Sample records for membrane potential differences

  1. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores

    NASA Astrophysics Data System (ADS)

    Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  2. Analysis of the pressure-induced potential arising through composite membranes with selective surface layers.

    PubMed

    Szymczyk, Anthony; Sbaï, Mohammed; Fievet, Patrick

    2005-03-01

    When a pressure gradient is applied through a charged selective membrane, the transmembrane electrical potential difference, called the filtration potential, results from both the applied pressure and induced concentration difference across the membrane. In this work we investigate the electrokinetic properties relative to both active and support layers of a composite ceramic membrane close to the nanofiltration range. First, the volume charge density of the active layer is obtained by fitting a transport model to experimental rejection rates (which are controlled by the active layer only). Next, the value of the volume charge density is used to compute the theoretical filtration potential through the active layer. For sufficiently high permeate volume fluxes, the concentration difference across the active layer becomes constant, which allows assessing the membrane potential of the active layer. Experimental measurements of the overall filtration potential arising through the whole membrane are performed. The contribution of the support layer to this overall filtration potential is put in evidence. That implies that the membrane potential of the active layer cannot be deduced directly from the overall filtration potential measurements. Finally, the contribution of the support layer is singled out by subtracting the theoretical filtration potential of the active layer from the experimental filtration potential measured across the whole membrane (i.e., support + active layers). The amphoteric behavior of both layers is put in evidence, which is confirmed by electrophoretic measurements carried out with the powdered support layer and by recently reported tangential streaming potential measurements.

  3. Membrane potential bistability in nonexcitable cells as described by inward and outward voltage-gated ion channels.

    PubMed

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2014-10-30

    The membrane potential of nonexcitable cells, defined as the electrical potential difference between the cell cytoplasm and the extracellular environment when the current is zero, is controlled by the individual electrical conductance of different ion channels. In particular, inward- and outward-rectifying voltage-gated channels are crucial for cell hyperpolarization/depolarization processes, being amenable to direct physical study. High (in absolute value) negative membrane potentials are characteristic of terminally differentiated cells, while low membrane potentials are found in relatively depolarized, more plastic cells (e.g., stem, embryonic, and cancer cells). We study theoretically the hyperpolarized and depolarized values of the membrane potential, as well as the possibility to obtain a bistability behavior, using simplified models for the ion channels that regulate this potential. The bistability regions, which are defined in the multidimensional state space determining the cell state, can be relevant for the understanding of the different model cell states and the transitions between them, which are triggered by changes in the external environment.

  4. Cochlear potential difference between endolymph fluid and the hair cell's interior: a retold interpretation based on the Goldman equation.

    PubMed

    Kurbel, Sven; Borzan, Vladimir; Golem, Hilda; Dinjar, Kristijan

    2017-02-01

    Reported cochlear potential values of near 150 mV are often attributed to endolymph itself, although membrane potentials result from ion fluxes across the adjacent semipermeable membranes due to concentration gradients. Since any two fluids separated by a semipermeable membrane develop potential due to differences in solute concentrations, a proposed interpretation here is that positive potential emanates from the Reissner membrane due to small influx of sodium from perilymph to endolymph. Basolateral hair cell membranes leak potassium into the interstitial fluid and this negative potential inside hair cells further augments the electric gradient of cochlear potential. Taken together as a sum, these two potentials are near the reported values of cochlear potential. This is based on reported data for cochlear fluids used for the calculation of Nernst and Goldman potentials. The reported positive potential of Reissner membrane can be explained almost entirely by the traffic of Na+ that enters endolymph through this membrane. At the apical membrane of hair cells, acoustic stimulation modulates stereocillia permeability to potassium. Potassium concentration gradients on the apical membrane are low (the calculated Nernst value is <+3 mV), suggesting that the potassium current is not caused by the local potassium concentration gradient, but an electric field between the positive sodium generated potential on the Reissner membrane and negative inside hair cells. Potassium is forced by this overall electric field to enter hair cells when stereocilia are permeable due to mechanical bending. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  5. On the nature of liquid junction and membrane potentials.

    PubMed

    Perram, John W; Stiles, Peter J

    2006-09-28

    Whenever a spatially inhomogeneous electrolyte, composed of ions with different mobilities, is allowed to diffuse, charge separation and an electric potential difference is created. Such potential differences across very thin membranes (e.g. biomembranes) are often interpreted using the steady state Goldman equation, which is usually derived by assuming a spatially constant electric field. Through the fundamental Poisson equation of electrostatics, this implies the absence of free charge density that must provide the source of any such field. A similarly paradoxical situation is encountered for thick membranes (e.g. in ion-selective electrodes) for which the diffusion potential is normally interpreted using the Henderson equation. Standard derivations of the Henderson equation appeal to local electroneutrality, which is also incompatible with sources of electric fields, as these require separated charges. We analyse self-consistent solutions of the Nernst-Planck-Poisson equations for a 1 : 1-univalent electrolyte to show that the Goldman and Henderson steady-state membrane potentials are artefacts of extraneous charges created in the reservoirs of electrolyte solution on either side of the membrane, due to the unphysical nature of the usual (Dirichlet) boundary conditions assumed to apply at the membrane-electrolyte interfaces. We also show, with the aid of numerical simulations, that a transient electric potential difference develops in any confined, but initially non-uniform, electrolyte solution. This potential difference ultimately decays to zero in the real steady state of the electrolyte, which corresponds to thermodynamic equilibrium. We explain the surprising fact that such transient potential differences are well described by the Henderson equation by using a computer algebra system to extend previous steady-state singular perturbation theories to the time-dependent case. Our work therefore accounts for the success of the Henderson equation in analysing experimental liquid-junction potentials.

  6. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors.

    PubMed

    Jin, Le; Ong, Say Leong; Ng, How Yong

    2010-12-01

    Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane's microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.

  8. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    PubMed Central

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  9. Action potentials recorded from bundles of very thin, gray matter axons in rat cerebellar slices using a grease-gap method.

    PubMed

    Palani, Damodharan; Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna; Raastad, Morten

    2012-07-15

    We investigated the ability of a grease-gap method to record fast and slow changes of the membrane potential from bundles of gray matter axons. Their membrane potentials are of particular interest because these axons are different from most axons that have been investigated using intra-axonal or gap techniques. One of the main differences is that gray matter axons typically have closely spaced presynaptic specializations, called boutons or varicosities, distributed along their entire paths. In response to electrical activation of bundles of parallel fiber axons we were able to record small (128-416μV) but stable signals that we show most likely represented a fraction of the trans-membrane action potentials. A less-than 100% fraction prevents measurements of absolute values for membrane potentials, but the good signal-to-noise ratio (typically 10-16) allows detection of changes in resting membrane potential, action potentials and their after-potentials. Because very little is known about the shape of action potentials and after-potentials in these axons we used several independent methods to make it likely that the grease-gap signal was of intra-axonal origin. We demonstrate the utility of the method by showing that the action potentials in cerebellar parallel fibers and hippocampal Schaffer collaterals had a slowly decaying, depolarized after-potential. The method is ideal for pharmacological tests, which we demonstrate by showing that the slow after-potential was sensitive to 4-AP, and that the membrane potential was reduced by 200μM Ba(2+). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Model for the dynamic responses of taste receptor cells to salty stimuli. I. Function of lipid bilayer membranes.

    PubMed Central

    Naito, M; Fuchikami, N; Sasaki, N; Kambara, T

    1991-01-01

    The dynamic response of the lipid bilayer membrane is studied theoretically using a microscopic model of the membrane. The time courses of membrane potential variations due to monovalent salt stimulation are calculated explicitly under various conditions. A set of equations describing the time evolution of membrane surface potential and diffusion potential is derived and solved numerically. It is shown that a rather simple membrane such as lipid bilayer has functions capable of reproducing the following properties of dynamic response observed in gustatory receptor potential. Initial transient depolarization does not occur under Ringer adaptation but does under water. It appears only for comparatively rapid flows of stimuli, the peak height of transient response is expressed by a power function of the flow rate, and the membrane potential gradually decreases after reaching its peak under long and strong stimulation. The dynamic responses in the present model arise from the differences between the time dependences in the surface potential phi s and the diffusion potential phi d across a membrane. Under salt stimulation phi d cannot immediately follow the variation in phi s because of the delay due to the charging up of membrane capacitance. It is suggested that lipid bilayer in the apical membrane is the most probable agency producing the initial phasic response to the stimulation. PMID:1873461

  11. Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages

    NASA Astrophysics Data System (ADS)

    Pastore, I.; Poplausks, R.; Apsite, I.; Pastare, I.; Lombardi, F.; Erts, D.

    2011-06-01

    Formation of ultrathin anodised aluminium oxide (AAO) membranes with high aspect ratio by Al anodization in sulphuric and oxalic acids at low potentials was investigated. Low anodization potentials ensure slow electrochemical reaction speeds and formation of AAO membranes with pore diameter and thickness below 20 nm and 70 nm respectively. Minimum time necessary for formation of continuous AAO membranes was determined. AAO membrane pore surface was covered with polymer Paraloid B72TM to transport it to the selected substrate. The fabricated ultra thin AAO membranes could be used to fabricate nanodot arrays on different surfaces.

  12. Ion permeability of artificial membranes evaluated by diffusion potential and electrical resistance measurements.

    PubMed

    Shlyonsky, Vadim

    2013-12-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and n-decane. The electrical resistance and potential difference across these membranes can be easily measured using a low-cost volt-ohm meter and home-made Ag/AgCl electrodes. The advantage of the model is the lack of ionic selectivity of the membrane, which can be modified by the introduction of different ionophores to the organic liquid mixture. A membrane treated with the mixture containing valinomycin generates voltages from -53 to -25 mV in the presence of a 10-fold KCl gradient (in to out) and from -79 to -53 mV in the presence of a bi-ionic KCl/NaCl gradient (in to out). This latter bi-ionic gradient potential reverses to a value from +9 to +20 mV when monensin is present in the organic liquid mixture. Thus, the model can be build stepwise, i.e., all factors leading to the development of diffusion potentials can be introduced sequentially, helping students to understand the quantitative relationships of ionic gradients and differential membrane permeability in the generation of cell electrical signals.

  13. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    PubMed

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  14. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    PubMed

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  15. Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion.

    PubMed

    Sarkar, Parijat; Chakraborty, Hirak; Chattopadhyay, Amitabha

    2017-06-30

    Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.

  16. Combined use of two membrane-potential-sensitive dyes for determination of the Galvani potential difference across a biomimetic oil/water interface.

    PubMed

    Yoshimura, Tatsuya; Nagatani, Hirohisa; Osakai, Toshiyuki

    2014-05-01

    The fluorescence behavior of anionic membrane-potential-sensitive dyes, bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3)) and bis-(1,3-diethylthiobarbituric acid)trimethine oxonol (DiSBAC2(3)), at a biomimetic 1,2-dichloroethane (DCE)/water (W) interface was studied by the mean of potential-modulated fluorescence (PMF) spectroscopy. The respective dyes gave a well-defined PMF signal due to the adsorption/desorption at the DCE/W interface. It was also found that the potentials where the two dyes gave the PMF signals were different by about 100 mV. We then attempted a combined use of the two dyes for determination of the Galvani potential difference across the DCE/W interface. When 40 μM DiBAC4(3) and 15 μM DiSBAC2(3) were initially added to the W phase, distinctly different spectra were obtained for different interfacial potentials. The ratio of the PMF signal intensities at 530 and 575 nm (the fluorescence maximum wavelengths for the respective dyes) showed a clear dependence on the interfacial potential. These results suggested the potential utility of the combined use of two dyes for the determination of membrane potentials in vivo.

  17. Liposomes as model for taste cells: receptor sites for bitter substances including N-C=S substances and mechanism of membrane potential changes.

    PubMed

    Kumazawa, T; Nomura, T; Kurihara, K

    1988-02-23

    Various bitter substances were found to depolarize liposomes. The results obtained are as follows: (1) Changes in the membrane potential of azolectin liposomes in response to various bitter substances were monitored by measuring changes in the fluorescence intensity of 3,3'-dipropylthiocarbocyanine iodide [diS-C3(5)]. All the bitter substances examined increased the fluorescence intensity of the liposome-dye suspension, which indicates that the substances depolarize the liposomes. There existed a good correlation between the minimum concentrations of the bitter substances to depolarize the liposomes and the taste thresholds in humans. (2) The effects of changed lipid composition of liposomes on the responses to various bitter substances vary greatly among bitter substances, suggesting that the receptor sites for bitter substances are multiple. The responses to N-C=S substances and sucrose octaacetate especially greatly depended on the lipid composition; these compounds depolarized only liposomes having certain lipid composition, while no or hyperpolarizing responses to these compounds were observed in other liposomes examined. This suggested that the difference in "taster" and "nontaster" for these substances can be explained in terms of difference in the lipid composition of taste receptor membranes. (3) It was confirmed that the membrane potential of the planar lipid bilayer is changed in response to bitter substances. The membrane potential changes in the planar lipid bilayer as well as in liposomes in response to the bitter substances occurred under the condition that there is no ion gradient across the membranes. These results suggested that the membrane potential changes in response to bitter substances stem from the phase boundary potential changes induced by adsorption of the substances on the hydrophobic region of the membranes.

  18. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production †

    PubMed Central

    Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  19. Theoretical and experimental investigations of the potential of osmotic energy for power production.

    PubMed

    Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter

    2014-08-08

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.

  20. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle

    PubMed Central

    Arakha, Manoranjan; Saleem, Mohammed; Mallick, Bairagi C.; Jha, Suman

    2015-01-01

    The work investigates the role of interfacial potential in defining antimicrobial propensity of ZnO nanoparticle (ZnONP) against different Gram positive and Gram negative bacteria. ZnONPs with positive and negative surface potential are tested against different bacteria with varying surface potentials, ranging −14.7 to −23.6 mV. Chemically synthesized ZnONPs with positive surface potential show very high antimicrobial propensity with minimum inhibitory concentration of 50 and 100 μg/mL for Gram negative and positive bacterium, respectively. On other hand, ZnONPs of the same size but with negative surface potential show insignificant antimicrobial propensity against the studied bacteria. Unlike the positively charged nanoparticles, neither Zn2+ ion nor negatively charged ZnONP shows any significant inhibition in growth or morphology of the bacterium. Potential neutralization and colony forming unit studies together proved adverse effect of the resultant nano-bacterial interfacial potential on bacterial viability. Thus, ZnONP with positive surface potential upon interaction with negative surface potential of bacterial membrane enhances production of the reactive oxygen species and exerts mechanical stress on the membrane, resulting in the membrane depolarization. Our results show that the antimicrobial propensity of metal oxide nanoparticle mainly depends upon the interfacial potential, the potential resulting upon interaction of nanoparticle surface with bacterial membrane. PMID:25873247

  1. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    PubMed

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all P< 0.05]. The copy number of mtDNA and the mitochondrial membrane potential in classⅠ frozen embryo group were significantly higher than those in classⅡ frozen embryo group (both P< 0.05). Conclusion: The mtDNA copy number and the mitochondrial membrane potential of embryos of the better quality embryo are higher.

  2. Hysteresis in voltage-gated channels.

    PubMed

    Villalba-Galea, Carlos A

    2017-03-04

    Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.

  3. Analog Computer Solution of the Electrodiffusion Equation for a Simple Membrane

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    1972-01-01

    An analog solution was obtained for the Nenst-Planck and Poisson equations which describe the ion concentration across a simple membrane held at a potential difference. The electric field variation within the membrane was also determined. (Author/TS)

  4. Cholesterol asymmetry in synaptic plasma membranes.

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Transmembrane voltage: Potential to induce lateral microdomains.

    PubMed

    Malinsky, Jan; Tanner, Widmar; Opekarova, Miroslava

    2016-08-01

    Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Monitoring sperm mitochondrial respiration response in a laser trap using ratiometric fluorescence

    NASA Astrophysics Data System (ADS)

    Mei, Adrian; Botvinick, Elliot; Berns, Michael

    2005-08-01

    Sperm motility is an important area in understanding male infertility. Various techniques, such as the Computer Assisted Sperm Analysis (CASA), have been used to understand sperm motility. Sperm motility is related to the energy (ATP) production of sperm. ATP is produced by the depolarization of the membrane potential of the inner membrane of the mitochondria. In this study, a mitochondrial dye, JC-1, has been used to monitor the energetics of the mitochondria. This fluorescent dye can emit at two different wavelengths, depending on the membrane potential of the mitochondria. It can fluoresce green at low membrane potential and red at high membrane potential. The ratio of the two colors (red/green) allows for an accurate measurement of the change of membrane potential. Various experiments were conducted to quantify the behavior of the dye within the sperm and the reaction of the sperm to trap. Sperm were trapped using laser tweezers. Results have shown that the ratio drops dramatically when sperm are trapped, indicating a depolarization of the membrane. The physiological response to this depolarization is yet to be determined, but the studies indicate that the sperm could have been slightly damaged by the laser. However, knowing that sperm depolarizes their membrane when trapped can help understand how sperm react to their environment and consequently help treat male infertility.

  7. Effect of copper chloride exposure on the membrane potential and cytosolic free calcium in primary cultured chicken hepatocytes.

    PubMed

    Jia, Xuexia; Chen, Long; Li, Jingtao; Su, Rongsheng; Shi, Dayou; Tang, Zhaoxin

    2012-09-01

    This study was conducted to examine the effects of copper on membrane potential and cytosolic free calcium in isolated primary chicken hepatocytes which were exposed to different concentration of Cu(2+) (0, 10, 50, 100 μM) or a mixture of Cu(2+) and vitamin C (50 and 50 μM, respectively). Viability, membrane potential, and cytosolic free Ca(2+) of monolayer cultured hepatocytes were investigated at the indicated time point. Results showed that, among the different concentrations of Cu(2+) exposure, the viability of hepatocytes treated with 100 μM Cu(2+) was the worst at the 12th and 24th hours. The effects of Cu(2+) on viability and proliferation were time and dose dependent. Further investigation indicated that Cu(2+) exposure significantly enhanced cytosolic free Ca(2+) in hepatocytes, compared to that in control group, at the 24th hour. Meanwhile, membrane potential was noticeably reduced in hepatocytes increasing concentration of Cu(2+). Taking these results together, we have shown that Cu(2+) can cause toxicity to primary chicken hepatocytes in excessive dose and the effect of Cu(2+) exposure on membrane potential is not site specific, which is probably mediated by the changes of cytosolic free Ca(2+).

  8. Calculating the Bending Modulus for Multicomponent Lipid Membranes in Different Thermodynamic Phases

    PubMed Central

    2013-01-01

    We establish a computational approach to extract the bending modulus, KC, for lipid membranes from relatively small-scale molecular simulations. Fluctuations in the splay of individual pairs of lipids faithfully inform on KC in multicomponent membranes over a large range of rigidities in different thermodynamic phases. Predictions are validated by experiments even where the standard spectral analysis-based methods fail. The local nature of this method potentially allows its extension to calculations of KC in protein-laden membranes. PMID:24039553

  9. Hysteresis in voltage-gated channels

    PubMed Central

    2017-01-01

    ABSTRACT Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels. PMID:27689426

  10. Interaction of proteins with weak amphoteric charged membrane surfaces: effect of pH.

    PubMed

    Matsumoto, Hidetoshi; Koyama, Yoshiyuki; Tanioka, Akihiko

    2003-08-01

    Weak amphoteric charged membranes were prepared by the graft copolymerization of poly(ethylene glycol) (PEG) derivatives with pendant ionizable groups onto polyethylene (PE) porous membranes. Two types of weak amphoteric charged membranes and two types of weak single charged membranes were prepared. The pH dependence of the protein (fluorescein isothiocyanate-labeled bovine serum albumin, FITC-BSA) adsorption onto the membranes was investigated by fluorescence spectroscopy. The interfacial charge properties of the membranes and protein were also characterized at different pH values by streaming potential and electrophoretic light scattering (ELS) measurements, respectively. The adsorbed amount onto each ionic PEG chain grafted membrane showed a uniform maximum value near the isoelectric point (IEP) of the protein (pH 4.1). On both sides of the IEP (pHs 3.3 and 7.2), the adsorption experiments and zeta (zeta) potential measurements were well correlated: the contribution of electrostatic interaction was dominant for the protein adsorption behavior. In the alkaline condition (pH 10.2), the adsorption experiments contradict the zeta potential measurements. It suggested that the conformational change of protein molecule influenced the adsorption behavior. Finally, these results indicated the potential of controlling the protein-ionic PEG chain interaction on the membrane surfaces by the pH adjustment of the outer solution.

  11. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.

    PubMed

    Adams, Tayloria N G; Jiang, Alan Y L; Vyas, Prema D; Flanagan, Lisa A

    2018-01-15

    Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Realizing synchronous energy harvesting and ion separation with graphene oxide membranes.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-07-02

    A synchronous ion separation and electricity generation process has been developed using G-O membranes. In addition to the size effect proposed prevsiouly, the separation of ions can be attributed to the different interactions between ions and G-O membranes; the generation of electricity is due to the confinement of G-O membranes, and the mobility difference of ions. Efficient energy transduction has been achieved with G-O membranes, converting magnetic, thermal and osmotic energy to electricity, distinguishing this material from other commercial semi-permeable membranes. Our study indicated that G-O membranes could find potential applications in the purification of wastewater, while producing electricity simultaneously. With G-O membranes, industrial magnetic leakage and waste heat could also be used to produce electricity, affording a superior approach for energy recovery.

  13. The role of entropic potential in voltage activation and K+ transport through Kv 1.2 channels

    NASA Astrophysics Data System (ADS)

    Wawrzkiewicz-Jałowiecka, Agata; Grzywna, Zbigniew J.

    2018-03-01

    We analyze the entropic effects of inner pore geometry changes of Kv 1.2 channel during membrane depolarization and their implications for the rate of transmembrane transport of potassium ions. We base this on the idea that spatial confinements within the channel pore give rise to entropic barriers which can both effectively affect the stability of open macroconformation and influence channel's ability to conduct the potassium ions through the membrane. First, we calculate the differences in entropy between voltage-activated and resting states of the channel. As a template, we take a set of structures of channel pore in an open state at different membrane potentials generated in our previous research. The obtained results indicate that tendency to occupy open states at membrane depolarization is entropy facilitated. Second, we describe the differences in rates of K+ transport through the channel pore at different voltages based on the results of appropriate random walk simulations in entropic and electric potentials. The simulated single channel currents (I) suggest that the geometry changes during membrane depolarization are an important factor contributing to the observed flow of potassium ions through the channel. Nevertheless, the charge distribution within the channel pore (especially at the extracellular entrance) seems most prominent for the observed I/Imax relation at a qualitative level at analyzed voltages.

  14. Convection due to an unstable density difference across a permeable membrane

    NASA Astrophysics Data System (ADS)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    We study natural convection driven by unstable concentration differences of sodium chloride (NaCl) across a horizontal permeable membrane at Rayleigh numbers (Ra) of 1010 to 1011 and Schmidt number (Sc)=600. A layer of brine lies over a layer of distilled water, separated by the membrane, in square-cross-section tanks. The membrane is permeable enough to allow a small flow across it at higher driving potentials. Based on the predominant mode of transport across the membrane, three regimes of convection, namely an advection regime, a diffusion regime and a combined regime, are identified. The near-membrane flow in all the regimes consists of sheet plumes formed from the unstable layers of fluid near the membrane. In the advection regime observed at higher concentration differences (Bb) show a common log-normal probability density function at all Ra. We propose a phenomenology which predicts /line{lambda}_b sqrt{Z_w Z_{V_i}}, where Zw and Z_{V_i} are, respectively, the near-wall length scales in Rayleighnard convection (RBC) and due to the advection velocity. In the combined regime, which occurs at intermediate values of C/2)4/3. At lower driving potentials, in the diffusion regime, the flux scaling is similar to that in turbulent RBC.

  15. Electrochemical mineral scale prevention and removal on electrically conducting carbon nanotube--polyamide reverse osmosis membranes.

    PubMed

    Duan, Wenyan; Dudchenko, Alexander; Mende, Elizabeth; Flyer, Celeste; Zhu, Xiaobo; Jassby, David

    2014-05-01

    The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson-Boltzmann equation, which qualitatively explained our observed experimental results.

  16. The effects of substance P on smooth muscle cells and on neuro-effector transmission in the guinea-pig ileum

    PubMed Central

    Fujisawa, Kazuaki; Ito, Yushi

    1982-01-01

    1 The effects of substance P (SP) on the membrane and contractile properties of the smooth muscle cell, or on neuro-effector transmission in the guinea-pig ileum were observed by means of microelectrodes, double sucrose gap and tension recording. 2 SP (10-13-10-10M) induced a phasic contraction of longitudinal muscle strips, but did not change the muscle tone of circular muscle strips, in concentrations up to 10-8M. 3 SP (10-10-10-8M) evoked three different membrane responses in longitudinal muscle cells: (i) bursts of spike discharges with no significant change in the membrane potential and input membrane resistance; (ii) bursts of spike discharges with a small but clear depolarization of the membrane and increase in the input membrane resistance; (iii) slow waves with no change in the membrane potential. 4 In the circular muscle cells, low concentrations of SP (<10-8M) did not affect the membrane potential or the spikes, but SP (10-7M) increased the spike discharges with no significant change in the membrane potential. 5 SP (10-10M) reduced the threshold depolarization required for the generation of action potentials with no change in membrane potential of the longitudinal muscle cells. 6 Pretreatment with atropine (5 × 10-6M), tetrodotoxin (TTX 10-6M) or baclofen (4.7 × 10-6M) had no effect on the excitatory actions of SP on the smooth muscle cells of longitudinal and circular muscle strips. 7 Excitatory actions of SP on the membrane potential or spike activities of longitudinal muscle cells were preserved in NaCl but not in Ca-deficient solution. 8 SP (10-10-10-9M) enhanced the amplitude of the excitatory junction potentials (e.j.ps) evoked by electrical field stimulation in longitudinal muscle cells with no change in the membrane potential and input resistance. SP (10-10-10-9M), however, did not change the amplitude of inhibitory junction potentials (i.j.ps) recorded from the circular muscle cells. 9 These results indicate that SP in relatively low concentrations acts on both smooth muscle cells and on excitatory neuro-effector transmission in the longitudinal muscle; the main site of the action of SP is probably the muscle membrane. PMID:6178458

  17. Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes.

    PubMed

    Rana, Sidra; Nazar, Umair; Ali, Jafar; Ali, Qurat Ul Ain; Ahmad, Nasir M; Sarwar, Fiza; Waseem, Hassan; Jamil, Syed Umair Ullah

    2018-06-01

    A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (10 6  CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.

  18. Study of permeability characteristics of membranes

    NASA Technical Reports Server (NTRS)

    Spiegler, K. S.; Messalem, R. M.; Moore, R. J.; Leibovitz, J.

    1971-01-01

    Pressure-permeation experiments were performed with the concentration-clamp cell. Streaming potentials and hydraulic permeabilities were measured for an AMF C-103 cation-exchange membrane bounded by 0.1 N NaCl solutions. The streaming potential calculated from the slope of the recorded potential differences versus the applied pressure, yields a value of 1.895 millivolt/dekabar. When comparison with other membranes of similar characteristics could be made, good agreement was found. The values of the hydraulic permeability varied somewhat with the applied pressure difference and are between 1.3 x 10 to the minus 8th power and 3.9 x 10 to the minus 8th power sq cm/dekabar-sec. The specific hydraulic permeabilities were also calculated and compared with data from the literature. Fair agreement was found. The diffusion coefficient of the chloride ion in the AMF C-103 membrane was calculated, using Fick's first law of diffusion based on ion concentrations calculated from the Donnan equilibrium concentration of Cl(-).

  19. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    PubMed

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas.

  20. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    PubMed

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Functions of a new photoreceptor membrane. [energy conversion via halobacteria rhodopsin changes

    NASA Technical Reports Server (NTRS)

    Oesterhelt, D.; Stoeckenius, W.

    1973-01-01

    In the investigation of light responses on halobacteria phototaxis; ATP synthesis; and changes in O2 consumption, purple membrane biosynthesis, and proton translocation were found. The last three effects are discussed, which suggest that the purple membrane may function as an energy-coupling membrane for light. It is also suggested that purple membrane, through cyclic light-induced conformational changes of its bacteriorhodopsin, directly converts absorbed light energy into a proton gradient and presumably also an electric potential difference across the membrane analogous to observations in other prokaryotic cells, mitochondria, and chloroplasts.

  2. Different glycoforms of prostate-specific membrane antigen are intracellularly transported through their association with distinct detergent-resistant membranes.

    PubMed

    Castelletti, Deborah; Alfalah, Marwan; Heine, Martin; Hein, Zeynep; Schmitte, Ruth; Fracasso, Giulio; Colombatti, Marco; Naim, Hassan Y

    2008-01-01

    Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.

  3. MEMBRANE POTENTIAL OF THE SQUID GIANT AXON DURING CURRENT FLOW

    PubMed Central

    Cole, Kenneth S.; Curtis, Howard J.

    1941-01-01

    The squid giant axon was placed in a shallow narrow trough and current was sent in at two electrodes in opposite sides of the trough and out at a third electrode several centimeters away. The potential difference across the membrane was measured between an inside fine capillary electrode with its tip in the axoplasm between the pair of polarizing electrodes, and an outside capillary electrode with its tip flush with the surface of one polarizing electrode. The initial transient was roughly exponential at the anode make and damped oscillatory at the sub-threshold cathode make with the action potential arising from the first maximum when threshold was reached. The constant change of membrane potential, after the initial transient, was measured as a function of the total polarizing current and from these data the membrane potential is obtained as a function of the membrane current density. The absolute value of the resting membrane resistance approached at low polarizing currents is about 23 ohm cm.2. This low value is considered to be a result of the puncture of the axon. The membrane was found to be an excellent rectifier with a ratio of about one hundred between the high resistance at the anode and the low resistance at the cathode for the current range investigated. On the assumption that the membrane conductance is a measure of its ion permeability, these experiments show an increase of ion permeability under a cathode and a decrease under an anode. PMID:19873234

  4. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.

    2010-12-17

    Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less

  5. Derivatives of Rhodamine 19 as Mild Mitochondria-targeted Cationic Uncouplers*

    PubMed Central

    Antonenko, Yuri N.; Avetisyan, Armine V.; Cherepanov, Dmitry A.; Knorre, Dmitry A.; Korshunova, Galina A.; Markova, Olga V.; Ojovan, Silvia M.; Perevoshchikova, Irina V.; Pustovidko, Antonina V.; Rokitskaya, Tatyana I.; Severina, Inna I.; Simonyan, Ruben A.; Smirnova, Ekaterina A.; Sobko, Alexander A.; Sumbatyan, Natalia V.; Severin, Fedor F.; Skulachev, Vladimir P.

    2011-01-01

    A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C12R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H+ ions was generated in the presence of C12R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C12R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C12R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C12R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease. PMID:21454507

  6. Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release.

    PubMed

    Zhao, Pengkun; Zhao, Yanan; Xiao, Ling; Deng, Hongbing; Du, Yumin; Chen, Yun; Shi, Xiaowen

    2017-10-01

    In this study, we report the electrodeposition of a chitosan/layered double hydroxides (LDHs) hydro-membrane for protein release triggered by an electrical signal. The electrodeposition was performed in a chitosan and insulin loaded LDHs suspension in the absence of salt. A free-standing chitosan/LDHs hydro-membrane was generated on the electrode with improved mechanical properties, which is dramatically different from the weak hydrogel deposited in the presence of salt. The amount of LDHs in the hydro-membrane affects the optical transmittance and multilayered structure of the hybrid membrane. Compared to the weak chitosan/LDHs hydrogel, the hydro-membrane has a higher insulin loading capacity and the release of insulin is relatively slow. By biasing electrical potentials to the hydro-membrane, the release behavior of insulin can be adjusted accordingly. In addition, the chitosan/LDHs hydro-membrane showed no toxicity to cells. Our results provide a facile method to construct a chitosan/LDHs hybrid multilayered hydro-membrane and suggest the great potential of the hydro-membrane in controlled protein release. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Differences in extracellular matrix remodeling in the placenta of mares that retain fetal membranes and mares that deliver fetal membranes physiologically.

    PubMed

    Rapacz-Leonard, A; Kankofer, M; Leonard, M; Wawrzykowski, J; Dąbrowska, M; Raś, A; Paździor-Czapula, K; Janowski, T

    2015-10-01

    In mammals, placenta separation at term may involve degradation of the extracellular matrix by matrix metalloproteinases (MMPs). The activity of MMPs is modulated by TIMPs. We hypothesized that the placentas of mares that deliver fetal membranes physiologically and those that retain fetal membranes (FMR) differ in terms of histology; mRNA expression of MMP-2 and MMP-9; protein expression of MMP-2, MMP-9, and TIMP-2; and the potential activity of both MMPs. Placenta biopsies were taken from mares (n = 9; 4 FMR, 5 controls) immediately after foal expulsion. Retention was defined as failure to expel all fetal membranes within 3 h of expulsion. All mares were monitored for time of expulsion. The degree of allantochorial/endometrial adhesion was determined in FMR mares, and biopsies from all mares were histologically examined. mRNA expression, protein immunolocalization, protein amount and potential enzyme activity were determined with RT-PCR, immunohistochemistry, Western Blotting and zymography, respectively. FMR mares had strong to extremely strong allantochorial/endometrial adhesion, and significantly more connective tissue in the allantochorial villi than controls. The range of MMP-2 mRNA expression levels was more than 13 times greater in FMR mares than in controls. Protein content of both MMPs and TIMP-2 differed significantly between groups. The range of potential MMP-2 and MMP-9 activity was larger in FMR mares, and MMP-2 potential activity was 1.4 times higher in controls (P = 0.02). These results indicate differences in extracellular matrix remodeling in FMR mares and controls, and suggest dysregulation of MMP expression and activation in FMR mares. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Molecular dynamics exploration of poration and leaking caused by Kalata B1 in HIV-infected cell membrane compared to host and HIV membranes.

    PubMed

    Nawae, Wanapinun; Hannongbua, Supa; Ruengjitchatchawalya, Marasri

    2017-06-15

    The membrane disruption activities of kalata B1 (kB1) were investigated using molecular dynamics simulations with membrane models. The models were constructed to mimic the lipid microdomain formation in membranes of HIV particle, HIV-infected cell, and host cell. The differences in the lipid ratios of these membranes caused the formation of liquid ordered (lo) domains of different sizes, which affected the binding and activity of kB1. Stronger kB1 disruptive activity was observed for the membrane with small sized lo domain. Our results show that kB1 causes membrane leaking without bilayer penetration. The membrane poration mechanism involved in the disorganization of the lo domain and in cholesterol inter-leaflet translocation is described. This study enhances our understanding of the membrane activity of kB1, which may be useful for designing novel and potentially therapeutic peptides based on the kB1 framework.

  9. Ratiometric fluorescence measurements and imaging of the dipole potential in cell plasma membranes

    NASA Astrophysics Data System (ADS)

    Shynkar, Vasyl V.; Klymchenko, Andrey S.; Duportail, Guy; Demchenko, Alexander P.; Mély, Yves

    2004-09-01

    Development of fluorescence microscopic methods is limited by the application of new dyes, the response of which could be sensitive to different functional states in the living cells, and, in particular, to electrostatic potentials on their plasma membranes. Recently, we showed that newly designed 3-hydroxyflavone fluorescence dyes are highly electrochromic and show a strong two-band ratiometric response to electric dipole potential in lipid membranes. In the present report we extend these observations and describe a new generation of these dyes as electrochromic probes in biomembrane research. Modification of the membrane dipole potential was achieved by addition of 6-ketocholestanol (6-KC), cholesterol and phloretin. The dipole potential was also estimated by the reference probe di-8-ANEPPS. As an example, we show that on addition of 6-KC there occurs a dramatic change of the intensity ratio of the two emission bands, which is easily detected as a change of color. We describe in detail the applications of one of these dyes, PPZ8, to the studies of cells in suspension or attached to the glass surface. Confocal microscopy demonstrates strong preference of the probe for the cell plasma membrane, which allows us to apply this dye for studying electrostatic and other biomembrane properties. We demonstrate that the two-color response provides a direct and convenient way to measure the dipole potential in the plasma membrane. Applying PPZ8 in confocal microcopy and two-photon microspectroscopy allowed us to provide two-color imaging of the membrane dipole potential on the level of a single cell.

  10. Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes.

    PubMed

    Trendeleva, Tatiana A; Sukhanova, Evgenia I; Rogov, Anton G; Zvyagilskaya, Renata A; Seveina, Inna I; Ilyasova, Tatiana M; Cherepanov, Dmitry A; Skulachev, Vladimir P

    2013-09-01

    The effects of the mitochondria-targeted lipophilic cation dodecyltriphenylphosphonium (C12TPP, the charge is delocalized and screened by bulky hydrophobic residues) and those of lipophilic cations decyltriethylammonium bromide and cetyltrimethylammonium bromide (C10TEA and C16TMA, the charges are localized and screened by less bulky residues) on bilayer planar phospholipid membranes and tightly-coupled mitochondria from the yeast Yarrowia lipolytica have been compared. In planar membranes, C12TPP was found to generate a diffusion potential as if it easily penetrates these membranes. In the presence of palmitate, C12TPP induced H(+) permeability like plastoquinonyl decyltriphenilphosphonium that facilitates transfer of fatty acid anions (Severin et al., PNAS, 2010, 107, 663-668). C12TPP was shown to stimulate State 4 respiration of mitochondria and caused a mitochondrial membrane depolarization with a half-maximal effect at 6μM. Besides, C12TPP profoundly potentiated the uncoupling effect of endogenous or added fatty acids. C10TEA and C16TMA inhibited State 4 respiration and decreased the membrane potential, though at much higher concentrations than C12TPP, and they did not promote the uncoupling action of fatty acids. These relationships were modeled by molecular dynamics. They can be explained by different membrane permeabilities for studied cations, which in turn are due to different availabilities of the positive charge in these cations to water dipoles. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].

    PubMed

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej

    2006-01-01

    On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).

  12. Preparation of novel poly(vinylidene fluoride)/TiO2 photocatalysis membranes for use in direct contact membrane distillation

    NASA Astrophysics Data System (ADS)

    Li, Yukun; Dong, Shuying; Zhu, Liang

    2018-03-01

    Immobilization of TiO2 is a potential approach to obtain photocatalytic membranes that could eliminate concentration polarization in sewage disposal for direct contact membrane distillation (DCMD) process. A simple non-solvent-induced phase separation (NIPS) method was proposed to prepare poly(vinylidene fluoride) (PVDF) membrane, and the double-coating technology was further used to prepare the self-cleaning membranes with different TiO2 content. The effects of TiO2 nano-particles on membrane crystal form, morphology, porosity, pore size, pore size distribution, hydrophobicity, permeation, and photocatalytic efficiency were investigated, respectively. The flux of the prepared membranes is higher than the membrane (MS) provided by Membrane Solutions, LLC, in DCMD process. The contact angle between water and membrane could be increased 22° by introducing photocatalytic layer containing TiO2. During the photocatalytic test, 65.78-96.31% degrading rate of 15 mg/L Rhodamine B (RhB) was achieved. The relative flux of the membrane T-3 can be recovered to 0.96 in photocatalysis-membrane reactor for 8 h UV radiation. The fabricated membrane has great potential in high-salty dyeing wastewater treatment due to its high hydrophobicity and photocatalytic capability. [Figure not available: see fulltext.

  13. Neuronal Differentiation Modulated by Polymeric Membrane Properties.

    PubMed

    Morelli, Sabrina; Piscioneri, Antonella; Drioli, Enrico; De Bartolo, Loredana

    2017-01-01

    In this study, different collagen-blend membranes were successfully constructed by blending collagen with chitosan (CHT) or poly(lactic-co-glycolic acid) (PLGA) to enhance their properties and thus create new biofunctional materials with great potential use for neuronal tissue engineering and regeneration. Collagen blending strongly affected membrane properties in the following ways: (i) it improved the surface hydrophilicity of both pure CHT and PLGA membranes, (ii) it reduced the stiffness of CHT membranes, but (iii) it did not modify the good mechanical properties of PLGA membranes. Then, we investigated the effect of the different collagen concentrations on the neuronal behavior of the membranes developed. Morphological observations, immunocytochemistry, and morphometric measures demonstrated that the membranes developed, especially CHT/Col30, PLGA, and PLGA/Col1, provided suitable microenvironments for neuronal growth owing to their enhanced properties. The most consistent neuronal differentiation was obtained in neurons cultured on PLGA-based membranes, where a well-developed neuronal network was achieved due to their improved mechanical properties. Our findings suggest that tensile strength and elongation at break are key material parameters that have potential influence on both axonal elongation and neuronal structure and organization, which are of fundamental importance for the maintenance of efficient neuronal growth. Hence, our study has provided new insights regarding the effects of membrane mechanical properties on neuronal behavior, and thus it may help to design and improve novel instructive biomaterials for neuronal tissue engineering. © 2017 S. Karger AG, Basel.

  14. Fouling potential evaluation of soluble microbial products (SMP) with different membrane surfaces in a hybrid membrane bioreactor using worm reactor for sludge reduction.

    PubMed

    Li, Zhipeng; Tian, Yu; Ding, Yi; Chen, Lin; Wang, Haoyu

    2013-07-01

    The fouling characteristics of soluble microbial products (SMP) in the membrane bioreactor coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR) were tested with different types of membranes. It was noted that the flux decrements of S-SMP (SMP in SSBWR-MBR) with cellulose acetate (CA), polyvinylidene fluoride (PVDF) and polyether sulfones (PES) membranes were respectively 6.7%, 8.5% and 9.5% lower compared to those of C-SMP (SMP in Control-MBR) with corresponding membranes. However, for both the filtration of the C-SMP and S-SMP, the CA membrane exhibited the fastest diminishing rate of flux among the three types of membranes. The surface morphology analysis showed that the CA membrane exhibited more but smaller protuberances compared to the PVDF and PES. The second minimums surrounding each protruding asperity on CA membrane were more than those on the PVDF and PES membranes, enhancing the attachment of SMP onto the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Fast iodide-SAD phasing for high-throughput membrane protein structure determination

    PubMed Central

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A.; Gordeliy, Valentin; Popov, Alexander

    2017-01-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide–single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins—the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein–coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques. PMID:28508075

  16. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    PubMed

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  17. Auxin effects on ion transport in Chara corallina.

    PubMed

    Zhang, Suyun; de Boer, Albertus H; van Duijn, Bert

    2016-04-01

    The plant hormone auxin has been widely studied with regard to synthesis, transport, signaling and functions among the land plants while there is still a lack of knowledge about the possible role for auxin regulation mechanisms in algae with "plant-like" structures. Here we use the alga Chara corallina as a model to study aspects of auxin signaling. In this respect we measured auxin on membrane potential changes and different ion fluxes (K(+), H(+)) through the plasma membrane. Results showed that auxin, mainly IAA, could hyperpolarize the membrane potential of C. corallina internodal cells. Ion flux measurements showed that the auxin-induced membrane potential change may be based on the change of K(+) permeability and/or channel activity rather than through the activation of proton pumps as known in land plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Kinetic Modulation of Pulsed Chrono-potentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers

    PubMed Central

    Xu, Yida; Xu, Chao; Shvarev, Alexey; Becker, Thomas; De Marco, Roland

    2010-01-01

    Polymeric membrane ion selective electrodes are normally interrogated by zero current potentiometry, and their selectivity is understood to be primarily dependent on an extraction/ion-exchange equilibrium between the aqueous sample and polymeric membrane. If concentration gradients in the contacting diffusion layers are insubstantial, the membrane response is thought to be rather independent of kinetic processes such as surface blocking effects. In this work, the surface of calcium-selective polymeric ion-selective electrodes is coated with polyelectrolyte multilayers as evidenced by zeta potential measurements, atomic force microscopy and electrochemical impedance spectroscopy. Indeed, such multilayers have no effect on their potentiometric response if the membranes are formulated in a traditional manner, containing a lipophilic ion-exchanger and a calcium-selective ionophore. However, drastic changes in the potential response are observed if the membranes are operated in a recently introduced kinetic mode using pulsed chronopotentiometry. The results suggest that the assembled nanostructured multilayers drastically alter the kinetics of ion transport to the sensing membrane, making use of the effect that polyelectrolyte multilayers have different permeabilities toward ions with different valences. The results have implications to the design of chemically selective ion sensors since surface localized kinetic limitations can now be used as an additional dimension to tune the operational ion selectivity. PMID:17711298

  19. The Electrophysiology of Electric Organs of Marine Electric Fishes

    PubMed Central

    Bennett, M. V. L.; Wurzel, M.; Grundfest, H.

    1961-01-01

    Single electroplaques of Torpedo nobiliana have been studied with microelectrode recording. Direct evidence is presented that the only electrogenically reactive membrane of the cells is on the innervated surface and that this membrane is electrically inexcitable. Responses are not evoked by depolarizing currents applied to this membrane, but only by stimulating the innervating nerve fibers. The responses arise after a latency of 1 to 3 msec. This latency is not affected by large depolarizing or hyperpolarizing changes in membrane potential. Various properties that have been theoretically associated with electrically inexcitable responses have been also demonstrated to occur in the electroplaques. The neurally evoked response is not propagated actively in the membrane and may have different amplitudes and forms in closely adjacent regions. The maximal responses frequently are slightly larger than the recorded resting potential but the apparent small overshoot may be due to difficulty in recording the full resting potential. The responses are subject to electrochemical gradation and appear inverted in sign on applying strong outward currents across the innervated membrane. This membrane is cholinoceptive and shows marked desensitization. The membrane of the uninnervated surface has a very low resistance, a factor that aids maximum output of current during the discharge of the electric organ. PMID:19873534

  20. Polarizing intestinal epithelial cells electrically through Ror2

    PubMed Central

    Cao, Lin; McCaig, Colin D.; Scott, Roderick H.; Zhao, Siwei; Milne, Gillian; Clevers, Hans; Zhao, Min; Pu, Jin

    2014-01-01

    ABSTRACT The apicobasal polarity of enterocytes determines where the brush border membrane (apical membrane) will form, but how this apical membrane faces the lumen is not well understood. The electrical signal across the epithelium could serve as a coordinating cue, orienting and polarizing enterocytes. Here, we show that applying a physiological electric field to intestinal epithelial cells, to mimic the natural electric field created by the transepithelial potential difference, polarized phosphorylation of the actin-binding protein ezrin, increased expression of intestinal alkaline phosphatase (ALPI, a differentiation marker) and remodeled the actin cytoskeleton selectively on the cathode side. In addition, an applied electric field also activated ERK1/2 and LKB1 (also known as STK11), key molecules in apical membrane formation. Disruption of the tyrosine protein kinase transmembrane receptor Ror2 suppressed activation of ERK1/2 and LKB1 significantly, and subsequently inhibited apical membrane formation in enterocytes. Our findings indicate that the endogenous electric field created by the transepithelial potential difference might act as an essential coordinating signal for apical membrane formation at a tissue level, through activation of LKB1 mediated by Ror2–ERK signaling. PMID:24928904

  1. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    PubMed

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Membrane bioreactors' potential for ethanol and biogas production: a review.

    PubMed

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  3. The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Miller, Evan W.; Slak Rupnik, Marjan

    2013-01-01

    Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777

  4. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    PubMed

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.

  5. Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium.

    PubMed Central

    Alvarez, O; Brodwick, M; Latorre, R; McLaughlin, A; McLaughlin, S; Szabo, G

    1983-01-01

    A simple extension of the Gouy-Chapman theory predicts that the ability of a divalent cation to screen charges at a membrane-solution interface decreases significantly if the distance between the charges on the cation is comparable with the Debye length. We tested this prediction by investigating the effect of hexamethonium on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes. The distance between the two charges of an extended hexamethonium molecule is approximately 1 nm, which is the Debye length in the 0.1 M monovalent salt solutions used in these experiments. Six different experimental approaches were utilized. We measured the electrophoretic mobility of multilamellar vesicles to determine the zeta potential, the line width of the 31P nuclear magnetic resonance (NMR) signal from sonicated vesicles to calculate the change in potential at the phosphodiester moiety of the lipid, and the conductance of planar bilayer membranes exposed to either carriers (nonactin) or pore formers (gramicidin) to estimate the change in potential within the membrane. We also measured directly the effect of hexamethonium on the potential above a monolayer formed from negative lipids, and attempted to calculate the change in the surface potential of a bilayer membrane from capacitance measurements. With the exception of the capacitance calculations, each of the techniques gave comparable results: hexamethonium exerts a smaller effect on the potential than that predicted by the classic screening theory. The results are consistent with the predictions of the extended Gouy-Chapman theory and are relevant to the interpretation of physiological and pharmacological experiments that utilize hexamethonium and other large divalent cations. PMID:6198001

  6. Liquid Junction and Membrane Potentials of the Squid Giant Axon

    PubMed Central

    Cole, Kenneth S.; Moore, John W.

    1960-01-01

    The potential differences across the squid giant axon membrane, as measured with a series of microcapillary electrodes filled with concentrations of KCl from 0.03 to 3.0 M or sea water, are consistent with a constant membrane potential and the liquid junction potentials calculated by the Henderson equation. The best value for the mobility of an organic univalent ion, such as isethionate, leads to a probably low, but not impossible, axoplasm specific resistance of 1.2 times sea water and to a liquid junction correction of 4 mv. for microelectrodes filled with 3 M KCl. The errors caused by the assumptions of proportional mixing, unity activity coefficients, and a negligible internal fixed charge cannot be estimated but the results suggest that the cumulative effect of them may not be serious. PMID:13811119

  7. Electroviscous Effects in Ceramic Nanofiltration Membranes.

    PubMed

    Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2015-11-16

    Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Microelectrode study of the cellular reactions of the taste bud in the frog Rana temporaria].

    PubMed

    Lotarev, A N; Samoĭlov, V O

    1986-01-01

    Microelectrophysiological studies reveal two types of cells in the taste bud of frog which differ by the level of their membrane potential. During vertical implantation of microelectrode through the apical part of the taste bud, the potential difference in the upper layer amounts to 15 mV. Further implantation of the electrode results in a stepwise decrease of the potential difference up to 27 mV. Cells of the deeper layer are located 12-24 micron lower from the apical surface. Stimulation of cells by solutions of chemical substances is accompanied by cell depolarization, its amplitude being proportional to stimulus concentration. The steepness of depolarization depends on the modality of the stimulus, being maximum for salts. The data obtained suggest that cells of the second layer, with a higher resting membrane potential level, are taste ones.

  9. Customizing semen preservation protocols for individual dogs and individual species: sperm preservation beyond the state of the art.

    PubMed

    Farstad, W

    2012-12-01

    Sperm quality can be variable in morphometric and physiological attributes between males of different species, between males within species subtypes reared under different environmental conditions, between ejaculates of the same male or even between sperm populations within an ejaculate. Clinical semen evaluation is based on evaluation of whole ejaculates, which is not a chemically or physiologically well-defined entity, rather a collection of heterogeneous subpopulations giving different measurements and possessing different fertilizing potential. Identification of subpopulations with different motility patterns is important as well as characterizing the subtle structural changes underlying the motility differences observed. The ability to identify populations of sperm responding rapidly or failing to progress through the capacitation process may have clinical applications. Studies of lipid-phase fluidity of sperm membranes, mathematical modelling of membrane ion transport, role of modifying components and detergent-resistant microdomains are of particular interest. When customizing extenders to ejaculates from cryosensitive males or species, a thorough knowledge of species sperm membrane physiology and an assessment of the individual ejaculate's sperm populations are necessary. Structural differences have been found in sperm membranes between fox species with different cryosurvival potential of their spermatozoa. Supplementation of lipids and detergents in cryoextenders may influence membrane fluidity of the surviving spermatozoa in a species-dependent manner and influence capacitation. Immobilization of sperm prior to cryopreservation with subsequent slow release of sperm in the female genital tract may be a way to prolong the fertile life of sperm. In canids with a long oocyte maturation time, delayed capacitation may be beneficial. © 2012 Blackwell Verlag GmbH.

  10. Effect of presynaptic membrane potential on electrical vs. chemical synaptic transmission

    PubMed Central

    Evans, Colin G.; Ludwar, Bjoern Ch.; Kang, Timothy

    2011-01-01

    The growing realization that electrical coupling is present in the mammalian brain has sparked renewed interest in determining its functional significance and contrasting it with chemical transmission. One question of interest is whether the two types of transmission can be selectively regulated, e.g., if a cell makes both types of connections can electrical transmission occur in the absence of chemical transmission? We explore this issue in an experimentally advantageous preparation. B21, the neuron we study, is an Aplysia sensory neuron involved in feeding that makes electrical and chemical connections with other identified cells. Previously we demonstrated that chemical synaptic transmission is membrane potential dependent. It occurs when B21 is centrally depolarized prior to and during peripheral activation, but does not occur if B21 is peripherally activated at its resting membrane potential. In this article we study effects of membrane potential on electrical transmission. We demonstrate that maximal potentiation occurs in different voltage ranges for the two types of transmission, with potentiation of electrical transmission occurring at more hyperpolarized potentials (i.e., requiring less central depolarization). Furthermore, we describe a physiologically relevant type of stimulus that induces both spiking and an envelope of depolarization in the somatic region of B21. This depolarization does not induce functional chemical synaptic transmission but is comparable to the depolarization needed to maximally potentiate electrical transmission. In this study we therefore characterize a situation in which electrical and chemical transmission can be selectively controlled by membrane potential. PMID:21593394

  11. The cluster [Re6Se8I6]3- penetrates biological membranes: drug-like properties for CNS tumor treatment and diagnosis.

