression of MED15B enhanced yeast tolerance to low pH and improved

  11. Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Antonyuk, L. P.; Matora, L. Yu.; Serebrennikova, O. B.; Sumaroka, M. V.; Colina, M.; Renou-Gonnord, M.-F.; Ignatov, V. V.

    1999-05-01

    Structural and compositional features of bacterial membranes and some of their isolated constituents (cell surface lipopolysaccharide, phospholipids) of the plant-growth-promoting diazotrophic rhizobacterium Azospirillum brasilense (wild-type strain Sp245) were characterized using Fourier transform infrared (FTIR) spectroscopy and some other techniques. FTIR spectra of the cell membranes were shown to comprise the main vibration modes of the relevant lipopolysaccharide and protein components which are believed to be involved in associative plant-bacterium interactions, as well as of phospholipid constituents. The role and functions of metal cations in the structural organization and physicochemical properties of bacterial cell membranes are also discussed considering their accumulation in the membranes from the culture medium.

  12. STABILITY AND STOICHIOMETRY OF BILAYER PHOSPHOLIPID-CHOLESTEROL COMPLEXES: RELATIONSHIP TO CELLULAR STEROL DISTRIBUTION AND HOMEOSTASIS&

    PubMed Central

    Lange, Yvonne; Ali Tabei, S. M.; Ye, Jin; Steck, Theodore L.

    2013-01-01

    Does cholesterol distribute among intracellular compartments by passive equilibration down its chemical gradient? If so, its distribution should reflect the relative cholesterol affinity of the constituent membrane phospholipids as well as their ability to form stoichiometric cholesterol complexes. We tested this hypothesis by analyzing the reactivity to cholesterol oxidase of large unilamellar vesicles (LUVs) containing biological phospholipids plus varied cholesterol. The rates of cholesterol oxidation differed among the various phospholipid environments by roughly four orders of magnitude. Furthermore, accessibility to the enzyme increased by orders of magnitude at cholesterol thresholds that suggested stoichiometries of association of 1:1, 2:3 or 1:2 cholesterol:phospholipid (mol:mol). Cholesterol accessibility above the threshold was still constrained by its particular phospholipid environment. One phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine, exhibited no threshold. The analysis suggested values for the relative stabilities of the cholesterol-phospholipid complexes and for the fractions of bilayer cholesterol not in complexes at the threshold equivalence points; predictably, the saturated phosphorylcholine species had the lowest stoichiometries and the strongest affinities for cholesterol. These results were in general agreement with the equilibrium distribution of cholesterol between the various LUVs and methyl-β-cyclodextrin. In addition, the properties of the cholesterol in intact human red blood cells matched predictions made from LUVs of the corresponding composition. These results support a passive mechanism for the intracellular distribution of cholesterol that can provide a signal for its homeostatic regulation. PMID:24000774

  13. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Choubey, Amit

    Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by

  14. Effects of dietary omega-3 and -6 supplementations on phospholipid fatty acid composition in mice uterus during window of pre-implantation.

    PubMed

    Fattahi, Amir; Darabi, Masoud; Farzadi, Laya; Salmassi, Ali; Latifi, Zeinab; Mehdizadeh, Amir; Shaaker, Maghsood; Ghasemnejad, Tohid; Roshangar, Leila; Nouri, Mohammad

    2018-03-01

    Since fatty acid composition of uterus phospholipids is likely to influence embryo implantation, this study was conducted to investigate the effects of dietary omega-3 and -6 fatty acids on implantation rate as well as uterine phospholipid fatty acids composition during mice pre-implantation period. Sixty female mice were randomly distributed into:1) control (standard pellet), 2) omega-3 (standard pellet + 10% w/w of omega-3 fatty acids) and 3) omega-6 (standard pellet + 10% w/w of omega-6 fatty acids). Uterine phospholipid fatty acid composition during the pre-implantation window (days 1-5 of pregnancy) was analyzed using gas-chromatography. The implantation rate on the fifth day of pregnancy was also determined. Our results showed that on days 1, 2 and 3 of pregnancy, the levels of arachidonic acid (ARA) as well as total omega-6 fatty acids were significantly higher and the levels of linolenic acid and total omega-3 fatty acids were statistically lower in the omega-6 group compared to the omega-3 group (p < 0.05). On the fourth day of pregnancy, only the ARA, total omega-6 fatty acids, and poly-unsaturated fatty acids levels were significantly different between the two dietary supplemented groups (p < 0.05). There were positive correlations between the levels of omega-6 fatty acids, especially ARA, with the implantation rate. The present study showed that diets rich in omega-3 and -6 fatty acids could differently modify uterine phospholipid fatty acid composition and uterine levels of phospholipid ARA, and that the total omega-6 fatty acids had a positive association with the implantation rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Massive Ca-induced Membrane Fusion and Phospholipid Changes Triggered by Reverse Na/Ca Exchange in BHK Fibroblasts

    PubMed Central

    Yaradanakul, Alp; Wang, Tzu-Ming; Lariccia, Vincenzo; Lin, Mei-Jung; Shen, Chengcheng; Liu, Xinran; Hilgemann, Donald W.

    2008-01-01

    Baby hamster kidney (BHK) fibroblasts increase their cell capacitance by 25–100% within 5 s upon activating maximal Ca influx via constitutively expressed cardiac Na/Ca exchangers (NCX1). Free Ca, measured with fluo-5N, transiently exceeds 0.2 mM with total Ca influx amounting to ∼5 mmol/liter cell volume. Capacitance responses are half-maximal when NCX1 promotes a free cytoplasmic Ca of 0.12 mM (Hill coefficient ≈ 2). Capacitance can return to baseline in 1–3 min, and responses can be repeated several times. The membrane tracer, FM 4-64, is taken up during recovery and can be released at a subsequent Ca influx episode. Given recent interest in signaling lipids in membrane fusion, we used green fluorescent protein (GFP) fusions with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and diacylglycerol (DAG) binding domains to analyze phospholipid changes in relation to these responses. PI(4,5)P2 is rapidly cleaved upon activating Ca influx and recovers within 2 min. However, PI(4,5)P2 depletion by activation of overexpressed hM1 muscarinic receptors causes only little membrane fusion, and subsequent fusion in response to Ca influx remains massive. Two results suggest that DAG may be generated from sources other than PI(4,5)P in these protocols. First, acylglycerols are generated in response to elevated Ca, even when PI(4,5)P2 is metabolically depleted. Second, DAG-binding C1A-GFP domains, which are brought to the cell surface by exogenous ligands, translocate rapidly back to the cytoplasm in response to Ca influx. Nevertheless, inhibitors of PLCs and cPLA2, PI(4,5)P2-binding peptides, and PLD modification by butanol do not block membrane fusion. The cationic agents, FM 4-64 and heptalysine, bind profusely to the extracellular cell surface during membrane fusion. While this binding might reflect phosphatidylserine (PS) “scrambling” between monolayers, it is unaffected by a PS-binding protein, lactadherin, and by polylysine from the cytoplasmic side

  16. Plasma phospholipids and fatty acid composition differ between liver biopsy-proven nonalcoholic fatty liver disease and healthy subjects

    PubMed Central

    Ma, D W L; Arendt, B M; Hillyer, L M; Fung, S K; McGilvray, I; Guindi, M; Allard, J P

    2016-01-01

    Background: There is growing evidence that nonalcoholic fatty liver disease (NAFLD) is associated with perturbations in liver lipid metabolism. Liver phospholipid and fatty acid composition have been shown to be altered in NAFLD. However, detailed profiles of circulating lipids in the pathogenesis of NAFLD are lacking. Objective: Therefore, the objective of the present study was to examine circulating lipids and potential mechanisms related to hepatic gene expression between liver biopsy-proven simple steatosis (SS), nonalcoholic steatohepatitis (NASH) and healthy subjects. Subjects: Plasma phospholipid and fatty acid composition were determined in 31 healthy living liver donors as healthy controls (HC), 26 patients with simple hepatic steatosis (SS) and 20 with progressive NASH. Hepatic gene expression was analyzed by Illumina microarray in a subset of 22 HC, 16 SS and 14 NASH. Results: Concentrations of phosphatidylethanolamine (PE) increased relative to disease progression, HCcomposition of phospholipids was also remodeled. In particular, docosahexaenoic and arachidonic acid were higher (P<0.05) in SS and NASH relative to HC in PS. Differentially expressed hepatic genes included ETNK1 and PLSCR1 that are involved in PE synthesis and PS transport, respectively. Conclusions: The present study demonstrates that there is a disruption in phospholipid metabolism that is present in SS, but more pronounced in NASH. Intervention studies targeted at lipid metabolism could benefit SS and NASH. PMID:27428872

  17. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt tomore » investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.« less

  18. The use of natural and synthetic phospholipids as pharmaceutical excipients*

    PubMed Central

    van Hoogevest, Peter; Wendel, Armin

    2014-01-01

    In pharmaceutical formulations, phospholipids obtained from plant or animal sources and synthetic phospholipids are used. Natural phospholipids are purified from, e.g., soybeans or egg yolk using non-toxic solvent extraction and chromatographic procedures with low consumption of energy and minimum possible waste. Because of the use of validated purification procedures and sourcing of raw materials with consistent quality, the resulting products differing in phosphatidylcholine content possess an excellent batch to batch reproducibility with respect to phospholipid and fatty acid composition. The natural phospholipids are described in pharmacopeias and relevant regulatory guidance documentation of the Food and Drug Administration (FDA) and European Medicines Agency (EMA). Synthetic phospholipids with specific polar head group, fatty acid composition can be manufactured using various synthesis routes. Synthetic phospholipids with the natural stereochemical configuration are preferably synthesized from glycerophosphocholine (GPC), which is obtained from natural phospholipids, using acylation and enzyme catalyzed reactions. Synthetic phospholipids play compared to natural phospholipid (including hydrogenated phospholipids), as derived from the number of drug products containing synthetic phospholipids, a minor role. Only in a few pharmaceutical products synthetic phospholipids are used. Natural phospholipids are used in oral, dermal, and parenteral products including liposomes. Natural phospholipids instead of synthetic phospholipids should be selected as phospholipid excipients for formulation development, whenever possible, because natural phospholipids are derived from renewable sources and produced with more ecologically friendly processes and are available in larger scale at relatively low costs compared to synthetic phospholipids. Practical applications: For selection of phospholipid excipients for pharmaceutical formulations, natural phospholipids are preferred

  19. Continuous planar phospholipid bilayer supported on porous silicon thin film reflector.

    PubMed

    Cunin, Frédérique; Milhiet, Pierre-Emmanuel; Anglin, Emily; Sailor, Michael J; Espenel, Cédric; Le Grimellec, Christian; Brunel, Daniel; Devoisselle, Jean-Marie

    2007-10-01

    Reconstituting artificial membranes for in vitro studies of cell barrier mechanisms and properties is of major interest in biology. Here, artificial membranes supported on porous silicon photonic crystal reflectors are prepared and investigated. The materials are of interest for label-free probing of supported membrane events such as protein binding, molecular recognition, and transport. The porous silicon substrates are prepared as multilayered films consisting of a periodically varying porosity, with pore dimensions of a few nanometers in size. Planar phospholipid bilayers are deposited on the topmost surface of the oxidized hydrophilic mesoporous silicon films. Atomic force microscopy provides evidence of continuous bilayer deposition at the surface, and optical measurements indicate that the lipids do not significantly infiltrate the porous region. The presence of the supported bilayer does not obstruct the optical spectrum from the porous silicon layer, suggesting that the composite structures can act as effective optical biosensors.

  20. A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat--high-sucrose diet-fed rats.

    PubMed

    Aoun, Manar; Michel, Francoise; Fouret, Gilles; Schlernitzauer, Audrey; Ollendorff, Vincent; Wrutniak-Cabello, Chantal; Cristol, Jean-Paul; Carbonneau, Marie-Annette; Coudray, Charles; Feillet-Coudray, Christine

    2011-08-01

    Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat-high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial β-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.

  1. Incorporation of leucine into phospholipids of Bacteroides thetaiotaomicron.

    PubMed Central

    Smith, R D; Salyers, A A

    1981-01-01

    L-[4,5-3H]- or L-[U-14C]leucine was incorporated by Bacteroides thetaiotaomicron into acid-precipitable material even when the bacteria were treated with concentrations of tetracycline high enough to prevent growth. Similar results were obtained when L-[2,3,4-3H]valine or L-[4,5-3H]isoleucine was used instead of leucine. In bacteria which had been treated with tetracycline, the acid-precipitable label was not solubilized by treatment with protease, lysozyme, or deoxyribonuclease. However, virtually all of the label was extractable with chloroform-methanol, indicating that the label had been incorporated into membrane lipids. Since L-[1-14C]leucine was not incorporated into lipids, leucine was probably decarboxylated before incorporation. When a chloroform extract from bacteria which had been labeled with both [32P]phosphate and [3H]leucine was resolved into component phospholipids by two-dimensional thin-layer chromatography, 3H was incorporated into all of the phospholipids. When these phospholipids were deacylated, the 3H from leucine was associated with released fatty acids rather than with the head groups. Thus, it appears that B. thetaiotaomicron can utilize leucine and similar amino acids not only by incorporating them into protein but also by incorporating portions of these amino acids into membrane phospholipids. PMID:7462155

  2. Phospholipids at the Interface: Current Trends and Challenges

    PubMed Central

    Pichot, Roman; Watson, Richard L.; Norton, Ian T.

    2013-01-01

    Phospholipids are one of the major structural elements of biological membranes. Due to their amphiphilic character, they can adopt various molecular assemblies when dispersed in water, such as bilayer vesicles or micelles, which give them unique interfacial properties and render them very attractive in terms of foam or emulsion stabilization. This article aims at reviewing the properties of phospholipids at the air/water and oil/water interfaces, as well as the recent advances in using these natural components as stabilizers, alone or in combination with other compounds such as proteins. A discussion regarding the challenges and opportunities offered by phospholipids-stabilized structure concludes the review. PMID:23736688

  3. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks

    NASA Astrophysics Data System (ADS)

    Bayburt, Timothy H.; Sligar, Stephen G.

    2002-05-01

    The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy. Individual P450 molecules were observed protruding from the bilayer surface. Problems associated with deformation of the protein by the atomic force microscopy probe were avoided by analyzing force-dependent height measurements to quantitate the height of the protein above the bilayer surface. Measurements of the atomic force microscopy cantilever deflection as a function of probe-sample separation reveal that the top of the P450 opposite the N-terminal membrane anchor region sits 3.5 nanometers above the phospholipid-water boundary. Models of the orientation of the enzyme are presented and discussed in relation to membrane interactions and interaction with cytochrome P450 reductase.

  4. Isolation, Chemical Composition, and Ultrastructural Features of the Cell Membrane of the Mycoplasma-Like Organism Spiroplasma citri

    PubMed Central

    Razin, Shmuel; Hasin, Miriam; Ne'eman, Zvi; Rottem, Shlomo

    1973-01-01

    Thin sections of Spiroplasma citri, a mycoplasma-like organism isolated from citrus infected with “Stubborn” disease, showed the organisms to be limited by a single trilaminar plasma membrane. An additional outer layer could, however, be frequently seen in freeze-etched preparations of unwashed cells. The organisms were found to be extremely sensitive to lysis by osmotic shock. The cell membrane of S. citri isolated in this way resembled that of mycoplasmas in ultrastructure and gross chemical composition. The isolated membranes showed the characteristic trilaminar shape in section and the typical particle-studded fracture faces in freeze-etched preparations. Protein and lipid formed over 80% of the total dry weight of the membrane, which had a density of ~1.180 g/cm3. Cholesterol constituted over 20% of the total membrane lipid. Phosphatidyl-glycerol, synthesized by the organisms, was the major phospholipid. Significant amounts of hexosamine (15 to 35 μg/mg of membrane protein) could be found in the membrane preparations. Our results support the thesis that S. citri does not possess a cell wall, either of the gram-positive or the gram-negative type, though it may be coated by some other type of an envelope or by a slime layer, at least temporarily. Images PMID:4127633

  5. Functionalization Pattern of Graphene Oxide Sheets Controls Entry or Produces Lipid Turmoil in Phospholipid Membranes.

    PubMed

    Dallavalle, Marco; Bottoni, Andrea; Calvaresi, Matteo; Zerbetto, Francesco

    2018-05-09

    Molecular dynamics, coarse-grained to the level of hydrophobic and hydrophilic interactions, shows that graphene oxide sheets, GOSs, can pierce through the phospholipid membrane and navigate the double layer only if the hydrophilic groups are randomly dispersed in the structure. Their behavior resembles that found in similar calculations for pristine graphene sheets. If the oxidation is located at the edge of the sheets, GOSs hover over the membrane and trigger a major reorganization of the lipids. The reorganization is the largest when the radius of the edge-functionalized sheet is similar to the length of the lipophilic chain of the lipids. In the reorganization, the heads of the lipid chains form dynamical structures that pictorially resemble the swirl of water flowing down a drain. All effects maximize the interaction between hydrophobic moieties on the one hand and lipophilic fragments on the other and are accompanied by a large number of lipid flip-flops. Possible biological consequences are discussed.

  6. Interaction of the major protein from bovine seminal plasma, PDC-109 with phospholipid membranes and soluble ligands investigated by fluorescence approaches.

    PubMed

    Anbazhagan, V; Damai, Rajani S; Paul, Aniruddha; Swamy, Musti J

    2008-06-01

    The major protein from bovine seminal plasma, PDC-109 binds selectively to choline phospholipids on the sperm plasma membrane and plays a crucial role in priming spermatozoa for fertilization. The microenvironment and accessibility of tryptophans of PDC-109 in the native state, in the presence of phosphorylcholine (PrC) and phospholipid membranes as well as upon denaturation have been investigated by fluorescence approaches. Quenching of the protein intrinsic fluorescence by different quenchers decreased in the order: acrylamide>succinimide>Cs(+)>I(-). Ligand binding afforded considerable protection from quenching, with shielding efficiencies following the order: dimyristoylphosphatidylcholine (DMPC)>lysophosphatidylcholine (Lyso-PC)>PrC. This has been attributed to a partial penetration of the protein into the DMPC membranes and Lyso-PC micelles, as well as a further stabilization of the binding due to the interaction of PDC-109 with lipid acyl chains and the resulting tightening of the protein structure, leading to a decreased accessibility of the tryptophan residues. Red-edge excitation shift (REES) studies yielded REES values of 4 nm for both native and denatured PDC-109, whereas reduced and denatured protein gave a REES of only 0.5 nm, clearly indicating that the structural and dynamic features of the microenvironment around the tryptophan residues are retained even after denaturation, presumably due to the constraints imposed on the protein structure by disulfide bonds. Upon binding of PDC-109 to DMPC membranes and Lyso-PC micelles the REES values were reduced to 2.5 and 1.0 nm, respectively, which could be due to the penetration of some parts of the protein, especially the segment containing Trp-90 into the membrane interior, where the red-edge effects are considerably reduced.

  7. Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography

    PubMed Central

    Hirtz, Michael; Oikonomou, Antonios; Georgiou, Thanasis; Fuchs, Harald; Vijayaraghavan, Aravind

    2013-01-01

    The application of graphene in sensor devices depends on the ability to appropriately functionalize the pristine graphene. Here we show the direct writing of tailored phospholipid membranes on graphene using dip-pen nanolithography. Phospholipids exhibit higher mobility on graphene compared with the commonly used silicon dioxide substrate, leading to well-spread uniform membranes. Dip-pen nanolithography allows for multiplexed assembly of phospholipid membranes of different functionalities in close proximity to each other. The membranes are stable in aqueous environments and we observe electronic doping of graphene by charged phospholipids. On the basis of these results, we propose phospholipid membranes as a route for non-covalent immobilization of various functional groups on graphene for applications in biosensing and biocatalysis. As a proof of principle, we demonstrate the specific binding of streptavidin to biotin-functionalized membranes. The combination of atomic force microscopy and binding experiments yields a consistent model for the layer organization within phospholipid stacks on graphene. PMID:24107937

  8. Composite membranes and methods for making same

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  9. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    PubMed

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  10. Phospholipids and products of their hydrolysis as dietary preventive factors for civilization diseases.

    PubMed

    Parchem, Karol; Bartoszek, Agnieszka

    2016-12-31

    The results of numerous epidemiological studies indicate that phospholipids play an important role in the prevention of chronic diseases faced by contemporary society. Firstly, these compounds are responsible for the proper functioning of cell membranes, by ensuring liquidity and permeability, which is pivotal for normal activity of membrane proteins, including receptors. These mechanisms are at the core of prevention of cancer, autoimmune or neurological disorders. Secondly, structure and properties of phospholipids cause that they are highly available source of biologically active fatty acids. Thirdly, also products of endogenous hydrolysis of phospholipids exhibit biological activity. These include lysophospholipids formed as a result of disconnecting free fatty acid from glycerophospholipids in the reaction catalyzed by phospholipase A, phosphatidic acid and hydrophilic subunits released by the activity of phospholipase D. The bioactive products of hydrolysis also include ceramides liberated from phosphosphingolipids after removal of a hydrophilic unit catalyzed by sphingomyelinase. Phospholipids are supplied to the human body with food. A high content of phospholipids is characteristic for egg yolk, liver, pork and poultry, as well as some soy products. Particularly beneficial are phospholipids derived from seafood because they are a rich source of essential fatty acids of the n-3 family.

  11. CTP:phosphocholine cytidylyltransferase binds anionic phospholipid vesicles in a cross-bridging mode.

    PubMed

    Taneva, Svetla G; Patty, Philipus J; Frisken, Barbara J; Cornell, Rosemary B

    2005-07-05

    CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.

  12. Encapsulated fish oil enriched in alpha-tocopherol alters plasma phospholipid and mononuclear cell fatty acid compositions but not mononuclear cell functions.

    PubMed

    Yaqoob, P; Pala, H S; Cortina-Borja, M; Newsholme, E A; Calder, P C

    2000-03-01

    Several studies have reported that dietary fish oil (FO) supplementation alters cytokine production and other functional activities of peripheral blood mononuclear cells (PBMC). However, few of these studies have been placebo controlled and few have related the functional changes to alterations in PBMC fatty acid composition Healthy subjects supplemented their diets with 9 g day-1 of encapsulated placebo oil (3 : 1 mix of coconut and soybean oils), olive oil (OO), safflower oil (SO), evening primrose oil (EPO) or FO [providing 2.1 g eicosapentaenoic acid (EPA) plus 1.1 g docosahexaenoic acid (DHA) per day] for 12 weeks; the capsules also provided 205 mg alpha-tocopherol per day. Blood was sampled at 4-weekly intervals and plasma and PBMC prepared. Plasma phospholipid and PBMC fatty acid composition, plasma alpha-tocopherol and thiobarbituric acid-reactive substance concentrations, plasma total antioxidant capacity, the proportions of different PBMC subsets, the proportions of PBMC expressing the adhesion molecules CD2, CD11b and CD54, and PBMC functions (lymphocyte proliferation, natural killer cell activity, cytokine production) were measured. All measurements were repeated after a 'washout' period of 8 weeks. The placebo, OO and SO capsules had no effect on plasma phospholipid or PBMC fatty acid composition. The proportion of dihomo-gamma-linolenic acid in plasma phospholipids was elevated in subjects taking EPO and was decreased in subjects taking FO. There was no appearance of gamma-linolenic acid in the plasma phospholipids or PBMC in subjects taking EPO. There was a marked increase in the proportion of EPA in the plasma phospholipids (10-fold) and PBMC (four-fold) of subjects taking FO supplements; this increase was maximal after 4 weeks of supplementation. There was an increase in the proportion of DHA in plasma phospholipids and PBMC, and an approximately 20% decrease in the proportion of arachidonic acid in plasma phospholipids and PBMC, during FO

  13. Acyl transfer from membrane lipids to peptides is a generic process.

    PubMed

    Dods, Robert H; Bechinger, Burkhard; Mosely, Jackie A; Sanderson, John M

    2013-11-15

    The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins. © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging.

    PubMed

    Platre, Matthieu Pierre; Jaillais, Yvon

    2016-01-01

    Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.

  15. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins.

    PubMed

    Gallier, Sophie; Gragson, Derek; Jiménez-Flores, Rafael; Everett, David

    2010-04-14

    The bovine milk fat globule membrane (MFGM) is an important, biologically relevant membrane due to its functional and health properties. Its composition has been thoroughly studied, but its structure, especially the lateral organization of its components, still remains unclear. We have used confocal laser scanning microscopy (CLSM) to investigate the surface structure of the MFGM in globules with different degrees of processing using two types of fluorescently labeled phospholipid probes and a protein dye. Using this technique, we have observed heterogeneities in the distribution of MFGM lipids and proteins relating to the processing and size of the globules. The effect of pretreating the milk (centrifugation, pasteurization-homogenization and churning) was studied by double-staining the surface of the milk fat globules, followed by observation using CLSM, and by determining the phospholipid profile of raw milk, raw cream, processed milk and buttermilk powder. Our findings agree with other techniques by showing that the composition of the MFGM changes with processing through the loss of phospholipids and the adsorption of caseins and whey proteins onto the surface.

  16. Electrochemical modelling of QD-phospholipid interactions.

    PubMed

    Zhang, Shengwen; Chen, Rongjun; Malhotra, Girish; Critchley, Kevin; Vakurov, Alexander; Nelson, Andrew

    2014-04-15

    The aggregation of quantum dots (QDs) and capping of individual QDs affects their activity towards biomembrane models. Electrochemical methods using a phospholipid layer on mercury (Hg) membrane model have been used to determine the phospholipid monolayer activity of thioglycollic acid (TGA) coated quantum dots (QDs) as an indicator of biomembrane activity. The particles were characterised for size and charge. The activity of the QDs towards dioleoyl phosphatidylcholine (DOPC) monolayers is pH dependent, and is most active at pH 8.2 within the pH range 8.2-6.5 examined in this work. This pH dependent activity is the result of increased particle aggregation coupled to decreasing surface charge emanating from the TGA carboxylic groups employed to stabilize the QD dispersion in aqueous media. Capping the QDs with CdS/ZnS lowers the particles' activity to phospholipid monolayers. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Biosensors Based on Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  18. Structural and compositional changes in erythrocyte membrane of obese compared to normal-weight adolescents.

    PubMed

    Perona, Javier S; González-Jiménez, Emilio; Aguilar-Cordero, María J; Sureda, Antonio; Barceló, Francisca

    2013-12-01

    Unhealthy dietary habits are key determinants of obesity in adolescents. Assuming that dietary fat profile influences membrane lipid composition, the aim of this study was to analyze structural changes in the erythrocyte membrane of obese compared to normal-weight adolescents. The study was conducted in a group of 11 obese and 11 normal-weight adolescent subjects. The lipid profile, lipid peroxidation and acetylcholinesterase enzyme (AChE) activity were analyzed by conventional methods. The structural properties of reconstituted erythrocyte membrane were characterized by X-ray diffraction. Erythrocyte membrane from obese adolescents had a lipid profile characterized by a higher cholesterol/phospholipid ratio, an increase in saturated fatty acid and a decrease in monounsaturated and n-6 polyunsaturated fatty acid concentrations. Differences in lipid content were associated with changes in the structural properties of reconstituted membranes and the oxidative damage of erythrocyte membrane. The lower oxidative level shown in the obese group (0.15 ± 0.04 vs. 0.20 ± 0.06 nmol/mg for conjugated diene concentrations and 2.43 ± 0.25 vs. 2.83 ± 0.31 nmol/mg protein for malondialdehyde levels) was related to a lower unsaturation index. These changes in membrane structural properties were accompanied by a lower AChE activity (1.64 ± 0.13 vs. 1.91 ± 0.24 nmol AChE/[min mg protein]) in the obese group. The consequences of unhealthy dietary habits in adolescents are reflected in the membrane structural properties and may influence membrane-associated protein activities and functions.

  19. A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug's biological activity.

    PubMed

    Alves, Ana Catarina; Ribeiro, Daniela; Horta, Miguel; Lima, José L F C; Nunes, Cláudia; Reis, Salette

    2017-08-01

    Daunorubicin is extensively used in chemotherapy for diverse types of cancer. Over the years, evidence has suggested that the mechanisms by which daunorubicin causes cytotoxic effects are also associated with interactions at the membrane level. The aim of the present work was to study the interplay between daunorubicin and mimetic membrane models composed of different ratios of 1,2-dimyristoyl- sn -glycero- 3 -phosphocholine (DMPC), sphingomyelin (SM) and cholesterol (Chol). Several biophysical parameters were assessed using liposomes as mimetic model membranes. Thereby, the ability of daunorubicin to partition into lipid bilayers, its apparent location within the membrane and its effect on membrane fluidity were investigated. The results showed that daunorubicin has higher affinity for lipid bilayers composed of DMPC, followed by DMPC : SM, DMPC : Chol and lastly by DMPC : SM : Chol. The addition of SM or Chol into DMPC membranes not only increases the complexity of the model membrane but also decreases its fluidity, which, in turn, reduces the amount of anticancer drug that can partition into these mimetic models. Fluorescence quenching studies suggest a broad distribution of the drug across the bilayer thickness, with a preferential location in the phospholipid tails. The gathered data support that daunorubicin permeates all types of membranes to different degrees, interacts with phospholipids through electrostatic and hydrophobic bonds and causes alterations in the biophysical properties of the bilayers, namely in membrane fluidity. In fact, a decrease in membrane fluidity can be observed in the acyl region of the phospholipids. Ultimately, such outcomes can be correlated with daunorubicin's biological action, where membrane structure and lipid composition have an important role. In fact, the results indicate that the intercalation of daunorubicin between the phospholipids can also take place in rigid domains, such as rafts that are known to be involved in

  20. Using membrane composition to fine-tune the pKa of an optical liposome pH sensor.

    PubMed

    Clear, Kasey J; Virga, Katelyn; Gray, Lawrence; Smith, Bradley D

    2016-04-14

    Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe p K a is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe p K a in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe p K a values by < 1 unit. The results show that rational modification of the membrane composition is a general non-covalent way to fine-tune the p K a of an optical liposome sensor for optimal pH sensing performance.

