Science.gov

Sample records for membrane protein gene

  1. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  2. Use of gene fusions to study outer membrane protein localization in Escherichia coli.

    PubMed Central

    Silhavy, T J; Shuman, H A; Beckwith, J; Schwartz, M

    1977-01-01

    Escherichia coli strains have been isolated that produce hybrid proteins comprised of an NH2-terminal sequence from the lamB gene product (an outer membrane protein) and a major portion of the COOH-terminal sequence of beta-galactosidase (beta-D-galactoside galactohydrolase, EC 3.2.1.23; a cytoplasmic protein). These proteins exhibit beta-galactosidase activity. One such strain, pop 3105, produces a hybrid protein containing very little of the lamB gene protein; the protein is found in the cytoplasm. The protein found in a second strain, pop 3186, contains much more of the lamB gene protein; a substantial fraction of the beta-galactosidase activity is found in the outer membrane, probably facing outward. These results indicate that information necessary to direct the lamB gene product to its outer membrane location is located within the lamB gene itself. The properties of such fusion strains open up the prospect of a precise genetic analysis of the genetic components involved in protein transport. Images PMID:414221

  3. Molecular characterization of a cold-induced plasma membrane protein gene from wheat.

    PubMed

    Koike, Michiya; Sutoh, Keita; Kawakami, Akira; Torada, Atsushi; Oono, Kiyoharu; Imai, Ryozo

    2005-12-01

    As a means to study the function of plasma membrane proteins during cold acclimation, we have isolated a cDNA clone for wpi6 which encodes a putative plasma membrane protein from cold-acclimated winter wheat. The wpi6 gene encodes a putative 5.9 kDa polypeptide with two predicted membrane-spanning domains, the sequence of which shows high sequence similarity with BLT101-family proteins from plants and yeast. Strong induction of wpi6 mRNA was observed during an early stage of cold acclimation in root and shoot tissues of both winter and spring wheat cultivars. In contrast to blt101 in barley, wpi6 mRNA was also induced by drought and salinity stresses, and exogenous application of ABA. Expression of wpi6 in a Deltapmp3 mutant of Saccharomyces cerevisiae, which is disturbed in plasma membrane potential due to the lack of a BLT101-family protein, partially complemented NaCl sensitivity of the mutant. Transient expression analysis of a WPI6::GFP fusion protein in onion epidermal cells revealed that WPI6 is localized in the plasma membrane. Taken together, these data suggested that WPI6 may have a protective role in maintaining plasma membrane function during cold acclimation in wheat.

  4. The Chlamydomonas reinhardtii Nar1 Gene Encodes a Chloroplast Membrane Protein Involved in Nitrite Transport

    PubMed Central

    Rexach, Jesus; Fernández, Emilio; Galván, Aurora

    2000-01-01

    A key step for nitrate assimilation in photosynthetic eukaryotes occurs within chloroplasts, where nitrite is reduced to ammonium, which is incorporated into carbon skeletons. The Nar1 gene from Chlamydomonas reinhardtii is clustered with five other genes for nitrate assimilation, all of them regulated by nitrate. Sequence analysis of genomic DNA and cDNA of Nar1 and comparative studies of strains having or lacking Nar1 have been performed. The deduced amino acid sequence indicates that Nar1 encodes a chloroplast membrane protein with substantial identity to putative formate and nitrite transporters in bacteria. Use of antibodies against NAR1 has corroborated its location in the plastidic membrane. Characterization of strains having or lacking this gene suggests that NAR1 is involved in nitrite transport in plastids, which is critical for cell survival under limiting nitrate conditions, and controls the amount of nitrate incorporated by the cells under limiting CO2 conditions. PMID:10948261

  5. The Rh protein family: gene evolution, membrane biology, and disease association.

    PubMed

    Huang, Cheng-Han; Ye, Mao

    2010-04-01

    The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor's involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.

  6. Systematic Identification and Characterization of Novel Human Skin-Associated Genes Encoding Membrane and Secreted Proteins

    PubMed Central

    Buhren, Bettina Alexandra; Martinez, Cynthia; Schrumpf, Holger; Gasis, Marcia; Grether-Beck, Susanne; Krutmann, Jean