    PubMed

    Estrada, Lisbell D; Duran, Elizabeth; Cisterna, Matias; Echeverria, Cesar; Zheng, Zhiping; Borgna, Vincenzo; Arancibia-Miranda, Nicolas; Ramírez-Tagle, Rodrigo

    2018-03-24

    Tumorigenic cell lines are more susceptible to [Re 6 Se 8 I 6 ] 3- cluster-induced death than normal cells, becoming a novel candidate for cancer treatment. Still, the feasibility of using this type of molecules in human patients remains unclear and further pharmacokinetics analysis is needed. Using coupled plasma optical emission spectroscopy, we determined the Re-cluster tissue content in injected mice, as a biodistribution measurement. Our results show that the Re-cluster successfully reaches different tissues, accumulating mainly in heart and liver. In order to dissect the mechanism underlying cluster biodistribution, we used three different experimental approaches. First, we evaluate the degree of lipophilicity by determining the octanol/water partition coefficient. The cluster mostly remained in the octanol fraction, with a coefficient of 1.86 ± 0.02, which indicates it could potentially cross cell membranes. Then, we measured the biological membrane penetration through a parallel artificial membrane permeability assays (PAMPA) assay. The Re-cluster crosses the artificial membrane, with a coefficient of 122 nm/s that is considered highly permeable. To evaluate a potential application of the Re-cluster in central nervous system (CNS) tumors, we analyzed the cluster's brain penetration by exposing cultured blood-brain-barrier (BBB) cells to increasing concentrations of the cluster. The Re-cluster effectively penetrates the BBB, reaching nearly 30% of the brain side after 24 h. Thus, our results indicate that the Re-cluster penetrates biological membranes reaching different target organs-most probably due to its lipophilic properties-becoming a promising anti-cancer drug with high potential for CNS cancer's diagnosis and treatment.

  12. Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro.

    PubMed

    Buhl, E H; Szilágyi, T; Halasy, K; Somogyi, P

    1996-01-01

    Basket and bistratified cells form two anatomically distinct classes of GABAergic local-circuit neurons in the CA1 region of the rat hippocampus. A physiological comparison was made of intracellularly recorded basket (n = 13) and bistratified neurons (n = 6), all of which had been anatomically defined by their efferent target profile (Halasy et al., 1996). Basket cells had an average resting membrane potential of -64.2 +/- 7.2 vs. -69.2 +/- 4.6 mV in bistratified cells. The latter had considerably higher mean input resistances (60.2 +/- 42.1 vs. 31.3 +/- 10.9 M Ohms) and longer membrane time constants (18.6 +/- 8.1 vs. 9.8 +/- 4.5 ms) than basket cells. Differences were also apparent in the duration of action potentials, those of basket cells being 364 +/- 77 and those of bistratified cells being 527 +/- 138 microseconds at half-amplitude. Action potentials were generally followed by prominent, fast after-hyperpolarizing potentials which in basket cells were 13.5 +/- 6.7 mV in amplitude vs. 10.5 +/- 5.1 in bistratified cells. The differences in membrane time constant, resting membrane potential, and action potential duration reached statistical significance (P < 0.05). Extracellular stimulation of Schaffer collateral/commissural afferents elicited short-latency excitatory postsynaptic potentials (EPSPs) in both cell types. The average 10-90% rise time and duration (at half-amplitude) of subthreshold EPSPs in basket cells were 1.9 +/- 0.5 and 10.7 +/- 5.6 ms, compared to 3.3 +/- 1.3 and 20.1 +/- 9.7 ms in bistratified cells, the difference in EPSP rise times being statistically significant. Basket and bistratified EPSPs were highly sensitive to a bath applied antagonist of non-N-methyl-D-aspartate (NMDA) receptors, whereas the remaining slow-rise EPSP could be abolished by an NMDA receptor antagonist. Increasing stimulation intensity elicited biphasic inhibitory postsynaptic potentials (IPSPs) in both basket and bistratified cells. In conclusion, basket and bistratified cells in the CA1 area show prominent differences in several of their membrane and firing properties. Both cell classes are activated by Schaffer collateral/commissural axons in a feedforward manner and receive inhibitory input from other, as yet unidentified, local-circuit neurons.

  13. The critical role of logarithmic transformation in Nernstian equilibrium potential calculations.

    PubMed

    Sawyer, Jemima E R; Hennebry, James E; Revill, Alexander; Brown, Angus M

    2017-06-01

    The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm's law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain's energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential. Copyright © 2017 the American Physiological Society.

  14. Surface area loss mechanisms of Pt3Co nanocatalysts in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Rasouli, S.; Ortiz Godoy, R. A.; Yang, Z.; Gummalla, M.; Ball, S. C.; Myers, D.; Ferreira, P. J.

    2017-03-01

    Pt3Co catalyst nanoparticles of 4.9 nm size present on the cathode side of a PEMFC membrane-electrode assembly (MEA) were analyzed by transmission electron microscopy after 10 K voltage cycles under different operating conditions. The operating conditions include baseline (0.4-0.95 V, 80° C, 100% Relative Humidity (RH)), high potential (0.4-1.05 V, 80° C, 100% RH), high temperature (0.4-0.95 V, 90° C, 100% RH), and low humidity (0.4-0.95 V, 80° C, 30% RH). Particle growth and particle loss to the membrane is more severe in the high potential sample than in the high temperature and baseline MEAs, while no significant particle growth and particle precipitation in the membrane can be observed in the low humidity sample. Particles with different morphologies were seen in the cathode including: 1-Spherical individual particles resulting from modified electro-chemical Ostwald ripening and 2-aggregated and coalesced particles resulting from either necking of two or more particles or preferential deposition of Pt between particles with consequent bridging. The difference in the composition of these morphologies results in composition variations through the cathode from cathode/diffusion media (DM) to the cathode/membrane interface.

  15. Ion pathways in the taste bud and their significance for transduction.

    PubMed

    DeSimone, J A; Ye, Q; Heck, G L

    1993-01-01

    Taste buds share a topology with ion-transporting epithelial and evidence now indicates that neural responses in rats to Na+ salts of differing anion are mediated by both transcellular and paracellular ion transport. Na+ exerts its effects mainly on the transcellular pathway. Neural responses to Na+ salts are enhanced by negative voltage clamp and suppressed by positive clamp in a manner indicating modulation of the apical membrane potential of receptor cells. Anion effects are mainly paracellular. Under zero current clamp increasing anion size reduces the neural response at constant Na+ concentration. Below about 50 mM this difference is entirely eliminated under voltage clamp. This suggests that paracellular transepithelial potentials normally create an anion difference. At higher concentrations the relatively high permeability of the paracellular shunt to Cl- permits sufficient electroneutral diffusion of NaCl below the tight junctions to stimulate cells that do not make direct contact with the oral cavity. In general, the sensitivity of a response to perturbations in the apical membrane potential indicates that some phase of Na+ salt taste transduction is accompanied by changes in an apical membrane channel conductance.

  16. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

    PubMed

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-03-25

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Simulation of flux during electro-membrane extraction based on the Nernst-Planck equation.

    PubMed

    Gjelstad, Astrid; Rasmussen, Knut Einar; Pedersen-Bjergaard, Stig

    2007-12-07

    The present work has for the first time described and verified a theoretical model of the analytical extraction process electro-membrane extraction (EME), where target analytes are extracted from an aqueous sample, through a thin layer of 2-nitrophenyl octylether immobilized as a supported liquid membrane (SLM) in the pores in the wall of a porous hollow fibre, and into an acceptor solution present inside the lumen of the hollow fibre by the application of an electrical potential difference. The mathematical model was based on the Nernst-Planck equation, and described the flux over the SLM. The model demonstrated that the magnitude of the electrical potential difference, the ion balance of the system, and the absolute temperature influenced the flux of analyte across the SLM. These conclusions were verified by experimental data with five basic drugs. The flux was strongly dependent of the potential difference over the SLM, and increased potential difference resulted in an increase in the flux. The ion balance, defined as the sum of ions in the donor solution divided by the sum of ions in the acceptor solution, was shown to influence the flux, and high ionic concentration in the acceptor solution relative to the sample solution was advantageous for high flux. Different temperatures also led to changes in the flux in the EME system.

  18. Continuous Modeling of Calcium Transport Through Biological Membranes

    NASA Astrophysics Data System (ADS)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  19. Effect of an educational game on university students' learning about action potentials.

    PubMed

    Luchi, Kelly Cristina Gaviao; Montrezor, Luís Henrique; Marcondes, Fernanda K

    2017-06-01

    The aim of this study was to evaluate the effect of an educational game that is used for teaching the mechanisms of the action potentials in cell membranes. The game was composed of pieces representing the intracellular and extracellular environments, ions, ion channels, and the Na + -K + -ATPase pump. During the game activity, the students arranged the pieces to demonstrate how the ions move through the membrane in a resting state and during an action potential, linking the ion movement with a graph of the action potential. To test the effect of the game activity on student understanding, first-year dental students were given the game to play at different times in a series of classes teaching resting membrane potential and action potentials. In all experiments, students who played the game performed better in assessments. According to 98% of the students, the game supported the learning process. The data confirm the students' perception, indicating that the educational game improved their understanding about action potentials. Copyright © 2017 the American Physiological Society.

  20. 3D-printed membrane for guided tissue regeneration.

    PubMed

    Tayebi, Lobat; Rasoulianboroujeni, Morteza; Moharamzadeh, Keyvan; Almela, Thafar K D; Cui, Zhanfeng; Ye, Hua

    2018-03-01

    Three-dimensional (3D) printing is currently being intensely studied for a diverse set of applications, including the development of bioengineered tissues, as well as the production of functional biomedical materials and devices for dental and orthopedic applications. The aim of this study was to develop and characterize a 3D-printed hybrid construct that can be potentially suitable for guided tissue regeneration (GTR). For this purpose, the rheology analyses have been performed on different bioinks and a specific solution comprising 8% gelatin, 2% elastin and 0.5% sodium hyaluronate has been selected as the most suitable composition for printing a structured membrane for GTR application. Each membrane is composed of 6 layers with strand angles from the first layer to the last layer of 45, 135, 0, 90, 0 and 90°. Confirmed by 3D Laser Measuring imaging, the membrane has small pores on one side and large pores on the other to be able to accommodate different cells like osteoblasts, fibroblasts and keratinocytes on different sides. The ultimate cross-linked product is a 150μm thick flexible and bendable membrane with easy surgical handling. Static and dynamic mechanical testing revealed static tensile modules of 1.95±0.55MPa and a dynamic tensile storage modulus of 314±50kPa. Through seeding the membranes with fibroblast and keratinocyte cells, the results of in vitro tests, including histological analysis, tissue viability examinations and DAPI staining, indicated that the membrane has desirable in vitro biocompatibility. The membrane has demonstrated the barrier function of a GTR membrane by thorough separation of the oral epithelial layer from the underlying tissues. In conclusion, we have characterized a biocompatible and bio-resorbable 3D-printed structured gelatin/elastin/sodium hyaluronate membrane with optimal biostability, mechanical strength and surgical handling characteristics in terms of suturability for potential application in GTR procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Some properties of electrolyte solutions in nanoconfinement revealed by the measurement of transient filtration potential after pressure switch off.

    PubMed

    Yaroshchuk, Andriy E; Boiko, Yuriy P; Makovetskiy, Alexandre L

    2005-08-16

    We have demonstrated that with a composite nanoporous ceramic membrane in a batch membrane cell it is technically feasible to switch off the trans-membrane hydrostatic pressure difference within tens of milliseconds. That enabled us to resolve practically the whole time evolution of transient filtration potential. Measurements of the latter have been complemented by measurements of steady-state salt rejection by the composite membrane and by measurements of the streaming potential and hydraulic permeability of membrane supports available separately. A theory has been developed in terms of network thermodynamics for the electrical response of a bilayer membrane to a pressure perturbation. In combination with the results of salt rejection measurements, from the time transients of filtration potential we could determine the ion transport numbers within the nanoporous layer. Besides that, from the dependence of steady-state salt rejection on the trans-membrane volume flow, we have determined the diffusion permeability of and the salt reflection coefficient in the nanoporous layer. This has enabled us to estimate the contributions of Donnan and non-Donnan mechanisms to the rejection of ions by the nanoporous membrane used in this study. It has been unexpectedly found that the Donnan exclusion played only a secondary role. Our hypothesis is that the non-Donnan exclusion of ions from the nanopores might be caused by changes in water properties in nanoconfinement. Proceeding from the results of steady-state filtration experiments with the membrane and the support, we also concluded that the nanoporous layer was imperfection-free and had a quite narrow pore size distribution, which made it a suitable object for fundamental studies of ion transfer mechanisms in nanopores.

  2. The complete general secretory pathway in gram-negative bacteria.

    PubMed Central

    Pugsley, A P

    1993-01-01

    The unifying feature of all proteins that are transported out of the cytoplasm of gram-negative bacteria by the general secretory pathway (GSP) is the presence of a long stretch of predominantly hydrophobic amino acids, the signal sequence. The interaction between signal sequence-bearing proteins and the cytoplasmic membrane may be a spontaneous event driven by the electrochemical energy potential across the cytoplasmic membrane, leading to membrane integration. The translocation of large, hydrophilic polypeptide segments to the periplasmic side of this membrane almost always requires at least six different proteins encoded by the sec genes and is dependent on both ATP hydrolysis and the electrochemical energy potential. Signal peptidases process precursors with a single, amino-terminal signal sequence, allowing them to be released into the periplasm, where they may remain or whence they may be inserted into the outer membrane. Selected proteins may also be transported across this membrane for assembly into cell surface appendages or for release into the extracellular medium. Many bacteria secrete a variety of structurally different proteins by a common pathway, referred to here as the main terminal branch of the GSP. This recently discovered branch pathway comprises at least 14 gene products. Other, simpler terminal branches of the GSP are also used by gram-negative bacteria to secrete a more limited range of extracellular proteins. PMID:8096622

  3. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wah, Benny; Breidigan, Jeffrey M.; Adams, Joseph

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standingmore » membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesides and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order I. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.« less

  4. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study.

    PubMed

    Wah, Benny; Breidigan, Jeffrey M; Adams, Joseph; Horbal, Piotr; Garg, Sumit; Porcar, Lionel; Perez-Salas, Ursula

    2017-04-11

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesicles and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order ∼1. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.

  5. Challenges and advances in the field of self-assembled membranes.

    PubMed

    van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Böker, Alexander

    2013-08-21

    Self-assembled membranes are of vital importance in biological systems e.g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More investigations move towards self-assembly processes because of the low-cost preparations, structural self-regulation and the ease of creating composite materials and tunable properties. The fabrication of new smart membrane materials via self-assembly is of interest for delivery vessels, size selective separation and purification, controlled-release materials, sensors and catalysts, scaffolds for tissue engineering, low dielectric constant materials for microelectronic devices, antireflective coatings and proton exchange membranes for polymer electrolyte membrane fuel cells. Polymers and nanoparticles offer the most straightforward approaches to create membrane structures. However, alternative approaches using small molecules or composite materials offer novel ultra-thin membranes or multi-functional membranes, respectively. Especially, the composite material membranes are regarded as highly promising since they offer the possibility to combine properties of different systems. The advantages of polymers which provide elastic and flexible yet stable matrices can be combined with nanoparticles being either inorganic, organic or even protein-based which offers pore-size control, catalytic activity or permeation regulation. It is therefore believed that at the interface of different disciplines with each offering different materials or approaches, the most novel and interesting membrane structures are going to be produced. The combinations and approaches presented in this review offer non-conventional self-assembled membrane materials which exhibit a high potential to advance membrane science and find more practical applications.

  6. Phloretin-induced reduction in dipole potential of sterol-containing bilayers.

    PubMed

    Ostroumova, Olga S; Efimova, Svetlana S; Schagina, Ludmila V

    2013-12-01

    The phloretin-induced reduction in the dipole potential of planar lipid bilayers containing cholesterol, ergosterol, stigmasterol, 7-dehydrocholesterol and 5α-androstan-3β-ol was investigated. It is shown that effects depend on the type and concentration of membrane sterol. It is supposed that the effectiveness of phloretin in reducing the dipole potential of the bilayers that contain cholesterol, ergosterol and 7-dehydrocholesterol correlates with the ordering and condensing effects. The role of the concentration-dependent ability of different sterols to promote lateral heterogeneity in membranes is also discussed.

  7. Inferences about Membrane Properties from Electrical Noise Measurements

    PubMed Central

    Stevens, Charles F.

    1972-01-01

    Four sources of electrical noise in biological membranes, each with a different physical basis, are discussed; the analysis of each type of noise potentially yields a different sort of information about membrane properties. (a) From the thermal noise spectrum, the passive membrane impedance may be obtained, so that thermal noise measurements are essentially equivalent to the type of since wave analysis carried out by Cole and Curtis. (b) If adequately high frequency measurements could be made, the shot noise spectrum should give information about the average motion of a single ion within the membrane. (c) The number of charge carriers and single ion mobilities within the membrane can possibly be inferred from measurements of noise with a 1/f spectrum. Available data indicate, for example, that increases in axon membrane conductance are not achieved by modulations in the mobility of ions within the membrane. (d) Fluctuations arising from the mechanisms normally responsible for membrane conductance changes can produce a type of electrical noise. Analysis of such conductance fluctuations provides a way to assess the validity of various microscopic models for the behavior of individual channels. Two different probabilistic interpretations of the Hodgkin-Huxley equations are investigated here and shown to yield different predictions about the spectrum of conductance fluctuations; thus, appropriate noise measurements may serve to eliminate certain classes of microscopic models for membrane conductance changes. Further, it is shown how the analysis of conductance fluctuations can, in some circumstances, provide an estimate of the conductance of a single channel. PMID:5044577

  8. Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons

    PubMed Central

    Caudle, Stephanie L.; Jenkins, Alan C.; Ahn, Andrew H.; Neubert, John K.

    2017-01-01

    The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons’ voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity. PMID:28472061

  9. Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions

    NASA Technical Reports Server (NTRS)

    Ermakov, Y. A.; Averbakh, A. Z.; Yusipovich, A. I.; Sukharev, S.

    2001-01-01

    The dipole component of the membrane boundary potential, phi(d), is an integral parameter that may report on the conformational state of the lipid headgroups and their hydration. In this work, we describe an experimental approach to measurements of the dipole potential changes, Deltaphi(d), and apply it in studies of Be(2+) and Gd(3+) interactions with membranes composed of phosphatidylserine (PS), phosphatidylcholine (PC), and their mixtures. Deltaphi(d) is determined as the difference between the changes of the total boundary potential, phi(b), measured by the IFC method in planar lipid membranes and the surface potential, phi(s), determined from the electrophoretic mobility of liposomes. The Gouy-Chapman-Stern formalism, combined with the condition of mass balance, well describes the ion equilibria for these high-affinity cations. For the adsorption of Be(2+) and Gd(3+) to PC membranes, and of Mg(2+) to PS membranes, the values of Deltaphi(b) and Deltaphi(s) are the same, indicative of no change of phi(d). Binding of Gd(3+) to PS-containing membranes induces changes of phi(d) of opposite signs depending on the density of ionized PS headgroups in the bilayer. At low density, the induced Deltaphi(d) is negative (-30 mV), consistent with the effect of dehydration of the surface. At maximal density (pure PS, neutral pH), adsorption of Be(2+) or Gd(3+) induces an increase of phi(d) of 35 or 140 mV, respectively. The onset of the strong positive dipole effect on PS membranes with Gd(3+) is observed near the zero charge point and correlates with a six-fold increase of membrane tension. The observed phenomena may reflect concerted reorientation of dipole moments of PS headgroups as a result of ion adsorption and lipid condensation. Their possible implications to in-vivo effects of these high-affinity ions are discussed.

  10. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes.

    PubMed

    Shao, Jinlong; Yu, Na; Kolwijck, Eva; Wang, Bing; Tan, Ke Wei; Jansen, John A; Walboomers, X Frank; Yang, Fang

    2017-11-01

    To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and cytotoxicity in vitro and for tissue response in a rabbit subcutaneous model. The nanoparticles displayed dose-dependent antibacterial properties against Porphyromonas gingivalis and Fusobacterium nucleatum, without showing noticeable cytotoxicity. The membranes with silver nanoparticles evoked a similar inflammatory response compared with the membranes without silver nanoparticles. The antibacterial effect, combined with the findings on cyto- and biocompatibility warrants further investigation to the usefulness of chitosan/poly(ethylene oxide) membranes with silver nanoparticles, for clinical applications like guided tissue regeneration.

  11. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    PubMed Central

    2011-01-01

    Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. Conclusions A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation. PMID:22082453

  12. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    NASA Astrophysics Data System (ADS)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  13. Membrane-based torque magnetometer: Enhanced sensitivity by optical readout of the membrane displacement

    NASA Astrophysics Data System (ADS)

    Blankenhorn, M.; Heintze, E.; Slota, M.; van Slageren, J.; Moores, B. A.; Degen, C. L.; Bogani, L.; Dressel, M.

    2017-09-01

    The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.

  14. Membrane-based torque magnetometer: Enhanced sensitivity by optical readout of the membrane displacement.

    PubMed

    Blankenhorn, M; Heintze, E; Slota, M; van Slageren, J; Moores, B A; Degen, C L; Bogani, L; Dressel, M

    2017-09-01

    The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.

  15. Subcellular Biological Effects of Nanosecond Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Stacey, Michael

    Membranes of biological cells can be charged by exposure to pulsed electric fields. After the potential difference across the barrier reaches critical values on the order of 1 V, pores will form. For moderate pulse parameters of duration and amplitude, the effect is limited to the outer cell membrane. With the exposure to nanosecond pulses of several tens of kilovolts per centimeter, a similar effect is also expected for subcellular membranes and structures. Cells will respond to the disruption by different biochemical processes. This offers possibilities for the development of novel medical therapies, the manipulation of cells and microbiological decontamination.

  16. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    PubMed

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  17. Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum.

    PubMed

    Lew, V L

    1970-03-01

    1. The unidirectional fluxes of (22)Na, (36)Cl and [(14)C]bicarbonate ions were measured in paired portions of the isolated and short-circuited colonic mucosa of Bufo arenarum, separated from its muscular layer. Pharmacological effects as well as effects of changes in the composition of the nutrient solutions on the electrical parameters of membrane activity (potential difference, short-circuit current and total membrane resistance) are described.2. The net fluxes of both Cl and bicarbonate ions were not significantly different from zero in the absence of electrochemical gradients across the membrane.3. The net Na flux from mucosa to serosa represented a variable proportion of the short-circuit current ranging from 62 to 100%.4. The proportion of membranes with high discrepancies between net Na flux and short-circuit current decreased with the duration of captivity of the toads.5. When Na was entirely replaced by choline in the mucosal bathing solution, the short-circuit current dropped by a variable amount within the range of 64 to 98% of its control values in different membranes. This effect was completely reversible. Similar changes in the serosal solution had no effect.6. The short-circuit current and potential difference were very sensitive to the serosal concentration of bicarbonate ions. In different membranes, 60-100% of the short-circuit current was reversibly abolished by bathing the serosal surface with a bicarbonate-free solution. The mucosal bicarbonate level had no effect on either the potential difference or the short-circuit current. 5 mM bicarbonate in the serosal solution restored at least 50% of the short-circuit control value and full recovery was attained by concentrations near 30 mM bicarbonate.7. Anoxia brought the potential difference and short-circuit current reversibly down to zero in about 50 min.8. Ouabain reduced the short-circuit current up to 80% in about 40 min when present in the serosal solution at a concentration of 10(-4)M. At this or lower concentrations the ouabain effect was reversible. Above this level ouabain produced 100% inhibition in 3-4 hr, but this was no longer reversible. Ouabain had no effect on the short-circuit current either when applied to the mucosal surface or in the absence of Na from the mucosal solution.9. Diamox produced a variable inhibition of the short-circuit current of up to 30% only at concentrations above 10 mM.10. Possible mechanisms are discussed for the appearance of the non-Na component of the short-circuit current. A theory concerning its nature is proposed.

  18. Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO₂ Separation: A Review.

    PubMed

    Janakiram, Saravanan; Ahmadi, Mahdi; Dai, Zhongde; Ansaloni, Luca; Deng, Liyuan

    2018-05-14

    Membrane technology has the potential to be an eco-friendly and energy-saving solution for the separation of CO₂ from different gaseous streams due to the lower cost and the superior manufacturing features. However, the performances of membranes made of conventional polymers are limited by the trade-off between the permeability and selectivity. Improving the membrane performance through the addition of nanofillers within the polymer matrix offers a promising strategy to achieve superior separation performance. This review aims at providing a complete overview of the recent advances in nanocomposite membranes for enhanced CO₂ separation. Nanofillers of various dimensions and properties are categorized and effects of nature and morphology of the 0D to 2D nanofillers in the corresponding nanocomposite membranes of different polymeric matrixes are discussed with regard to the CO₂ permeation properties. Moreover, a comprehensive summary of the performance data of various nanocomposite membranes is presented. Finally, the advantages and challenges of various nanocomposite membranes are discussed and the future research and development opportunities are proposed.

  19. Engineering Surface Energy and Nanostructure of Microporous Films for Expanded Membrane Distillation Applications.

    PubMed

    Boo, Chanhee; Lee, Jongho; Elimelech, Menachem

    2016-08-02

    We investigated the factors that determine surface omniphobicity of microporous membranes and evaluated the potential application of these membranes in desalination of low surface tension wastewaters by membrane distillation (MD). Specifically, the effects of surface morphology and surface energy on membrane surface omniphobicity were systematically investigated by evaluating wetting resistance to low surface tension liquids. Single and multilevel re-entrant structures were achieved by using cylindrical glass fibers as a membrane substrate and grafting silica nanoparticles (SiNPs) on the fibers. Surface energy of the membrane was tuned by functionalizing the fiber substrate with fluoroalkylsilane (FAS) having two different lengths of fluoroalkyl chains. Results show that surface omniphobicity of the modified fibrous membrane increased with higher level of re-entrant structure and with lower surface energy. The secondary re-entrant structure achieved by SiNP coating on the cylindrical fibers was found to play a critical role in enhancing the surface omniphobicity. Membranes coated with SiNPs and chemically modified by the FAS with a longer fluoroalkyl chain (or lower surface energy) exhibited excellent surface omniphobicity and showed wetting resistance to low surface tension liquids such as ethanol (22.1 mN m(-1)). We further evaluated performance of the membranes in desalination of saline feed solutions with varying surface tensions by membrane distillation (MD). The engineered membranes exhibited stable MD performance with low surface tension feed waters, demonstrating the potential application omniphobic membranes in desalinating complex, high salinity industrial wastewaters.

  20. Chloride Transport in Porous Lipid Bilayer Membranes

    PubMed Central

    Andreoli, Thomas E.; Watkins, Mary L.

    1973-01-01

    This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. P DCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, P DCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of P DCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ∼90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the P DNa/P DCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness. PMID:4708408

  1. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    PubMed

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  2. Light energy conservation processes in Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Bogomolni, R. A.

    1977-01-01

    Proton pumping driven by light or by respiration generates an electrochemical potential difference across the membrane in Halobacterium halobium. The pH changes induced by light or by respiration in cell suspensions are complicated by proton flows associated with the functioning of the cellular energy transducers. A proton-per-ATP ratio of about 3 is calculated from simultaneous measurements of phosphorylation and the proton inflow. This value is compatible with the chemiosmotic coupling hypothesis. The time course of the light-induced changes in membrane potential indicates that light-driven pumping increases a dark pre-existing potential of about 130 mV only by a small amount (20 to 30 mV). The complex kinetic features of the membrane potential changes do not closely follow those of the pH changes, which suggests that flows of ions other than protons are involved. A qualitative model consistent with the available data is presented.

  3. Electrokinetic migration across artificial liquid membranes Tuning the membrane chemistry to different types of drug substances.

    PubMed

    Gjelstad, Astrid; Rasmussen, Knut Einar; Pedersen-Bjergaard, Stig

    2006-08-18

    Twenty different basic drugs were electrokinetically extracted across a thin artificial organic liquid membrane with a 300 V d.c. electrical potential difference as the driving force. From a 300 microl aqueous sample (acidified corresponding to 10mM HCl), the drugs were extracted for 5 min through a 200 microm artificial liquid membrane of a water immiscible organic solvent immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10mM HCl inside the lumen of the hollow fiber. Hydrophobic basic drugs (logP>1.7) were effectively isolated utilizing 2-nitrophenyl octyl ether (NPOE) as the artificial liquid membrane, with recoveries up to 83%. For more hydrophilic basic drugs (logP<1.0), a mixture of NPOE and 25% (w/w) di-(2-ethylhexyl) phosphate (DEHP) was required to ensure efficient extraction, resulting in recoveries up to 75%. DEHP was expected to act as an ion-pair reagent ion-pairing the protonated hydrophilic drugs at the interface between the sample and the membrane, resulting in permeation of the interface.

  4. On the mechanics of growing thin biological membranes

    NASA Astrophysics Data System (ADS)

    Rausch, Manuel K.; Kuhl, Ellen

    2014-02-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression.

  5. On the mechanics of growing thin biological membranes

    PubMed Central

    Rausch, Manuel K.; Kuhl, Ellen

    2013-01-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression. PMID:24563551

  6. Calcium-activated potassium channels in basolateral membranes of colon epithelial cells; reconstitution and functional properties.

    PubMed

    Wiener, H; Turnheim, K

    1990-10-26

    Using differential sedimentation, isopycnic and Ficoll-400 barrier centrifugation, basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon were enriched 34- and 9-fold, respectively. 86Rb(+)-uptake into these vesicles, driven by an electrical potential difference, was stimulated by submicromolar Ca2+ activities and inhibited by Ba2+. These findings indicate the presence of Ca2(+)-activated K+ channels. The K+ channels in surface and crypt cell membranes differed with respect to inhibition by the bee venom apamin, the scorpion venom charybdotoxin and tetraethylammonium and exhibited a different pH dependence. Fusion of basolateral membrane vesicles with planar phospholipid bilayers revealed the presence of high-conductance Ba2(+)-sensitive K+ channels which were activated by micromolar Ca2+ and inhibited by crude scorpion venom and trifluoperazine. These K+ channels may be involved in the coupling of apical and basolateral membrane conductances during Na+ absorption and Cl- secretion, but they may also play a role in cell volume regulation.

  7. Assessment of gamete quality for the eastern oyster (Crassostrea virginica) by use of fluorescent dyes

    USGS Publications Warehouse

    Paniagua-Chavez, C. G.; Jenkins, J.; Segovia, M.; Tiersch, T.R.

    2006-01-01

    Evaluation of sperm motility is the single most widely used parameter to determine semen quality in mammals and aquatic species. While a good indicator for fresh sperm viability, post-thaw motility is not always effective at predicting fertilizing ability. Techniques using fluorescent dyes can assess functionality of mammalian sperm, but have not been widely applied in aquatic organisms. The eastern oyster Crassostrea virginica is an important mollusk in the United States, and cryopreservation protocols have been developed to preserve sperm and larvae to assist research and hatchery production. In this study, protocols were developed to assess sperm cell membrane integrity and mitochondrial function by flow cytometry and to assess viability of eggs by fluorescence microscopy. The fluorescent dyes SYBR 14 and propidium iodide (PI) (to assess membrane integrity) and rhodamine 123 (R123) (to assess mitochondrial membrane potential) were used to evaluate the quality of thawed oyster sperm previously cryopreserved with different cryoprotectant and thawing treatments. Membrane integrity results were correlated with motility of thawed sperm and mitochondrial membrane potential with fertilizing ability. Fluorescein diacetate (FDA) was used to assess cytotoxicity of cryoprotectant solutions and post-thaw damage to oyster eggs. The results indicated that membrane integrity (P = 0.004) and thawing treatments (P = 0.04), and mitochondrial membrane potential (P = 0.0015) were correlated with motility. Fertilizing ability was correlated with cryoprotectant treatments (P = 0.0258) and with mitochondrial membrane potential (P = 0.001). The dye FDA was useful in indicating structural integrity of fresh and thawed eggs. Exposure of eggs, without freezing, to dimethyl sulfoxide yielded higher percentages of stained eggs and fertilization rate than did exposure to propylene glycol (P = 0.002). Thawed eggs were not stained with FDA (<1%) and larvae were not produced. ?? 2006 Elsevier Inc. All rights reserved.

  8. Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change.

    PubMed

    Ye, Shuji; Li, Hongchun; Wei, Feng; Jasensky, Joshua; Boughton, Andrew P; Yang, Pei; Chen, Zhan

    2012-04-11

    Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes. © 2012 American Chemical Society

  9. Chitin-fibroin-hydroxyapatite membrane for guided bone regeneration: micro-computed tomography evaluation in a rat model.

    PubMed

    Baek, Young-Jae; Kim, Jung-Han; Song, Jae-Min; Yoon, Sang-Yong; Kim, Hong-Sung; Shin, Sang-Hun

    2016-12-01

    In guided bone regeneration (GBR) technique, many materials have been used for improving biological effectiveness by adding on membranes. The new membrane which was constructed with chitin-fibroin-hydroxyapatite (CNF/HAP) was compared with a collagen membrane (Bio-Gide®) by means of micro-computed tomography. Fifty-four rats were used in this study. A critical-sized (8 mm) bony defect was created in the calvaria with a trephine bur. The CNF/HAP membrane was prepared by thermally induced phase separation. In the experimental group ( n  = 18), the CNF/HAP membrane was used to cover the bony defect, and in the control group ( n  = 18), a resorbable collagen membrane (Bio-Gide®) was used. In the negative control group ( n  = 18), no membrane was used. In each group, six animals were euthanized at 2, 4, and 8 weeks after surgery. The specimens were analyzed using micro-CT. Bone volume (BV) and bone mineral density (BMD) of the new bone showed significant difference between the negative control group and membrane groups ( P  < 0.05). However, between two membranes, the difference was not significant. The CNF/HAP membrane has significant effect on the new bone formation and has the potential to be applied for guided bone regeneration.

  10. Surface dynamics of voltage-gated ion channels.

    PubMed

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-07-03

    Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.

  11. Surface dynamics of voltage-gated ion channels

    PubMed Central

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-01-01

    ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  12. Measurement of the cytosolic sodium ion concentration in rat brain synaptosomes by a fluorescence method.

    PubMed

    Kongsamut, S; Nachshen, D A

    1988-05-24

    A method for the measurement of the cytosolic Na+ concentration in intact synaptosomes is described. This method makes use of a pH sensitive dye (BCECF) that can be loaded into the cytosol and a relatively specific ionophore (monensin) that can exchange Na+ for H+ across the synaptosomal membrane. By setting conditions such that there is no electrochemical potential difference for H+ across the membrane (no membrane potential and pHi = pHo), addition of ionophore would induce a H+ flux only if there is a concentration difference for Na+. Thus, when there is no fluorescence change (no cytosolic pH change) extracellular [Na+] equals intrasynaptosomal [Na+]. The intrasynaptosomal [Na+] concentration was determined to be 7 +/- 3 mM (n = 5; mean +/- S.E.). The results obtained with this fluorescence method are compared with estimates obtained by atomic absorption spectrometry. Limitations and applications of the method are discussed.

  13. A nonlinear electrostatic potential change in the T-system of skeletal muscle detected under passive recording conditions using potentiometric dyes

    PubMed Central

    1990-01-01

    Voltage-sensing dyes were used to examine the electrical behavior of the T-system under passive recording conditions similar to those commonly used to detect charge movement. These conditions are designed to eliminate all ionic currents and render the T-system potential linear with respect to the command potential applied at the surface membrane. However, we found an unexpected nonlinearity in the relationship between the dye signal from the T-system and the applied clamp potential. An additional voltage- and time-dependent optical signal appears over the same depolarizing range of potentials where change movement and mechanical activation occur. This nonlinearity is not associated with unblocked ionic currents and cannot be attributed to lack of voltage clamp control of the T-system, which appears to be good under these conditions. We propose that a local electrostatic potential change occurs in the T-system upon depolarization. An electrostatic potential would not be expected to extend beyond molecular distances of the membrane and therefore would be sensed by a charged dye in the membrane but not by the voltage clamp, which responds solely to the potential of the bulk solution. Results obtained with different dyes suggest that the location of the phenomena giving rise to the extra absorbance change is either intramembrane or at the inner surface of the T-system membrane. PMID:2299329

  14. Haemodialysis-membrane biocompatibility and mortality of patients with dialysis-dependent acute renal failure: a prospective randomised multicentre trial. International Multicentre Study Group.

    PubMed

    Jörres, A; Gahl, G M; Dobis, C; Polenakovic, M H; Cakalaroski, K; Rutkowski, B; Kisielnicka, E; Krieter, D H; Rumpf, K W; Guenther, C; Gaus, W; Hoegel, J

    1999-10-16

    There is controversy as to whether haemodialysis-membrane biocompatibility (ie, the potential to activate complement and neutrophils) influences mortality of patients with acute renal failure. We did a prospective randomised multicentre trial in patients with dialysis-dependent acute renal failure treated with two different types of low-flux membrane. 180 patients with acute renal failure were randomly assigned bioincompatible Cuprophan (n=90) or polymethyl-methacrylate (n=90) membranes. The main outcome was survival 14 days after the end of therapy (treatment success). Odds ratios for survival were calculated and the two groups were compared by Fisher's exact test. Analyses were based on patients treated according to protocol (76 Cuprophan, 84 polymethyl methacrylate). At the start of dialysis, the groups did not differ significantly in age, sex, severity of illness (as calculated by APACHE II scores), prevalence of oliguria, or biochemical measures of acute renal failure. 44 patients (58% [95% CI 46-69]) assigned Cuprophan membranes and 50 patients (60% [48-70]) assigned polymethyl-methacrylate membranes survived. The odds ratio for treatment failure on Cuprophan compared with polymethyl-methacrylate membranes was 1.07 (0.54-2.11; p=0.87). No difference between Cuprophan and polymethyl-methacrylate membranes was detected when the analysis was adjusted for age and APACHE II score. 18 patients in the Cuprophan group and 20 in the polymethyl-methacrylate group had clinical complications of therapy (mainly hypotension). There were no differences in outcome for patients with dialysis-dependent acute renal failure between those treated with Cuprophan membranes and those treated with polymethyl-methacrylate membranes.

  15. [Effect of plasma membrane ion permeability modulators on respiration and heat output of wheat roots].

    PubMed

    Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N

    2006-01-01

    A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.

  16. Effects of lubiprostone on human uterine smooth muscle cells.

    PubMed

    Cuppoletti, John; Malinowska, Danuta H; Chakrabarti, Jayati; Ueno, Ryuji

    2008-06-01

    Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.

  17. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun

    2017-09-01

    A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.

  18. Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus.

    PubMed

    Yeste, M; Estrada, E; Rocha, L G; Marín, H; Rodríguez-Gil, J E; Miró, J

    2015-03-01

    Although cryopreservation of stallion spermatozoa allows long-term preservation of spermatozoa from particular stallions and facilitates international trade, it is understood to inflict damages on sperm cells that may finally reduce their fertilizing ability. In addition, individual differences are known to exist in the sperm ability to withstand freeze-thawing protocols. To date, these differences have mainly been reported on the basis of sperm motility and membrane integrity. For this reason, the present work sought to determine differences between good (good freezability ejaculates: GFE) and poor (poor freezability ejaculates: PFE) freezability stallion ejaculates in other sperm parameters, including peroxide and superoxide levels, potential of mitochondrial membrane and nuclear integrity. With this purpose, a total of 24 stallion ejaculates were cryopreserved and classified into two groups (GFE vs. PFE), depending on their sperm membrane integrity and motility after freeze-thawing. From the total of 24 ejaculates, 13 were classified as GFE and the other 11 were classified as PFE. Apart from differences in sperm membrane permeability and lipid disorder after freeze-thawing, GFE presented significantly (p < 0.05) higher percentages of viable spermatozoa with high content of peroxides and of superoxides than PFE. In contrast, and despite cryopreservation of stallion spermatozoa increasing DNA fragmentation and disrupting disulphide bonds in sperm head proteins, no significant differences between GFE and PFE were seen. We can thus conclude that good and poor freezability stallion ejaculates differ in their reactive oxygen species levels after cryopreservation, but not in the damage extent on sperm nucleus. © 2014 American Society of Andrology and European Academy of Andrology.

  19. When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa).

    PubMed

    Shepherd, V A; Beilby, M J; Bisson, M A

    2004-06-01

    Ventricaria ventricosa and its relatives have intrigued cell biologists and electrophysiologists for over a hundred years. Historically, electrophysiologists have regarded V. ventricosa as a large single plant cell with unusual characteristics including a small and positive vacuole-to-outside membrane potential difference. However, V. ventricosa has a coenocytic construction, with an alveolate cytoplasm interpenetrated by a complex vacuole containing sulphated polysaccharides. We present a theory relating the coenocytic structure to the unusual electrophysiology of V. ventricosa. The alveolate cytoplasm of V. ventricosa consists of a collective of uninucleate cytoplasmic domains interconnected by fine cytoplasmic strands containing microtubules. The cytoplasm is capable of disassociating into single cytoplasmic domains or aggregations of domains that can regenerate new coenocytes. The cytoplasmic domains are enclosed by outer (apical) and inner (basolateral) faces of a communal membrane with polarised K(+)-transporting functions, stabilised by microtubules and resembling a tissue such as a polarised epithelium. There is evidence for membrane trafficking through endocytosis and exocytosis and so "plasmalemma" and "tonoplast" do not have fixed identities. Intra- and extracellular polysaccharide mucilage has effects on electrophysiology through reducing the activity of water and through ion exchange. The vacuole-to-outside potential difference, at which the cell membrane conductance is maximal, reverses its sign from positive under hypertonic conditions to negative under hypotonic conditions. The marked mirror symmetry of the characteristics of current as a function of voltage and conductance as a function of voltage is interpreted as a feature of the communal membrane with polarised K(+) transport. The complex inhomogeneous structure of the cytoplasm places in doubt previous measurements of cytoplasm-to-outside potential difference.

  20. Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    PubMed Central

    Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.

    2011-01-01

    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells. PMID:21559494

  1. Ling's Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems.

    PubMed

    Tamagawa, Hirohisa; Funatani, Makoto; Ikeda, Kota

    2016-01-26

    The potential between two electrolytic solutions separated by a membrane impermeable to ions was measured and the generation mechanism of potential measured was investigated. From the physiological point of view, a nonzero membrane potential or action potential cannot be observed across the impermeable membrane. However, a nonzero membrane potential including action potential-like potential was clearly observed. Those observations gave rise to a doubt concerning the validity of currently accepted generation mechanism of membrane potential and action potential of cell. As an alternative theory, we found that the long-forgotten Ling's adsorption theory was the most plausible theory. Ling's adsorption theory suggests that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto the adsorption site of cell, and this theory is applicable even to nonliving (or non-biological) system as well as living system. Through this paper, the authors emphasize that it is necessary to reconsider the validity of current membrane theory and also would like to urge the readers to pay keen attention to the Ling's adsorption theory which has for long years been forgotten in the history of physiology.

  2. Ionic basis of membrane potentials of epithelial cells in rat small intestine

    PubMed Central

    Barry, R. J. C.; Eggenton, Jacqueline

    1972-01-01

    1. Potentials across the mucosal and serosal membranes of the epithelial cells of rat jejunum together with transmural potentials were recorded using everted sac preparations. 2. Ionic changes in either mucosal or serosal fluids affect mucosal or serosal membrane potentials respectively with comparable changes in the transmural potential. The contralateral membrane potential is relatively unaffected. 3. Replacement of mucosal sodium chloride by potassium chloride or lithium chloride had little effect on potentials, but its replacement by mannitol or Tris chloride increased the negativity of the mucosal potential, giving linear relationships against log10[Na]m with slopes of 41·4 and 30·7 mV respectively for tenfold change in [Na]m. 4. At constant [Na]m, potassium or lithium increased the mucosal potential by 25·7 and 19·8 mV respectively for tenfold concentration changes. 5. Qualitatively similar changes occurred in the serosal potential when the ionic composition of the serosal fluid was varied. 6. Mucosal potential changes in response to modifications of the ionic composition of the mucosal fluid were the same in the presence and absence of galactose. 7. Sodium and potassium diffusion potentials largely determine both the mucosal and serosal membrane potentials. For the mucosal membrane, PK:PNa is 1·26:1, and is probably higher for the serosal membrane. Chloride makes no significant contribution to membrane potentials. 8. Potentials generated by the electrogenic sodium pump are superimposed on diffusion potentials across the serosal membrane. PMID:4646579

  3. Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves.

    PubMed

    Lyu, Hui; Lazár, Dušan

    2017-01-21

    A model was constructed which includes electron transport (linear and cyclic and Mehler type reaction) coupled to proton translocation, counter ion movement, ATP synthesis, and Calvin-Benson cycle. The focus is on modeling of the light-induced total electric potential difference (ΔΨ) which in this model originates from the bulk phase electric potential difference (ΔΨ b ), the localized electric potential difference (ΔΨ c ), as well as the surface electric potential difference (ΔΨ s ). The measured dual wavelength transmittance signal (ΔA515-560nm, electrochromic shift) was used as a proxy for experimental ΔΨ. The predictions for theoretical ΔΨ vary with assumed contribution of ΔΨ s , which might imply that the measured ΔA515-560nm trace on a long time scale reflects the interplay of the ΔΨ components. Simulations also show that partitioning of proton motive force (pmf) to ΔΨ b and ΔpH components is sensitive to the stoichiometric ratio of H + /ATP, energy barrier for ATP synthesis, ionic strength, buffer capacity and light intensity. Our model shows that high buffer capacity promotes the establishment of ΔΨ b , while the formation of pH i minimum is not 'dissipated' but 'postponed' until it reaches the same level as that for low buffer capacity. Under physiologically optimal conditions, the output of the model shows that at steady state in light, the ΔpH component is the main contributor to pmf to drive ATP synthesis while a low ΔΨ b persists energizing the membrane. Our model predicts 11mV as the resting electric potential difference across the thylakoid membrane in dark. We suggest that the model presented in this work can be integrated as a module into a more comprehensive model of oxygenic photosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs

    PubMed Central

    Pandey, Kailash N.

    2015-01-01

    The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed. PMID:26151885

  5. Biphasic voltage-dependent inactivation of human NaV 1.3, 1.6 and 1.7 Na+ channels expressed in rodent insulin-secreting cells.

    PubMed

    Godazgar, Mahdieh; Zhang, Quan; Chibalina, Margarita V; Rorsman, Patrik

    2018-05-01

    Na + current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na + (Na V ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary β-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-β-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β-cells, but not in HEK cells, inactivation of a single Na V subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that Na V channels adopt different inactivation behaviours depending on the local membrane environment. Pancreatic β-cells are equipped with voltage-gated Na + channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na + current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na + channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the β-cell. It has been proposed that the biphasic inactivation reflects the contribution of different Na V α-subunits. We tested this possibility by expression of TTX-resistant variants of the Na V subunits found in β-cells (Na V 1.3, Na V 1.6 and Na V 1.7) in insulin-secreting Ins1 cells and in non-β-cells (including HEK and CHO cells). We found that all Na V subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. Na V 1.7 inactivated at 15--20 mV more negative membrane potentials than Na V 1.3 and Na V 1.6 in Ins1 cells but this small difference is insufficient to solely explain the biphasic inactivation in Ins1 cells. In Ins1 cells, but never in the other cell types, widely different components of Na V inactivation (separated by 30 mV) were also observed following expression of a single type of Na V α-subunit. The more positive component exhibited a voltage dependence of inactivation similar to that found in HEK and CHO cells. We propose that biphasic Na V inactivation in insulin-secreting cells reflects insertion of channels in membrane domains that differ with regard to lipid and/or membrane protein composition. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  6. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E.

    2013-01-01

    A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1–8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz). PMID:24265616

  7. Testing of Synthetic Biological Membranes for Forward Osmosis Applications

    NASA Technical Reports Server (NTRS)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Mancinelli, Rocco; Kawashima, Brian; Trieu, Serena; Brozell, Adrian; Rosenberg, Kevan

    2016-01-01

    Commercially available forward osmosis membranes have been extensively tested for human space flight wastewater treatment. Despite the improvements achieved in the last decades, there is still a challenge to produce reliable membranes with anti-fouling properties, chemical resistance, and high flux and selectivity. Synthetic biological membranes that mimic the ones present in nature, which underwent millions of years of evolution, represent a potential solution for further development and progress in membrane technology. Biomimetic forward osmosis membranes based on a polymeric support filter and coated with surfactant multilayers have been engineered to investigate how different manufacturing processes impact the performance and structure of the membrane. However, initial results of the first generation prototype membranes tests reveal a high scatter in the data, due to the current testing apparatus set up. The testing apparatus has been upgraded to improve data collection, reduce errors, and to allow higher control of the testing process.

  8. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging.

    PubMed

    Kennard, Raymond; DeSisto, William J; Giririjan, Thanu Praba; Mason, Michael D

    2008-04-07

    Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindo-carbocyanine perchlorate, used to interrogate the available free volume in their vicinity, were loaded into the mesoporous silica membranes at subnanomolar concentrations. The mesoporous silica films were prepared using a nonionic ethylene oxide-propylene oxide-ethylene oxide triblock copolymer surfactant, Pluronic P123, on single crystal silicon substrates using dip coating of a silica sol. Membranes were prepared resulting in an average pore diameter of approximately 5 nm as measured by helium, nitrogen permeance, and porosimetry. Fluorescent images and time transient experiments were recorded using a custom built single-molecule scanning confocal microscope at differing temperatures (10, 20, 30, 40, and 50 degrees C). Time-dependent polarization anisotropy was used to obtain the enthalpy of adsorption and Henry's law constant of the probe molecule.

  9. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging

    NASA Astrophysics Data System (ADS)

    Kennard, Raymond; DeSisto, William J.; Giririjan, Thanu Praba; Mason, Michael D.

    2008-04-01

    Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindo-carbocyanine perchlorate, used to interrogate the available free volume in their vicinity, were loaded into the mesoporous silica membranes at subnanomolar concentrations. The mesoporous silica films were prepared using a nonionic ethylene oxide-propylene oxide-ethylene oxide triblock copolymer surfactant, Pluronic P123, on single crystal silicon substrates using dip coating of a silica sol. Membranes were prepared resulting in an average pore diameter of approximately 5nm as measured by helium, nitrogen permeance, and porosimetry. Fluorescent images and time transient experiments were recorded using a custom built single-molecule scanning confocal microscope at differing temperatures (10, 20, 30, 40, and 50°C). Time-dependent polarization anisotropy was used to obtain the enthalpy of adsorption and Henry's law constant of the probe molecule.

  10. Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses.

    PubMed

    Noh, Chanho; Jung, Mina; Henkensmeier, Dirk; Nam, Suk Woo; Kwon, Yongchai

    2017-10-25

    15, 25, and 35 μm thick meta-polybenzimidazole (PBI) membranes are doped with H 2 SO 4 and tested in a vanadium redox flow battery (VRFB). Their performances are compared with those of Nafion membranes. Immersed in 2 M H 2 SO 4 , PBI absorbs about 2 mol of H 2 SO 4 per mole of repeat unit. This results in low conductivity and low voltage efficiency (VE). In ex-situ tests, meta-PBI shows a negligible crossover of V 3+ and V 4+ ions, much lower than that of Nafion. This is due to electrostatic repulsive forces between vanadium cations and positively charged protonated PBI backbones, and the molecular sieving effect of PBI's nanosized pores. It turns out that charge efficiency (CE) of VRFBs using meta-PBI-based membranes is unaffected by or slightly increases with decreasing membrane thickness. Thick meta-PBI membranes require about 100 mV larger potentials to achieve the same charging current as thin meta-PBI membranes. This additional potential may increase side reactions or enable more vanadium ions to overcome the electrostatic energy barrier and to enter the membrane. On this basis, H 2 SO 4 -doped meta-PBI membranes should be thin to achieve high VE and CE. The energy efficiency of 15 μm thick PBI reaches 92%, exceeding that of Nafion 212 and 117 (N212 and N117) at 40 mA cm -2 .

  11. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.

    PubMed

    Boo, Chanhee; Wang, Yunkun; Zucker, Ines; Choo, Youngwoo; Osuji, Chinedum O; Elimelech, Menachem

    2018-05-31

    We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a polyethersulfone support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ~1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ~0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (~90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.

  12. Amino-Functionalized Ceramic Capillary Membranes for Controlled Virus Retention.

    PubMed

    Bartels, Julia; Souza, Marina N; Schaper, Amelie; Árki, Pál; Kroll, Stephen; Rezwan, Kurosch

    2016-02-16

    A straightforward chemical functionalization strategy using aminosilanes for high-flux yttria-stabilized zirconia capillary membranes is presented (macroporous, d50 = 144 nm, open porosity =49%, membrane flux ∼150 L/(m(2)hbar)). Three different aminosilanes with one, two or three amino groups per silane molecule, namely 3-aminopropyltriethoxysilane (APTES), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AE-APTES) and N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA), are used to generate the amino-functionalized membranes. With a higher number of amino groups per silane molecule increased loading capacities between 0.44 and 1.01 accessible amino groups/nm(2) membrane are achieved. Streaming potential measurements confirm that the zeta-potential of the membrane surface is converted from negative (non-functionalized) to positive (amino-functionalized). By operation in dead-end filtration mode using the model virus MS2 (diameter = 25 nm, IEP = 3.9) the virus retention capacity of the amino-functionalized membranes is significantly increased and log reduction values (LRVs) of up to 9.6 ± 0.3 (TPDA) are obtained whereas a LRV < 0.3 is provided by the non-functionalized membranes. Long-term dead-end filtration experiments for 1 week reveal a high stability of immobilized aminosilanes (TPDA), being robust against leaching. By iterative backflushing with desorption buffer MS2-loaded membranes are successfully regenerated being reusable for a new filtration cycle. The presented functionalization platform is highly promising for controlled virus retention.

  13. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica.