  1. Products of lipid peroxidation, but not membrane susceptibility to oxidative damage, are conserved in skeletal muscle following temperature acclimation

    PubMed Central

    Semones, Molly C.; Kuhn, Donald E.; Kriska, Tamas; Keszler, Agnes; Crockett, Elizabeth L.

    2014-01-01

    Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved. We also predicted that the content of LPO products is maintained over a range of physiological temperatures. To assess LPO susceptibility, rates of LPO were quantified with the fluorescent probe C11-BODIPY in mitochondria and sarcoplasmic reticulum from oxidative and glycolytic muscle of striped bass (Morone saxatilis) acclimated to 7°C and 25°C. We also measured phospholipid compositions, contents of LPO products [i.e., individual classes of phospholipid hydroperoxides (PLOOH)], and two membrane antioxidants. Despite phospholipid headgroup and acyl chain remodeling, these alterations do not counter the effect of temperature on LPO rates (i.e., LPO rates are generally not different among acclimation groups when normalized to phospholipid content and compared at a common temperature). Although absolute levels of PLOOH are higher in muscles from cold- than warm-acclimated fish, this difference is lost when PLOOH levels are normalized to total phospholipid. Contents of vitamin E and two homologs of ubiquinone are more than four times higher in mitochondria prepared from oxidative muscle of warm- than cold-acclimated fish. Collectively, our data demonstrate that although phospholipid remodeling does not provide a means for offsetting thermal effects on rates of LPO, differences in phospholipid quantity ensure a constant proportion of LPO products with temperature variation. PMID:25519739

  2. The amphiphilic alkyl ester derivatives of l-ascorbic acid induce reorganization of phospholipid vesicles.

    PubMed

    Giudice, Francesca; Ambroggio, Ernesto E; Mottola, Milagro; Fanani, Maria Laura

    2016-09-01

    l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    PubMed

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights

  4. Deformation of phospholipid vesicles in an optical stretcher.

    PubMed

    Delabre, Ulysse; Feld, Kasper; Crespo, Eleonore; Whyte, Graeme; Sykes, Cecile; Seifert, Udo; Guck, Jochen

    2015-08-14

    Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelengths, optically induced mechanical stresses and temperature increase can be tuned fairly independently with a single setup. The phase transition temperature of vesicles can be clearly identified by an increase in deformation. In the case of no heating effects, a minimal model for drop deformation in an optical stretcher and a more specific model for vesicle deformation that takes explicitly into account the angular dependence of the optical stress are presented to account for the experimental results. Elastic constants are extracted from the fitting procedures, which agree with literature data. This study demonstrates the utility of optical stretching, which is easily combined with microfluidic delivery, for the future serial, high-throughput study of the mechanical and thermodynamic properties of phospholipid vesicles.

  5. Rapid Access to Phospholipid Analogs Using Thiol-yne Chemistry

    DTIC Science & Technology

    2015-05-19

    MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 lipids, membrane, self...functions and material and pharmaceutical applications, straightforward methods to synthesize phospholipids in high yield are limited.10 Phospholipid...This journal is © The Royal Society of Chemistry 2015 Chem. Sci., 2015, 6, 4365–4372 | 4365 Chemical Science EDGE ARTICLE O pe n A cc es s A rt ic le

  6. Feruloyl Dioleoyglycerol Antioxidant Capacity in Phospholipid Vesicles

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl dioleoylglycerol was assessed for its ability to serve as an antioxidant in model membrane phospholipid vesicles. The molecule was incorporated into single-lamellar vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine at ...

  7. Association between Erythrocyte Membrane Phospholipid Fatty Acids and Sleep Disturbance in Chinese Children and Adolescents

    PubMed Central

    Tang, Jun; Yan, Yinkun; Zheng, Ju-Sheng; Mi, Jie

    2018-01-01

    The relationship between circulating fatty acid (FA) composition and childhood sleep disturbance remains largely unclear. We aimed to investigate the association of erythrocyte membrane FA composition with prevalence of sleep disturbance in Chinese children and adolescents. A cross-sectional survey was conducted among 2337 school-aged children and adolescents who completed a clinical assessment in Beijing, China. Presence of sleep disturbance was self-reported or parent-reported by questionnaires. Erythrocyte FAs were measured by gas chromatography, and desaturase activities were estimated by FA ratios. Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for sleep disturbance across FA quartiles were calculated by a logistical regression model. We found higher proportions of erythrocyte phospholipid 24:0, 24:1n-9, and lower proportions of total n-3 polyunsaturated FA (PUFA), 22:5n-3 and 22:6n-3 in participants with sleep disturbance compared with those without. In the logistical regression models, significant inverse associations were found for total n-3 PUFA, 22:5n-3 and 22:6n-3, the highest versus lowest quartile ORs and 95% CIs were 0.57 (0.40, 0.82), 0.67 (0.47, 0.97) and 0.69 (0.49, 0.96), respectively. For per 1 SD difference of proportion, OR and 95% CI of prevalence of sleep disturbance was 0.91 (0.86, 0.97) for total n-3 PUFA, 0.90 (0.82, 0.98) for 22:5n-3, and 0.92 (0.86, 0.99) for 22:6n-3, respectively. No significant association was found for saturated fatty acids, monounsaturated fatty acids, n-6 polyunsaturated fatty acids or FA ratios. The present study suggested that erythrocyte n-3 PUFAs, especially 22:5n-3 and 22:6n-3, are inversely associated with prevalence of sleep disturbance in Chinese children and adolescents. PMID:29534525

  8. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  9. Intracellular Signaling by Hydrolysis of Phospholipids and Activation of Protein Kinase C

    NASA Astrophysics Data System (ADS)

    Nishizuka, Yasutomi

    1992-10-01

    Hydrolysis of inositol phospholipids by phospholipase C is initiated by either receptor stimulation or opening of Ca2+ channels. This was once thought to be the sole mechanism to produce the diacylglycerol that links extracellular signals to intracellular events through activation of protein kinase C. It is becoming clear that agonist-induced hydrolysis of other membrane phospholipids, particularly choline phospholipids, by phospholipase D and phospholipase A_2 may also take part in cell signaling. The products of hydrolysis of these phospholipids may enhance and prolong the activation of protein kinase C. Such prolonged activation of protein kinase C is essential for long-term cellular responses such as cell proliferation and differentiation.

  10. Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition

    PubMed Central

    Lewin, Tal M.; de Jong, Hendrik; Schwerbrock, Nicole J. M.; Hammond, Linda E.; Watkins, Steven M.; Combs, Terry P.; Coleman, Rosalind A.

    2008-01-01

    Glycerol-3-phosphate acyltransferase-1 (GPAT1), which is located on the outer mitochondrial membrane comprises up to 30% of total GPAT activity in the heart. It is one of at least four mammalian GPAT isoforms known to catalyze the initial, committed, and rate limiting step of glycerolipid synthesis. Because excess triacylglycerol (TAG) accumulates in cardiomyocytes in obesity and type 2 diabetes, we determined whether lack of GPAT1 would alter the synthesis of heart TAG and phospholipids after a 2-week high sucrose diet or a 3-month high fat diet. Even in the absence of hypertriglyceridemia, TAG increased 2-fold with both diets in hearts from wildtype mice. In contrast, hearts from Gpat1−/− mice contained 20–80% less TAG than the wildtype controls. In addition, hearts from Gpat1−/− mice fed the high-sucrose diet incorporate 60% less [14C]palmitate into heart TAG as compared to wildtype mice. Because GPAT1 prefers 16:0-CoA to other long chain acyl-CoA substrates, we determined the fatty acid composition of heart phospholipids. Compared to wildtype littermate controls, hearts from Gpat1−/− mice contained a lower amount of 16:0 in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine/phosphatidylinositol and significantly more C20:4n6. Phosphatidylcholine and phosphatidylethanolamine from Gpat1−/− hearts also contained higher amounts of 18:0 and 18:1. Although at least three other GPAT isoforms are expressed in the heart, our data suggest that GPAT1 contributes significantly to cardiomyocyte TAG synthesis during lipogenic or high fat diets and influences the incorporation of 20:4n6 into heart phospholipids. PMID:18522808

  11. The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wild, Peter, E-mail: pewild@access.uzh.ch; Institute of Virology, University of Zuerich; Oliveira, Anna Paula de

    2012-10-25

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24more » h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.« less

  12. Phospholipid dynamics in graphene of different topologies: predictive modeling

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Slepchenkov, M. M.

    2017-02-01

    The subject of our scientific interest is the dynamics of the phospholipid molecules into a corrugated graphene sheet. According to our assumption by changing the topology of graphene properly it is possible to find the ways for management of the selective localization of phospholipid molecules to form the desired configuration of these structures. We considered DPPC (dipalmitoylphosphatidylcholine) phospholipids, which are the part of cell membranes and lipoproteins. We investigated the behavior of the phospholipids on the graphene sheet consisting of 1710 atoms with the size of 6.9 nm along the zigzag edge and 6.25 nm along the armchair edge. The numerical experiment was carried out using the original AMBER/AIREBO hybrid method with Lennard-Jones potential to describe the interaction between unbound atoms of different structures. The temperature was maintained at 300 K during the numerical experiment. All numerical experiments were performed using KVAZAR software system. We considered several cases of corrugated graphene with different width and dept of the corrugation. Special attention in our work was paid to the orientation of the phospholipids in the plane of graphene sheet.

  13. Characterization of plasma membrane domains of mouse EL4 lymphoma cells obtained by affinity chromatography on concanavalin A-Sepharose.

    PubMed

    Szamel, M; Goppelt, M; Resch, K

    1985-12-19

    Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.

  14. Behavior of polysulfone composite and nanocomposite membranes under hypochlorite ageing

    NASA Astrophysics Data System (ADS)

    Anadão, Priscila; Souza de Santis, Henrique; Rezende Montes, Rafael; Wiebeck, Hélio

    2018-05-01

    Polysulfone activated carbon or graphite composite membranes and polysulfone montmorillonite clay nanocomposite membranes were prepared by wet-phase inversion method. Its effectiveness against hypochlorite degradation by forming composite and nanocomposite structures was studied by means of an ageing experiment. The formation of some fissures on the composite membrane surface was observed through electron micrographs scanning. The number-average molecular weight of the polysulfone of all membranes was reduced. This reduction was more noticeable in the composite membranes owing to the lower interaction between polymer chains and filler, such interaction being also the reason for polydispersity increase. Fourier transform infrared spectroscopy detected the reduction of the PSf bands in the nanocomposite membranes; in the composite membranes, some PSf band intensities were probably increased owing to the exposure of the PSf groups to the ageing process. All membranes presented brittleness with ageing, which was more pronounced in the composite membranes due to the membrane defects formed.

  15. Evolution of phospholipid contents during the production of quark cheese from buttermilk.

    PubMed

    Ferreiro, T; Martínez, S; Gayoso, L; Rodríguez-Otero, J L

    2016-06-01

    We report the evolution of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) contents during the production of quark cheese from buttermilk by successive ultrafiltration concentration, enrichment with cream, concurrent homogenization and pasteurization, fermentative coagulation, and separation of quark from whey by further ultrafiltration. Buttermilk is richer than milk itself in phospholipids that afford desirable functional and technological properties, and is widely used in dairy products. To investigate how phospholipid content is affected by end-product production processes such as ultrafiltration, homogenization, pasteurization or coagulation, we measured the phospholipids at several stages of each of 5 industrial-scale quark cheese production runs. In each run, 10,000L of buttermilk was concentrated to half volume by ultrafiltration, enriched with cream, homogenized, pasteurized, inoculated with lactic acid bacteria, incubated to coagulation, and once more concentrated to half volume by ultrafiltration. Phospholipid contents were determined by HPLC with evaporative light scattering detection in the starting buttermilk, concentrated buttermilk, ultrafiltrate, cream-enriched concentrated buttermilk (both before and after concurrent homogenization and pasteurization), coagulate, and quark, and also in the rinsings obtained when the ultrafiltration equipment was washed following initial concentration. The average phospholipid content of buttermilk was approximately 5 times that of milk, and the phospholipid content of buttermilk fat 26 to 29 times that of milk fat. Although phospholipids did not cross ultrafiltration membranes, significant losses occurred during ultrafiltration (due to retention on the membranes) and during the homogenization and pasteurization process. During coagulation, however, phospholipid content rose, presumably as a consequence of the proliferation of the

  16. A two-helix motif positions the active site of lysophosphatidic acid acyltransferase for catalysis within the membrane bilayer

    PubMed Central

    Robertson, Rosanna M.; Yao, Jiangwei; Gajewski, Stefan; Kumar, Gyanendra; Martin, Erik W.; Rock, Charles O.; White, Stephen W.

    2017-01-01

    Phosphatidic acid is the central intermediate in membrane phospholipid synthesis and is generated by two acyltransferases in a pathway conserved in all life forms. The second step in this pathway is catalyzed by 1-acyl-sn-glycero-3-phosphate acyltransferase, called PlsC in bacteria. The crystal structure of PlsC from Thermotoga maritima reveals an unusual hydrophobic/aromatic N-terminal two-helix motif linked to an acyltransferase αβ domain that contains the catalytic HX4D motif. PlsC dictates the acyl chain composition of the 2-position of phospholipids, and the acyl chain selectivity ‘ruler’ is an appropriately placed and closed hydrophobic tunnel. This was confirmed by site-directed mutagenesis and membrane composition analysis of Escherichia coli cells expressing the mutated proteins. MD simulations reveal that the two-helix motif represents a novel substructure that firmly anchors the protein to one leaflet of the membrane. This binding mode allows the PlsC active site to acylate lysophospholipids within the membrane bilayer using soluble acyl donors. PMID:28714993

  17. Products of lipid peroxidation, but not membrane susceptibility to oxidative damage, are conserved in skeletal muscle following temperature acclimation.

    PubMed

    Grim, Jeffrey M; Semones, Molly C; Kuhn, Donald E; Kriska, Tamas; Keszler, Agnes; Crockett, Elizabeth L

    2015-03-01

    Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved. We also predicted that the content of LPO products is maintained over a range of physiological temperatures. To assess LPO susceptibility, rates of LPO were quantified with the fluorescent probe C11-BODIPY in mitochondria and sarcoplasmic reticulum from oxidative and glycolytic muscle of striped bass (Morone saxatilis) acclimated to 7°C and 25°C. We also measured phospholipid compositions, contents of LPO products [i.e., individual classes of phospholipid hydroperoxides (PLOOH)], and two membrane antioxidants. Despite phospholipid headgroup and acyl chain remodeling, these alterations do not counter the effect of temperature on LPO rates (i.e., LPO rates are generally not different among acclimation groups when normalized to phospholipid content and compared at a common temperature). Although absolute levels of PLOOH are higher in muscles from cold- than warm-acclimated fish, this difference is lost when PLOOH levels are normalized to total phospholipid. Contents of vitamin E and two homologs of ubiquinone are more than four times higher in mitochondria prepared from oxidative muscle of warm- than cold-acclimated fish. Collectively, our data demonstrate that although phospholipid remodeling does not provide a means for offsetting thermal effects on rates of LPO, differences in phospholipid quantity ensure a constant proportion of LPO products with temperature variation. Copyright © 2015 the American Physiological Society.

  18. Evidence for a membrane defect in Alzheimer disease brain

    NASA Technical Reports Server (NTRS)

    Nitsch, R. M.; Blusztajn, J. K.; Pittas, A. G.; Slack, B. E.; Growdon, J. H.; Wurtman, R. J.

    1992-01-01

    To determine whether neurodegeneration in Alzheimer disease brain is associated with degradation of structural cell membrane molecules, we measured tissue levels of the major membrane phospholipids and their metabolites in three cortical areas from postmortem brains of Alzheimer disease patients and matched controls. Among phospholipids, there was a significant (P less than 0.05) decrease in phosphatidylcholine and phosphatidylethanolamine. There were significant (P less than 0.05) decreases in the initial phospholipid precursors choline and ethanolamine and increases in the phospholipid deacylation product glycerophosphocholine. The ratios of glycerophosphocholine to choline and glycerophosphoethanolamine to ethanolamine were significantly increased in all examined Alzheimer disease brain regions. The activity of the glycerophosphocholine-degrading enzyme glycerophosphocholine choline-phosphodiesterase was normal in Alzheimer disease brain. There was a near stoichiometric relationship between the decrease in phospholipids and the increase of phospholipid catabolites. These data are consistent with increased membrane phospholipid degradation in Alzheimer disease brain. Similar phospholipid abnormalities were not detected in brains of patients with Huntington disease, Parkinson disease, or Down syndrome. We conclude that the phospholipid abnormalities described here are not an epiphenomenon of neurodegeneration and that they may be specific for the pathomechanism of Alzheimer disease.

  19. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    PubMed

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  20. Composition and metabolism of phospholipids in Octopus vulgaris and Sepia officinalis hatchlings.

    PubMed

    Reis, Diana B; Acosta, Nieves G; Almansa, Eduardo; Tocher, Douglas R; Andrade, José P; Sykes, António V; Rodríguez, Covadonga

    2016-10-01

    The objective of the present study was to characterise the fatty acid (FA) profiles of the major phospholipids, of Octopus vulgaris and Sepia officinalis hatchlings, namely phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE); and to evaluate the capability of both cephalopod species on dietary phospholipid remodelling. Thus, O. vulgaris and S. officinalis hatchlings were in vivo incubated with 0.3μM of L-∝-1-palmitoyl-2-[1-(14)C]arachidonyl-PC or L-∝-1-palmitoyl-2-[1-(14)C]arachidonyl-PE. Octopus and cuttlefish hatchlings phospholipids showed a characteristic FA profiles with PC presenting high contents of 16:0 and 22:6n-3 (DHA); PS having high 18:0, DHA and 20:5n-3 (EPA); PI a high content of saturated FA; and PE showing high contents of DHA and EPA. Interestingly, the highest content of 20:4n-6 (ARA) was found in PE rather than PI. Irrespective of the phospholipid in which [1-(14)C]ARA was initially bound (either PC or PE), the esterification pattern of [1-(14)C]ARA in octopus lipids was similar to that found in their tissues with high esterification of this FA into PE. In contrast, in cuttlefish hatchlings [1-(14)C]ARA was mainly recovered in the same phospholipid that was provided. These results showed a characteristic FA profiles in the major phospholipids of the two species, as well as a contrasting capability to remodel dietary phospholipids, which may suggest a difference in phospholipase activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Transport of K+ and other cations across phospholipid membranes by nonesterified fatty acids.

    PubMed

    Sharpe, M A; Cooper, C E; Wrigglesworth, J M

    1994-07-01

    The rate of change of internal pH and transmembrane potential has been monitored in liposomes following the external addition of various cation salts. Oleic acid increases the transmembrane movement of H+ following the imposition of a K+ gradient. An initial fast change in internal pH is seen followed by a slower rate of alkalinization. High concentrations of the fatty acid enhance the rate comparable to that seen in the presence of nigericin in contrast to the effect of FCCP (carbonyl cyanide p-(tri-fluoromethoxy)phenyl hydrazone) which saturates at an intermediate value. The ability of nonesterified fatty acids to catalyze the movement of cations across the liposome membrane increases with the degree of unsaturation and decreases with increasing chain length. Li and Na salts cause a similar initial fast pH change but have less effect on the subsequent slower rate. Similarly, the main effect of divalent cation salts is on the initial fast change. The membrane potential can enhance or inhibit cation transport depending on its polarity with respect to the cation gradient. It is concluded that nonesterified fatty acids have the capability to complex with, and transport, a variety of cations across phospholipid bilayers. However, they do not act simply as proton/cation exchangers analogous to nigericin nor as protonophores analogous to FCCP. The full cycle of ionophoric action involves a combination of both functions.

  2. Electrostatic interactions during acidic phospholipid reactivation of DnaA protein, the Escherichia coli initiator of chromosomal replication.

    PubMed

    Kitchen, J L; Li, Z; Crooke, E

    1999-05-11

    The initiation of Escherichia coli chromosomal replication by DnaA protein is strongly influenced by the tight binding of the nucleotides ATP and ADP. Anionic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA protein to replicatively active ATP-DnaA protein in vitro, and thus likely play a key role in regulating DnaA activity. Previous studies have revealed that, during this reactivation, a specific region of DnaA protein inserts into the hydrophobic portion of the lipid bilayer in an acidic phospholipid-dependent manner. To elucidate the requirement for acidic phospholipids in the reactivation process, the contribution of electrostatic forces in the interaction of DnaA and lipid was examined. DnaA-lipid binding required anionic phospholipids, and DnaA-lipid binding as well as lipid-mediated release of DnaA-bound nucleotide were inhibited by increased ionic strength, suggesting the involvement of electrostatic interactions in these processes. As the vesicular content of acidic phospholipids was increased, both nucleotide release and DnaA-lipid binding increased in a linear, parallel manner. Given that DnaA-membrane binding, the insertion of DnaA into the membrane, and the consequent nucleotide release all require anionic phospholipids, the acidic headgroup may be necessary to recruit DnaA protein to the membrane for insertion and subsequent reactivation for replication.

  3. Chlorine-resistant composite membranes with high organic rejection

    DOEpatents

    McCray, Scott B.; Friesen, Dwayne T.; Barss, Robert P.; Nelson, Leslie D.

    1996-01-01

    A method for making a chlorine-resistant composite polyamide membrane having high organic rejection, the essential step of which comprises treating a conventional composite membrane with an acyl halide. The novel membrane is especially suitable for the treatment of water containing chlorine or lower molecular weight organic compounds.

  4. Effect of myristoylated N-terminus of Arf1 on the bending rigidity of phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Burrola Gabilondo, Beatriz; Zhou, Hernan; Randazzo, Paul A.; Losert, Wolfgang

    2010-03-01

    The protein Arf1 is part of the COPI vesicle transport process from the Golgi to the ER. It binds to membranes via a myristoylated N-terminus and it has been shown to tubulate Large Unilamellar Vesicles. The effect of the N-terminus of Arf1 on physical properties of membranes has not been studied, with the exception of curvature. We previously found that the myristoylated N-terminus increases the packing of the lipid molecules, but has no effect on the lateral mobility. We tested the hypothesis that myristoylated peptides affect the bending rigidity of phospholipid Giant Unilamellar Vesicles (GUV). We use optical tweezers to pull tethers from GUV and measure the force of pulling the tether, as well as the retraction speed of the tether once it is released. We also used flicker spectroscopy to estimate the values of the mechanical properties of GUV. We will present results of the force and tether retraction measurements, as well as mechanical properties estimates from flicker, for GUV in the presence of varying concentrations of myristoylated and non-myristoylated N-terminus of Arf1, and compare these with measurements for GUV in the absence of peptide.

  5. A randomized longitudinal dietary intervention study during pregnancy: effects on fish intake, phospholipids, and body composition.

    PubMed

    Bosaeus, Marja; Hussain, Aysha; Karlsson, Therese; Andersson, Louise; Hulthén, Lena; Svelander, Cecilia; Sandberg, Ann-Sofie; Larsson, Ingrid; Ellegård, Lars; Holmäng, Agneta

    2015-01-02

    Fish and meat intake may affect gestational weight gain, body composition and serum fatty acids. We aimed to determine whether a longitudinal dietary intervention during pregnancy could increase fish intake, affect serum phospholipid fatty acids, gestational weight gain and body composition changes during pregnancy in women of normal weight participating in the Pregnancy Obesity Nutrition and Child Health study. A second aim was to study possible effects in early pregnancy of fish intake and meat intake, respectively, on serum phospholipid fatty acids, gestational weight gain, and body composition changes during pregnancy. In this prospective, randomized controlled study, women were allocated to a control group or to a dietary counseling group that focused on increasing fish intake. Fat mass and fat-free mass were measured by air-displacement plethysmography. Reported intake of fish and meat was collected from a baseline population and from a subgroup of women who participated in each trimester of their pregnancies. Serum levels of phospholipid arachidonic acid (s-ARA), eicosapentaenoic acid (s-EPA), and docosahexaenoic acid (s-DHA) were measured during each trimester. Weekly fish intake increased only in the intervention group (n = 18) from the first to the second trimester (median difference 113 g, p = 0.03) and from the first to the third trimester (median difference 75 g, p = 0.01). In the first trimester, fish intake correlated with s-EPA (r = 0.36, p = 0.002, n = 69) and s-DHA (r = 0.34, p = 0.005, n = 69), and meat intake correlated with s-ARA (r = 0.28, p = 0.02, n = 69). Fat-free mass gain correlated with reported meat intake in the first trimester (r = 0.39, p = 0.01, n = 45). Dietary counseling throughout pregnancy could help women increase their fish intake. Intake of meat in early pregnancy may increase the gain in fat-free mass during pregnancy.

  6. The Choline/Ethanolamine Kinase Family in Arabidopsis: Essential Role of CEK4 in Phospholipid Biosynthesis and Embryo Development

    PubMed Central

    2015-01-01

    Phospholipids are highly conserved and essential components of biological membranes. The major phospholipids, phosphatidylethanolamine and phosphatidylcholine (PtdCho), are synthesized by the transfer of the phosphoethanolamine or phosphocholine polar head group, respectively, to the diacylglycerol backbone. The metabolism of the polar head group characterizing each phospholipid class is poorly understood; thus, the biosynthetic pathway of major phospholipids remains elusive in Arabidopsis thaliana. The choline/ethanolamine kinase (CEK) family catalyzes the initial steps of phospholipid biosynthesis. Here, we analyzed the function of the four CEK family members present in Arabidopsis. Knocking out of CEK4 resulted in defective embryo development, which was complemented by transformation of genomic CEK4. Reciprocal genetic crossing suggested that CEK4 knockout causes embryonic lethality, and microscopy analysis of the aborted embryos revealed developmental arrest after the heart stage, with no defect being found in the pollen. CEK4 is preferentially expressed in the vasculature, organ boundaries, and mature embryos, and CEK4 was mainly localized to the plasma membrane. Overexpression of CEK4 in wild-type Arabidopsis increased the levels of PtdCho in seedlings and mature siliques and of major membrane lipids in seedlings and triacylglycerol in mature siliques. CEK4 may be the plasma membrane-localized isoform of the CEK family involved in the rate-limiting step of PtdCho biosynthesis and appears to be required for embryo development in Arabidopsis. PMID:25966764

  7. Short-term administration of uridine increases brain membrane phospholipids precursors in healthy adults: a 31-phosphorus magnetic resonance spectroscopy study at 4T

    PubMed Central

    Agarwal, Nivedita; Sung, Young-Hoon; Jensen, J Eric; daCunha, Grace; Harper, David; Olson, David; Renshaw, Perry F

    2010-01-01

    Objectives Altered metabolism of membrane phospholipids has been implicated in bipolar disorder. In humans, uridine is an important precursor of cytidine diphosphate (CDP)-choline, which plays a critical role in phospholipid synthesis and is currently being evaluated as a potential treatment for bipolar depression. Methods A total of 17 healthy males (mean age ± SD: 32.73 ± 7.2 years; range: 21.8- 46.4 years) were enrolled in this study. Subjects underwent a 31-phosphorus magnetic resonance spectroscopy (31P-MRS) acquisition at baseline and then again after seven days of either 2 g of uridine or placebo administration. A two-dimensional chemical shift imaging 31P-MRS acquisition collected spectral data from a 4 × 4 cluster of voxels acquired in the axial plane encompassing the subcortical structures as well as frontaltemporal cortical gray and white matter. The slab thickness was 3 cm and the approximate total volume of brain sampled was 432 cm3. The spectra obtained were analyzed using a fully automated in-house fitting algorithm. A population-averaged generalized estimating equation was used to evaluate changes both in phosphomonoesters (PME) [phosphocholine (PCho) and phosphoethanolamine (PEtn)] and phosphodiesters (PDE) [glycerophosphocholine (GPCho) and glycerophosphethanolamine (GPEtn)]. Metabolite ratios were reported with respect to the total integrated 31P resonance area. Results The uridine group had significantly increased total PME and PEtn levels over the one-week period [6.32% and 7.17% for PME and PEtn, respectively (p < 0.001)]. Other metabolite levels such as PCho, PDE, GPEtn and GPCho showed no significant changes following either uridine or placebo (all p > 0.05). Conclusions This is the first study to report a direct effect of uridine on membrane phospholipid precursors in healthy adults using 31P-MRS. Sustained administration of uridine appears to increase PME in healthy subjects. Further investigation is required to clarify the effects of

  8. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    NASA Astrophysics Data System (ADS)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  9. Saccharomyces Cerevisiae Cho2 Mutants Are Deficient in Phospholipid Methylation and Cross-Pathway Regulation of Inositol Synthesis

    PubMed Central

    Summers, E. F.; Letts, V. A.; McGraw, P.; Henry, S. A.