    2013-01-01

    Through bioinformatics analyses of a human gene expression database representing 105 different tissues and cell types, we identified 687 skin-associated genes that are selectively and highly expressed in human skin. Over 50 of these represent uncharacterized genes not previously associated with skin and include a subset that encode novel secreted and plasma membrane proteins. The high levels of skin-associated expression for eight of these novel therapeutic target genes were confirmed by semi-quantitative real time PCR, western blot and immunohistochemical analyses of normal skin and skin-derived cell lines. Four of these are expressed specifically by epidermal keratinocytes; two that encode G-protein-coupled receptors (GPR87 and GPR115), and two that encode secreted proteins (WFDC5 and SERPINB7). Further analyses using cytokine-activated and terminally differentiated human primary keratinocytes or a panel of common inflammatory, autoimmune or malignant skin diseases revealed distinct patterns of regulation as well as disease associations that point to important roles in cutaneous homeostasis and disease. Some of these novel uncharacterized skin genes may represent potential biomarkers or drug targets for the development of future diagnostics or therapeutics. PMID:23840300

  7. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    NASA Astrophysics Data System (ADS)

    Noori, Azam; White, Jason C.; Newman, Lee A.

    2017-02-01

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  8. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    PubMed

    Stuerner, Elisabeth; Kuraku, Shigehiro; Hochstrasser, Mark; Kreft, Stefan G

    2012-01-01

    Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs), but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS). A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH) and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.

  9. Identification of the Salmonella enterica damX Gene Product, an Inner Membrane Protein Involved in Bile Resistance▿ †

    PubMed Central

    López-Garrido, Javier; Cheng, Nancy; García-Quintanilla, Fátima; García-del Portillo, Francisco; Casadesús, Josep

    2010-01-01

    The damX gene product of Salmonella enterica serovar Typhimurium is a protein located in the inner membrane. DamX migrates as a 70-kDa protein in SDS-PAGE even though the predicted protein size is 46 kDa. Synthesis of DamX protein occurs in both exponential- and stationary-phase cultures. Disruption of damX causes severe sensitivity to bile. Lack of the outer membrane protein AsmA suppresses bile sensitivity in Salmonella damX mutants. PMID:19948803

  10. Structure and promoter analysis of the mouse membrane-bound transferrin-like protein (MTf) gene.

    PubMed

    Nakamasu, K; Kawamoto, T; Yoshida, E; Noshiro, M; Matsuda, Y; Kato, Y

    2001-03-01

    Recently, we purified membrane-bound transferrin-like protein (MTf) from the plasma membrane of rabbit chondrocytes and showed that the expression levels of MTf protein and mRNA were much higher in cartilage than in other tissues [Kawamoto T, Pan, H., Yan, W., Ishida, H., Usui, E., Oda, R., Nakamasu, K., Noshiro, M., Kawashima-Ohya, Y., Fujii, M., Shintani, H., Okada, Y. & Kato, Y. (1998) Eur. J. Biochem. 256, 503--509]. In this study, we isolated the MTf gene from a constructed mouse genomic library. The mouse MTf gene was encoded by a single-copy gene spanning approximately 26 kb and consisting of 16 exons. The transcription-initiation site was located 157 bp upstream from the translation-start codon, and a TATA box was not found in the 5' flanking region. The mouse MTf gene was mapped on the B3 band of chromosome 16 by fluorescence in situ hybridization. Using primary chondrocytes, SK-MEL-28 (melanoma cell line), ATDC5 (chondrogenic cell line) and NIH3T3 (fibroblast cell line) cells, we carried out transient expression studies on various lengths of the 5' flanking region of the MTf gene fused to the luciferase reporter gene. Luciferase activity in SK-MEL-28 cells was higher than in primary chondrocytes. Although no luciferase activity was detectable in NIH3T3 cells, it was higher in chondrocytes than in ATDC5 chondrogenic cells. These findings were consistent with the levels of expression of MTf mRNA in these cells cultured under similar conditions. The patterns of increase and decrease in the luciferase activity in chondrocytes transfected with various 5' deleted constructs of the MTf promoter were similar to that in ATDC5 cells, but differed from that in SK-MEL-28 cells. The findings obtained with primary chondrocytes suggest that the regions between -693 and -444 and between -1635 and -1213 contain positive and negative cis-acting elements, respectively. The chondrocyte-specific expression of the MTf gene could be regulated via these regulatory elements in

  11. The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation

    PubMed Central

    1995-01-01

    We previously described the isolation of mutants of the methylotrophic yeast Hansenula polymorpha that are defective in peroxisome biogenesis. Here, we describe the characterization of one of these mutants, per8, and the cloning of the PER8 gene. In either methanol or methylamine medium, conditions that normally induce the organelles, per8 cells contain no peroxisome-like structures and peroxisomal enzymes are located in the cytosol. The sequence of PER8 predicts that its product (Per8p) is a novel polypeptide of 34 kD, and antibodies against Per8p recognize a protein of 31 kD. Analysis of the primary sequence of Per8p revealed a 39-amino-acid cysteine-rich segment with similarity to the C3HC4 family of zinc-finger motifs. Overexpression of PER8 results in a markedly enhanced increase in peroxisome numbers. We show that Per8p is an integral membrane protein of the peroxisome and that it is concentrated in the membranes of newly formed organelles. We propose that Per8p is a component of the molecular machinery that controls the proliferation of this organelle. PMID:7844145