    PubMed

    Cho, Jaeyong; Choi, Hyemin; Lee, Juneyoung; Kim, Mi-Sun; Sohn, Ho-Yong; Lee, Dong Gun

    2013-03-01

    Dioscin is a kind of steroidal saponin isolated from the root bark of wild yam Dioscorea nipponica. We investigated the antifungal effect of dioscin against different fungal strains and its antifungal mechanism(s) in Candida albicans cells. Using the propidium iodide assay and calcein-leakage measurement, we confirmed that dioscin caused fungal membrane damage. Furthermore, we evaluated the ability of dioscin to disrupt the plasma membrane potential, using 3,3'-dipropylthiadicarbocyanine iodide [DiSC(3)(5)] and bis-(1,3-dibarbituric acid)-trimethine oxanol [DiBAC(4)(3)]. Cells stained with the dyes had a significant increase in fluorescent intensity after exposure to dioscin, indicating that dioscin has an effect on the membrane potential. To visualize the effect of dioscin on the cell membrane, we synthesized rhodamine-labeled giant unilamellar vesicles (GUVs) mimicking the outer leaflet of the plasma membrane of C. albicans. As seen in the result, the membrane disruptive action of dioscin caused morphological change and rhodamine leakage of the GUVs. In three-dimensional contour-plot analysis using flow cytometry, we observed a decrease in cell size, which is in agreement with our result from the GUV assay. These results suggest that dioscin exerts a considerable antifungal activity by disrupting the structure in membrane after invading into the fungal membrane, resulting in fungal cell death. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses

    PubMed Central

    Delvendahl, Igor; Vyleta, Nicholas P.; von Gersdorff, Henrique; Hallermann, Stefan

    2016-01-01

    The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bonafide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin, but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin-, dynamin-, and actin-dependent. Furthermore, the speed of endocytosis is highly temperature-dependent with a Q10 of ~3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. PMID:27146271

  15. Generation of membrane potential beyond the conceptual range of Donnan theory and Goldman-Hodgkin-Katz equation.

    PubMed

    Tamagawa, Hirohisa; Ikeda, Kota

    2017-09-01

    Donnan theory and Goldman-Hodgkin-Katz equation (GHK eq.) state that the nonzero membrane potential is generated by the asymmetric ion distribution between two solutions separated by a semipermeable membrane and/or by the continuous ion transport across the semipermeable membrane. However, there have been a number of reports of the membrane potential generation behaviors in conflict with those theories. The authors of this paper performed the experimental and theoretical investigation of membrane potential and found that (1) Donnan theory is valid only when the macroscopic electroneutrality is sufficed and (2) Potential behavior across a certain type of membrane appears to be inexplicable on the concept of GHK eq. Consequently, the authors derived a conclusion that the existing theories have some limitations for predicting the membrane potential behavior and we need to find a theory to overcome those limitations. The authors suggest that the ion adsorption theory named Ling's adsorption theory, which attributes the membrane potential generation to the mobile ion adsorption onto the adsorption sites, could overcome those problems.

  16. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  17. A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5.

    PubMed

    Nieves-Cordones, Manuel; Miller, Anthony J; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2008-12-01

    A chimeric CaHAK1-LeHAK5 transporter with only 15 amino acids of CaHAK1 in the N-terminus mediates high-affinity K(+) uptake in yeast cells. Kinetic and expression analyses strongly suggest that LeHAK5 mediates a significant proportion of the high-affinity K(+) uptake shown by K(+)-starved tomato (Solanum lycopersicum) plants. The development of high-affinity K(+) uptake, putatively mediated by LeHAK5, was correlated with increased LeHAK5 mRNA levels and a more negative electrical potential difference across the plasma membrane of root epidermal and cortical cells. However, this increase in high-affinity K(+) uptake was not correlated with the root K(+) content. Thus, (i) growth conditions that result in a hyperpolarized root plasma membrane potential, such as K(+) starvation or growth in the presence of NH(4) (+), but which do not decrease the K(+) content, lead to increased LeHAK5 expression; (ii) the presence of NaCl in the growth solution, which prevents the hyperpolarization induced by K(+) starvation, also prevents LeHAK5 expression. Moreover, once the gene is induced, depolarization of the plasma membrane potential then produces a decrease in the LeHAK5 mRNA. On the basis of these results, we propose that the plant membrane electrical potential plays a role in the regulation of the expression of this gene encoding a high-affinity K(+) transporter.

  18. Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans.

    PubMed

    Mykytczuk, N C S; Trevors, J T; Ferroni, G D; Leduc, L G

    2011-03-20

    Metal tolerance has been found to vary among Acidithiobacillus ferrooxidans strains and this can impact the efficiency of biomining practices. To explain observed strain variability for differences in metal tolerance we examined the effects of Cu(2+) and Ni(2+) concentrations (1-200 mM) on cytoplasmic membrane properties of two A. ferrooxidans type strains (ATCC 23270 and 19859) and four strains isolated from AMD water around Sudbury, Ontario, Canada. Growth rate, membrane fluidity and phase, determined from the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), and fatty acid profiles indicated that three different modes of adaptation were present and could separate between strains showing moderate, or high metal tolerance from more sensitive strains. To compensate for the membrane ordering effects of the metals, significant remodelling of the membrane was used to either maintain homeoviscous adaptation in the moderately tolerant strains or to increase membrane fluidity in the sensitive strains. Shifts in the gel-to-liquid crystalline transition temperature in the moderately tolerant strains led to multiple phase transitions, increasing the potential for phase separation and compromised membrane integrity. The metal-tolerant strain however, was able to tolerate increases in membrane order without significant compensation via fatty acid composition. Our multivariate analyses show a common adaptive response which involves changes in the abundant 16:0 and 18:1 fatty acids. However, fatty acid composition and membrane properties showed no difference in response to either copper or nickel suggesting that adaptive response was non-specific and tolerance dependent. We demonstrate that strain variation can be evaluated using differences in membrane properties as intrinsic determinants of metal susceptibility. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.

    PubMed

    Nogueira, D R; Mitjans, M; Infante, M R; Vinardell, M P

    2011-07-01

    Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Free Flow Zonal Electrophoresis for Fractionation of Plant Membrane Compartments Prior to Proteomic Analysis.

    PubMed

    Barkla, Bronwyn J

    2018-01-01

    Free flow zonal electrophoresis (FFZE) is a versatile, reproducible, and potentially high-throughput technique for the separation of plant organelles and membranes by differences in membrane surface charge. It offers considerable benefits over traditional fractionation techniques, such as density gradient centrifugation and two-phase partitioning, as it is relatively fast, sample recovery is high, and the method provides unparalleled sample purity. It has been used to successfully purify chloroplasts and mitochondria from plants but also, to obtain highly pure fractions of plasma membrane, tonoplast, ER, Golgi, and thylakoid membranes. Application of the technique can significantly improve protein coverage in large-scale proteomics studies by decreasing sample complexity. Here, we describe the method for the fractionation of plant cellular membranes from leaves by FFZE.

  1. Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum

    PubMed Central

    Lew, V. L.

    1970-01-01

    1. The unidirectional fluxes of 22Na, 36Cl and [14C]bicarbonate ions were measured in paired portions of the isolated and short-circuited colonic mucosa of Bufo arenarum, separated from its muscular layer. Pharmacological effects as well as effects of changes in the composition of the nutrient solutions on the electrical parameters of membrane activity (potential difference, short-circuit current and total membrane resistance) are described. 2. The net fluxes of both Cl and bicarbonate ions were not significantly different from zero in the absence of electrochemical gradients across the membrane. 3. The net Na flux from mucosa to serosa represented a variable proportion of the short-circuit current ranging from 62 to 100%. 4. The proportion of membranes with high discrepancies between net Na flux and short-circuit current decreased with the duration of captivity of the toads. 5. When Na was entirely replaced by choline in the mucosal bathing solution, the short-circuit current dropped by a variable amount within the range of 64 to 98% of its control values in different membranes. This effect was completely reversible. Similar changes in the serosal solution had no effect. 6. The short-circuit current and potential difference were very sensitive to the serosal concentration of bicarbonate ions. In different membranes, 60-100% of the short-circuit current was reversibly abolished by bathing the serosal surface with a bicarbonate-free solution. The mucosal bicarbonate level had no effect on either the potential difference or the short-circuit current. 5 mM bicarbonate in the serosal solution restored at least 50% of the short-circuit control value and full recovery was attained by concentrations near 30 mM bicarbonate. 7. Anoxia brought the potential difference and short-circuit current reversibly down to zero in about 50 min. 8. Ouabain reduced the short-circuit current up to 80% in about 40 min when present in the serosal solution at a concentration of 10-4 M. At this or lower concentrations the ouabain effect was reversible. Above this level ouabain produced 100% inhibition in 3-4 hr, but this was no longer reversible. Ouabain had no effect on the short-circuit current either when applied to the mucosal surface or in the absence of Na from the mucosal solution. 9. Diamox produced a variable inhibition of the short-circuit current of up to 30% only at concentrations above 10 mM. 10. Possible mechanisms are discussed for the appearance of the non-Na component of the short-circuit current. A theory concerning its nature is proposed. PMID:5498503

  2. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport.

    PubMed

    Numata, Tomohiro; Murakami, Tatsuya; Kawashima, Fumiaki; Morone, Nobuhiro; Heuser, John E; Takano, Yuta; Ohkubo, Kei; Fukuzumi, Shunichi; Mori, Yasuo; Imahori, Hiroshi

    2012-04-11

    The control of ion transport across cell membranes by light is an attractive strategy that allows targeted, fast control of precisely defined events in the biological membrane. Here we report a novel general strategy for the control of membrane potential and ion transport by using charge-separation molecules and light. Delivery of charge-separation molecules to the plasma membrane of PC12 cells by a membranous nanocarrier and subsequent light irradiation led to depolarization of the membrane potential as well as inhibition of the potassium ion flow across the membrane. Photoregulation of the cell membrane potential and ion transport by using charge-separation molecules is highly promising for control of cell functions. © 2012 American Chemical Society

  3. Manufacturing and characterization of a ceramic single-use microvalve

    NASA Astrophysics Data System (ADS)

    Khaji, Z.; Klintberg, L.; Thornell, G.

    2016-09-01

    We present the manufacturing and characterization of a ceramic single-use microvalve with the potential to be integrated in lab-on-a-chip devices, and forsee its utilization in space and other demanding applications. A 3 mm diameter membrane was used as the flow barrier, and the opening mechanism was based on cracking the membrane by inducing thermal stresses on it with fast and localized resistive heating. Four manufacturing schemes based on high-temperature co-fired ceramic technology were studied. Three designs for the integrated heaters and two thicknesses of 40 and 120 μm for the membranes were considered, and the heat distribution over their membranes, the required heating energies, their opening mode, and the flows admitted through were compared. Furthermore, the effect of applying  +1 and  -1 bar pressure difference on the membrane during cracking was investigated. Thick membranes demonstrated unpromising results for low-pressure applications since the heating either resulted in microcracks or cracking of the whole chip. Because of the higher pressure tolerance of the thick membranes, the design with microcracks can be considered for high-pressure applications where flow is facilitated anyway. Thin membranes, on the other hand, showed different opening sizes depending on heater design and, consequently, heat distribution over the membranes, from microcracks to holes with sizes of 3-100% of the membrane area. For all the designs, applying  +1 bar over pressure contributed to bigger openings, whereas  -1 bar pressure difference only did so for one of the designs, resulting in smaller openings for the other two. The energy required for breaking these membranes was a few hundred mJ with no significant dependence on design and applied pressure. The maximum sustainable pressure of the valve for the current design and thin membranes was 7 bar.

  4. Placental membrane aging and HMGB1 signaling associated with human parturition.

    PubMed

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-02-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence-the loss of cell division potential as a consequence of stress-is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase , and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition.

  5. Observable quantities for electrodiffusion processes in membranes.

    PubMed

    Garrido, Javier

    2008-03-13

    Electrically driven ion transport processes in a membrane system are analyzed in terms of observable quantities, such as the apparent volume flow, the time dependence of the electrolyte concentration in one cell compartment, and the electrical potential difference between the electrodes. The relations between the fluxes and these observable quantities are rigorously deduced from balances for constituent mass and solution volume. These relations improve the results for the transport coefficients up to 25% with respect to those obtained using simplified expressions common in the literature. Given the practical importance of ionic transport numbers and the solvent transference number in the phenomenological description of electrically driven processes, the transport equations are presented using the electrolyte concentration difference and the electric current as the drivers of the different constituents. Because various electric potential differences can be used in this traditional irreversible thermodynamics approach, the advantages of the formulation of the transport equations in terms of concentration difference and electric current are emphasized.

  6. Semi-interpenetrating polymer network proton exchange membranes with narrow and well-connected hydrophilic channels

    NASA Astrophysics Data System (ADS)

    Fang, Chunliu; Toh, Xin Ni; Yao, Qiaofeng; Julius, David; Hong, Liang; Lee, Jim Yang

    2013-03-01

    Four series of semi-interpenetrating polymer network (SIPN) membranes are fabricated by thermally cross-linking aminated BPPO (brominated poly(2,6-dimethyl-1,4-phenylene oxide)) with different epoxide cross-linkers in the presence of sulfonated PPO (SPPO). The cross-link structure and hydrophobicity are found to impact the membrane morphology strongly - smaller and more hydrophobic cross-links form narrow and well-connected hydrophilic channels whereas bulky and less hydrophobic cross-links form wide but less-connected hydrophilic channels. The membranes of the former can support facile proton transport and suppress methanol crossover to result in higher proton conductivity and lower methanol permeability than the membranes of the latter. The membranes are also fabricated into membrane electrode assemblies (MEAs) and tested in single-stack direct methanol fuel cells (DMFCs). It is found that some of these SIPN membranes can surpass Nafion® 117 in maximum power density, demonstrating their potential as a proton exchange membrane (PEM) for the DMFCs.

  7. The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: Ensuing energetic and oxidative stress implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardo-Andreu, Gilberto L., E-mail: gilbertopardo@infomed.sld.cu; Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP; Nunez-Figueredo, Yanier

    Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 {mu}M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca{sup 2+} efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. Allmore » effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP{sup +} transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. - Graphical abstract: Guttiferone-A permeabilizes mitochondrial membrane and induces cancer cell death Display Omitted Highlights: > We addressed the involvement of mitochondria in guttiferone (GA) toxicity toward cancer cells. > GA promoted membrane permeabilization, membrane potential dissipation, NAD(P)H depletion, ROS accumulation and ATP depletion. > These actions could be implicated in the well-documented anti-cancer property of GA/structure related compounds.« less

  8. Transporter taxonomy - a comparison of different transport protein classification schemes.

    PubMed

    Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F

    2014-06-01

    Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.

  9. [Does a lateral gradient of membrane potential on the plasma membrane of growing pollen tube of germinating pollen grain exist?].

    PubMed

    Andreev, I M

    2011-01-01

    The data presented in the article by Breigina et al. (2009) "Changes in the membrane potential during pollen grain germination and pollen tube growth" (Tsitologiya. 51 (10): 815-823) and concerning the measurement of electric membrane potential (Delta Psi) on the plasma membrane of growing pollen tube of germinating pollen grain with the use of fluorescent potential-sensitive dye, di-4-ANEPPS, were critically analyzed in order to clarify whether a lateral gradient of Delta Psi on this membrane indeed exists. This analysis showed that the main conclusion of the authors of the above article on the existence of polar distribution of Delta Psi along the pollen tube plasma membrane is not in accordance with a number of known peculiarities of di-4-ANEPPS behavior in biological membranes and requires a significant revision. The findings in question reported by the authors, in my opinion, might be interpreted as evidence for the presence on the plasma membrane of growing pollen tube not only the membrane potential Delta Psi but also lateral gradient of so called intra-membrane dipole potential. Based on the comments made, another interpretation of the experimental results described by Breigina et al. has been offered. In addition, some drawbacks in the methodology used by the authors for measurement of Delta Psi with other fluorescent potential-sensitive dye, DiBAC3(3), are also shortly considered.

  10. The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles.

    PubMed

    Eklund, T

    1985-01-01

    The effect of three food preservatives, sorbic acid and methyl and butyl esters of p-hydroxybenzoic acid, on the protonmotive force in Escherichia coli membrane vesicles was investigated. Radioactive chemical probes were used to determine the two components of the protonmotive force: delta pH (pH difference) and delta psi (membrane potential). Both types of compound selectively eliminated delta pH across the membrane, while leaving delta psi much less disturbed indicating that transport inhibition by neutralization of the protonmotive force cannot be the only mechanism of action for the food preservatives tested.

  11. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    DOEpatents

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  12. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  13. Recent Advances in Nanoporous Membranes for Water Purification

    PubMed Central

    Wang, Zhuqing; Colombi Ciacchi, Lucio

    2018-01-01

    Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification. PMID:29370128

  14. Flapping Tail Membrane in Bats Produces Potentially Important Thrust during Horizontal Takeoffs and Very Slow Flight

    PubMed Central

    Adams, Rick A.; Snode, Emily R.; Shaw, Jason B.

    2012-01-01

    Historically, studies concerning bat flight have focused primarily on the wings. By analyzing high-speed video taken on 48 individuals of five species of vespertilionid bats, we show that the capacity to flap the tail-membrane (uropatagium) in order to generate thrust and lift during takeoffs and minimal-speed flight (<1 m s−1) was largely underestimated. Indeed, bats flapped the tail-membrane by extensive dorso-ventral fanning motions covering as much as 135 degrees of arc consistent with thrust generation by air displacement. The degree of dorsal extension of the tail-membrane, and thus the potential amount of thrust generated during platform launches, was significantly correlated with body mass (P = 0.02). Adduction of the hind limbs during upstrokes collapsed the tail-membrane thereby reducing its surface area and minimizing negative lift forces. Abduction of the hind limbs during the downstroke fully expanded the tail-membrane as it was swept ventrally. The flapping kinematics of the tail-membrane is thus consistent with expectations for an airfoil. Timing offsets between the wings and tail-membrane during downstrokes was as much as 50%, suggesting that the tail-membrane was providing thrust and perhaps lift when the wings were retracting through the upstoke phase of the wing-beat cycle. The extent to which the tail-membrane was used during takeoffs differed significantly among four vespertilionid species (P = 0.01) and aligned with predictions derived from bat ecomorphology. The extensive fanning motion of the tail membrane by vespertilionid bats has not been reported for other flying vertebrates. PMID:22393378

  15. Mammalian plasma membrane proteins as potential biomarkers and drug targets.

    PubMed

    Rucevic, Marijana; Hixson, Douglas; Josic, Djuro

    2011-06-01

    Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    PubMed

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

  17. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants.

    PubMed

    Tilsner, Jens; Nicolas, William; Rosado, Abel; Bayer, Emmanuelle M

    2016-04-29

    Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.

  18. 3D visualization of membrane failures in fuel cells

    NASA Astrophysics Data System (ADS)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-03-01

    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  19. Electrospun nylon 6/zinc doped hydroxyapatite membrane for protein separation: Mechanism of fouling and blocking model.

    PubMed

    Esfahani, Hamid; Prabhakaran, Molamma P; Salahi, Esmaeil; Tayebifard, Ali; Rahimipour, Mohamad Reza; Keyanpour-Rad, Mansour; Ramakrishna, Seeram

    2016-02-01

    Development of composite nanofibrous membrane via electrospinning a polymer with ceramic nanoparticles (NPs) for application in protein separation systems is explored during this study. Positively charged zinc doped hydroxyapatite (xZH) NPs were prepared in three different compositions via chemical precipitation method. Herein, we created a positively charged surface containing nanoparticles on electrospun Nylon-6 nanofibers (NFs) to improve the separation and selectivity properties for adsorption of negatively charged protein, namely bovine serum albumin (BSA). The decline in permeate flux was analyzed using the framework of classical blocking models and fitting, demonstrated that the transition of fouling mechanisms was dominated during the filtration process. The standard blocking model provided the best fit of the experimental results during the mid-filtration period. The membrane decorated by NPs containing 4at.% zinc cations not only provided maximum BSA separation but also capable of separating higher amounts of BSA molecules (even after 1h filtration) than the pure Nylon membrane. Protein separation was achieved through this membrane with the incorporation of NPs that had high zeta potential (+5.9±0.2mV) and lower particle area (22,155nm(2)). The developed membrane has great potential to act as a high efficiency membrane for capturing BSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties.

    PubMed

    Drahota, Z; Palenickova, E; Endlicher, R; Milerova, M; Brejchova, J; Vosahlikova, M; Svoboda, P; Kazdova, L; Kalous, M; Cervinkova, Z; Cahova, M

    2014-01-01

    In this study, we focused on an analysis of biguanides effects on mitochondrial enzyme activities, mitochondrial membrane potential and membrane permeability transition pore function. We used phenformin, which is more efficient than metformin, and evaluated its effect on rat liver mitochondria and isolated hepatocytes. In contrast to previously published data, we found that phenformin, after a 5 min pre-incubation, dose-dependently inhibits not only mitochondrial complex I but also complex II and IV activity in isolated mitochondria. The enzymes complexes inhibition is paralleled by the decreased respiratory control index and mitochondrial membrane potential. Direct measurements of mitochondrial swelling revealed that phenformin increases the resistance of the permeability transition pore to Ca(2+) ions. Our data might be in agreement with the hypothesis of Schäfer (1976) that binding of biguanides to membrane phospholipids alters membrane properties in a non-specific manner and, subsequently, different enzyme activities are modified via lipid phase. However, our measurements of anisotropy of fluorescence of hydrophobic membrane probe diphenylhexatriene have not shown a measurable effect of membrane fluidity with the 1 mM concentration of phenformin that strongly inhibited complex I activity. Our data therefore suggest that biguanides could be considered as agents with high efficacy but low specifity.

  1. Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.

    PubMed

    Feiszt, Péter; Schneider, György; Emődy, Levente

    2017-06-01

    Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.

  2. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.

    PubMed

    Rozendal, René A; Hamelers, Hubertus V M; Molenkamp, Redmar J; Buisman, Cees J N

    2007-05-01

    In this paper hydrogen production through biocatalyzed electrolysis was studied for the first time in a single chamber configuration. Single chamber biocatalyzed electrolysis was tested in two configurations: (i) with a cation exchange membrane (CEM) and (ii) with an anion exchange membrane (AEM). Both configurations performed comparably and produced over 0.3 m3 H2/m3 reactor liquid volume/day at 1.0 V applied voltage (overall hydrogen efficiencies around 23%). Analysis of the water that permeated through the membrane revealed that a large part of potential losses in the system were associated with a pH gradient across the membrane (CEM DeltapH=6.4; AEM DeltapH=4.4). These pH gradient associated potential losses were lower in the AEM configuration (CEM 0.38 V; AEM 0.26 V) as a result of its alternative ion transport properties. This benefit of the AEM, however, was counteracted by the higher cathode overpotentials occurring in the AEM configuration (CEM 0.12 V at 2.39 A/m2; AEM 0.27 V at 2.15 A/m2) as a result of a less effective electroless plating method for the AEM membrane electrode assembly (MEA).

  3. The interaction of the carbon nanoparticles with human cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Overchuk, M.; Prylutska, S.; Bilyy, Rostyslav; Prylutsky, Yu.; Ritter, U.

    2013-09-01

    The study of carbon nanostructures is a highly topical branch of bionanotechnology because of their potential application in biomedicine. Carbon nanotubes (CNTs) are known for their ability to kill tumor cells causing hyperthermia shock and can be used in photothermal therapy respectively. Also chemically modified CNTs can be used for drug delivery. The needle-like shape of CNTs allows them to penetrate into the cell plasma membrane without killing the cell. C60 fullerenes are regarded as valuable nanocarriers for different hydrophobic molecules as well as potential antiviral agents or photosensitizers. In our previous studies we have demonstrated that all types of carbon nanoparticles cause externalization of phosphatidylserine (PS) from the inner to the outer layer of the cell membrane in the small local patches (points of contact), leaving the other parts of plasma membrane PS-negative. In the current work there were studied the interactions of pristine C60 fullerenes and different types of CNTs with human blood cells (erythrocytes and Jurkat T-cells). We have shown, that carbon nanoparticles do not have any hemolytic effects, if judged by the dynamics of acidic hemolysis, although they are capable of permeabilizating the cells and facilitating the internalization of propidium iodide into the nuclei.

  4. A potential role for bat tail membranes in flight control.

    PubMed

    Gardiner, James D; Dimitriadis, Grigorios; Codd, Jonathan R; Nudds, Robert L

    2011-03-30

    Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control.

  5. A Potential Role for Bat Tail Membranes in Flight Control

    PubMed Central

    Gardiner, James D.; Dimitriadis, Grigorios; Codd, Jonathan R.; Nudds, Robert L.

    2011-01-01

    Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control. PMID:21479137

  6. Soy lecithin interferes with mitochondrial function in frozen-thawed ram spermatozoa.

    PubMed

    Del Valle, I; Gómez-Durán, A; Holt, W V; Muiño-Blanco, T; Cebrián-Pérez, J A

    2012-01-01

    Egg yolk and milk are the 2 major membrane cryoprotectants commonly used in freezing media for the long-term preservation of semen (alone or in combination with others). However, in recent years, there have been increasing arguments against the use of egg yolk or milk because of the risk of introducing diseases through the use of cryopreserved semen. In this study, we analyzed the protective effect of lecithin as an alternative to egg yolk for the cryopreservation of ram semen, using a range of functional markers for sperm viability, motility, apoptosis, and mitochondrial functionality analyses (mitochondrial inner membrane surface [MIMS], mitochondrial inner membrane potential [MIMP], and cell membrane potential) as methods of assessment in samples diluted in 3 different media: Tris-citrate-glucose as control and 2 media supplemented with soy lecithin or egg yolk. The results showed that lecithin was able to effectively protect certain sperm quality characteristics against freezing-induced damage. However, lecithin induced loss of mitochondrial membrane potential or mitochondrial loss that was not reflected by modifications in sperm motility in fresh semen. MIMS and MIMP values decreased in thawed lecithin-treated samples, concomitant with a lower (P < .05) percentage of total and progressively motile cells, compared with those in egg yolk-containing samples. Further incubation of thawed samples revealed changes in motility and mitochondrial functionality that otherwise would not have been detected. These results indicated that lecithin may have affected the inner mitochondrial membrane in frozenthawed spermatozoa and confirmed that sublethal damages that seriously affect sperm functionality, not detected by classic sperm quality analyses, can be evidenced by changes in the inner mitochondrial membrane surface. These findings strengthen the relationship between mitochondrial membrane potential and motility and show that the mitochondrial alterations induced by the cryopreservation process could be specific targets for the improvement of semen cryopreservation protocols.

  7. CATAPHORETIC CHARGES OF COLLODION PARTICLES AND ANOMALOUS OSMOSIS THROUGH COLLODION MEMBRANES FREE FROM PROTEIN

    PubMed Central

    Loeb, Jacques

    1922-01-01

    1. It had been shown in previous papers that when a salt solution is separated from pure water by a collodion membrane, water diffuses through the membrane as if it were positively charged and as if it were attracted by the anion of the salt in solution and repelled by the cation with a force increasing with the valency. In this paper, measurements of the P.D. across the membrane (E) are given, showing that when an electrical effect is added to the purely osmotic effect of the salt solution in the transport of water from the side of pure water to the solution, the latter possesses a considerable negative charge which increases with increasing valency of the anion of the salt and diminishes with increasing valency of the cation. It is also shown that a similar valency effect exists in the diffusion potentials between salt solutions and pure water without the interposition of a membrane. 2. This makes it probable that the driving force for the electrical transport of water from the side of pure water into solution is primarily a diffusion potential. 3. It is shown that the hydrogen ion concentration of the solution affects the transport curves and the diffusion potentials in a similar way. 4. It is shown, however, that the diffusion potential without interposition of the membrane differs in a definite sense from the P.D. across the membrane and that therefore the P.D. across the membrane (E) is a modified diffusion potential. 5. Measurements of the P.D. between collodion particles and aqueous solutions (ε) were made by the method of cataphoresis, which prove that water in contact with collodion particles free from protein practically always assumes a positive charge (except in the presence of salts with trivalent and probably tetravalent cations of a sufficiently high concentration). 6. It is shown that an electrical transport of water from the side of water into the solution is always superposed upon the osmotic transport when the sign of charge of the solution in the potential across the membrane (E) is opposite to that of the water in the P.D. between collodion particle and water (ε); supporting the theoretical deductions made by Bartell. 7. It is shown that the product of the P.D. across the membrane (E) into the cataphoretic P.D. between collodion particles and aqueous solution (ε) accounts in general semiquantitatively for that part of the transport of water into the solution which is due to the electrical forces responsible for anomalous osmosis. PMID:19871981

  8. Synthesis and characterization of poly(vinyl alcohol) membranes with quaternary ammonium groups for wound dressing.

    PubMed

    Chen, Kuo-Yu; Lin, Yu-Sheng; Yao, Chun-Hsu; Li, Ming-Hsien; Lin, Jui-Che

    2010-01-01

    2-[(acryloyloxy)ethyl]Trimethylammonium chloride (AETMAC) was grafted onto poly(vinyl alcohol) (PVA) using ceric ammonium nitrate (CAN) as a redox initiator. A series of graft co-polymer (PVA-g-PAETMAC) membranes with different contents of AETMAC were prepared with a casting method. The incorporation of AETMAC into PVA chains was confirmed by element analysis and Fourier transform infrared spectroscopy. The effects of grafting on the thermal properties, water take, water vapor transmission rate (WVTR), contact angle, antibacterial activity and cytotoxicity of PVA-g-PAETMAC membranes were investigated. The experiment results showed that PVA-g-PAETMAC membrane has a higher equilibrium swelling ratio, surface hydrophilicity and WVTR than pure PVA membrane. Moreover, the higher the content of AETMAC, the higher were equilibrium swelling ratio, surface hydrophilicity and WVTR. In vitro bacterial adhesion study demonstrated a significantly reduced number of Staphylococcus aureus and Escherichia coli on PVA-g-PAETMAC surfaces when compared to PVA surface. In addition, no significant difference in the in vitro cytotoxicity was observed between PVA and PVA-g-PAETMAC membranes. The presence of quaternary ammonium groups did not reduce L929 cell growth. Therefore, the PVA-g-PAETMAC membranes have the potential for wound-dressing application.

  9. Effect of hydraulically reversible and hydraulically irreversible fouling on the removal of MS2 and φX174 bacteriophage by an ultrafiltration membrane.

    PubMed

    ElHadidy, Ahmed M; Peldszus, Sigrid; Van Dyke, Michele I

    2014-09-15

    The effect of membrane fouling on the removal of enteric virus surrogates MS2 and φX174 bacteriophage by an ultrafiltration membrane was assessed under simulated full-scale drinking water treatment operating conditions. Filtration experiments of up to 8 days using either river or lake water ascertained how the membrane fouling layer affected virus removal. Organic carbon fractionation techniques identified potential foulants, including biopolymers, in the feed water and in the permeate. Hydraulically irreversible fouling could greatly improve the removal of both viruses at moderate and severe fouling conditions by up to 2.5 logs. Hydraulically reversible fouling increased virus removal only slightly, and increased removal of >0.5 log for both phage were only obtained under severe fouling conditions. The increase in virus removal due to irreversible and reversible fouling differed between the two water sources. As the degree of fouling increased, differences between the removal of the two phage decreased. Maintenance cleaning partially removed membrane foulants, however virus removal following maintenance cleaning was lower than that of the fouled membrane, it remained higher than that of the clean membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Erythrocyte Membrane Failure by Electromechanical Stress.

    PubMed

    Du, E; Qiang, Yuhao; Liu, Jia

    2018-01-01

    We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  11. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.

    PubMed

    Tao, Yehan; Xue, Qingzhong; Liu, Zilong; Shan, Meixia; Ling, Cuicui; Wu, Tiantian; Li, Xiaofang

    2014-06-11

    First-principle density functional theory (DFT) calculation and molecular dynamic (MD) simulation are employed to investigate the hydrogen purification performance of two-dimensional porous graphene material (PG-ESX). First, the pore size of PG-ES1 (3.2775 Å) is expected to show high selectivity of H2 by DFT calculation. Then MD simulations demonstrate the hydrogen purification process of the PG-ESX membrane. The results indicate that the selectivity of H2 over several other gas molecules that often accompany H2 in industrial steam methane reforming or dehydrogenation of alkanes (such as N2, CO, and CH4) is sensitive to the pore size of the membrane. PG-ES and PG-ES1 membranes both exhibit high selectivity for H2 over other gases, but the permeability of the PG-ES membrane is much lower than the PG-ES1 membrane because of the smaller pore size. The PG-ES2 membrane with bigger pores demonstrates low selectivity for H2 over other gases. Energy barrier and electron density have been used to explain the difference of selectivity and permeability of PG-ESX membranes by DFT calculations. The energy barrier for gas molecules passing through the membrane generally increase with the decreasing of pore sizes or increasing of molecule kinetic diameter, due to the different electron overlap between gas and a membrane. The PG-ES1 membrane is far superior to other carbon membranes and has great potential applications in hydrogen purification, energy clean combustion, and making new concept membrane for gas separation.

  12. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    PubMed

    Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U

    2015-01-01

    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  13. Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view.

    PubMed

    Marquês, Joaquim Trigo; Susana Marinho, H; de Almeida, Rodrigo Freire Martins

    2018-05-07

    This review is focused on sphingolipid backbone hydroxylation, a small but widespread structural feature, with profound impact on membrane biophysical properties. We start by summarizing sphingolipid metabolism in mammalian cells, yeast and plants, focusing on how distinct hydroxylation patterns emerge in different eukaryotic kingdoms. Then, a comparison of the biophysical properties in membrane model systems and cellular membranes from diverse organisms is made. From an integrative perspective, these results can be rationalized considering that superficial hydroxyl groups in the backbone of sphingolipids (by intervening in the H-bond network) alter the balance of favorable interactions between membrane lipids. They may strengthen the bonding or compete with other hydroxyl groups, in particular the one of membrane sterols. Different sphingolipid hydroxylation patterns can stabilize/disrupt specific membrane domains or change whole plasma membrane properties, and therefore be important in the control of protein distribution, function and lateral diffusion and in the formation and overtime stability of signaling platforms. The recent examples explored throughout this review unveil a potentially key role for sphingolipid backbone hydroxylation in both physiological and pathological situations, as they can be of extreme importance for the proper organization of cell membranes in mammalian cells, yeast and, most likely, also in plants. Copyright © 2017. Published by Elsevier Ltd.

  14. [Bioactive glass 45S5-silk fibroin membrane supports proliferation and differentiation of human dental pulp stem cells].

    PubMed

    Lyu, Xiaoshuai; Li, Zhengmao; Wang, Haiyan; Yang, Xuechao

    2015-12-01

    To investigate the effect of bioactivity glass 45S5- silk fibroin(BG45S5- SF) membrane on growth, proliferation and differentiation of human dental pulp stem cells(hDPSC), and to provide new ideas and method for the regeneration of pulp-dentine complex. hDPSC seed on pure silk fibroin membrane (protein membrane group) and BG45S5-SF membrane with different concentrations(1 000, 5 000 mg/L, composite membrane group A and B, respectively) were prepared, and the materials were incubated in cell culture fluid for 24 h. No material membrane orifice plate was used as blank control group. Contact angle meter was used to measure surface contact angle of protein membrane and composite membrane group(each group had three repeated holes). Cell proliferation was assessed by cell counting kit- 8 on the 4, 7, 14, and 21 days. The state of adhesion and growth of hDPSC on the materials surface was evaluated by scanning electron microscopy and cytoskeleton staining; and alkaline phosphatase (ALP) activity was measured to evaluate the cell differentiation potential. The expression of odontoblastic differentiation-related genes was measured by real-time PCR. Surface contact angle of the protein membrane group and composite membrane group A and group B were 89.51° ± 0.12°, 70.32° ± 0.07° and 71.31° ± 0.09° respectively. hDPSC adhered well on each materials surface on the 7, 14, 21 days, ALP activity and differentiation genes of composite membrane group A and B rised more significantly than the blank control group and protein membrane group did (P<0.05). Dentin matrix protein1(DMP- 1), dentin sialoprotein(DSP), ALP, osteocalcin(OC) mRNA expression reached peak on the 14 days in group A, and in group B on the 21 days. Bone sialoprotein(BSP) mRNA expression in both group A and B reached peak on the 21 days. BG45S5- SF membrane is able to support the proliferation and showed the potential of odontoblastic differentiation for hDPSC. This finding suggests that BG45S5-SF membrane was a kind of tissue engineering film material with the regeneration potential for pulp-dentine complex.

  15. Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane.

    PubMed

    Reichenbach, A; Eberhardt, W

    1988-01-01

    Müller (radial glial) cells were isolated from rabbit retinae by means of papaine and mechanical dissociation. Regional membrane properties of these cells were studied by intracellular microelectrode recordings of potential responses to local application of high K+ solutions. When different parts of the cell membrane were exposed to high K+, the amplitude of the depolarizing responses varied greatly, indicating a strong regional specialization of the membrane properties. Using morphometrical data of isolated rabbit Müller cells, and a simple circuit model, we calculated the endfoot membrane to constitute more than 80% of the total K+ conductance of the cell; the specific resistivity of the endfoot membrane was about 400 omega cm2, i.e., more than 40 times less than that of the membrane of the vitread process, which is immediately adjacent. This kind of regional membrane specialization seems to be optimized in respect to the Müller cells' ability to carry spatial buffering K+ currents.

  16. Membrane Repair: Mechanisms and Pathophysiology

    PubMed Central

    Cooper, Sandra T.; McNeil, Paul L.

    2015-01-01

    Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body. PMID:26336031

  17. Impact of two different saponins on the organization of model lipid membranes.

    PubMed

    Korchowiec, Beata; Gorczyca, Marcelina; Wojszko, Kamila; Janikowska, Maria; Henry, Max; Rogalska, Ewa

    2015-10-01

    Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Human neuroblastoma (SH-SY5Y) cell culture and differentiation in 3-D collagen hydrogels for cell-based biosensing.

    PubMed

    Desai, Anu; Kisaalita, William S; Keith, Charles; Wu, Z-Z

    2006-02-15

    Cell-based three-dimensional systems are desirable in the field of high throughput screening assays due to their potential similarity to in vivo environment. We have used SH-SY5Y human neuroblastoma cells cultured in 3-D collagen hydrogel, confocal microscopy and immunofluorescence staining, to assess the merit of the system as a functional, cell-based biosensor. Our results show differences between 2-D and 3-D resting membrane potential development profile upon differentiation. There was no statistically significant difference in SH-SY5Y proliferation rate between 2-D monolayer and 3-D collagen culture formats. A large percentage of cells (2-D, 91.30% and 3-D, 84.93%) did not develop resting membrane potential value equal to or lower than -40 mV; instead cells exhibited a heterogeneous resting membrane potential distribution. In response to high K(+) (50 mM) depolarization, 3-D cells were less responsive in terms of increase in intracellular Ca(2+), in comparison to 2-D cells, supporting the hypothesis that 2-D cell calcium dynamics may be exaggerated. L-Type Ca(2+) expression levels based on staining results was inconsistent with Bay K 8644 channel activation results, strongly suggesting that either the majority of the channels were non-functional or could not be activated by Bay K 8644. In general, the results in this study confirm the depolarization-induced differences in intracellular calcium release when cultured using a 2-D versus a 3-D matrix.

  19. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    NASA Astrophysics Data System (ADS)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3 PUFAs can incorporate into lipid rafts, which are domains enriched in SM and chol in the plasma membrane, and potentially disrupt the activity of signaling proteins that reside therein. DHA, furthermore, may be the more potent component of fish oil. PUFA-chol interactions were also examined through affinity measurements. A novel method utilizing electron paramagnetic resonance (EPR) was developed, to monitor the partitioning of a spin-labeled analog of chol, 3beta-doxyl-5alpha-cholestane (chlstn), between large unilamellar vesicles (LUVs) and methyl-beta-cyclodextrin (mbetaCD). The EPR spectra for chlstn in the two environments are distinguishable due to the substantial differences in tumbling rates, allowing the population distribution ratio to be determined by spectral simulation. Advantages of this approach include speed of implementation and avoidance of potential artifacts associated with physical separation of LUV and mbetaCD. Additionally, in a check of the method, the relative partition coefficients between lipids measured for the spin label analog agree with values obtained for chol by isothermal titration calorimetry (ITC). Results from LUV with different composition confirmed a hierarchy of decreased sterol affinity for phospholipids with increasing acyl chain unsaturation, PDPC possessing half the affinity of the corresponding monounsaturated phospholipid. Taken together, the results of these studies on model membranes demonstrate the potential for PUFA-driven alteration of the architecture of biomembranes, a mechanism through which human health may be impacted.

  20. Membrane potential and human erythrocyte shape.

    PubMed Central

    Gedde, M M; Huestis, W H

    1997-01-01

    Altered external pH transforms human erythrocytes from discocytes to stomatocytes (low pH) or echinocytes (high pH). The process is fast and reversible at room temperature, so it seems to involve shifts in weak inter- or intramolecular bonds. This shape change has been reported to depend on changes in membrane potential, but control experiments excluding roles for other simultaneously varying cell properties (cell pH, cell water, and cell chloride concentration) were not reported. The present study examined the effect of independent variation of membrane potential on red cell shape. Red cells were equilibrated in a set of solutions with graduated chloride concentrations, producing in them a wide range of membrane potentials at normal cell pH and cell water. By using assays that were rapid and accurate, cell pH, cell water, cell chloride, and membrane potential were measured in each sample. Cells remained discoid over the entire range of membrane potentials examined (-45 to +45 mV). It was concluded that membrane potential has no independent effect on red cell shape and does not mediate the membrane curvature changes known to occur in red cells equilibrated at altered pH. Images FIGURE 2 FIGURE 9 PMID:9138568

  1. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty.

    PubMed

    Chen, Junzhao; Yan, Chenxi; Zhu, Mengyu; Yao, Qinke; Shao, Chunyi; Lu, Wenjuan; Wang, Jing; Mo, Xiumei; Gu, Ping; Fu, Yao; Fan, Xianqun

    2015-01-01

    Cornea transplant technology has progressed markedly in recent decades, allowing surgeons to replace diseased corneal endothelium by a thin lamellar structure. A thin, transparent, biocompatible, tissue-engineered substratum with corneal endothelial cells for endothelial keratoplasty is currently of interest. Electrospinning a nanofibrous structure can simulate the extracellular matrix and have beneficial effects for cell culture. Silk fibroin (SF) has good biocompatibility but poor mechanical properties, while poly(L-lactic acid-co-ε-caprolactone) (P(LLA-CL)) has good mechanical properties but poor biocompatibility. Blending SF with P(LLA-CL) can maintain the advantages of both these materials and overcome their disadvantages. Blended electrospun nanofibrous membranes may be suitable for regeneration of the corneal endothelium. The aim of this study was to produce a tissue-engineered construct suitable for endothelial keratoplasty. Five scaffolds containing different SF:P(LLA-CL) blended ratios (100:0, 75:25, 50:50, 25:75, 0:100) were manufactured. A human corneal endothelial (B4G12) cell line was cultured on the membranes. Light transmission, speed of cell adherence, cell viability (live-dead test), cell proliferation (Ki-67, BrdU staining), and cell monolayer formation were detected on membranes with the different blended ratios, and expression of some functional genes was also detected by real-time polymerase chain reaction. Different blended ratios of scaffolds had different light transmittance properties. The 25:75 blended ratio membrane had the best transmittance among these scaffolds. All electrospun nanofibrous membranes showed improved speed of cell adherence when compared with the control group, especially when the P(LLA-CL) ratio increased. The 25:75 blended ratio membranes also had the highest cell proliferation. B4G12 cells could form a monolayer on all scaffolds, and most functional genes were also stably expressed on all scaffolds. Only two genes showed changes in expression. All blended ratios of SF:P(LLA-CL) scaffolds were evaluated and showed good biocompatibility for cell adherence and monolayer formation. Among them, the 25:75 blended ratio SF:P(LLA-CL) scaffold had the best transmittance and the highest cell proliferation. These attributes further the potential application of the SF:P(LLA-CL) scaffold for corneal endothelial transplantation.

  2. Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation.

    PubMed

    Park, Minsung; Shin, Sungchul; Cheng, Jie; Hyun, Jinho

    2017-02-20

    We describe the nanocomposite membrane for cell encapsulation using nanocelluose hydrogels. One of the surfaces of bacterial cellulose (BC) pellicles was coated with collagen to enhance cell adhesion and the opposite side of the BC pellicles was coated with alginate to protect transplanted cells from immune rejection by the reduced pore size of the composite membrane. The morphology of nanocomposite membrane was observed by scanning electron microscopy and the permeability of the membrane was estimated by the release test using different molecular weights of polymer solution. The nanocomposite membrane was permeable to small molecules but impermeable to large molecules such as IgG antibodies inferring the potential use in cell implantation. In addition, the BC-based nanocomposite membrane showed a superior mechanical property due to the incorporation of compared with alginate membranes. The cells attached efficiently to the surface of BC composite membranes with a high level of cell viability as well as bioactivity. Cells grown on the BC composite membrane kit released dopamine freely to the medium through the membrane, which showed that the BC composite membrane would be a promising cell encapsulation material in implantation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Performances of nanofiltration and low pressure reverse osmosis membranes for desalination: characterization and modelling

    NASA Astrophysics Data System (ADS)

    Boussouga, Y. A.; Lhassani, A.

    2017-03-01

    The nanofiltration and the reverse osmosis processes are the most common techniques for the desalination of water contaminated by an excess of salts. In this present study, we were interested in the characterization of commercial, composite and asymmetric membranes of nanofiltration (NF90, NF270) and low pressure reverse osmosis (BW30LE). The two types of characterization that we opted for our study: (i) characterization of electrical proprieties, in terms of the surface charge of various membranes studied by the measurement of the streaming potential, (ii) hydrodynamic characterization in terms of hydraulic permeability with pure water, mass transfer and phenomenological parameters for each system membrane/salt using hydrodynamic approaches. The irreversible thermodynamics allowed us to model the observed retention Robs of salts (NaCl and Na2SO4) for the different membranes studied, to understand and to predict a good filtration with a membrane. A study was conducted on the type of mass transfer for each system membrane/salt: convection and diffusion. The results showed that all tested membranes are negatively charged for the solutions at neutral pH, this is explained by their material composition. The results also showed competitiveness between the different types of membranes. In view of that the NF remains effective in terms of selective retention with less energy consumption than LPRO.

  4. Placental membrane aging and HMGB1 signaling associated with human parturition

    PubMed Central

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-01-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence—the loss of cell division potential as a consequence of stress—is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase, and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition. PMID:26851389

  5. Simulation of axonal excitability using a Spreadsheet template created in Microsoft Excel.

    PubMed

    Brown, A M

    2000-08-01

    The objective of this present study was to implement an established simulation protocol (A.M. Brown, A methodology for simulating biological systems using Microsoft Excel, Comp. Methods Prog. Biomed. 58 (1999) 181-90) to model axonal excitability. The simulation protocol involves the use of in-cell formulas directly typed into a spreadsheet and does not require any programming skills or use of the macro language. Once the initial spreadsheet template has been set up the simulations described in this paper can be executed with a few simple keystrokes. The model axon contained voltage-gated ion channels that were modeled using Hodgkin Huxley style kinetics. The basic properties of axonal excitability modeled were: (1) threshold of action potential firing, demonstrating that not only are the stimulus amplitude and duration critical in the generation of an action potential, but also the resting membrane potential; (2) refractoriness, the phenomenon of reduced excitability immediately following an action potential. The difference between the absolute refractory period, when no amount of stimulus will elicit an action potential, and relative refractory period, when an action potential may be generated by applying increased stimulus, was demonstrated with regard to the underlying state of the Na(+) and K(+) channels; (3) temporal summation, a process by which two sub-threshold stimuli can unite to elicit an action potential was shown to be due to conductance changes outlasting the first stimulus and summing with the second stimulus-induced conductance changes to drive the membrane potential past threshold; (4) anode break excitation, where membrane hyperpolarization was shown to produce an action potential by removing Na(+) channel inactivation that is present at resting membrane potential. The simulations described in this paper provide insights into mechanisms of axonal excitation that can be carried out by following an easily understood protocol.

  6. Effects of K(+) channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder.

    PubMed

    Takagi, Hiroaki; Hashitani, Hikaru

    2016-10-15

    The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Importance of the REM (Ras exchange) domain for membrane interactions by RasGRP3.

    PubMed

    Czikora, Agnes; Kedei, Noemi; Kalish, Heather; Blumberg, Peter M

    2017-12-01

    RasGRP comprises a family of guanine nucleotide exchange factors, regulating the dissociation of GDP from Ras GTPases to enhance the formation of the active GTP-bound form. RasGRP1 possesses REM (Ras exchange), GEF (catalytic), EF-hand, C1, SuPT (suppressor of PT), and PT (plasma membrane-targeting) domains, among which the C1 domain drives membrane localization in response to diacylglycerol or phorbol ester and the PT domain recognizes phosphoinositides. The homologous family member RasGRP3 shows less plasma membrane localization. The objective of this study was to explore the role of the different domains of RasGRP3 in membrane translocation in response to phorbol esters. The full-length RasGRP3 shows limited translocation to the plasma membrane in response to PMA, even when the basic hydrophobic cluster in the PT domain, reported to be critical for RasGRP1 translocation to endogenous activators, is mutated to resemble that of RasGRP1. Moreover, exchange of the C-termini (SuPT-PT domain) of the two proteins had little effect on their plasma membrane translocation. On the other hand, while the C1 domain of RasGRP3 alone showed partial plasma membrane translocation, truncated RasGRP3 constructs, which contain the PT domain and are missing the REM, showed stronger translocation, indicating that the REM of RasGRP3 was a suppressor of its membrane interaction. The REM of RasGRP1 failed to show comparable suppression of RasGRP3 translocation. The marked differences between RasGRP3 and RasGRP1 in membrane interaction necessarily will contribute to their different behavior in cells and are relevant to the design of selective ligands as potential therapeutic agents. Published by Elsevier B.V.

  8. Comparative study of the energy potential of cyanide waters using two osmotic membrane modules under dead-end flow

    NASA Astrophysics Data System (ADS)

    García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.

    2017-12-01

    The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.

  9. Equilibrium Fluctuation Relations for Voltage Coupling in Membrane Proteins

    PubMed Central

    Kim, Ilsoo; Warshel, Arieh

    2015-01-01

    A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the reaction coordinate of “voltage coupling”, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference at zero membrane potential (i.e., between the two “non-equilibrium” conformational states) is shown to be equivalent to the free energy difference between the two “equilibrium” conformational states along the one-dimensional reaction coordinate of voltage coupling. Furthermore, the requirement that the application of linear response approximation to the free energy functions (free energies) of voltage coupling should satisfy the general free energy relations, yields a novel expression for the gating charge in terms of other experimentally measurable quantities. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the movement of a unit charge within the membrane under the influence of an external potential, using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus–type voltage dependent free energy parabolas for the two conformational states, which allow for quantitative estimations of an equilibrium free energy difference, a free energy of barrier, and the voltage dependency of channel activation (Q-V curve) for the unit charge movement. In addition, our analysis offers a quantitative rationale for the correlation between the free energy landscapes (parabolas) and the Q-V curve, upon site-directed mutagenesis or drug binding. Taken together, by introducing the voltage coupling as a reaction coordinate of energy gab, the present theory offers a firm physical foundation from the equilibrium theory of statistical mechanics for the thermodynamic models of voltage activation in voltage-sensitive membrane proteins. This formulation also provides a powerful bridge between the CG model and the conventional macroscopic treatments, offering an intuitive and quantitative framework for a better understating of the structure-function correlations of voltage gating in ion channels as well as electrogenic phenomena in ion pumps and transporters. PMID:26290960

  10. The role of phosphatidylinositol-transfer proteins at membrane contact sites.

    PubMed

    Selitrennik, Michael; Lev, Sima

    2016-04-15

    Phosphatidylinositol-transfer proteins (PITPs) have been initially identified as soluble factors that accelerate the monomeric exchange of either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayersin vitro They are highly conserved in eukaryotes and have been implicated in different cellular processes, including vesicular trafficking, signal transduction, and lipid metabolism. Recent studies suggest that PITPs function at membrane contact sites (MCSs) to facilitate the transport of PI from its synthesis site at the endoplasmic reticulum (ER) to various membrane compartments. In this review, we describe the underlying mechanism of PITPs targeting to MCSs, discuss their cellular roles and potential mode of action. © 2016 Authors; published by Portland Press Limited.

  11. Membrane Technology for the Recovery of Lignin: A Review

    PubMed Central

    Humpert, Daniel; Ebrahimi, Mehrdad; Czermak, Peter

    2016-01-01

    Utilization of renewable resources is becoming increasingly important, and only sustainable processes that convert such resources into useful products can achieve environmentally beneficial economic growth. Wastewater from the pulp and paper industry is an unutilized resource offering the potential to recover valuable products such as lignin, pigments, and water [1]. The recovery of lignin is particularly important because it has many applications, and membrane technology has been investigated as the basis of innovative recovery solutions. The concentration of lignin can be increased from 62 to 285 g∙L−1 using membranes and the recovered lignin is extremely pure. Membrane technology is also scalable and adaptable to different waste liquors from the pulp and paper industry. PMID:27608047

  12. Fast, Temperature-Sensitive and Clathrin-Independent Endocytosis at Central Synapses.

    PubMed

    Delvendahl, Igor; Vyleta, Nicholas P; von Gersdorff, Henrique; Hallermann, Stefan

    2016-05-04

    The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bona-fide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin, dynamin, and actin dependent. Furthermore, the speed of endocytosis is highly temperature dependent with a Q10 of ∼3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  14. Dynamic complexity: plant receptor complexes at the plasma membrane.

    PubMed

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Computational study of peptide permeation through membrane: searching for hidden slow variables

    NASA Astrophysics Data System (ADS)

    Cardenas, Alfredo E.; Elber, Ron

    2013-12-01

    Atomically detailed molecular dynamics trajectories in conjunction with Milestoning are used to analyse the different contributions of coarse variables to the permeation process of a small peptide (N-acetyl-l-tryptophanamide, NATA) through a 1,2-dioleoyl-sn-glycero-3-phosphocholine membrane. The peptide reverses its overall orientation as it permeates through the biological bilayer. The large change in orientation is investigated explicitly but is shown to impact the free energy landscape and permeation time only moderately. Nevertheless, a significant difference in permeation properties of the two halves of the membrane suggests the presence of other hidden slow variables. We speculate, based on calculation of the potential of mean force, that a conformational transition of NATA makes significant contribution to these differences. Other candidates for hidden slow variables may include water permeation and collective motions of phospholipids.

  16. Voltage-Gated Potassium Channels Kv1.3--Potentially New Molecular Target in Cancer Diagnostics and Therapy.

    PubMed

    Teisseyre, Andrzej; Gąsiorowska, Justyna; Michalak, Krystyna

    2015-01-01

    Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced.

  17. Sodium and potassium conductance changes during a membrane action potential.

    PubMed

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.

  18. Assessment of amphotericin B susceptibility in Leishmania infantum promastigotes by flow cytometric membrane potential assay.