    1988-01-01

    Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME. PMID:3066687

  10. Fatty Acid Composition of Human Follicular Fluid Phospholipids and Fertilization Rate in Assisted Reproductive Techniques

    PubMed Central

    Shaaker, Maghsod; Rahimipour, Ali; Nouri, Mohammad; Khanaki, Korosh; Darabi, Masoud; Farzadi, Laya; Shahnazi, Vahideh; Mehdizadeh, Amir

    2012-01-01

    Background: Fatty acids are known to be critically important in multiple biological functions. Phospholipid fatty acids of follicular fluid, an important microenvironment for the development of oocytes, may contribute to the women’s fertility and the efficacy of assisted reproduction techniques. The aim of this study was to investigate the effect of fatty acid composition of follicular fluid phospholipids on women undergoing assisted reproductive techniques. Methods: Follicular fluid samples were obtained from 100 patients, referred to Tabriz Alzahra Hospital. Seventy-nine subjects underwent in vitro fertilization (IVF) and the remaining 21 underwent intracytoplasmic sperm injection (ICSI). Total lipid of follicular fluid was extracted and fatty acids were analyzed by gas-liquid chromatography. Results: Saturated fatty acids (SFA, P = 0.002) and the ratio of SFA to polyunsaturated fatty acids (P = 0.001) were correlated negatively with a number of mature oocytes after age adjustment. Linoleic acid (P = 0.006) was positively correlated, while the level of arachidonic acid was negatively correlated with fertility percentage after adjustment for body mass index, sperm count, sperm motility. Conclusion: Since phospholipids are one of the major components of lipid metabolism, the results of this study highlight the importance of this component in follicular fluid lipid metabolism. Consequently, it is proposed as an index in determination of the rate of success in assisted reproductive techniques such as IVF/ICSI. PMID:23023218

  11. Identification of Novel Genetic Determinants of Erythrocyte Membrane Fatty Acid Composition among Greenlanders.

    PubMed

    Andersen, Mette Korre; Jørsboe, Emil; Sandholt, Camilla Helene; Grarup, Niels; Jørgensen, Marit Eika; Færgeman, Nils Joakim; Bjerregaard, Peter; Pedersen, Oluf; Moltke, Ida; Hansen, Torben; Albrechtsen, Anders

    2016-06-01

    Fatty acids (FAs) are involved in cellular processes important for normal body function, and perturbation of FA balance has been linked to metabolic disturbances, including type 2 diabetes. An individual's level of FAs is affected by diet, lifestyle, and genetic variation. We aimed to improve the understanding of the mechanisms and pathways involved in regulation of FA tissue levels, by identifying genetic loci associated with inter-individual differences in erythrocyte membrane FA levels. We assessed the levels of 22 FAs in the phospholipid fraction of erythrocyte membranes from 2,626 Greenlanders in relation to single nucleotide polymorphisms genotyped on the MetaboChip or imputed. We identified six independent association signals. Novel loci were identified on chromosomes 5 and 11 showing strongest association with oleic acid (rs76430747 in ACSL6, beta (SE): -0.386% (0.034), p = 1.8x10-28) and docosahexaenoic acid (rs6035106 in DTD1, 0.137% (0.025), p = 6.4x10-8), respectively. For a missense variant (rs80356779) in CPT1A, we identified a number of novel FA associations, the strongest with 11-eicosenoic acid (0.473% (0.035), p = 2.6x10-38), and for variants in FADS2 (rs174570), LPCAT3 (rs2110073), and CERS4 (rs11881630) we replicated known FA associations. Moreover, we observed metabolic implications of the ACSL6 (rs76430747) and CPT1A (rs80356779) variants, which both were associated with altered HbA1c (0.051% (0.013), p = 5.6x10-6 and -0.034% (0.016), p = 3.1x10-4, respectively). The latter variant was also associated with reduced insulin resistance (HOMA-IR, -0.193 (0.050), p = 3.8x10-6), as well as measures of smaller body size, including weight (-2.676 kg (0.523), p = 2.4x10-7), lean mass (-1.200 kg (0.271), p = 1.7x10-6), height (-0.966 cm (0.230), p = 2.0x10-5), and BMI (-0.638 kg/m2 (0.181), p = 2.8x10-4). In conclusion, we have identified novel genetic determinants of FA composition in phospholipids in erythrocyte membranes, and have shown examples of

  12. Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids.

    PubMed

    Choi, Jaewoo; Yin, Tai; Shinozaki, Koichiro; Lampe, Joshua W; Stevens, Jan F; Becker, Lance B; Kim, Junhwan

    2018-05-01

    It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC-MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.

  13. Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane.

    PubMed

    Rodi, P M; Bocco Gianello, M D; Corregido, M C; Gennaro, A M

    2014-03-01

    The zwitterionic detergent CHAPS, a derivative of the bile salts, is widely used in membrane protein solubilization. It is a "facial" detergent, having a hydrophilic side and a hydrophobic back. The objective of this work is to characterize the interaction of CHAPS with a cell membrane. To this aim, erythrocytes were incubated with a wide range of detergent concentrations in order to determine CHAPS partition behavior, and its effects on membrane lipid order, hemolytic effects, and the solubilization of membrane phospholipids and cholesterol. The results were compared with those obtained with the nonionic detergent Triton X-100. It was found that CHAPS has a low affinity for the erythrocyte membrane (partition coefficient K=0.06mM(-1)), and at sub-hemolytic concentrations it causes little effect on membrane lipid order. CHAPS hemolysis and phospholipid solubilization are closely correlated. On the other side, binding of Triton X-100 disorders the membrane at all levels, and has independent mechanisms for hemolysis and solubilization. Differential behavior was observed in the solubilization of phospholipids and cholesterol. Thus, the detergent resistant membranes (DRM) obtained with the two detergents will have different composition. The behaviors of the two detergents are related to the differences in their molecular structures, suggesting that CHAPS does not penetrate the lipid bilayer but binds in a flat position on the erythrocyte surface, both in intact and cholesterol depleted erythrocytes. A relevant result for Triton X-100 is that hemolysis is not directly correlated with the solubilization of membrane lipids, as it is usually assumed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  15. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  16. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    PubMed

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  17. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B.

    2017-06-01

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  18. Composition and functionality of whey protein phospholipid concentrate and delactosed permeate.

    PubMed

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underused. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to 1 WPPC supplier. The objective of this research was to fully characterize a range of WPPC. Four WPPC samples and 1 DLP sample were analyzed for chemical composition and functionality. This analysis showed that WPPC composition was highly variable between suppliers and lots. In addition, the functionality of the WPPC varies depending on the supplier and testing pH, and cannot be correlated with fat or protein content because of differences in processing. The addition of DLP to WPPC affects functionality. In general, WPPC has a high water-holding capacity, is relatively heat stable, has low foamability, and does not aid in emulsion stability. The gel strength and texture are highly dependent on the amount of protein. To be able to use these 2 dairy products, the composition and functionality must be fully understood. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Influence of ibuprofen on phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Jaksch, Sebastian; Lipfert, Frederik; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Fischer, Stefan F.; Nickel, Bert

    2015-02-01

    A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α -phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.

  20. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin

    NASA Technical Reports Server (NTRS)

    Sandstrom, R. P.; Cleland, R. E.

    1989-01-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  1. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  2. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    NASA Astrophysics Data System (ADS)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  3. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes.

    PubMed

    Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria

    2017-05-19

    Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that

  4. Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    PubMed Central

    Mattiazzi, M.; Jambhekar, A.; Kaferle, P.; DeRisi, J. L.; Križaj, I.

    2010-01-01

    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them. Electronic supplementary material The online version of this article (doi:10.1007/s00438-010-0533-8) contains supplementary material, which is available to authorized users. PMID:20379744

  5. Dietary lipids differentially affect membranes from different areas of rooster sperm.

    PubMed

    Bongalhardo, D C; Leeson, S; Buhr, M M

    2009-05-01

    The present work aimed to compare the effect of dietary flax with other oil sources on rooster sperm membranes and on semen characteristics. White Leghorn roosters (16 per diet) were fed 1 of 4 treatments: control diet (CON), or a diet containing corn oil (CORN), fish oil (FISH), or flax seed (FLAX) as the lipid source. Semen from 4 birds (30 wk old) of each treatment was pooled, the sperm head (HM) and body membranes (BM) were isolated, and lipids were extracted and analyzed. Aspects of lipid composition tested were as follows: percentage of individual fatty acids (C14:0 to C24:1) in total fatty acids, percentage of fatty acid categories [saturated, monounsaturated, polyunsaturated (PUFA), n-3 and n-6 PUFA, and n-6:n-3 ratio] within total fatty acids, and percentage of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidylserine, and sphingomyelin] in total phospholipids. Sperm characteristics evaluated were as follows: volume, concentration, viability, percentage of motile cells, average path velocity, track speed, progressive velocity, lateral head displacement, straightness, and linearity. Diet did not affect membrane phospholipid ratios in either membrane but modified major fatty acids within certain phospholipids. Birds fed FISH and CORN showed, respectively, the highest and the lowest n-3 in sperm, causing reciprocal significant changes in n-6:n-3 ratio. Feeding FLAX caused intermediate effects in n-3, with values significantly lower than FISH but higher than CORN in HM (PC, PE, and phosphatidylinositol) and PC in BM (P < 0.05). In the PE phospholipids, FISH, followed by FLAX, increased n-3 in BM and decreased n-6 PUFA in HM. Sperm concentration was specifically correlated with the amount of 20:4n-6 in FLAX and 22:4n-6 in CON. In FLAX diets, straightness correlated with C18:0, n-3, and n-6:n-3 ratio. Diets containing distinct lipid sources differentially modify the lipid contents of HM and BM, with minor

  6. [Effect of phospholipids containing omega-3 fatty acids on structural changes of microsomal lipids in cell membranes of functionally different cells].

    PubMed

    Datsenko, Z M; Volkov, H L; Kryvenko, O M; Nechytaĭlo, L O; Shovkun, S A; Khmel', T O; Perederiĭ, O F

    2002-01-01

    As a result of the experimental researches conducted it has been shown that administration of some normal animal marine phospholipids (PL) including in their structure omega-3 polyunsaturated fatty acids (PUFA) provides for quantitative changes of individual PL, fatty acids (FA) content and quantity in general and individual PL of liver, heart, brain and gonads microsomes. While estimating general microsomal PL fraction FA content under the action of PL omega-3 PUFA FA concentration change, unsaturation index (omega 6/omega 3) and relation of arachidonic acid to docosahexenic (AA/DHA) decrease have been identified. The decrease of AA/DHA relationship occurs due to AA and DHA quantitative changes. In the case of AA increase in some tissues there is observed the decrease of docosapentaenic acid and increase of DHA and eucosapentaenic (EPA) acidds. As a result of studying FA content in the individual PL composition it has been identified that certain PL classes characteristic for some tissues respond by changes of some certain FA. The relationship omega 6/omega 3 has been shown as decreasing in phosphatidilcholine (PC) all tissues microsomes (liver, gonads, heart, brain), in phosphatidilethanolamine (PEA) of liver and cardiac microsomes, in phosphatidilserine (PS) this relationship relationship decreases in the liver, brain and heart, for phosphatidilinositole (PI) the changes take place in liver, gonads, brain. Simultaneously, the decrease of AA/DHA relationship in the individual PL decrease of AA and increase of EPA and DHA depend on the tested tissues. The marine phospholipids might be supposed to render their effect on AA metabolism resulting in AA/DHA relationship in PEA and PS relationship displays itself as specific and depends on the tissues functions. The preference of PEA and PS use by certain tissues microsomes could be explained by their membrane protective capability.

  7. Preparation and blood compatibility of polysiloxane/liquid-crystal composite membranes.

    PubMed

    Li, L; Tu, M; Mou, S; Zhou, C

    2001-10-01

    Polysiloxane/liquid crystal composite membrane was first suggested to be used as biomaterials. In this work, the polydimethyl-methylhydrosiloxane and polydimethyl-methylethylenesilosiane, as a substrate, were blended with cholesteryl oleyl carbonate (COC) in tetrahydrofuran, and then crosslinked into membranes on glass plates by means of the platinum catalyst at 110 degrees C for 20 min. The effects of the liquid-crystal content in composite membranes on the formation of liquid-crystal phase were verified by the observation of optical polarization microscopy. The relationship between the morphology of the composite membranes and blood compatibility was identified by the dynamic blood-clotting tests, haemolysis ratio measurement, platelet adhesion and SEM observation. The results show that the blood-compatibility of composite membranes with the concentration of liquid crystal 20, 30% (wt) is more excellent than that of other composite membranes.

  8. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for aboutmore » 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.« less

  9. Effect of intravenous omega-3 fatty acid infusion and hemodialysis on fatty acid composition of free fatty acids and phospholipids in patients with end-stage renal disease.

    PubMed

    Madsen, Trine; Christensen, Jeppe Hagstrup; Toft, Egon; Aardestrup, Inge; Lundbye-Christensen, Søren; Schmidt, Erik B

    2011-01-01

    Patients treated with hemodialysis (HD) have been reported to have decreased levels of ω-3 polyunsaturated fatty acids (PUFAs) in plasma and cells. The aim of this study was to investigate the effect of ω-3 PUFAs administered intravenously during HD, as well as the effect of HD treatment, on the fatty acid composition of plasma free fatty acids (FFAs), plasma phospholipids, and platelet phospholipids. Forty-four HD patients were randomized to groups receiving either a single dose of a lipid emulsion containing 4.1 g of ω-3 PUFAs or placebo (saline) administered intravenously during HD. Blood was drawn immediately before (baseline) and after (4 hours) HD and before the next HD session (48 hours). Fatty acid composition was measured using gas chromatography. The increase in ω-3 FFAs was greater in the ω-3 PUFA group compared with the placebo group, whereas the increase in total FFAs was similar between the 2 groups. In the ω-3 PUFA group, ω-3 PUFAs in plasma phospholipids were higher after 48 hours than at baseline, and in platelet phospholipids, ω-3 PUFAs increased after 4 hours. In the placebo group, no changes were observed in ω-3 PUFAs in plasma and platelet phospholipids. Intravenous ω-3 PUFAs administered during HD caused a transient selective increase in ω-3 FFA concentration. Furthermore, ω-3 PUFAs were rapidly incorporated into platelets, and the content of ω-3 PUFAs in plasma phospholipids increased after 48 hours.

  10. Effect of polyunsaturated fatty acids and phospholipids on ( sup 3 H)-vitamin E incorporation into pulmonary artery endothelial cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekharam, K.M.; Patel, J.M.; Block, E.R.

    1990-12-01

    Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of (3H)-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial,more » and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of (3H)-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and (3H)-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and (3H)-vitamin E.« less

  11. Protein Composition of Trypanosoma brucei Mitochondrial Membranes

    PubMed Central

    Acestor, Nathalie; Panigrahi, Aswini K.; Ogata, Yuko; Anupama, Atashi; Stuart, Kenneth D.

    2010-01-01

    Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane and matrix; each harboring specific functions and structures. In this study, we used mass spectrometry (LC-MS/MS) to characterize the protein composition of Trypanosoma brucei mitochondrial membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mitochondrial membranes with high confidence, and 106 with moderate to low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mitochondrial membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mitochondrial functions. PMID:19834910

  12. Dual Role for Phospholipid:Diacylglycerol Acyltransferase: Enhancing Fatty Acid Synthesis and Diverting Fatty Acids from Membrane Lipids to Triacylglycerol in Arabidopsis Leaves[C][W

    PubMed Central

    Fan, Jilian; Yan, Chengshi; Zhang, Xuebin; Xu, Changcheng

    2013-01-01

    There is growing interest in engineering green biomass to expand the production of plant oils as feed and biofuels. Here, we show that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is a critical enzyme involved in triacylglycerol (TAG) synthesis in leaves. Overexpression of PDAT1 increases leaf TAG accumulation, leading to oil droplet overexpansion through fusion. Ectopic expression of oleosin promotes the clustering of small oil droplets. Coexpression of PDAT1 with oleosin boosts leaf TAG content by up to 6.4% of the dry weight without affecting membrane lipid composition and plant growth. PDAT1 overexpression stimulates fatty acid synthesis (FAS) and increases fatty acid flux toward the prokaryotic glycerolipid pathway. In the trigalactosyldiacylglycerol1-1 mutant, which is defective in eukaryotic thylakoid lipid synthesis, the combined overexpression of PDAT1 with oleosin increases leaf TAG content to 8.6% of the dry weight and total leaf lipid by fourfold. In the plastidic glycerol-3-phosphate acyltransferase1 mutant, which is defective in the prokaryotic glycerolipid pathway, PDAT1 overexpression enhances TAG content at the expense of thylakoid membrane lipids, leading to defects in chloroplast division and thylakoid biogenesis. Collectively, these results reveal a dual role for PDAT1 in enhancing fatty acid and TAG synthesis in leaves and suggest that increasing FAS is the key to engineering high levels of TAG accumulation in green biomass. PMID:24076979

  13. Fatty acids of erythrocyte membrane in acute pancreatitis patients.

    PubMed

    Kuliaviene, Irma; Gulbinas, Antanas; Cremers, Johannes; Pundzius, Juozas; Kupcinskas, Limas; Dambrauskas, Zilvinas; Jansen, Eugene

    2013-09-14

    To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic (C18:1n9t

  14. Fatty acids of erythrocyte membrane in acute pancreatitis patients

    PubMed Central

    Kuliaviene, Irma; Gulbinas, Antanas; Cremers, Johannes; Pundzius, Juozas; Kupcinskas, Limas; Dambrauskas, Zilvinas; Jansen, Eugene

    2013-01-01

    AIM: To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. METHODS: All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. RESULTS: We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic

  15. Orchestrating phospholipid biosynthesis: Phosphatidic acid conducts and Opi1p performs.

    PubMed

    Salsaa, Michael; Case, Kendall; Greenberg, Miriam L

    2017-11-10

    Phosphatidic acid (PA) and the conserved integral ER membrane protein Scs2p regulate localization of the transcriptional repressor Opi1p, which controls expression of phospholipid biosynthesis genes, but the mechanisms conducting Opi1p localization are not fully understood. A new study suggests the existence of a distinct pool of PA in the ER that is required for regulation of Opi1p localization and thus phospholipid metabolism in yeast. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Analysis of truss, beam, frame, and membrane components. [composite structures

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Robinson, E. Y.

    1975-01-01

    Truss components are considered, taking into account composite truss structures, truss analysis, column members, and truss joints. Beam components are discussed, giving attention to composite beams, laminated beams, and sandwich beams. Composite frame components and composite membrane components are examined. A description is given of examples of flat membrane components and examples of curved membrane elements. It is pointed out that composite structural design and analysis is a highly interactive, iterative procedure which does not lend itself readily to characterization by design or analysis function only.-

  17. Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.

    2017-11-01

    An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.

  18. New Tethered Phospholipid Bilayers Integrating Functional G-Protein-Coupled Receptor Membrane Proteins.

    PubMed

    Chadli, Meriem; Rebaud, Samuel; Maniti, Ofelia; Tillier, Bruno; Cortès, Sandra; Girard-Egrot, Agnès

    2017-10-03

    Membrane proteins exhibiting extra- and intracellular domains require an adequate near-native lipid platform for their functional reconstitution. With this aim, we developed a new technology enabling the formation of a peptide-tethered bilayer lipid membrane (pep-tBLM), a lipid bilayer grafted onto peptide spacers, by way of a metal-chelate interaction. To this end, we designed an original peptide spacer derived from the natural α-laminin thiopeptide (P19) possessing a cysteine residue in the N-terminal extremity for grafting onto gold and a C-terminal extremity modified by four histidine residues (P19-4H). In the presence of nickel, the use of this anchor allowed us to bind liposomes of variable compositions containing a 2% molar ratio of a chelating lipid, 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] so-called DOGS-NTA, and to form the planar bilayer by triggering liposome fusion by an α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein. The formation of pep-tBLMs was characterized by surface plasmon resonance imaging (SPRi), and their continuity, fluidity, and homogeneity were demonstrated by fluorescence recovery after photobleaching (FRAP), with a diffusion coefficient of 2.5 × 10 -7 cm 2 /s, and atomic force microscopy (AFM). By using variable lipid compositions including phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol 4,5-bisphosphate (PIP 2 ), sphingomyelin (SM), phosphatidic acid (PA), and cholesterol (Chol) in various ratios, we show that the membrane can be formed independently from the lipid composition. We made the most of this advantage to reincorporate a transmembrane protein in an adapted complex lipid composition to ensure its functional reinsertion. For this purpose, a cell-free expression system was used to produce proteoliposomes expressing the functional C-X-C motif chemokine receptor 4 (CXCR4), a seven

  19. Butter making from caprine creams: effect of washing treatment on phospholipids and milk fat globule membrane proteins distribution.

    PubMed

    Lamothe, Sophie; Robitaille, Gilles; St-Gelais, Daniel; Britten, Michel

    2008-11-01

    A washing treatment was applied to caprine cream before churning in order to improve phospholipids and MFGM protein purification from buttermilk and butter serum. Cream obtained from a first separation was diluted with water and separated a second time using pilot plant equipment. Regular and washed creams were churned to produce buttermilk and butter, from which butter serum was extracted. The washing treatment allowed a significant decrease of the casein content. As a result, the phospholipids-to-protein ratios in washed buttermilk and butter serum were markedly increased by 2.1 and 1.7-folds respectively, which represents an advantage for the production of phospholipids concentrates. However, when compared with bovine cream, lower phospholipids-to-protein ratios were observed when the washing treatment was applied to caprine cream. A higher concentration of MFGM protein and a lower retention of phospholipids during washing treatment are responsible for the lower phospholipids-to-protein ratios in buttermilk and butter serum obtained from caprine cream. The phospholipids distribution in the butter making process was similar to the one obtained from bovine regular and washed cream. Phospholipids were preferentially concentrated in the butter serum rather than the buttermilk fraction. This simple approach permitted the production of caprine and bovine butter sera extracts containing up to 180 and 240 g phospholipids/kg sera, respectively, on a dry basis.

  20. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letts, V.A.; Henry, S.A.

    1985-08-01

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesismore » of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed.« less

  1. Characterization of associated proteins and phospholipids in natural rubber latex.

    PubMed

    Sansatsadeekul, Jitlada; Sakdapipanich, Jitladda; Rojruthai, Porntip

    2011-06-01

    Non-rubber components present in natural rubber (NR) latex, such as proteins and phospholipids, are presumed to be distributed in the serum fraction as well as surrounding the rubber particle surface. The phospholipid-protein layers covering the rubber particle surface are especially interesting due to their ability to enhance the colloidal stability of NR latex. In this study, we have characterized the components surrounding the NR particle surface and investigated their role in the colloidal stability of NR particles. Proteins from the cream fraction were proteolytically removed from the NR latex and compare to those from the serum fractions using SDS-polyacrylamide gel electrophoresis revealing that both fractions contained similar proteins in certain molecular weights such as 14.5, 25 and 27 kDa. Phospholipids removed from latex by treatment with NaOH were analyzed using (1)H-NMR spectroscopy and several major signals were assignable to -(CH(2))(n)-, -CH(2)OP, -CH(2)OC═O and -OCH(2)CH(2)NH-. These signals are important evidence that indicates phospholipids associate with the rubber chain. The colloidal behavior of rubber lattices before and after removal of protein-lipid membrane was evaluated by zeta potential analysis and scanning electron microscope (SEM). The lowest zeta potential value of NR particles was observed at pH 10, consequently leading to the highest stability of rubber particles. Additionally, SEM micrographs clearly displayed a gray ring near the particle surface corresponding to the protein-lipid membrane layer. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. A bioenergetic basis for membrane divergence in archaea and bacteria.

    PubMed

    Sojo, Víctor; Pomiankowski, Andrew; Lane, Nick

    2014-08-01

    Membrane bioenergetics are universal, yet the phospholipid membranes of archaea and bacteria-the deepest branches in the tree of life-are fundamentally different. This deep divergence in membrane chemistry is reflected in other stark differences between the two domains, including ion pumping and DNA replication. We resolve this paradox by considering the energy requirements of the last universal common ancestor (LUCA). We develop a mathematical model based on the premise that LUCA depended on natural proton gradients. Our analysis shows that such gradients can power carbon and energy metabolism, but only in leaky cells with a proton permeability equivalent to fatty acid vesicles. Membranes with lower permeability (equivalent to modern phospholipids) collapse free-energy availability, precluding exploitation of natural gradients. Pumping protons across leaky membranes offers no advantage, even when permeability is decreased 1,000-fold. We hypothesize that a sodium-proton antiporter (SPAP) provided the first step towards modern membranes. SPAP increases the free energy available from natural proton gradients by ∼60%, enabling survival in 50-fold lower gradients, thereby facilitating ecological spread and divergence. Critically, SPAP also provides a steadily amplifying advantage to proton pumping as membrane permeability falls, for the first time favoring the evolution of ion-tight phospholipid membranes. The phospholipids of archaea and bacteria incorporate different stereoisomers of glycerol phosphate. We conclude that the enzymes involved took these alternatives by chance in independent populations that had already evolved distinct ion pumps. Our model offers a quantitatively robust explanation for why membrane bioenergetics are universal, yet ion pumps and phospholipid membranes arose later and independently in separate populations. Our findings elucidate the paradox that archaea and bacteria share DNA transcription, ribosomal translation, and ATP synthase, yet

  3. The membrane pacemaker hypothesis: novel tests during the ontogeny of endothermy.

    PubMed

    Price, Edwin R; Sirsat, Tushar S; Sirsat, Sarah K G; Curran, Thomas; Venables, Barney J; Dzialowski, Edward M

    2018-03-29

    The 'membrane pacemaker' hypothesis proposes a biochemical explanation for among-species variation in resting metabolism, based on the positive correlation between membrane docosahexaenoic acid (DHA) and metabolic rate. We tested this hypothesis using a novel model, altricial red-winged blackbird nestlings, predicting that the proportion of DHA in muscle and liver membranes should increase with the increasing metabolic rate of the nestling as it develops endothermy. We also used a dietary manipulation, supplementing the natural diet with fish oil (high DHA) or sunflower oil (high linoleic acid) to alter membrane composition and then assessed metabolic rate. In support of the membrane pacemaker hypothesis, DHA proportions increased in membranes from pectoralis muscle, muscle mitochondria and liver during post-hatch development. By contrast, elevated dietary DHA had no effect on resting metabolic rate, despite causing significant changes to membrane lipid composition. During cold challenges, higher metabolic rates were achieved by birds that had lower DHA and higher linoleic acid in membrane phospholipids. Given the mixed support for this hypothesis, we conclude that correlations between membrane DHA and metabolic rate are likely spurious, and should be attributed to a still-unidentified confounding variable. © 2018. Published by The Company of Biologists Ltd.

  4. Modulation of rat testes lipid composition by hormones: Effect of PRL (prolactin) and hCG (human chorionic gonadotropin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebokova, E.; Wierzbicki, A.; Clandinin, M.T.

    1988-10-01

    The effect of prolactin (PRL) and human chorionic gonadotropin (hCG) administration for 7 days on the composition and function of rat testicular plasma membrane was investigated. Refractory state in Leydig cells desensitized by hCG decreased the binding capacity for {sup 125}I-labeled hCG and also luteinizing hormone (LH)-induced adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) and testosterone production. In testicular membranes of hCG-treated animals, a depletion of cholesterol and an increase in total phospholipid content was observed after gonadotropin injection, thereby decreasing the cholesterol-to-phospholipid ratio. Injection of high doses of PRL had no effect on the binding capacity or affinity of the LH-hCG receptormore » but decreased the response of Leydig cells to LH in terms of cAMP and testosterone synthesis. PRL also increased total and esterified cholesterol and decreased free cholesterol and membrane phospholipid content. The fatty acid composition of testicular lipids was significantly and selectively influenced by both hormonal treatments. These observations suggest that metabolism of cholesterol and long-chain polyunsaturated fatty acids in testicular tissue is affected by chorionic gonadotropin and PRL and may provide the mechanism for regulating steroidogenic functions.« less

  5. Two mechanisms of H+/OH- transport across phospholipid vesicular membrane facilitated by gramicidin A.

    PubMed Central

    Prabhananda, B S; Kombrabail, M H

    1996-01-01

    Two rate-limiting mechanisms have been proposed to explain the gramicidin channel facilitated decay of the pH difference across vesicular membrane (delta pH) in the pH region 6-8 and salt (MCI, M+ = K+, Na+) concentration range 50-300 mM. 1) At low pH conditions (approximately 6), H+ transport through the gramicidin channel predominantly limits the delta pH decay rate. 2) At higher pH conditions (approximately 7.5), transport of a deprotonated species (but not through the channel) predominantly limits the rate. The second mechanism has been suggested to be the hydroxyl ion propogation through water chains across the bilayer by hydrogen bond exchange. In both mechanisms alkali metal ion transport providing the compensating flux takes place through the gramicidin channels. Such an identification has been made from a detailed study of the delta pH decay rate as a function of 1) gramicidin concentration, 2) alkali metal ion concentration, 3) pH, 4) temperature, and 5) changes in the membrane order (by adding small amounts of chloroform to vesicle solutions). The apparent activation energy associated with the second mechanism (approximately 3.2 kcal/mol) is smaller than that associated with the first mechanism (approximately 12 kcal/mol). In these experiments, delta pH was created by temperature jump, and vesicles were prepared using soybean phospholipid or a mixture of 94% egg phosphatidylcholine and 6% phosphatidic acid. PMID:8968580

  6. The time course of erythrocyte membrane fatty acid concentrations during and after treatment of non-human primates with increasing doses of an omega-3 rich phospholipid preparation derived from krill-oil.