  12. Sequence and transcriptional start site of the Pseudomonas aeruginosa outer membrane porin protein F gene.

    PubMed Central

    Duchêne, M; Schweizer, A; Lottspeich, F; Krauss, G; Marget, M; Vogel, K; von Specht, B U; Domdey, H

    1988-01-01

    Porin F is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. It forms water-filled pores of variable size. Porin F is a candidate for a vaccine against P. aeruginosa because it antigenically cross-reacts in all serotype strains of the International Antigenic Typing Scheme. We have isolated the gene for porin F from a lambda EMBL3 bacteriophage library by using oligodeoxynucleotide hybridization probes and have determined its nucleotide sequence. Different peptide sequences obtained from isolated porin F confirmed the deduced protein sequence. The mature protein consists of 326 amino acid residues and has a molecular weight of 35,250. The precursor contains an N-terminal signal peptide of 24 amino acid residues. S1 protection and primer extension experiments, together with Northern (RNA) blots, indicate that the mRNA coding for porin F is monocistronic with short untranslated regions of about 58 bases at the 5' end and about 47 bases at the 3' end. The sequences in the -10 and -35 regions upstream of the transcriptional start site are closely related to the Escherichia coli promoter consensus sequences, which explains why the porin F gene is expressed in E. coli under the control of its own promoter. The amino acid sequence of porin F is not homologous to the different E. coli porins OmpF, OmpC, LamB, and PhoE. On the other hand, a highly homologous region of 30 amino acids between the OmpA proteins of different enteric bacteria and porin F of P. aeruginosa was detected. The core region of the homology to E. coli OmpA had 11 of 12 amino acid residues in common. Images PMID:2447060

  13. Protein secretion in Pseudomonas aeruginosa: the xcpA gene encodes an integral inner membrane protein homologous to Klebsiella pneumoniae secretion function protein PulO.

    PubMed Central

    Bally, M; Ball, G; Badere, A; Lazdunski, A

    1991-01-01

    xcp mutations have pleiotropic effects on the secretion of proteins in Pseudomonas aeruginosa PAO. The nucleotide sequence of a 1.2-kb DNA fragment that complements the xcp-1 mutation has been determined. Sequence analysis shows the xcpA gene product to be a 31.8-kDa polypeptide, with a highly hydrophobic character. This is consistent with a localization in the cytoplasmic membrane in P. aeruginosa, determined after specific expression of the xcpA gene under control of the T7 phi 10 promoter. A very strong homology was found between XcpA and PulO, a membrane protein required for pullulanase secretion in Klebsiella pneumoniae. This suggests the existence of a signal sequence-dependent secretion process common to these two unrelated gram-negative bacteria. Images PMID:1898929

  14. Bacteriophage T5 gene A2 protein alters the outer membrane of Escherichia coli.

    PubMed Central

    Snyder, C E

    1984-01-01

    Evidence for changes in Escherichia coli envelope structure caused by the bacteriophage T5 gene A2 protein was obtained by the use of mutant bacteriophages, envelope fractionation procedures, electrophoretic analysis, and in vitro binding studies with purified gene A2 protein. The results suggested that the T5 gene A2 protein perturbs the host envelope as it functions to promote DNA transfer. Images PMID:6389511

  15. Detergent fractionation with subsequent subtractive suppression hybridization as a tool for identifying genes coding for plasma membrane proteins.

    PubMed

    Lange, Andreas; Kistler, Claudia; Jutzi, Tanja B; Bazhin, Alexandr V; Klemke, Claus Detlev; Schadendorf, Dirk; Eichmüller, Stefan B