    PubMed

    Azas, N; Di Giorgio, C; Delmas, F; Gasquet, M; Timon-David, P

    1997-06-01

    Flow cytometry was used for measuring the effects of amphotericin B on the membrane of Leishmania infantum strains. The technique was adapted from the rapid flow cytometric membrane potential assay developed by Ordonez and Wehman (Cytometry 22:154-157, 1995) for evaluating antibiotic-susceptibility of Candida species. The study consisted of measuring membrane potential changes induced by amphotericin B in 3 initial strains and 12 laboratory-generated variants adapted to grow with amphotericin B. Results showed that, after 3 h of incubation, amphotericin B induced a dose-related decrease of membrane potential that reached its maximal level at the same concentrations that inhibited parasite growth. These results suggest that the flow cytometric membrane potential assay could be used to assess the susceptibility of Leishmania promastigotes to amphotericin B.

  19. Brownian dynamics simulations of lipid bilayer membrane with hydrodynamic interactions in LAMMPS

    NASA Astrophysics Data System (ADS)

    Fu, Szu-Pei; Young, Yuan-Nan; Peng, Zhangli; Yuan, Hongyan

    2016-11-01

    Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics simulations. Numerical efficiencies have been reported in the cases of aggressive coarse-graining, where several lipids are coarse-grained into a particle of size 4 6 nm so that there is only one particle in the thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained lipid particles to capture the mechanical properties of a lipid bilayer membrane (such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity). In this work we implement such interaction potential in LAMMPS to simulate large-scale lipid systems such as vesicles and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid membrane dynamics as a model for red blood cell (RBC) dynamics, and incorporate coarse-grained water molecules to account for hydrodynamic interactions. The interaction between the coarse-grained water molecules (explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. We focus on two sets of LAMMPS simulations: 1. Vesicle shape transitions with varying enclosed volume; 2. RBC shape transitions with different enclosed volume. This work is funded by NSF under Grant DMS-1222550.

  20. Brownian dynamics simulations of lipid bilayer membrane with hydrodynamic interactions in LAMMPS

    NASA Astrophysics Data System (ADS)

    Fu, Szu-Pei; Young, Yuan-Nan; Peng, Zhangli; Yuan, Hongyan

    Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics simulations. Numerical efficiency has been reported in the cases of aggressive coarse-graining, where several lipids are coarse-grained into a particle of size 4 6 nm so that there is only one particle in the thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained lipid particles to capture the mechanical properties of a lipid bilayer membrane (such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity). In this work we implement such interaction potential in LAMMPS to simulate large-scale lipid systems such as vesicles and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid membrane dynamics as a model for red blood cell (RBC) dynamics, and incorporate coarse-grained water molecules to account for hydrodynamic interactions. The interaction between the coarse-grained water molecules (explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. We focus on two sets of LAMMPS simulations: 1. Vesicle shape transitions with varying enclosed volume; 2. RBC shape transitions with different enclosed volume.

  1. Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes.

    PubMed

    Marianecci, Carlotta; Rinaldi, Federica; Di Marzio, Luisa; Pozzi, Daniela; Caracciolo, Giulio; Manno, Daniela; Dini, Luciana; Paolino, Donatella; Celia, Christian; Carafa, Maria

    2013-04-01

    Surfactant nanocarriers have received considerable attention in the last several years as interesting alternative to classic liposomes. Different pH-sensitive vesicular colloidal carriers based on Tween 20 derivatives, obtained after functionalization of the head groups of the surfactant with natural, or simply modified, amino acids, were proposed as drug nanocarriers. Dynamic light scattering, Small Angle X-ray Scattering, Trasmission Electron Microscopy and fluorescence studies were used for the physico-chemical characterization of vesicles and mean size, size distribution, zeta potential, vesicle morphology and bilayer properties were evaluated. The pH-sensitivity and the stability of formulations, in absence and in presence of foetal bovine serum, were also evaluated. Moreover, the contact between surfactant vesicles and liposomes designed to model the cellular membrane was investigated by fluorescence studies to preliminary explore the potential interaction between vesicle and cell membranes. Experimental findings showed that physico-chemical and technological features of pH-sensitive vesicles were influenced by the composition of the carriers. Furthermore, proposed carriers are able to interact with mimetic cell membrane and it is reasonable to attribute the observed differences in interaction to the architectural/structural properties of Tween 20 derivatives. The findings reported in this investigation showed that a deep and extensive physico-chemical characterization of the carrier is a fundamental step, according to the evidence that the knowledge of nanocarrier properties is necessary to translate its potentiality to in vitro/in vivo applications.

  2. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  3. Boric acid permeation in forward osmosis membrane processes: modeling, experiments, and implications.

    PubMed

    Jin, Xue; Tang, Chuyang Y; Gu, Yangshuo; She, Qianhong; Qi, Saren

    2011-03-15

    Forward osmosis (FO) is attracting increasing interest for its potential applications in desalination. In FO, permeation of contaminants from feed solution into draw solution through the semipermeable membrane can take place simultaneously with water diffusion. Understanding the contaminants transport through and rejection by FO membrane has significant technical implications in the way to separate clean water from the diluted draw solution. In this study, a model was developed to predict boron flux in FO operation. A strong agreement between modeling results and experimental data indicates that the model developed in this study can accurately predict the boron transport through FO membranes. Furthermore, the model can guide the fabrication of improved FO membranes with decreased boron permeability and structural parameter to minimize boron flux. Both theoretical model and experimental results demonstrated that when membrane active layer was facing draw solution, boron flux was substantially greater compared to the other membrane orientation due to more severe internal concentration polarization. In this investigation, for the first time, rejection of contaminants was defined in FO processes. This is critical to compare the membrane performance between different membranes and experimental conditions.

  4. Spike Phase Locking in CA1 Pyramidal Neurons depends on Background Conductance and Firing Rate

    PubMed Central

    Broiche, Tilman; Malerba, Paola; Dorval, Alan D.; Borisyuk, Alla; Fernandez, Fernando R.; White, John A.

    2012-01-01

    Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane-potential fluctuations in the living animal. To investigate the frequency-response characteristics of CA1 pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1 pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass profiles, and the high-conductance state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mechanistically, spike-rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in response to global changes in activity associated with different behavioral states. PMID:23055508

  5. Hemocompatibility evaluation of poly(1,8-octanediol citrate) blend polyethersulfone membranes.

    PubMed

    Zailani, Muhamad Zulhilmi; Ismail, Ahmad Fauzi; Sheikh Abdul Kadir, Siti Hamimah; Othman, Mohd Hafiz Dzarfan; Goh, Pei Sean; Hasbullah, Hasrinah; Abdullah, Mohd Sohaimi; Ng, Be Cheer; Kamal, Fatmawati

    2017-05-01

    In this study, poly (1,8-octanediol citrate) (POC) was used to modify polyethersulfone (PES)-based membrane to enhance its hemocompatibility. Different compositions of POC (0-3%) were added into the polyethersulfone (PES) dope solutions and polyvinylpyrrolidone (PVP) was used as pore forming agent. The hemocompatible POC modified PES membranes were fabricated through phase-inversion technique. The prepared membranes were characterized using attenuated total reflectance-Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Atomic-force microscopy (AFM), contact angle, Zeta-potential, membrane porosity and pore size and pure water flux (PWF) and BSA rejection. The hemocompatibility of the modified PES membranes was evaluated by human serum fibrinogen (FBG) protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT) and prothrombin time (PT), and thrombin-antithrombin III (TAT), complement (C3a and C5a) activation and Ca 2+ absorption on membrane. Results showed that by increasing POC concentration, FBG adsorption was reduced, less platelets adhesion, prolonged APTT and PT, lower TAT, C5a and C3a activation and absorb more Ca 2+ ion. These results indicated that modification of PES with POC has rendered improved hemocompatibility properties for potential application in the field of blood purification, especially in hemodialysis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1510-1520, 2017. © 2017 Wiley Periodicals, Inc.

  6. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    PubMed

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  7. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.

    PubMed

    Bui, Nhu-Ngoc; McCutcheon, Jeffrey R

    2013-02-05

    Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.

  8. Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells.

    PubMed

    Togo, Tatsuru

    2017-12-15

    Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA)- and protein kinase C (PKC)-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK) cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca 2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells. © 2017. Published by The Company of Biologists Ltd.

  9. In vitro and in vivo degradation of potential anti-adhesion materials: Electrospun membranes of poly(ester-amide) based on l-phenylalanine and p-(dioxanone).

    PubMed

    Wang, Bing; Dong, Jun; Niu, Lijing; Chen, Wenyan; Chen, Dongliang; Shen, Chengyi; Zhu, Jiang; Zhang, Xiaoming

    2017-08-01

    Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by 1 H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017. © 2016 Wiley Periodicals, Inc.

  10. Membrane Electromechanics at Hair-Cell Synapses

    NASA Astrophysics Data System (ADS)

    Brownell, W. E.; Farrell, B.; Raphael, R. M.

    2003-02-01

    Both outer hair cell electromotility and neurotransmission at the inner hair cell synapse are rapid mechanical events that are synchronized to the hair-cell receptor potential. We analyze whether the forces and potentials resulting from membrane flexoelectricity could affect synaptic vesicle fusion. The results suggest that the coupling of membrane curvature with membrane potential is of sufficient magnitude to influence neurotransmitter release.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takada, Michiya; Ban, Yoshiyuki, E-mail: yshyban@yahoo.co.jp; Yamamoto, Gou

    Research highlights: {yields} In proliferative membrane and epiretinal membrane specimens, the numbers of proteins are 225 and 154, respectively, and 123 proteins are common to both. {yields} Periostin and thrombospondin-1 proteins are unique to the proliferative membrane specimens. {yields} The expression of periostin is significantly up-regulated in proliferative membrane specimens. -- Abstract: Diabetes can lead to serious microvascular complications including proliferative diabetic retinopathy (PDR), the leading cause of blindness in adults. Recent studies using gene array technology have attempted to apply a hypothesis-generating approach to elucidate the pathogenesis of PDR, but these studies rely on mRNA differences, which may ormore » may not be related to significant biological processes. To better understand the basic mechanisms of PDR and to identify potential new biomarkers, we performed shotgun liquid chromatography (LC)/tandem mass spectrometry (MS/MS) analysis on pooled protein extracts from neovascular membranes obtained from PDR specimens and compared the results with those from non-vascular epiretinal membrane (ERM) specimens. We detected 226 distinct proteins in neovascular membranes and 154 in ERM. Among these proteins, 102 were specific to neovascular membranes and 30 were specific to ERM. We identified a candidate marker, periostin, as well as several known PDR markers such as pigment epithelium-derived factor (PEDF). We then performed RT-PCR using these markers. The expression of periostin was significantly up-regulated in proliferative membrane specimens. Periostin induces cell attachment and spreading and plays a role in cell adhesion. Proteomic analysis by LC/MS/MS, which permits accurate quantitative comparison, was useful in identifying new candidates such as periostin potentially involved in the pathogenesis of PDR.« less

  12. Do heavy ions cause microlesions in cell membranes?

    NASA Technical Reports Server (NTRS)

    Koniarek, Jan P.; Worgul, Basil V.

    1992-01-01

    The microlesion question is investigated by monitoring the electrical potential difference across the endothelium of rat corneas in vitro before, during, and after irradiation. When the corneas were exposed to 1 Gy of Fe-56 ions (450 and 600 MeV/a.m.u.), no effect was detected on this parameter. These results suggest that direct physical damage to cell membranes, as predicted by the microlesion theory, does not take place.

  13. Monitoring the Orientational Changes of Alamethicin during Incorporation into Bilayer Lipid Membranes.

    PubMed

    Forbrig, Enrico; Staffa, Jana K; Salewski, Johannes; Mroginski, Maria Andrea; Hildebrandt, Peter; Kozuch, Jacek

    2018-02-13

    Antimicrobial peptides (AMPs) are the first line of defense after contact of an infectious invader, for example, bacterium or virus, with a host and an integral part of the innate immune system of humans. Their broad spectrum of biological functions ranges from cell membrane disruption over facilitation of chemotaxis to interaction with membrane-bound or intracellular receptors, thus providing novel strategies to overcome bacterial resistances. Especially, the clarification of the mechanisms and dynamics of AMP incorporation into bacterial membranes is of high interest, and different mechanistic models are still under discussion. In this work, we studied the incorporation of the peptaibol alamethicin (ALM) into tethered bilayer lipid membranes on electrodes in combination with surface-enhanced infrared absorption (SEIRA) spectroscopy. This approach allows monitoring the spontaneous and potential-induced ion channel formation of ALM in situ. The complex incorporation kinetics revealed a multistep mechanism that points to peptide-peptide interactions prior to penetrating the membrane and adopting the transmembrane configuration. On the basis of the anisotropy of the backbone amide I and II infrared absorptions determined by density functional theory calculations, we employed a mathematical model to evaluate ALM reorientations monitored by SEIRA spectroscopy. Accordingly, ALM was found to adopt inclination angles of ca. 69°-78° and 21° in its interfacially adsorbed and transmembrane incorporated states, respectively. These orientations can be stabilized efficiently by the dipolar interaction with lipid head groups or by the application of a potential gradient. The presented potential-controlled mechanistic study suggests an N-terminal integration of ALM into membranes as monomers or parallel oligomers to form ion channels composed of parallel-oriented helices, whereas antiparallel oligomers are barred from intrusion.

  14. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Quorum Quenching Mediated Approaches for Control of Membrane Biofouling

    PubMed Central

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-01-01

    Membrane biofouling is widely acknowledged as the most frequent adverse event in wastewater treatment systems resulting in significant loss of treatment efficiency and economy. Different strategies including physical cleaning and use of antimicrobial chemicals or antibiotics have been tried for reducing membrane biofouling. Such traditional practices are aimed to eradicate biofilms or kill the bacteria involved, but the greater efficacy in membrane performance would be achieved by inhibiting biofouling without interfering with bacterial growth. As a result, the search for environmental friendly non-antibiotic antifouling strategies has received much greater attention among scientific community. The use of quorum quenching natural compounds and enzymes will be a potential approach for control of membrane biofouling. This approach has previously proven useful in diseases and membrane biofouling control by triggering the expression of desired phenotypes. In view of this, the present review is provided to give the updated information on quorum quenching compounds and elucidate the significance of quorum sensing inhibition in control of membrane biofouling. PMID:24910534

  16. Dynamic filtration and static adsorption of lead ions in aqueous solution by use of blended polysulfone membranes with nano size MCM-41 particles coated by polyaniline.

    PubMed

    Toosi, Mohammad Reza; Emami, Mohammad Reza Sarmasti; Hajian, Sudeh

    2018-05-11

    MCM-41 mesopore was prepared by hydrothermal method and used for synthesis of polyaniline/MCM-41 nanocomposite via in situ polymerization. The nanocomposite was blended with polysulfone to prepare mixed matrix membrane in different content of nanocomposite by phase inversion method. Structural and surface properties of the samples were characterized by SEM, XRD, FTIR, AFM, TGA, BET, and zeta potential measurements. Effect of the nanocomposite content on the hydrophilicity, porosity, and permeability of the membrane was determined. Membrane performance was evaluated for removal of lead ions in dynamic filtration and static adsorption. The membranes were found as effective adsorptive filters for removal of lead ions via interactions between active sites of nanocomposite in membrane structure and lead ions during filtration. Results of batch experiments proved adsorptive mechanism of membranes for removal of lead ions with the maximum adsorption capacity of 19.6 mg/g.

  17. Biogas desulfurization and biogas upgrading using a hybrid membrane system--modeling study.

    PubMed

    Makaruk, A; Miltner, M; Harasek, M

    2013-01-01

    Membrane gas permeation using glassy membranes proved to be a suitable method for biogas upgrading and natural gas substitute production on account of low energy consumption and high compactness. Glassy membranes are very effective in the separation of bulk carbon dioxide and water from a methane-containing stream. However, the content of hydrogen sulfide can be lowered only partially. This work employs process modeling based upon the finite difference method to evaluate a hybrid membrane system built of a combination of rubbery and glassy membranes. The former are responsible for the separation of hydrogen sulfide and the latter separate carbon dioxide to produce standard-conform natural gas substitute. The evaluation focuses on the most critical upgrading parameters like achievable gas purity, methane recovery and specific energy consumption. The obtained results indicate that the evaluated hybrid membrane configuration is a potentially efficient system for the biogas processing tasks that do not require high methane recoveries, and allows effective desulfurization for medium and high hydrogen sulfide concentrations without additional process steps.

  18. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating

    NASA Astrophysics Data System (ADS)

    Wang, Chongbin; Li, Zhiyuan; Chen, Jianxin; Yin, Yongheng; Wu, Hong

    2018-01-01

    Graphene oxide (GO)-based membranes possess promising potential in liquid separation for its high flux. The state-of-art GO-based membranes need to be supported by a substrate to ensure that the ultra-thin GO layer can withstand transmembrane pressure in practical applications. The interfacial compatibility of this kind of composite membrane remains a great challenge due to the intrinsic difference in chemical/physical properties between the GO sheets and the substrate. In this paper, a structurally stable GO-based composite nanofiltration membrane was fabricated by coupling the mussel-inspired adhesive platform and filtration-assisted assembly of GO laminates. The water flux for the prepared GO-based nanofiltration membrane reached up to 85 L m-2 h-1 bar-1 with a high retention above 95% and 100% for Orange G and Congo Red, respectively. The membrane exhibited highly stable structure owing to the covalent and noncovalent interactions between GO separation layer and dopamine adhesive platform.

  19. Process-Oriented Review of Bacterial Quorum Quenching for Membrane Biofouling Mitigation in Membrane Bioreactors (MBRs)

    PubMed Central

    Bouayed, Naila; Dietrich, Nicolas; Lafforgue, Christine; Lee, Chung-Hak; Guigui, Christelle

    2016-01-01

    Quorum Quenching (QQ) has been developed over the last few years to overcome practical issues related to membrane biofouling, which is currently the major difficulty thwarting the extensive development of membrane bioreactors (MBRs). QQ is the disruption of Quorum Sensing (QS), cell-to-cell communication enabling the bacteria to harmonize their behavior. The production of biofilm, which is recognized as a major part of the biocake formed on a membrane surface, and which leads to biofouling, has been found to be one of the bacterial behaviors controlled by QS. Since the enzymatic disruption of QS was reported to be efficient as a membrane biofouling mitigation technique in MBRs, the application of QQ to lab-scale MBRs has been the subject of much research using different approaches under different operating conditions. This paper gives an overview of the effectiveness of QQ in mitigating membrane biofouling in MBRs. It is based on the results of previous studies, using two microbial strains, Rhodococcus sp. BH4 and Pseudomonas sp. 1A1. The effect of bacterial QQ on the physical phenomena of the MBR process is analyzed, adopting an original multi-scale approach. Finally, the potential influence of the MBR operating conditions on QQ effectiveness is discussed. PMID:27983578

  20. The influence of the chloride gradient across red cell membranes on sodium and potassium movements

    PubMed Central

    Cotterrell, D.; Whittam, R.

    1971-01-01

    1. A study has been made to see whether active and passive movements of sodium and potassium in human red blood cells are influenced by changing the chloride gradient and hence the potential difference across the cell membrane. 2. Chloride distribution was measured between red cells and isotonic solutions with a range of concentrations of chloride and non-penetrating anions (EDTA, citrate, gluconate). The cell chloride concentration was greater than that outside with low external chloride, suggesting that the sign of the membrane potential was reversed. The chloride ratio (internal/external) was approximately equal to the inverse of the hydrogen ion ratio at normal and low external chloride, and inversely proportional to external pH. These results show that chloride is passively distributed, making it valid to calculate the membrane potential from the chloride ratio. 3. Ouabain-sensitive (pump) potassium influx and sodium efflux were decreased by not more than 20 and 40% respectively on reversing the chloride gradient, corresponding to a change in membrane potential from -9 to +30 mV. In contrast, passive (ouabain-insensitive) movements were reversibly altered — potassium influx was decreased about 60% and potassium efflux was increased some tenfold. Sodium influx was unaffected by the nature of the anion and depended only on the external sodium concentration, whereas ouabain-insensitive sodium efflux was increased about threefold. When external sodium was replaced by potassium there was a decrease in ouabain-insensitive sodium efflux with normal chloride, but an increase in low-chloride medium. 4. Net movements of sodium and potassium were roughly in accord with the unidirectional fluxes. 5. The results suggest that reversing the chloride gradient and, therefore, the sign of the membrane potential, had little effect on the sodium pump, but caused a marked increase in passive outward movements of both sodium and potassium ions. PMID:4996368

  1. Mitochondrial decay in hepatocytes from old rats: Membrane potential declines, heterogeneity and oxidants increase

    PubMed Central

    Hagen, Tory M.; Yowe, David L.; Bartholomew, James C.; Wehr, Carol M.; Do, Katherine L.; Park, Jin-Y.; Ames, Bruce N.

    1997-01-01

    Mitochondrial function during aging was assessed in isolated rat hepatocytes to avoid the problem of differential lysis when old, fragile mitochondria are isolated. Rhodamine 123, a fluorescent dye that accumulates in mitochondria on the basis of their membrane potential, was used as a probe to determine whether this key function is affected by aging. A marked fluorescent heterogeneity was observed in hepatocytes from old (20–28 months) but not young (3–5 months) rats, suggesting age-associated alterations in mitochondrial membrane potential, the driving force for ATP synthesis. Three distinct cell subpopulations were separated by centrifugal elutriation; each exhibited a unique rhodamine 123 fluorescence pattern, with the largest population from old rats having significantly lower fluorescence than that seen in young rats. This apparent age-associated alteration in mitochondrial membrane potential was confirmed by measurements with radioactive tetraphenylphosphonium bromide. Cells from young rats had a calculated membrane potential of −154 mV, in contrast to that of the three subpopulations from old rats of −70 mV (the largest population), −93 mV, and −154 mV. Production of oxidants was examined using 2′,7′dichlorofluorescin, a dye that forms a fluorescent product upon oxidation. The largest cell subpopulation and a minor one from old animals produced significantly more oxidants than cells from young rats. To investigate the molecular cause(s) for the heterogeneity, we determined the levels of an age-associated mtDNA deletion. No significant differences were seen in the three subpopulations, indicating that the mitochondrial decay is due to other mutations, epigenetic changes, or both. PMID:9096346

  2. Metabolomic profiles delineate the potential role of glycine in gold nanorod-induced disruption of mitochondria and blood-testis barrier factors in TM-4 cells

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Chen, Minjian; Ji, Xiaoli; Mao, Zhilei; Zhang, Xuemei; Wang, Xinru; Xia, Yankai

    2014-06-01

    Gold nanorods (GNRs) are commonly used nanomaterials with potential harmful effects on male reproduction. However, the mechanism by which GNRs affect male reproduction remains largely undetermined. In this study, the metabolic changes in spermatocyte-derived cells GC-2 and Sertoli cell line TM-4 were analyzed after GNR treatment for 24 h. Metabolomic analysis revealed that glycine was highly decreased in TM-4 cells after GNR-10 nM treatment while there was no significant change in GC-2 cells. RT-PCR showed that the mRNA levels of glycine synthases in the mitochondrial pathway decreased after GNR treatment, while there was no significant difference in mRNA levels of glycine synthases in the cytoplasmic pathway. High content screening (HCS) showed that GNRs decreased membrane permeability and mitochondrial membrane potential of TM-4 cells, which was also confirmed by JC-1 staining. In addition, RT-PCR and Western blot indicated that the mRNA and protein levels of blood-testis barrier (BTB) factors (ZO-1, occludin, claudin-5, and connexin-43) in TM-4 cells were also disrupted by GNRs. After glycine was added into the medium, the GNR-induced harmful effects on mitochondria and BTB factors were recovered in TM-4 cells. Our results showed that even low doses of GNRs could induce significant toxic effects on mitochondria and BTB factors in TM-4 cells. Furthermore, we revealed that glycine was a potentially important metabolic intermediary for the changes of membrane permeability, mitochondrial membrane potential and BTB factors after GNR treatment in TM-4 cells.Gold nanorods (GNRs) are commonly used nanomaterials with potential harmful effects on male reproduction. However, the mechanism by which GNRs affect male reproduction remains largely undetermined. In this study, the metabolic changes in spermatocyte-derived cells GC-2 and Sertoli cell line TM-4 were analyzed after GNR treatment for 24 h. Metabolomic analysis revealed that glycine was highly decreased in TM-4 cells after GNR-10 nM treatment while there was no significant change in GC-2 cells. RT-PCR showed that the mRNA levels of glycine synthases in the mitochondrial pathway decreased after GNR treatment, while there was no significant difference in mRNA levels of glycine synthases in the cytoplasmic pathway. High content screening (HCS) showed that GNRs decreased membrane permeability and mitochondrial membrane potential of TM-4 cells, which was also confirmed by JC-1 staining. In addition, RT-PCR and Western blot indicated that the mRNA and protein levels of blood-testis barrier (BTB) factors (ZO-1, occludin, claudin-5, and connexin-43) in TM-4 cells were also disrupted by GNRs. After glycine was added into the medium, the GNR-induced harmful effects on mitochondria and BTB factors were recovered in TM-4 cells. Our results showed that even low doses of GNRs could induce significant toxic effects on mitochondria and BTB factors in TM-4 cells. Furthermore, we revealed that glycine was a potentially important metabolic intermediary for the changes of membrane permeability, mitochondrial membrane potential and BTB factors after GNR treatment in TM-4 cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01035c

  3. Mitochondrial Targeted Coenzyme Q, Superoxide, and Fuel Selectivity in Endothelial Cells

    PubMed Central

    Fink, Brian D.; O'Malley, Yunxia; Dake, Brian L.; Ross, Nicolette C.; Prisinzano, Thomas E.; Sivitz, William I.

    2009-01-01

    Background Previously, we reported that the “antioxidant” compound “mitoQ” (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. Methods and Results To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. Conclusions In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level. PMID:19158951

  4. Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells.

    PubMed

    Fink, Brian D; O'Malley, Yunxia; Dake, Brian L; Ross, Nicolette C; Prisinzano, Thomas E; Sivitz, William I

    2009-01-01

    Previously, we reported that the "antioxidant" compound "mitoQ" (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level.

  5. Relationship between the Amount of Bitter Substances Adsorbed onto Lipid/Polymer Membrane and the Electric Response of Taste Sensors

    PubMed Central

    Toko, Kiyoshi; Hara, Daichi; Tahara, Yusuke; Yasuura, Masato; Ikezaki, Hidekazu

    2014-01-01

    The bitterness of bitter substances can be measured by the change in the membrane electric potential caused by adsorption (CPA) using a taste sensor (electronic tongue). In this study, we examined the relationship between the CPA value due to an acidic bitter substance and the amount of the bitter substance adsorbed onto lipid/polymer membranes, which contain different lipid contents, used in the taste sensor. We used iso-α-acid which is an acidic bitter substance found in several foods and beverages. The amount of adsorbed iso-α-acid, which was determined by spectroscopy, showed a maximum at the lipid concentration 0.1 wt % of the membrane, and the same phenomenon was observed for the CPA value. At the higher lipid concentration, however, the amount adsorbed decreased and then remained constant, while the CPA value decreased monotonically to zero. This constant adsorption amount was observed when the membrane potential in the reference solution did not change with increasing lipid concentration. The decrease in CPA value in spite of the constant adsorption amount is caused by a decrease in the sensitivity of the membrane as the surface charge density increases. The reason why the peaks appeared in both the CPA value and adsorption amount is based on the contradictory adsorption properties of iso-α-acid. The increasing charged lipid concentration of the membrane causes an increasing electrostatic attractive interaction between iso-α-acid and the membrane, but simultaneously causes a decreasing hydrophobic interaction that results in decreasing adsorption of iso-α-acid, which also has hydrophobic properties, onto the membrane. Estimates of the amount of adsorption suggest that iso-α-acid molecules are adsorbed onto both the surface and interior of the membrane. PMID:25184491

  6. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Healy, Anne Marie; Cabral, Lucio Mendes; de Sousa, Valeria Pereira

    2016-10-15

    In the present study, in vitro permeation experiments in a Franz diffusion cell were performed using different synthetic polymeric membranes and pig ear skin to evaluate a rivastigmine (RV) transdermal drug delivery system. In vitro-in vivo correlations (IVIVC) were examined to determine the best model membrane. In vitro permeation studies across different synthetic membranes and skin were performed for the Exelon(®) Patch (which contains RV), and the results were compared. Deconvolution of bioavailability data using the Wagner-Nelson method enabled the fraction of RV absorbed to be determined and a point-to-point IVIVC to be established. The synthetic membrane, Strat-M™, showed a RV permeation profile similar to that obtained with pig ear skin (R(2)=0.920). Studies with Strat-M™ resulted in a good and linear IVIVC (R(2)=0.991) when compared with other synthetic membranes that showed R(2) values less than 0.90. The R(2) for pig ear skin was 0.982. Strat-M™ membrane was the only synthetic membrane that adequately simulated skin barrier performance and therefore it can be considered to be a suitable alternative to human or animal skin in evaluating transdermal drug transport, potentially reducing the number of studies requiring human or animal samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of the Membrane Proteome of Virulent Mycobacterium tuberculosis and the Attenuated Mycobacterium bovis BCG Vaccine Strain by Label-free Quantitative Proteomics

    PubMed Central

    Gunawardena, Harsha P.; Feltcher, Meghan E.; Wrobel, John A.; Gu, Sheng; Braunstein, Miriam; Chen, Xian

    2015-01-01

    The Mycobacterium tuberculosis (MTB) membrane is rich in antigens that are potential targets for diagnostics and the development of new vaccines. To better understand the mechanisms underlying MTB virulence and identify new targets for therapeutic intervention we investigated the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv (MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, we used LC-MS/MS analysis in combination with label-free quantitative (LFQ) proteomics, utilizing the area-under-curve (AUC) of the extracted ion chromatograms (XIC) of peptides obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained relative abundance ratios for 2,203 identified membrane-associated proteins in high confidence. Of these proteins, 294 showed statistically significant differences of at least 2 fold, in relative abundance between MTB and BCG membrane fractions. Our comparative analysis detected several proteins associated with known genomic regions of difference between MTB and BCG as being absent, which validated the accuracy of our approach. In further support of our label-free quantitative data, we verified select protein differences by immunoblotting. To our knowledge we have generated the first comprehensive and high coverage profile of comparative membrane proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate the proteomic basis of the intrinsic virulence of the MTB pathogen. PMID:24093440

  8. Preparation, characterization, physical testing and performance of fluorocarbon membranes and separators

    NASA Technical Reports Server (NTRS)

    Lagow, R. J.; Dumitru, E. T.

    1982-01-01

    The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. These membranes were successfully fluorinated and are potentially competitive with commercial membranes in performance, and potentially much cheaper in price.

  9. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    DTIC Science & Technology

    2013-06-25

    membranes (AEMs) are being developed for potential use in fuel cell systems which include portable power applications. In a fuel cell , these membranes...Alkaline Anion Exchange Membranes Report Title ABSTRACT Anion exchange membranes (AEMs) are being developed for potential use in fuel cell systems which...include portable power applications. In a fuel cell , these membranes transport hydroxide ions from the cathode to the anode. If carbon dioxide is

  10. Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change.

    PubMed Central

    Nishiyama, A; Petersen, O H

    1975-01-01

    1. Intracellular recordings of membrane potential, input resistance and time constant have been made in vitro from the exocrine acinar cells of the mouse pancreas using glass micro-electrodes. The acinar cells were stimulated by acetylcholine (ACh). In some cases ACh was simply directly added to the tissue superfusion bath, in other experiments ACh was applied locally to pancreatic acini by micro-iontophoresis. 2. Current-voltage relations were investigated by injecting rectangular de- or hyperpolarizing current pulses through the recording micro-electrode. Within a relatively wide range (-20 to -70 mV) there was a linear relation between injected current and change in membrane potential. The slope of such linear curves corresponded to an input resistance of about 3-8 M omega. The membrane time constant was about 5-10 msec. 3. ACh depolarized the cell membrane and caused a marked reduction of input resistance and time constant. The minimum latency of the ACh-induced depolarization (microiontophoretic application) was 100-300 msec. Maximal depolarization was about 20 mV. The effect of this local ACh application was abolished by atropine (1-4 x 10-6 M). The blocking effect of atropine was fully reversible. 4. Stimulating with ACh during the passage of large depolarizing current pulses made it possible simultaneously to observe the effect of ACh at two different levels of resting potential (RP). At the spontaneous RP of about minus 40 mV ACh evoked a depolarization of usual magnitude (15-20 mV) while at the artificially displaced level of about -10 mV a small hyperpolarization (about 5 mV) was observed. It therefore appears that the reversal potential of the transmitter equilibrium potential is about -20 mV. 5. Replacement of the superfusion fluid C1 by sulphate or methylsulphate caused an initial short-lasting depolarization, thereafter the normal resting potential was reassumed... PMID:1142124

  11. Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells.

    PubMed

    Yao, Junlan; McHedlishvili, David; McIntire, William E; Guagliardo, Nick A; Erisir, Alev; Coburn, Craig A; Santarelli, Vincent P; Bayliss, Douglas A; Barrett, Paula Q

    2017-08-01

    Ca 2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca 2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K + channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K + channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells. © 2017 American Heart Association, Inc.

  12. Some effects of chemical irritants on the membrane of the giant amoeba.

    PubMed Central

    Foster, R. W.; Weston, A. H.; Weston, K. M.

    1981-01-01

    1 The effects of chemical irritants on the membrane potential and input resistance of the giant amoeba, Chaos carolinense, have been investigated. The membrane potential and input resistance were -111.5 mV and 8.6 M pi respectively. 2 In the resting state the cell membrane of Chaos carolinense was found to be impermeable to Na+ but permeable to K+. The distribution of K+ across the cell membrane conformed to a Donnan equilibrium with the resting membrane potential being the K+ equilibrium potential. 3 The chemical irritants dibenzoxazepine and its 2-chloro- and 3-chloro-analogues and o-chlorobenzylidene malononitrile produced a fall in input resistance but no change in membrane potential. It is suggested that these effects are caused by an increase in K+ permeability. 4 The potencies of a series of chemical irritants with respect to dibenzoxazepine were measured on the giant amoeba. These potencies did not reflect those found in mammalian preparations. PMID:6797494

  13. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery.

    PubMed

    Tsopelas, Fotios; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2016-01-01

    The development of immobilized artificial membrane (IAM) chromatography has unfolded new perspectives for the use of chromatographic techniques in drug discovery, combining simulation of the environment of cell membranes with rapid measurements. The present review describes the characteristics of phosphatidylcholine-based stationary phases and analyses the molecular factors governing IAM retention in comparison to n-octanol-water and liposomes partitioning systems as well as to reversed phase chromatography. Other biomimetic stationary phases are also briefly discussed. The potential of IAM chromatography to model permeability through the main physiological barriers and drug membrane interactions is outlined. Further applications to calculate complex pharmacokinetic properties, related to tissue binding, and to screen drug candidates for phospholipidosis, as well as to estimate cell accumulation/retention are surveyed. The ambivalent nature of IAM chromatography, as a border case between passive diffusion and binding, defines its multiple potential applications. However, despite its successful performance in many permeability and drug-membrane interactions studies, IAM chromatography is still used as a supportive and not a stand-alone technique. Further studies looking at IAM chromatography in different biological processes are still required if this technique is to have a more focused and consistent application in drug discovery.

  14. Quantifying the Relationship between Curvature and Electric Potential in Lipid Bilayers.

    PubMed

    Bruhn, Dennis S; Lomholt, Michael A; Khandelia, Himanshu

    2016-06-02

    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that headgroup dipole moments, the lateral pressure profile across the bilayer, and spontaneous curvature all systematically change with increasing membrane potentials. In particular, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curvatures corresponding to radii of around 500 nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.

  15. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review.

    PubMed

    Zazouli, Mohammad Ali; Kalankesh, Laleh R

    2017-01-01

    Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.

  16. Lysosomal Physiology

    PubMed Central

    Xu, Haoxing; Ren, Dejian

    2015-01-01

    Lysosomes are acidic compartments filled with more than 60 different types of hydrolases. They mediate the degradation of extracellular particles from endocytosis and of intracellular components from autophagy. The digested products are transported out of the lysosome via specific catabolite exporters or via vesicular membrane trafficking. Lysosomes also contain more than 50 membrane proteins and are equipped with the machinery to sense nutrient availability, which determines the distribution, number, size, and activity of lysosomes to control the specificity of cargo flux and timing (the initiation and termination) of degradation. Defects in degradation, export, or trafficking result in lysosomal dysfunction and lysosomal storage diseases (LSDs). Lysosomal channels and transporters mediate ion flux across perimeter membranes to regulate lysosomal ion homeostasis, membrane potential, catabolite export, membrane trafficking, and nutrient sensing. Dysregulation of lysosomal channels underlies the pathogenesis of many LSDs and possibly that of metabolic and common neurodegenerative diseases. PMID:25668017

  17. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris

    PubMed Central

    Mayhead, Elyssia; Llewellyn, Carole A.; Fuentes-Grünewald, Claudio

    2018-01-01

    The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N) and 97.69% ortho-phosphate (PO4-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent. PMID:29351200

  18. Potentialities of a membrane reactor with laccase grafted membranes for the enzymatic degradation of phenolic compounds in water.

    PubMed

    Chea, Vorleak; Paolucci-Jeanjean, Delphine; Sanchez, José; Belleville, Marie-Pierre

    2014-10-06

    This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR). The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP) was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP) to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L-1), consumption increased with flux (up to 7.9 × 103 mg·h-1·m-2 at 128 L·h-1·m-2), whereas at the highest substrate concentration (500 mg·L-1), it was shown that the reaction was limited by the oxygen content.

  19. Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water

    PubMed Central

    Chea, Vorleak; Paolucci-Jeanjean, Delphine; Sanchez, José; Belleville, Marie-Pierre

    2014-01-01

    This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR). The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP) was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP) to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1), consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2), whereas at the highest substrate concentration (500 mg·L−1), it was shown that the reaction was limited by the oxygen content. PMID:25295628

  20. Sodium and potassium conductance changes during a membrane action potential

    PubMed Central

    Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.

    1970-01-01

    1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  1. Separation of Biologically Active Compounds by Membrane Operations.

    PubMed

    Zhu, Xiaoying; Bai, Renbi

    2017-01-01

    Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The "cold" separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS

    NASA Astrophysics Data System (ADS)

    Fu, S.-P.; Peng, Z.; Yuan, H.; Kfoury, R.; Young, Y.-N.

    2017-01-01

    Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics simulations. Numerical efficiencies have been reported in the cases of aggressive coarse-graining, where several lipids are coarse-grained into a particle of size 4 ∼ 6 nm so that there is only one particle in the thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained lipid particles to capture the mechanical properties of a lipid bilayer membrane, such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity Yuan et al. (2010). In this work we implement such an interaction potential in LAMMPS to simulate large-scale lipid systems such as a giant unilamellar vesicle (GUV) and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid membrane dynamics as a model for RBC dynamics, and incorporate coarse-grained water molecules to account for hydrodynamic interactions. The interaction between the coarse-grained water molecules (explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. To demonstrate that the proposed methods do capture the observed dynamics of vesicles and RBCs, we focus on two sets of LAMMPS simulations: 1. Vesicle shape transitions with enclosed volume; 2. RBC shape transitions with different enclosed volume. Finally utilizing the parallel computing capability in LAMMPS, we provide some timing results for parallel coarse-grained simulations to illustrate that it is possible to use LAMMPS to simulate large-scale realistic complex biological membranes for more than 1 ms.

  3. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  4. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization.

    PubMed

    Zhu, Lijing; Song, Haiming; Zhang, Dawei; Wang, Gang; Zeng, Zhixiang; Xue, Qunji

    2017-07-15

    Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  6. Estimation of the membrane potential of cultured macrophages from the fast potential transient upon microelectrode entry

    PubMed Central

    Ince, C; Ypey, DL; Van Furth, R; Verveen, AA

    1983-01-01

    Analysis of membrane potential recordings upon microelectrode impalement of four types of macrophages (cell lines P388D1 and PU5-1.8, cultured mouse peritoneal macrophages, and cultured human monocytes) reveals that these cells have membrane potentials at least two times more negative than sustained potential values (E(s)) frequently reported. Upon microelectrode entry into the cell (P388D1), the recorded potential drops to a peak value (E(p)) (mean -37 mV for 50 cells, range -15 to -70 mV) within 2 ms, after which it decays to a depolarized potential (E(n)) (mean -12 mV) in about 20 ms. Thereafter, the membrane develops one or a series of slow hyperpolarizations before a final sustained membrane potential (E(s)) (mean -14 mV, range -5 to -40) is established. The mean value of the peak of the first hyperpolarization (E(h)) is -30 mV (range -10 to -55 mV). The initial fast peak transient, measured upon microelectrode entry, was first described and analyzed by Lassen et al. (Lassen, U.V., A.M. T. Nielson, L. Pape, and L. O. Simonsen, 1971, J. Membr. Biol. 6:269-288 for other change in the membrane potential from its real value before impalement to a sustained depolarized value. This was shown to be true for macrophages by two-electrode impalements of single cells. Values of E(p), E(n), E(h), E(s), and membrane resistance (R(m)) measured for the other macrophages were similar to those of P388D1. From these results we conclude that E(p) is a better estimate of the true membrane potential of macrophages than E(s), and that the slow hyperpolarizations upon impalement should be regarded as transient repolarizations back to the original membrane potentials. Thus, analysis of the initial fast impalement transient can be a valuable aid in the estimation of the membrane potential of various sorts of small isolated cells by microelectrodes. PMID:6833384

  7. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.

    PubMed Central

    Andersen, O S; Feldberg, S; Nakadomari, H; Levy, S; McLaughlin, S

    1978-01-01

    We have shown that the absorption of tetraphenylborate into black lipid membranes formed from either bacterial phosphatidylethanolamine or glycerolmonooleate produces concentration-dependent changes in the electrostatic potential between the membrane interior and the bulk aqueous phases. These potential changes were studied by a variety of techniques: voltage clamp, charge pulse, and "probe" measurements on black lipid membranes; electrophroetic mobility measurements on phospholipid vesicles; and surface potential measurements on phospholipid monolayers. The magnitude of the potential changes indicates that tetraphenylborate absorbs into a region of the membrane with a low dielectric constant, where it produces substantial boundary potentials, as first suggested by Markin et al. (1971). Many features of our data can be explained by a simple three-capacitor model, which we develop in a self-consistent manner. Some discrepancies between our data and the simple model suggest that discrete charge phenomena may be important within these thin membranes. PMID:620077

  8. Ion channels to inactivate neurons in Drosophila.

    PubMed

    Hodge, James J L

    2009-01-01

    Ion channels are the determinants of excitability; therefore, manipulation of their levels and properties provides an opportunity for the investigator to modulate neuronal and circuit function. There are a number of ways to suppress electrical activity in Drosophila neurons, for instance, over-expression of potassium channels (i.e. Shaker Kv1, Shaw Kv3, Kir2.1 and DORK) that are open at resting membrane potential. This will result in increased potassium efflux and membrane hyperpolarisation setting resting membrane potential below the threshold required to fire action potentials. Alternatively over-expression of other channels, pumps or co-transporters that result in a hyperpolarised membrane potential will also prevent firing. Lastly, neurons can be inactivated by, disrupting or reducing the level of functional voltage-gated sodium (Nav1 paralytic) or calcium (Cav2 cacophony) channels that mediate the depolarisation phase of action potentials. Similarly, strategies involving the opposite channel manipulation should allow net depolarisation and hyperexcitation in a given neuron. These changes in ion channel expression can be brought about by the versatile transgenic (i.e. Gal4/UAS based) systems available in Drosophila allowing fine temporal and spatial control of (channel) transgene expression. These systems are making it possible to electrically inactivate (or hyperexcite) any neuron or neural circuit in the fly brain, and much like an exquisite lesion experiment, potentially elucidate whatever interesting behaviour or phenotype each network mediates. These techniques are now being used in Drosophila to reprogram electrical activity of well-defined circuits and bring about robust and easily quantifiable changes in behaviour, allowing different models and hypotheses to be rapidly tested.

  9. Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration

    PubMed Central

    Platkiewicz, Jonathan; Brette, Romain

    2011-01-01

    Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration. PMID:21573200

  10. Microbial Attachment Inhibition through Low-Voltage Electrochemical Reactions on Electrically Conducting Membranes.

    PubMed

    Ronen, Avner; Duan, Wenyan; Wheeldon, Ian; Walker, Sharon; Jassby, David

    2015-11-03

    Bacterial biofilm formation on membrane surfaces remains a serious challenge in water treatment systems. The impact of low voltages on microbial attachment to electrically conducting ultrafiltration membranes was investigated using a direct observation cross-flow membrane system mounted on a fluorescence microscope. Escherichia coli and microparticle deposition and detachment rates were measured as a function of the applied electrical potential to the membrane surface. Selecting bacteria and particles with low surface charge minimized electrostatic interactions between the bacteria and charged membrane surface. Application of an electrical potential had a significant impact on the detachment of live bacteria in comparison to dead bacteria and particles. Image analysis indicated that when a potential of 1.5 V was applied to the membrane/counter electrode pair, the percent of dead bacteria was 32±2.1 and 67±3.6% when the membrane was used as a cathode or anode, respectively, while at a potential of 1 V, 92±2.4% were alive. The application of low electrical potentials resulted in the production of low (μM) concentrations of hydrogen peroxide (HP) through the electroreduction of oxygen. The electrochemically produced HP reduced microbial cell viability and increased cellular permeability. Exposure to low concentrations of electrochemically produced HP on the membrane surface prevents bacterial attachment, thus ensuring biofilm-free conditions during membrane filtration operations.

  11. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin

    PubMed Central

    2011-01-01

    Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. Conclusions In this study, we utilized LC-MS/MS in combination with blue native PAGE to characterize modular components of multiprotein complexes in BCG membrane fractions. The results demonstrated that the proteomic strategy was a reliable and reproducible tool for analysis of BCG multiprotein complexes. The identification in our study may provide some evidence for further study of BCG protein interaction. PMID:21241518

  12. Estimation of the electric plasma membrane potential difference in yeast with fluorescent dyes: comparative study of methods.

    PubMed

    Peña, Antonio; Sánchez, Norma Silvia; Calahorra, Martha

    2010-10-01

    Different methods to estimate the plasma membrane potential difference (PMP) of yeast cells with fluorescent monitors were compared. The validity of the methods was tested by the fluorescence difference with or without glucose, and its decrease by the addition of 10 mM KCl. Low CaCl₂ concentrations avoid binding of the dye to the cell surface, and low CCCP concentrations avoid its accumulation by mitochondria. Lower concentrations of Ba²+ produce a similar effect as Ca²+, without producing the fluorescence changes derived from its transport. Fluorescence changes without considering binding of the dyes to the cells and accumulation by mitochondria are overshadowed by their distribution between this organelle and the cytoplasm. Other factors, such as yeast starvation, dye used, parameters of the fluorescence changes, as well as buffers and incubation times were analyzed. An additional approach to measure the actual or relative values of PMP, determining the accumulation of the dye, is presented.

  13. Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle.

    PubMed

    Fraser, James A; Huang, Christopher L-H; Pedersen, Thomas H

    2011-07-01

    Activation of skeletal muscle fibers requires rapid sarcolemmal action potential (AP) conduction to ensure uniform excitation along the fiber length, as well as successful tubular excitation to initiate excitation-contraction coupling. In our companion paper in this issue, Pedersen et al. (2011. J. Gen. Physiol. doi:10.1085/jgp.201010510) quantify, for subthreshold stimuli, the influence upon both surface conduction velocity and tubular (t)-system excitation of the large changes in resting membrane conductance (G(M)) that occur during repetitive AP firing. The present work extends the analysis by developing a multi-compartment modification of the charge-difference model of Fraser and Huang to provide a quantitative description of the conduction velocity of actively propagated APs; the influence of voltage-gated ion channels within the t-system; the influence of t-system APs on ionic homeostasis within the t-system; the influence of t-system ion concentration changes on membrane potentials; and the influence of Phase I and Phase II G(M) changes on these relationships. Passive conduction properties of the novel model agreed with established linear circuit analysis and previous experimental results, while key simulations of AP firing were tested against focused experimental microelectrode measurements of membrane potential. This study thereby first quantified the effects of the t-system luminal resistance and voltage-gated Na(+) channel density on surface AP propagation and the resultant electrical response of the t-system. Second, it demonstrated the influence of G(M) changes during repetitive AP firing upon surface and t-system excitability. Third, it showed that significant K(+) accumulation occurs within the t-system during repetitive AP firing and produces a baseline depolarization of the surface membrane potential. Finally, it indicated that G(M) changes during repetitive AP firing significantly influence both t-system K(+) accumulation and its influence on the resting membrane potential. Thus, the present study emerges with a quantitative description of the changes in membrane potential, excitability, and t-system ionic homeostasis that occur during repetitive AP firing in skeletal muscle.

  14. Lipid composition affects the rate of photosensitized dissipation of cross-membrane diffusion potential on liposomes

    PubMed Central

    Ytzhak, Shany; Wuskell, Joseph P.; Loew, Leslie M.; Ehrenberg, Benjamin

    2010-01-01

    Hydrophobic or amphiphilic tetrapyrrole sensitizers are taken up by cells and are usually located in cellular lipid membranes. Singlet oxygen is photogenerated by the sensitizer and it diffuses in the membrane and causes oxidative damage to membrane components. This damage can occur to membrane lipids and to membrane-localized proteins. Depolarization of the Nernst electric potential on cells’ membranes has been observed in cellular photosensitization, but it was not established whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells’ membranes and to their death. In this work we studied the effect of liposomes’ lipid composition on the kinetics of hematoporphyrin-photosensitized dissipation of K+-diffusion electric potential that was generated across the membranes. We employed an electrochromic voltage-sensitive spectroscopic probe that possesses a high fluorescence signal response to the potential. We found a correlation between the structure and unsaturation of lipids and the leakage of the membrane, following photosensitization. As the extent of non-conjugated unsaturation of the lipids is increased from 1 to 6 double bonds, the kinetics of depolarization become faster. We also found that the kinetics of depolarization is affected by the percentage of the unsaturated lipids in the liposome: as the fraction of the unsaturated lipids increases the leakage trough the membrane is enhanced. When liposomes are composed of a lipid mixture similar to that of natural membranes and photosensitization is being carried out under usual photodynamic therapy (PDT) conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which would have been a mechanism that leads to cell death. PMID:20536150

  15. Removal of micropollutants from Sakarya River water by ozone and membrane processes.

    PubMed

    Yaman, Fatma Büşra; Çakmakcı, Mehmet; Yüksel, Ebubekir; Özen, İsmail; Gengeç, Erhan

    2017-09-01

    The removal of some pollutants in the Sakarya River was investigated in this study. Sakarya River located in Turkey flows from the northeast of Afyonkarahisar City to the Black Sea. Nineteen different micropollutants including trihalomethanes (THMs), haloacetic acids (HAAs), endocrine disrupting compound (EDC) and pharmaceuticals personal care product (PPCP) groups, and water quality parameters such as dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV 254 ), hardness, and conductivity values were examined. To remove the micropollutants and improve the water quality, the treatment was performed with ozone, microfiltration (MF), and ultra-filtration (UF) membranes. The highest treatment efficiency was obtained with 1 mg/L ozone dosage and UP005 UF membrane. The trihalomethan formation potential (THMFP) and haloacetic acid formation potential (HAAFP) decreased with ozone + membrane at a concentration of 79 and 75%, respectively. After the treatment with ozone + membrane, the concentration of the micropollutants in the EDC and PPCP group remained below the detection limit. It was found that by using only membrane and only ozone, the maximum DOC removal efficiency achieved was 46 and 18%, respectively; and with ozone + membrane, this efficiency increased up to 82%. The results from the High-Pressure Size Exclusion Chromatography (HPSEC) analyses pointed that the substances with high molecular weight were converted into substances with low molecular weight after the treatment. The Fourier Transform Infrared (FTIR) analysis results showed that the aromatic and aliphatic functional groups in water changed after the treatment with ozone and that the peak values decreased more after the ozone + membrane treatment.

  16. Development of terahertz otoscope for diagnosing otitis media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jeon, Tae-In; Ji, Young Bin; Bark, Hyeon Sang; Noh, Sam Kyu; Oh, Seung Jae

    2017-03-01

    A novel terahertz (THz) otoscope is designed and fabricated to help physicians to diagnose otitis media (OM) with both THz diagnostics and conventional optical diagnostics. The inclusion of indium tin oxide (ITO) glass in the THz otoscope allows physicians to diagnose OM with both THz and conventional optical diagnostics. To determine THz diagnostics for OM, we observed reflection signals from samples behind a thin dielectric film and found that the presence of water behind the membrane could be distinguished based on THz pulse shape. We verified the potential of this tool for diagnosing OM using mouse skin tissue and a human tympanic membrane samples prior to clinical application. The presence of water absorbed by the human membrane was easily distinguished based on differences in pulse shapes and peak-to-peak amplitudes of reflected THz pulses. The potential for early OM diagnosis using the THz otoscope was confirmed by alteration of THz pulse depending on water absorption level.

  17. Membrane fouling in a submerged membrane bioreactor with focus on surface properties and interactions of cake sludge and bulk sludge.

    PubMed

    Yu, Haiying; Lin, Hongjun; Zhang, Meijia; Hong, Huachang; He, Yiming; Wang, Fangyuan; Zhao, Leihong

    2014-10-01

    In this study, the fouling behaviors and surface properties of cake sludge and bulk sludge in a submerged membrane bioreactor (MBR) were investigated and compared. It was found that the specific filtration resistance (SFR) of cake sludge was about 5 times higher than that of bulk sludge. Two types of sludge possessed similar extracellular polymeric substances (EPS) content, particle size distribution (PSD) and zeta potential. However, their surface properties in terms of surface tensions were significantly different. Further analysis showed that cake sludge was more hydrophilic and had worse aggregation ability. Moreover, cake sludge surface possessed more hydrocarbon, less oxygen and nitrogen moieties than bulk sludge surface. It was suggested that, rather than EPS and PSD differences, the differences in the surface composition were the main cause of the great differences in SFR and adhesion ability between cake sludge and bulk sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Atomic force microscope-related study membrane-associated cytotoxicity in human pterygium fibroblasts induced by mitomycin C.