    PubMed

    Hals, Petter-Arnt; Wang, Xiaoli; Piscitelli, Fabiana; Di Marzo, Vincenzo; Xiao, Yong-Fu

    2017-01-21

    A commonly used measure to reflect the intake of the long-chain omega-3 fatty acids EPA and DHA is the omega-3 index, defined as the sum of EPA + DHA as % of total fatty acids in erythrocyte membrane. When the omega-3 index changes it follows that the relative fractions of other fatty acids in the membrane are also changed. In the present study, increasing doses of a preparation of omega-3 rich phospholipids extracted from krill oil were administered orally to non-human primates for 12 weeks and the time course of EPA, DHA and 22 other fatty acids in erythrocytes was determined bi-weekly during treatment and for 8 weeks after cessation of treatment. Plasma concentrations of six endocannabinoid-type mediators being downstream metabolites of some fatty acids analyzed in erythrocytes were also determined. Six diabetic, dyslipidemic non-human primates were included, three in a vehicle control group and three being treated with the omega-3 rich phospholipid preparation. The vehicle control and test items were given daily by gavage and the test item doses were 50, 150 and 450 mg phospholipids/kg/day. Each dose level was given for four weeks. Blood was sampled at baseline and thereafter bi-weekly. Fatty acids were determined in erythrocytes by methylation followed by gas-chromatography. Endocannabinoids and endocannabinoid-like mediators were analyzed in plasma by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. The treatment resulted in a dose-related increase in the fraction of EPA and DHA in erythrocyte membranes and a dose-related decrease of other poly-unsaturated fatty acids, in particular omega-6 polyunsaturated fatty acids. Erythrocyte concentrations of saturated fatty acids remained unchanged throughout the experiment. Plasma concentrations of endocannabinoids and endocannabinoid-like mediators changed accordingly as those being downstream arachidonic acid decreased, downstream of the saturated palmitic and oleic acids

  7. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    PubMed Central

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  8. Antibodies to Liposomes, Phospholipids, and Cholesterol, Implications for Autoimmunity, Atherosclerosis and Aging

    DTIC Science & Technology

    1990-01-01

    bromelain , the autoantibodies recognize the con- figuration of phosphatidyicholine in the membranes." In summary, autoantibodies to lipids and lipid...Cox, JO, Hardy, SJ (1985). Autoantibodies against mouse bromelain -modified RBC are specifically inhibited by a common membrane phospholipid...Biophys Acta 903:265-272. Fujiwara M, Akiyama, Y (1980). LPS-induced autoantibody response. I. Ontogenic development of PFC response to bromelain

  9. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    PubMed Central

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-01-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and

  10. Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer.

    PubMed

    Yin, Zehua; Cheng, Chong; Qin, Hui; Nie, Chuanxiong; He, Chao; Zhao, Changsheng

    2015-01-01

    Researches on blood purification membranes are fuelled by diverse clinical needs, such as hemodialysis, hemodiafiltration, hemofiltration, plasmapheresis, and plasma collection. To approach high-performance dialyzer, the integrated antifouling and antithrombotic properties are highly necessary for the design/modification of advanced artificial membranes. In this study, we propose and demonstrate that the physical blend of triblock polyurethane (PU) and polyethersulfone (PES) may advance the performance of hemodialysis membranes with greatly enhanced blood compatibility. It was found that the triblock PU could be blended with PES at high ratio owing to their excellent miscibility. The surfaces of the PES/PU composite membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, water contact angle measurement, and surface ζ-potentials. The results indicated that the membrane surfaces were assembled with hydrophilic segregation layer owing to the migration of amphiphilic PU segments during membrane preparation, which might confer the composite membranes with superior hemocompatibility. The cross-section scanning electron microscopy images of the composite membranes exhibited structure transformation from finger-like structure to sponge-like structure, which indicated that the composite membrane had tunable porosity and permeability. The further ultrafiltration experiments indicated that the composite membranes showed increased permeability and excellent antifouling ability. The blood compatibility observation indicated that PES/PU composite membranes owned decreased protein adsorption, suppressed platelet adhesion, and prolonged plasma recalcification time. These results indicated that the PES/PU composite membranes exhibited enhanced antifouling and antithrombotic properties than the pristine PES membrane. The strategy may forward the fabrication of blood compatible composite membranes for

  11. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    PubMed

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  12. Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y

    2016-07-01

    This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  13. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids.

    PubMed Central

    Kamp, F; Hamilton, J A

    1992-01-01

    A central, unresolved question in cell physiology is how fatty acids move across cell membranes and whether protein(s) are required to facilitate transbilayer movement. We have developed a method for monitoring movement of fatty acids across protein-free model membranes (phospholipid bilayers). Pyranin, a water-soluble, pH-sensitive fluorescent molecule, was trapped inside well-sealed phosphatidylcholine vesicles (with or without cholesterol) in Hepes buffer (pH 7.4). Upon addition of a long-chain fatty acid (e.g., oleic acid) to the external buffer (also Hepes, pH 7.4), a decrease in fluorescence of pyranin was observed immediately (within 10 sec). This acidification of the internal volume was the result of the "flip" of un-ionized fatty acids to the inner leaflet, followed by a release of protons from approximately 50% of these fatty acid molecules (apparent pKa in the bilayer = 7.6). The proton gradient thus generated dissipated slowly because of slow cyclic proton transfer by fatty acids. Addition of bovine serum albumin to vesicles with fatty acids instantly removed the pH gradient, indicating complete removal of fatty acids, which requires rapid "flop" of fatty acids from the inner to the outer monolayer layer. Using a four-state kinetic diagram of fatty acids in membranes, we conclude that un-ionized fatty acid flip-flops rapidly (t1/2 < or = 2 sec) whereas ionized fatty acid flip-flops slowly (t1/2 of minutes). Since fatty acids move across phosphatidylcholine bilayers spontaneously and rapidly, complex mechanisms (e.g., transport proteins) may not be required for translocation of fatty acids in biological membranes. The proton movement accompanying fatty acid flip-flop is an important consideration for fatty acid metabolism in normal physiology and in disease states such as cardiac ischemia. Images PMID:1454821

  14. Permeability Asymmetry in Composite Porous Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kurcharov, I. M.; Laguntsov, N. I.; Uvarov, V. I.; Kurchatova, O. V.

    The results from the investigation of transport characteristics and gas transport asymmetry in bilayer composite membranes are submitted. These membranes are produced by SHS method. Asymmetric effect and hysteresis of permeability in nanoporous membranes are detected. It's shown, that permeability ratio (asymmetry value of permeability) increases up to several times. The asymmetry of permeability usually decreases monotonically with the pressure decrease.

  15. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  16. Mitochondria-localized phospholipase A2, AoPlaA, in Aspergillus oryzae displays phosphatidylethanolamine-specific activity and is involved in the maintenance of mitochondrial phospholipid composition.

    PubMed

    Kotani, Shohei; Izawa, Sho; Komai, Noriyuki; Takayanagi, Ayumi; Arioka, Manabu

    2016-11-01

    In mammals, cytosolic phospholipases A 2 (cPLA 2 s) play important physiological roles by releasing arachidonic acid, a precursor for bioactive lipid mediators, from the biological membranes. In contrast, fungal cPLA 2 -like proteins are much less characterized and their roles have remained elusive. AoPlaA is a cPLA 2 -like protein in the filamentous fungus Aspergillus oryzae which, unlike mammalian cPLA 2 , localizes to mitochondria. In this study, we investigated the biochemical and physiological functions of AoPlaA. Recombinant AoPlaA produced in E. coli displayed Ca 2+ -independent lipolytic activity. Mass spectrometry analysis demonstrated that AoPlaA displayed PLA 2 activity to phosphatidylethanolamine (PE), but not to other phospholipids, and generated 1-acylated lysoPE. Catalytic site mutants of AoPlaA displayed almost no or largely reduced activity to PE. Consistent with PE-specific activity of AoPlaA, AoplaA-overexpressing strain showed decreased PE content in the mitochondrial fraction. In contrast, AoplaA-disruption strain displayed increased content of cardiolipin. AoplaA-overexpressing strain, but not its counterparts overexpressing the catalytic site mutants, exhibited retarded growth at low temperature, possibly because of the impairment of the mitochondrial function caused by excess degradation of PE. These results suggest that AoPlaA is a novel PE-specific PLA 2 that plays a regulatory role in the maintenance of mitochondrial phospholipid composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Stimulation of Phospholipid Scrambling of the Erythrocyte Membrane by 9-Cis-Retinoic Acid.

    PubMed

    Abed, Majed; Alzoubi, Kousi; Lang, Florian; Al Mamun Bhuayn, Abdulla

    2017-01-01

    The endogenous retinoid 9-cis-retinoic acid has previously been shown to trigger apoptosis in a wide variety of cells including several tumor cells and has thus been suggested for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms participating in the accomplishment of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i) and formation of ceramide. The present study explored, whether 9-cis-retinoic acid induces eryptosis and whether the effect involves Ca2+ and/or ceramide. Flow cytometry was employed to estimate erythrocyte volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. A 48 hours exposure of human erythrocytes to 9-cis-retinoic acid (≥ 0.5 µg/ml) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Exposure to 9-cis-retinoic acid (≥ 0.5 µg/ml) significantly increased Fluo3-fluorescence, and the effect of 9-cis-retinoic acid on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Exposure to 9-cis-retinoic acid (1 µg/ml) further significantly increased the ceramide abundance at the erythrocyte surface and significantly increased hemolysis. 9-cis-retinoic acid triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+ and ceramide. © 2017 The Author(s)Published by S. Karger AG, Basel.

  18. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    PubMed

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  19. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    PubMed

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  20. Chemically induced phospholipid translocation across biological membranes.

    PubMed

    Gurtovenko, Andrey A; Onike, Olajide I; Anwar, Jamshed

    2008-09-02

    Chemical means of manipulating the distribution of lipids across biological membranes is of considerable interest for many biomedical applications as a characteristic lipid distribution is vital for numerous cellular functions. Here we employ atomic-scale molecular simulations to shed light on the ability of certain amphiphilic compounds to promote lipid translocation (flip-flops) across membranes. We show that chemically induced lipid flip-flops are most likely pore-mediated: the actual flip-flop event is a very fast process (time scales of tens of nanoseconds) once a transient water defect has been induced by the amphiphilic chemical (dimethylsulfoxide in this instance). Our findings are consistent with available experimental observations and further emphasize the importance of transient membrane defects for chemical control of lipid distribution across cell membranes.

  1. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    PubMed

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  2. Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Alipour, Elnaz; Halverson, Duncan; McWhirter, Samantha; Walker, Gilbert C.

    2017-05-01

    Nanoparticles are widely studied for their potential medical uses in diagnostics and therapeutics. The interface between a nanoparticle and its target has been a focus of research, both to guide the nanoparticle and to prevent it from deactivating. Given nature's frequent use of phospholipid vesicles as carriers, much attention has been paid to phospholipids as a vehicle for drug delivery. The physical chemistry of bilayer formation and nanoparticle encapsulation is complex, touching on fundamental properties of hydrophobicity. Understanding the design rules for particle synthesis and encapsulation is an active area of research. The aim of this review is to provide a perspective on what preparative guideposts have been empirically discovered and how these are related to theoretical understanding. In addition, we aim to summarize how modern theory is beginning to help guide the design of functional particles that can effectively cross biological membranes.

  3. Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana.

    PubMed

    Yunus, Ian Sofian; Cazenave-Gassiot, Amaury; Liu, Yu-Chi; Lin, Ying-Chen; Wenk, Markus R; Nakamura, Yuki

    2015-01-01

    Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana.

  4. Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition.

    PubMed

    Price, Edwin R; Sirsat, Tushar S; Sirsat, Sarah K G; Kang, Gurdeep; Keereetaweep, Jantana; Aziz, Mina; Chapman, Kent D; Dzialowski, Edward M

    2017-08-01

    We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes. Copyright © 2016

  5. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    PubMed

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering.

  6. Effect of the nature of phospholipids on the degree of their interaction with isobornylphenol antioxidants

    NASA Astrophysics Data System (ADS)

    Marakulina, K. M.; Kramor, R. V.; Lukanina, Yu. K.; Plashchina, I. G.; Polyakov, A. V.; Fedorova, I. V.; Chukicheva, I. Yu.; Kutchin, A. V.; Shishkina, L. N.

    2016-02-01

    The parameters of complexation between natural phospholipids (lecithin, sphingomyelin, and cephalin) with antioxidants of a new class, isobornylphenols (IBPs), were determined by UV and IR spectroscopy. The self-organization of phospholipids (PLs) was studied depending on the structure of IBPs by dynamic light scattering. The nature of phospholipids and the structure of IBPs was found to produce a substantial effect both on the degree of complexation and on the size of PL aggregates in a nonpolar solvent. Based on the obtained data it was concluded that the structure of biological membranes mainly depends on the complexation of IBP with sphingomyelin.

  7. Impact of Lipid Oxidization on Vertical Structures and Electrostatics of Phospholipid Monolayers Revealed by Combination of Specular X-ray Reflectivity and Grazing-Incidence X-ray Fluorescence.

    PubMed

    Korytowski, Agatha; Abuillan, Wasim; Makky, Ali; Konovalov, Oleg; Tanaka, Motomu

    2015-07-30

    The influence of phospholipid oxidization of floating monolayers on the structure perpendicular to the global plane and on the density profiles of ions near the lipid monolayer has been investigated by a combination of grazing incidence X-ray fluorescence (GIXF) and specular X-ray reflectivity (XRR). Systematic variation of the composition of the floating monolayers unravels changes in the thickness, roughness and electron density of the lipid monolayers as a function of molar fraction of oxidized phospholipids. Simultaneous GIXF measurements enable one to qualitatively determine the element-specific density profiles of monovalent (K(+) or Cs(+)) and divalent ions (Ca(2+)) in the vicinity of the interface in the presence and absence of two types of oxidized phospholipids (PazePC and PoxnoPC) with high spatial accuracy (±5 Å). We found the condensation of Ca(2+) near carboxylated PazePC was more pronounced compared to PoxnoPC with an aldehyde group. In contrast, the condensation of monovalent ions could hardly be detected even for pure oxidized phospholipid monolayers. Moreover, pure phospholipid monolayers exhibited almost no ion specific condensation near the interface. The quantitative studies with well-defined floating monolayers revealed how the elevation of lipid oxidization level alters the structures and functions of cell membranes.

  8. Fluorescence studies on the interaction of choline-binding domain B of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Damai, Rajani S; Anbazhagan, V; Rao, K Babu; Swamy, Musti J

    2009-12-01

    The microenvironment and accessibility of the tryptophan residues in domain B of PDC-109 (PDC-109/B) in the native state and upon ligand binding have been investigated by fluorescence quenching, time-resolved fluorescence and red-edge excitation shift (REES) studies. The increase in the intrinsic fluorescence emission intensity of PDC-109/B upon binding to lysophosphatidylcholine (Lyso-PC) micelles and dimyristoylphosphatidylcholine (DMPC) membranes was considerably less as compared to that observed with the whole PDC-109 protein. The degree of quenching achieved by different quenchers with PDC-109/B bound to Lyso-PC and DMPC membranes was significantly higher as compared to the full PDC-109 protein, indicating that membrane binding afforded considerably lesser protection to the tryptophan residues of domain B as compared to those in the full PDC-109 protein. Finally, changes in red-edge excitation shift (REES) seen with PDC-109/B upon binding to DMPC membranes and Lyso-PC micelles were smaller that the corresponding changes in the REES values observed for the full PDC-109. These results, taken together suggest that intact PDC-109 penetrates deeper into the hydrophobic parts of the membrane as compared to domain B alone, which could be the reason for the inability of PDC-109/B to induce cholesterol efflux, despite its ability to recognize choline phospholipids at the membrane surface.

  9. Release abilities of adenosine diphosphate from phospholipid vesicles with different membrane properties and their hemostatic effects as a platelet substitute.

    PubMed

    Okamura, Yosuke; Katsuno, Shunsuke; Suzuki, Hidenori; Maruyama, Hitomi; Handa, Makoto; Ikeda, Yasuo; Takeoka, Shinji

    2010-12-20

    We have constructed phospholipid vesicles with hemostatic activity as a platelet substitute. The vesicles were conjugated with a dodecapeptide (HHLGGAKQAGDV, H12), which is a fibrinogen γ-chain carboxy-terminal sequence (γ400-411). We have recently exploited these vesicles as a potential drug delivery system by encapsulation of adenosine 5'-diphosphate (ADP) (H12-(ADP)-vesicles). Here we explore the relationship between the ADP release from H12-(ADP)-vesicles with different membrane properties and their hemostatic effects. In total, we prepared five kinds of H12-(ADP)-vesicles with different lamellarities and membrane flexibilities. By radioisotope-labeling, we directly show that H12-(ADP)-vesicles were capable of augmenting platelet aggregation by releasing ADP in an aggregation-dependent manner. The amount of ADP released from the vesicles was dependent on their membrane properties. Specifically, the amount of ADP released increased with decreasing lamellarity and tended to increase with increasing membrane flexibility. Our in vivo results clearly demonstrated that H12-(ADP)-vesicles with the ability to release ADP exert considerable hemostatic action in terms of correcting prolonged bleeding time in a busulphan-induced thrombocytopenic rat model. We propose a recipe to control the hemostatic abilities of H12-(ADP)-vesicles by modulating ADP release based on membrane properties. We believe that this concept will be invaluable to the development of platelet substitutes and other drug carriers. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Composite perfluorohydrocarbon membranes, their preparation and use

    DOEpatents

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  11. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  12. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    PubMed

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The Effect of Meal Frequency on the Fatty Acid Composition of Serum Phospholipids in Patients with Type 2 Diabetes.

    PubMed

    Kahleova, Hana; Malinska, Hana; Kazdova, Ludmila; Belinova, Lenka; Tura, Andrea; Hill, Martin; Pelikanova, Terezie

    2016-01-01

    Fatty acids are important cellular constituents that can affect many metabolic processes relevant for the development of diabetes and its complications. We previously demonstrated a positive effect of eating just 2 meals a day, breakfast and lunch, compared to 6 small meals. The aim of this secondary analysis was to explore the effect of meal frequency on the fatty acid composition of serum phospholipids in subjects with type 2 diabetes (T2D). In a randomized, crossover study, we assigned 54 patients with T2D to follow one of 2 regimens of a hypocaloric diet (-500 kcal/day), each for 12 weeks: 6 meals (A6) or 2 meals a day, breakfast and lunch (B2). The diet in both regimens had the same macronutrient and energy content. The fatty acid composition of serum phospholipids was measured at weeks 0, 12, and 24, using gas liquid chromatography. Insulin sensitivity was derived as an oral glucose insulin sensitivity (OGIS) index. Saturated fatty acids (mainly myristic and palmitic acids) decreased (p < 0.001) and n6 polyunsaturated fatty acids increased (p < 0.001) in response to both regimens but more with B2 (p < 0.001 for both). Monounsaturated fatty acids decreased (p < 0.05) and n3 polyunsaturated fatty acids increased (p < 0.001) in response to both regimens, with no difference between the regimens. An increase in OGIS correlated positively with changes in the proportion of linoleic acid in B2. This correlation remained significant even after adjustment for changes in body mass index (BMI; r = +0.38; p = 0.012). We demonstrated that meal frequency affects the fatty acid composition of serum phospholipids. The B2 regimen had more marked positive effects, with saturated fatty acids and the ratio of saturated to unsaturated fatty acids decreasing more. The increase in linoleic acid could partly explain the insulin-sensitizing effect of B2 in T2D.

  14. Composite membranes from photochemical synthesis of ultrathin polymer films

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Martin, Charles R.

    1991-07-01

    THERE has recently been a resurgence of interest in synthetic membranes and membrane-based processes1-12. This is motivated by a wide variety of technological applications, such as chemical separations1-7, bioreactors and sensors8,9, energy conversion10,11 and drug-delivery systems12. Many of these technologies require the ability to prepare extremely thin, defect-free synthetic (generally polymeric) films, which are supported on microporous supports to form composite membranes. Here we describe a method for producing composite membranes of this sort that incorporate high-quality polymer films less than 50-nm thick. The method involves interfacial photopolymerization of a thin polymer film on the surface of the microporous substrate. We have been able to use this technique to synthesize a variety of functionalized ultrathin films based on electroactive, photoactive and ion-exchange polymers. We demonstrate the method here with composite membranes that show exceptional gas-transport properties.

  15. An amino acid composition criterion for membrane active antimicrobials

    NASA Astrophysics Data System (ADS)

    Schmidt, Nathan; Lai, Ghee Hwee; Mishra, Abhijit; Bong, Dennis; McCray, Paul, Jr.; Selsted, Michael; Ouellette, Andre; Wong, Gerard

    2011-03-01

    Membrane active antimicrobials (AMPs) are short amphipathic peptides with broad spectrum anti microbial activity. While it is believed that their hydrophobic and cationic moieties are responsible for membrane-based mechanisms of action, membrane disruption by AMPs is manifested in a diversity of outcomes, such as pore formation, blebbing, and budding. This complication, along with others, have made a detailed, molecular understanding of AMPs difficult. We use synchrotron small angle xray scattering to investigate the interaction of model bacterial and eukaryotic cell membranes with archetypes from beta-sheet AMPs (e.g. defensins) and alpha-helical AMPs (e.g. magainins). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane rearrangement and phase behavior induced by these different peptides we will discuss the importance of amino acid composition on AMP design.

  16. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  17. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  18. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  19. Effect of Different Phospholipids on α-Secretase Activity in the Non-Amyloidogenic Pathway of Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Haupenthal, Viola J.; Rothhaar, Tatjana L.; Zimmer, Valerie C.; Grösgen, Sven; Hundsdörfer, Benjamin; Lehmann, Johannes; Grimm, Heike S.; Hartmann, Tobias

    2013-01-01

    Alzheimer’s disease (AD) is characterized by extracellular accumulation of amyloid-β peptide (Aβ), generated by proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. Aβ generation is inhibited when the initial ectodomain shedding is caused by α-secretase, cleaving APP within the Aβ domain. Therefore, an increase in α-secretase activity is an attractive therapeutic target for AD treatment. APP and the APP-cleaving secretases are all transmembrane proteins, thus local membrane lipid composition is proposed to influence APP processing. Although several studies have focused on γ-secretase, the effect of the membrane lipid microenvironment on α-secretase is poorly understood. In the present study, we systematically investigated the effect of fatty acid (FA) acyl chain length (10:0, 12:0, 14:0, 16:0, 18:0, 20:0, 22:0, 24:0), membrane polar lipid headgroup (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine), saturation grade and the FA double-bond position on α-secretase activity. We found that α-secretase activity is significantly elevated in the presence of FAs with short chain length and in the presence of polyunsaturated FAs, whereas variations in the phospholipid headgroups, as well as the double-bond position, have little or no effect on α-secretase activity. Overall, our study shows that local lipid membrane composition can influence α-secretase activity and might have beneficial effects for AD. PMID:23485990

  20. Composite oxygen transport membrane

    DOEpatents

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  1. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes

    NASA Technical Reports Server (NTRS)

    Hong, Mee Young; Chapkin, Robert S.; Barhoumi, Rola; Burghardt, Robert C.; Turner, Nancy D.; Henderson, Cara E.; Sanders, Lisa M.; Fan, Yang-Yi; Davidson, Laurie A.; Murphy, Mary E.; hide

    2002-01-01

    We have shown that a combination of fish oil (high in n-3 fatty acids) with the butyrate-producing fiber pectin, upregulates apoptosis in colon cells exposed to the carcinogen azoxymethane, protecting against colon tumor development. We now hypothesize that n-3 fatty acids prime the colonocytes such that butyrate can initiate apoptosis. To test this, 30 Sprague-Dawley rats were provided with diets differing in the fatty acid composition (corn oil, fish oil or a purified fatty acid ethyl ester diet). Intact colon crypts were exposed ex vivo to butyrate, and analyzed for reactive oxygen species (ROS), mitochondrial membrane potential (MMP), translocation of cytochrome C to the cytosol, and caspase-3 activity (early events in apoptosis). The fatty acid composition of the three major mitochondrial phospholipids was also determined, and an unsaturation index calculated. The unsaturation index in cardiolipin was correlated with ROS levels (R = 0.99; P = 0.02). When colon crypts from fish oil and FAEE-fed rats were exposed to butyrate, MMP decreased (P = 0.041); and translocation of cytochrome C to the cytosol (P = 0.037) and caspase-3 activation increased (P = 0.032). The data suggest that fish oil may prime the colonocytes for butyrate-induced apoptosis by enhancing the unsaturation of mitochondrial phospholipids, especially cardiolipin, resulting in an increase in ROS and initiating apoptotic cascade.

  2. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    PubMed

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Graphene can wreak havoc with cell membranes.

    PubMed

    Dallavalle, Marco; Calvaresi, Matteo; Bottoni, Andrea; Melle-Franco, Manuel; Zerbetto, Francesco

    2015-02-25

    Molecular dynamics--coarse grained to the level of hydrophobic and hydrophilic interactions--shows that small hydrophobic graphene sheets pierce through the phospholipid membrane and navigate the double layer, intermediate size sheets pierce the membrane only if a suitable geometric orientation is met, and larger sheets lie mainly flat on the top of the bilayer where they wreak havoc with the membrane and create a patch of upturned phospholipids. The effect arises in order to maximize the interaction between hydrophobic moieties and is quantitatively explained in terms of flip-flops by the analysis of the simulations. Possible severe biological consequences are discussed.

  4. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents.

    PubMed

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Varela, Lourdes M; Ortega-Gomez, Almudena; Abia, Rocio; Muriana, Francisco J G

    2014-06-01

    The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Composite membranes, methods of making same, and applications of same

    DOEpatents

    Pintauro, Peter N.; Park, Andrew; Ballengee, Jason

    2016-05-24

    In one aspect of the present invention, a method of fabricating a composite membrane includes: forming a first polymer solution from a first polymer and a second polymer solution from a second polymer, respectively, where the first polymer includes a charged polymer and the second polymer includes an uncharged polymer; electrospinning, separately and simultaneously, the first and second polymer solutions to form a dual fiber mat with first polymer fibers and second polymer fibers; and processing the dual fiber mat by softening and flowing one of the first or second polymer fibers to fill in the void space between the other of the first and second polymer fibers so as to form the composite membrane. In some embodiments, the composite membrane may be a proton exchange membrane (PEM) or an anion exchange membrane (AEM).

  6. Mediterranean-style diet effect on the structural properties of the erythrocyte cell membrane of hypertensive patients: the Prevencion con Dieta Mediterranea Study.

    PubMed

    Barceló, Francisca; Perona, Javier S; Prades, Jesús; Funari, Sérgio S; Gomez-Gracia, Enrique; Conde, Manuel; Estruch, Ramon; Ruiz-Gutiérrez, Valentina

    2009-11-01

    A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.

  7. Micrometer-Scale Membrane Transition of Supported Lipid Bilayer Membrane Reconstituted with Cytosol of Dictyostelium discoideum.

    PubMed

    Takahashi, Kei; Toyota, Taro

    2017-03-07

    The transformation of the supported lipid bilayer (SLB) membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB) membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum , is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level), contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane.

  8. A Postnatal Diet Containing Phospholipids, Processed to Yield Large, Phospholipid-Coated Lipid Droplets, Affects Specific Cognitive Behaviors in Healthy Male Mice.

    PubMed

    Schipper, Lidewij; van Dijk, Gertjan; Broersen, Laus M; Loos, Maarten; Bartke, Nana; Scheurink, Anton Jw; van der Beek, Eline M

    2016-06-01

    Infant cognitive development can be positively influenced by breastfeeding rather than formula feeding. The composition of breast milk, especially lipid quality, and the duration of breastfeeding have been linked to this effect. We investigated whether the physical properties and composition of lipid droplets in milk may contribute to cognitive development. From postnatal day (P) 16 to P44, healthy male C57BL/6JOlaHsd mice were fed either a control or a concept rodent diet, in which the dietary lipid droplets were large and coated with milk phospholipids, resembling more closely the physical properties and composition of breast milk lipids. Thereafter, all mice were fed an AIN-93M semisynthetic rodent diet. The mice were subjected to various cognitive tests during adolescence (P35-P44) and adulthood (P70-P101). On P102, mice were killed and brain phospholipids were analyzed. The concept diet improved performance in short-term memory tasks that rely on novelty exploration during adolescence (T-maze; spontaneous alternation 87% in concept-fed mice compared with 74% in mice fed control diet; P < 0.05) and adulthood (novel object recognition; preference index 0.48 in concept-fed mice compared with 0.05 in control-fed mice; P < 0.05). Cognitive performance in long-term memory tasks, however, was unaffected by diet. Brain phospholipid composition at P102 was not different between diet groups. Exposure to a diet with lipids mimicking more closely the structure and composition of lipids in breast milk improved specific cognitive behaviors in mice. These data suggest that lipid structure should be considered as a relevant target to improve dietary lipid quality in infant milk formulas. © 2016 American Society for Nutrition.

  9. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Arráez-Román, David; Hettinga, Kasper

    2017-01-17

    Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed.

  10. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products

    PubMed Central

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Arráez-Román, David; Hettinga, Kasper

    2017-01-01

    Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed. PMID:28106745

  11. Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Lampe, Joshua W; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B

    2015-10-01

    Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a substantial increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation.