    2009-06-01

    The identification of tumor-specific proteins located at the plasma membrane is hampered by numerous methodological pitfalls many of which are associated with the post-translational modification of such proteins. Here, we present a new combination of detergent fractionation of cells and of subtractive suppression hybridization (SSH) to gain overexpressed genes coding for membrane-associated or secreted proteins. Fractionation of subcellular components by digitonin allowed sequestering mRNA of the rough Endoplasmatic reticulum and thereby increasing the percentage of sequences coding for membrane-bound proteins. Fractionated mRNAs from the cutaneous T-cell lymphoma (CTCL) cell line HuT78 and from normal peripheral blood monocytes were used for SSH leading to the enrichment of sequences overexpressed in the tumor cells. We identified some 21 overexpressed genes, among them are GPR137B, FAM62A, NOMO1, HSP90, SLIT1, IBP2, CLIF, IRAK and ARC. mRNA expression was tested for selected genes in CTCL cell lines, skin specimens and peripheral blood samples from CTCL patients and healthy donors. Several of the detected sequences are clearly related to cancer, but have not yet been associated with CTCL. qPCR confirmed an enrichment of these mRNAs in the rough endoplasmic reticulum fraction. RT-PCR confirmed the expression of these genes in skin specimens and peripheral blood of CTCL patients. Western blotting verified protein expression of HSP90 and IBP2 in HuT78. GPR137B could be detected by immunohistology in HuT78 and in keratinocytes of dysplastic epidermis, but also in sweat glands of healthy skin. In summary, we developed a new technique, which allows identifying overexpressed genes coding preferentially for membrane-associated proteins.

  16. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X

    PubMed Central

    MENG, Xianrong; LIU, Xueling; ZHANG, Liyuan; HOU, Bo; LI, Binyou; TAN, Chen; LI, Zili; ZHOU, Rui; LI, Shaowen

    2016-01-01

    Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to the virulence in various bacterial species. But, their role in virulence of extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be determined. This study evaluates the role of OmpX in ExPEC virulence in vitro and in vivo using a clinical strain PPECC42 of porcine origin. The ompX deletion mutant exhibited increased swimming motility and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the wild-type strain. A mild increase in LD50 and distinct decrease in bacterial load in such organs as heart, liver, spleen, lung and kidney were observed in mice infected with the ompX mutant. Complementation of the complete ompX gene in trans restored the virulence of mutant strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC virulence, but may be not an indispensable virulence determinant. PMID:27149893

  17. Cloning and sequencing of 28 kDa outer membrane protein gene of Brucella melitensis Rev. 1.

    PubMed

    Chaudhuri, Pallab; Kumar, S Vinoth; Prasad, Rajeev; Srivastava, S K; Yadav, M P

    2005-09-01

    Brucella melitensis is an organism of paramount zoonotic importance. The 28 kDa outer membrane protein (OMP) is one of the immunodominant antigens of B. melitensis. The gene encoding 28 kDa OMP (omp28) has been amplified from B. melitensis Rev. 1 strain. A PCR product of 753 bp, encoding complete omp28 gene of B. melitensis, was obtained. The gene was further cloned and sequenced. The nucleotide sequence of B. melitensis Rev. 1 strain showed substitution of 2 nucleotides from that of 16M strain.

  18. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOEpatents

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  19. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    PubMed Central

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  20. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  1. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  2. DNA sequence and expression of the 36-kilodalton outer membrane protein gene of Brucella abortus.

    PubMed Central

    Ficht, T A; Bearden, S W; Sowa, B A; Adams, L G

    1989-01-01

    The cloning of the gene(s) encoding a 36-kilodalton (kDa) cell envelope protein of Brucella abortus has been previously described (T. A. Ficht, S. W. Bearden, B. A. Sowa, and L. G. Adams, Infect, Immun. 56:2036-2046, 1988). In an attempt to define the nature of the previously described duplication at this locus we have sequenced 3,500 base pairs of genomic DNA encompassing this region. The duplication represented two similar open reading frames which shared more than 85% homology at the nucleotide level but differed primarily because of the absence of 108 nucleotides from one of the two gene copies. These two genes were read from opposite strands and potentially encoded proteins which are 96% homologous. The predicted gene products were identical over the first 100 amino acids, including 22-amino-acid-long signal sequences. The amino acid composition of the predicted proteins was similar to that obtained for the Brucella porin isolated by Verstreate et al. (D. R. Verstreate, M. T. Creasy, N. T. Caveney, C. L. Baldwin, M. W. Blab, and A. J. Winter, Infect. Immun. 35:979-989, 1982) and presumably represented two copies of the porin gene, tentatively identified as omp 2a (silent) and omp 2b (expressed). The homology between the two genes extended to and included Shine-Dalgarno sequences 7 base pairs upstream from the ATG start codons. Homology at the 3' ends extended only as far as the termination codon, but both genes had putative rho-independent transcription termination sites. Localization of the promoters proved more difficult, since the canonical procaryotic sequences could not be identified in the region upstream of either gene. Promoter activity was demonstrated by ligation to a promoterless lacZ gene in pMC1871. However, only one active promoter could be identified by using this system. A 36-kDa protein was synthesized in E. coli with the promoter in the native orientation and was identical in size to the protein produced in laboratory-grown B. abortus. When

  3. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    PubMed

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  4. Comparative analysis of the structures of the outer membrane protein P1 genes from major clones of Haemophilus influenzae type b.