    PubMed

    Cai, Xiaofang; Yang, Xiaoxi; Cai, Jiye; Wu, Shixian; Chen, Qian

    2010-03-25

    Mitomycin C (MMC) has been shown to have a therapeutic effect against human pterygium fibroblasts (HPFs) by inducing apoptosis. However, there is little data about the effect of it on plasma membrane. In the present study, the cytotoxicity of MMC to HPFs including inhibiting cell growth, inducing apoptosis and bringing about membrane toxicity was investigated. It was found that MMC could significantly suppress the proliferation of HPFs in a dose-dependent manner by CCK-8 assay. Flow cytometric analysis also revealed that treatment with MMC resulted in increased percentages of apoptotic cells in a dose-dependent manner. Membrane lipid peroxidation level, lactate dehydrogenase (LDH) leakage, membrane surface topography, and membrane rigidity alterations were investigated to assess the membrane toxicity induced by MMC. Treatment with MMC at different concentrations accelerated membrane lipid peroxidation and potentiated LDH leakage, which was consistent with disturbance of membrane surface and decrease of membrane elasticity detected by atomic force microscopy. All the above changes led to the disturbed intracellular Ca(2+) homeostasis, which was an important signal triggering apoptosis. Hence, the membrane toxicity induced by MMC might play an important role in the process of apoptotic induction and the calcium channel may be one of the apoptosis mechanisms.

  19. Immobilized biocatalytic process development and potential application in membrane separation: a review.

    PubMed

    Chakraborty, Sudip; Rusli, Handajaya; Nath, Arijit; Sikder, Jaya; Bhattacharjee, Chiranjib; Curcio, Stefano; Drioli, Enrico

    2016-01-01

    Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.

  20. On the self-association potential of transmembrane tight junction proteins.

    PubMed

    Blasig, I E; Winkler, L; Lassowski, B; Mueller, S L; Zuleger, N; Krause, E; Krause, G; Gast, K; Kolbe, M; Piontek, J

    2006-02-01

    Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported.

  1. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and then, using a sonication process, a uniform lipid bilayer that supports the incorporation of membrane proteins is formed. These bilayer-coated carbon nanotubes are highly dispersible and stable in aqueous solution, and they can be used in development of various biosensors and energy producing devices. In the other hybrid nanostructure, the lipid bilayer of a liposome is covalently anchored to a biocompatible poly(ethylene) glycol (PEG) hydrogel core using double-stranded DNA (dsDNA) linkers. Release studies shows that nano-size hydrogel-anchored liposomes are exceptionally stable, and they can be used as biomimetic model membranes that mimic the connectivity between the cytoskeleton and the plasma membrane. After lipid bilayer removal, dsDNA linkers can provide programmable nanogels decorated with oligonucleotides with potential sites for further molecular assembly. These stable nanostructures can be useful for oligonucleotide and drug delivery applications. The developed hydrogel-anchored liposomes are exploited for encapsulation and intracellular delivery of therapeutic peptide. Peptides with anti-cancer properties are successfully encapsulated in hydrogel core of pH-sensitive liposomes during rehydration process. Liposomes release their cargo at acidic pH. Confocal microscopy confirms the intracellular delivery of liposomes through an endocytotic pathway.

  2. Probing lipid membrane electrostatics

    NASA Astrophysics Data System (ADS)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by <2%. One important application of this technique is to estimate the dipole density of lipid membrane. Electrostatic analysis of DOPC lipid bilayers with the AFM reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipid bilayers. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful probe of membrane electrostatics.

  3. Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta

    PubMed Central

    Ha, Chul-Won; Kim, Jin A; Heo, Jin-Chul; Han, Woo-Jung; Oh, Soo-Young; Choi, Suk-Joo

    2017-01-01

    Background The placenta is a very attractive source of mesenchymal stem cells (MSCs) for regenerative medicine due to readily availability, non-invasive acquisition, and avoidance of ethical issues. Isolating MSCs from parts of placenta tissue has obtained growing interest because they are assumed to exhibit different proliferation and differentiation potentials due to complex structures and functions of the placenta. The objective of this study was to isolate MSCs from different parts of the placenta and compare their characteristics. Methods Placenta was divided into amniotic epithelium (AE), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), chorionic trophoblast without villi (CT-V), decidua (DC), and whole placenta (Pla). Cells isolated from each layer were subjected to analyses for their morphology, proliferation ability, surface markers, and multi-lineage differentiation potential. MSCs were isolated from all placental layers and their characteristics were compared. Findings Surface antigen phenotype, morphology, and differentiation characteristics of cells from all layers indicated that they exhibited properties of MSCs. MSCs from different placental layers had different proliferation rates and differentiation potentials. MSCs from CM, CT-V, CV, and DC had better population doubling time and multi-lineage differentiation potentials compared to those from other layers. Conclusions Our results indicate that MSCs with different characteristics can be isolated from all layers of term placenta. These finding suggest that it is necessary to appropriately select MSCs from different placental layers for successful and consistent outcomes in clinical applications. PMID:28225815

  4. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane.

    PubMed

    Zhuang, Yan; Zhang, Qian; Feng, Jinqi; Wang, Na; Xu, Weilin; Yang, Hongjun

    2017-04-01

    Naturally derived fibers such as silk fibroin can potentially enhance the biocompatibility of currently used biomaterials. This study investigated the physical properties of native silk fibroin powder and its effect on the biocompatibility of biomedical polyurethane. Native silk fibroin powder with an average diameter of 3 µm was prepared on a purpose-built machine. A simple method of phase inversion was used to produce biomedical polyurethane/native silk fibroin powder hybrid membranes at different blend ratios by immersing a biomedical polyurethane/native silk fibroin powder solution in deionized water at room temperature. The physical properties of the membranes including morphology, hydrophilicity, roughness, porosity, and compressive modulus were characterized, and in vitro biocompatibility was evaluated by seeding the human umbilical vein endothelial cells on the top surface. Native silk fibroin powder had a concentration-dependent effect on the number and morphology of human umbilical vein endothelial cells growing on the membranes; cell number increased as native silk fibroin powder content in the biomedical polyurethane/native silk fibroin powder hybrid membrane was increased from 0% to 50%, and cell morphology changed from spindle-shaped to cobblestone-like as the native silk fibroin powder content was increased from 0% to 70%. The latter change was related to the physical characteristics of the membrane, including hydrophilicity, roughness, and mechanical properties. The in vivo biocompatibility of the native silk fibroin powder-modified biomedical polyurethane membrane was evaluated in a rat model; the histological analysis revealed no systemic toxicity. These results indicate that the biomedical polyurethane/native silk fibroin powder hybrid membrane has superior in vitro and in vivo biocompatibility relative to 100% biomedical polyurethane membranes and thus has potential applications in the fabrication of small-diameter vascular grafts and in tissue engineering.

  5. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis.

    PubMed

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD 7 ) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD 7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.

  6. Low-power laser effects at the single-cell level: a confocal microscopy study

    NASA Astrophysics Data System (ADS)

    Alexandratou, Eleni; Yova, Dido M.; Atlamazoglou, Vassilis; Handris, Panagiotis; Kletsas, Dimitris; Loukas, Spyros

    2000-11-01

    Confocal microscopy was used for irradiation and observation of the same area of interest, allowing the imaging of low power laser effects in subcellular components and functions, at the single cell level. Coverslips cultures of human fetal foreskin fibroblasts (HFFF2) were placed in a small incubation chamber for in vivo microscopic observation. Cells were stimulated by the 647 nm line of the Argon- Krypton laser of the confocal microscope (0.1 mW/cm2). Membrane permeability, mitochondrial membrane potential ((delta) Psim), intracellular pHi, calcium alterations and nuclear chromatin accessibility were monitored, at different times after irradiation, using specific fluorescent vital probes. Images were stored to the computer and quantitative evaluation was performed using image- processing software. After irradiation, influx and efflux of the appropriate dyes monitored changes in cell membrane permeability. Laser irradiation caused alkalizatoin of the cytosolic pHi and increase of the mitochondrial membrane potential ((delta) Psim). Temporary global Ca2+ responses were also observed. No such effects were noted in microscopic fields other than the irradiated ones. No toxic effects were observed, during time course of the experiment.

  7. Trehalose improves rabbit sperm quality during cryopreservation.

    PubMed

    Zhu, Zhendong; Fan, Xiaoteng; Pan, Yang; Lu, Yinghua; Zeng, Wenxian

    2017-04-01

    High levels of reactive oxygen species are associated with spermatozoa cryopreservation, which bring damage to functional spermatozoa. The aim of the present study was to investigate whether and how the freezing extenders supplemented with trehalose was beneficial for the survival of rabbit spermatozoa. semen was diluted with Tris-citrate-glucose extender addition of different concentrations of trehalose. Addition of 100 mM trehaose significantly improved post-thaw rabbit sperm parameters, such as motility, acrosome integriy, membrane integrity and mitochondrial membrane potential. Moreover, when freezing extenders supplemented with trehalose, activities of catalase (CAT), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) of post-thaw spermatozoa were enhanced, meanwhile, reactive oxygen species (ROS) level and Malondialdehyde (MDA) content were decreased. The results suggest that freezing extenders supplemented with 100 mM trehalose resulted in less ROS level and MDA content, higher motility and mitochondrial membrane potential as well as the integrity of acrosome and plasma membrane. Supplementation of trehalose with freezing extenders is beneficial to the rabbit breeding industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.

    PubMed

    Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami

    2014-03-01

    Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation.

  9. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  10. APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane

    PubMed Central

    Callenberg, Keith M.; Choudhary, Om P.; de Forest, Gabriel L.; Gohara, David W.; Baker, Nathan A.; Grabe, Michael

    2010-01-01

    Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated. PMID:20949122

  11. APBSmem: a graphical interface for electrostatic calculations at the membrane.

    PubMed

    Callenberg, Keith M; Choudhary, Om P; de Forest, Gabriel L; Gohara, David W; Baker, Nathan A; Grabe, Michael

    2010-09-29

    Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated.

  12. Probing membrane permeabilization by the antimicrobial peptide distinctin in mercury-supported biomimetic membranes.

    PubMed

    Becucci, Lucia; Papini, Martina; Mullen, Daniel; Scaloni, Andrea; Veglia, Gianluigi; Guidelli, Rolando

    2011-11-01

    The mechanism of membrane permeabilization by the antimicrobial peptide distinctin was investigated by using two different mercury-supported biomimetic membranes, namely a lipid self-assembled monolayer and a lipid bilayer tethered to the mercury surface through a hydrophilic spacer (tethered bilayer lipid membrane: tBLM). Incorporation of distinctin into a lipid monolayer from its aqueous solution yields rapidly ion channels selective toward inorganic cations, such as Tl(+) and Cd(2+). Conversely, its incorporation in a tBLM allows the formation of ion channels permeable to potassium ions only at non-physiological transmembrane potentials, more negative than -340mV. These channels, once formed, are unstable at less negative transmembrane potentials. The kinetics of their formation is consistent with the disruption of distinctin clusters adsorbed on top of the lipid bilayer, incorporation of the resulting monomers and their aggregation into hydrophilic pores by a mechanism of nucleation and growth. Comparing the behavior of distinctin in tBLMs with that in conventional black lipid membranes strongly suggests that distinctin channel formation in lipid bilayer requires the partitioning of distinctin molecules between the two sides of the lipid bilayer. We can tentatively hypothesize that an ion channel is formed when one distinctin cluster on one side of the lipid bilayer matches another one on the opposite side. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Proton Gradient-Driven Nickel Uptake by Vacuolar Membrane Vesicles of Saccharomyces cerevisiae

    PubMed Central

    Nishimura, Ken; Igarashi, Kazuei; Kakinuma, Yoshimi

    1998-01-01

    A vacuolar H+-ATPase-negative mutant of Saccharomyces cerevisiae was highly sensitive to nickel ion. Accumulation of nickel ion in the cells of this mutant of less than 60% of the value for the parent strain arrested growth, suggesting a role for this ATPase in sequestering nickel ion into vacuoles. An artificially imposed pH gradient (interior acid) induced transient nickel ion uptake by vacuolar membrane vesicles, which was inhibited by collapse of the pH difference but not of the membrane potential. Nickel ion transport into vacuoles in a pH gradient-dependent manner is thus important for its detoxification in yeast. PMID:9537401

  14. Establishing the importance of oil-membrane interactions on the transmembrane diffusion of physicochemically diverse compounds.

    PubMed

    Najib, Omaima N; Martin, Gary P; Kirton, Stewart B; Sallam, Al-Sayed; Murnane, Darragh

    2016-06-15

    The diffusion process through a non-porous barrier membrane depends on the properties of the drug, vehicle and membrane. The aim of the current study was to investigate whether a series of oily vehicles might have the potential to interact to varying degrees with synthetic membranes and to determine whether any such interaction might affect the permeation of co-formulated permeants: methylparaben (MP); butylparaben (BP) or caffeine (CF). The oils (isopropyl myristate (IPM), isohexadecane (IHD), hexadecane (HD), oleic acid (OA) and liquid paraffin (LP)) and membranes (silicone, high density polyethylene and polyurethane) employed in the study were selected such that they displayed a range of different structural, and physicochemical properties. Diffusion studies showed that many of the vehicles were not inert and did interact with the membranes resulting in a modification of the permeants' flux when corrected for membrane thickness (e.g. normalized flux of MP increased from 1.25±0.13μgcm(-1)h(-1) in LP to 17.94±0.25μgcm(-1)h(-1)in IPM). The oils were sorbed differently to membranes (range of weight gain: 2.2±0.2% for polyurethane with LP to 105.6±1.1% for silicone with IHD). Membrane interaction was apparently dependent upon the physicochemical properties including; size, shape, flexibility and the Hansen solubility parameter values of both the membranes and oils. Sorbed oils resulted in modified permeant diffusion through the membranes. No simple correlation was found to exist between the Hansen solubility parameters of the oils or swelling of the membrane and the normalized fluxes of the three compounds investigated. More sophisticated modelling would appear to be required to delineate and quantify the key molecular parameters of membrane, permeant and vehicle compatibility and their interactions of relevance to membrane permeation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.

  16. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, NY; Elimelech, M

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) andmore » higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.« less

  17. Evaluation of the membrane lipid selectivity of the pea defensin Psd1.

    PubMed

    Gonçalves, Sónia; Teixeira, Alexandre; Abade, João; de Medeiros, Luciano Neves; Kurtenbach, Eleonora; Santos, Nuno C

    2012-05-01

    Psd1, a 46 amino acid residues defensin isolated from the pea Pisum sativum seeds, exhibits anti-fungal activity by a poorly understood mechanism of action. In this work, the interaction of Psd1 with biomembrane model systems of different lipid compositions was assessed by fluorescence spectroscopy. Partition studies showed a marked lipid selectivity of this antimicrobial peptide (AMP) toward lipid membranes containing ergosterol (the main sterol in fungal membranes) or specific glycosphingolipid components, with partition coefficients (K(p)) reaching uncommonly high values of 10(6). By the opposite, Psd1 does not partition to cholesterol-enriched lipid bilayers, such as mammalian cell membranes. The Psd1 mutants His36Lys and Gly12Glu present a membrane affinity loss relative to the wild type. Fluorescence quenching data obtained using acrylamide and membrane probes further clarify the mechanism of action of this peptide at the molecular level, pointing out the potential therapeutic use of Psd1 as a natural antimycotic agent. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Kr/Xe Separation over a Chabazite Zeolite Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui; Zong, Zhaowang; Elsaidi, Sameh K.

    2016-08-10

    Cryogenic distillation, the current conventional technology to separate Krypton and Xenon from air, and from nuclear reprocessing technologies, is an energy-intensive and expensive process. Membrane technology could potentially make this challenging industrial separation less energy intensive and economically viable. We demonstrate that chabazite zeolite SAPO-34 membranes effectively separated Kr/Xe gas mixtures at industrially relevant compositions. Control over membrane thickness and average crystal size led to industrial range permeances and high separation selectivities. Specifically, SAPO-34 membranes can separate Kr/Xe mixtures with Kr permeances as high as 361.4 GPU and separation selectivities of 34.8 for molar compositions close to typical concentrations ofmore » these two gases in air. In addition, SAPO-34 membranes separated Kr/Xe mixtures with Kr permeances as high as 525.7 GPU and separation selectivities up to 45.1 for molar compositions as might be encountered in nuclear reprocessing technologies. Molecular sieving and differences in diffusivities were identified as the dominant separation mechanisms.« less

  19. Membrane properties and cell ultrastructure of taste receptor cells in Necturus lingual slices.

    PubMed

    Bigiani, A; Kim, D J; Roper, S D

    1996-05-01

    1. Whole cell patch-clamp recordings and electron micrographs were obtained from cells in Necturus taste buds in lingual slices to study their membrane properties and to correlate these properties with cell ultrastructure. 2. Two different populations of taste receptor cells could be identified: one type possessed voltage-gated Na+ and K+ (noninactivating) currents (group 1 cells); the other type possessed only K+ (inactivating) currents (group 2 cells). 3. The zero-current ("resting") potential (Vo) and whole cell resistance (Ro) of these two types of taste cells differed significantly. For group 1 cells, on average, Vo = -75 mV and Ro = 24.6 G omega, and for group 2 cells, Vo = -49 mV and Ro = 48.9 G omega. The difference in Ro was not explained completely by differences in cell sizes, suggesting that intrinsic membrane properties differed between the populations. 4. Cells injected with biocytin were the electron microscope after tissues were reacted with majority (14 of 16) of cells with voltage-gated Na+ and K+ currents (group 1 cells) were characterized by abundant rough endoplasmic reticulum and dense granular packets in the apical process. These are features of dark cells. All the cells that only possessed K+ currents (group 2 cells) were characterize by well-developed smooth endoplasmic reticulum and an absence granular packets. These features characterize light cells. 5. These findings indicate that there is a good, although not exact, correlation between electrophysiological properties and cell morphotype in Necturus taste bud cells. All dark cells possessed Na+ and K+ currents and thus would be expected to be capable of generating action potentials. Most light cells only possessed outward K+ currents and thus would be incapable of generating action potentials.

  20. Plant plasma membrane aquaporins in natural vesicles as potential stabilizers and carriers of glucosinolates.

    PubMed

    Martínez-Ballesta, Maria Del Carmen; Pérez-Sánchez, Horacio; Moreno, Diego A; Carvajal, Micaela

    2016-07-01

    Their biodegradable nature and ability to target cells make biological vesicles potential nanocarriers for bioactives delivery. In this work, the interaction between proteoliposomes enriched in aquaporins derived from broccoli plants and the glucosinolates was evaluated. The vesicles were stored at different temperatures and their integrity was studied. Determination of glucosinolates, showed that indolic glucosinolates were more sensitive to degradation in aqueous solution than aliphatic glucosinolates. Glucoraphanin was stabilized by leaf and root proteoliposomes at 25°C through their interaction with aquaporins. An extensive hydrogen bond network, including different aquaporin residues, and hydrophobic interactions, as a consequence of the interaction between the linear alkane chain of glucoraphanin and Glu31 and Leu34 protein residues, were established as the main stabilizing elements. Combined our results showed that plasma membrane vesicles from leaf and root tissues of broccoli plants may be considered as suitable carriers for glucosinolate which stabilization can be potentially attributed to aquaporins. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Performance of EVA-Based Membranes for SCL in Hard Rock

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar

    2016-04-01

    The bonded property of multi-layered sprayed concrete tunnel linings (SCL) waterproofed with sprayed membranes means that the constituent materials will be exposed to the groundwater without any draining or mechanically separating measures. Moisture properties of the sprayed concrete and membrane materials are therefore important in order to establish the system properties of such linings. Ethyl-vinyl-acetate based sprayed membranes exhibit high water absorption potential under direct exposure to water, but are found to be significantly less hygroscopic and exhibit lower sorptivity (water absorption rate) than sprayed concrete. This material behavior explains the relatively dry in situ condition of the membrane that was observed. Measured in situ moisture content levels of the membrane material in tunnel linings have been found to vary within the range of 30-40 % of the maximum water absorption potential, and show a decreasing trend over the first 4 years after construction has been completed. A model for the mechanical loading, moisture condition and thermal exposure of the membrane and the resulting realistic parameters to be tested is presented. Laboratory testing methods for the membrane materials are evaluated considering possible loads, moisture and freezing exposure. Material testing of membrane materials was conducted with preconditioning to realistic moisture contents and under different temperature conditions including relevant freezing temperatures for tunnel linings. The main effects of the in situ moisture condition of the tested membrane materials are favorable tensile strengths in the range of 1.1-1.5 MPa and low risk of freeze-thaw damage. The crack bridging capacity of the tested membranes is found to be sensitive to temperature. With membrane thicknesses in the range of 3-4 mm, crack bridging capacity up to 4-6 mm opening of the crack width at 23 °C and approximately 1 mm opening at -3 °C was measured for the tested membranes. No significant reduction of the tensile bond strength could be demonstrated after 35 freeze-thaw cycles with -3 °C minimum temperature at the membrane location in the lining. Further work is required to verify the performance of the SCL system under exposure to high hydrostatic pressures and the effects of long term mechanical exposure.

  2. Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes.

    PubMed

    De Gusseme, Bart; Hennebel, Tom; Christiaens, Eline; Saveyn, Hans; Verbeken, Kim; Fitts, Jeffrey P; Boon, Nico; Verstraete, Willy

    2011-02-01

    The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag(0)) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag(0) particles, preventing aggregation during encapsulation. In this study, bio-Ag(0) was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag(0) and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag(+) from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag(0)(powder) m(-2) in a submerged plate membrane reactor operated at a flux of 3.1 L m(-2) h(-1). Upon startup, the silver concentration in the effluent initially increased to 271 μg L(-1) but after filtration of 31 L m(-2), the concentration approached the drinking water limit ( = 100 μg L(-1)). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m(-2) h(-1), showing the potential of this membrane technology for water disinfection on small scale. © 2010 Elsevier Ltd. All rights reserved.

  3. Influence of zeolite shape and particle size on their capacity to adsorb uremic toxin as powders and as fillers in membranes.

    PubMed

    Lu, Limin; Chen, Chen; Samarasekera, Champika; Yeow, John T W

    2017-08-01

    Membranes with zeolites are promising for performing blood dialysis because zeolites can eliminate uremic toxins through molecular sieving. Although the size and the shape of zeolite particles can potentially influence the performance of the membranes with respect of creatinine uptake level, it is not clear what sizes and shapes lead to better performance. In this paper, we carry out experiments to answer this question. Spherical microparticle 840, spherical nanoparticle P-87 and rod-like nanoparticle P-371 zeolites were chosen to be used in all the experiments. Their creatinine uptake levels were first measured as powders in creatinine solutions with different concentrations, volumes and adsorption times. Then, nanofibrous membranes with zeolites were electrospun and their ability to adsorb creatinine was measured and compared against their respective powders' creatinine uptake level. The experiment shows that the zeolites have similar creatinine uptake ability as powders. However, they have significantly different creatinine uptake ability after being incorporated inside the membranes. Spherical microparticle 840 in the membrane presented the best creatinine uptake ability, at 8957 µg g -1 , which was half of its powders'. On the other hand, P-87 presented largely decreased, while P-371 presented even lower creatinine uptake ability in membranes when compared to respective powders'. The results shows that microparticle and sphere shaped particles perform better inside the membranes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1594-1601, 2017. © 2016 Wiley Periodicals, Inc.

  4. Photoswitchable gas permeation membranes based on azobenzene-doped liquid crystals II. Permeation-switching characterization under variable volume and variable pressure conditions

    NASA Astrophysics Data System (ADS)

    Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.

    2010-08-01

    Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.

  5. Enhanced bacterial affinity of PVDF membrane: its application as improved sea water sampling tool for environmental monitoring.

    PubMed

    Kumar, Sweta Binod; Sharnagat, Preeti; Manna, Paramita; Bhattacharya, Amit; Haldar, Soumya

    2017-02-01

    Isolation of diversified bacteria from seawater is a major challenge in the field of environmental microbiology. In the present study, an attempt has been made to select specific membrane with improved property of attaching diversified bacteria. Initially, different concentrations (15, 18, and 20% W/W) of polysulfone (PSF) were used to check their affinity for the attachment of selected gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria. Among these, 20% W/W PSF showed maximum attachment. Therefore, membrane prepared with other materials such as polyvinylidene fluoride (PVDF) and polyether sulfone (PES) were used with the same concentration (20% W/W) to check their improved bacterial attachment property. Comparative study of bacterial attachment on three different membranes revealed that PVDF possessed the highest affinity towards both the groups of bacteria. This property was confirmed by different analytical methods viz. contact angle, atomic force microscopy, zeta potential, and flux study and further validated with seawater samples collected from seven sites of western coast and Lakshadweep island of India, using Biolog EcoPlate™. All the samples showed that bacterial richness and diversity was high in PVDF membrane in comparison to surrounding seawater samples. Interestingly, affinity for more diversified bacteria was reported to be higher in water sample with less turbidity and low bacteria load. This finding can facilitate the development of PVDF (20% W/W) membrane as a simple, cheap, and less labor intensive environmental sampling tool for the isolation of diversified bacteria from seawater sample wih different physiochemical properties. Graphical abstract ᅟ.

  6. Biophysical Studies of Nanosecond Pulsed Electric Field Induced Cell Membrane Permeabilization

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Hsuan

    Nanosecond megavolts-per-meter pulsed electric field (nsPEF) offers a non-invasive manipulation of intracellular organelles and functions of biological cells. Accordingly, nsPEF is a potential technique for biophysical research and cancer therapy, and is of growing interest. Although, the application of nsPEF has shown electroperturbation on cell plasma membranes and intracellular membranes as well, the mechanisms underlying the electropermeabilization are still not clear. In this thesis, we systematically study nsPEFs (5 and 30 ns) induced membrane permeability change in biological cell in-vitro with different pulse parameters. In Chapter 3, we investigate the nsPEF-induced intracellular membrane permeabilization of mitochondria which play key roles in activating apoptosis in mammalian cells. The results show the evidences of nsPEF-induced membrane permeability increase in mitochondria, and suggest that nsPEF is a potential technology for cancer cell ablation without delivery of drug or gene into cells. In Chapter 2, 4 and 6, we study the properties of nsPEF-induced plasma membrane permeabilization. In the beginning, the change of plasma membrane permeability is studied by uptake of YO-PRO-1 and propidium iodide, fluorescent dyes specifically used as indicators of plasma membrane permeabilization. However, the detection is limited by the fluorescent emission efficiency and detector capability. To increase the detection sensitivity, we later develop a method based on cell volume change due to regulation of osmotic balance that causes water and small ions transport through plasma membrane. We find that even a single 10 MV/m pulse of 5 ns duration produces measureable cell swelling. The results demonstrate that cell swelling is susceptible to nsPEF and can detect membrane permeabilization more easily and precisely than fluorescent dyes. We compare the effects of different pulse parameters (pulse duration, pulse number, electric field amplitude and pulse repetition rate) on electropermeabilization. The effects of chemical agents that either promote (H2O2) or inhibit (lanthanide ions and Hg2+) electropermeabilization are also studied. To characterize the population of pores created by nsPEFs, we isoosmotically substitute different size of neutral molecules in the pulsing medium, and estimate pore size by analyzing cell volume changes that result from the permeation of these substituted molecules through the plasma membrane of Jurkat T lymphoblasts. The basis of this method is regulation of osmotic balance across the plasma membrane as well. We find that most pores opened by 5-100 5 ns pulses in plasma memebrane of Jurkat T lymphoblasts have diameter between 0.7-0.9 nm. In Chapter 5, we report the design and construction of a delivery system for nsPEF. We integrate a pair of delicately fabricated tungsten wire electrodes spaced 100 mum, a solid-state high-voltage nanosecond pulse generator and a fluorescent microscope coupling with a fast and sensitive digital recording camera. This system enables real-time biophotonic investigations of the nsPEF-induced biological responses of living mammalian cells in-vitro.

  7. The effects of oxygen on the evolution of microbial membranes

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1991-01-01

    One prokaryote, Methylococcus capsulatus, synthesizes both hopanoids and sterols and, thus, provides a unique opportunity to study the evolution of membrane function. When M. capsulatus was grown at different temperatures, lipid analysis of the whole cells showed that both sterol and unsaturated fatty acid levels decreased at higher growth temperatures; sterol concentrations were 0.116 micro mole/micro mole phospholipid at 30 C and 0.025 micro mole/mirco mole phospholipid at 45 C, while the saturated to unsaturated fatty acid ratio increased from 0.397 to 1.475. Hopane polyol levels were constant over this range; however, methylation of the A-ring decreased markedly in cells grown at 30 C. These results imply that sterol and hopane molecules are required for enhancement of some specific membrane function, potentially by modulating membrane fluidity.

  8. Fouling of a spiral-wound reverse osmosis membrane processing swine wastewater: effect of cleaning procedure on fouling resistance.

    PubMed

    Camilleri-Rumbau, M S; Masse, L; Dubreuil, J; Mondor, M; Christensen, K V; Norddahl, B

    2016-01-01

    Swine manure is a valuable source of nitrogen, phosphorus and potassium. After solid-liquid separation, the resulting swine wastewater can be concentrated by reverse osmosis (RO) to produce a nitrogen-potassium rich fertilizer. However, swine wastewater has a high fouling potential and an efficient cleaning strategy is required. In this study, a semi-commercial farm scale RO spiral-wound membrane unit was fouled while processing larger volumes of swine wastewater during realistic cyclic operations over a 9-week period. Membrane cleaning was performed daily. Three different cleaning solutions, containing SDS, SDS+EDTA and NaOH were compared. About 99% of the fouling resistance could be removed by rinsing the membrane with water. Flux recoveries (FRs) above 98% were achieved for all the three cleaning solutions after cleaning. No significant differences in FR were found between the cleaning solutions. The NaOH solution thus is a good economical option for cleaning RO spiral-wound membranes fouled with swine wastewater. Soaking the membrane for 3 days in permeate water at the end of each week further improved the FR. Furthermore, a fouling resistance model for predicting the fouling rate, permeate flux decay and cleaning cycle periods based on processing time and swine wastewater conductivity was developed.

  9. Effect of growth solution, membrane size and array connection on microbial fuel cell power supply for medical devices.

    PubMed

    Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T

    2016-08-01

    Implanted biomedical devices typically last a number of years before their batteries are depleted and a surgery is required to replace them. A Microbial Fuel Cell (MFC) is a device which by using bacteria, directly breaks down sugars to generate electricity. Conceptually there is potential to continually power implanted medical devices for the lifetime of a patient. To investigate the practical potential of this technology, H-Cell Dual Chamber MFCs were evaluated with two different growth solutions and measurements recorded for maximum power output both of individual MFCs and connected MFCs. Using Luria-Bertani media and connecting MFCs in a hybrid series and parallel arrangement with larger membrane sizes showed the highest power output and the greatest potential for replacing implanted batteries.

  10. A Salt-Induced 60-Kilodalton Plasma Membrane Protein Plays a Potential Role in the Extreme Halotolerance of the Alga Dunaliella.

    PubMed Central

    Fisher, M.; Pick, U.; Zamir, A.

    1994-01-01

    The halotolerant alga Dunaliella salina grows in saline conditions as varied as 0.5 and 5 M NaCl, maintaining throughout this range a low intracellular ion concentration. To discover factors potentially involved in ionic homeostasis, we grew cells in media with different salinities or osmolarities and compared their protein profiles. The comparisons indicated that the amount of a 60-kD protein, p60, greatly increased with an increase in salinity and was moderately enhanced when NaCl was substituted with iso-osmotic glycerol. Cells transferred from low to high NaCl or from high glycerol to iso-osmotic NaCl media transiently ceased to grow, and resumption of growth coincided approximately with an increase in p60. The protein, extracted from a plasma membrane fraction, was purified to homogeneity. Anti-p60 antibodies cross-reacted with a 60-kD protein in Dunaliella bardawil. Immunoelectron microscopy of D. salina cell sections indicated that p60 was exclusively located in the plasma membrane. Its induction by salt, the correlation between its accumulation and growth resumption in high concentrations of salt, and its plasma membrane localization suggest the possibility that p60 could play a role in ionic homeostasis in conditions of high salinity, although different types of function could also be considered. PMID:12232413

  11. Minimal models of electric potential oscillations in non-excitable membranes.

    PubMed

    Perdomo, Guillermo; Hernández, Julio A

    2010-01-01

    Sustained oscillations in the membrane potential have been observed in a variety of cellular and subcellular systems, including several types of non-excitable cells and mitochondria. For the plasma membrane, these electrical oscillations have frequently been related to oscillations in intracellular calcium. For the inner mitochondrial membrane, in several cases the electrical oscillations have been attributed to modifications in calcium dynamics. As an alternative, some authors have suggested that the sustained oscillations in the mitochondrial membrane potential induced by some metabolic intermediates depends on the direct effect of internal protons on proton conductance. Most theoretical models developed to interpret oscillations in the membrane potential integrate several transport and biochemical processes. Here we evaluate whether three simple dynamic models may constitute plausible representations of electric oscillations in non-excitable membranes. The basic mechanism considered in the derivation of the models is based upon evidence obtained by Hattori et al. for mitochondria and assumes that an ionic species (i.e., the proton) is transported via passive and active transport systems between an external and an internal compartment and that the ion affects the kinetic properties of transport by feedback regulation. The membrane potential is incorporated via its effects on kinetic properties. The dynamic properties of two of the models enable us to conclude that they may represent alternatives enabling description of the generation of electrical oscillations in membranes that depend on the transport of a single ionic species.

  12. Pressure retarded osmosis for energy production: membrane materials and operating conditions.

    PubMed

    Kim, H; Choi, J-S; Lee, S

    2012-01-01

    Pressure retarded osmosis (PRO) is a novel membrane process to produce energy. PRO has the potential to convert the osmotic pressure difference between fresh water (i.e. river water) and seawater to electricity. Moreover, it can recover energy from highly concentrated brine in seawater desalination. Nevertheless, relatively little research has been undertaken for fundamental understanding of the PRO process. In this study, the characteristics of the PRO process were examined using a proof-of-concept device. Forward osmosis (FO), reverse osmosis (RO), and nanofiltration (NF) membranes were compared in terms of flux rate and concentration polarization ratio. The results indicated that the theoretical energy production by PRO depends on the membrane type as well as operating conditions (i.e. back pressure). The FO membrane had the highest energy efficiency while the NF membrane had the lowest efficiency. However, the energy production rate was low due to high internal concentration polarization (ICP) in the PRO membrane. This finding suggests that the control of the ICP is essential for practical application of PRO for energy production.

  13. Usefulness of DIGE for the detection of protein profile in retained and released bovine placental tissues.

    PubMed

    Kankofer, M; Wawrzykowski, J; Miller, I; Hoedemaker, M

    2015-02-01

    Regardless intensive research, the etiology and mechanisms of retention of fetal membranes in cows, still require elucidation. In our research approach, difference in gel electrophoresis (DIGE) and matrix-assisted laser desorption/ionization (MALDI) identification were used to obtain first results on protein profile of bovine placental membranes which were properly released or retained for more than 12 h after parturition. Placentomes from 6 cows that released placenta and from 6 cows that retained fetal membranes were homogenized, fluorescence labeled and subjected to DIGE. Selected spots that significantly differed between retained and released placenta as well as spots with constant appearance were identified by MALDI. This allowed identification of the following proteins with high statistical reliability: Transforming growth factor beta 2 - high expression in maternal and fetal part of retained fetal membranes, Short transient receptor potential channel 5 -high expression in maternal part of retained and not retained fetal membranes, Rab GDP dissociation inhibitor beta - high expression in fetal part of retained and not retained fetal membranes, Proline dehydrogenase 2 - similar expression in all examined samples, Ras-related protein Rab-7b -high expression only in maternal part of not retained fetal membranes. Up to now, these proteins have not been considered as possibly important molecules for the separation/retention of fetal membranes, but their biological roles may suggest it. Further studies are necessary to establish a full profile of bovine placental proteins and define target molecules that may be involved in separation/retention of fetal membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Reorganization of lipid domain distribution in giant unilamellar vesicles upon immobilization with different membrane tethers.

    PubMed

    Sarmento, M J; Prieto, M; Fernandes, Fábio

    2012-11-01

    Characterization of phase coexistence in biologically relevant lipid mixtures is often carried out through confocal microscopy of giant unilamellar lipid vesicles (GUVs), loaded with fluorescent membrane probes. This last analysis is generally limited to the vesicle hemisphere further away from the coverslip, in order to avoid artifacts induced by the interaction with the solid surface, and immobilization of vesicles is in many cases required in order to carry out intensity, lifetime or single-molecule based microscopy. This is generally achieved through the use of membrane tethers adhering to a coverslip surface. Here, we aimed to determine whether GUV immobilization through membrane tethers induces changes in lipid domain distribution within liposomes displaying coexistence of lipid lamellar phases. Confocal imaging and a Förster resonance energy transfer (FRET) methodology showed that biotinylated phospholipids present significantly different membrane phase partition behavior upon protein binding, depending on the presence or absence of a linker between the lipid headgroup and the biotinyl moiety. Membrane phases enriched in a membrane tether displayed in some cases a dramatically increased affinity for the immobilization surface, effectively driving sorting of lipid domains to the adherent membrane area, and in some cases complete sequestering of a lipid phase to the interaction surface was observed. On the light of these results, we conclude that tethering of lipid membranes to protein surfaces has the potential to drastically reorganize the distribution of lipid domains, and this reorganization is solely dictated by the partition properties of the protein-tether complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A Feasibility Study of Pressure Retarded Osmosis Power Generation System based on Measuring Permeation Volume using Reverse Osmosis Membrane

    NASA Astrophysics Data System (ADS)

    Enomoto, Hiroshi; Fujitsuka, Masashi; Hasegawa, Tomoyasu; Kuwada, Masatoshi; Tanioka, Akihiko; Minagawa, Mie

    Pressure Retarded Osmosis (PRO) power generation system is a hydroelectric power system which utilize permeation flow through a semi-permeable membrane. Permeation flow is generated by potential energy of salinity difference between sea water and fresh water. As membrane cost is expensive, permeation performance of membrane must be higher to realize PRO system. We have investigated Reverse Osmosis (RO) membrane products as semi-permeable membrane and measured permeation volume of a few products. Generation power by membrane area calculated from permeation volume is about 0.62W/m2. But by our improvements (more salt water volume, spacer of fresh water channel with a function of discharging concentrated salinity, extra low pressure type of membrane, washing support layer of membrane when generation power reduces to half), generation power may be 2.43W/m2. Then power system cost is about 4.1 million yen/kW. In addition, if support layer of membrane makes thinner and PRO system is applied to the equipment that pumping power on another purpose is avairable (wastewater treatment plant located at the seaside, thermal and nuclear power plant or sea water desalination plant), generation power may be more. By these improvements PRO system may be able to realize at the cost close to photovoltaic power system.

  16. Beta2-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression.

    PubMed

    Parmar, Vikas K; Grinde, Ellinor; Mazurkiewicz, Joseph E; Herrick-Davis, Katharine

    2017-09-01

    Even though there are hundreds of reports in the published literature supporting the hypothesis that G protein-coupled receptors (GPCR) form and function as dimers this remains a highly controversial area of research and mechanisms governing homodimer formation are poorly understood. Crystal structures revealing homodimers have been reported for many different GPCR. For adrenergic receptors, a potential dimer interface involving transmembrane domain 1 (TMD1) and helix 8 (H8) was identified in crystal structures of the beta 1 -adrenergic (β 1 -AR) and β 2 -AR. The purpose of this study was to investigate a potential role for TMD1 and H8 in dimerization and plasma membrane expression of functional β 2 -AR. Charged residues at the base of TMD1 and in the distal portion of H8 were replaced, singly and in combination, with non-polar residues or residues of opposite charge. Wild type and mutant β 2 -AR, tagged with YFP and expressed in HEK293 cells, were evaluated for plasma membrane expression and function. Homodimer formation was evaluated using bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and fluorescence correlation spectroscopy. Amino acid substitutions at the base of TMD1 and in the distal portion of H8 disrupted homodimer formation and caused receptors to be retained in the endoplasmic reticulum. Mutations in the proximal region of H8 did not disrupt dimerization but did interfere with plasma membrane expression. This study provides biophysical evidence linking a potential TMD1/H8 interface with ER export and the expression of functional β 2 -AR on the plasma membrane. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of O 2 and N 2/H 2 plasma treatments on the neuronal cell growth on single-walled carbon nanotube paper scaffolds

    NASA Astrophysics Data System (ADS)

    Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung

    2011-08-01

    The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.

  18. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.

    PubMed

    Bo, Zhang; Avsar, Saziye Yorulmaz; Corliss, Michael K; Chung, Minsub; Cho, Nam-Joon

    2017-10-05

    As the worldwide usage of nanoparticles in commercial products continues to increase, there is growing concern about the environmental risks that nanoparticles pose to biological systems, including potential damage to cellular membranes. A detailed understanding of how different types of nanoparticles behave in environmentally relevant conditions is imperative for predicting and mitigating potential membrane-associated toxicities. Herein, we investigated the adsorption of two popular nanoparticles (silver and buckminsterfullerene) onto biomimetic supported lipid bilayers of varying membrane charge (positive and negative). The quartz crystal microbalance-dissipation (QCM-D) measurement technique was employed to track the adsorption kinetics. Particular attention was focused on understanding how natural organic matter (NOM) coatings affect nanoparticle-bilayer interactions. Both types of nanoparticles preferentially adsorbed onto the positively charged bilayers, although NOM coatings on the nanoparticle and lipid bilayer surfaces could either inhibit or promote adsorption in certain electrolyte conditions. While past findings showed that NOM coatings inhibit membrane adhesion, our findings demonstrate that the effects of NOM coatings are more nuanced depending on the type of nanoparticle and electrolyte condition. Taken together, the results demonstrate that NOM coatings can modulate the lipid membrane interactions of various nanoparticles, suggesting a possible way to improve the environmental safety of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Release abilities of adenosine diphosphate from phospholipid vesicles with different membrane properties and their hemostatic effects as a platelet substitute.

    PubMed

    Okamura, Yosuke; Katsuno, Shunsuke; Suzuki, Hidenori; Maruyama, Hitomi; Handa, Makoto; Ikeda, Yasuo; Takeoka, Shinji

    2010-12-20

    We have constructed phospholipid vesicles with hemostatic activity as a platelet substitute. The vesicles were conjugated with a dodecapeptide (HHLGGAKQAGDV, H12), which is a fibrinogen γ-chain carboxy-terminal sequence (γ400-411). We have recently exploited these vesicles as a potential drug delivery system by encapsulation of adenosine 5'-diphosphate (ADP) (H12-(ADP)-vesicles). Here we explore the relationship between the ADP release from H12-(ADP)-vesicles with different membrane properties and their hemostatic effects. In total, we prepared five kinds of H12-(ADP)-vesicles with different lamellarities and membrane flexibilities. By radioisotope-labeling, we directly show that H12-(ADP)-vesicles were capable of augmenting platelet aggregation by releasing ADP in an aggregation-dependent manner. The amount of ADP released from the vesicles was dependent on their membrane properties. Specifically, the amount of ADP released increased with decreasing lamellarity and tended to increase with increasing membrane flexibility. Our in vivo results clearly demonstrated that H12-(ADP)-vesicles with the ability to release ADP exert considerable hemostatic action in terms of correcting prolonged bleeding time in a busulphan-induced thrombocytopenic rat model. We propose a recipe to control the hemostatic abilities of H12-(ADP)-vesicles by modulating ADP release based on membrane properties. We believe that this concept will be invaluable to the development of platelet substitutes and other drug carriers. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater.

    PubMed

    Tang, Chuyang Y; Fu, Q Shiang; Robertson, A P; Criddle, Craig S; Leckie, James O

    2006-12-01

    Perfluorooctane sulfonate (PFOS) and related substances are persistent, bioaccumulative, and toxic, and thus of substantial environmental concern. PFOS is an essential photolithographic chemical in the semiconductor industry with no substitutes yet identified. The industry seeks effective treatment technologies. The feasibility of using reverse osmosis (RO) membranes for treating semiconductor wastewater containing PFOS has been investigated. Commercial RO membranes were characterized in terms of permeability, salt rejection, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and membrane surface zeta potential (streaming potential measurements). Filtration tests were performed to determine the membrane flux and PFOS rejection. Over a wide range of feed concentrations (0.5 - 1500 ppm), the RO membranes generally rejected 99% or more of the PFOS. Rejection was better for tighter membranes, but was not affected by membrane zeta potential. Flux decreased with increasing PFOS concentration. While the flux reduction was severe for a loose RO membrane probably due to its higher initial flux, very stable flux was maintained for tighter membranes. At a very high feed concentration (about 500 ppm), all the membranes exhibited an identical stable flux. Isopropyl alcohol, present in some semiconductor wastewaters, had a detrimental effect on membrane flux. Where present it needs to be removed from the wastewater prior to using RO membranes.

  1. Cholesterol Regulates Multiple Forms of Vesicle Endocytosis at a Mammalian Central Synapse

    PubMed Central

    Yue, Hai-Yuan; Xu, Jianhua

    2015-01-01

    Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from nonspecific effects after cholesterol manipulation. Furthermore, it is unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase (COase) or methyl-β-cyclodextrin (MCD) impaired three different forms of endocytosis, i.e., slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca2+ channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of MCD reduced exocytosis, mainly by decreasing the readily releasable pool (RRP) and the vesicle replenishment after RRP depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses. PMID:25893258

  2. [Protective effect of hydrogen against hyperoxia-induced type II alveolar epithelial cell injury].

    PubMed

    Yao, Lan; Xu, Feng; Luo, Chong; Yu, Pan; Dong, Xinxin; Sun, Xuejun; Liu, Chengjun

    2013-02-01

    To investigate the protective effect of hydrogen against hyperoxia-induced oxidative stress injury in premature rat type II alveolar epithelial cells (AECs). The type II AECs isolated from premature rats were randomly divided into air (21% oxygen) control group, hyperoxia (95% oxygen) control group, air + hydrogen group, and hyperoxia+ hydrogen group. The cells with hydrogen treatment were cultured in the presence of rich hydrogen. After the corresponding exposure for 24 h, the cell morphology was observed microscopically. MTT assay was used to evaluated the cell proliferation ability, and JC-1 fluorescence probe was used to detect the mitochondrial membrane potential (δφ) changes of the type II AECs. The concentration of maleic dialdehyde (MDA) and superoxide dismutase (SOD) activity in the cell supernatant were detected using colorimetric method. No significant differences were found in cell growth or measurements between air control and air + hydrogen groups. Compared with air control group, the cells exposed to hyperoxia showed significantly suppressed proliferation, reduced mitochondrial membrane potential, increased MDA content, and decreased SOD activity. Intervention with hydrogen resulted in significantly increased cell proliferation and SOD activity and lowered MDA content, and restored the mitochondrial membrane potential in the cells with hyperoxia exposure (P<0.05). Hydrogen can significantly reduce hyperoxia-induced oxidative stress injury in premature rat type II AECs, improve the cellular antioxidant capacity, stabilize the mitochondrial membrane potential, and reduce the inhibitory effect of hyperoxia on cell proliferation.

  3. Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L.

    PubMed

    García-Sánchez, M J; Jaime, M P; Ramos, A; Sanders, D; Fernández, J A

    2000-03-01

    NO(3)(-) is present at micromolar concentrations in seawater and must be absorbed by marine plants against a steep electrochemical potential difference across the plasma membrane. We studied NO(3)(-) transport in the marine angiosperm Zostera marina L. to address the question of how NO(3)(-) uptake is energized. Electrophysiological studies demonstrated that micromolar concentrations of NO(3)(-) induced depolarizations of the plasma membrane of leaf cells. Depolarizations showed saturation kinetics (K(m) = 2.31 +/- 0.78 microM NO(3)(-)) and were enhanced in alkaline conditions. The addition of NO(3)(-) did not affect the membrane potential in the absence of Na(+), but depolarizations were restored when Na(+) was resupplied. NO(3)(-)-induced depolarizations at increasing Na(+) concentrations showed saturation kinetics (K(m) = 0.72 +/- 0.18 mM Na(+)). Monensin, an ionophore that dissipates the Na(+) electrochemical potential, inhibited NO(3)(-)-evoked depolarizations by 85%, and NO(3)(-) uptake (measured by depletion from the external medium) was stimulated by Na(+) ions and by light. Our results strongly suggest that NO(3)(-) uptake in Z. marina is mediated by a high-affinity Na(+)-symport system, which is described here (for the first time to our knowledge) in an angiosperm. Coupling the uptake of NO(3)(-) to that of Na(+) enables the steep inwardly-directed electrochemical potential for Na(+) to drive net accumulation of NO(3)(-) within leaf cells.

  4. Membrane-Assisted Growth of DNA Origami Nanostructure Arrays

    PubMed Central

    2015-01-01

    Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors—a three-layered rectangular block and a Y-shaped DNA structure—to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes. PMID:25734977

  5. Membrane-assisted growth of DNA origami nanostructure arrays.

    PubMed

    Kocabey, Samet; Kempter, Susanne; List, Jonathan; Xing, Yongzheng; Bae, Wooli; Schiffels, Daniel; Shih, William M; Simmel, Friedrich C; Liedl, Tim

    2015-01-01

    Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors--a three-layered rectangular block and a Y-shaped DNA structure--to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes.

  6. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts [High-Resolution Chemical Imaging of Sphingolipid Distribution in the Plasma Membrane

    DOE PAGES

    Frisz, Jessica F.; Lou, Kaiyan; Klitzing, Haley A.; ...

    2013-01-28

    Sphingolipids play important roles in plasma membrane structure and cell signaling. Yet, their lateral distribution in the plasma membrane is poorly understood. Here we quantitatively analyzed the sphingolipid organization on the entire dorsal surface of intact cells by mapping the distribution of 15N-enriched ions from metabolically labeled 15N-sphingolipids in the plasma membrane using high-resolution imaging mass spectrometry. Many types of control experiments (internal, positive, negative, and fixation temperature), along with parallel experiments involving the imaging of fluorescent sphingolipids$-$both in living cells and during fixation of living cells$-$exclude potential artifacts. Micrometer-scale sphingolipid patches consisting of numerous 15Nsphingolipid microdomains with mean diametersmore » of ~200 nm are always present in the plasma membrane. Depletion of 30% of the cellular cholesterol did not eliminate the sphingolipid domains, but did reduce their abundance and long range organization in the plasma membrane. In contrast, disruption of the cytoskeleton eliminated the sphingolipid domains. These results indicate that these sphingolipid assemblages are not lipid rafts, and are instead a distinctly different type of sphingolipid-enriched plasma membrane domain that depends upon cortical actin.« less

  7. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells.

    PubMed

    Dang, Viet D; Jella, Kishore Kumar; Ragheb, Ragy R T; Denslow, Nancy D; Alli, Abdel A

    2017-12-01

    Exosomes are endosome-derived nanovesicles that are involved in cellular communication and signaling. Exosomes are produced by epithelial cells and are found in biologic fluids including blood and urine. The packaged material within exosomes includes proteins and lipids, but the molecular comparison within exosome subtypes is largely unknown. The purpose of this study was to investigate differences between exosomes derived from the apical plasma membrane and basolateral plasma membrane of polarized murine cortical collecting duct principal cells. Nanoparticle tracking analysis showed that the size and concentration of apical and basolateral exosomes remained relatively stable across 3 different temperatures (23, 37, and 42°C). Liquid chromatography-tandem mass spectrometry analysis revealed marked differences between the proteins packaged within the two types of exosomes from the same cells. Several proteins expressed at the inner leaflet of the plasma membrane, including α-actinin-1, moesin, 14-3-3 protein ζ/δ, annexin A1/A3/A4/A5/A6, clathrin heavy chain 1, glyceraldehyde-3-phosphate dehydrogenase, α-enolase, filamin-A, and heat shock protein 90, were identified in samples of apical plasma membrane-derived exosomes, but not in basolateral plasma membrane exosomes from mouse cortical collecting duct cells. In addition to differences at the protein level, mass spectrometry-based shotgun lipidomics analysis showed significant differences in the lipid classes and fatty acid composition of the two types of exosomes. We found higher levels of sphingomyelin and lower levels of cardiolipin, among other phospholipids in the apical plasma membrane compared to the basolateral plasma membrane exosomes. The molecular analyses of exosome subtypes presented herein will contribute to our understanding of exosome biogenesis, and the results may have potential implications for biomarker discovery.-Dang, V. D., Jella, K. K., Ragheb, R. R. T., Denslow, N. D., Alli, A. A. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. © FASEB.

  8. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    PubMed

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  9. Engineering design and theoretical analysis of nanoporous carbon membranes for gas separation

    NASA Astrophysics Data System (ADS)

    Acharya, Madhav

    1999-11-01

    Gases are used in a direct or indirect manner in virtually every major industry, such as steel manufacturing, oil production, foodstuffs and electronics. Membranes are being investigated as an alternative to established methods of gas separation such as pressure swing adsorption and cryogenic distillation. Membranes can be used in continuous operation and work very well at ambient conditions, thus representing a tremendous energy and economic saving over the other technologies. In addition, the integration of reaction and separation into a single unit known as a membrane reactor has the potential to revolutionize the chemical industry by making selective reactions a reality. Nanoporous carbons are highly disordered materials obtained from organic polymers or natural sources. They have the ability to separate gas molecules by several different mechanisms, and hence there is a growing effort to form them into membranes. In this study, nanoporous carbon membranes were prepared on macroporous stainless steel supports of both tubular and disk geometries. The precursor used was poly(furfuryl alcohol) and different synthesis protocols were employed. A spray coating method also was developed which allowed reproducible synthesis of membranes with very few defects. High gas selectivities were obtained such as O2/N2 = 6, H2/C2H 4 = 70 and CO2/N2 = 20. Membranes also were characterized using SEM and AFM, which revealed thin layers of carbon that were quite uniform and homogeneous. The simulation of nanoporous carbon structures also was carried out using a simple algorithmic approach. 5,6 and 7-membered rings were introduced into the structure, thus resulting in considerable curvature. The density of the structures were calculated and found to compare favorably with experimental findings. Finally, a theoretical analysis of size selective transport was performed using transition state theory concepts. A definite correlation of gas permeance with molecular size was obtained after removal of adsorption effects. The transition state enthalpy change was determined and increased with effective diameter, which is consistent with previous studies, as well as with predictions from the Everett-Powl mean field potential model.