  12. Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation

    PubMed Central

    Kim, Junhwan; Lampe, Joshua W.; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B.

    2015-01-01

    Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a moderate increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation. PMID:26160279

  13. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    PubMed

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-03

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.

  14. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemicalmore » composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.« less

  15. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids.

    PubMed

    Hauff, Simone; Vetter, Walter

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was approximately 90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC(eq)) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream

  16. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    PubMed

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  17. Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation.

    PubMed

    Park, Minsung; Shin, Sungchul; Cheng, Jie; Hyun, Jinho

    2017-02-20

    We describe the nanocomposite membrane for cell encapsulation using nanocelluose hydrogels. One of the surfaces of bacterial cellulose (BC) pellicles was coated with collagen to enhance cell adhesion and the opposite side of the BC pellicles was coated with alginate to protect transplanted cells from immune rejection by the reduced pore size of the composite membrane. The morphology of nanocomposite membrane was observed by scanning electron microscopy and the permeability of the membrane was estimated by the release test using different molecular weights of polymer solution. The nanocomposite membrane was permeable to small molecules but impermeable to large molecules such as IgG antibodies inferring the potential use in cell implantation. In addition, the BC-based nanocomposite membrane showed a superior mechanical property due to the incorporation of compared with alginate membranes. The cells attached efficiently to the surface of BC composite membranes with a high level of cell viability as well as bioactivity. Cells grown on the BC composite membrane kit released dopamine freely to the medium through the membrane, which showed that the BC composite membrane would be a promising cell encapsulation material in implantation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mechanics, morphology, and mobility in stratum corneum membranes

    NASA Astrophysics Data System (ADS)

    Olmsted, Peter; Das, Chinmay; Noro, Massimo

    2012-02-01

    The stratum corneum is the outermost layer of skin, and serves as a protective barrier against external agents, and to control moisture. It comprises keratin bodies (corneocytes) embedded in a matrix of lipid bilayers. Unlike the more widely studied phospholipid bilayers, the SC bilayers are typically in a gel-like state. Moreover, the SC membrane composition is radically different from more fluid counterparts: it comprises single tailed fatty acids, ceramides, and cholesterol; with many distinct ceramides possessing different lengths of tails, and always with two tails of different lengths. I will present insight from computer simulations into the morphology, mechanical properties, and diffusion (barrier) properties of these highly heterogeneous membranes. Our results provide some clue as to the design principles for the SC membrane, and is an excellent example of the use of wide polydispersity by natural systems.

  19. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas, Daniel; Xu, Kai; Sharma, Monika

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation andmore » enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.« less

  20. Does acute lead (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland?

    PubMed

    Thyrring, Jakob; Juhl, Bodil Klein; Holmstrup, Martin; Blicher, Martin E; Sejr, Mikael K

    2015-11-01

    In their natural habitats, organisms are exposed to multiple stressors. Heavy metal contamination stresses the cell membrane due to increased peroxidation of lipids. Likewise, sub-zero air temperatures potentially reduce membrane functionality in ectothermal animals. We tested if acute lead (Pb) exposure for 7 days would influence survival in intertidal blue mussels (Mytilus edulis) after exposure to realistic sub-zero air temperatures. A full factorial experiment with five tissue Pb concentrations between 0 and 3500 μg Pb/g and six sub-zero temperatures from 0 to -17 °C were used to test the hypothesis that sub-lethal effects of Pb may increase the lethality caused by freezing in blue mussels exposed to temperatures simulating Greenland winter conditions. We found a significant effect of temperature on mortality. However, the short-term exposure to Pb did not result in any effects of Pb, nor did we find interactions between Pb and temperature. We analysed the relative abundance of major phospholipid fatty acids (PLFAs) in the gill tissue, but we found no significant effect of Pb tissue concentration on PLFA composition. Results suggest that Pb accumulation has limited effects on freeze tolerance and does not induce membrane damage in terms of persistent lipid peroxidation.

  1. TiO2/bi A-SPAES(Ds 1.0) composite membranes for proton exchange membrane in direct methanol fuel cell (DMFC).

    PubMed

    Zhang, Ni; Zhong, Chuanqing; Xie, Bing; Liu, Huiling; Wang, Xingzu

    2014-09-01

    A series of TiO2/bi A-SPAES(Ds 1.0) composite membranes with various contents of nano-sized TiO2 particles were prepared through sol-gel method. Scanning electron microscopy (SEM) images indicated the TiO2 particles were well dispersed within polymer matrix. These membranes were used for proton exchange membrane (PEM) for performance evaluation in direct methanol fuel cell (DMFC). These composite membranes showed good thermal stability and mechanical strength. It was found that the water uptake of these membranes enhanced with the TiO2 amount increasing in these composite membranes. Meanwhile, the introduction of TiO2 particles increased the proton conductivity and reduced the methanol permeability. The proton conductivities of these composite membranes with 8% TiO2 particles (0.120 S/cm and 0.128 S/cm) were higher than those of Nafion 117 membrane (0.114 S/cm and 0.117 S/cm) at 80 degrees C and 100 degrees C. Specially, the methanol diffusion coefficient (1.2 x 10(-7) cm2/s) of the composite membrane with 8% TiO2 content was much lower than that of Nafion 117 membrane (2.1 x 10(-6) cm2/s). As a result, the TiO2/bi A-SPAES composite membrane was considered as a promising material for PEM in DMFC.

  2. Electrostatic control of phospholipid polymorphism.

    PubMed

    Tarahovsky, Y S; Arsenault, A L; MacDonald, R C; McIntosh, T J; Epand, R M

    2000-12-01

    A regular progression of polymorphic phase behavior was observed for mixtures of the anionic phospholipid, cardiolipin, and the cationic phospholipid derivative, 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine. As revealed by freeze-fracture electron microscopy and small-angle x-ray diffraction, whereas the two lipids separately assume only lamellar phases, their mixtures exhibit a symmetrical (depending on charge ratio and not polarity) sequence of nonlamellar phases. The inverted hexagonal phase, H(II,) formed from equimolar mixtures of the two lipids, i.e., at net charge neutrality (charge ratio (CR((+/-))) = 1:1). When one type of lipid was in significant excess (CR((+/-)) = 2:1 or CR((+/-)) = 1:2), a bicontinuous cubic structure was observed. These cubic phases were very similar to those sometimes present in cellular organelles that contain cardiolipin. Increasing the excess of cationic or anionic charge to CR((+/-)) = 4:1 or CR((+/-)) = 1:4 led to the appearance of membrane bilayers with numerous interlamellar contacts, i.e., sponge structures. It is evident that interactions between cationic and anionic moieties can influence the packing of polar heads and hence control polymorphic phase transitions. The facile isothermal, polymorphic interconversion of these lipids may have important biological and technical implications.

  3. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath)

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1992-01-01

    Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 degrees C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the delta 9, delta 10 and delta 11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 degrees C cells and the lowest in 50 degrees C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.

  4. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath)

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1992-01-01

    Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the Delta9, Delta10, and Delta11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 C cells and the lowest in 50 C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.

  5. Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.

    PubMed

    Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin

    2017-04-26

    Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pK a (∼3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ∼33 °C) provide the composite membranes with great thermoresponsive characteristics. The microstructures, permeability performances, and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.

  6. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity.

    PubMed

    Brignac-Huber, Lauren M; Park, Ji Won; Reed, James R; Backes, Wayne L

    2016-12-01

    Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Evidence of femtosecond-laser pulse induced cell membrane nanosurgery

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.

    2017-02-01

    The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  8. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    NASA Astrophysics Data System (ADS)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  9. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing.

    PubMed

    Zheng, Zhifang; Liu, Yishu; Huang, Wenhua; Mo, Yunfei; Lan, Yong; Guo, Rui; Cheng, Biao

    2018-04-13

    Diabetic foot ulcers (DFUs) are a threat to human health and can lead to amputation and even death. Recently neurotensin (NT), an inflammatory modulator in wound healing, was found to be beneficial for diabetic wound healing. As we demonstrated previously, polylactide-polyglycolide (PLGA) and cellulose nanocrystals (CNCs) (PLGA/CNC) nanofiber membranes show good cytocompatibility and facilitate fibroblast adhesion, spreading and proliferation. PLGA/CNC nanofiber membranes are novel materials that have not been used previously as NT carriers in diabetic wounds. This study aims to explore the therapeutic efficacy and possible mechanisms of NT-loaded PLGA/CNC nanofiber membranes in full-thickness skin wounds in spontaneously diabetic mice. The results showed that NT could be sustained released from NT-loaded PLGA/CNC composite nanofiber membranes for 2 weeks. NT-loaded PLGA/CNC composite nanofiber membranes induced more rapid healing than other control groups. After NT exposure, the histological scores of the epidermal and dermal regeneration and the ratios of the fibrotic area to the whole area were increased. NT-loaded PLGA/CNC composite nanofiber membranes also decreased the expressions of the inflammatory cytokines IL-1β and IL-6. These results suggest that NT-loaded PLGA/CNC composite nanofiber membranes for sustained delivery of NT should effectively promote tissue regeneration for the treatment of DFUs.

  10. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    PubMed

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  11. Surface Properties and Permeability of Poly(Vinylidene Fluoride)-Clays (PVDF/Clays) Composite Membranes

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Ahdiat, M.; Simamora, A.; Pratiwi, W.; Radiman, C. L.; Wahyuningrum, D.

    2017-07-01

    Surface properties are important factors that determine the performance of ultrafiltration membranes. This study aimed to investigate the effects of clay addition on the surface properties and membrane permeability of PVDF (poly-vinylidene fluoride) membranes. Three types of clay with different particle size were used in this study, namely montmorillonite-MMT, bentonite-BNT and cloisite 15A-CLS. The PVDF-clay composite membranes were prepared by phase inversion method using PEG as additive. The hydrophobicity of membrane surface was characterized by contact angle. The membrane permeability was determined by dead- end ultrafiltration with a trans-membrane pressure of 2 bars. In contact angle measurement, water contact angle of composite membranes is higher than PVDF membrane. The addition of clays decreased water flux but increased of Dextran rejection. The PVDF-BNT composite membranes reach highest Dextran rejection value of about 93%. The type and particle size of clay affected the hydrophobicity of membrane surface and determined the resulting membrane structure as well as the membrane performance.

  12. Chemistry of phospholipid oxidation.

    PubMed

    Reis, Ana; Spickett, Corinne M

    2012-10-01

    The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids

  13. Differential affinities of MinD and MinE to anionic phospholipid influence Min Patterning dynamics in vitro

    PubMed Central

    Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Mizuuchi, Kiyoshi

    2014-01-01

    The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning. PMID:24930948

  14. Phospholipid transfer activities in toad oocytes and developing embryos. [Bufo arenarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusinol, A.; Salomon, R.A.; Bloj, B.

    1987-01-01

    The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing /sup 14/C-labeled phospholipids and /sup 3/H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily aftermore » fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth.« less

  15. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    PubMed Central

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  16. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review

    PubMed Central

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-01-01

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined. PMID:28335452

  17. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review.

    PubMed

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-03-18

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  18. Development of composite membrane materials for fuel cells

    NASA Astrophysics Data System (ADS)

    Lebedeva, O. V.; Chesnokova, A. N.; Pozhidaev, Yu N.; Maksimenko, S. D.; Malakhova, E. A.; Raskulova, T. V.

    2018-03-01

    This study is devoted to the development and investigation of composite membrane materials for fuel cells. Proton conductive membranes consisting of silica and various low- and high-molecular organic compounds have been prepared by the sol-gel method. The synthesized membranes are characterized by proton conductivity (up to 10-2 S/cm), ion-exchange capacity (1.84-3.5 meq/g), thermal stability (260 – 400 °C), and tensile modulus (128 - 322 MPa).

  19. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  20. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  1. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  2. Anion-Conducting Polymer, Composition, and Membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  3. Plant cell plasma membrane structure and properties under clinostatting

    NASA Astrophysics Data System (ADS)

    Polulakh, Yu. A.; Zhadko, S. I.; Klimchuk, D. A.; Baraboy, V. A.; Alpatov, A. N.; Sytnik, K. M.

    Structural-functional organization of plasma membrane of pea roots seedling was investigated by methods of chemiluminescence, fluorescence probes, chromatography and freeze-fracture studies under normal conditions and clinostatting. Phase character of lipid peroxidation intensity was fixed. The initial phase of this process is characterized by lipid peroxidation decreasing with its next induction. The primary changes depending on free-radical mechanisms of lipid peroxidation were excellently revealed by chemiluminescence. Plasmalemma microviscosity increased on the average of 15-20 % under microgravity at the initial stages of its phenomenon. There were major changes of phosphatidilcholine and phosphatidilethanolamine contents. The total quantity of phospholipids remained rather stable. Changes of phosphatide acid concentration point to degradation and phospholipids biosynthesis. There were increases of unsaturated fatty acids mainly at the expense of linoleic and linolenic acids and also a decrease of saturated fatty acid content at the expense of palmitic and stearic acids. Unsaturation index of fatty acids increased as well. On the whole fatty acid composition was variable in comparison with phospholipids. Probably it is one of mechanisms of maintaining of microviscosity within definite limits. Considerable structural changes in organization of plasmalemma protein-lipid complex were not revealed by the freeze-fracture studies.

  4. Annexins in plasma membrane repair.

    PubMed

    Boye, Theresa Louise; Nylandsted, Jesper

    2016-10-01

    Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.

  5. Dietary safflower phospholipid reduces liver lipids in laying hens.

    PubMed

    An, B K; Nishiyama, H; Tanaka, K; Ohtani, S; Iwata, T; Tsutsumi, K; Kasai, M

    1997-05-01

    This experiment was conducted to determine the effects of dietary safflower phospholipids (crude safflower phospholipid and purified safflower phospholipid) on performance and lipid metabolism of laying hens. Sixty-week-old Single Comb White Leghorn laying hens were divided into four groups of seven birds each, and were given one of four experimental diets containing 5% beef tallow (served as a control, tallow), a mixture of safflower oil and palm oil (SP-oil), crude safflower phospholipid (Saf-PLcrude), or purified safflower phospholipid (Saf-PL) for 7 wk. Egg production ratio and daily egg mass were significantly higher in hens fed Saf-PLcrude diets than in hens of the other diet groups. There were no significant differences in egg weight among groups. Liver cholesterol and triglyceride contents were significantly decreased in all treated groups as compared with the control. The activity of hepatic 3-hydroxy-3 methylglutaryl coenzyme A reductase was the highest in hens fed the Saf-PLcrude diet. Serum esterified cholesterol concentration was decreased by feeding of SP-oil, Saf-PLcrude, or Saf-PL diets. Serum lecithin-cholesterol acyltransferase activity was highest in hens fed the tallow diet. Excreta neutral steroid excretion was significantly increased in the Saf-PLcrude or Saf-PL diet groups, although acidic steroid excretion was not affected by dietary treatments. Total cholesterol, triglyceride, and phospholipid contents in egg yolks were not different for any dietary treatments. The fatty acid compositions of egg yolks from hens fed Saf-PLcrude diets were not different with those fed the SP-oil diet, although eggs of hens fed the Saf-PL diet showed lower total polyunsaturated fatty acids. These results suggest that dietary safflower phospholipids may be a valuable ingredient to layers for reducing liver triglycerides and serum cholesterol without any adverse effects.

  6. Fabrication Procedures and Birefringence Measurements for Designing Magnetically Responsive Lanthanide Ion Chelating Phospholipid Assemblies.

    PubMed

    Isabettini, Stéphane; Baumgartner, Mirjam E; Fischer, Peter; Windhab, Erich J; Liebi, Marianne; Kuster, Simon

    2018-01-03

    Bicelles are tunable disk-like polymolecular assemblies formed from a large variety of lipid mixtures. Applications range from membrane protein structural studies by nuclear magnetic resonance (NMR) to nanotechnological developments including the formation of optically active and magnetically switchable gels. Such technologies require high control of the assembly size, magnetic response and thermal resistance. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and its lanthanide ion (Ln 3+ ) chelating phospholipid conjugate, 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA), assemble into highly magnetically responsive assemblies such as DMPC/DMPE-DTPA/Ln 3+ (molar ratio 4:1:1) bicelles. Introduction of cholesterol (Chol-OH) and steroid derivatives in the bilayer results in another set of assemblies offering unique physico-chemical properties. For a given lipid composition, the magnetic alignability is proportional to the bicelle size. The complexation of Ln 3+ results in unprecedented magnetic responses in terms of both magnitude and alignment direction. The thermo-reversible collapse of the disk-like structures into vesicles upon heating allows tailoring of the assemblies' dimensions by extrusion through membrane filters with defined pore sizes. The magnetically alignable bicelles are regenerated by cooling to 5 °C, resulting in assembly dimensions defined by the vesicle precursors. Herein, this fabrication procedure is explained and the magnetic alignability of the assemblies is quantified by birefringence measurements under a 5.5 T magnetic field. The birefringence signal, originating from the phospholipid bilayer, further enables monitoring of polymolecular changes occurring in the bilayer. This simple technique is complementary to NMR experiments that are commonly employed to characterize bicelles.

  7. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications.

    PubMed

    Liu, Hai; Gong, Chunli; Wang, Jie; Liu, Xiaoyan; Liu, Huanli; Cheng, Fan; Wang, Guangjin; Zheng, Genwen; Qin, Caiqin; Wen, Sheng

    2016-01-20

    Silica-coated carbon nanotubes (SCNTs), which were obtained by a simple sol-gel method, were utilized in preparation of chitosan/SCNTs (CS/SCNTs) composite membranes. The thermal and oxidative stability, morphology, mechanical properties, water uptake and proton conductivity of CS/SCNTs composite membranes were investigated. The insulated and hydrophilic silica layer coated on CNTs eliminates the risk of electronic short-circuiting and enhances the interaction between SCNTs and chitosan to ensure the homogenous dispersion of SCNTs, although the water uptake of CS/SCNTs membranes is reduced owing to the decrease of the effective number of the amino functional groups of chitosan. The CS/SCNTs composite membranes are superior to the pure CS membrane in thermal and oxidative stability, mechanical properties and proton conductivity. The results of this study suggest that CS/SCNTs composite membranes exhibit promising potential for practical application in proton exchange membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stable catalyst layers for hydrogen permeable composite membranes

    DOEpatents

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  9. The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet.

    PubMed

    Tannert, Astrid; Kurz, Anke; Erlemann, Karl-Rudolf; Müller, Karin; Herrmann, Andreas; Schiller, Jürgen; Töpfer-Petersen, Edda; Manjunath, Puttaswamy; Müller, Peter

    2007-04-01

    The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented.

  10. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    NASA Astrophysics Data System (ADS)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  11. Effects of analogues of ethanolamine and choline on phospholipid metabolism in rat hepatocytes

    PubMed Central

    Åkesson, Björn

    1977-01-01

    1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [14C]ethanolamine incorporation into phospholipids, whereas the incorporation of [3H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [3H]glycerol and hepatocytes, the appearance of 3H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [3H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of 3H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-14C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [14C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes. PMID:606244

  12. Effects of analogles of ethanolamine and choline on phospholipid metabolism in rat hepatocytes.

    PubMed

    Akesson, B

    1977-12-15

    1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [(14)C]ethanolamine incorporation into phospholipids, whereas the incorporation of [(3)H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [(3)H]glycerol and hepatocytes, the appearance of (3)H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [(3)H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of (3)H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-(14)C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [(14)C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes.

  13. Proton conductivity and methanol permeability of Nafion-SiO2/SiWA composite membranes

    NASA Astrophysics Data System (ADS)

    Thiam, Hui San; Chia, Min Yan; Cheah, Qiao Rou; Koo, Charlene Chai Hoon; Lai, Soon Onn; Chong, Kok Chung

    2017-04-01

    Proton exchange membranes for a direct methanol fuel cell (DMFC) were prepared by incorporating silica/silicotungstic acid (SiO2/SiWA) inorganic composite into a Nafion polymer. The effects of SiO2/SiWA content on proton conductivity of membranes were investigated by using a four-probe conductivity cell. Methanol permeability of composite membrane was also determined by using a homemade diffusion cell and gas chromatography technique. It was found that proton conductivity of the composite membranes decreased with SiO2/SiWA content, however the highest proton conductivity achieved was 11% greater than the pure recast Nafion membrane. The methanol permeability of composite membrane was much lower than that of pure recast Nafion, in a reduction of 58% which indicated a better resistance to fuel crossover. Nafion-SiO2/SiWA composite membrane showed promising advantages over pure Nafion on electrochemical properties such as proton conductivity and fuel crossover and it is potentially attractive for use in DMFC.

  14. Effect of ubiquinone Q(10) and antioxidant vitamins on free radical oxidation of phospholipids in biological membranes of rat liver.

    PubMed

    Tikhaze, A K; Konovalova, G G; Lankin, V Z; Kaminnyi, A I; Kaminnaja, V I; Ruuge, E K; Kukharchuk, V V

    2005-08-01

    We studied the effects of 30-day peroral treatment with beta-carotene, a complex of antioxidant vitamins (vitamins C and E and provitamin A) and selenium, and solubilized ubiquinone Q(10) on the antioxidant potential in rat liver (ascorbate-dependent free radical oxidation of unsaturated membrane phospholipids). beta-Carotene irrespective of the administration route increased antioxidant potential of the liver by 2-3.5 times. The complex of antioxidant vitamins and selenium increased this parameter by more than 15 times. Antiradical activity in rat liver was extremely high after administration of solubilized ubiquinone Q(10) (increase by more than by 36 times). It can be expected that reduced ubiquinone Q(10) in vivo should produce a more pronounced protective effect due to activity of the system for bioregeneration of this natural antioxidant.

  15. Use of antibody to membrane adenosine triphosphatase in the study of bacterial relatioships.

    PubMed

    Whiteside, T L; De Siervo, A J; Salton, M R

    1971-03-01

    An antiserum to Ca(2+)-activated adenosine triphosphatase from membranes of Micrococcus lysodeikticus cross-reacted in agar gels with membrane adenosine triphosphatases from other pigmented micrococci and related species. Species of Micrococcus and Sarcina showed different levels of inhibition of adenosine triphosphatase activities in heterologous reactions with antiserum. Inter- and intraspecific relationships based on the inhibition reaction were compared with an independent parameter, namely the quantitative and qualitative composition of the bacterial membrane phospholipids and fatty acids. The guanine plus cytosine contents in the deoxyribonucleic acid of the species studied correlated well with the serological cross-reactivity of adenosine triphosphatases from their membranes. The types of cross-bridges found in the peptidoglycans of these cocci were also compared with the other properties. The results suggest that an antiserum specific for a major membrane protein may be a reliable and most useful adjunct in studying bacterial serotaxonomy.

  16. Interaction of capsaicinoids with cell membrane models does not correlate with pungency of peppers

    NASA Astrophysics Data System (ADS)

    Geraldo, Vananélia P. N.; Ziglio, Analine C.; Gonçalves, Débora; Oliveira, Osvaldo N.

    2017-04-01

    Mixed monolayers were prepared using phospholipids in order to mimic cell membranes and fractions of capsaicinoids (extracted from Malagueta, Caps-M, and Bhut Jolokia, Caps-B, peppers). According to their surface-pressure isotherms and polarization-modulated infrared reflection absorption spectra (PM-IRRAS), weak molecular-level interactions were observed between Caps and phospholipids. Both Caps-M and Caps-B penetrated into the alkyl tail region of the monolayer, interacted with the phosphate group of the phospholipids and affected hydration of their Cdbnd O groups. Since the physiological activity of Caps is not governed solely by interaction with cell membranes, it should require participation of a neuronal membrane receptor, e.g. vanilloid receptor (TRPV1).

  17. Apolipoprotein L1 confers pH-switchable ion permeability to phospholipid vesicles.

    PubMed

    Bruno, Jonathan; Pozzi, Nicola; Oliva, Jonathan; Edwards, John C

    2017-11-03

    Apolipoprotein L1 (ApoL1) is a human serum protein conferring resistance to African trypanosomes, and certain ApoL1 variants increase susceptibility to some progressive kidney diseases. ApoL1 has been hypothesized to function like a pore-forming colicin and has been reported to have permeability effects on both intracellular and plasma membranes. Here, to gain insight into how ApoL1 may function in vivo , we used vesicle-based ion permeability, direct membrane association, and intrinsic fluorescence to study the activities of purified recombinant ApoL1. We found that ApoL1 confers chloride-selective permeability to preformed phospholipid vesicles and that this selectivity is strongly pH-sensitive, with maximal activity at pH 5 and little activity above pH 7. When ApoL1 and lipid were allowed to interact at low pH and were then brought to neutral pH, chloride permeability was suppressed, and potassium permeability was activated. Both chloride and potassium permeability linearly correlated with the mass of ApoL1 in the reaction mixture, and both exhibited lipid selectivity, requiring the presence of negatively charged lipids for activity. Potassium, but not chloride, permease activity required the presence of calcium ions in both the association and activation steps. Direct assessment of ApoL1-lipid associations confirmed that ApoL1 stably associates with phospholipid vesicles, requiring low pH and the presence of negatively charged phospholipids for maximal binding. Intrinsic fluorescence of ApoL1 supported the presence of a significant structural transition when ApoL1 is mixed with lipids at low pH. This pH-switchable ion-selective permeability may explain the different effects of ApoL1 reported in intracellular and plasma membrane environments. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids.

    PubMed

    Luo, Dandan; Li, Nasi; Carter, Kevin A; Lin, Cuiyan; Geng, Jumin; Shao, Shuai; Huang, Wei-Chiao; Qin, Yueling; Atilla-Gokcumen, G Ekin; Lovell, Jonathan F

    2016-06-01

    Prompt membrane permeabilization is a requisite for liposomes designed for local stimuli-induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e., 5 molar percent) of an unsaturated phospholipid, such as dioleoylphosphatidylcholine (DOPC), accelerates near infrared (NIR) light-triggered doxorubicin release in porphyrin-phospholipid (PoP) liposomes by an order of magnitude. In physiological conditions in vitro, the loaded drug can be released in a minute under NIR irradiation, while liposomes maintain serum stability otherwise. This enables rapid laser-induced drug release using remarkably low amounts of PoP (i.e., 0.3 molar percent). Light-triggered drug release occurs concomitantly with DOPC and cholesterol oxidation, as detected by mass spectrometry. In the presence of an oxygen scavenger or an antioxidant, light-triggered drug release is inhibited, suggesting that the mechanism is related to singlet oxygen mediated oxidization of unsaturated lipids. Despite the irreversible modification of lipid composition, DOPC-containing PoP liposome permeabilization is transient. Human pancreatic xenograft growth in mice is significantly delayed with a single chemophototherapy treatment following intravenous administration of 6 mg kg(-1) doxorubicin, loaded in liposomes containing small amounts of DOPC and PoP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of ammonium-based ionic liquids and 2,4-dichlorophenol on the phospholipid fatty acid composition of zebrafish embryos.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Lukasz; Luckenbach, Till; Heipieper, Hermann J

    2018-01-01

    Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA's UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals.

  20. Effects of ammonium-based ionic liquids and 2,4-dichlorophenol on the phospholipid fatty acid composition of zebrafish embryos

    PubMed Central

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Lukasz; Luckenbach, Till

    2018-01-01

    Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA’s UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals. PMID:29342167

  1. Carbon nanotube embedded PVDF membranes: Effect of solvent composition on the structural morphology for membrane distillation

    NASA Astrophysics Data System (ADS)

    Mapunda, Edgar C.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Rapid population increase, growth in industrial and agricultural sectors and global climate change have added significant pressure on conventional freshwater resources. Tapping freshwater from non-conventional water sources such as desalination and wastewater recycling is considered as sustainable alternative to the fundamental challenges of water scarcity. However, affordable and sustainable technologies need to be applied for the communities to benefit from the treatment of non-conventional water source. Membrane distillation is a potential desalination technology which can be used sustainably for this purpose. In this work multi-walled carbon nanotube embedded polyvinylidene fluoride membranes for application in membrane distillation desalination were prepared via non-solvent induced phase separation method. The casting solution was prepared using mixed solvents (N, N-dimethylacetamide and triethyl phosphate) at varying ratios to study the effect of solvent composition on membrane morphological structures. Membrane morphological features were studied using a number of techniques including scanning electron microscope, atomic force microscope, SAXSpace tensile strength analysis, membrane thickness, porosity and contact angle measurements. It was revealed that membrane hydrophobicity, thickness, tensile strength and surface roughness were increasing as the composition of N, N-dimethylacetamide in the solvent was increasing with maximum values obtained between 40 and 60% N, N-dimethylacetamide. Internal morphological structures were changing from cellular structures to short finger-like and sponge-like pores and finally to large macro void type of pores when the amount of N, N-dimethylacetamide in the solvent was changed from low to high respectively. Multi-walled carbon nanotube embedded polyvinylidene fluoride membranes of desired morphological structures and physical properties can be synthesized by regulating the composition of solvents used to prepare the

  2. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    PubMed Central

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  3. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration.

    PubMed

    Tamburaci, Sedef; Tihminlioglu, Funda

    2017-11-01

    In this study, natural silica source, diatomite, incorporated novel chitosan based composite membranes were fabricated and characterized for bone tissue engineering applications as possible bone regeneration membrane. The effect of diatomite loading on the mechanical, morphological, chemical, thermal and surface properties, wettability and in vitro cytotoxicity and cell proliferation on of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination. Results showed that incorporation of diatomite to the chitosan matrix increased the surface roughness, swelling capacity and tensile modulus of membranes. An increase of about 52% in Young's modulus was achieved for 10wt% diatomite composite membranes compared with chitosan membranes. High cell viability results were obtained with indirect extraction method. Besides, in vitro cell proliferation and ALP activity results showed that diatom incorporation significantly increased the ALP activity of Saos-2 cells cultured on chitosan membranes. The novel composite membranes prepared in the present study with tunable properties can be considered as a potential candidate as a scaffold in view of its enhanced physical & chemical properties as well as biological activities for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. NuA4 Lysine Acetyltransferase Complex Contributes to Phospholipid Homeostasis in Saccharomyces cerevisiae.

    PubMed

    Dacquay, Louis; Flint, Annika; Butcher, James; Salem, Danny; Kennedy, Michael; Kaern, Mads; Stintzi, Alain; Baetz, Kristin

    2017-06-07

    Actively proliferating cells constantly monitor and readjust their metabolic pathways to ensure the replenishment of phospholipids necessary for membrane biogenesis and intracellular trafficking. In Saccharomyces cerevisiae , multiple studies have suggested that the lysine acetyltransferase complex NuA4 plays a role in phospholipid homeostasis. For one, NuA4 mutants induce the expression of the inositol-3-phosphate synthase gene, INO1 , which leads to excessive accumulation of inositol, a key metabolite used for phospholipid biosynthesis. Additionally, NuA4 mutants also display negative genetic interactions with sec14-1 ts , a mutant of a lipid-binding gene responsible for phospholipid remodeling of the Golgi. Here, using a combination of genetics and transcriptional profiling, we explore the connections between NuA4, inositol, and Sec14 Surprisingly, we found that NuA4 mutants did not suppress but rather exacerbated the growth defects of sec14-1 ts under inositol-depleted conditions. Transcriptome studies reveal that while loss of the NuA4 subunit EAF1 in sec14-1 ts does derepress INO1 expression, it does not derepress all inositol/choline-responsive phospholipid genes, suggesting that the impact of Eaf1 on phospholipid homeostasis extends beyond inositol biosynthesis. In fact, we find that NuA4 mutants have impaired lipid droplet levels and through genetic and chemical approaches, we determine that the genetic interaction between sec14-1 ts and NuA4 mutants potentially reflects a role for NuA4 in fatty acid biosynthesis. Altogether, our work identifies a new role for NuA4 in phospholipid homeostasis. Copyright © 2017 Dacquay et al.

  5. Effects of photooxidation on membrane integrity in Salix nigra seeds

    PubMed Central

    Roqueiro, Gonzalo; Facorro, Graciela B.; Huarte, Mónica G.; Rubín de Celis, Emilio; García, Fernando; Maldonado, Sara; Maroder, Horacio

    2010-01-01

    Background and Aims Salix nigra seeds are desiccation-tolerant, as are orthodox seeds, although in contrast to other orthodox seeds they lose viability in a few weeks at room temperature. They also differ in that the chloroplasts of the embryo tissues conserve their chlorophyll and endomembranes. The aim of this paper was to investigate the role of chlorophyll in seed deterioration. Methods Seeds were aged at different light intensities and atmospheric conditions. Mean germination time and normal and total germination were evaluated. The formation of free radicals was assessed using electronic spin resonance spectroscopy, and changes in the fatty acid composition from phospholipids, galactolipids and triglycerides using gas–liquid chromatography. Membrane integrity was studied with electronic spin resonance spin probe techniques, electrolyte leakage and transmission electron microscopy. Key Results Light and oxygen played an important role in free-radical generation, causing a decrease in normal germination and an increase in mean germination time. Both indices were associated with a decrease in polyunsaturated fatty acids derived from membrane lipids as phospholipids and galactolipids. The detection of damage in thylakoid membranes and an increase in plasmalemma permeability were consistent with the decrease in both types of lipids. Triglycerides remained unchanged. Light-induced damage began in outermost tissues and spread inwards, decreasing normal germination. Conclusions Salix nigra seeds were very susceptible to photooxidation. The thylakoid membranes appeared to be the first target of the photooxidative process since there were large decreases in galactolipids and both these lipids and the activated chlorophyll are contiguous in the structure of that membrane. Changes in normal germination and mean germination time could be explained by the deteriorative effects of oxidation. PMID:20338949

  6. Evidence for the Phospholipid Sponge Effect as the Biocidal Mechanism in Surface-Bound Polyquaternary Ammonium Coatings with Variable Cross-Linking Density.

    PubMed

    Gao, Jing; White, Evan M; Liu, Qiaohong; Locklin, Jason

    2017-03-01

    Poly quaternary "-oniums" derived from polyethylenimine (PEI), poly(vinyl-N-alkylpyridinium), or chitosan belong to a class of cationic polymers that are efficient antimicrobial agents. When dissolved in solution, the positively charged polycations are able to displace the divalent cations of the cellular phospholipid bilayer and disrupt the ionic cross-links and structural integrity of the membrane. However, when immobilized to a surface where confinement limits diffusion, poly -oniums still show excellent antimicrobial activity, which implies a different biocidal mode of action. Recently, a proposed mechanism, named phospholipid sponge effect, suggested that surface-bound polycationic networks are capable of recruiting negatively charged phospholipids out of the bacterial cell membrane and sequestering them within the polymer matrix.1 However, there has been insufficient evidence to support this hypothesis. In this study, a surface-bound N,N-dodecyl methyl-co-N,N-methylbenzophenone methyl quaternary PEI (DMBQPEI) was prepared to verify the phospholipid sponge effect. By tuning the irradiation time, the cross-linking densities of surface-bound DMBQPEI films were mediated. The modulus of films was measured by PeakForce Quantitative Nanomechanical Mapping (QNM) to indicate the cross-linking density variation with increasing irradiation time. A negative correlation between the film cross-linking density and the absorption of a negatively charged phospholipid (DPhPG) was observed, but no such correlations were observed with a neutral phospholipid (DPhPC), which strongly supported the action of anionic phospholipid suction proposed in the lipid sponge effect. Moreover, the killing efficiency toward S. aureus and E. coli was inversely affected by the cross-linking density of the films, providing evidence for the phospholipid sponge effect. The relationship between killing efficiency and film cross-linking density is discussed.

  7. Influence of oligomerization state on the structural properties of invasion plasmid antigen B from Shigella flexneri in the presence and absence of phospholipid membranes.

    PubMed

    Adam, Philip R; Dickenson, Nicholas E; Greenwood, Jamie C; Picking, Wendy L; Picking, William D

    2014-11-01

    Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D lies at the nascent needle tip and invasion plasmid antigen B (IpaB) is recruited into the needle tip complex on exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB's oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association. © 2014 Wiley Periodicals, Inc.

  8. SARS E protein in phospholipid bilayers: an anomalous X-ray reflectivity study

    NASA Astrophysics Data System (ADS)

    Khattari, Z.; Brotons, G.; Arbely, E.; Arkin, I. T.; Metzger, T. H.; Salditt, T.

    2005-02-01

    We report on an anomalous X-ray reflectivity study to locate a labelled residue of a membrane protein with respect to the lipid bilayer. From such experiments, important constraints on the protein or peptide conformation can be derived. Specifically, our aim is to localize an iodine-labelled phenylalanine in the SARS E protein, incorporated in DMPC phospholipid bilayers, which are deposited in the form of thick multilamellar stacks on silicon surfaces. Here, we discuss the experimental aspects and the difficulties associated with the Fourier synthesis analysis that gives the electron density profile of the membranes.

  9. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    PubMed

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Perforin Rapidly Induces Plasma Membrane Phospholipid Flip-Flop

    PubMed Central

    Metkar, Sunil S.; Wang, Baikun; Catalan, Elena; Anderluh, Gregor; Gilbert, Robert J. C.; Pardo, Julian; Froelich, Christopher J.

    2011-01-01

    The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes) from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN) and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm) when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB) treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells. PMID:21931672

  11. Use of Antibody to Membrane Adenosine Triphosphatase in the Study of Bacterial Relationships1

    PubMed Central

    Whiteside, Theresa L.; De Siervo, August J.; Salton, Milton R. J.

    1971-01-01

    An antiserum to Ca2+-activated adenosine triphosphatase from membranes of Micrococcus lysodeikticus cross-reacted in agar gels with membrane adenosine triphosphatases from other pigmented micrococci and related species. Species of Micrococcus and Sarcina showed different levels of inhibition of adenosine triphosphatase activities in heterologous reactions with antiserum. Inter- and intraspecific relationships based on the inhibition reaction were compared with an independent parameter, namely the quantitative and qualitative composition of the bacterial membrane phospholipids and fatty acids. The guanine plus cytosine contents in the deoxyribonucleic acid of the species studied correlated well with the serological cross-reactivity of adenosine triphosphatases from their membranes. The types of cross-bridges found in the peptidoglycans of these cocci were also compared with the other properties. The results suggest that an antiserum specific for a major membrane protein may be a reliable and most useful adjunct in studying bacterial serotaxonomy. Images PMID:4323299

  12. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    PubMed

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester.

    PubMed

    Zhao, Yadong; Moser, Carl; Henriksson, Gunnar

    2018-05-25

    A series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure. Thus, the produced glycerol citrate polyester improved the transparency of the tunicate cellulose membrane while the cellulose membrane provided rigidity and strength to the prepared composite. The interaction between cellulose and polyester afforded the composites high thermal stability. Additionally, the composites were optically transparent and their shape, strength, and flexibility were adjustable by varying the formulation and reaction conditions. These composites of cellulose, glycerol, and citric acid are renewable and biocompatible and have many potential applications as structural materials in packaging, flexible displays, and solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cutin and suberin monomers are membrane perturbants.

    PubMed

    Douliez, Jean-Paul

    2004-03-15

    The interaction between cutin and suberin monomers, i.e., omega -hydroxylpalmitic acid, alpha, omega -hexadecanedioic acid, alpha, omega --hexadecanediol, 12-hydroxylstearic acid, and phospholipid vesicles biomimicking the lipid structure of plant cell membranes has been studied by optical and transmission electron microscopy, quasielastic light scattering, differential scanning calorimetry, and (31)P solid-state NMR. Monomers were shown to penetrate model membranes until a molar ratio of 30%, modulating their gel to fluid-phase transition, after which monomer crystals also formed in solution. These monomers induced a decrease of the phospholipid vesicle size from several micrometers to about 300 nm. The biological implications of these findings are discussed.

  15. Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery.

    PubMed

    Kim, Byung Guk; Han, Tae Hee; Cho, Chang Gi

    2014-12-01

    Nafion is the most frequently used as the membrane material due to its good proton conductivity, and excellent chemical and mechanical stabilities. But it is known to have poor barrier property due to its well-developed water channels. In order to overcome this drawback, graphene oxide (GO) derivatives were introduced for Nafion composite membranes. Sulfonated graphene oxide (sGO) was prepared from GO. Both sGO and GO were treated each with phenyl isocyanate and transformed into corresponding isGO and iGO in order to promote miscibility with Nafion. Then composite membranes were obtained, and the adaptability as a membrane for vanadium redox flow battery (VRFB) was investigated in terms of proton conductivity and vanadium permeability. Compared to a pristine Nafion, proton conductivities of both isGO/Nafion and iGO/Nafion membranes showed less temperature sensitivity. Both membranes also showed quite lower vanadium permeability at room temperature. Selectivity of the membrane was the highest for isGO/Nafion and the lowest for the pristine Nafion.

  16. Activity of essential phospholipids (EPL) from soybean in liver diseases.

    PubMed

    Gundermann, Karl-Josef; Kuenker, Ann; Kuntz, Erwin; Droździk, Marek

    2011-01-01

    Essential phospholipids (EPL) contain a highly purified extract of polyenylphosphatidylcholine (PPC) molecules from soybean. The main active ingredient is 1,2-dilinoleoylphosphatidylcholine (DLPC), which differentiates it from other phospholipids, lecithins, or extracts from other sources. Although EPLis widely used in liver diseases of various origins, its mode of action and pharmacological and clinical evidence of its efficacy have not yet been concisely reviewed. This paper critically summarizes experimental and clinical results. With regard to in-vitro and animal tests, EPL influenced membrane-dependent cellular functions and showed anti-oxidant, anti-inflammatory, anti-fibrotic, apoptosis-modulating, regenerative, membrane-repairing and -protective, cell-signaling and receptor-influencing, as well as lipid-regulating effects in intoxication models with chemicals or drugs. Clinical studies, primarily from European and Asian countries, have shown improvement in subjective symptoms; clinical, biochemical and imaging findings; and histology in liver indications such as fatty liver of different origin, drug hepatotoxicity, and adjuvant in chronic viral hepatitis and hepatic coma. The available studies characterize EPL as evidence-based medicine, although further long-term controlled clinical trials are required to precisely determine its benefit for alleviating symptoms, improving well-being, inducing histological changes and slowing the progression of liver disease. EPL-related relevant side effects were not observed.

  17. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment.

    PubMed

    Larsen, Jannik B; Kennard, Celeste; Pedersen, Søren L; Jensen, Knud J; Uline, Mark J; Hatzakis, Nikos S; Stamou, Dimitrios

    2017-09-19

    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC than POPC membranes, but inversely higher on curved POPC than DOPC membranes. This variation in the binding to both planar and curved membranes leads to a net increase in the recruitment by membrane curvature of tN-Ras when reducing the acyl chain saturation state. Additionally, we found increased recruitment by membrane curvature of tN-Ras when substituting PC for PE, and when decreasing acyl chain length from 14 to 12 carbons (DMPC versus DLPC). However, these variations in recruitment ability had different origins, with the headgroup size primarily influencing tN-Ras binding to planar membranes whereas the change in acyl chain length primarily affected binding to curved membranes. Molecular field theory calculations recapitulated these findings and revealed lateral pressure as an underlying biophysical mechanism dictating how curvature and composition synergize to modulate recruitment of lipidated proteins. Our findings suggest that the different compositions of cellular compartments could modulate the potency of membrane curvature to recruit lipidated proteins and

  18. Biochar composite membrane for high performance pollutant management: Fabrication, structural characteristics and synergistic mechanisms.

    PubMed

    Ghaffar, Abdul; Zhu, Xiaoying; Chen, Baoliang

    2018-02-01

    Biochar, a natural sourced carbon-rich material, has been used commonly in particle shape for carbon sequestration, soil fertility and environmental remediation. Here, we report a facile approach to fabricate freestanding biochar composite membranes for the first time. Wood biochars pyrolyzed at 300 °C and 700 °C were blended with polyvinylidene fluoride (PVdF) in three percentages (10%, 30% and 50%) to construct membranes through thermal phase inversion process. The resultant biochar composite membranes possess high mechanical strength and porous structure with uniform distribution of biochar particles throughout the membrane surface and cross-section. The membrane pure water flux was increased with B300 content (4825-5411 ± 21 L m -2 h -1 ) and B700 content (5823-6895 ± 72 L m -2 h -1 ). The membranes with B300 were more hydrophilic with higher surface free energy (58.84-60.31 mJ m -2 ) in comparison to B700 (56.32-51.91 mJ m -2 ). The biochar composite membranes indicated promising adsorption capacities (47-187 mg g -1 ) to Rhodamine B (RhB) dye. The biochar membranes also exhibited high retention (74-93%) for E. coli bacterial suspensions through filtration. After simple physical cleaning, both the adsorption and sieving capabilities of the biochar composite membranes could be effectively recovered. Synergistic mechanisms of biochar/PVdF in the composite membrane are proposed to elucidate the high performance of the membrane in pollutant management. The multifunctional biochar composite membrane not only effectively prevent the problems caused by directly using biochar particle as sorbent but also can be produced in large scale, indicating great potential for practical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2011-02-21

    Membrane proteins are vital type of proteins that serve as channels, receptors, and energy transducers in a cell. Prediction of membrane protein types is an important research area in bioinformatics. Knowledge of membrane protein types provides some valuable information for predicting novel example of the membrane protein types. However, classification of membrane protein types can be both time consuming and susceptible to errors due to the inherent similarity of membrane protein types. In this paper, neural networks based membrane protein type prediction system is proposed. Composite protein sequence representation (CPSR) is used to extract the features of a protein sequence, which includes seven feature sets; amino acid composition, sequence length, 2 gram exchange group frequency, hydrophobic group, electronic group, sum of hydrophobicity, and R-group. Principal component analysis is then employed to reduce the dimensionality of the feature vector. The probabilistic neural network (PNN), generalized regression neural network, and support vector machine (SVM) are used as classifiers. A high success rate of 86.01% is obtained using SVM for the jackknife test. In case of independent dataset test, PNN yields the highest accuracy of 95.73%. These classifiers exhibit improved performance using other performance measures such as sensitivity, specificity, Mathew's correlation coefficient, and F-measure. The experimental results show that the prediction performance of the proposed scheme for classifying membrane protein types is the best reported, so far. This performance improvement may largely be credited to the learning capabilities of neural networks and the composite feature extraction strategy, which exploits seven different properties of protein sequences. The proposed Mem-Predictor can be accessed at http://111.68.99.218/Mem-Predictor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed

    Stahl, U.; Banas, A.; Stymne, S.

    1995-03-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization.

  1. Cholesterol Bilayer Domains in the Eye Lens Health: A Review.

    PubMed

    Widomska, Justyna; Subczynski, Witold K; Mainali, Laxman; Raguz, Marija

    2017-12-01

    The most unique biochemical characteristic of the eye lens fiber cell plasma membrane is its extremely high cholesterol content, the need for which is still unclear. It is evident, however, that the disturbance of Chol homeostasis may result in damages associated with cataracts. Electron paramagnetic resonance methods allow discrimination of two types of lipid domains in model membranes overloaded with Chol, namely, phospholipid-cholesterol domains and pure Chol bilayer domains. These domains are also detected in human lens lipid membranes prepared from the total lipids extracted from lens cortices and nuclei of donors from different age groups. Independent of the age-related changes in phospholipid composition, the physical properties of phospholipid-Chol domains remain the same for all age groups and are practically identical for cortical and nuclear membranes. The presence of Chol bilayer domains in these membranes provides a buffering capacity for cholesterol concentration in the surrounding phospholipid-Chol domains, keeping it at a constant saturating level and thus keeping the physical properties of the membrane consistent with and independent of changes in phospholipid composition. It seems that the presence of Chol bilayer domains plays an integral role in the regulation of cholesterol-dependent processes in fiber cell plasm membranes and in the maintenance of fiber cell membrane homeostasis.

  2. Modulation of receptor-mediated gonadotropin action in rat testes by dietary fat.

    PubMed

    Sebokova, E; Garg, M L; Clandinin, M T

    1988-06-01

    The effect of feeding diets enriched with 18:2 omega 6, 18:3 omega 3, or saturated fatty acids on lipid composition and receptor-mediated action of luteinizing hormone/human chorionic gonadotropin (LH/hCG) in rat testicular plasma membranes was investigated. Linoleic and alpha-linolenic acid treatments reduced total phospholipid and cholesterol content of the testicular plasma membrane and altered membrane phospholipid composition. Change in phospholipid and cholesterol content after feeding the polyunsaturated fats decreased cholesterol to phospholipid ratios and binding capacity of the LH/hCG receptor in the testicular plasma membrane. LH-stimulated adenylate cyclase activity was decreased in animals fed the linolenic acid-rich diet. NaF-stimulated adenylate cyclase activity was decreased in animals fed diets high in either polyunsaturated fatty acid. Decreased plasma membrane LH/hCG receptor content was associated with decreased testosterone production in Leydig cells in response to LH in the linolenic acid-fed group. It is suggested that change in cholesterol-to-phospholipid ratios alters the physical properties of testicular plasma membranes in a manner that influences accessibility of LH/hCG receptors in testicular tissue.

  3. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.

    PubMed Central

    Andersen, O S; Feldberg, S; Nakadomari, H; Levy, S; McLaughlin, S

    1978-01-01

    We have shown that the absorption of tetraphenylborate into black lipid membranes formed from either bacterial phosphatidylethanolamine or glycerolmonooleate produces concentration-dependent changes in the electrostatic potential between the membrane interior and the bulk aqueous phases. These potential changes were studied by a variety of techniques: voltage clamp, charge pulse, and "probe" measurements on black lipid membranes; electrophroetic mobility measurements on phospholipid vesicles; and surface potential measurements on phospholipid monolayers. The magnitude of the potential changes indicates that tetraphenylborate absorbs into a region of the membrane with a low dielectric constant, where it produces substantial boundary potentials, as first suggested by Markin et al. (1971). Many features of our data can be explained by a simple three-capacitor model, which we develop in a self-consistent manner. Some discrepancies between our data and the simple model suggest that discrete charge phenomena may be important within these thin membranes. PMID:620077

  4. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.

    PubMed

    Bui, Nhu-Ngoc; McCutcheon, Jeffrey R

    2013-02-05

    Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.

  5. Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes.

    PubMed

    Marianecci, Carlotta; Rinaldi, Federica; Di Marzio, Luisa; Pozzi, Daniela; Caracciolo, Giulio; Manno, Daniela; Dini, Luciana; Paolino, Donatella; Celia, Christian; Carafa, Maria

    2013-04-01

    Surfactant nanocarriers have received considerable attention in the last several years as interesting alternative to classic liposomes. Different pH-sensitive vesicular colloidal carriers based on Tween 20 derivatives, obtained after functionalization of the head groups of the surfactant with natural, or simply modified, amino acids, were proposed as drug nanocarriers. Dynamic light scattering, Small Angle X-ray Scattering, Trasmission Electron Microscopy and fluorescence studies were used for the physico-chemical characterization of vesicles and mean size, size distribution, zeta potential, vesicle morphology and bilayer properties were evaluated. The pH-sensitivity and the stability of formulations, in absence and in presence of foetal bovine serum, were also evaluated. Moreover, the contact between surfactant vesicles and liposomes designed to model the cellular membrane was investigated by fluorescence studies to preliminary explore the potential interaction between vesicle and cell membranes. Experimental findings showed that physico-chemical and technological features of pH-sensitive vesicles were influenced by the composition of the carriers. Furthermore, proposed carriers are able to interact with mimetic cell membrane and it is reasonable to attribute the observed differences in interaction to the architectural/structural properties of Tween 20 derivatives. The findings reported in this investigation showed that a deep and extensive physico-chemical characterization of the carrier is a fundamental step, according to the evidence that the knowledge of nanocarrier properties is necessary to translate its potentiality to in vitro/in vivo applications.

  6. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, PT; Voss, BA; Wiesenauer, EF

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gasmore » permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.« less

  7. Method of making sulfur-resistant composite metal membranes

    DOEpatents

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  8. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels.

    PubMed

    Itel, Fabian; Al-Samir, Samer; Öberg, Fredrik; Chami, Mohamed; Kumar, Manish; Supuran, Claudiu T; Deen, Peter M T; Meier, Wolfgang; Hedfalk, Kristina; Gros, Gerolf; Endeward, Volker

    2012-12-01

    Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.g., MDCK and tsA201 cells, in fact possess an unexpectedly low CO(2) permeability (P(CO2)) of ∼0.01 cm/s, which is 2 orders of magnitude lower than the P(CO2) of pure planar phospholipid bilayers (∼1 cm/s). Phospholipid vesicles enriched with similar amounts of cholesterol also exhibit P(CO2) ≈ 0.01 cm/s, identifying cholesterol as the major determinant of membrane P(CO2). This is confirmed by the demonstration that MDCK cells depleted of or enriched with membrane cholesterol show dramatic increases or decreases in P(CO2), respectively. We demonstrate, furthermore, that reconstitution of human AQP-1 into cholesterol-containing vesicles, as well as expression of human AQP-1 in MDCK cells, leads to drastic increases in P(CO2), indicating that gas channels are of high functional significance for gas transfer across membranes of low intrinsic gas permeability.

  9. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  10. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity.

    PubMed

    Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra

    2012-07-01

    The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from

  11. Transport and metabolism of glycerophosphodiesters produced through phospholipid deacylation.

    PubMed

    Patton-Vogt, Jana

    2007-03-01

    Phospholipid deacylation results in the formation of glycerophosphodiesters and free fatty acids. In Saccharomyces cerevisiae, four gene products with phospholipase B (deacylating) activity have been characterized (PLB1, PLB2, PLB3, NTE1), and those activities account for most, if not all, of the glycerophosphodiester production observed to date. The glycerophosphodiesters themselves are hydrolyzed into glycerol-3-phosphate and the corresponding alcohol by glycerophosphodiester phosphodiesterases. Although only one glycerophosphodiester phosphodiesterase-encoding gene (GDE1) has been characterized in S. cerevisiae, others certainly exist. Both internal and external glycerophosphodiesters (primarily glycerophosphocholine and glycerophosphoinositol) are formed as a result of phospholipid turnover in S. cerevisiae. A permease encoded by the GIT1 gene imports extracellular glycerophosphodiesters across the plasma membrane, where their hydrolytic products can provide crucial nutrients such as inositol, choline, and phosphate to the cell. The importance of this metabolic pathway in various aspects of S. cerevisiae cell physiology is being explored.

  12. Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hongjun; Lee, Sunghwan; Kim, Suran

    2016-11-01

    Interest has been growing in direct ethanol fuel cells (DEFCs) due to their non-toxicity, low cost and potential contribution to energy issues in third world countries. A reduction in fuel cross-over is of key importance to enhance the performance of DEFCs that operate at low temperatures (<100 °C). We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on the ethanol-crossover for DEFC application. A set of PWANafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns and permeability were systematically characterized. The significant reductionmore » in ethanol-crossover was observed with increasing PWA concentration in PWA-Nafion membranes, which was mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. These PWA-Nafion composites were implemented in proto-type DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.« less

  13. Protection by phospholipids of Schistosoma mansoni schistosomula against the action of cytotoxic antibodies and complement.

    PubMed

    Billecocq, A

    1987-09-01

    Schistosoma mansoni schistosomula cultured in the presence of phospholipids showed a decreased sensitivity to the lethal complement-mediated action of anti-schistosome antibodies. Phosphatidyl choline, sphingomyelin and phosphatidyl ethanolamine had a protective action on the schistosomula transformed in vitro by passage through the skin or by a mechanical procedure. Phosphatidyl choline acted regardless of its fatty acid composition. Phosphatidyl serine and phosphatidic acid did not protect. Thus, it appears that phospholipids can play a role in parasite resistance to immune attack by cytotoxic antibodies and complement, and that this role is specific to certain phospholipid types.

  14. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells.

    PubMed

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-19

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti 3 C 2 T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti 3 C 2 T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ∼30% tested at 150 °C. The addition of Ti 3 C 2 T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti 3 C 2 T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young's modulus was increased by ∼150% and ∼160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  15. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  16. Gas separation by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  17. Gas separation by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  18. Novel amine-based presursor compounds and composite membranes thereof

    DOEpatents

    Lee, Eric K. L.; Tuttle, Mark E.

    1989-01-01

    Novel amine-based precursor compounds comprising the condensation products of dialkylenetriamine and alpha, beta-unsaturated acid halides are disclosed, as well as composite membranes containing such compounds, the membranes being useful in RO-type processes for desalination and the removal of low molecular weight organic compounds such as phenols and carboxylic acids.

  19. pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology.

    PubMed

    Ghazvini, Saba; Alonso, Ryan; Alhakamy, Nabil; Dhar, Prajnaparamita

    2018-01-23

    Lipid membranes, a major component of cells, are subjected to significant changes in pH depending on their location in the cell: the outer leaflet of the cell membrane is exposed to a pH of 7.4 whereas lipid membranes that make up late endosomes and lysosomes are exposed to a pH of as low as 4.4. The purpose of this study is to evaluate how changes in the environmental pH within cells alter the fluidity of phospholipid membranes. Specifically, we studied pH-induced alterations in the surface arrangement of monounsaturated lipids with zwitterionic headgroups (phosphoethanolamine (PE) and phosphocholine (PC)) that are abundant in plasma membranes as well as anionic lipids (phosphatidylserine (PS) and phosphatidylglycerol (PG)) that are abundant in inner membranes using a combination of techniques including surface tension vs area measurements, interfacial microrheology, and fluorescence/atomic force microscopy. Using an active interfacial microrheology technique, we find that phospholipids with zwitterionic headgroups show a significant increase in their surface viscosity at acidic pH. This increase in surface viscosity is also found to depend on the size of the lipid headgroup, with a smaller headgroup showing a greater increase in viscosity. The observed pH-induced increase in viscosity is also accompanied by an increase in the cohesion pressure between zwitterionic molecules at acidic pH and a decrease in the average molecular area of the lipids, as measured by fitting the surface pressure isotherms to well-established equations of state. Because fluorescent images show no change in the phase of the lipids, we attribute this change in surface viscosity to the pH-induced reorientation of the P - -N + dipoles that form part of the polar lipid headgroup, resulting in increased lipid-lipid interactions. Anionic PG headgroups do not demonstrate this pH-induced change in viscosity, suggesting that the presence of a net negative charge on the headgroup causes

  20. Membrane glycerolipid equilibrium under endoplasmic reticulum stress in Arabidopsis thaliana.

    PubMed

    Yu, Chao-Yuan; Nguyen, Van Cam; Chuang, Ling; Kanehara, Kazue

    2018-06-02

    Endoplasmic reticulum (ER) is an indispensable organelle for secretory protein synthesis as well as metabolism of phospholipids and their derivatives in eukaryotic cells. Various external and internal factors may cause an accumulation of aberrant proteins in the ER, which causes ER stress and activates cellular ER stress responses to cope with the stress. In animal research, molecular mechanisms for protein quality control upon ER stress are well documented; however, how cells maintain lipid homeostasis under ER stress is an emerging issue. The ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE), two major phospholipid classes, is important under ER stress in animal cells. However, in seed plants, no study has reported on the changes in membrane lipid content under ER stress, although a number of physiologically important environmental stresses, such as heat and salinity, induce ER stress. Here, we investigated membrane glycerolipid metabolism under ER stress in Arabidopsis. ER stress transcriptionally affected PC and PE biosynthesis pathways differentially, with no significant changes in membrane glycerolipid content. Our results suggest that higher plants maintain membrane lipid equilibrium during active transcription of phospholipid biosynthetic genes under ER stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Enhancement of proton transfer in ion channels by membrane phosphate headgroups.