  10. [Eosin Y-water test for sperm function examination].

    PubMed

    Zha, Shu-wei; Lü, Nian-qing; Xu, Hao-qin

    2015-06-01

    Based on the principles of the in vitro staining technique, hypotonic swelling test, and water test, the Eosin Y-water test method was developed to simultaneously detect the integrity of the sperm head and tail and sperm membrane structure and function. As a widely used method in clinical laboratories in China, the Eosin Y-water test is methodologically characterized by three advantages. Firstly, both the sperm head and tail can be detected at the same time, which allows easy and comprehensive assessment of membrane damage in different parts of sperm. Secondly, distilled water is used instead of the usual formula solution to simplify and standardize the test by eliminating any potential effects on the water molecules through the sperm membrane due to different osmotic pressure or different sugar proportions and electrolyte solutions. Thirdly, the test takes less time and thus can be repeated before and after treatment. This article focuses on the fundamental principles and modification of the Eosin Y-water test and its application in sperm function examination and routine semen analysis for male infertility, assessment of the quality of sperm retrieved by testicular fine needle aspiration, semen cryopreservation program development, and evaluation of sperm membrane integrity after microwave radiation.

  11. The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Willdorf, Sapir; Ash, Uri; Amar, Michal; Pusara, Srdjan; Dhara, Shubhendu; Srebnik, Simcha; Diesendruck, Charles E.

    2018-01-01

    Anion exchange membrane fuel cells can potentially revolutionize energy storage and delivery; however, their commercial development is hampered by a significant technological impedance: the chemical decomposition of the anion exchange membranes during operation. The hydroxide anions, while transported from the cathode to the anode, attack the positively charged functional groups in the polymer membrane, neutralizing it and suppressing its anion-conducting capability. In recent years, several new quaternary ammonium salts have been proposed to address this challenge, but while they perform well in ex-situ chemical studies, their performance is very limited in real fuel cell studies. Here, we use experimental work, corroborated by molecular dynamics modeling to show that water concentration in the environment of the hydroxide anion, as well as temperature, significantly impact its reactivity. We compare different quaternary ammonium salts that have been previously studied and test their stabilities in the presence of relatively low hydroxide concentration in the presence of different amounts of solvating water molecules, as well as different temperatures. Remarkably, with the right amount of water and at low enough temperatures, even quaternary ammonium salts which are considered "unstable", present significantly improved lifetime.

  12. Plant phospholipase C family: Regulation and functional role in lipid signaling.

    PubMed

    Singh, Amarjeet; Bhatnagar, Nikita; Pandey, Amita; Pandey, Girdhar K

    2015-08-01

    Phospholipase C (PLC), a major membrane phospholipid hydrolyzing enzyme generates signaling messengers such as diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) in animals, and their phosphorylated forms such as phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are thought to regulate various cellular processes in plants. Based on substrate specificity, plant PLC family is sub-divided into phosphatidylinositol-PLC (PI-PLC) and phosphatidylcholine-PLC (PC-PLC) groups. The activity of plant PLCs is regulated by various factors and the major ones include, Ca(2+) concentration, phospholipid substrate, post-translational modifications and interacting proteins. Most of the PLC members have been localized at the plasma membrane, suited for their function of membrane lipid hydrolysis. Several PLC members have been implicated in various cellular processes and signaling networks, triggered in response to a number of environmental cues and developmental events in different plant species, which makes them potential candidates for genetically engineering the crop plants for stress tolerance and enhancing the crop productivity. In this review article, we are focusing mainly on the plant PLC signaling and regulation, potential cellular and physiological role in different abiotic and biotic stresses, nutrient deficiency, growth and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Electrical properties of the costo-uterine muscle of the guinea-pig.

    PubMed Central

    Parkington, H C

    1983-01-01

    The spontaneous electrical and mechanical activity of the costo-uterine muscle of the guinea-pig are described. The spontaneous electrical activity, recorded intracellularly, is similar to that observed previously in longitudinal myometrium of rat (Marshall, 1959) and ionic substitution suggests that, though calcium may be the predominant ion carrying the current during the upstroke of the action potential, some influence of sodium cannot be ruled out. During dioestrus, when circulating progesterone levels are high, there is an increase in the resting membrane potential and a decrease in the frequency of electrical and mechanical activity. There is a two-fold decrease in the space constant (lambda) during dioestrus. At this time the membrane time constant (tau m) is also decreased. The diameter and length of the smooth muscle cells are smaller during dioestrus. However, the differences in cell diameter do not explain all of the differences observed in lambda at this time and it is suggested that there may be an increase in the resistance to current flow between cells. It is concluded that high circulating progesterone may bring about quiescence of target smooth muscle in two ways: by stabilizing the cell membrane and by restricting the spread of activity. PMID:6683758

  14. Ocellatin peptides from the skin secretion of the South American frog Leptodactylus labyrinthicus (Leptodactylidae): characterization, antimicrobial activities and membrane interactions.

    PubMed

    Gusmão, Karla A G; Dos Santos, Daniel M; Santos, Virgílio M; Cortés, María Esperanza; Reis, Pablo V M; Santos, Vera L; Piló-Veloso, Dorila; Verly, Rodrigo M; de Lima, Maria Elena; Resende, Jarbas M

    2017-01-01

    The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus , namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn-23 residue present in ocellatin-LB2 sequence seems to decrease its antimicrobial potential and the strength of the peptide-membrane interactions.

  15. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    NASA Astrophysics Data System (ADS)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  16. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane.

    PubMed

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S; Gray, C G

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05+/-0.39 kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  17. A FRET sensor enables quantitative measurements of membrane charges in live cells.

    PubMed

    Ma, Yuanqing; Yamamoto, Yui; Nicovich, Philip R; Goyette, Jesse; Rossy, Jérémie; Gooding, J Justin; Gaus, Katharina

    2017-04-01

    Membrane charge has a critical role in protein trafficking and signaling. However, quantification of the effective electrostatic potential of cellular membranes has remained challenging. We developed a fluorescence membrane charge sensor (MCS) that reports changes in the membrane charge of live cells via Förster resonance energy transfer (FRET). MCS is permanently attached to the inner leaflet of the plasma membrane and shows a linear, reversible and fast response to changes of the electrostatic potential. The sensor can monitor a wide range of cellular treatments that alter the electrostatic potential, such as incorporation and redistribution of charged lipids and alterations in cytosolic ion concentration. Applying the sensor to T cell biology, we used it to identify charged membrane domains in the immunological synapse. Further, we found that electrostatic interactions prevented spontaneous phosphorylation of the T cell receptor and contributed to the formation of signaling clusters in T cells.

  18. Differences in the Electrophysiological Properties of Mouse Somatosensory Layer 2/3 Neurons In Vivo and Slice Stem from Intrinsic Sources Rather than a Network-Generated High Conductance State

    PubMed Central

    2018-01-01

    Abstract Synaptic activity in vivo can potentially alter the integration properties of neurons. Using recordings in awake mice, we targeted somatosensory layer 2/3 pyramidal neurons and compared neuronal properties with those from slices. Pyramidal cells in vivo had lower resistance and gain values, as well as broader spikes and increased spike frequency adaptation compared to the same cells in slices. Increasing conductance in neurons using dynamic clamp to levels observed in vivo, however, did not lessen the differences between in vivo and slice conditions. Further, local application of tetrodotoxin (TTX) in vivo blocked synaptic-mediated membrane voltage fluctuations but had little impact on pyramidal cell membrane input resistance and time constant values. Differences in electrophysiological properties of layer 2/3 neurons in mouse somatosensory cortex, therefore, stem from intrinsic sources separate from synaptic-mediated membrane voltage fluctuations. PMID:29662946

  19. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    PubMed Central

    Nelson, Andrew D.; Jenkins, Paul M.

    2017-01-01

    Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS) and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of Ranvier, and how abnormalities in these processes may contribute to disease. PMID:28536506

  20. Surface modification of thin film composite membrane by nanoporous titanate nanoparticles for improving combined organic and inorganic antifouling properties.

    PubMed

    Emadzadeh, D; Ghanbari, M; Lau, W J; Rahbari-Sisakht, M; Rana, D; Matsuura, T; Kruczek, B; Ismail, A F

    2017-06-01

    In this study, nanoporous titanate (NT) nanoparticle synthesized by the solvothermal method was used to modify polyamide layer of thin film composite membranes with the aim of improving membrane resistances against organic and inorganic fouling. Thin film nanocomposite membranes (NMs) were synthesized by adding mNTs (modified nanoparticles) into polyamide selective layer followed by characterization using different analytical instruments. The results of XPS and XRD confirmed the presence of mNTs in the polyamide layer of NMs, while FESEM, AFM, zeta potential and contact angle measurement further supported the changes in physical and chemical properties of the membrane surface upon mNTs incorporation. Results of fouling showed that NM1 (the membrane incorporated with 0.01w/v% mNTs) always demonstrated lower degree of flux decline compared to the control membrane when membranes were tested with organic, inorganic and multicomponent synthesized water, brackish water or seawater. Besides showing greater antifouling resistance, the NM also displayed significantly higher water flux compared to the control M membrane. The findings of this work confirmed the positive impact of mNTs in improving the properties of NM with respect to fouling mitigation and flux improvement. Copyright © 2017. Published by Elsevier B.V.

  1. A Novel Fabrication Approach for Multifunctional Graphene-based Thin Film Nano-composite Membranes with Enhanced Desalination and Antibacterial Characteristics.

    PubMed

    Hegab, Hanaa M; ElMekawy, Ahmed; Barclay, Thomas G; Michelmore, Andrew; Zou, Linda; Losic, Dusan; Saint, Christopher P; Ginic-Markovic, Milena

    2017-08-08

    A practical fabrication technique is presented to tackle the trade-off between the water flux and salt rejection of thin film composite (TFC) reverse osmosis (RO) membranes through controlled creation of a thinner active selective polyamide (PA) layer. The new thin film nano-composite (TFNC) RO membranes were synthesized with multifunctional poly tannic acid-functionalized graphene oxide nanosheets (pTA-f-GO) embedded in its PA thin active layer, which is produced through interfacial polymerization. The incorporation of pTA-f-GOL into the fabricated TFNC membranes resulted in a thinner PA layer with lower roughness and higher hydrophilicity compared to pristine membrane. These properties enhanced both the membrane water flux (improved by 40%) and salt rejection (increased by 8%) of the TFNC membrane. Furthermore, the incorporation of biocidal pTA-f-GO nanosheets into the PA active layer contributed to improving the antibacterial properties by 80%, compared to pristine membrane. The fabrication of the pTA-f-GO nanosheets embedded in the PA layer presented in this study is a very practical, scalable and generic process that can potentially be applied in different types of separation membranes resulting in less energy consumption, increased cost-efficiency and improved performance.

  2. Sodium influxes in internally perfused squid giant axon during voltage clamp.

    PubMed

    Atwater, I; Bezanilla, F; Rojas, E

    1969-05-01

    1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential.2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio ;measured sodium influx/computed ionic flux during the early current' is 0.92 +/- 0.12.3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses.

  3. Basolateral membrane K+ channels in renal epithelial cells

    PubMed Central

    Devor, Daniel C.

    2012-01-01

    The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K+ channels play critical roles in normal physiology. Over 90 different genes for K+ channels have been identified in the human genome. Epithelial K+ channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K+ channels is to recycle K+ across the basolateral membrane for proper function of the Na+-K+-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K+ channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a “K+ channel gene family” approach in presenting the representative basolateral K+ channels of the nephron. The basolateral K+ channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089

  4. On energy harvesting from a vibro-impact oscillator with dielectric membranes

    NASA Astrophysics Data System (ADS)

    Lai, Z. H.; Thomson, G.; Yurchenko, D.; Val, D. V.; Rodgers, E.

    2018-07-01

    A vibro-impact mechanical system comprising of a ball moving freely between two dielectric membranes located at a certain distance from each other is studied. The system generates electricity when the ball moving due ambient vibrations impacts one of the membranes. The energy harvesting principle of the proposed system is explained and then used to formulate a numerical model for estimating the system output voltage. The dynamic behavior and output performance of the system are thoroughly studied under a harmonic excitation, as well as different initial conditions and various values of the restitution coefficient of the membranes. The delivered research results are useful for selecting the system parameters to achieve its optimal output performance in a realistic vibrational environment. Potential application of the proposed system for energy harvesting from car engine vibrations is presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ting; Feng, Xuhui; Elsaidi, Sameh K.

    Herein, we demonstrate that a prototypical type of metal organic framework, zeolitic imidazolate framework-8 (ZIF-8), in membrane form, can effectively separate Kr/Xe gas mixtures at industrially relevant compositions. The best membranes separated Kr/Xe mixtures with average Kr permeances as high as 1.5 × 10 -8 ± 0.2 mol/m 2 s Pa and average separation selectivities of 14.2 ± 1.9 for molar feed compositions corresponding to Kr/Xe ratio encountered typically in air. Molecular sieving, competitive adsorption, and differences in diffusivities were identified as the prevailing separation mechanisms. These membranes potentially represent a less-energy-intensive alternative to cryogenic distillation, which is the benchmarkmore » technology used to separate this challenging gas mixture. To our best knowledge, this is the first example of any metal organic membrane composition displaying separation ability for Kr/Xe gas mixtures.« less

  6. The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes.

    PubMed

    Désormeaux, Anik; Moreau, Marie Eve; Lepage, Yves; Chanard, Jacques; Adam, Albert

    2008-03-01

    The combination of negatively-charged membranes and angiotensin I-converting enzyme inhibitors (ACEi) evokes hypersensitivity reactions (HSR) during hemodialysis and bradykinin (BK)-related peptides have been hypothesized as being responsible for these complications. In this study, we tested the effects of neutralizing the membrane electronegativity (zeta potential) of polyacrylonitrile AN69 membranes by coating a polyethyleneimine layer (AN69-ST membranes) over the generation of kinins induced by blood contact with synthetic membranes. We used minidialyzers with AN69 or AN69-ST membranes in an ex vivo model of plasma and we showed that plasma dialysis with AN69 membranes led to significant BK and des-Arg(9)-BK release, which was potentiated by ACEi. This kinin formation was dramatically decreased by AN69-ST membranes, even in the presence of an ACEi, and kinin recovery in the dialysates was also significantly lower with these membranes. High molecular weight kininogen and factor XII detection by immunoblotting of the protein layer coating both membranes corroborated the results: binding of these proteins and contact system activation on AN69-ST membranes were reduced. This ex vivo experimental model applied to the plasma, dialysate and dialysis membrane could be used for the characterization of the kinin-forming capacity of any biomaterial potentially used in vivo in combination with drugs which modulate the pharmacological activity of kinins.

  7. The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes

    PubMed Central

    Désormeaux, Anik; Moreau, Marie Eve; Lepage, Yves; Chanard, Jacques; Adam, Albert

    2014-01-01

    The combination of negatively-charged membranes and angiotensin I-converting enzyme inhibitors (ACEi) evokes hypersensitivity reactions (HSR) during hemodialysis and bradykinin (BK)-related peptides have been hypothesized as being responsible for these complications. In this study, we tested the effects of neutralizing the membrane electronegativity (zeta potential) of polyacrylonitrile AN69 membranes by coating a polyethyleneimine layer (AN69-ST membranes) over the generation of kinins induced by blood contact with synthetic membranes. We used minidialyzers with AN69 or AN69-ST membranes in an ex vivo model of plasma and we showed that plasma dialysis with AN69 membranes led to significant BK and des-Arg9-BK release, which was potentiated by ACEi. This kinin formation was dramatically decreased by AN69-ST membranes, even in the presence of an ACEi, and kinin recovery in the dialysates was also significantly lower with these membranes. High molecular weight kininogen and factor XII detection by immunoblotting of the protein layer coating both membranes corroborated the results: binding of these proteins and contact system activation on AN69-ST membranes were reduced. This ex vivo experimental model applied to the plasma, dialysate and dialysis membrane could be used for the characterization of the kinin-forming capacity of any biomaterial potentially used in vivo in combination with drugs which modulate the pharmacological activity of kinins. PMID:18078988

  8. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    PubMed Central

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  9. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    PubMed

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Investigating the effect of a single glycine to alanine substitution on interactions of antimicrobial peptide latarcin 2a with a lipid membrane.

    PubMed

    Idiong, Grace; Won, Amy; Ruscito, Annamaria; Leung, Bonnie O; Hitchcock, Adam P; Ianoul, Anatoli

    2011-09-01

    Latarcins are linear, α-helical antimicrobial peptides purified from the venom of the Central Asian spider Lachesana tarabaevi, with lytic activity against Gram-positive and Gram-negative bacteria, erythrocytes, and yeast at micromolar concentrations. In this work, we investigated the role of the hinge in latarcin 2a (ltc2a, GLFGKLIKKFGRKAISYAVKKARGKH-COOH), which adopts a helix-hinge-helix conformation in membrane-mimicking environments, on peptide-membrane interactions and its potential effect on the selective toxicity of the peptide. A modified latarcin 2a, ltc2aG11A, obtained by replacing the glycine at position 11 with alanine (ltc2aG11A, GLFGKLIKKFARKAISYAVKKARGKH-COOH), adopts a more rigid structure due to the reduced conformational flexibility. Langmuir monolayer measurements combined with atomic force microscopy and X-ray photoemission electron microscopy (X-PEEM) indicate that both peptides bind and insert preferentially into anionic compared with zwitterionic phospholipid monolayers. Modified ltc2aG11A was found to be more disruptive of supported phospholipid bilayer modeling mammalian cell membrane. However, no considerable difference in lytic activity of the two peptides toward bacterial membrane was found. Overall the data indicate that decrease in the flexibility of ltc2a induced by the modification in the hinge region is likely to increase the peptide's nonspecific interactions with zwitterionic cell membranes and potentially increase its toxicity against eukaryotic cells.

  11. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    PubMed

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by Elsevier Inc.

  12. Structural changes in lymphocytes membrane of Chernobyl clean-up workers from Latvia.

    PubMed

    Kalnina, Inta; Zvagule, Tija; Gabruseva, Natalija; Kirilova, Jelena; Kurjane, Natalja; Bruvere, Ruta; Kesters, Andris; Kizane, Gunta; Kirilovs, Georgijs; Meirovics, Imants

    2007-11-01

    ABM (3-aminobenzanthrrone derivative) developed at the Riga Technical University, Riga, Latvia) has been previously shown as a potential probe for determination of the immune state of patients with different pathologies . The fist study (using probe ABM) of peripheral blood mononuclear cells (PBMC) membranes of 97 Chernobyl clean-up workers from Latvia was conducted in 1997. Now we repeatedly examine the same (n = 54) individuals in dynamics. ABM spectral parameters in PBMC suspension, fluorescence anisotropy and blood plasma albumin characteristics were recorded. In 1997 screening showed 5 different patterns of fluorescence spectra, from which in 2007 we obtained only two. These patterns of spectra had never been previously seen in healthy individuals or patients with tuberculosis, multiple sclerosis, rheumatoid arthritis, etc., examined by us. Patterns of ABM fluorescence spectra are associated with membrane anisotropy and conformational changes of blood plasma albumin. We observed that in dynamics 1997-2007 the lipid compartment of the membrane became more fluid while the lipid-protein interface became more rigid. The use of probe ANS and albumin auto-fluorescence allowed show conformational alterations in Chernobyl clean-up workers blood plasma. It is necessary to note that all investigated parameters significantly differ in observed groups of patients. These findings reinforce our understanding that that the cell membrane is a significant biological target of radiation. The role of the membrane in the expression and course of cell damage after radiation exposure must be considered. So ten years dynamic of PBMC membrane characteristics by ABM (spectral shift and anisotropy indexes) in Chernobyl clean-up workers reveal progressive trend toward certain resemblance with those of chronic B-cell lymphoid leukemia.

  13. Effect of commercial long-term extenders on metabolic activity and membrane integrity of boar spermatozoa stored at 17 degrees C.

    PubMed

    Dziekońska, A; Fraser, L; Majewska, A; Lecewicz, M; Zasiadczyk, Ł; Kordan, W

    2013-01-01

    This study was aimed to analyze the metabolic activity and membrane integrity of boar spermatozoa following storage in long-term semen extenders. Boar semen was diluted with Androhep EnduraGuard (AeG), DILU-Cell (DC), SafeCell Plus (SCP) and Vitasem LD (VLD) extenders and stored for 10 days at 17 degrees C. Parameters of the analyzed sperm metabolic activity included total motility (TMOT), progressive motility (PMOT), high mitochondrial membrane potential (MMP) and ATP content, whereas those of the membrane integrity included plasma membrane integrity (PMI) and normal apical ridge (NAR) acrosome. Extender type was a significant (P < 0.05) source of variation in all the analyzed sperm parameters, except for ATP content. Furthermore, the storage time had a significant effect (P < 0.05) on the sperm metabolic activity and membrane integrity during semen storage. In all extenders the metabolic activity and membrane integrity of the stored spermatozoa decreased continuously over time. Among the four analyzed extenders, AeG and SCP showed the best performance in terms of TMOT and PMI on Days 5, 7 and 10 of storage. Marked differences in the proportions of spermatozoa with high MMP were observed between the extenders, particularly on Day 10 of storage. There were not any marked differences in sperm ATP content between the extenders, regardless of the storage time. Furthermore, the percentage of spermatozoa with NAR acrosomes decreased during prolonged storage, being markedly lower in DC-diluted semen compared with semen diluted with either AeG or SCP extender. The results of this study indicated that components of the long-term extenders have different effects on the sperm functionality and prolonged semen longevity by delaying the processes associated with sperm ageing during liquid storage.

  14. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    PubMed

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  15. Effects of the new imidazopyridine CL 86-02-01 on isolated papillary muscle of guinea-pig hearts.

    PubMed

    Studenik, C; Lemmens-Gruber, R; Heistracher, P

    1998-06-01

    Inotropic activity and the effect of CL 86-02-01 (2-(3-methoxy-5-methylsulfinyl-2-thienyl)-1H-imidazo[4,5-c]pyridine hydrochloride, CAS 109 792-24-7) on membrane resting and action potentials were studied in isolated guinea-pig papillary muscles. Membrane resting potential and action potential parameters were not significantly changed, while CL 86-02-01 exerted a concentration-dependent inotropic effect by increasing the maximum rate of force development and maximum rate of force relaxation. Time to peak force, relaxation time and total contraction time were reduced. These effects are similar to those of beta-adrenergic drugs and phosphodiesterase inhibitors, but markedly differ from those described for other positive inotropic agents like cardiac glycosides, calcium agonists, alpha-adrenergic drugs or increased extracellular calcium concentration.

  16. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    DOE PAGES

    Calero, Carles; Stanley, H.; Franzese, Giancarlo

    2016-04-27

    Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs). We calculate the rotational and translational slowdown of the dynamics of water confinedmore » in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i) to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii) to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii) to the higher probability of water–lipid HBs as the hydration decreases. Lastly, our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.« less

  17. A universal steady state I-V relationship for membrane current

    NASA Technical Reports Server (NTRS)

    Chernyak, Y. B.; Cohen, R. J. (Principal Investigator)

    1995-01-01

    A purely electrical mechanism for the gating of membrane ionic channel gives rise to a simple I-V relationship for membrane current. Our approach is based on the known presence of gating charge, which is an established property of the membrane channel gating. The gating charge is systematically treated as a polarization of the channel protein which varies with the external electric field and modifies the effective potential through which the ions migrate in the channel. Two polarization effects have been considered: 1) the up or down shift of the whole potential function, and 2) the change in the effective electric field inside the channel which is due to familiar effect of the effective reduction of the electric field inside a dielectric body because of the presence of surface charges on its surface. Both effects are linear in the channel polarization. The ionic current is described by a steady state solution of the Nernst-Planck equation with the potential directly controlled by the gating charge system. The solution describes reasonably well the steady state and peak-current I-V relationships for different channels, and when applied adiabatically, explains the time lag between the gating charge current and the rise of the ionic current. The approach developed can be useful as an effective way to model the ionic currents in axons, cardiac cells and other excitable tissues.

  18. A cell culture technique for human epiretinal membranes to describe cell behavior and membrane contraction in vitro.

    PubMed

    Wertheimer, Christian; Eibl-Lindner, Kirsten H; Compera, Denise; Kueres, Alexander; Wolf, Armin; Docheva, Denitsa; Priglinger, Siegfried G; Priglinger, Claudia; Schumann, Ricarda G

    2017-11-01

    To introduce a human cell culture technique for investigating in-vitro behavior of primary epiretinal cells and membrane contraction of fibrocellular tissue surgically removed from eyes with idiopathic macular pucker. Human epiretinal membranes were harvested from ten eyes with idiopathic macular pucker during standard vitrectomy. Specimens were fixed on cell culture plastic using small entomological pins to apply horizontal stress to the tissue, and then transferred to standard cell culture conditions. Cell behavior of 400 epiretinal cells from 10 epiretinal membranes was observed in time-lapse microscopy and analyzed in terms of cell migration, cell velocity, and membrane contraction. Immunocytochemistry was performed for cell type-specific antigens. Cell specific differences in migration behavior were observed comprising two phenotypes: (PT1) epiretinal cells moving fast, less directly, with small round phenotype and (PT2) epiretinal cells moving slowly, directly, with elongated large phenotype. No mitosis, no outgrowth and no migration onto the plastic were seen. Horizontal contraction measurements showed variation between specimens. Masses of epiretinal cells with a myofibroblast-like phenotype expressed cytoplasmatic α-SMA stress fibers and correlated with cell behavior characteristics (PT2). Fast moving epiretinal cells (PT1) were identified as microglia by immunostaining. This in-vitro technique using traction application allows for culturing surgically removed epiretinal membranes from eyes with idiopathic macular pucker, demonstrating cell behavior and membrane contraction of primary human epiretinal cells. Our findings emphasize the abundance of myofibroblasts, the presence of microglia and specific differences of cell behavior in these membranes. This technique has the potential to improve the understanding of pathologies at the vitreomacular interface and might be helpful in establishing anti-fibrotic treatment strategies.

  19. Grape tannin catechin and ethanol fluidify oral membrane mimics containing moderate amounts of cholesterol: Implications on wine tasting?

    PubMed

    Furlan, Aurélien L; Saad, Ahmad; Dufourc, Erick J; Géan, Julie

    2016-11-01

    Wine tasting results in interactions of tannin-ethanol solutions with proteins and lipids of the oral cavity. Among the various feelings perceived during tasting, astringency and bitterness most probably result in binding events with saliva proteins, lipids and receptors. In this work, we monitored the conjugated effect of the grape polyphenol catechin and ethanol on lipid membranes mimicking the different degrees of keratinization of oral cavity surfaces by varying the amount of cholesterol present in membranes. Both catechin and ethanol fluidify the membranes as evidenced by solid-state 2 H NMR of perdeuterated lipids. The effect is however depending on the cholesterol proportion and may be very important and cumulative in the absence of cholesterol or presence of 18 mol % cholesterol. For 40 mol % cholesterol, mimicking highly keratinized membranes, both ethanol and catechin can no longer affect membrane dynamics. These observations can be accounted for by phase diagrams of lipid-cholesterol mixtures and the role played by membrane defects for insertion of tannins and ethanol when several phases coexist. These findings suggest that the behavior of oral membranes in contact with wine should be different depending of their cholesterol content. Astringency and bitterness could be then affected; the former because of a potential competition between the tannin-lipid and the tannin-saliva protein interaction, and the latter because of a possible fluidity modification of membranes containing taste receptors. The lipids that have been up to now weakly considered in oenology may be become a new actor in the issue of wine tasting. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney.

    PubMed

    Guggino, W B; Oberleithner, H; Giebisch, G

    1985-07-01

    The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.

  1. Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney

    PubMed Central

    1985-01-01

    The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway. PMID:2411847

  2. Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells: membrane-bound SCF is sufficient to confer stroma competence to epithelial cells.

    PubMed

    Friel, Jutta; Itoh, Katsuhiko; Bergholz, Ulla; Jücker, Manfred; Stocking, Carol; Harrison, Paul; Ostertag, Wolfram

    2002-03-01

    Hemopoiesis takes place in a microenvironment where hemopoietic cells are closely associated with stroma by various interactions. Stroma coregulates the proliferation and differentiation of hemopoietic cells. Stroma-hemopoietic-cell contact can be supported by locally produced membrane associated growth factors. The stroma derived growth factor, stem cell factor (SCF) is important in hemopoiesis. We examined the different biological interactions of membrane bound and soluble SCF with human hemopoietic cells expressing the SCF receptor, c-kit. To analyze the function of the SCF isoforms in inducing the proliferation of hemopoietic TF1 or Cord blood (CB) CD34+ cells we used stroma cell lines that differ in their presentation of no SCF, membrane SCF, or soluble SCF. We established a new coculture system using an epithelial cell line that excludes potential interfering effects with other known stroma encoded hemopoietic growth factors. We show that soluble SCF, in absence of membrane-bound SCF, inhibits long term clonal growth of primary or established CD34+ hemopoietic cells, whereas membrane-inserted SCF "dominantly" induces long term proliferation of these cells. We demonstrate a hierarchy of these SCF isoforms in the interaction of stroma with hemopoietic TF1 cells. Membrane-bound SCF is "dominant" over soluble SCF, whereas soluble SCF acts epistatically in interacting with hemopoietic cells compared with other stroma derived factors present in SCF deficient stroma. A hierarchy of stroma cell lines can be arranged according to their presentation of membrane SCF or soluble SCF. In our model system, membrane-bound SCF expression is sufficient to confer stroma properties to an epithelial cell line but soluble SCF does not.

  3. Multiphoton Process and Anomalous Potential of Cell Membrane by Laser Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Kaixi; Zhao, Qingxun; Cui, Zhiyun; Zhar, Ping; Dong, Lifang

    1996-01-01

    In this paper, by the use of quantum biology and quantum optics, the laser induced potential variation of cell membrane has been studied. Theoretically, we have found a method of calculating the monophoton and multiphoton processes in the formation of the anomalous potential of cell membrane. In contrast with the experimental results, our numerical result is in the same order. Therefore, we have found the possibility of cancer caused by the laser induced anomalous cell potential.

  4. Nonlinear dynamic characteristics of dielectric elastomer membranes

    NASA Astrophysics Data System (ADS)

    Fox, Jason W.; Goulbourne, Nakhiah C.

    2008-03-01

    The dynamic response of dielectric elastomer membranes subject to time-varying voltage inputs for various initial inflation states is investigated. These results provide new insight into the differences observed between quasi-static and dynamic actuation and presents a new challenge to modeling efforts. Dielectric elastomer membranes are a potentially enabling technology for soft robotics and biomedical devices such as implants and surgical tools. In this work, two key system parameters are varied: the chamber volume and the voltage signal offset. The chamber volume experiments reveal that increasing the size of the chamber onto which the membrane is clamped will increase the deformations as well as cause the membrane's resonance peaks to shift and change in number. For prestretched dielectric elastomer membranes at the smallest chamber volume, the maximum actuation displacement is 81 microns; while at the largest chamber volume, the maximum actuation displacement is 1431 microns. This corresponds to a 1767% increase in maximum pole displacement. In addition, actuating the membrane at the resonance frequencies provides hundreds of percent increase in strain compared to the quasi-static strain. Adding a voltage offset to the time-varying input signal causes the membrane to oscillate at two distinct frequencies rather than one and also presents a unique opportunity to increase the output displacement without electrically overloading the membrane. Experiments to capture the entire motion of the membrane reveal that classical membrane mode shapes are electrically generated although all points of the membrane do not pass through equilibrium at the same moments in time.

  5. Pure keratin membrane and fibers from chicken feather.

    PubMed

    Ma, Bomou; Qiao, Xue; Hou, Xiuliang; Yang, Yiqi

    2016-08-01

    In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber. Compared with the raw chicken feather, the regenerated keratin materials retain its chemical structure and thermal stability, their relative crystallinity is a little different depend on the shaping method, which leads to the difference in moisture regain. The mechanical results show that tensile strength of the keratin membrane researches 3.5MPa, have potential application in biomedical fields. However, the keratin fiber presents low tenacity, i.e. 0.5cN/dtex, this problem should be solved in order to apply the new fiber in textile and material science. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Graphene-based biomimetic materials targeting urine metabolite as potential cancer biomarker: application over different conductive materials for potentiometric transduction.

    PubMed

    Truta, Liliana A A N A; Ferreira, Nádia S; Sales, M Goreti F

    2014-12-20

    This works presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl)trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6×10 -5 mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.

  7. Graphene-based biomimetic materials targeting urine metabolite as potential cancer biomarker: application over different conductive materials for potentiometric transduction

    PubMed Central

    Truta, Liliana A.A.N.A.; Ferreira, Nádia S.; Sales, M. Goreti F.

    2015-01-01

    This works presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl)trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (−57.4mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6×10−5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications. PMID:26456975

  8. Fate and wetting potential of bio-refractory organics in membrane distillation for coke wastewater treatment.

    PubMed

    Ren, Jing; Li, Jianfeng; Chen, Zuliang; Cheng, Fangqin

    2018-06-02

    Membrane distillation (MD) has been hindered in industrial applications due to the potential wetting or fouling caused by complicated organic compositions. This study investigated the correlations between the fate and wetting potential of bio-refractory organics in the MD process, where three coke wastewater samples pre-treated with bio-degradation and coagulation served as feed solutions. Results showed that although most of the bio-refractory organics in coke wastewater were rejected by the hydrophobic membrane, some volatile aromatic organics including benzenes, phenols, quinolines and naphthalenes passed through the membrane during the MD process. Interestingly, membrane wetting occurred coincidently with the penetration of phenolic and heterocyclic organics. The wetting rate was obviously correlated with the feed composition and membrane surface properties. Ultimately, novel insights into the anti-wetting strategy of MD with bio-refractory organics was proposed, illustrating that the polyaluminum chloride/polyacrylamide coagulation not only removed contaminants which could accelerate membrane wetting, but also retarded membrane wetting by the complexation with organics. The deposition of these complexes on the membrane surface introduced a secondary hydrophilic layer on the hydrophobic substrate, which established a composite membrane structure with superior wetting resistance. These new findings would be beneficial to wetting control in membrane distillation for wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO)

    NASA Astrophysics Data System (ADS)

    Li, Yujiao; Shi, Shaoyuan; Cao, Hongbin; Zhao, Zhijuan; Wen, Hao

    2018-06-01

    The heterogeneous anion exchange membranes (AEMs) were modified by electrodeposition of graphene oxide (GO) under different conditions. The physicochemical properties of GO-modified membranes were characterized systemically to obtain the optimized conditions for the electrodeposition of GO on the surface of AEMs. The results indicated that the contact angle and zeta potential of the modified AEMs decreased when increasing the concentration of GO from 0.05 g/L to 0.1 g/L. The higher concentration of NaCl, as the supporting electrolyte, could hinder the electrodeposition of GO on the AEMs for the competitive migration between the GO and Cl- ions. The increase of current density had a positive effect on properties of GO-modified membranes in the range of 1-5 mA/cm2. Compared with the pristine AEM, all the GO-modified AEMs exhibited smoother surface, higher hydrophilicity and negative zeta potential. It was also found that the GO modifying layer did not increase electrical resistance and had only a negligible effect on the desalination performance of AEMs. In the fouling experiments with sodium dodecyl benzene sulfonate (SDBS) as the model foulant, the GO-modified AEMs exhibited improved fouling resistance to SDBS.

  10. Epithelial toxicity of alkylglycoside surfactants.

    PubMed

    Vllasaliu, Driton; Shubber, Saif; Fowler, Robyn; Garnett, Martin; Alexander, Cameron; Stolnik, Snow

    2013-01-01

    Alkylglycoside surfactants have been proposed as drug delivery excipients with the potential to enhance mucosal drug absorption of therapeutic macromolecules. Previous work reported their drug absorption-promoting potential by demonstrating that several compounds within this class of surfactants improve mucosal absorption of peptides, proteins and other macromolecules. However, detailed investigation of their toxicity has not been conducted. Using Calu-3 epithelial cell layers as a model of the airway mucosa, and liposomes as models of cell membranes, this work investigates the cytotoxicity of dodecylmaltoside, tridecylmaltoside and tetradecylmaltoside, as representative alkylglycosides. A combination of different toxicity assays and other tests indicating cell membrane disruption were used to assess cytotoxicity. The alkylglycosides tested induced a dramatic reduction in cell viability, cell membrane and liposome-disruptive effects, as well as abrogation of transepithelial electrical resistance that did not recover completely. Importantly, these phenomena were noted at concentrations markedly lower than those typically used in the literature studies demonstrating the absorption-enhancing properties of alkylglycosides. This work therefore demonstrates that alkylglycosides exhibit significant toxicity towards airway epithelial cells, most likely resulting from a membrane-damaging effect, highlighting a need for further evaluation of their safety as absorption-enhancing excipients. Copyright © 2012 Wiley Periodicals, Inc.

  11. Long-range correlation of the membrane potential in neocortical neurons during slow oscillation

    PubMed Central

    Volgushev, Maxim; Chauvette, Sylvain; Timofeev, Igor

    2012-01-01

    Large amplitude slow waves are characteristic for the summary brain activity, recorded as electroencephalogram (EEG) or local field potentials (LFP), during deep stages of sleep and some types of anesthesia. Slow rhythm of the synchronized EEG reflects an alternation of active (depolarized, UP) and silent (hyperpolarized, DOWN) states of neocortical neurons. In neurons, involvement in the generalized slow oscillation results in a long-range synchronization of changes of their membrane potential as well as their firing. Here, we aimed at intracellular analysis of details of this synchronization. We asked which components of neuronal activity exhibit long-range correlations during the synchronized EEG? To answer this question, we made simultaneous intracellular recordings from two to four neocortical neurons in cat neocortex. We studied how correlated is the occurrence of active and silent states, and how correlated are fluctuations of the membrane potential in pairs of neurons located close one to the other or separated by up to 13 mm. We show that strong long-range correlation of the membrane potential was observed only (i) during the slow oscillation but not during periods without the oscillation, (ii) during periods which included transitions between the states but not during within-the-state periods, and (iii) for the low-frequency (<5 Hz) components of membrane potential fluctuations but not for the higher-frequency components (>10 Hz). In contrast to the neurons located several millimeters one from the other, membrane potential fluctuations in neighboring neurons remain strongly correlated during periods without slow oscillation. We conclude that membrane potential correlation in distant neurons is brought about by synchronous transitions between the states, while activity within the states is largely uncorrelated. The lack of the generalized fine-scale synchronization of membrane potential changes in neurons during the active states of slow oscillation may allow individual neurons to selectively engage in short living episodes of correlated activity—a process that may be similar to dynamical formation of neuronal ensembles during activated brain states. PMID:21854963

  12. The voltage-dependent anion channel as a biological transistor: theoretical considerations.

    PubMed

    Lemeshko, V V; Lemeshko, S V

    2004-07-01

    The voltage-dependent anion channel (VDAC) is a porin of the mitochondrial outer membrane with a bell-shaped permeability-voltage characteristic. This porin restricts the flow of negatively charged metabolites at certain non-zero voltages, and thus might regulate their flux across the mitochondrial outer membrane. Here, we have developed a mathematical model illustrating the possibility of interaction between two steady-state fluxes of negatively charged metabolites circulating across the VDAC in a membrane. The fluxes interact by contributing to generation of the membrane electrical potential with subsequent closure of the VDAC. The model predicts that the VDAC might function as a single-molecule biological transistor and amplifier, because according to the obtained calculations a small change in the flux of one pair of different negatively charged metabolites causes a significant modulation of a more powerful flux of another pair of negatively charged metabolites circulating across the same membrane with the VDAC. Such transistor-like behavior of the VDAC in the mitochondrial outer membrane might be an important principle of the cell energy metabolism regulation under some physiological conditions.

  13. Reverse membrane bioreactor: Introduction to a new technology for biofuel production.

    PubMed

    Mahboubi, Amir; Ylitervo, Päivi; Doyen, Wim; De Wever, Heleen; Taherzadeh, Mohammad J

    2016-01-01

    The novel concept of reverse membrane bioreactors (rMBR) introduced in this review is a new membrane-assisted cell retention technique benefiting from the advantageous properties of both conventional MBRs and cell encapsulation techniques to tackle issues in bioconversion and fermentation of complex feeds. The rMBR applies high local cell density and membrane separation of cell/feed to the conventional immersed membrane bioreactor (iMBR) set up. Moreover, this new membrane configuration functions on basis of concentration-driven diffusion rather than pressure-driven convection previously used in conventional MBRs. These new features bring along the exceptional ability of rMBRs in aiding complex bioconversion and fermentation feeds containing high concentrations of inhibitory compounds, a variety of sugar sources and high suspended solid content. In the current review, the similarities and differences between the rMBR and conventional MBRs and cell encapsulation regarding advantages, disadvantages, principles and applications for biofuel production are presented and compared. Moreover, the potential of rMBRs in bioconversion of specific complex substrates of interest such as lignocellulosic hydrolysate is thoroughly studied. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime

    NASA Astrophysics Data System (ADS)

    Caré, Bertrand R.; Soula, Hédi A.

    2013-01-01

    Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.

  15. Membrane Capacitive Memory Alters Spiking in Neurons Described by the Fractional-Order Hodgkin-Huxley Model

    PubMed Central

    Weinberg, Seth H.

    2015-01-01

    Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a weighted sum of the membrane potential prior history. However, it is not clear to what extent fractional-order dynamics may alter the properties of active excitable cells. In this study, we investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in the membrane patch model, as fractional-order decreases, i.e., a greater influence of membrane potential memory, peak sodium and potassium currents are altered, and spike frequency and amplitude are generally reduced. In the nerve axon, the velocity of spike propagation increases as fractional-order decreases, while in a neural network, electrical activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails to reproduce many of the key alterations in spiking properties, suggesting that membrane capacitive memory and fractional-order membrane potential dynamics are important and necessary to reproduce neuronal electrical activity. PMID:25970534

  16. Action potential propagation: ion current or intramembrane electric field?

    PubMed

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  17. Design and development of a ferroelectric micro photo detector for the bionic eye

    NASA Astrophysics Data System (ADS)

    Song, Yang

    Driven by no effective therapy for Retinitis Pigmentosa and Age Related Macular Degeneration, artificial vision through the development of an artificial retina that can be implanted into the human eye, is being addressed by the Bionic Eye. This dissertation focuses on the study of a photoferroelectric micro photo detector as an implantable retinal prosthesis for vision restoration in patients with above disorders. This implant uses an electrical signal to trigger the appropriate ocular cells of the vision system without resorting to wiring or electrode implantation. The research work includes fabrication of photoferroelectric thin film micro detectors, characterization of these photoferroelectric micro devices as photovoltaic cells, and Finite Element Method (FEM) modeling of the photoferroelectrics and their device-neuron interface. A ferroelectric micro detector exhibiting the photovoltaic effect (PVE) directly adds electrical potential to the neuron membrane outer wall at the focal adhesion regions. The electrical potential then generates a retinal cell membrane potential deflection through a newly developed Direct-Electric-Field-Coupling (DEFC) model. This model is quite different from the traditional electric current model because instead of current directly working on the cell membrane, the PVE current is used to generate a localized high electric potential in the focal adhesion region by working together with the anisotropic high internal impedance of ferroelectric thin films. General electrodes and silicon photodetectors do not have such anisotropy and high impedance, and thus they cannot generate DEFC. This mechanism investigation is very valuable, because it clearly shows that our artificial retina works in a way that is totally different from the traditional current stimulation methods.

  18. How to Design a Biosensor

    PubMed Central

    Ward, W. Kenneth

    2007-01-01

    Amperometric sensors for continuous glucose monitoring could prevent acute and chronic complications of diabetes, but research is needed to improve accuracy and stability. In designing sensors, interference from non-glucose analytes can be minimized by use of filtration membranes or electron transfer mediators that allow polarization at low potentials. If oxygen is required for the enzymatic reaction with glucose, then the outer permselective membrane must have substantial oxygen permeability. For this reason, during development of permselective membranes, permeability studies (such as performed by Tipnis and colleagues in this issue) can be used to measure transport of glucose and oxygen and optimize membrane structure. Tipnis and colleagues present a novel biosensor based with separate layers for glucose-oxygen permselectivity, enzymatic conversion, and avoidance of interference. They also address sensor stability, in part by comparing sensor function during ascending vs descending glucose levels. By measuring the difference, they were able to minimize this aspect of instability (hysterisis), which assisted them in selecting a promising permselective membrane based on iron and humic acid. PMID:19888407

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hee Yoon; Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California; Raphael, Patrick D.

    Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane,more » tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.« less

  20. How to design a biosensor.

    PubMed

    Ward, W Kenneth

    2007-03-01

    Amperometric sensors for continuous glucose monitoring could prevent acute and chronic complications of diabetes, but research is needed to improve accuracy and stability. In designing sensors, interference from non-glucose analytes can be minimized by use of filtration membranes or electron transfer mediators that allow polarization at low potentials. If oxygen is required for the enzymatic reaction with glucose, then the outer permselective membrane must have substantial oxygen permeability. For this reason, during development of permselective membranes, permeability studies (such as performed by Tipnis and colleagues in this issue) can be used to measure transport of glucose and oxygen and optimize membrane structure. Tipnis and colleagues present a novel biosensor based with separate layers for glucose-oxygen permselectivity, enzymatic conversion, and avoidance of interference. They also address sensor stability, in part by comparing sensor function during ascending vs descending glucose levels. By measuring the difference, they were able to minimize this aspect of instability (hysterisis), which assisted them in selecting a promising permselective membrane based on iron and humic acid.

  1. How half-coated janus particles enter cells.

    PubMed

    Gao, Yuan; Yu, Yan

    2013-12-26

    Janus particles possess functional asymmetry and directionality within a single entity and thus are predicted to enable many promising biomedical applications that are not offered by homogeneous particles. However, it remains elusive what role the Janus principle plays in Janus particle-cell interactions, particularly in cellular uptake. We studied how asymmetric distribution of ligands on half-coated Janus microparticles dictates the membrane dynamics during receptor-mediated particle uptake, and found key differences from those characteristic of homogeneous particles. Live-cell fluorescence imaging combined with single-particle level quantification of particle-cell membrane interactions shows that the asymmetric distribution of ligands leads to a three-step endocytic process: membrane cup formation on the ligand-coated hemisphere, stalling at the Janus interface, and rapid membrane protrusion on the ligand-absent hemisphere to complete the particle engulfment. The direct correlation between the spatial presentation of ligands on Janus particles and the temporal changes of membrane dynamics revealed in this work elucidates the potential of using the Janus principle to fine-tune particle-cell interactions.

  2. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    PubMed

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  3. Membrane development for vanadium redox flow batteries.

    PubMed

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  4. Entrainment in nerve by a ferroelectric model (II): Quasi-periodic oscillation and the phase locking

    NASA Astrophysics Data System (ADS)

    Shirane, Kotaro; Tokimoto, Takayuki; Kushibe, Hiroyuki

    1997-09-01

    A nonlinear state equation for membrane excitation can be simplified by Leuchtag's ferroelectric model which is applied to a chemical network theory. A dissipative structure of such a membrane is described by an equilibrium space, η 3 + aη + b = 0, giving a cusp catastrophe, and the membrane is self-organized in the resting state under the condition, a < 0( T < Tc), where η corresponds to the membrane potential, and a and b imply dipole-dipole and dipole-ion interactions of channel proteins embedded in the membrane, respectively. As well known, a specific characteristic of nonlinear electrical phenomena in the membrane is a limit cycle arising through the entrainment by periodical stimuli or chaos. A phase transition between the equilibrium and the non-equilibrium states (a dissipative structure without the resting state) is described by a parameter giving the difference from thermal equilibrium. In this dynamic system, quasi-periodic oscillations which arise in periodic external fields and the phase locking, that is, entrainment, caused by changing I0 at ω ≠ ω n (ω n - the natural frequency of the membrane) are studied with parameters introduced into Zeeman's formulas of ȧ and ḃ.

  5. Dynamics of silver elution from functionalised antimicrobial nanofiltration membranes.

    PubMed

    Choudhari, S; Habimana, O; Hannon, J; Allen, A; Cummins, E; Casey, E

    2017-07-01

    In an effort to mitigate biofouling on thin film composite membranes such as nanofiltration and reverse osmosis, a myriad of different surface modification strategies has been published. The use of silver nanoparticles (Ag-NPs) has emerged as being particularly promising. Nevertheless, the stability of these surface modifications is still poorly understood, particularly under permeate flux conditions. Leaching or elution of Ag-NPs from the membrane surface can not only affect the antimicrobial characteristics of the membrane, but could also potentially present an environmental liability when applied in industrial-scale systems. This study sought to investigate the dynamics of silver elution and the bactericidal effect of an Ag-NP functionalised NF270 membrane. Inductively coupled plasma-atomic emission spectroscopy was used to show that the bulk of leached silver occurred at the start of experimental runs, and was found to be independent of salt or permeate conditions used. Cumulative amounts of leached silver did, however, stabilise following the initial release, and were shown to have maintained the biocidal characteristics of the modified membrane, as observed by a higher fraction of structurally damaged Pseudomonas fluorescens cells. These results highlight the need to comprehensively assess the time-dependent nature of bactericidal membranes.

  6. Neutral sphingomyelinase 2 modulates cytotoxic effects of protopanaxadiol on different human cancer cells

    PubMed Central

    2013-01-01

    Background Some of ginsenosides, root extracts from Panax ginseng, exert cytotoxicity against cancer cells through disruption of membrane subdomains called lipid rafts. Protopanaxadiol (PPD) exhibits the highest cytotoxic effect among 8 ginsenosides which we evaluated for anti-cancer activity. We investigated if PPD disrupts lipid rafts in its cytotoxic effects and also the possible mechanisms. Methods Eight ginsenosides were evaluated using different cancer cells and cell viability assays. The potent ginsenoside, PPD was investigated for its roles in lipid raft disruption and downstream pathways to apoptosis of cancer cells. Anti-cancer effects of PPD was also investigated in vivo using mouse xenograft model. Results PPD consistently exerts its potent cytotoxicity in 2 cell survival assays using 5 different cancer cell lines. PPD disrupts lipid rafts in different ways from methyl-β-cyclodextrin (MβCD) depleting cholesterol out of the subdomains, since lipid raft proteins were differentially modulated by the saponin. During disruption of lipid rafts, PPD activated neutral sphingomyelinase 2 (nSMase 2) hydrolyzing membrane sphingomyelins into pro-apoptotic intracellular ceramides. Furthermore, PPD demonstrated its anti-cancer activities against K562 tumor cells in mouse xenograft model, confirming its potential as an adjunct or chemotherapeutic agent by itself in vivo. Conclusions This study demonstrates that neutral sphingomyelinase 2 is responsible for the cytotoxicity of PPD through production of apoptotic ceramides from membrane sphingomyelins. Thus neutral sphingomyelinase 2 and its relevant mechanisms may potentially be employed in cancer chemotherapies. PMID:23889969

  7. Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges.

    PubMed

    Li, Juan; Gong, Ji-Lai; Zeng, Guang-Ming; Zhang, Peng; Song, Biao; Cao, Wei-Cheng; Liu, Hong-Yu; Huan, Shuang-Yan

    2018-10-01

    Treating dye wastewater by membrane filtration technology has received much attention from researchers all over the world, however, current studies mainly focused on the removal of singly charged dyes but actual wastewater usually contains dyes with different charges. In this study, the removal of neutral, cationic and anionic dyes in binary or ternary systems was conducted by using zirconium-based metal organic frameworks loaded on polyurethane foam (Zr-MOFs-PUF) membrane. The Zr-MOFs-PUF membrane was fabricated by an in-situ hydrothermal synthesis approach and a hot-pressing process. Neutrally charged Rhodamine B (RB), positively charged Methylene blue (MB), and negatively charged Congo red (CR) were chosen as model pollutants for investigating filtration performance of the membrane. The results of filtration experiments showed that the Zr-MOFs-PUF membrane could simultaneously remove RB, MB, and CR not only from their binary system including RB/MB, RB/CR, and MB/CR mixtures, but also from RB/MB/CR ternary system. The removal of dyes by Zr-MOFs-PUF membrane was mainly attributed to the electrostatic interactions, hydrogen bond interaction, and Lewis acid-base interactions between the membrane and dye molecules. The maximum removal efficiencies by Zr-MOFs-PUF membrane were 98.80% for RB at pH ≈ 7, 97.57% for MB at pH ≈ 9, and 87.39% for CR at pH ≈ 3. Additionally, when the NaCl concentration reached 0.5 mol/L in single dye solutions, the removal efficiencies of RB, MB, and CR by Zr-MOFs-PUF membrane were 93.08%, 79.52%, and 97.82%, respectively. All the results suggested that the as-prepared Zr-MOFs-PUF membrane has great potential in practical treatment of dye wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].

    PubMed

    Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N

    2015-07-01

    Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.

  9. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface.

  10. Polyamide desalination membrane characterization and surface modification to enhance fouling resistance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mukul M.; Freeman, Benny D.; Van Wagner, Elizabeth M.

    2010-08-01

    The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterizationmore » of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved fouling resistance compared to unmodified membranes of similar initial water flux, possibly due to steric hindrance imparted by the PEG chains. Fouling resistance was higher for membranes modified with higher molecular weight PEG. Fouling was more extensive for feeds containing the cationic surfactant, potentially due to electrostatic attraction with the negatively charged membranes. However, fouling was also observed in the presence of the anionic surfactant, indicating hydrodynamic forces are also responsible for fouling.« less

  11. Sodium influxes in internally perfused squid giant axon during voltage clamp

    PubMed Central

    Atwater, I.; Bezanilla, F.; Rojas, E.

    1969-01-01

    1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential. 2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio `measured sodium influx/computed ionic flux during the early current' is 0·92 ± 0·12. 3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses. PMID:5767887

  12. Biosensors Based on Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  13. Women's expectations and experiences of rupture of membranes and views of the potential use of reagent pads for detecting amniotic fluid.