    PubMed

    Wyatt, Debra L; de Godoy, Carlos Marcelo G; Cukierman, Samuel

    2009-05-14

    The transfer of protons (H+) in gramicidin (gA) channels is markedly distinct in monoglyceride and phospholipid membranes. In this study, the molecular groups that account for those differences were investigated using a new methodology. The rates of H+ transfer were measured in single gA channels reconstituted in membranes made of plain ceramides or sphingomyelins and compared to those in monoglyceride and phospholipid bilayers. Single-channel conductances to protons (gH) were significantly larger in sphingomyelin than in ceramide membranes. A novel and unsuspected finding was that H+ transfer was heavily attenuated or completely blocked in ceramide (but not in sphingomyelin) membranes in low-ionic-strength solutions. It is reasoned that H-bond dynamics at low ionic strengths between membrane ceramides and gA makes channels dysfunctional. The rate of H+ transfer in gA channels in ceramide membranes is significantly higher than that in monoglyceride bilayers. This suggests that solvation of the hydrophobic surface of gA channels by two acyl chains in ceramides stabilizes the gA channels and the water wire inside the pore, leading to an enhancement of H+ transfer in relation to that occurring in monoglyceride membranes. gH values in gA channels are similar in ceramide and monoglyceride bilayers and in sphingomyelin and phospholipid membranes. It is concluded that phospho headgroups in membranes have significant effects on the rate of H+ transfer at the membrane gA channel/solution interfaces, enhancing the entry and exit rates of protons in channels.

  2. Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation.

    PubMed

    Li, Xiong; Yu, Xufeng; Cheng, Cheng; Deng, Li; Wang, Min; Wang, Xuefen

    2015-10-07

    Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes exhibiting excellent direct contact membrane distillation (DCMD) performance were fabricated by a facile route combining the hydrophobization of silica nanoparticles (SiO2 NPs) and colloid electrospinning of the hydrophobic silica/poly(vinylidene fluoride) (PVDF) matrix. Benefiting from the utilization of SiO2 NPs with three different particle sizes, the electrospun nanofibrous membranes (ENMs) were endowed with three different delicate nanofiber morphologies and fiber diameter distribution, high porosity, and superhydrophobic property, which resulted in excellent waterproofing and breathability. Significantly, structural attributes analyses have indicated the major contributing role of fiber diameter distribution on determining the augment of permeate vapor flux through regulating mean flow pore size (MFP). Meanwhile, the extremely high liquid entry pressure of water (LEPw, 2.40 ± 0.10 bar), robust nanofiber morphology of PVDF immobilized SiO2 NPs, remarkable mechanical properties, thermal stability, and corrosion resistance endowed the as-prepared membranes with prominent desalination capability and stability for long-term MD process. The resultant choreographed PVDF/silica ENMs with optimized MFP presented an outstanding permeate vapor flux of 41.1 kg/(m(2)·h) and stable low permeate conductivity (∼2.45 μs/cm) (3.5 wt % NaCl salt feed; ΔT = 40 °C) over a DCMD test period of 24 h without membrane pores wetting detected. This result was better than those of typical commercial PVDF membranes and PVDF and modified PVDF ENMs reported so far, suggesting them as promising alternatives for MD applications.

  3. Generation and Biological Activities of Oxidized Phospholipids

    PubMed Central

    Oskolkova, Olga V.; Birukov, Konstantin G.; Levonen, Anna-Liisa; Binder, Christoph J.; Stöckl, Johannes

    2010-01-01

    Abstract Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of “modified-self” type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators. Antioxid. Redox Signal. 12, 1009–1059. PMID:19686040

  4. Insulin and adenosine regulate the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes.

    PubMed

    Kiechle, F L; Sykes, E; Artiss, J D

    1995-01-01

    Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.

  5. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  6. Impact of cholesterol on voids in phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo

    2004-12-01

    Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.

  7. Mode of Action of Membrane Perturbing Agents: Snake Venom Cardiotoxins and Phospholipases A

    DTIC Science & Technology

    1990-06-30

    with the PLA2 neurotoxins. CTXs are potent membrane perturbing agents and PLA2s hydrolyze diacylphosphoglycerides at the two position, generating two...The bee and cobra (Naja naJa) venom PLA2 enzymes readily hydrolyze biological phospholipid substrates, but are unable to penetrate membrane bilayers...Zwaal et al., 1975; Sundler et al., 1978; Fletcher et al., 1987). The inability to hydrolyze the inner phospholipids of the bilayer does not relate to

  8. The influence of TiO2 composition in LiBOB electrolyte polymer composite membrane characteristics for lithium ion batteries applications

    NASA Astrophysics Data System (ADS)

    Lestariningsih, T.; Sabrina, Q.; Wigayati, E. M.

    2018-03-01

    Characterization of the composite membrane of LiBOB electrolyte polymers made from poly (vinylidene fluoride co-hexafluororopylene) (PVdF-HFP) as the polymer, LiBOB or LiB(C2O4)2 as electrolyte salt and titanium dioxide (TiO2) as ceramic filler of three different concentrations have been done. Sample of membrane was prepared using solution casting technique. Microstructural study by SEM shows non-uniform distribution of pore over the surface of the sample. X-ray structural analysis, impedance spectroscopy, and cyclic voltammetry (CV) studies were carried out. Membrane composite polymer of LiBOB electrolyte without additional ceramic filler with composition of 70% polymer, 30% LiBOB, and 0% TiO2 has the greatest conductivity for forming amorphous phase and is compatible with material membrane composite. Meanwhile, sample with 70% polymer composition, 28% LiBOB and 2% TiO2 shows oxidation reaction at the most perfect discharge despite very slow current speed.

  9. A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function

    PubMed Central

    Dowhan, William

    2012-01-01

    Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633

  10. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    NASA Astrophysics Data System (ADS)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  11. Facile fabrication and characterization of poly(tetrafluoroethylene)@polypyrrole/nano-silver composite membranes with conducting and antibacterial property

    NASA Astrophysics Data System (ADS)

    Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun

    2012-06-01

    Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.

  12. Effects of thallium(I) and thallium(III) on liposome membrane physical properties.

    PubMed

    Villaverde, Marcela S; Verstraeten, Sandra V

    2003-09-15

    The hypothesis that thallium (Tl) interaction with membrane phospholipids could result in the alteration of membrane physical properties was investigated. Working with liposomes composed of brain phosphatidylcholine and phosphatidylserine, we found that Tl(+), Tl(3+), and Tl(OH)(3) (0.5-25 microM): (a) increased membrane surface potential, (b) decreased the fluidity of the anionic regions of the membrane, in association with an increased fluidity in the cationic regions, and (c) promoted the rearrangement of lipids through lateral phase separation. The magnitude of these effects followed the order Tl(3+), Tl(OH)(3)>Tl(+). In addition, Tl(3+) also decreased the hydration of phospholipid polar headgroups and induced membrane permeabilization. The present results show that Tl interacts with membranes inducing major alterations in the rheology of the bilayer, which could be partially responsible for the neurotoxic effects of this metal.

  13. Partitioning of 2,6-Bis(1H-Benzimidazol-2-yl)pyridine Fluorophore into a Phospholipid Bilayer: Complementary Use of Fluorescence Quenching Studies and Molecular Dynamics Simulations

    PubMed Central

    Kyrychenko, Alexander; Sevriukov, Igor Yu.; Syzova, Zoya A.; Ladokhin, Alexey S.; Doroshenko, Andrey O.

    2014-01-01

    Successful use of fluorescence sensing in elucidating the biophysical properties of lipid membranes requires knowledge of the distribution and location of an emitting molecule in the bilayer. We report here that 2,6-bis(1H-benzimidazol-2-yl)pyridine (BBP), which is almost non-fluorescent in aqueous solutions, reveals a strong emission enhancement in a hydrophobic environment of a phospholipid bilayer, making it interesting for fluorescence probing of water content in a lipid membrane. Comparing the fluorescence behavior of BBP in a wide variety of solvents with those in phospholipid vesicles, we suggest that the hydrogen bonding interactions between a BBP fluorophore and water molecules play a crucial role in the observed “light switch effect”. Therefore, the loss of water-induced fluorescence quenching inside a membrane are thought to be due to deep penetration of BBP into the hydrophobic, water-free region of a bilayer. Characterized by strong quenching by transition metal ions in solution, BBP also demonstrated significant shielding from the action of the quencher in the presence of phospholipid vesicles. We used the increase in fluorescence intensity, measured upon titration of probe molecules with lipid vesicles, to estimate the partition constant and the Gibbs free energy (ΔG) of transfer of BBP from aqueous buffer into a membrane. Partitioning BBP revealed strongly favorable ΔG, which depends only slightly on the lipid composition of a bilayer, varying in a range from -6.5 to -7.0 kcal/mol. To elucidate the binding interactions of the probe with a membrane on the molecular level, a distribution and favorable location of BBP in a POPC bilayer were modeled via atomistic molecular dynamics (MD) simulations using two different approaches: (i) free, diffusion-driven partitioning of the probe molecules into a bilayer and (ii) constrained umbrella sampling of a penetration profile of the dye molecule across a bilayer. Both of these MD approaches agreed with

  14. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed Central

    Stahl, U.; Banas, A.; Stymne, S.

    1995-01-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization. PMID:12228415

  15. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells.

    PubMed

    Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-02-29

    The regenerative H₂/Br₂-HBr fuel cell, utilizing an oxidant solution of Br₂ in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H₂-Br₂ fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H₂/Br₂-HBr systems.

  16. Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion.

    PubMed

    Hoekstra, D

    1982-06-08

    The relationship between lipid phase separation and fusion of small unilamellar phosphatidylserine-containing vesicles was investigated. The kinetics of phase separation were monitored by following the increase of self-quenching of the fluorescent phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine, which occurs when the local concentration of the probe increases upon Ca2+-induced phase separation in phosphatidylserine (PS) bilayers [Hoekstra, D. (1982) Biochemistry 21, 1055-1061]. Fusion was determined by using the resonance energy transfer fusion assay [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099], which monitors the mixing of fluorescent lipid donor and acceptor molecules, resulting in an increase in energy transfer efficiency. The results show that in the presence of Ca2+, fusion proceeds much more rapidly (t 1/2 less than 5 s) than the process of phase separation (T 1/2 congruent to 1 min). Mg2+ also induced fusion, albeit at higher concentrations than Ca2+. Mg2+-induced phase separation were not detected, however. Subthreshold concentrations of Ca2+ (0.5 mM) or Mg2+ (2 mM) induced extensive fusion of PS-containing vesicles in poly(ethylene glycol) containing media. This effect did not appear to be a poly(ethylene glycol)-facilitated enhancement of cation binding to the bilayer, and consequently Ca2+-induced phase separation was not observed. The results suggest that macroscopic phase separation may facilitate but does not induced the fusion process and is therefore, not directly involved in the actual fusion mechanism. The fusion experiments performed in the presence of poly(ethylene glycol) suggest that the degree of bilayer dehydration and the creation of "point defects" in the bilayer without rigorous structural rearrangements in the membrane are dominant factors in the initial fusion events.

  17. Absence of a direct role of phospholipid methylation in stimulus-secretion coupling and control of adenylate cyclase in guinea-pig and rat parotid gland.

    PubMed Central

    Padel, U; Unger, C; Söling, H D

    1982-01-01

    The present study was undertaken to investigate a possible involvement of phospholipid methyltransferases in the coupling of receptor-mediated stimulation to secretion. Phospholipid methyltransferases were assayed in isolated parotid acini in the presence of carbamoylcholine or isoprenaline. Carbamoylcholine reduced the incorporation of methyl groups into phospholipids, whereas isoprenaline showed no effect. Amylase secretion stimulated either by carbamoylcholine or by isoprenaline could not be affected by inhibitors of methyltransferases (3-deaza-adenosine alone or plus homocysteine thiolactone) under conditions where phospholipid methylation was strongly inhibited. The activity of adenylate cyclase in isolated parotid microsomal membranes was not inhibited or stimulated by S-adenosyl-homocysteine or -methionine respectively. These results indicate that phospholipid methylation does not play an essential role in stimulus-secretion coupling in the parotid gland. PMID:6186246

  18. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells.

    PubMed

    Prylutskyy, Yu; Bychko, A; Sokolova, V; Prylutska, S; Evstigneev, M; Rybalchenko, V; Epple, M; Scharff, P

    2016-02-01

    With an aim to elucidate the effects of C60 fullerene complexed with antibiotic doxorubicin (Dox) on model bilipid membranes (BLM), the investigation of the electrical properties of BLM under the action of Dox and C60 fullerene, and of their complex, C60+Dox,was performed. The complex as well as its components exert a clearly detectable influence on BLM, which is concentration-dependent and also depends on phospholipid composition. The mechanism of this effect originates either from intermolecular interaction of the drug with fatty-acid residues of phospholipids, or from membranotropic effects of the drug-induced lipid peroxidation, or from the sum of these two effects. By fluorescence microscopy the entering of C60 + Dox complex into HeLa cells was directly shown.

  19. Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis

    PubMed Central

    Gao, Iris H.; Nair, Zeus J.; Kumar, Jaspal K.; Gao, Liang; Kline, Kimberly A.; Wenk, Markus R.

    2017-01-01

    Enterococcus faecalis is a Gram-positive, opportunistic, pathogenic bacterium that causes a significant number of antibiotic-resistant infections in hospitalized patients. The development of antibiotic resistance in hospital-associated pathogens is a formidable public health threat. In E. faecalis and other Gram-positive pathogens, correlations exist between lipid composition and antibiotic resistance. Resistance to the last-resort antibiotic daptomycin is accompanied by a decrease in phosphatidylglycerol (PG) levels, whereas multiple peptide resistance factor (MprF) converts anionic PG into cationic lysyl-PG via a trans-esterification reaction, providing resistance to cationic antimicrobial peptides. Unlike previous studies that relied on thin layer chromatography and spectrophotometry, we have performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) directly on lipids extracted from E. faecalis, and quantified the phospholipids through multiple reaction monitoring (MRM). In the daptomycin-sensitive E. faecalis strain OG1RF, we have identified 17 PGs, 8 lysyl-PGs (LPGs), 23 cardiolipins (CL), 3 glycerophospho-diglucosyl-diacylglycerols (GPDGDAG), 5 diglucosyl-diacylglycerols (DGDAG), 3 diacylglycerols (DAGs), and 4 triacylglycerols (TAGs). We have quantified PG and shown that PG levels vary during growth of E. faecalis in vitro. We also show that two daptomycin-resistant (DapR) strains of E. faecalis have substantially lower levels of PG and LPG levels. Since LPG levels in these strains are lower, daptomycin resistance is likely due to the reduction in PG. This lipidome map is the first comprehensive analysis of membrane phospholipids and glycolipids in the important human pathogen E. faecalis, for which antimicrobial resistance and altered lipid homeostasis have been intimately linked. PMID:28423018

  20. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  1. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  2. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. The Physical Properties of Ceramides in Membranes.

    PubMed

    Alonso, Alicia; Goñi, Félix M

    2018-05-20

    Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.

  4. Sensing phosphatidylserine in cellular membranes.

    PubMed

    Kay, Jason G; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  5. Structural basis for maintenance of bacterial outer membrane lipid asymmetry.

    PubMed

    Abellón-Ruiz, Javier; Kaptan, Shreyas S; Baslé, Arnaud; Claudi, Beatrice; Bumann, Dirk; Kleinekathöfer, Ulrich; van den Berg, Bert

    2017-12-01

    The Gram-negative bacterial outer membrane (OM) is a unique bilayer that forms an efficient permeation barrier to protect the cell from noxious compounds 1 , 2 . The defining characteristic of the OM is lipid asymmetry, with phospholipids comprising the inner leaflet and lipopolysaccharides comprising the outer leaflet 1-3 . This asymmetry is maintained by the Mla pathway, a six-component system that is widespread in Gram-negative bacteria and is thought to mediate retrograde transport of misplaced phospholipids from the outer leaflet of the OM to the cytoplasmic membrane 4 . The OM lipoprotein MlaA performs the first step in this process via an unknown mechanism that does not require external energy input. Here we show, using X-ray crystallography, molecular dynamics simulations and in vitro and in vivo functional assays, that MlaA is a monomeric α-helical OM protein that functions as a phospholipid translocation channel, forming a ~20-Å-thick doughnut embedded in the inner leaflet of the OM with a central, amphipathic pore. This architecture prevents access of inner leaflet phospholipids to the pore, but allows outer leaflet phospholipids to bind to a pronounced ridge surrounding the channel, followed by diffusion towards the periplasmic space. Enterobacterial MlaA proteins form stable complexes with OmpF/C 5,6 , but the porins do not appear to play an active role in phospholipid transport. MlaA represents a lipid transport protein that selectively removes outer leaflet phospholipids to help maintain the essential barrier function of the bacterial OM.

  6. Polycyclic aromatic hydrocarbons in model bacterial membranes - Langmuir monolayer studies.

    PubMed

    Broniatowski, Marcin; Binczycka, Martyna; Wójcik, Aneta; Flasiński, Michał; Wydro, Paweł

    2017-12-01

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) are persistent organic pollutants which due to their limited biodegradability accumulate in soils where their increased presence can lead to the impoverishment of the decomposer organisms. As very hydrophobic PAHs easily penetrate cellular membranes of soil bacteria and can be incorporated therein, changing the membrane fluidity and other functions which in consequence can lead to the death of the organism. The structure and size of PAH molecule can be crucial for its membrane activity; however the correlation between PAH structure and its interaction with phospholipids have not been investigated so far. In our studies we applied phospholipid Langmuir monolayers as model bacterial membranes and investigated how the incorporation of six structurally different PAH molecules change the membrane texture and physical properties. In our studies we registered surface pressure and surface potential isotherms upon the monolayer compression, visualized the monolayer texture with the application of Brewster angle microscopy and searched the ordering of the film-forming molecules with molecular resolution with the application of grazing incidence X-ray diffraction (GIXD) method. It turned out that the phospholipid-PAH interactions are strictly structure dependent. Four and five-ring PAHs of the angular or cluster geometry can be incorporated into the model membranes changing profoundly their textures and fluidity; whereas linear or large cluster PAHs cannot be incorporated and separate from the lipid matrix. The observed phenomena were explained based on structural similarities of the applied PAHs with membrane steroids and hopanoids. Copyright © 2017. Published by Elsevier B.V.

  7. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.

    PubMed

    Wang, Xinhua; Zhao, Yanxiao; Yuan, Bo; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-02-01

    There are two types of popular forward osmosis (FO) membrane materials applied for researches on FO process, cellulose triacetate (CTA) and thin film composite (TFC) polyamide. However, performance and fouling mechanisms of commercial TFC FO membrane in osmotic membrane bioreactors (OMBRs) are still unknown. In current study, its biofouling behaviors in OMBRs were investigated and further compared to the CTA FO membrane. The results indicated that β-D-glucopyranose polysaccharides and microorganisms accounted for approximately 77% of total biovolume on the CTA FO membrane while β-D-glucopyranose polysaccharides (biovolume ratio of 81.1%) were the only dominant biofoulants on the TFC FO membrane. The analyses on the biofouling structure implied that a tighter biofouling layer with a larger biovolume was formed on the CTA FO membrane. The differences in biofouling behaviors including biofoulants composition and biofouling structure between CTA and TFC FO membranes were attributed to different membrane surface properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter.

    PubMed

    Romsicki, Y; Sharom, F J

    2001-06-12

    The P-glycoprotein multidrug transporter acts as an ATP-powered efflux pump for a large variety of hydrophobic drugs, natural products, and peptides. The protein is proposed to interact with its substrates within the hydrophobic interior of the membrane. There is indirect evidence to suggest that P-glycoprotein can also transport, or "flip", short chain fluorescent lipids between leaflets of the membrane. In this study, we use a fluorescence quenching technique to directly show that P-glycoprotein reconstituted into proteoliposomes translocates a wide variety of NBD lipids from the outer to the inner leaflet of the bilayer. Flippase activity depended on ATP hydrolysis at the outer surface of the proteoliposome, and was inhibited by vanadate. P-Glycoprotein exhibited a broad specificity for phospholipids, and translocated phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. Lipid derivatives that were flipped included molecules with long, short, unsaturated, and saturated acyl chains and species with the NBD group covalently linked to either acyl chains or the headgroup. The extent of lipid translocation from the outer to the inner leaflet in a 20 min period at 37 degrees C was directly estimated, and fell in the range of 0.36-1.83 nmol/mg of protein. Phospholipid flipping was inhibited in a concentration-dependent, saturable fashion by various substrates and modulators, including vinblastine, verapamil, and cyclosporin A, and the efficiency of inhibition correlated well with the affinity of binding to Pgp. Taken together, these results suggest that P-glycoprotein carries out both lipid translocation and drug transport by the same path. The transporter may be a generic flippase for hydrophobic molecules with the correct steric attributes that are present within the membrane interior.

  9. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane.

    PubMed

    Liu, L; Lee, W; Huang, Z; Scholz, R; Gösele, U

    2008-08-20

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

  10. Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Chang, Feng-Nian

    2012-12-01

    Composite membranes are fabricated from hydroxyapatite (HAP) and gelatin for immunoisolation of cells. The films were fabricated by crosslinking 5 wt%, 10 wt%, and 20 wt% gelatin with 1 wt% glutaraldehyde (GA) in the presence of HAP. Fourier transform infrared spectroscopy analysis confirms imide bond formation between GA and gelatin, while the crystal structure of HAP powder remains unchanged from X-ray diffraction analysis. The degree of crosslinking depends on crosslinking time and gelatin concentration. For 5% and 10% gelatin, the degree of crosslinking levels off at 90% within 48 h. From scanning electron microscopy micrographs, the microstructure of the composite membrane depends on the amount of gelatin used in the crosslinking reaction. The mechanical strength of the composite membrane could be enhanced by increasing the gelatin concentration. BET analysis indicates that pore size of the micropores on the surface HAP/gelatin agglomerates decreases with increasing gelatin concentration. However, the macropore, through which diffusion of molecules occurs, is larger at higher gelatin concentrations. The permeability coefficients of different molecules through a HAP/gelatin composite membrane increase with increasing gelatin concentration and is inversely correlated with the molecular weight of the molecule. For immunoisolation of cells, the diffusion of large molecules stimulated by the immune system can be rejected by a chamber constructed from the HAP/gelatin membrane. Insulinoma cells were encapsulated in alginate-poly-L-lysine-alginate microcapsules and enclosed in a HAP/gelatin chamber. The chamber did not impair the viability and function of insulinoma cells and cells can secrete insulin in response to glucose concentration change. The chamber is therefore useful for the physiologically controlled secretion of insulin in response to the blood glucose level. Intraperitoneal transplantation of the chamber into streptozotocin-induced diabetic SD rats could

  11. Aerobic sn-glycerol-3-phosphate dehydrogenase from Escherichia coli binds to the cytoplasmic membrane through an amphipathic alpha-helix.

    PubMed Central

    Walz, Antje-Christine; Demel, Rudy A; de Kruijff, Ben; Mutzel, Rupert

    2002-01-01

    sn-Glycerol-3-phosphate dehydrogenase (GlpD) from Escherichia coli is a peripheral membrane enzyme involved in respiratory electron transfer. For it to display its enzymic activity, binding to the inner membrane is required. The way the enzyme interacts with the membrane and how this controls activity has not been elucidated. In the present study we provide evidence for direct protein-lipid interaction. Using the monolayer technique, we observed insertion of GlpD into lipid monolayers with a clear preference for anionic phospholipids. GlpD variants with point mutations in their predicted amphipathic helices showed a decreased ability to penetrate anionic phospholipid monolayers. From these data we propose that membrane binding of GlpD occurs by insertion of an amphipathic helix into the acyl-chain region of lipids mediated by negatively charged phospholipids. PMID:11955283

  12. Electrospun Nafion ®/Polyphenylsulfone composite membranes for regenerative Hydrogen bromine fuel cells

    DOE PAGES

    Park, Jun; Wycisk, Ryszard; Pintauro, Peter N.; ...

    2016-02-29

    Here, the regenerative H 2/Br 2-HBr fuel cell, utilizing an oxidant solution of Br 2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanicalmore » reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H 2-Br 2 fuel cell power output with a 65 m thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 m Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H 2/Br 2-HBr systems.« less

  13. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis

    PubMed Central

    1978-01-01

    Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome- tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and

  14. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis.

    PubMed

    Drochmans, P; Freudenstein, C; Wanson, J C; Laurent, L; Keenan, T W; Stadler, J; Leloup, R; Franke, W W

    1978-11-01

    Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome-tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and

  15. Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains.

    PubMed

    Drobnik, Wolfgang; Borsukova, Hana; Böttcher, Alfred; Pfeiffer, Alexandra; Liebisch, Gerhard; Schütz, Gerhard J; Schindler, Hansgeorg; Schmitz, Gerd

    2002-04-01

    We have investigated whether a raft heterogeneity exists in human monocyte-derived macrophages and fibroblasts and whether these microdomains are modulated by lipid efflux. Triton X-100 (Triton) or Lubrol WX (Lubrol) detergent-resistant membranes from cholesterol-loaded monocytes were associated with the following findings: (i) Lubrol-DRM contained most of the cellular cholesterol and at least 75% of Triton-detergent-resistant membranes. (ii) 'Lubrol rafts', defined by their solubility in Triton but insolubility in Lubrol, were enriched in unsaturated phosphatidylcholine and showed a lower cholesterol to choline-phospholipid ratio compared to Triton rafts. (iii) CD14 and CD55 were recovered in Triton- and Lubrol-detergent-resistant membranes, whereas CD11b was found exclusively in Triton DRM. ABCA1 implicated in apo AI-mediated lipid efflux and CDC42 were partially localized in Lubrol- but not in Triton-detergent-resistant membranes. (iv) Apo AI preferentially depleted cholesterol and choline-phospholipids from Lubrol rafts, whereas HDL3 additionally decreased the cholesterol content of Triton rafts. In fibroblasts, neither ABCA1 nor CDC42 was found in Lubrol rafts, and both apo AI and HDL3 reduced the lipid content in Lubrol- as well as in Triton-detergent-resistant membranes. In summary, we provide evidence for the existence of compositionally distinct membrane microdomains in human cells and their modulation by apo AI/ABCA1-dependent and HDL3-mediated lipid efflux.

  16. Curvature of Double-Membrane Organelles Generated by Changes in Membrane Size and Composition

    PubMed Central

    Knorr, Roland L.; Dimova, Rumiana; Lipowsky, Reinhard

    2012-01-01

    Transient double-membrane organelles are key players in cellular processes such as autophagy, reproduction, and viral infection. These organelles are formed by the bending and closure of flat, double-membrane sheets. Proteins are believed to be important in these morphological transitions but the underlying mechanism of curvature generation is poorly understood. Here, we describe a novel mechanism for this curvature generation which depends primarily on three membrane properties: the lateral size of the double-membrane sheets, the molecular composition of their highly curved rims, and a possible asymmetry between the two flat faces of the sheets. This mechanism is evolutionary advantageous since it does not require active processes and is readily available even when resources within the cell are restricted as during starvation, which can induce autophagy and sporulation. We identify pathways for protein-assisted regulation of curvature generation, organelle size, direction of bending, and morphology. Our theory also provides a mechanism for the stabilization of large double-membrane sheet-like structures found in the endoplasmic reticulum and in the Golgi cisternae. PMID:22427874

  17. Stabilization of composition fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Safran, Samuel; Palmieri, Benoit

    2013-03-01

    A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.

  18. Visualization and analysis of lipopolysaccharide distribution in binary phospholipid bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Maria Florencia; Sanchez, Susana; Bakas, Laura, E-mail: lbakas@biol.unlp.edu.ar

    2009-05-22

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram-negative bacteria during infections. It have been reported that LPS may play a role in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4 {sup o}C. The LPS distribution was analyzed on GUVs of DPPC:DOPC usingmore » FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery.« less

  19. The effect of dietary fat content on phospholipid fatty acid profile is muscle fiber type dependent.

    PubMed

    Janovská, Alena; Hatzinikolas, George; Mano, Mark; Wittert, Gary A

    2010-04-01

    A high-saturated-fat diet (HFD) induces obesity and insulin resistance (IR). IR has been linked to alterations and increased saturation in the phospholipid composition of skeletal muscles. We aimed to determine whether HFD feeding affects fatty acid (FA) membrane profile in a muscle fiber type-specific manner. We measured phospholipid FAs and expression of FA synthesis genes in oxidative soleus (SOL) and glycolytic extensor digitorum longus (EDL) muscles from rats fed either standard chow (standard laboratory diet, SLD) or a HFD. The HFD increased fat mass, plasma insulin, and leptin levels. Compared with EDL, SOL muscles preferentially accumulated C18 over C16 FAs and n-6 over n-3 polyunsaturated FAs (PUFAs) on either diet. With the HFD, SOL muscles contained more n-9 monounsaturated FAs (MUFAs) and n-6 PUFAs and less n-7 MUFAs and n-3 PUFAs than EDL muscles and had lower unsaturation index, a pattern known to be associated with IR. Stearoyl-CoA desaturase-1 expression was approximately 13-fold greater in EDL than in SOL muscles but did not change with the HFD in either muscle. The expression of Elongase-5 was higher, and that of Elongase-6 (Elovl6) was lower in EDL compared with SOL muscles with both diets. In EDL muscles, the expression of Elovl6 was lower in the HFD than in the SLD. The pattern of FA uptake, expression, and diet-induced changes in FA desaturating and elongating enzymes maintained higher FA unsaturation in EDL muscles. Accordingly, the fiber type composition of skeletal muscles and their distribution may be important in the development and progression of obesity and IR.

  20. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1988-01-01

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  1. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  2. Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level.

    PubMed

    Breton, Marie; Mir, Lluis M

    2018-02-01

    The chemical consequences of electropulsation on giant unilamellar vesicles (GUVs), in particular the possible oxidation of unsaturated phospholipids, have been investigated by mass spectrometry, flow cytometry and absorbance methods. Pulse application induced oxidation of the GUV phospholipids and the oxidation level depended on the duration of the pulse. Light and O 2 increased the level of pulse-induced lipid peroxidation whereas the presence of antioxidants either in the membrane or in the solution completely suppressed peroxidation. Importantly, pulse application did not create additional reactive oxygen species (ROS) in GUV-free solution. Lipid peroxidation seems to result from a facilitation of the lipid peroxidation by the ROS already present in the solution before pulsing, not from a direct pulse-induced peroxidation. The pulse would facilitate the entrance of ROS in the core of the membrane, allowing the contact between ROS and lipid chains and provoking the oxidation. Our findings demonstrate that the application of electric pulses on cells could induce the oxidation of the membrane phospholipids since cell membranes contain unsaturated lipids. The chemical consequences of electropulsation will therefore have to be taken into account in future biomedical applications of electropulsation since oxidized phospholipids play a key role in many signaling pathways and diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization.

    PubMed

    Luo, Nan; Xu, Rongle; Yang, Min; Yuan, Xing; Zhong, Hui; Fan, Yaobo

    2015-12-01

    A novel inorganic-organic composite membrane, namely poly(vinylidene fluoride) PVDF-glass fiber (PGF) composite membrane, was prepared and reinforced by interfacial ultraviolet (UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber. The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling (KH570) as the initiator and the polymer solution with acrylamide monomer (AM) as the grafting block. The Fourier transform infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra and the energy dispersive X-ray (EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix. The formation mechanisms, permeation, and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions. The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability, and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2wt.%. Copyright © 2015. Published by Elsevier B.V.

  4. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  5. How sterol tilt regulates properties and organization of lipid membranes and membrane insertions

    PubMed Central

    Khelashvili, George; Harries, Daniel

    2013-01-01

    Serving as a crucial component of mammalian cells, cholesterol critically regulates the functions of biomembranes. This review focuses on a specific property of cholesterol and other sterols: the tilt modulus χ that quantifies the energetic cost of tilting sterol molecules inside the lipid membrane. We show how χ is involved in determining properties of cholesterol-containing membranes, and detail a novel approach to quantify its value from atomistic molecular dynamics (MD) simulations. Specifically, we link χ with other structural, thermodynamic, and mechanical properties of cholesterol-containing lipid membranes, and delineate how this useful parameter can be obtained from the sterol tilt probability distributions derived from relatively small-scale unbiased MD simulations. We demonstrate how the tilt modulus quantitatively describes the aligning field that sterol molecules create inside the phospholipid bilayers, and we relate χ to the bending rigidity of the lipid bilayer through effective tilt and splay energy contributions to the elastic deformations. Moreover, we show how χ can conveniently characterize the “condensing effect” of cholesterol on phospholipids. Finally, we demonstrate the importance of this cholesterol aligning field to the proper folding and interactions of membrane peptides. Given the relative ease of obtaining the tilt modulus from atomistic simulations, we propose that χ can be routinely used to characterize the mechanical properties of sterol/lipid bilayers, and can also serve as a required fitting parameter in multi-scaled simulations of lipid membrane models to relate the different levels of coarse-grained details. PMID:23291283

  6. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2018-04-01

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  7. Mitochondrial modulators improve lipid composition and attenuate memory deficits in experimental model of Huntington's disease.

    PubMed

    Mehrotra, Arpit; Sood, Abhilasha; Sandhir, Rajat

    2015-12-01

    3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase and induces neuropathological changes similar to those observed in Huntington's disease (HD). The objective of the present study was to investigate neuroprotective effect of mitochondrial modulators; alpha-lipoic acid (ALA) and acetyl-L-carnitine (ALCAR) on 3-NP-induced alterations in mitochondrial lipid composition, mitochondrial structure and memory functions. Experimental model of HD was developed by administering 3-NP at sub-chronic doses, twice daily for 17 days. The levels of conjugated dienes, cholesterol and glycolipids were significantly increased, whereas the levels of phospholipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine) including cardiolipin were significantly decreased in the mitochondria isolated from the striatum of 3-NP-treated animals. In addition, the difference in molecular composition of each phospholipid class was also evaluated using mass spectrometry. Mitochondria lipid from 3-NP-treated animals showed increased cholesterol to phospholipid ratio, suggesting decreased mitochondrial membrane fluidity. 3-NP administration also resulted in ultra-structural changes in mitochondria, accompanied by swelling as assessed by transmission electron microscopy. The 3-NP administered animals had impaired spatial memory evaluated using elevated plus maze test. However, combined supplementation with ALA + ALCAR for 21 days normalized mitochondrial lipid composition, improved mitochondrial structure and ameliorated memory impairments in 3-NP-treated animals, suggesting an imperative role of these two modulators in combination in the management of HD.

  8. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies.

    PubMed

    Slatter, David A; Percy, Charles L; Allen-Redpath, Keith; Gajsiewicz, Joshua M; Brooks, Nick J; Clayton, Aled; Tyrrell, Victoria J; Rosas, Marcela; Lauder, Sarah N; Watson, Andrew; Dul, Maria; Garcia-Diaz, Yoel; Aldrovandi, Maceler; Heurich, Meike; Hall, Judith; Morrissey, James H; Lacroix-Desmazes, Sebastien; Delignat, Sandrine; Jenkins, P Vincent; Collins, Peter W; O'Donnell, Valerie B

    2018-03-22

    Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell-derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid-phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed.

  9. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies

    PubMed Central

    Slatter, David A.; Percy, Charles L.; Allen-Redpath, Keith; Gajsiewicz, Joshua M.; Brooks, Nick J.; Tyrrell, Victoria J.; Lauder, Sarah N.; Watson, Andrew; Dul, Maria; Garcia-Diaz, Yoel; Aldrovandi, Maceler; Heurich, Meike; Hall, Judith; Lacroix-Desmazes, Sebastien; Delignat, Sandrine; Jenkins, P. Vincent; Collins, Peter W.; O’Donnell, Valerie B.

    2018-01-01

    Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell–derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid–phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed. PMID:29563336

  10. Reduced cholesterol levels in renal membranes of undernourished rats may account for urinary Na⁺ loss.

    PubMed

    Oliveira, Fabiana S T; Vieira-Filho, Leucio D; Cabral, Edjair V; Sampaio, Luzia S; Silva, Paulo A; Carvalho, Vera C O; Vieyra, Adalberto; Einicker-Lamas, Marcelo; Lima, Vera L M; Paixão, Ana D O

    2013-04-01

    It has been demonstrated that reabsorption of Na⁺ in the thick ascending limb is reduced and the ability to concentrate urine can be compromised in undernourished individuals. Alterations in phospholipid and cholesterol content in renal membranes, leading to Na⁺ loss and the inability to concentrate urine, were investigated in undernourished rats. Sixty-day-old male Wistar rats were utilized to evaluate (1) phospholipid and cholesterol content in the membrane fraction of whole kidneys, (2) cholesterol content and the levels of active Na⁺ transporters, (Na⁺ + K⁺)ATPase and Na⁺-ATPase, in basolateral membranes of kidney proximal tubules, and (3) functional indicators of medullary urine concentration. Body weight in the undernourished group was 73 % lower than in control. Undernourishment did not affect the levels of cholesterol in serum or in renal homogenates. However, membranes of whole kidneys revealed 56 and 66 % reduction in the levels of total phospholipids and cholesterol, respectively. Furthermore, cholesterol and (Na⁺ + K⁺)ATPase activity in proximal tubule membranes were reduced by 55 and 68 %, respectively. Oxidative stress remained unaltered in the kidneys of undernourished rats. In contrast, Na⁺-ATPase activity, an enzyme with all regulatory components in membrane, was increased in the proximal tubules of undernourished rats. Free water clearance and fractional Na⁺ excretion were increased by 86 and 24 %, respectively, and urinary osmolal concentration was 21 % lower in undernourished rats than controls. Life-long undernutrition reduces the levels of total phospholipids and cholesterol in membranes of renal tubular cells. This alteration in membrane integrity could diminish (Na⁺ + K⁺)ATPase activity resulting in reduced Na⁺ reabsorption and urinary concentrating ability.

  11. Normal vibrational modes of phospholipid bilayers observed by low-frequency Raman scattering

    NASA Astrophysics Data System (ADS)

    Surovtsev, N. V.; Dmitriev, A. A.; Dzuba, S. A.

    2017-03-01

    Low-frequency Raman spectra of multilamellar vesicles made either of 1-palmitoyl-2-oleoyl-s n -glycero-3-phosphocholine (POPC) or 1,2-dipalmitoyl-s n -glycero-3-phosphocholine (DPPC) have been studied in a wide temperature range. Below 0 ∘C two peaks are found at frequencies around 8-9 and 14 -17 c m -1 and attributed to the normal vibrational modes of the phospholipid bilayer, which are determined by the bilayer thickness and stiffness (elastic modulus). The spectral positions of the peaks depend on the temperature and the bilayer composition. It is suggested that the ratio of the intensities of the first and second peaks can serve as a measure of the interleaflet elastic coupling. The addition of cholesterol to the phospholipid bilayer leads to peak shift and broadening, which may be assigned to the composition heterogeneities commonly attributed to the lipid raft formation.

  12. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor

    NASA Astrophysics Data System (ADS)

    Lin, Yuqing; Xu, Yilin; Loh, Chun Heng; Wang, Rong

    2018-04-01

    Gas-liquid membrane contactor (GLMC) is a promising method to attain high efficiency for CO2 capture from flue gas, biogas and natural gas. However, membranes used in GLMC are prone to pore wetting due to insufficient hydrophobicity and low chemical resistance, resulting in significant increase in mass transfer resistance. To mitigate this issue, inorganic-organic fluorinated titania/polyvinylidene fluoride (fTiO2/PVDF) composite hollow fiber (HF) membranes was prepared via facile in-situ vapor induced hydrolyzation method, followed by hydrophobic modification. The proposed composite membranes were expected to couple the superb chemical stability of inorganic and high permeability/low cost of organic materials. The continuous fTiO2 layer deposited on top of PVDF substrate was found to possess a tighter microstructure and better hydrophobicity, which effectively prevented the membrane from wetting and lead to a high CO2 absorption flux (12.7 × 10-3 mol m-2 s-1). In a stability test with 21-day operation of GLMC using 1M monoethanolamine (MEA) as the absorbent, the fTiO2/PVDF membrane remained to be intact with a CO2 absorption flux decline of ∼16%, while the pristine PVDF membrane suffered from a flux decline of ∼80% due to membrane damage. Overall, this work provides an insight into the preparation of high-quality inorganic/organic composite HF membranes for CO2 capture in GLMC application.

  13. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    NASA Astrophysics Data System (ADS)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  14. High Fat Diet-Induced Changes in Mouse Muscle Mitochondrial Phospholipids Do Not Impair Mitochondrial Respiration Despite Insulin Resistance

    PubMed Central

    Hulshof, Martijn F. M.; van den Berg, Sjoerd A. A.; Schaart, Gert; van Dijk, Ko Willems; Smit, Egbert; Mariman, Edwin C. M.

    2011-01-01

    Background Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD) increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. Methodology C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD) or HFD (45 kcal%). Skeletal muscle mitochondria were isolated and fatty acid (FA) composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. Principal Findings At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9) were decreased (−4.0%, p<0.001), whereas saturated FA (16∶0) were increased (+3.2%, p<0.001) in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6) showed a pronounced increase (+4.0%, p<0.001). Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002) and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. Conclusions/Interpretation Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  15. Sensing Phosphatidylserine in Cellular Membranes

    PubMed Central

    Kay, Jason G.; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use. PMID:22319379

  16. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Large effect of membrane tension on the fluid-solid phase transitions of two-component phosphatidylcholine vesicles.

    PubMed

    Chen, Dong; Santore, Maria M

    2014-01-07

    Model phospholipid membranes and vesicles have long provided insight into the nature of confined materials and membranes while also providing a platform for drug delivery. The rich thermodynamic behavior and interesting domain shapes in these membranes have previously been mapped in extensive studies that vary temperature and composition; however, the thermodynamic impact of tension on bilayers has been restricted to recent reports of subtly reduced fluid-fluid transition temperatures. In two-component phosphatidylcholine unilamellar vesicles [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)], we report a dramatic influence of tension on the fluid-solid transition and resulting phases: At fixed composition, systematic variations in tension produce differently shaped solid domains (striped or irregular hexagons), shift fluid-solid transition temperatures, and produce a triple-point-like intersection of coexistence curves at elevated tensions, about 3 mN/m for 30% DOPC/70% DPPC. Tension therefore represents a potential switch of microstructure in responsive engineered materials; it is an important morphology-determining variable in confined systems, and, in biological membranes, it may provide a means to regulate dynamic structure.

  18. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria

    2016-08-15

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP 2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL -) with a distinct second site is required for high PIP 2sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP 2sensitivity, even in the absence of PL -. Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP 2(2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domainmore » (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL -binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP 2site and explaining the positive allostery between PL -binding and PIP 2sensitivity.« less

  19. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.

    PubMed

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G

    2016-09-01

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.

  20. MitoQ Loaded Chitosan-Hyaluronan Composite Membranes for Wound Healing.

    PubMed

    Tamer, Tamer M; Collins, Maurice N; Valachová, Katarina; Hassan, Mohamed A; Omer, Ahmed M; Mohy-Eldin, Mohamed S; Švík, Karol; Jurčík, Rastislav; Ondruška, Ľubomír; Biró, Csaba; Albadarin, Ahmad B; Šoltés, Ladislav

    2018-04-07

    Two self-associating biopolymers, namely chitosan (Ch) and a high-molar-mass hyaluronan (HA), were used to prepare membranes with the aim to protect and to enhance the healing of injured skin. A mitochondrially-targeted antioxidant-MitoQ-was incorporated into the mixture of biopolymers prior to their self-association. These three-component membranes were evaluated in detail utilising surface roughness measurements, contact angle measurements, hemocompatibility, and thrombogenicity analyses. Furthermore, in vivo application of Ch/HA/MitoQ membranes was assessed on injured rabbit and rat skin utilizing histological methods. The results showed that the prepared thrombogenic Ch/HA/MitoQ membranes had higher roughness, which allowed for greater surface area for tissue membrane interaction during the healing processes, and lower cytotoxicity levels than controls. MitoQ-loaded composite membranes displayed superior healing properties in these animal models compared to control membranes.

  1. Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2.

    PubMed

    Fu, Jingru; Das, Saikat; Xing, Guolong; Ben, Teng; Valtchev, Valentin; Qiu, Shilun

    2016-06-22

    The search for new types of membrane materials has been of continuous interest in both academia and industry, given their importance in a plethora of applications, particularly for energy-efficient separation technology. In this contribution, we demonstrate for the first time that a metal-organic framework (MOF) can be grown on the covalent-organic framework (COF) membrane to fabricate COF-MOF composite membranes. The resultant COF-MOF composite membranes demonstrate higher separation selectivity of H2/CO2 gas mixtures than the individual COF and MOF membranes. A sound proof for the synergy between two porous materials is the fact that the COF-MOF composite membranes surpass the Robeson upper bound of polymer membranes for mixture separation of a H2/CO2 gas pair and are among the best gas separation MOF membranes reported thus far.

  2. Anion exchange composite membrane based on octa quaternary ammonium Polyhedral Oligomeric Silsesquioxane for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Elumalai, Vijayakumar; Sangeetha, Dharmalingam

    2018-01-01

    A series of novel composite anion exchange membranes were prepared via simple solution casting method using synthesized quaternary ammonium functionalized Polyhedral Oligomeric Silsesquioxane (QA-POSS) with Quaternary polysulfone (QPSU). QA-POSS was synthesized from prepared Cl-POSS and well characterized by FT-IR, NMR, SEM and TEM analyses to confirm the chemical modifications and cubic morphologies. The QA-POSS nano particles have dual role in the membrane providing additional ion conducting groups and reinforcing the membrane in molecular level for the overall improvement of composite membrane. Additionally, the composite membranes were characterized by XRD, SEM, Ion exchange capacity (IEC), water uptake and conductivity to ensure the suitability of its use as an electrolyte in alkaline fuel cell. Finally, membrane electrode assembly (MEA) was fabricated using Pt anode (0.25 mg/cm2), Ag cathode (0.375 mg/cm2) and various synthesized composite membranes, and then it was tested in real time fuel cell setup. The membrane with 15% QA-POSS showed the maximum power density of 321 mW/cm2. The results showed that QA-POSS possess the ability to enhance the performance of the anion exchange membrane significantly.

  3. Free and membrane-bound calcium in microgravity and microgravity effects at the membrane level

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N. A.

    The changes of [Ca^2+]_i controlled is known to play a key regulatory role in numerous cellular processes especially associated with membranes. Previous studies from our laboratory have demonstrated an increase in calcium level in root cells of pea seedlings grown aboard orbital station ``Salyut 6'' /1/. These results: 1) indicate that observed Ca^2+-binding sites of membranes also consist in proteins and phospholipids; 2) suggest that such effects of space flight in membrane Ca-binding might be due to the enhancement of Ca^2+ influx through membranes. In model presented, I propose that Ca^2+-activated channels in plasma membrane in response to microgravity allow the movement of Ca^2+ into the root cells, causing a rise in cytoplasmic free Ca^2+ levels. The latter, in its turn, may induce the inhibition of a Ca^2+ efflux by Ca^2+-activated ATPases and through a Ca^2+/H^+ antiport. It is possible that increased cytosolic levels of Ca^2+ ions have stimulated hydrolysis and turnover of phosphatidylinositols, with a consequent elevation of cytosolic [Ca^2+]_i. Plant cell can response to such a Ca^2+ rise by an enhancement of membranous Ca^2+-binding activities to rescue thus a cell from an abundance of a cytotoxin. A Ca^2+-induced phase separation of membranous lipids assists to appear the structure nonstable zones with high energy level at the boundary of microdomains which are rich by some phospholipid components; there is mixing of molecules of the membranes contacted in these zones, the first stage of membranous fusion, which was found in plants exposed to microgravity. These results support the hypothesis that a target for microgravity effect is the flux mechanism of Ca^2+ to plant cell.

  4. The effects of oxygen on the evolution of microbial membranes

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1991-01-01

    One prokaryote, Methylococcus capsulatus, synthesizes both hopanoids and sterols and, thus, provides a unique opportunity to study the evolution of membrane function. When M. capsulatus was grown at different temperatures, lipid analysis of the whole cells showed that both sterol and unsaturated fatty acid levels decreased at higher growth temperatures; sterol concentrations were 0.116 micro mole/micro mole phospholipid at 30 C and 0.025 micro mole/mirco mole phospholipid at 45 C, while the saturated to unsaturated fatty acid ratio increased from 0.397 to 1.475. Hopane polyol levels were constant over this range; however, methylation of the A-ring decreased markedly in cells grown at 30 C. These results imply that sterol and hopane molecules are required for enhancement of some specific membrane function, potentially by modulating membrane fluidity.

  5. Hydrogen-permeable composite metal membrane and uses thereof

    DOEpatents

    Edlund, D.J.; Friesen, D.T.

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  6. Enhancement of fuel cell performance with less-water dependent composite membranes having polyoxometalate anchored nanofibrous interlayer

    NASA Astrophysics Data System (ADS)

    Abouzari-lotf, Ebrahim; Jacob, Mohan V.; Ghassemi, Hossein; Ahmad, Arshad; Nasef, Mohamed Mahmoud; Zakeri, Masoumeh; Mehdipour-Ataei, Shahram

    2016-09-01

    Polyoxometalate immobilized nanofiber was used to fabricate low gas permeable layer for composite membranes designed for proton exchange membrane fuel cell (PEMFC) operating at low relative humidity (RH). The composite membranes revealed enhanced proton conductivity in dry conditions compared with state-of-the-art pristine membrane (Nafion 112, N112). This was coupled with a low fuel crossover inheriting the composite membranes about 100 mV higher OCV than N112 when tested in PEMFC at 60 °C and 40% RH. A maximum power density of up to 930 mW cm-2 was also achieved which is substantially higher than the N112 under similar conditions (577 mW cm-2). Such remarkable performance enhancement along with undetectable leaching of immobilized polyoxometalate, high dimensional stability and low water uptake of the composite membranes suggest a strong potential for PEMFC under low RH operation.

  7. Separation of gases through gas enrichment membrane composites

    DOEpatents

    Swedo, R.J.; Kurek, P.R.

    1988-07-19

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  8. Separation of gases through gas enrichment membrane composites

    DOEpatents

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  9. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  10. Depletion with Cyclodextrin Reveals Two Populations of Cholesterol in Model Lipid Membranes

    PubMed Central

    Litz, Jonathan P.; Thakkar, Niket; Portet, Thomas; Keller, Sarah L.

    2016-01-01

    Recent results provide evidence that cholesterol is highly accessible for removal from both cell and model membranes above a threshold concentration that varies with membrane composition. Here we measured the rate at which methyl-β-cyclodextrin depletes cholesterol from a supported lipid bilayer as a function of cholesterol mole fraction. We formed supported bilayers from two-component mixtures of cholesterol and a PC (phosphatidylcholine) lipid, and we directly visualized the rate of decrease in area of the bilayers with fluorescence microscopy. Our technique yields the accessibility of cholesterol over a wide range of concentrations (30–66 mol %) for many individual bilayers, enabling fast acquisition of replicate data. We found that the bilayers contain two populations of cholesterol, one with low surface accessibility and the other with high accessibility. A larger fraction of the total membrane cholesterol appears in the more accessible population when the acyl chains of the PC-lipid tails are more unsaturated. Our findings are most consistent with the predictions of the condensed-complex and cholesterol bilayer domain models of cholesterol-phospholipid interactions in lipid membranes. PMID:26840728

  11. Membrane properties involved in calcium-stimulated microparticle release from the plasma membranes of S49 lymphoma cells.

    PubMed

    Campbell, Lauryl E; Nelson, Jennifer; Gibbons, Elizabeth; Judd, Allan M; Bell, John D

    2014-01-01

    This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32-42°C). A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  12. Composite sensor membrane

    DOEpatents

    Majumdar, Arun [Orinda, CA; Satyanarayana, Srinath [Berkeley, CA; Yue, Min [Albany, CA

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  13. Modeling of annexin A2-Membrane interactions by molecular dynamics simulations.

    PubMed

    Hakobyan, Davit; Gerke, Volker; Heuer, Andreas

    2017-01-01

    The annexins are a family of Ca2+-regulated phospholipid binding proteins that are involved in membrane domain organization and membrane trafficking. Although they are widely studied and crystal structures are available for several soluble annexins their mode of membrane association has never been studied at the molecular level. Here we obtained molecular information on the annexin-membrane interaction that could serve as paradigm for the peripheral membrane association of cytosolic proteins by Molecular Dynamics simulations. We analyzed systems containing the monomeric annexin A2 (AnxA2), a membrane with negatively charged phosphatidylserine (POPS) lipids as well as Ca2+ ions. On the atomic level we identify the AnxA2 orientations and the respective residues which display the strongest interaction with Ca2+ ions and the membrane. The simulation results fully agree with earlier experimental findings concerning the positioning of bound Ca2+ ions. Furthermore, we identify for the first time a significant interaction between lysine residues of the protein and POPS lipids that occurs independently of Ca2+ suggesting that AnxA2-membrane interactions can also occur in a low Ca2+ environment. Finally, by varying Ca2+ concentrations and lipid composition in our simulations we observe a calcium-induced negative curvature of the membrane as well as an AnxA2-induced lipid ordering.

  14. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.

    PubMed

    Wade, James H; Jones, Joshua D; Lenov, Ivan L; Riordan, Colleen M; Sligar, Stephen G; Bailey, Ryan C

    2017-08-22

    The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.

  15. MitoQ Loaded Chitosan-Hyaluronan Composite Membranes for Wound Healing

    PubMed Central

    Tamer, Tamer M.; Collins, Maurice N.; Valachová, Katarina; Hassan, Mohamed A.; Omer, Ahmed M.; Mohy-Eldin, Mohamed S.; Švík, Karol; Jurčík, Rastislav; Ondruška, Ľubomír; Biró, Csaba; Albadarin, Ahmad B.; Šoltés, Ladislav

    2018-01-01

    Two self-associating biopolymers, namely chitosan (Ch) and a high-molar-mass hyaluronan (HA), were used to prepare membranes with the aim to protect and to enhance the healing of injured skin. A mitochondrially-targeted antioxidant—MitoQ—was incorporated into the mixture of biopolymers prior to their self-association. These three-component membranes were evaluated in detail utilising surface roughness measurements, contact angle measurements, hemocompatibility, and thrombogenicity analyses. Furthermore, in vivo application of Ch/HA/MitoQ membranes was assessed on injured rabbit and rat skin utilizing histological methods. The results showed that the prepared thrombogenic Ch/HA/MitoQ membranes had higher roughness, which allowed for greater surface area for tissue membrane interaction during the healing processes, and lower cytotoxicity levels than controls. MitoQ-loaded composite membranes displayed superior healing properties in these animal models compared to control membranes. PMID:29642447

  16. Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile.

    PubMed Central

    Brand, M D; Couture, P; Else, P L; Withers, K W; Hulbert, A J

    1991-01-01

    Standard metabolic rate is 7-fold greater in the rat (a typical mammal) than in the bearded dragon, Amphibolurus vitticeps (a reptile with the same body mass and temperature). Rat hepatocytes respire 4-fold faster than do hepatocytes from the lizard. The inner membrane of isolated rat liver mitochondrial has a proton permeability that is 4-5-fold greater than the proton permeability of the lizard liver mitochondrial membrane per mg of mitochondrial protein. The greater permeability of rat mitochondria is not caused by differences in the surface area of the mitochondrial inner membrane, but differences in the fatty acid composition of the mitochondrial phospholipids may be involved in the permeability differences. Greater proton permeability of the mitochondrial inner membrane may contribute to the greater standard metabolic rate of mammals. PMID:1850242

  17. The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats.

    PubMed

    Fouret, Gilles; Tolika, Evanthia; Lecomte, Jérôme; Bonafos, Béatrice; Aoun, Manar; Murphy, Michael P; Ferreri, Carla; Chatgilialoglu, Chryssostomos; Dubreucq, Eric; Coudray, Charles; Feillet-Coudray, Christine

    2015-10-01

    Cardiolipin (CL), a unique mitochondrial phospholipid, plays a key role in several processes of mitochondrial bioenergetics as well as in mitochondrial membrane stability and dynamics. The present study was designed to determine the effect of MitoQ, a mitochondrial-targeted antioxidant, on the content of liver mitochondrial membrane phospholipids, in particular CL, and its fatty acid composition in obesogenic diet-fed rats. To do this, twenty-four 6week old male Sprague Dawley rats were randomized into three groups of 8 animals and fed for 8weeks with either a control diet, a high fat diet (HF), or a HF diet with MitoQ (HF+MitoQ). Phospholipid classes and fatty acid composition were assayed by chromatographic methods in liver and liver mitochondria. Mitochondrial bioenergetic function was also evaluated. While MitoQ had no or slight effects on total liver fatty acid composition and phospholipid classes and their fatty acid composition, it had major effects on liver mitochondrial phospholipids and mitochondrial function. Indeed, MitoQ both increased CL synthase gene expression and CL content of liver mitochondria and increased 18:2n-6 (linoleic acid) content of mitochondrial phospholipids by comparison to the HF diet. Moreover, mitochondrial CL content was positively correlated to mitochondrial membrane fluidity, membrane potential and respiration, as well as to ATP synthase activity, while it was negatively correlated to mitochondrial ROS production. These findings suggest that MitoQ may decrease pathogenic alterations to CL content and profiles, thereby preserving mitochondrial function and attenuating the development of some of the features of metabolic syndrome in obesogenic diet-fed rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    PubMed

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites

    PubMed Central

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-01-01

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711

  20. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites.

    PubMed

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A; Maitland, Duncan J

    2015-01-05

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature ( T g ) resulting in shape recovery in vivo . While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo . In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al 2 O 3 - or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent T g depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C.