    PubMed

    Spiby, Helen; Borrelli, Sara; Hughes, Anita J

    2017-12-01

    To explore first-time mothers' expectations and experiences regarding rupture of membranes at term and their views on the potential use of reagent pads that detect amniotic fluid. There is little information available on women's experiences of spontaneous rupture of membranes, or interest in using methods to confirm rupture of membranes (e.g. reagent pads). Descriptive qualitative study, using focus groups and telephone interviews with women during pregnancy and after the birth of their first baby. Thematic analysis was undertaken to analyse women's responses. Ethics committee approval was obtained. Twenty-five women participated in the study of whom 13 contributed both during pregnancy and postpartum between October 2015-March 2016. Three overarching themes were identified from the data from women's expectations and experiences: uncertainty in how, when and where membranes may rupture; information which was felt to be limited and confirmation of rupture of membranes. The potential use of reagent pads met with varied responses. Women were interested in having facts and figures regarding rupture of membranes, such as characteristics of liquor; volume and probability of membranes rupturing spontaneously at term. Use of a pad as a means of confirmation was viewed as helpful, although the potential for increasing anxiety was raised. © 2017 John Wiley & Sons Ltd.

  14. Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo

    PubMed Central

    Fontaine, Bertrand; Peña, José Luis; Brette, Romain

    2014-01-01

    Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397

  15. Synthesis and Properties of Dodecyl Trehaloside Detergents for Membrane Protein Studies

    PubMed Central

    Tao, Houchao; Fu, Yu; Thompson, Aaron; Lee, Sung Chang; Mahoney, Nicholas; Stevens, Raymond C.; Zhang, Qinghai

    2012-01-01

    Sugar-based detergents, mostly derived from maltose or glucose, prevail in the extraction, solubilization, stabilization and crystallization of membrane proteins. Inspired by the broad use of trehalose for protecting biological macromolecules and lipid bilayer structures, we synthesized new trehaloside detergents for potential applications in membrane protein research. We devised an efficient synthesis of four dodecyl trehalosides, each with the 12-carboned alkyl chain attached to different hydroxyl groups of trehalose, thus presenting a structurally diverse but related family of detergents. The detergent physical properties, including solubility, hydrophobicity, critical micelle concentration (CMC) and size of micelles, were evaluated and compared with the most popular maltoside analog, β- D-dodecylmaltoside (DDM), which varied from each other due to distinct molecular geometries and possible polar group interactions in resulting micelles. Crystals of 2-dodecyl trehaloside (2-DDTre) were also obtained in methanol, and the crystal packing revealed multiple H-bonded interactions among adjacent trehalose groups. The few trehaloside detergents were tested for the solubilization and stabilization of the nociceptin/orphanin FQ peptide receptor (ORL1) and MsbA, which belong to the G-protein coupled receptor (GPCR) and ATP-binding cassette transporter families, respectively. Our results demonstrated the utility of trehaloside detergents as membrane protein solubilization reagents with the optimal detergents being protein dependent. Continuing development and investigations of trehaloside detergents are attractive given their interesting and unique chemical-physical properties and potential interactions with membrane lipids. PMID:22780816

  16. Incorporation of membrane potential into theoretical analysis of electrogenic ion pumps.

    PubMed Central

    Reynolds, J A; Johnson, E A; Tanford, C

    1985-01-01

    The transport rate of an electrogenic ion pump, and therefore also the current generated by the pump, depends on the potential difference (delta psi) between the two sides of the membrane. This dependence arises from at least three sources: (i) charges carried across the membrane by the transported ions; (ii) protein charges in the ion binding sites that alternate between exposure to (and therefore electrical contact with) the two sides of the membrane; (iii) protein charges or dipoles that move within the domain of the membrane as a result of conformational changes linked to the transport cycle. Quantitative prediction of these separate effects requires presently unavailable molecular information, so that there is great freedom in assigning voltage dependence to individual steps of a transport cycle when one attempts to make theoretical calculations of physiological behavior for an ion pump for which biochemical data (mechanism, rate constants, etc.) are already established. The need to make kinetic behavior consistent with thermodynamic laws, however, limits this freedom, and in most cases two points on a curve of rate versus delta psi will be fixed points independent of how voltage dependence is assigned. Theoretical discussion of these principles is illustrated by reference to ATP-driven Na,K pumps. Physiological data for this system suggest that all three of the possible mechanisms for generating voltage dependence do in fact make significant contributions. PMID:2413447

  17. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress

    PubMed Central

    Lee, Chun Pong; Maksaev, Grigory; Jensen, Gregory S.; Murcha, Monika W.; Wilson, Margaret E.; Fricker, Mark; Hell, Ruediger; Haswell, Elizabeth S.; Millar, A. Harvey; Sweetlove, Lee

    2016-01-01

    Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in E. coli, MSL1 forms a stretch-activated ion channel with a slight preference for anions and provides protection against hypo-osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo-osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1-1 mutants under moderate heat- and heavy-metal-stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing but is complementary and appears to be important under similar conditions. PMID:27505616

  18. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress.

    PubMed

    Lee, Chun Pong; Maksaev, Grigory; Jensen, Gregory S; Murcha, Monika W; Wilson, Margaret E; Fricker, Mark; Hell, Ruediger; Haswell, Elizabeth S; Millar, A Harvey; Sweetlove, Lee J

    2016-12-01

    Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in Escherichia coli, MSL1 forms a stretch-activated ion channel with a slight preference for anions and provides protection against hypo-osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo-osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1-1 mutants under moderate heat- and heavy-metal-stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing, but is complementary and appears to be important under similar conditions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Responses of Withdrawal Interneurons to Serotonin Applications in Naïve and Learned Snails Are Different

    PubMed Central

    Bogodvid, Tatiana K.; Andrianov, Vyatcheslav V.; Deryabina, Irina B.; Muranova, Lyudmila N.; Silantyeva, Dinara I.; Vinarskaya, Aliya; Balaban, Pavel M.; Gainutdinov, Khalil L.

    2017-01-01

    Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT) or serotonin precursor 5-hydroxytryptophan (5-HTP) in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP) threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP. PMID:29311833

  20. Simultaneous recording of electrical activity and the underlying ionic currents in NG108-15 cells cultured on gold substrate.

    PubMed

    Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R

    2018-02-01

    This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.

  1. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species

    PubMed Central

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-01-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea. At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na+ extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na+/H+ exchangers; (ii) better root K+ retention ability resulting from stress-inducible activation of H+-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K+-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. PMID:27340231

  2. Boundary-integral modeling of cochlear hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2008-04-01

    A two-dimensional model that captures the essential features of the vibration of the basilar membrane of the cochlea is proposed. The flow due to the vibration of the stapes footplate and round window is modeled by a point source and a point sink, and the cochlear pressure is computed simultaneously with the oscillations of the basilar membrane. The mathematical formulation relies on the boundary-integral representation of the potential flow established far from the basilar membrane and cochlea side walls, neglecting the thin Stokes boundary layer lining these surfaces. The boundary-integral approach furnishes integral equations for the membrane vibration amplitude and pressure distribution on the upper or lower side of the membrane. Several approaches are discussed, and numerical solutions in the frequency domain are presented for a rectangular cochlea model using different membrane response functions. The numerical results reproduce and extend the theoretical predictions of previous authors and delineate the effect of physical and geometrical parameters. It is found that the membrane vibration depends weakly on the position of the membrane between the upper and lower wall of the cochlear channel and on the precise location of the oval and round windows. Solutions of the initial-value problem with a single-period sinusoidal impulse reveal the formation of a traveling wave packet that eventually disappears at the helicotrema.

  3. A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains[S

    PubMed Central

    Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.

    2012-01-01

    The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor. PMID:22822037

  4. Regional differences in the expression of laminin isoforms during mouse neural tube development

    PubMed Central

    Copp, Andrew J.; Carvalho, Rita; Wallace, Adam; Sorokin, Lydia; Sasaki, Takako; Greene, Nicholas D.E.; Ybot-Gonzalez, Patricia

    2013-01-01

    Many significant human birth defects originate around the time of neural tube closure or early during post-closure nervous system development. For example, failure of the neural tube to close generates anencephaly and spina bifida, faulty cell cycle progression is implicated in primary microcephaly, while defective migration of neuroblasts can lead to neuronal migration disorders such as lissencephaly. At the stage of neural tube closure, basement membranes are becoming organised around the neuroepithelium, and beneath the adjacent non-neural surface ectoderm. While there is circumstantial evidence to implicate basement membrane dynamics in neural tube and surface ectodermal development, we have an incomplete understanding of the molecular composition of basement membranes at this stage. In the present study, we examined the developing basement membranes of the mouse embryo at mid-gestation (embryonic day 9.5), with particular reference to laminin composition. We performed in situ hybridization to detect the mRNAs of all eleven individual laminin chains, and immunohistochemistry to identify which laminin chains are present in the basement membranes. From this information, we inferred the likely laminin variants and their tissues of origin: that is, whether a given basement membrane laminin is contributed by epithelium, mesenchyme, or both. Our findings reveal major differences in basement composition along the body axis, with the rostral neural tube (at mandibular arch and heart levels) exhibiting many distinct laminin variants, while the lumbar level where the neural tube is just closing shows a much simpler laminin profile. Moreover, there appears to be a marked difference in the extent to which the mesenchyme contributes laminin variants to the basement membrane, with potential contribution of several laminins rostrally, but no contribution caudally. This information paves the way towards a mechanistic analysis of basement membrane laminin function during early neural tube development in mammals. PMID:21524702

  5. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth

    PubMed Central

    Jackson, William F.

    2017-01-01

    Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804

  6. Influence of molecular weight and pH on adsorption of chitosan at the surface of large and giant vesicles.

    PubMed

    Quemeneur, Francois; Rinaudo, Marguerite; Pépin-Donat, Brigitte

    2008-01-01

    This paper describes the mechanisms of adsorption of chitosan, a positively charged polyelectrolyte, on the DOPC lipid membrane of large and giant unilamellar vesicles (respectively, LUVs and GUVs). We observe that the variation of the zeta potential of LUVs as a function of chitosan concentration is independent on the chitosan molecular weight (Mw). This result is interpreted in terms of electrostatic interactions, which induce a flat adsorption of the chitosan on the surface of the membrane. The role of electrostatic interactions is further studied by observing the variation of the zeta potential as a function of the chitosan concentration for two different charge densities tuned by the pH. Results show a stronger chitosan-membrane affinity at pH 6 (lipids are negatively charged, and 40% chitosan amino groups are protonated) than at pH 3.4 (100% of protonated amino groups but zwitterionic lipids are positively charged) which confirms that adsorption is of electrostatic origin. Then, we investigate the stability of decorated LUVs and GUVs in a large range of pH (6.0 < pH < 12.0) in order to complete a previous study made in acidic conditions [Quemeneur et al. Biomacromolecules 2007, 8, 2512-2519]. A comparative study of the variation of the zeta potential as a function of the pH (2.0 < pH < 12.0) reveals a difference in behavior between naked and chitosan-decorated LUVs. This result is further confirmed by a comparative observation by optical microscopy of naked and chitosan-decorated GUVs in basic conditions (6.0 < pH < 12.0): at pH > 10.0, in the absence of chitosan, the vesicles present complex shapes, contrary to the chitosan-decorated vesicles which remain spherical, confirming thus that chitosan remains adsorbed on vesicles in basic conditions up to pH = 12.0. These results, in addition with our previous data, show that the chitosan-decorated vesicles are stable over a very broad range of pH (2.0 < pH < 12.0), which holds promise for their in vivo applications. Finally, the quantification of the chitosan adsorption on a LUV membrane is performed by zeta potential and fluorescence measurements. The fraction of membrane surface covered by chitosan is estimated to be lower than 40 %, which corresponds to the formation of a flat layer of chitosan on the membrane surface on an electrostatic basis.

  7. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis.

    PubMed

    Dolenšek, Jurij; Špelič, Denis; Klemen, Maša Skelin; Žalik, Borut; Gosak, Marko; Rupnik, Marjan Slak; Stožer, Andraž

    2015-10-28

    Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.

  8. Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse.

    PubMed

    Yue, Hai-Yuan; Xu, Jianhua

    2015-07-01

    Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non-specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl-β-cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca(2+) channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl-β-cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses. © 2015 International Society for Neurochemistry.

  9. Diet fat alters synaptosomal phosphatidylethanolaminemethyl-transferase activity and phosphatidylcholine synthesis in brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargreaves, K.M.; Clandinin, M.T.

    1986-03-05

    Phosphatidylcholine (PC) can be synthesized via three routes, each having potentially different metabolic fates. One route for PC synthesis is methylation of phosphatidylethanolamine (PE). To examine if dietary fat affects membrane PE composition and phosphatidylethanolaminemethyltransferase (PEMT) activity, male weanling rats were fed semi-purified diets containing 20% (w/w) fat of differing fatty acid composition for 24 days. Microsomal and synaptic plasma membranes were isolated and phospholipid composition analyzed. PEMT activity was measured by incorporation of the methyl group from /sup 3/H-S-adenosylmethionine into PE. Polyunsaturated diets high in omega 6 fatty acids produce a high ratio of omega 6/omega 3 fatty acidsmore » in synaptic plasma membranes. Dietary omega 3 and omega 6 fatty acid levels are reflected in membrane phospholipid content of 22:6(3), 20:4(6), 22:4(6) and 22:5(6). Diet-induced increase in these longer chain homologues of omega 6 and omega 3 fatty acids and a high ratio of omega 6/omega 3 fatty acids in PE are both associated with increased PEMT activity. These results suggest that diet-fat induced change in fatty acid composition of membrane PE results in transition in PEMT activity and synthesis of PC in brain, by providing preferred species of PE for methylation.« less

  10. Direct contact membrane distillation for textile wastewater treatment: a state of the art review.

    PubMed

    Ramlow, Heloisa; Machado, Ricardo Antonio Francisco; Marangoni, Cintia

    2017-11-01

    To meet surging water demands, water reuse is being sought as an alternative to traditional water resources. Direct contact membrane distillation (DCMD) has been increasingly studied in the past decade for its potential as an emerging cost effective wastewater treatment process and subsequent water reuse. This review presents a comprehensive overview of the current progress in the application of DCMD for textile wastewater treatment based on the available state of the art. There are already published review papers about the membrane distillation process, but the difference in the present work is that it focuses on the textile area, which consumes a lot of water and generates large amounts of wastewater, and still needs innovations in the sector. A review focused on the textile sector draws the attention of professionals to the problem and, consequently, to a solution. Current issues such as the influences of feed solution, membrane characteristics and membrane fouling and new insights are discussed. The main performance operating conditions and their effects on the separation process are given. Likewise, challenges associated with the influence of different dyes on the DCMD results are explained. This review also highlights the future research directions for DCMD to achieve successful implementation in the textile industry.

  11. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles

    PubMed Central

    Zhang, Jiayu; Ma, Shiqing; Liu, Zihao; Geng, Hongjuan; Lu, Xin; Zhang, Xi; Li, Hongjie; Gao, Chenyuan; Zhang, Xu; Gao, Ping

    2017-01-01

    Introduction Membranes allowing the sustained release of drugs that can achieve cell adhesion are very promising for guided bone regeneration. Previous studies have suggested that aspirin has the potential to promote bone regeneration. The purpose of this study was to prepare a local drug delivery system with aspirin-loaded chitosan nanoparticles (ACS) contained in an asymmetric collagen-chitosan membrane (CCM). Methods In this study, the ACS were fabricated using different concentrations of aspirin (5 mg, 25 mg, 50 mg, and 75 mg). The drug release behavior of ACS was studied. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to examine the micromorphology of ACS and aspirin-loaded chitosan nanoparticles contained in chitosan-collagen membranes (ACS-CCM). In vitro bone mesenchymal stem cells (BMSCs) were cultured and critical-sized cranial defects on Sprague-Dawley rats were made to evaluate the effect of the ACS-CCM on bone regeneration. Results Drug release behavior results of ACS showed that the nanoparticles fabricated in this study could successfully sustain the release of the drug. TEM showed the morphology of the nanoparticles. SEM images indicated that the asymmetric membrane comprised a loose collagen layer and a dense chitosan layer. In vitro studies showed that ACS-CCM could promote the proliferation of BMSCs, and that the degree of differentiated BMSCs seeded on CCMs containing 50 mg of ACS was higher than that of other membranes. Micro-computed tomography showed that 50 mg of ACS-CCM resulted in enhanced bone regeneration compared with the control group. Conclusion This study shows that the ACS-CCM would allow the sustained release of aspirin and have further osteogenic potential. This membrane is a promising therapeutic approach to guiding bone regeneration. PMID:29276386

  12. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles.

    PubMed

    Zhang, Jiayu; Ma, Shiqing; Liu, Zihao; Geng, Hongjuan; Lu, Xin; Zhang, Xi; Li, Hongjie; Gao, Chenyuan; Zhang, Xu; Gao, Ping

    2017-01-01

    Membranes allowing the sustained release of drugs that can achieve cell adhesion are very promising for guided bone regeneration. Previous studies have suggested that aspirin has the potential to promote bone regeneration. The purpose of this study was to prepare a local drug delivery system with aspirin-loaded chitosan nanoparticles (ACS) contained in an asymmetric collagen-chitosan membrane (CCM). In this study, the ACS were fabricated using different concentrations of aspirin (5 mg, 25 mg, 50 mg, and 75 mg). The drug release behavior of ACS was studied. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to examine the micromorphology of ACS and aspirin-loaded chitosan nanoparticles contained in chitosan-collagen membranes (ACS-CCM). In vitro bone mesenchymal stem cells (BMSCs) were cultured and critical-sized cranial defects on Sprague-Dawley rats were made to evaluate the effect of the ACS-CCM on bone regeneration. Drug release behavior results of ACS showed that the nanoparticles fabricated in this study could successfully sustain the release of the drug. TEM showed the morphology of the nanoparticles. SEM images indicated that the asymmetric membrane comprised a loose collagen layer and a dense chitosan layer. In vitro studies showed that ACS-CCM could promote the proliferation of BMSCs, and that the degree of differentiated BMSCs seeded on CCMs containing 50 mg of ACS was higher than that of other membranes. Micro-computed tomography showed that 50 mg of ACS-CCM resulted in enhanced bone regeneration compared with the control group. This study shows that the ACS-CCM would allow the sustained release of aspirin and have further osteogenic potential. This membrane is a promising therapeutic approach to guiding bone regeneration.

  13. High Performance Platinum Group Metal Free Membrane Electrode Assemblies through Control of Interfacial Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, Katherine; Capuano, Christopher; Atanassov, Plamen

    The quantitative goal of this project was to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of platinum group metals (PGMs), which could operate for at least 500 hours with less than 50 microV/hour degradation, at 500 mA/cm 2. To achieve this goal, work focused on the optimization of electrocatalyst conductivity, with dispersion and utilization in the membrane electrode assembly (MEA) improved through refinement of deposition techniques. Critical factors were also explored with significant work undertaken by Northeastern University to further understand catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte. Water management and optimal cell operationalmore » parameters were established through the design, fabrication, and test of a new test station at Proton specific for AEM evaluation. Additionally, AEM material stability and robustness at high potentials and gas evolution conditions were advanced at Penn State.« less

  14. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  15. Two-phase vesicles: a study on evolutionary and stationary models.

    PubMed

    Sahebifard, MohammadMahdi; Shahidi, Alireza; Ziaei-Rad, Saeed

    2017-05-01

    In the current article, the dynamic evolution of two-phase vesicles is presented as an extension to a previous stationary model and based on an equilibrium of local forces. In the simplified model, ignoring the effects of membrane inertia, a dynamic equilibrium between the membrane bending potential and local fluid friction is considered in each phase. The equilibrium equations at the domain borders are completed by extended introduction of membrane section reactions. We show that in some cases, the results of stationary and evolutionary models are in agreement with each other and also with experimental observations, while in others the two models differ markedly. The value of our approach is that we can account for unresponsive points of uncertainty using our equations with the local velocity of the lipid membranes and calculating the intermediate states (shapes) in the consequent evolutionary, or response, path.

  16. Membrane bioreactors for treating waste streams.

    PubMed

    Howell, J A; Arnot, T C; Liu, W

    2003-03-01

    Membrane bioreactors (MBRs) have a number of advantages for treating wastewater containing large quantities of BOD. This paper reviews the inherent advantages of an MBR, which include high potential biomass loadings, lower sludge yields, and retention of specialized organisms that may not settle well in clarifiers. A major problem in effluent treatment occurs when mixed inorganic and organic wastes occur with high concentrations of pollutants. Inorganics that might cause extremes of pH and/or salinity will inhibit microbial growth and only specialized organisms can survive under these conditions. Refractory organics are only biodegraded with difficulty by specialized organisms, which usually do not resist the extreme inorganic environments. The use of membrane bioreactors to help separate the micro-organisms from the inorganic compounds, yet permit the organics to permeate, has been developed in two different designs that are outlined in this paper. The use of membrane contactors in a multimembrane stripping system to treat acidic chlorinated wastes is proposed and discussed.

  17. Effect of tension and curvature on the chemical potential of lipids in lipid aggregates.

    PubMed

    Grafmüller, Andrea; Lipowsky, Reinhard; Knecht, Volker

    2013-01-21

    Understanding the factors that influence the free energy of lipids in bilayer membranes is an essential step toward understanding exchange processes of lipids between membranes. In general, both lipid composition and membrane geometry can affect lipid exchange rates between bilayer membranes. Here, the free energy change ΔG(des) for the desorption of dipalmitoyl-phosphatidylcholine (DPPC) lipids from different lipid aggregates has been computed using molecular dynamics simulations and umbrella sampling. The value of ΔG(des) is found to depend strongly on the local properties of the aggregate, in that both tension and curvature lead to an increase in ΔG(des). A detailed analysis shows that the increased desorption free energy for tense bilayers arises from the increased conformational entropy of the lipid tails, which reduces the favorable component -TΔS(L) of the desorption free energy.

  18. Ionic Current Measurements in the Squid Giant Axon Membrane

    PubMed Central

    Cole, Kenneth S.; Moore, John W.

    1960-01-01

    The concepts, experiments, and interpretations of ionic current measurements after a step change of the squid axon membrane potential require the potential to be constant for the duration and the membrane area measured. An experimental approach to this ideal has been developed. Electrometer, operational, and control amplifiers produce the step potential between internal micropipette and external potential electrodes within 40 microseconds and a few millivolts. With an internal current electrode effective resistance of 2 ohm cm.2, the membrane potential and current may be constant within a few millivolts and 10 per cent out to near the electrode ends. The maximum membrane current patterns of the best axons are several times larger but of the type described by Cole and analyzed by Hodgkin and Huxley when the change of potential is adequately controlled. The occasional obvious distortions are attributed to the marginal adequacy of potential control to be expected from the characteristics of the current electrodes and the axon. Improvements are expected only to increase stability and accuracy. No reason has been found either to question the qualitative characteristics of the early measurements or to so discredit the analyses made of them. PMID:13694548

  19. Electrospun F18 Bioactive Glass/PCL—Poly (ε-caprolactone)—Membrane for Guided Tissue Regeneration

    PubMed Central

    Hidalgo Pitaluga, Lucas; Trevelin Souza, Marina; Santocildes Romero, Martin Eduardo; Hatton, Paul V.

    2018-01-01

    Barrier membranes that are used for guided tissue regeneration (GTR) therapy usually lack bioactivity and the capability to promote new bone tissue formation. However, the incorporation of an osteogenic agent into polymeric membranes seems to be the most assertive strategy to enhance their regenerative potential. Here, the manufacturing of composite electrospun membranes made of poly (ε-caprolactone) (PCL) and particles of a novel bioactive glass composition (F18) is described. The membranes were mechanically and biologically tested with tensile strength tests and tissue culture with MG-63 osteoblast-like cell line, respectively. The PCL-F18 composite membranes demonstrated no increased cytotoxicity and an enhanced osteogenic potential when compared to pure PCL membranes. Moreover, the addition of the bioactive phase increased the membrane tensile strength. These preliminary results suggested that these new membranes can be a strong candidate for small bone injuries treatment by GTR technique. PMID:29517988

  20. Gramicidin D enhances the antibacterial activity of fluoride.

    PubMed

    Nelson, James W; Zhou, Zhiyuan; Breaker, Ronald R

    2014-07-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Mechanism of action of neurotoxins acting on the inactivation of voltage-gated sodium channels].

    PubMed

    Benoit, E

    1998-01-01

    This review focuses on the mechanism(s) of action of neurotoxins acting on the inactivation of voltage-gated Na channels. Na channels are transmembrane proteins which are fundamental for cellular communication. These proteins form pores in the plasma membrane allowing passive ionic movements to occur. Their opening and closing are controlled by gating systems which depend on both membrane potential and time. Na channels have three functional properties, mainly studied using electrophysiological and biochemical techniques, to ensure their role in the generation and propagation of action potentials: 1) a highly selectivity for Na ions, 2) a rapid opening ("activation"), responsible for the depolarizing phase of the action potential, and 3) a late closing ("inactivation") involved in the repolarizing phase of the action potential. As an essential protein for membrane excitability, the Na channel is the specific target of a number of vegetal and animal toxins which, by binding to the channel, alter its activity by affecting one or more of its properties. At least six toxin receptor sites have been identified on the neuronal Na channel on the basis of binding studies. However, only toxins interacting with four of these sites (sites 2, 3, 5 et 6) produce alterations of channel inactivation. The maximal percentage of Na channels modified by the binding of neurotoxins to sites 2 (batrachotoxin and some alkaloids), 3 (alpha-scorpion and sea anemone toxins), 5 (brevetoxins and ciguatoxins) et 6 (delta-conotoxins) is different according to the site considered. However, in all cases, these channels do not inactivate. Moreover, Na channels modified by toxins which bind to sites 2, 5 and 6 activate at membrane potentials more negative than do unmodified channels. The physiological consequences of Na channel modifications, induced by the binding of neurotoxins to sites 2, 3, 5 and 6, are (i) an inhibition of cellular excitability due to an important membrane depolarization (site 2), (ii) a decrease of cellular excitability due to an important increase in the action potential duration (site 3) and (iii) an increase in cellular excitability which results in spontaneous and repetitive firing of action potentials (sites 5 and 6). The biochemical and electrophysiological studies performed with these toxins, as well as the determination of their molecular structure, have given basic information on the function and structure of the Na channel protein. Therefore, various models representing the different states of Na channels have been proposed to account for the neurotoxin-induced modifications of Na inactivation. Moreover, the localization of receptor binding sites 2, 3, 5 et 6 for these toxins on the neuronal Na channel has been deduced and the molecular identification of the recognition site(s) for some of them has been established on the alpha sub-unit forming the Na channel protein.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamoto, Shuhei; Shinoda, Wataru, E-mail: w.shinoda@apchem.nagoya-u.ac.jp; Klein, Michael L.

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusionmore » of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.« less

  3. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    PubMed

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Differential expression profile of membrane proteins in L-02 cells exposed to trichloroethylene.

    PubMed

    Hong, Wen-Xu; Huang, Aibo; Lin, Sheng; Yang, Xifei; Yang, Linqing; Zhou, Li; Huang, Haiyan; Wu, Desheng; Huang, Xinfeng; Xu, Hua; Liu, Jianjun

    2016-10-01

    Trichloroethylene (TCE), a halogenated organic solvent widely used in industries, is known to cause severe hepatotoxicity. However, the mechanisms underlying TCE hepatotoxicity are still not well understood. It is predicted that membrane proteins are responsible for key biological functions, and recent studies have revealed that TCE exposure can induce abnormal levels of membrane proteins in body fluids and cultured cells. The aim of this study is to investigate the TCE-induced alterations of membrane proteins profiles in human hepatic L-02 liver cells. A comparative membrane proteomics analysis was performed in combination with two-dimensional fluorescence difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A total of 15 proteins were identified as differentially expressed (4 upregulated and 11 downregulated) between TCE-treated cells and normal controls. Among this, 14 of them are suggested as membrane-associated proteins by their transmembrane domain and/or subcellular location. Furthermore, the differential expression of β subunit of adenosine triphosphate synthase (ATP5B) and prolyl 4-hydroxylase, β polypeptide (P4HB) were verified by Western blot analysis in TCE-treated L-02 cells. Our work not only reveals the association between TCE exposure and altered expression of membrane proteins but also provides a novel strategy to discover membrane biomarkers and elucidate the potential mechanisms involving with membrane proteins response to chemical-induced toxic effect. © The Author(s) 2015.

  5. Light-dependent cation gradients and electrical potential in Halobacterium halobium cell envelope vesicles

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.; Macdonald, R. E.

    1977-01-01

    Vesicles can be prepared from Halobacterium halobium cell envelopes, which contain properly oriented bacteriorhodopsin and which extrude H(+) during illumination. The pH difference that is generated across the membranes is accompanied by an electrical potential of 90 to 100 mV (interior negative) and the movements of other cations. Among these is the efflux of Na(+), which proceeds against its electrochemical potential. The relationship between the size and direction of the light-induced pH gradient and the rate of depletion of Na(+) from the vesicles, as well as other evidence, suggest that the active Na(+) extrusion is facilitated by a membrane component that exchanges H(+) for Na(+) with a stoichiometry greater than 1. The gradients of H(+) and Na(+) are thus coupled to one another. The Na(+) gradient (efflux much larger than influx), which arises during illumination, plays a major role in energizing the active transport of amino acids.

  6. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals

    PubMed Central

    Poznanski, R. R.; Cacha, L. A.; Ali, J.; Rizvi, Z. H.; Yupapin, P.; Salleh, S. H.; Bandyopadhyay, A.

    2017-01-01

    A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge ‘soakage’ is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge ‘soakage’) have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell’s equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current. PMID:28880876

  7. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    PubMed

    Poznanski, R R; Cacha, L A; Ali, J; Rizvi, Z H; Yupapin, P; Salleh, S H; Bandyopadhyay, A

    2017-01-01

    A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage') have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current.

  8. A quantitative analysis of electrolyte exchange in the salivary duct

    PubMed Central

    Catalán, Marcelo A.; Melvin, James E.; Yule, David I.; Crampin, Edmund J.; Sneyd, James

    2012-01-01

    A healthy salivary gland secretes saliva in two stages. First, acinar cells generate primary saliva, a plasma-like, isotonic fluid high in Na+ and Cl−. In the second stage, the ducts exchange Na+ and Cl− for K+ and HCO3−, producing a hypotonic final saliva with no apparent loss in volume. We have developed a tool that aims to understand how the ducts achieve this electrolyte exchange while maintaining the same volume. This tool is part of a larger multiscale model of the salivary gland and can be used at the duct or gland level to investigate the effects of genetic and chemical alterations. In this study, we construct a radially symmetric mathematical model of the mouse salivary gland duct, representing the lumen, the cell, and the interstitium. For a given flow and primary saliva composition, we predict the potential differences and the luminal and cytosolic concentrations along a duct. Our model accounts well for experimental data obtained in wild-type animals as well as knockouts and chemical inhibitors. Additionally, the luminal membrane potential of the duct cells is predicted to be very depolarized compared with acinar cells. We investigate the effects of an electrogenic vs. electroneutral anion exchanger in the luminal membrane on concentration and the potential difference across the luminal membrane as well as how impairing the cystic fibrosis transmembrane conductance regulator channel affects other ion transporting mechanisms. Our model suggests the electrogenicity of the anion exchanger has little effect in the submandibular duct. PMID:22899825

  9. Laser beam coupling into nerve fiber myelin allows one to assess its structural membrane properties

    NASA Astrophysics Data System (ADS)

    Kutuzov, Nikolay P.; Brazhe, Alexey R.; Lyaskovskiy, Vladimir L.; Maksimov, Georgy V.

    2015-05-01

    We show that myelin, the insulation wrap of nerve fibers, can couple laser light, thus behaving as a single-cell optical device. The effect was employed to map distinct myelin regions based on the coupling efficiency. Raman spectra acquisition allowed us to simultaneously understand the underlying microscopic differences in the membrane lipid ordering degree. The described method potentially provides new capabilities in myelin-associated disease studies and can be used as a handy tool for myelin structure investigation in combination with other methods.

  10. Cyclopropyl glycine and proline-containing preparation noopept evoke two types of membrane potential responses in synaptoneurosomes.

    PubMed

    Lutsenko, V K; Vukolova, M N; Gudasheva, T A

    2003-06-01

    Proline, cyclo(Pro-Gly), and acyl-prolyl-containing dipeptide GVS-111 decreased synaptoneurosome membrane potential in a Ca2+-free medium. The efficiency of these preparations decreased in the following order: GVS>cyclo(Pro-Gly)>proline. Depolarization responses induced by endogenous nootropic agent cyclo(Pro-Gly) was dose-dependent and saturable; the threshold concentration of cyclo(Pro-Gly) was 10(-9) M. In a Ca2+-containing medium GVS and cyclo(Pro-Gly) induced both hyperpolarizing and depolarizing membrane responses of synaptoneurosomes. Possible mechanisms underlying changes in the membrane potential of synaptoneurosomes induced by nootropic agents are discussed. It was interesting whether modulation of electrogenesis can improve memory and potentiate the neuroprotective effect of the test nootropic agents.

  11. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom.

    PubMed

    Pérez-Peinado, Clara; Dias, Susana Almeida; Domingues, Marco M; Benfield, Aurélie H; Freire, João Miguel; Rádis-Baptista, Gandhi; Gaspar, Diana; Castanho, Miguel A R B; Craik, David J; Henriques, Sónia Troeira; Veiga, Ana Salomé; Andreu, David

    2018-02-02

    Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    PubMed

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.

  13. Menthol-induced action potentials in Conocephalum conicum as a result of unspecific interactions between menthol and the lipid phase of the plasma membrane.

    PubMed

    Kupisz, Kamila; Trebacz, Kazimierz; Gruszecki, Wiesław I

    2015-07-01

    Our previous study has shown that the liverwort Conocephalum conicum generates action potentials (APs) in response to both temperature drop and menthol, which are also activators of the TRPM8 (transient receptor potential melastatin 8) receptor in animals. Not only similarities but also differences between electrical reactions to menthol and cooling observed in the liverwort aroused our interest in the action of menthol at the molecular level. Patch-clamp investigations have shown that menthol causes a reduction of current flowing through slow vacuolar (SV) channels to 29 ± 10% of the initial value (n = 9); simultaneously, it does not influence magnitudes of currents passing through a single SV channel. This may point to an unspecific interaction between menthol and the lipid phase of the membrane. An influence of menthol on lipid organization in membranes was investigated in two-component monomolecular layers formed with menthol and dipalmitoylphosphatidylcholine (DPPC) at the argon-water interface. Analyses of the mean molecular area parameters vs the molar fraction of the menthol component have shown over-additivity (approximately 20 Å(2) ) in the region of high molar fractions of menthol. Infrared absorption spectroscopy studies have shown that menthol, most probably, induces breaking of a hydrogen bond network formed by ester carbonyl groups and water bridges in the lipid membrane and binds to the polar head group region of DPPC. We conclude that the disruption in the lipid phase of the membrane influences ion channels and/or pumps and subsequently causes generation of APs in excitable plants such as C. conicum. © 2014 Scandinavian Plant Physiology Society.

  14. Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?

    PubMed Central

    Grandinetti, Giovanna; Smith, Adam E.; Reineke, Theresa M.

    2012-01-01

    The aim of this study is to compare the cytotoxicity mechanisms of linear PEI to two analogous polymers synthesized by our group: a hydroxyl-containing poly(L-tartaramidoamine) (T4) and a version containing an alkyl chain spacer poly(adipamidopentaethylenetetramine) (A4) by studying the cellular responses to polymer transfection. We have also synthesized analogues of T4 with different molecular weights (degrees of polymerization of 6, 12, and 43) to examine the role of molecular weight on the cytotoxicity mechanisms. Several mechanisms of polymer-induced cytotoxicity are investigated, including plasma membrane permeabilization, the formation of potentially harmful polymer degradation products during transfection including reactive oxygen species, and nuclear membrane permeabilization. We hypothesized that since cationic polymers are capable of disrupting the plasma membrane, they may also be capable of disrupting the nuclear envelope, which could be a potential mechanism of how the pDNA is delivered into the nucleus (other than nuclear envelope breakdown during mitosis). Using flow cytometry and confocal microscopy, we show that the polycations with the highest amount of protein expression and toxicity, PEI and T443, are capable of inducing nuclear membrane permeability. This finding is important for the field of nucleic acid delivery in that not only could direct nucleus permeabilization be a mechanism for pDNA nuclear import but also a potential mechanism of cytotoxicity and cell death. We also show that the production of reactive oxygen species is not a main mechanism of cytotoxicity, and that the presence or absence of hydroxyl groups as well as polymer length plays a role in polyplex size and charge in addition to protein expression efficiency and toxicity. PMID:22175236

  15. Microdosimetric study for nanosecond pulsed electric fields on a cell circuit model with nucleus.

    PubMed

    Denzi, Agnese; Merla, Caterina; Camilleri, Paola; Paffi, Alessandra; d'Inzeo, Guglielmo; Apollonio, Francesca; Liberti, Micaela

    2013-10-01

    Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.

  16. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil.

    PubMed

    Bouhdid, S; Abrini, J; Zhiri, A; Espuny, M J; Manresa, A

    2009-05-01

    Evaluation of the cellular effects of Origanum compactum essential oil on Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213. The damage induced by O. compactum essential oil on these two strains has been studied using different techniques: plate count, potassium leakage, flow cytometry (FC) and transmission electron microscopy (TEM). The results showed that oil treatment led to reduction of cells viability and dissipated potassium ion gradients. Flow cytometric analysis showed that oil treatment promoted the accumulation of bis-oxonol and the membrane-impermeable nucleic acid stain propidium iodide (PI), indicating the loss of membrane potential and permeability. The ability to reduce 5-cyano-2,3-ditolyl tetrazolium chloride was inhibited. Unlike in Ps. aeruginosa, membrane potential and membrane permeability in Staph. aureus cells were affected by oil concentration and contact time. Finally, TEM showed various structural effects. Mesosome-like structures were seen in oil-treated Staph. aureus cells whereas in Ps. aeruginosa, coagulated cytoplasmic material and liberation of membrane vesicles were observed, and intracellular material was seen in the surrounding environment. Both FC and TEM revealed that the effects in Ps. aeruginosa were greater than in Staph. aureus. Oregano essential oil induces membrane damage showed by the leakage of potassium and uptake of PI and bis-oxonol. Ultrastructural alterations and the loss of cell viability were observed. Understanding the mode of antibacterial effect of the oil studied is of a great interest in it further application as natural preservative in food or pharmaceutical industries.

  17. Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusseme, B.D.; Fitts, J.; Hennebel, T.

    The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag{sup 0}) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag{sup 0} particles, preventing aggregation during encapsulation. In this study, bio-Ag{sup 0} was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag{sup 0} and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranesmore » was successfully demonstrated and was most probably related to the slow release of Ag{sup +} from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag{sub powder}{sup 0} m{sup -2} in a submerged plate membrane reactor operated at a flux of 3.1 L m{sup -2} h{sup -1}. Upon startup, the silver concentration in the effluent initially increased to 271 {micro}g L{sup -1} but after filtration of 31 L m{sup -2}, the concentration approached the drinking water limit (= 100 {micro}g L{sup -1}). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m{sup -2} h{sup -1}, showing the potential of this membrane technology for water disinfection on small scale. In biogenic silver, silver nanoparticles are attached to a bacterial carrier matrix. Bio-Ag{sup 0} was successfully immobilized in PVDF membranes using immersion-precipitation. The antiviral activity of this material was demonstrated in a plate membrane reactor. The antimicrobial mechanism was most probably related to the slow release of Ag{sup +} ions. The membranes can be applied for treatment of limited volumes of contaminated water.« less

  18. Profiling of the Tox21 Chemical Collection for Mitochondrial Function: I. Compounds that Decrease Mitochondrial Membrane Potential

    EPA Science Inventory

    Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding how different environmental chemicals and drug-like molecules impact mitochondrial function rep...

  19. Virus Disinfection in Water by Biogenic Silver Immobilized in Polyvinylidene Fluoride Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B De Gusseme; T Hennebel; E Christiaens

    The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag{sup 0}) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag{sup 0} particles, preventing aggregation during encapsulation. In this study, bio-Ag{sup 0} was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag{sup 0} and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranesmore » was successfully demonstrated and was most probably related to the slow release of Ag{sup +} from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag{sup 0}{sub powder} m{sup -2} in a submerged plate membrane reactor operated at a flux of 3.1 L m{sup -2} h{sup -1}. Upon startup, the silver concentration in the effluent initially increased to 271 {mu}g L{sub -1} but after filtration of 31 L m{sup -2}, the concentration approached the drinking water limit (= 100 {mu}g L{sup -1}). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m{sup -2} h{sup -1}, showing the potential of this membrane technology for water disinfection on small scale.« less

  20. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  1. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy

    PubMed Central

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-01-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account. PMID:23940503

  2. Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change.

    PubMed Central

    Cseh, R; Benz, R

    1999-01-01

    Phloretin is known to adsorb to lipid surfaces and alters the dipole potential of lipid monolayers and bilayers. Its adsorption to biological and artificial membranes results in a change of the membrane permeability for a variety of charged and neutral compounds. In this respect phloretin represents a model substance to study the effect of dipole potentials on membrane permeability. In this investigation we studied the interaction of phloretin with monolayers formed of different lipids in the liquid-expanded and the condensed state. Phloretin integrated into the monolayers as a function of the aqueous concentration of its neutral form, indicated by an increase of the surface pressure in the presence of phloretin. Simultaneous recording of the surface potential of the monolayers allowed us to correlate the degree of phloretin integration and the phloretin-induced dipole potential change. Increasing the surface pressure decreased the phloretin-induced shift of the isotherms, but did not influence the phloretin-induced surface potential change. This means that phloretin adsorption to the lipid surface can occur without affecting the lipid packing. The surface potential effect of phloretin is accompanied by a change of the lipid dipole moment vector dependent on the lipid packing. This means that the relation between the surface potential change and the lipid packing cannot be described by a static model alone. Taking into account the deviations of the surface potential change versus molecular area isotherms of the experimental data to the theoretically predicted course, we propose a model that relates the area change to the dipole moment in a dynamic manner. By using this model the experimental data can be described much better than with a static model. PMID:10465758

  3. Boar variability in sperm cryo-tolerance after cooling of semen in different long-term extenders at various temperatures.

    PubMed

    Wasilewska, K; Fraser, L

    2017-10-01

    This study investigated individual boar variability in the quality of pre-freeze (PF) and post-thaw (PT) semen cooled in different long-term (LT) extenders and for different holding times (HT). Sperm rich fractions were diluted with Androhep ® Plus (AHP), Androstar ® Plus (ASP), Safecell ® Plus (SCP) and TRIXcell ® Plus (TCP) extenders, stored for 2h at 17°C (HT 1) and additionally for 24h at 10°C (HT 2) and the samples were subsequently evaluated and frozen. Besides the analysis of CASA sperm variables, mitochondrial membrane potential (MMP), plasma membrane integrity (PMI), normal apical ridge (NAR) acrosome integrity, and viability (YO-PRO-1 - /PI - ) of sperm were assessed in the PF and PT semen. Results indicated that boar, extender and HT group affected the sperm quality characteristics. There were great variations in PMOT and the sperm motion patterns of the PF semen among the boars. Differences in the HT groups of the PF semen, with respect to the sperm membrane integrity, were less marked among the boars. Consistent variations in TMOT and PMOT in the PT semen were observed among the boars, being greater in the HT 2 group. Most of the CASA-analyzed sperm motion patterns were greater in the HT 2 group of the PT semen. Furthermore, sperm MMP, PMI and viability were greater in the HT 2 group of the PT semen in most of the boars, while consistent differences were observed among the boars for sperm NAR acrosome integrity in either HT group. The significant effect of the cryopreservation process on the sperm membrane proteome was evident from the number of protein bands, detected in the electrophoretic profiles of sperm of the HT 1 and HT 2 groups. The electrophoretic profiles of the PF and PT semen among boars with poor and good semen freezability, however, differed with respect to the abundance and types of sperm membrane-associated proteins. The overall results of this study provided evidence that there are differences among boars in response to the different cooling regimens, and that cooling of extended semen for a 24-h period at 10°C modulated the functions of sperm in an extender-dependent manner, rendering the cells less susceptible to cryo-induced damage. It is suggested that the findings of this study have the potential to improve the technology of boar semen cryopreservation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding

    PubMed Central

    Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-01-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information. PMID:27304526

  5. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding.

    PubMed

    Huang, Chao; Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-06-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.

  6. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids.

    PubMed

    Connolly, J G; Brown, I D; Lee, A G; Kerkut, G A

    1985-01-01

    The swimming velocity and the amplitude of the helical swimming path of T. pyriformis-NT1 cells grown at 20 degrees C (Tg 20 degrees C) and 38 degrees C (Tg 38 degrees C) were monitored between 0 and 40 degrees C in the presence and absence of electric fields. Within physiological limits the swimming velocity increased and the amplitude decreased as temperature was raised. The temperature profiles of these properties were not linear, and showed discontinuities at different temperatures for the different cultures. The break points in Arrhenius plots of the resting potential, regenerative spike magnitude, repolarization time, swimming velocity and swimming amplitude are tabulated and compared. The initial breakpoints upon cooling were clustered about the breakpoints in fluorescence polarization of D.P.H. in extracted phospholipids, and around the transition temperatures estimated from the literature for the pellicular membrane of these cells. The average of the initial breakpoints on cooling was 22.9 degrees C for Tg 38 degrees C cells and 13.7 degrees C for Tg 20 degrees C cells, a shift of 9.2 degrees C. Unlike Paramecium there is no depolarizing receptor potential in Tetrahymena upon warming. It is suggested that this may be the basis of a behavioural difference between Tetrahymena and Paramecium--namely that in Tetrahymena maximum swimming velocity occurs above growth temperature whereas in Paramecium the two points coincide. Swimming velocity and resting potential were correlated with membrane fluidity within physiological limits, but for other parameters the relationship with fluidity was more complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Field coupling-induced pattern formation in two-layer neuronal network

    NASA Astrophysics Data System (ADS)

    Qin, Huixin; Wang, Chunni; Cai, Ning; An, Xinlei; Alzahrani, Faris

    2018-07-01

    The exchange of charged ions across membrane can generate fluctuation of membrane potential and also complex effect of electromagnetic induction. Diversity in excitability of neurons induces different modes selection and dynamical responses to external stimuli. Based on a neuron model with electromagnetic induction, which is described by magnetic flux and memristor, a two-layer network is proposed to discuss the pattern control and wave propagation in the network. In each layer, gap junction coupling is applied to connect the neurons, while field coupling is considered between two layers of the network. The field coupling is approached by using coupling of magnetic flux, which is associated with distribution of electromagnetic field. It is found that appropriate intensity of field coupling can enhance wave propagation from one layer to another one, and beautiful spatial patterns are formed. The developed target wave in the second layer shows some difference from target wave triggered in the first layer of the network when two layers are considered by different excitabilities. The potential mechanism could be pacemaker-like driving from the first layer will be encoded by the second layer.

  8. Low Dielectric Permittivity of Water at the Membrane Interface: Effect on the Energy Coupling Mechanism in Biological Membranes

    PubMed Central

    Cherepanov, Dmitry A.; Feniouk, Boris A.; Junge, Wolfgang; Mulkidjanian, Armen Y.

    2003-01-01

    Protonmotive force (the transmembrane difference in electrochemical potential of protons, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}{\\tilde {{\\mu}}}_{{\\mathrm{H}}^{+}}\\end{equation*}\\end{document}) drives ATP synthesis in bacteria, mitochondria, and chloroplasts. It has remained unsettled whether the entropic (chemical) component of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}{\\tilde {{\\mu}}}_{{\\mathrm{H}}^{+}}\\end{equation*}\\end{document} relates to the difference in the proton activity between two bulk water phases (ΔpHB) or between two membrane surfaces (ΔpHS). To scrutinize whether ΔpHS can deviate from ΔpHB, we modeled the behavior of protons at the membrane/water interface. We made use of the surprisingly low dielectric permittivity of interfacial water as determined by O. Teschke, G. Ceotto, and E. F. de Souza (O. Teschke, G. Ceotto, and E. F. de Sousa, 2001, Phys. Rev. E. 64:011605). Electrostatic calculations revealed a potential barrier in the water phase some 0.5–1 nm away from the membrane surface. The barrier was higher for monovalent anions moving toward the surface (0.2–0.3 eV) than for monovalent cations (0.1–0.15 eV). By solving the Smoluchowski equation for protons spreading away from proton “pumps” at the surface, we found that the barrier could cause an elevation of the proton concentration at the interface. Taking typical values for the density of proton pumps and for their turnover rate, we calculated that a potential barrier of 0.12 eV yielded a steady-state pHS of ∼6.0; the value of pHS was independent of pH in the bulk water phase under neutral and alkaline conditions. These results provide a rationale to solve the long-lasting problem of the seemingly insufficient protonmotive force in mesophilic and alkaliphilic bacteria. PMID:12885673

  9. Oil-in-water monitoring using membrane inlet mass spectrometry.

    PubMed

    Brkić, Boris; France, Neil; Taylor, Stephen

    2011-08-15

    A membrane inlet mass spectrometry (MIMS) system has been used for detection and analysis of two types of North Sea crude oil. The system was installed on-field on the Flotta Oil Terminal (Orkney, UK). It consisted of a quadrupole mass spectrometer (QMS) connected to the capillary probe with a silicone-based membrane. The produced mass spectra and calibration plots from the MIMS instrument showed the capability to measure levels of individual hydrocarbons within crude oil in seawater. The generated mass spectra from the field tests also showed the ability to distinguish between different types of oil and to determine concentrations of toxic hydrocarbons in oil (e.g., benzene, toluene, and xylene (BTX)). The performance of the instrument at different temperatures of seawater and oil droplet sizes was also investigated. The results showed that the QMS-based MIMS system has a potential to complement existing oil-in-water (OiW) monitors by being able to detect different oil types and specific hydrocarbon concentrations with high accuracy, which are currently not supported in commercially available OiW monitors.

  10. Myo-conductive and osteo-inductive free-standing polysaccharide membranes

    PubMed Central

    Caridade, Sofia G.; Monge, Claire; Almodóvar, Jorge; Guillot, Raphael; Lavaud, Jonathan; Josserand, Véronique; Coll, Jean-Luc; Mano, João F.; Picart, Catherine

    2015-01-01

    Free-standing (FS) membranes have increasing applications in the biomedical field as drug delivery systems for wound healing and tissue engineering. Here, we studied the potential of free-standing membranes made by the layer-by-layer assembly of chitosan and alginate to be used as a simple biomimetic system of the periosteum. The design of a periosteum-like membrane implies the elaboration of a thick membrane suitable for both muscle and bone formation. Our aim was to produce well defined ~50 μm thick polysaccharide membranes that could be easily manipulated, be mechanically resistant, and enable both myogenesis and osteogenesis in vitro and in vivo. The membranes were chemically crosslinked to improve their mechanical properties. Crosslinking chemistry was followed via FTIR and the mechanical properties of the membranes were assessed using dynamic mechanical analysis. The loading and release of the potent osteoinductive growth factor bone morphogenetic protein 2 (BMP-2) inside and outside of the FS membrane was followed by fluorescence spectroscopy in a physiological buffer over one month. The myogenic and osteogenic potential of the membranes in vitro was assessed using BMP-2 responsive skeletal myoblasts. Finally, their osteoinductive properties in vivo were studied in a preliminary experiment using a mouse ectopic model. Our results showed that the more crosslinked FS membranes enabled a more efficient myoblast differentiation in myotubes. In addition, we showed that a tunable amount of BMP-2 can be loaded in and subsequently released from the membranes depending on the crosslinking degree and BMP-2 initial concentration in solution. Only the more crosslinked membranes were found to be osteoinductive in vivo. These polysaccharide-based membranes have strong potential as a periosteum-mimetic scaffold for bone tissue regeneration. PMID:25575853

  11. Cryopreservation of canine semen - new challenges.

    PubMed

    Farstad, W

    2009-07-01

    Egg yolk (EY) protects cell membranes against cold shock, and it prevents or restores the loss of phospholipids from the membrane. EY has been widely used in semen extenders. It has been added to Tris-Glucose buffer and has been widely used for cooling and cryopreservation of canine semen. EY is not a defined entity, but a complex biological compound containing proteins, vitamins, phospholipids, glucose and antioxidants which are all potentially useful for cell membrane integrity. Unfortunately, it also is a biologically hazardous compound. Hence, whole EY needs to be replaced by other chemically defined components for semen processing in dogs. Freezing poor semen does not improve its quality, so attention must be focused on how to cope with dogs whose semen does not freeze well, and on designing individual freezing extenders for semen from such males. Furthermore, differences have been found among canid species in the ability of their spermatozoa to withstand freezing. There are differences in sperm membrane fatty acid composition among species, which may explain part of these differences. If the presence of long-chained polyunsaturated fatty acids contributes to increased membrane fluidity, this relationship may be biphasic, i.e. either too much membrane fluidity, or too little, could compromise successful sperm cryopreservation. An increase in fluidity of the outer leaflet of the plasma membrane has been shown in frozen thawed dog spermatozoa. The protective effect of exogenous lipids may lie in close association with the membrane rather than in modification or rearrangement of the membrane. This also points at lipids as an important, if not entirely new group of substances, which may substitute standard EY-based diluents in preserving sperm survival during freezing. EY-derived phospholipids or lecithin could be used to replace whole EY. Vegetable lecithin is currently investigated to avoid using substances of animal origin. EY also contains antioxidants which prevent cells from oxidative damage due to the generation of reactive oxygen species. An increasing number of publications now recognize the significance of protecting sperm from this damage during processing by using dietary or diluent supplemented antioxidants. This paper aims at looking at some of the new challenges in freezing of dog semen.

  12. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    PubMed

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis

    PubMed Central

    Levental, Kandice R.; Surma, Michal A.; Skinkle, Allison D.; Lorent, Joseph H.; Zhou, Yong; Klose, Christian; Chang, Jeffrey T.; Hancock, John F.; Levental, Ilya

    2017-01-01

    Mammalian cells produce hundreds of dynamically regulated lipid species that are actively turned over and trafficked to produce functional membranes. These lipid repertoires are susceptible to perturbations from dietary sources, with potentially profound physiological consequences. However, neither the lipid repertoires of various cellular membranes, their modulation by dietary fats, nor their effects on cellular phenotypes have been widely explored. We report that differentiation of human mesenchymal stem cells (MSCs) into osteoblasts or adipocytes results in extensive remodeling of the plasma membrane (PM), producing cell-specific membrane compositions and biophysical properties. The distinct features of osteoblast PMs enabled rational engineering of membrane phenotypes to modulate differentiation in MSCs. Specifically, supplementation with docosahexaenoic acid (DHA), a lipid component characteristic of osteoblast membranes, induced broad lipidomic remodeling in MSCs that reproduced compositional and structural aspects of the osteoblastic PM phenotype. The PM changes induced by DHA supplementation potentiated osteogenic differentiation of MSCs concurrent with enhanced Akt activation at the PM. These observations prompt a model wherein the DHA-induced lipidome leads to more stable membrane microdomains, which serve to increase Akt activity and thereby enhance osteogenic differentiation. More broadly, our investigations suggest a general mechanism by which dietary fats affect cellular physiology through remodeling of membrane lipidomes, biophysical properties, and signaling. PMID:29134198

  14. Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Zhao, Changwei; Zhang, Shaofeng; Li, Pei; Hou, Deyin

    2017-02-01

    Poly (m-phenylene isophthalamide)/graphene oxide (PMIA/GO) composite nanofiltartion (NF) membranes were prepared via a facile phase inversion method. Structures, surface properties and hydrophilicities of the membrane were analyzed using FT-IR, XPS, AFM, SEM, water contact angle and Zeta-potential measurements. FTIR spectra indicated the existence of hydrophilic carboxylic acid and hydroxyl groups in the GO molecules. SEM pictures revealed the large and finger-like micro-voids formed in the sublayer of the NF membranes after adding GO. The zeta-potential and water contact angle results proved that PMIA/GO composite membranes had more negatively charged and greater hydrophilic surfaces. The pure water flux of the PMIA/GO (0.3 wt% GO) composite membrane (125.2 (L/m2/h)) was 2.6 times as high as that of the pristine PMIA NF membrane (48.3 (L/m2/h)) at 0.8 MPa with slightly higher rejections to all tested dyes and better fouling resistance to bovine serum albumin (BSA). This study gave an effective method for preparing composite PMIA NF membranes with high water flux and excellent antifouling property, which showed potential application in water treatment.

  15. Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration

    NASA Astrophysics Data System (ADS)

    Pandele, A. M.; Neacsu, P.; Cimpean, A.; Staras, A. I.; Miculescu, F.; Iordache, A.; Voicu, S. I.; Thakur, V. K.; Toader, O. D.

    2018-04-01

    Covalent immobilization of resveratrol onto cellulose acetate polymeric membranes used as coating on a Mg-1Ca-0.2Mn-0.6Zr alloy is presented for potential application in the improvement of osseointegration processes. For this purpose, cellulose acetate membrane is hydrolysed in the presence of potassium hydroxide, followed by covalent immobilization of aminopropyl triethoxy silane. Resveratrol was immobilized onto membranes using glutaraldehyde as linker. The newly synthesised functional membranes were thoroughly characterized for their structural characteristics determination employing X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetric analysis (TGA/DTG) and scanning electron microscopy (SEM) techniques. Subsequently, in vitro cellular tests were performed for evaluating the cytotoxicity biocompatibility of synthesized materials and also the osseointegration potential of obtained derivatised membrane material. It was demonstrated that both polymeric membranes support viability and proliferation of the pre-osteoblastic MC3T3-E1 cells, thus providing a good protection against the potential harmful effects of the compounds released from coated alloys. Furthermore, cellulose acetate membrane functionalized with resveratrol exhibits a significant increase in alkaline phosphatase activity and extracellular matrix mineralization, suggesting its suitability to function as an implant surface coating for guided bone regeneration.

  16. The incidence of maxillary sinus membrane perforation during endoscopically assessed crestal sinus floor elevation: a pilot study.

    PubMed

    Garbacea, Antoanela; Lozada, Jaime L; Church, Christopher A; Al-Ardah, Aladdin J; Seiberling, Kristin A; Naylor, W Patrick; Chen, Jung-Wei

    2012-08-01

    Transcrestal sinus membrane elevation is a surgical procedure performed to increase the bone volume in the maxillary sinus cavity. Because of visual limitations, the potential for maxillary sinus membrane perforations may be greater than with the lateral approach technique. The aim of this study was to macroscopically investigate ex vivo the occurrence of sinus membrane perforation during surgery using 3 transcrestal sinus floor elevation methods. Twenty fresh human cadaver heads, with 40 intact sinuses, were used for simultaneous sinus membrane elevation, placement of graft material, and dental implants. Real-time sinus endoscopy, periapical digital radiographs, and cone-beam computerized tomography (CBCT) images were subsequently used to evaluate the outcome of each surgical procedure. Perforation rates for each of the 3 techniques were then compared using a significance level of P < .05. No statistically significant differences in the perforation rate (P = .79) were found among the 3 surgical techniques. Although the sinus endoscope noted a higher frequency of perforations at the time of implant placement as compared with instrumentation or graft insertion, the difference was not statistically significant (P = .04). The CBCT readings were judged to be more accurate for identifying evidence of sinus perforations than the periapical radiographs when compared with the direct visualization with the endoscope. This pilot study demonstrated that a sinus membrane perforation can occur at any time during the sinus lift procedure, independent of the surgical method used.

  17. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

    PubMed

    Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban

    2016-09-06

    Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.

  18. Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater.

    PubMed

    Liang, Zhihua; Das, Atreyee; Beerman, Daniel; Hu, Zhiqiang

    2010-06-01

    Biomass characteristics and microbial community diversity between a submerged membrane bioreactor with mixed liquor recirculation (MLE/MBR) and a membrane bioreactor with the addition of integrated fixed biofilm medium (IFMBR) were compared for organic carbon and nitrogen removal from wastewater. The two bench-scale MBRs were continuously operated in parallel at a hydraulic retention time (HRT) of 24h and solids retention time (SRT) of 20d. Both MBRs demonstrated good COD removal efficiencies (>97.7%) at incremental inflow organic loading rates. The total nitrogen removal efficiencies were 67% for MLE/MBR and 41% for IFMBR. The recirculation of mixed liquor from aerobic zone to anoxic zone in the MLE/MBR resulted in higher microbial activities of heterotrophic (46.96mgO(2)/gVSSh) and autotrophic bacteria (30.37mgO(2)/gVSSh) in the MLE/MBR compared to those from IFMBR. Terminal Restriction Fragment Length Polymorphism analysis indicated that the higher nitrifying activities were correlated with more diversity of nitrifying bacterial populations in the MLE/MBR. Membrane fouling due to bacterial growth was evident in both the reactors. Even though the trans-membrane pressure and flux profiles of MLE/MBR and IFMBR were different, the patterns of total membrane resistance changes had no considerable difference under the same operating conditions. The results suggest that metabolic selection via alternating anoxic/aerobic processes has the potential of having higher bacterial activities and improved nutrient removal in MBR systems. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    PubMed

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Engineering plant membranes using droplet interface bilayers.

    PubMed

    Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C

    2017-03-01

    Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

  1. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  2. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    PubMed

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  3. Epithelial Membrane Protein-2 in Human Proliferative Vitreoretinopathy and Epiretinal Membranes.

    PubMed

    Telander, David G; Yu, Alfred K; Forward, Krisztina I; Morales, Shawn A; Morse, Lawrence S; Park, Susanna S; Gordon, Lynn K

    2016-06-01

    To determine the level of epithelial membrane protein-2 (EMP2) expression in preretinal membranes from surgical patients with proliferative vitreoretinopathy (PVR) or epiretinal membranes (ERMs). EMP2, an integrin regulator, is expressed in the retinal pigment epithelium and understanding EMP2 expression in human retinal disease may help determine whether EMP2 is a potential therapeutic target. Preretinal membranes were collected during surgical vitrectomies after obtaining consents. The membranes were fixed, processed, sectioned, and protein expression of EMP2 was evaluated by immunohistochemistry. The staining intensity (SI) and percentage of positive cells (PP) in membranes were compared by masked observers. Membranes were categorized by their cause and type including inflammatory and traumatic. All of the membranes stained positive for EMP2. Proliferative vitreoretinopathy-induced membranes (all causes) showed greater expression of EMP2 than ERMs with higher SI (1.81 vs. 1.38; P = 0.07) and PP (2.08 vs. 1.54; P = 0.09). However all the PVR subgroups had similar levels of EMP2 expression without statistically significant differences by Kruskal-Wallis test. Inflammatory PVR had higher expression of EMP2 than ERMs (SI of 2.58 vs. 1.38); however, this was not statistically significant. No correlation was found between duration of PVR membrane and EMP2 expression. EMP2 was detected by RT-PCR in all samples (n = 6) tested. All studied ERMs and PVR membranes express EMP2. Levels of EMP2 trended higher in all PVR subgroups than in ERMs, especially in inflammatory and traumatic PVR. Future studies are needed to determine the role of EMP2 in the pathogenesis and treatment of various retinal conditions including PVR.

  4. QAC modified PVDF membranes: Antibiofouling performance, mechanisms, and effects on microbial communities in an MBR treating municipal wastewater.

    PubMed

    Chen, Mei; Zhang, Xingran; Wang, Zhiwei; Wang, Liang; Wu, Zhichao

    2017-09-01

    Biofouling remains as a critical issue limiting the widespread applications of membrane bioreactors (MBRs). The use of antibiofouling membranes is an emerging method to tackle this issue. In this study, a polyvinylidene fluoride (PVDF) membrane was modified using a quaternary ammonium compound (QAC) to create an antibiofouling membrane. The membrane was used in an MBR and the performance, mechanisms, and effects on microbial communities of this membrane were compared to a control operated in parallel. Results showed that the membrane exhibited a significantly reduced transmembrane pressure increase rate of 0.29 kPa/d compared with 0.91 kPa/d of the control. Analysis using a confocal laser scanning microscope (CLSM) revealed almost complete lack of living microbes on the antibiofouling membrane in contrast to the control. However, specific oxygen uptake rate and dehydrogenase activity analyses demonstrated no adverse impacts on microbial viability of the bulk activated sludge. Bacterial population analysis using the Illumina Miseq platform added further evidence that the use of antibiofouling membrane did not exert negative influences on richness, diversity and structure of the bacterial community. Effluent quality of the test MBR also exhibited minimal difference from that of the control reactor. The amount of polysaccharides and proteins in the biofouling layer was also significantly reduced. Quartz crystal microbalance with dissipation monitoring suggested that the antibiofouling membrane only allowed organic matter with strong adhesion properties to attach onto the membrane surfaces. These findings highlight the potential of the antibiofouling membrane to be used in MBRs for wastewater treatment and reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. In vivo voltage-dependent influences on summation of synaptic potentials in neurons of the lateral nucleus of the amygdala

    PubMed Central

    Rosenkranz, J. Amiel

    2012-01-01

    The amygdala has a fundamental role in driving affective behaviors in response to sensory cues. To accomplish this, neurons of the lateral nucleus (LAT) must integrate a large number of synaptic inputs. A wide range of factors influence synaptic integration, including membrane potential, voltage-gated ion channels and GABAergic inhibition. However, little is known about how these factors modulate integration of synaptic inputs in LAT neurons in vivo. The purpose of this study was to determine the voltage-dependent factors that modify in vivo integration of synaptic inputs in the soma of LAT neurons. In vivo intracellular recordings from anesthetized rats were used to measure post-synaptic potentials (PSPs) and clusters of PSPs across a range of membrane potentials. These studies found that the relationship between membrane potential and PSP clusters was sublinear, due to a reduction of cluster amplitude and area at depolarized membrane potentials. In combination with intracellular delivery of pharmacological agents, it was found that the voltage-dependent suppression of PSP clusters was sensitive to tetraethylammonium (TEA), but not cesium or a blocker of fast GABAergic inhibition. These findings indicate that integration of PSPs in LAT neurons in vivo is strongly modified by somatic membrane potential, likely through voltage-dependent TEA-sensitive potassium channels. Conditions that lead to a shift in membrane potential, or a modulation of the number or function of these ion channels will lead to a more uniform capacity for integration across voltages, and perhaps greatly facilitate amygdala-dependent behaviors. PMID:22989917

  6. Molecular Dynamics Studies of Structure and Functions of Water-Membrane Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A large number of essential cellular processes occur at the interfaces between water and membranes. The selectivity and dynamics of these processes are largely determined by the structural and electrical properties of the water-membrane interface. We investigate these properties by the molecular dynamics method. Over the time scales of the simulations, the membrane undergoes fluctuations described by the capillary wave model. These fluctuations produce occasional thinning defects in the membrane which provide effective pathways for passive transport of ions and small molecules across the membrane. Ions moving through the membrane markedly disrupt its structure and allow for significant water penetration into the membrane interior. Selectivity of transport, with respect to ionic charge, is determined by the interfacial electrostatic potential. Many small molecules. of potential significance in catalysis, bioenergetics and pharmacology, are shown to bind to the interface. The energetics and dynamics of this process will be discussed.

  7. Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Monitorable and Regenerative Sacrificial Layers.

    PubMed

    Huang, Hai; Lin, Saisai; Zhang, Lin; Hou, Li'an

    2017-03-22

    Improving chlorine stability is a high priority for aromatic polyamide (PA) reverse osmosis (RO) membranes especially in long-term desalination. In this Research Article, PA RO membranes of sustainable chlorine resistance was synthesized. Glycylglycine (Gly) was grafted onto the membrane surface as a regenerative chlorine sacrificial layer, and the zeta-potential was used to monitor the membrane performance and to conduct timely regeneration operations for chlorinated Gly. The Gly-grafted PA membrane exhibited ameliorative chlorine resistance in which the N-H moiety of glycylglycine served as sacrificial pendants against chlorine attacks. Cyclic chlorination experiments, combined with FT-IR and XPS analysis, were carried out to characterize the membrane. Results indicated that the resulting N-halamines could be fast regenerated by a simple alkaline reduction step (pH 10). A synchronous relationship between the zeta-potential and the chlorination extent of the sacrificial layer was observed. This indicated that the zeta-potential can be used as an on-site sensor to conduct a timely regeneration operation. The intrinsic mechanism of the surface sacrificial process was also studied.

  8. Explicit-Duration Hidden Markov Model Inference of UP-DOWN States from Continuous Signals

    PubMed Central

    McFarland, James M.; Hahn, Thomas T. G.; Mehta, Mayank R.

    2011-01-01

    Neocortical neurons show UP-DOWN state (UDS) oscillations under a variety of conditions. These UDS have been extensively studied because of the insight they can yield into the functioning of cortical networks, and their proposed role in putative memory formation. A key element in these studies is determining the precise duration and timing of the UDS. These states are typically determined from the membrane potential of one or a small number of cells, which is often not sufficient to reliably estimate the state of an ensemble of neocortical neurons. The local field potential (LFP) provides an attractive method for determining the state of a patch of cortex with high spatio-temporal resolution; however current methods for inferring UDS from LFP signals lack the robustness and flexibility to be applicable when UDS properties may vary substantially within and across experiments. Here we present an explicit-duration hidden Markov model (EDHMM) framework that is sufficiently general to allow statistically principled inference of UDS from different types of signals (membrane potential, LFP, EEG), combinations of signals (e.g., multichannel LFP recordings) and signal features over long recordings where substantial non-stationarities are present. Using cortical LFPs recorded from urethane-anesthetized mice, we demonstrate that the proposed method allows robust inference of UDS. To illustrate the flexibility of the algorithm we show that it performs well on EEG recordings as well. We then validate these results using simultaneous recordings of the LFP and membrane potential (MP) of nearby cortical neurons, showing that our method offers significant improvements over standard methods. These results could be useful for determining functional connectivity of different brain regions, as well as understanding network dynamics. PMID:21738730

  9. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment

    PubMed Central

    Epsztein, Jérôme; Brecht, Michael; Lee, Albert K.

    2011-01-01

    Summary For each environment a rodent has explored, its hippocampus contains a map consisting of a unique subset of neurons, called place cells, that have spatially-tuned spiking there, with the remaining neurons being essentially silent. Using whole-cell recording in freely moving rats exploring a novel maze, we observed differences in intrinsic cellular properties and input-based subthreshold membrane potential levels underlying this division into place and silent cells. Compared to silent cells, place cells had lower spike thresholds and peaked versus flat subthreshold membrane potentials as a function of animal location. Both differences were evident from the beginning of exploration. Additionally, future place cells exhibited higher burst propensity before exploration. Thus, internal settings appear to predetermine which cells will represent the next novel environment encountered. Furthermore, place cells fired spatially-tuned bursts with large, putatively calcium-mediated depolarizations that could trigger plasticity and stabilize the new map for long-term storage. Our results provide new insight into hippocampal memory formation. PMID:21482360

  10. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia

    2014-11-01

    Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.

  11. Supercritical CO2 induces marked changes in membrane phospholipids composition in Escherichia coli K12.

    PubMed

    Tamburini, Sabrina; Anesi, Andrea; Ferrentino, Giovanna; Spilimbergo, Sara; Guella, Graziano; Jousson, Olivier

    2014-06-01

    Supercritical carbon dioxide (SC-CO2) treatment is one of the most promising alternative techniques for pasteurization of both liquid and solid food products. The inhibitory effect of SC-CO2 on bacterial growth has been investigated in different species, but the precise mechanism of action remains unknown. Membrane permeabilization has been proposed to be the first event in SC-CO2-mediated inactivation. Flow cytometry, high performance liquid chromatography–electrospray ionization–mass spectrometry and NMR analyses were performed to investigate the effect of SC-CO2 treatment on membrane lipid profile and membrane permeability in Escherichia coli K12. After 15 min of SC-CO2 treatment at 120 bar and 35 °C, the majority of bacterial cells dissipated their membrane potential (95 %) and lost membrane integrity, as 81 % become partially permeabilized and 18 % fully permeabilized. Membrane permeabilization was associated with a 20 % decrease in bacterial biovolume and to a strong (>50 %) reduction in phosphatidylglycerol (PG) membrane lipids, without altering the fatty acid composition and the degree of unsaturation of acyl chains. PGs are thought to play an important role in membrane stability, by reducing motion of phosphatidylethanolamine (PE) along the membrane bilayer, therefore promoting the formation of inter-lipid hydrogen bonds. In addition, the decrease in intracellular pH induced by SC-CO2 likely alters the chemical properties of phospholipids and the PE/PG ratio. Biophysical effects of SC-CO2 thus cause a strong perturbation of membrane architecture in E. coli, and such alterations are likely associated with its strong inactivation effect.

  12. Conductance changes associated with the secretory potential in the cockroach salivary gland.

    PubMed

    Ginsborg, B L; House, C R; Silinsky, E M

    1974-02-01

    1. Conductance changes in the acini of the cockroach salivary gland have been examined during nerve stimulation by means of two intracellular electrodes placed in the same acinus, the first electrode being used for recording membrane potential and the second for current injection.2. The transient hyperpolarization (secretory potential) in the acinus evoked by nerve stimuli is accompanied by a rise in membrane conductance. The conductance, however, remains high for a longer period than that of the response.3. Applying the analysis of Trautwein & Dudel (1958) to the secretory potentials recorded in the acinus (assumed to behave electrically like a single cell) gives estimates of the ;transmitter equilibrium potential'. The values indicate that the neurotransmitter increases the membrane potassium conductance.4. The hyperpolarization of the acinus evoked by 10(-6)M dopamine in the bathing fluid is also associated with an increase in membrane potassium conductance.

  13. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676

  14. Protein–Protein Interactions between Sucrose Transporters of Different Affinities Colocalized in the Same Enucleate Sieve Element

    PubMed Central

    Reinders, Anke; Schulze, Waltraud; Kühn, Christina; Barker, Laurence; Schulz, Alexander; Ward, John M.; Frommer, Wolf B.

    2002-01-01

    Suc represents the major transport form for carbohydrates in plants. Suc is loaded actively against a concentration gradient into sieve elements, which constitute the conduit for assimilate export out of leaves. Three members of the Suc transporter family with different properties were identified: SUT1, a high-affinity Suc proton cotransporter; SUT4, a low-affinity transporter; and SUT2, which in yeast is only weakly active and shows features similar to those of the yeast sugar sensors RGT2 and SNF3. Immunolocalization demonstrated that all three SUT proteins are localized in the same enucleate sieve element. Thus, the potential of Suc transporters to form homooligomers was tested by the yeast-based split-ubiquitin system. The results show that both SUT1 and SUT2 have the potential to form homooligomers. Moreover, all three Suc transporters have the potential to interact with each other. As controls, a potassium channel and a monosaccharide transporter, expressed in the plasma membrane, did not interact with the SUTs. The in vivo interaction between the functionally different Suc transporters indicates that the membrane proteins are capable of forming oligomeric structures that, like mammalian Glc transporter complexes, might be of functional significance for the regulation of transport. PMID:12119375

  15. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    DOE PAGES

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.; ...

    2014-05-28

    In this study, antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity tomore » study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less

  16. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.

    In this study, antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity tomore » study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less

  17. Contact bubble bilayers with flush drainage.

    PubMed

    Iwamoto, Masayuki; Oiki, Shigetoshi

    2015-03-16

    Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels.

  18. Contact Bubble Bilayers with Flush Drainage

    PubMed Central

    Iwamoto, Masayuki; Oiki, Shigetoshi

    2015-01-01

    Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels. PMID:25772819

  19. Roles of cyclic AMP and Ca in epithelial ion transport across corneal epithelium: a review.

    PubMed

    Reinach, P S

    1985-04-01

    The messenger roles of cyclic AMP and the calcium ion in stimulus-secretion coupling are considered in the frog and bovine corneal epithelium, respectively. In the frog cornea, epinephrine stimulates net C1 transport by increasing cyclic AMP content. This stimulation is associated with a larger apical membrane C1 conductance and basolateral membrane ionic conductance. The response of the apical membrane conductance is thought to result from an increase in cyclic AMP content whereas the basolateral membrane ionic conductance increase is unrelated based on measurements of the effects of the calcium channel antagonist, diltiazem, and the beta agonist, isoproterenol, on the electrical parameters and cyclic AMP content. The basolateral membrane is essentially K permselective since the K channel blocker, Ba, depolarized the intracellular potential difference and increased the basolateral membrane resistance. Diltiazem had even larger effects on these parameters suggesting that this compound is a more effective inhibitor of K channel activity than barium. In broken cell preparations of bovine corneal epithelium, a high affinity form of Ca + Mg activated ATPase is present (Km = .06 microM for Ca) and is essentially of plasma membrane origin. This ATPase activation is at a Ca activity similar to the expected intracellular value and suggests that this activity is the enzymatic basis for net Ca transport.

  20. High Thermal Gradient in Thermo-electrochemical Cells by Insertion of a Poly(Vinylidene Fluoride) Membrane

    NASA Astrophysics Data System (ADS)

    Hasan, Syed Waqar; Said, Suhana Mohd; Sabri, Mohd Faizul Mohd; Bakar, Ahmad Shuhaimi Abu; Hashim, Nur Awanis; Hasnan, Megat Muhammad Ikhsan Megat; Pringle, Jennifer M.; Macfarlane, Douglas R.

    2016-07-01

    Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of electrochemical potential disequilibrium between electrodes induced by a temperature gradient (ΔT). Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat transfer effects - we refer to these membrane-thermocells as MTECs. At a ΔT of 12 K, an improvement in the open circuit voltage (Voc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. x = 2 mm, 5 mm, and 8 mm where ‘x’ defines the distance between the cathode and PVDF membrane. We found that the membrane position at x = 5 mm achieves the closest internal ΔT (i.e. 8.8 K) to the externally applied ΔT of 10 K and corresponding power density is 254 nWcm-2 78% higher than the conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass and heat transfer within the thermocells.

  1. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation

    PubMed Central

    Fuoco, Alessio; Khdhayyer, Muhanned R.; Attfield, Martin P.; Esposito, Elisa; Jansen, Johannes C.; Budd, Peter M.

    2017-01-01

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability. PMID:28208658

  2. Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates.

    PubMed

    Zhang, Lili; Zhang, Zesheng; Jasa, John; Li, Dongli; Cleveland, Robin O; Negahban, Mehrdad; Jérusalem, Antoine

    2017-08-16

    The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.

  3. Effects of Aloe Vera and Chitosan Nanoparticle Thin-Film Membranes on Wound Healing in Full Thickness Infected Wounds with Methicillin Resistant Staphylococcus Aureus.

    PubMed

    Ranjbar, Reza; Yousefi, Alireza

    2018-01-01

    To assess effect of Aleo vera with chitosan nanoparticle biofilm on wound healing in full thickness infected wounds with antibiotic resistant gram positive bacteria. Thirty rats were randomized into five groups of six rats each. Group I: Animals with uninfected wounds treated with 0.9% saline solution. Group II: Animals with infected wounds treated with saline. Group III: Animals with infected wounds were dressed with chitosan nanoparticle thin-film membranes. Group IV: Animals with infected wounds were treated topically with Aloe vera and Group V: Animals with infected wounds were treated topically with Aloe vera and dressed with chitosan nanoparticle thin-film membranes. Wound size was measured on 6, 9, 12, 15, 18 and 21days after surgery. Microbiology, reduction in wound area and hydroxyproline contents indicated that there was significant difference ( p <0.05) between group V and other groups. Quantitative histological studies and mean rank of the qualitative studies demonstrated that there was significant difference ( p <0.05) between group V and other groups. The Aloe vera with chitosan nanoparticle thin-film membranes had a reproducible wound healing potential and hereby justified its use in practice.

  4. Chitosan-functionalized silk fibroin 3D scaffold for keratocyte culture.

    PubMed

    Guan, Linan; Tian, Pei; Ge, Hongyan; Tang, Xianling; Zhang, Hong; Du, Lingling; Liu, Ping

    2013-10-01

    The goal of this study was to evaluate the potential suitability of an artificial membrane composed of silk fibroin (SF) functionalized by different ratios of chitosan (CS) as a substrate for the stroma of the cornea. Keratocytes were cultured on translucent membranes made of SF and CS with different ratios. The biophysical properties of the silk fibroin and chitosan (SF/CS) membrane were examined. The SF/CS showed tensile strengths that increased as the CS concentration increased, but the physical and mechanical properties of chitosan-functionalized silk fibroin scaffolds weakened significantly compared with those of native corneas. The resulting cell scaffolds were evaluated using western blot in addition to light and electron microscopy. The cell attachment and proliferation on the scaffold were similar to those on a plastic plate. Keratocytes cultured in serum on SF/CS exhibited stellate morphology along with a marked increase in the expression of keratocan compared with identical cultures on tissue culture plastics. The biocompatibility was tested by transplanting the acellular membrane into rabbit corneal stromal pockets. There was no inflammatory complication detected at any time point on the macroscopic level. Taken together, these results indicate that SF/CS holds promise as a substrate for corneal reconstruction.

  5. Facile Fabrication of Ordered Anodized Aluminum Oxide Membranes with Controlled Pore Size by Improved Hard Anodization.

    PubMed

    Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong

    2018-05-01

    We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.

  6. Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

    PubMed Central

    Roach, Shane M.; Song, Dong; Berger, Theodore W.

    2012-01-01

    Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947

  7. Chip-Based Dynamic Real-Time Quantification of Drug-Induced Cytotoxicity in Human Tumor Cells

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; McGuinness, Dagmara; Faley, Shannon; Kolch, Walter; Darzynkiewicz, Zbigniew; Cooper, Jonathan M.

    2013-01-01

    Cell cytotoxicity tests are among the most common bioassays using flow cytometry and fluorescence imaging analysis. The permeability of plasma membranes to charged fluorescent probes serves, in these assays, as a marker distinguishing live from dead cells. Since it is generally assumed that probes, such as propidium iodide (PI) or 7-amino-actinomycin D (7-AAD), are themselves cytotoxic, they are currently generally used only as the end-point markers of assays for live versus dead cells. In the current study, we provide novel insights into potential applications of these classical plasma membrane integrity markers in the dynamic tracking of drug-induced cytotoxicity. We show that treatment of a number of different human tumor cell lines in cultures for up to 72 h with the PI, 7-AAD, SYTOX Green (SY-G), SYTOX Red (SYR), TO-PRO, and YO-PRO had no effect on cell viability assessed by the integrity of plasma membrane, cell cycle progression, and rate of proliferation. We subsequently explore the potential of dynamic labeling with these markers in real-time analysis, by comparing results from both conventional cytometry and microfluidic chips. Considering the simplicity of the staining protocols and their low cost combined with the potential for real-time data collection, we show how that real-time fluorescent imaging and Lab-on-a-Chip platforms have the potential to be used for automated drug screening routines. PMID:19572560

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, Bruce Palmer

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in themore » hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.« less

  9. Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria1[OPEN

    PubMed Central

    Lea-Smith, David J.; Nürnberg, Dennis J.; Baers, Laura L.; Davey, Matthew P.; Parolini, Lucia; Huber, Roland G.; Cotton, Charles A. R.; Mastroianni, Giulia; Bombelli, Paolo; Ungerer, Petra; Stevens, Tim J.; Howe, Christopher J.

    2016-01-01

    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms. PMID:27707888

  10. The different facets of organelle interplay-an overview of organelle interactions.

    PubMed

    Schrader, Michael; Godinho, Luis F; Costello, Joseph L; Islinger, Markus

    2015-01-01

    Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy-a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction.

  11. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide

    PubMed Central

    Shukla, Arun Kumar; Alam, Javed; Alhoshan, Mansour; Dass, Lawrence Arockiasamy; Muthumareeswaran, M. R.

    2017-01-01

    In the present study, graphene oxide (GO) was incorporated as a nanoadditive into a polyphenylsulfone (PPSU) to develop a PPSU/GO nanocomposite membrane with enhanced antifouling properties. A series of membranes containing different concentrations (0.2, 0.5 and 1.0 wt.%) of GO were fabricated via the phase inversion method, using N-methyl pyrrolidone (NMP) as the solvent, deionized water as the non-solvent, and polyvinylpyrrolidone (PVP) as a pore forming agent. The prepared nanocomposite membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and were also characterized with respect to contact angle, zeta potential and porosity, mean pore radius, tortuosity and molecular weight cut-off (MWCO). Thermogravimetric analysis (TGA) and tensile testing were used to measure thermal and mechanical properties. The membrane performance was evaluated by volumetric flux and rejection of proteins, and antifouling properties. According to the results, the optimum addition of 0.5 wt% GO resulted in a membrane with an increased flux of 171 ± 3 Lm−2h−1 with a MWCO of ~40 kDa. In addition, the GO incorporation efficiently inhibited the interaction between proteins and the membrane surface, thereby improving the fouling resistance ability by approximately 58 ± 3%. Also, the resulting membranes showed a significant improvement in mechanical and thermal properties. PMID:28155882

  12. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide

    NASA Astrophysics Data System (ADS)

    Shukla, Arun Kumar; Alam, Javed; Alhoshan, Mansour; Dass, Lawrence Arockiasamy; Muthumareeswaran, M. R.

    2017-02-01

    In the present study, graphene oxide (GO) was incorporated as a nanoadditive into a polyphenylsulfone (PPSU) to develop a PPSU/GO nanocomposite membrane with enhanced antifouling properties. A series of membranes containing different concentrations (0.2, 0.5 and 1.0 wt.%) of GO were fabricated via the phase inversion method, using N-methyl pyrrolidone (NMP) as the solvent, deionized water as the non-solvent, and polyvinylpyrrolidone (PVP) as a pore forming agent. The prepared nanocomposite membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and were also characterized with respect to contact angle, zeta potential and porosity, mean pore radius, tortuosity and molecular weight cut-off (MWCO). Thermogravimetric analysis (TGA) and tensile testing were used to measure thermal and mechanical properties. The membrane performance was evaluated by volumetric flux and rejection of proteins, and antifouling properties. According to the results, the optimum addition of 0.5 wt% GO resulted in a membrane with an increased flux of 171 ± 3 Lm-2h-1 with a MWCO of ~40 kDa. In addition, the GO incorporation efficiently inhibited the interaction between proteins and the membrane surface, thereby improving the fouling resistance ability by approximately 58 ± 3%. Also, the resulting membranes showed a significant improvement in mechanical and thermal properties.

  13. Direct Effects on the Membrane Potential due to "Pumps" that Transfer No Net Charge

    PubMed Central

    Schwartz, Tobias L.

    1971-01-01

    The effects of active ionic transport are included in the derivation of a general expression for the zero current membrane potential. It is demonstrated that an active transport system that transfers no net charge (nonrheogenic) may, nevertheless, directly alter the membrane potential. This effect depends upon the exchange of matter within the membrane between the active and passive diffusion regimes. Furthermore, in the presence of such exchange, the transmembrane active fluxes measured by the usual techniques and the local pumped fluxes are not identical. Several common uses of the term “electrogenic pump” are thus shown to be inconsistent with each other. These inconsistencies persist when the derivation is extended to produce a Goldman equation modified to account for active transport; however, that equation is shown to be limited by less narrow constraints on membrane heterogeneity and internal electric field than those previously required. In particular, it is applicable to idealized mosaic membranes limited by these requirements. PMID:5113004

  14. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    PubMed

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  15. Adenosine monophosphate-activated kinase, AMPK, is involved in the maintenance of the quality of extended boar semen during long-term storage.

    PubMed

    Martin-Hidalgo, David; Hurtado de Llera, Ana; Yeste, Marc; Cruz Gil, M; Bragado, M Julia; Garcia-Marin, Luis J

    2013-09-01

    Boar semen preservation for later use in artificial insemination is performed by diluting semen in an appropriate medium and then lowering the temperature to decrease spermatozoa metabolism. The adenosine monophosphate-activated kinase, AMPK, is a key cell energy sensor that controls cell metabolism and recently has been identified in boar spermatozoa. Our aim was to investigate the role of AMPK in spermatozoa functional parameters including motility, mitochondrial membrane potential, plasma membrane integrity, acrosome integrity, and cell viability during long-term boar semen storage at 17 °C in Beltsville thawing solution. Boar seminal doses were diluted in Beltsville thawing solution in the presence or absence of different concentrations of AMPK inhibitor, compound C (1, 10, and 30 μM) and evaluations were performed at 1, 2, 4, 7, or 10 days. Data demonstrate that AMPK becomes phosphorylated at threonine(172) (active) during storage of boar semen reaching maximum levels at Day 7. Moreover, AMPK inhibition during boar semen storage causes: (1) a potent inhibition of spermatozoa motility; (2) a reduction in the percentage of spermatozoa showing high mitochondria membrane potential; (3) a rise in the percentage of spermatozoa displaying high plasma membrane scrambling; and (4) a loss of acrosomal membrane integrity. Our study suggests that AMPK activity plays an important role in the maintenance of the spermatozoa quality during long-term storage of boar semen. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  17. Renewable urea sensor based on a self-assembled polyelectrolyte layer.

    PubMed

    Wu, Zhaoyang; Guan, Lirui; Shen, Guoli; Yu, Ruqin

    2002-03-01

    A renewable urea sensor based on a carboxylic poly(vinyl chloride) (PVC-COOH) matrix pH-sensitive membrane has been proposed, in which a positively charged polyelectrolyte layer is first constructed by using a self-assembly technique on the surface of a PVC-COOH membrane, and urease, with negative charges, is then immobilized through electrostatic adsorption onto the PVC-COOH membrane, by controlling the pH of the urease solution below its isoelectric point. The response characteristics of the PVC-COOH pH-sensitive membrane and the effects of experimental conditions have been investigated in detail. Compared with conventional covalent immobilization, the urea sensor made with this self-assembly immobilization shows significant advantage in terms of sensitivity and ease of regeneration. The potential responses of the urea sensor with self-assembly immobilization increase with the urea concentration over the concentration range 10(-5) - 10(-1) mol l(-1), and the detection limit is 0.028 mmol(-1). Moreover, this type of urea sensor can be repeatedly regenerated by using a simple washing treatment with 0.01 mol l(-1) NaOH (containing 0.5 mol l(-1) NaCl) and 0.01 mol l(-1) HCl. The urease layers and the polyelectrolyte layers on the PVC-COOH membrane are removed, the potential response of the sensor to urea solutions of different concentrations returns nearly to zero, and another assembly cycle of urease and polyelectrolyte can then be carried out.

  18. Electromechanical properties of biomembranes and nerves

    NASA Astrophysics Data System (ADS)

    Heimburg, T.; Blicher, A.; Mosgaard, L. D.; Zecchi, K.

    2014-12-01

    Lipid membranes are insulators and capacitors, which can be charged by an external electric field. This phenomenon plays an important role in the field of electrophysiology, for instance when describing nerve pulse conduction. Membranes are also made of polar molecules meaning that they contain molecules with permanent electrical dipole moments. Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice versa, mechanical forces on membranes lead to changes in the membrane potential. Associated effects are flexoelectricity, piezoelectricity, and electrostriction. Lipid membranes can melt from an ordered to a disordered state. Due to the change of membrane dimensions associated with lipid membrane melting, electrical properties are linked to the melting transition. Melting of the membrane can induce changes in trans-membrane potential, and application of voltage can lead to a shift of the melting transition. Further, close to transitions membranes are very susceptible to piezoelectric phenomena. We discuss these phenomena in relation with the occurrence of lipid ion channels. Close to melting transitions, lipid membranes display step-wise ion conduction events, which are indistinguishable from protein ion channels. These channels display a voltage-dependent open probability. One finds asymmetric current-voltage relations of the pure membrane very similar to those found for various protein channels. This asymmetry falsely has been considered a criterion to distinguish lipid channels from protein channels. However, we show that the asymmetry can arise from the electromechanical properties of the lipid membrane itself. Finally, we discuss electromechanical behavior in connection with the electromechanical theory of nerve pulse transduction. It has been found experimentally that nerve pulses are related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse travels along the nerve. Due to electromechanical coupling it is unavoidable that this pulse generates a trans-membrane voltage. In the past, we have proposed that this electromechanical pulse is the origin of the action potential in nerves.

  19. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging

    NASA Astrophysics Data System (ADS)

    Nuriya, Mutsuo; Yasui, Masato

    2010-03-01

    The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.

  20. The three lives of viral fusion peptides

    PubMed Central

    Apellániz, Beatriz; Huarte, Nerea; Largo, Eneko; Nieva, José L.

    2014-01-01

    Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention. PMID:24704587

  1. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.

    Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanismof antimicrobial α-peptide–β-peptoid chimeras. Langmuirmonolayers composed of 1,2-dipalmitoylsn- glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria,while lipopolysaccharide Kdo2-lipid Amonolayersweremimicking the outer membrane of Gram-negative species.We report the results of themeasurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecularmechanisms of peptidomimetic interaction with bacterialmembranes.We found guanidinomore » group-containing chimeras to exhibit greater disruptive activity on DPPGmonolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharidemonolayerswhere the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less

  2. Chemically Stable Lipids for Membrane Protein Crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishchenko, Andrii; Peng, Lingling; Zinovev, Egor

    2017-05-01

    The lipidic cubic phase (LCP) has been widely recognized as a promising membrane-mimicking matrix for biophysical studies of membrane proteins and their crystallization in a lipidic environment. Application of this material to a wide variety of membrane proteins, however, is hindered due to a limited number of available host lipids, mostly monoacylglycerols (MAGs). Here, we designed, synthesized, and characterized a series of chemically stable lipids resistant to hydrolysis, with properties complementary to the widely used MAGs. In order to assess their potential to serve as host lipids for crystallization, we characterized the phase properties and lattice parameters of mesophases mademore » of two most promising lipids at a variety of different conditions by polarized light microscopy and small-angle X-ray scattering. Both lipids showed remarkable chemical stability and an extended LCP region in the phase diagram covering a wide range of temperatures down to 4 °C. One of these lipids has been used for crystallization and structure determination of a prototypical membrane protein bacteriorhodopsin at 4 and 20 °C.« less

  3. Octanal inhibits spore germination of Penicillium digitatum involving membrane peroxidation.

    PubMed

    Dou, Shiwen; Liu, Shengquan; Xu, Xiaoyong; OuYang, Qiuli; Tao, Nengguo

    2017-07-01

    Octanal is a potential alternative to chemical fungicides in controlling postharvest disease of citrus fruit. In this study, the antifungal activity and the underlying mechanism of octanal against spore germination of Penicillium digitatum, one of the main postharvest pathogens in citrus, were investigated. Results showed that octanal at different concentrations (0, 0.25, 0.50, 1.00, 2.00 μl/ml) inhibited the growth of P. digitatum spores in a dose-dependent manner. The morphology and the membrane permeability of P. digitatum spores were visibly altered by 0.25 and 2.00 μl/ml of octanal. Meanwhile, octanal decreased the total lipids contents of P. digitatum spores, indicating that the membrane integrity is damaged. Furthermore, octanal apparently induced the massive accumulation of total malonaldehyde (MDA) and the reactive oxygen species (ROS). An increase in the activities of lipoxygenase (LOX), NADH oxidase, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was also observed. These results suggested that a membrane damage mechanism involving membrane peroxidation might contribute to the antifungal activity of octanal against P. digitatum spores.

  4. Guanidino Groups Greatly Enhance the Action of Antimicrobial Peptidomimetics Against Bacterial Cytoplasmic Membranes

    PubMed Central

    Laursen, Jonas S.; Citterio, Linda; Hein-Kristensen, Line; Gram, Lone; Kuzmenko, Ivan; Olsen, Christian A.; Gidalevitz, David

    2014-01-01

    A promising class of potential new antibiotics are the antimicrobial peptides or their synthetic mimics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Two separate Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and lipopolysaccharide Kdo2-lipid A were applied to model the outer membranes of Gram-positive and Gram-negative bacteria, respectively. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies. PMID:24878450

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions betweenmore » the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.« less

  6. Bacterial membranes: the effects of chill storage and food processing. An overview.

    PubMed

    Russell, Nicholas J

    2002-11-15

    The shelf life of food is extended by refrigeration because the metabolic processes of food-associated microorganisms are slowed by the lowered temperature. Nonetheless, cold-adapted psychrotrophic food-poisoning and food-spoilage bacteria remain a concern because they possess cold-adapted proteins and membrane lipids that facilitate growth at low temperatures. The use of membrane-disrupting novel preservation techniques, such as ultrasound, high hydrostatic pressure or pulsed electric field, offer the potential for an extension of shelf life. This review considers the interacting and potentially synergistic effects of chill storage or mild heat treatment on membrane properties, with the disruptive effects of membrane-targeted physical treatments.

  7. Induction of autophagy by depolarization of mitochondria.

    PubMed

    Lyamzaev, Konstantin G; Tokarchuk, Artem V; Panteleeva, Alisa A; Mulkidjanian, Armen Y; Skulachev, Vladimir P; Chernyak, Boris V

    2018-03-13

    Mitochondrial dysfunction plays a crucial role in the macroautophagy/autophagy cascade. In a recently published study Sun et al. described the induction of autophagy by the membranophilic triphenylphosphonium (TPP)-based cation 10-(6'-ubiquinonyl) decyltriphenylphosphonium (MitoQ) in HepG2 cells (Sun C, et al. "MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential [PMMP]", Autophagy 2017, 13:730-738.). Sun et al. suggested that MitoQ adsorbed to the inner mitochondrial membrane with its cationic moiety remaining in the intermembrane space, adding a large number of positive charges and establishing a "pseudo-mitochondrial membrane potential," which blocked the ATP synthase. Here we argue that the suggested mechanism for generation of the "pseudo-mitochondrial membrane potential" is physically implausible and contradicts earlier findings on the electrophoretic displacements of membranophilic cations within and through phospholipid membranes. We provide evidence that TPP-cations dissipated the mitochondrial membrane potential in HepG2 cells and that the induction of autophagy in carcinoma cells by TPP-cations correlated with the uncoupling of oxidative phosphorylation. The mild uncoupling of oxidative phosphorylation by various mitochondria-targeted penetrating cations may contribute to their reported therapeutic effects via inducing both autophagy and mitochondria-selective mitophagy.

  8. Interaction of KMP-11 with Phospholipid Membranes and Its Implications in Leishmaniasis: Effects of Single Tryptophan Mutations and Cholesterol.

    PubMed

    Sannigrahi, Achinta; Maity, Pabitra; Karmakar, Sanat; Chattopadhyay, Krishnananda

    2017-03-02

    KMP-11 is a small protein that is believed to control the overall bilayer pressure of the Leishmania parasite. Recent results have suggested that membrane binding and the presence of cholesterol affect the efficacy of Leishmanial infection, in which KMP-11 plays an important role. Nevertheless, there exists no systematic study of membrane interaction with KMP-11 either in the absence or presence of cholesterol. In this article, we investigated the interaction between KMP-11 and phospholipid membranes using an unsaturated (PC 18:1; 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and saturated (PC 12:0; 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) lipid as membrane mimics. Additionally, we studied the effect of cholesterol on the protein-membrane interaction. Steady-state as well as time-resolved fluorescence spectroscopy, isothermal titration calorimetry (ITC), and ζ-potential measurements were used for the determination of the binding constants for the wild-type (WT) and single-site tryptophan mutants. Single-site tryptophan mutants were designed to make sure that the tryptophan residues sample different surface exposures in different mutants. In the absence of cholesterol, the membrane-binding affinities of the partially exposed and buried tryptophan mutants (Y5W and Y48W, respectively) were found to be greater than those of the WT protein. In the presence of cholesterol, the binding constants of the WT and Y48W mutant were found to decrease with an increase in cholesterol concentration. This was in contrast to that in the Y5W and F77W mutants, in which the binding constants increased on adding cholesterol. The present study highlights the interplay among the conformational architecture of a protein, its interaction with the membrane, and membrane composition in modulating the survival of a Leishmania parasite inside host macrophages.

  9. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells.

    PubMed

    Fong-Ngern, Kedsarin; Sueksakit, Kanyarat; Thongboonkerd, Visith

    2016-07-01

    Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.

  10. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  11. [Daptomycin: revitalizing a former drug due to the need of new active agents against grampositive multiresistant bacterias].

    PubMed

    Hernández Martí, V; Romá Sánchez, E; Salavert Lletí, M; Bosó Ribelles, V; Poveda Andrés, J L

    2007-09-01

    The development of mechanisms of resistance of many Gram-positive bacterial strains that cause complicated skin and soft tissue infections, as well as sepsis and bacteremia, has necessitated the search for new drugs that will improve treatment strategies. Daptomycin is a cyclic lipopeptide antibacterial that was launched for the treatment of complicated skin and soft tissue infections caused by Gram-positive organisms. The drug's mechanism of action is different from that of any other antibiotic. It binds to bacterial membranes and causes a rapid depolarization of membrane potential. This loss of membrane potential causes inhibition of protein, DNA and RNA synthesis, which results in bacterial cell death. The in vitro spectrum of activity of daptomycin encompasses most clinically relevant aerobic Gram-positive pathogenic bacteria. Compared to other antibiotics with a similar antibacterial spectrum, daptomycin does not cause nephrotoxicity. Taking these and other characteristics into consideration, daptomycin appears to be a good alternative to other drugs used in the treatment of complicated skin and soft tissue infections and in Gram-positive bacteremial infections.

  12. Identification of potential platelet alloantigens in the Equidae family by comparison of gene sequences encoding major platelet membrane glycoproteins.

    PubMed

    Boudreaux, Mary K; Humphries, Drew M

    2013-12-01

    Platelet alloantigens in horses may play an important role in the development of neonatal alloimmune thrombocytopenia (NAIT). The objective of this study was to evaluate genes encoding major platelet glycoproteins within the Equidae family in an effort to identify potential alloantigens. DNA was isolated from blood samples obtained from Equidae family members, including a Holsteiner-Oldenburg cross, a Quarter horse, a donkey, and a Plains zebra (Equus burchelli). Gene sequences encoding equine platelet membrane glycoproteins IIb, IIIa (integrin subunits αIIb and β3), Ia (integrin subunit α2), and Ibα were determined using PCR. Gene sequences were compared to the equine genome available on GenBank. Polymorphisms that would be predicted to result in amino acid changes on platelet surfaces were documented and compared with known alloantigenic sites documented on human platelets. Amino acid differences were predicted based on nucleotide sequences for all 4 genes. Nine differences were documented for αIIb, 5 differences were documented for β3, 7 differences were documented for α2, and 16 differences were documented for Ibα outside the macroglycopeptide region. This study represents the first effort at identifying potential platelet alloantigens in members of the Equidae Family based on evaluation of gene sequences. The data obtained form the groundwork for identifying potential platelet alloantigens involved in transfusion reactions and neonatal alloimmune thrombocytopenia (NAIT). More work is required to determine whether the predicted amino acid differences documented in this study play a role in alloimmunity, and whether other polymorphisms not detected in this study are present that may result in alloimmunity. © 2013 American Society for Veterinary Clinical Pathology.

  13. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction.

    PubMed

    Sherratt, Samuel C R; Mason, R Preston

    2018-01-31

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differentially influence lipid oxidation, signal transduction, fluidity, and cholesterol domain formation, potentially due in part to distinct membrane interactions. We used small angle X-ray diffraction to evaluate the EPA and DHA effects on membrane structure. Membrane vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA (1:10 mol ratio to POPC). Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an energetically favorable extended orientation for EPA likely stabilized by van der Waals interactions. By contrast, DHA increased electron density in the phospholipid head group region starting at ± 12 Å from the membrane center, presumably due to DHA-surface interactions, with coincident reduction in electron density in the membrane hydrocarbon core centered ± 7-9 Å from the membrane center. The membrane width (d-space) decreased by 5 Å in the presence of vehicle as the temperature increased from 10 °C to 30 °C due to increased acyl chain trans-gauche isomerizations, which was unaffected by addition of EPA or DHA. The influence of DHA on membrane structure was modulated by temperature changes while the interactions of EPA were unaffected. The contrasting EPA and DHA effects on membrane structure indicate distinct molecular locations and orientations that may contribute to observed differences in biological activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content.

    PubMed

    Delgado-Ramírez, Mayra; Sánchez-Armass, Sergio; Meza, Ulises; Rodríguez-Menchaca, Aldo A

    2018-05-01

    Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    PubMed

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Functional imaging of microdomains in cell membranes.

    PubMed

    Duggan, James; Jamal, Ghadir; Tilley, Mark; Davis, Ben; McKenzie, Graeme; Vere, Kelly; Somekh, Michael G; O'Shea, Paul; Harris, Helen

    2008-10-01

    The presence of microdomains or rafts within cell membranes is a topic of intense study and debate. The role of these structures in cell physiology, however, is also not yet fully understood with many outstanding problems. This problem is partly based on the small size of raft structures that presents significant problems to their in vivo study, i.e., within live cell membranes. But the structure and dynamics as well as the factors that control the assembly and disassembly of rafts are also of major interest. In this review we outline some of the problems that the study of rafts in cell membranes present as well as describing some views of what are considered the generalised functions of membrane rafts. We point to the possibility that there may be several different 'types' of membrane raft in cell membranes and consider the factors that affect raft assembly and disassembly, particularly, as some researchers suggest that the lifetimes of rafts in cell membranes may be sub-second. We attempt to review some of the methods that offer the ability to interrogate rafts directly as well as describing factors that appear to affect their functionality. The former include both near-field and far-field optical approaches as well as scanning probe techniques. Some of the advantages and disadvantages of these techniques are outlined. Finally, we describe our own views of raft functionality and properties, particularly, concerning the membrane dipole potential, and describe briefly some of the imaging strategies we have developed for their study.

  17. Two dimensional alveolar ridge augmentation using particulate hydroxyapatite and collagen membrane: A case report

    PubMed Central

    Singh, Aparna; Daing, Anika; Anand, Vishal; Dixit, Jaya

    2014-01-01

    Background Ridge augmentation procedures require bone regeneration outside of the existing bony walls or housing and are therefore often considered to be the most challenging surgical procedures. The bony deficiencies can be managed with GBR techniques involving bone grafting material and membrane while vertical augmentation may require the use of space-creating support mechanisms. Non-degradable membranes have been used for ridge augmentation with encouraging results however; requirement of second surgery for its removal and associated infection on exposure may compromise the desired results. These problems can be overcome by employing resorbable collagen membranes. Different bone graft materials are also used in combination with resorbable membranes, for prevention of membrane collapse and maintenance of space, as they lack sufficient rigidity. Particulate hydroxyapatite bone graft may be better alternative, because it treats the underlying bone defect to restore the natural support of the tissue architecture. Moreover, its use avoids potential donor site complications associated with autogenous block grafts. Method Patient described in this report presented with missing right maxillary incisor with ridge deficiency. A treatment approach involving localised ridge augmentation with particulate hydroxyapatite and collagen membrane was used. Result Six month post-operative periapical radiograph demonstrated a significant vertical bone fill. Conclusion The clinical and radiographic findings of the present case suggests that HA in conjunction with a resorbable collagen membrane may be an acceptable alternative to the autogenous block graft and non-resorbable membrane in the treatment of compromised alveolar ridge deficiencies. PMID:25737935

  18. Rab proteins: The key regulators of intracellular vesicle transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less

  19. High-Force Dielectric Electroactive Polymer (DEAP) membrane actuator

    NASA Astrophysics Data System (ADS)

    Hau, Steffen; York, Alexander; Seelecke, Stefan

    2016-04-01

    Energy efficiency, lightweight and scalability are key features for actuators in applications such as valves, pumps or any portable system. Dielectric electroactive Polymer (DEAP) technology is able to fulfill these requirements1 better than commonly used technology e.g. solenoids, but has limitations concerning force and stroke. However, the circular DEAP membrane actuator shows a potential increase in stroke in the mm range, when combined with an appropriate biasing mechanism2. Although, thus far, their force range is limited to the single-digit Newton range, or less3,4. This work describes how this force limit of DEAP membrane actuators can be pushed to the high double-digit Newton range and beyond. The concept for such an actuator consists of a stack of double-layered DEAPs membrane actuator combined with a biasing mechanism. These two components are combined in a novel way, which allows a compact design by integrating the biasing mechanism into the DEAP membrane actuator stack. Subsequently, the single components are manufactured, tested, and their force-displacement characteristic is documented. Utilizing this data allows assembling them into actuator systems for different applications. Two different actuators are assembled and tested (dimensions: 85x85x30mm3 (LxWxH)). The first one is able to lift 7.5kg. The second one can generate a force of 66N while acting against a spring load.

  20. Light-activated control of protein channel assembly mediated by membrane mechanics

    NASA Astrophysics Data System (ADS)

    Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.

    2016-12-01

    Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.

Top