    PubMed Central

    Munson, R; Grass, S; Einhorn, M; Bailey, C; Newell, C

    1989-01-01

    P1 outer membrane proteins from Haemophilus influenzae type b are heterogeneous antigenically and with respect to apparent molecular weight in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. For determination of the molecular basis for the differences in the P1 proteins, the genes for the P1 proteins from strain 1613, representative of outer membrane protein subtype 3L, and strain 8358, representative of outer membrane protein subtype 6U, were cloned, sequenced, and compared with the previously reported gene for the P1 protein from strain MinnA, a strain with the outer membrane protein subtype 1H. These prototype strains are representatives of the three major clonal families of H. influenzae type b responsible for invasive disease in diverse areas of the world. The nucleotide sequences of the P1 genes from strains 1613 and 8358 were 94 and 90% identical to the MinnA sequence, respectively. The derived amino acid sequences were 91 and 86% identical, respectively. Heterogeneity between the MinnA and 1613 proteins was largely localized to two short variable regions; the protein from strain 8538 contained a third variable region not observed in the other P1 proteins. Thus, the outer membrane protein P1 genes are highly conserved; the variable regions may code for the previously demonstrated strain-specific antigenic determinants. Images PMID:2572549

  5. Laboratory information management system for membrane protein structure initiative--from gene to crystal.

    PubMed

    Troshin, Petr V; Morris, Chris; Prince, Stephen M; Papiz, Miroslav Z

    2008-12-01

    Membrane Protein Structure Initiative (MPSI) exploits laboratory competencies to work collaboratively and distribute work among the different sites. This is possible as protein structure determination requires a series of steps, starting with target selection, through cloning, expression, purification, crystallization and finally structure determination. Distributed sites create a unique set of challenges for integrating and passing on information on the progress of targets. This role is played by the Protein Information Management System (PIMS), which is a laboratory information management system (LIMS), serving as a hub for MPSI, allowing collaborative structural proteomics to be carried out in a distributed fashion. It holds key information on the progress of cloning, expression, purification and crystallization of proteins. PIMS is employed to track the status of protein targets and to manage constructs, primers, experiments, protocols, sample locations and their detailed histories: thus playing a key role in MPSI data exchange. It also serves as the centre of a federation of interoperable information resources such as local laboratory information systems and international archival resources, like PDB or NCBI. During the challenging task of PIMS integration, within the MPSI, we discovered a number of prerequisites for successful PIMS integration. In this article we share our experiences and provide invaluable insights into the process of LIMS adaptation. This information should be of interest to partners who are thinking about using LIMS as a data centre for their collaborative efforts.

  6. A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock.

    PubMed Central

    Maniak, M; Nellen, W

    1988-01-01

    We have analyzed the expression of the Dictyostelium gene P8A7 which had been isolated as a cDNA clone from an early developmentally regulated gene. The single genomic copy generated two mRNAs which were subject to different control mechanisms: while one mRNA (P8A7S) was regulated like the cell-type-nonspecific late genes, the other one (P8A7L) was induced during development, when cells were allowed to attach to a substrate, and when cells were subjected to stress, such as heat shock and cadmium. Interestingly the same induction was also observed with cold shock. RNA processing was inhibited by heat and cold shock, leading to nuclear accumulation of a precursor. The translated region of the cDNA was common to both mRNAs and encoded an unusually hydrophobic peptide with the characteristics of a membrane protein. Images PMID:3336356

  7. Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli.

    PubMed Central

    Dean, G E; Macnab, R M; Stader, J; Matsumura, P; Burks, C

    1984-01-01

    The motA and motB gene products of Escherichia coli are integral membrane proteins necessary for flagellar rotation. We determined the DNA sequence of the region containing the motA gene and its promoter. Within this sequence, there is an open reading frame of 885 nucleotides, which with high probability (98% confidence level) meets criteria for a coding sequence. The 295-residue amino acid translation product had a molecular weight of 31,974, in good agreement with the value determined experimentally by gel electrophoresis. The amino acid sequence, which was quite hydrophobic, was subjected to a theoretical analysis designed to predict membrane-spanning alpha-helical segments of integral membrane proteins; four such hydrophobic helices were predicted by this treatment. Additional amphipathic helices may also be present. A remarkable feature of the sequence is the existence of two segments of high uncompensated charge density, one positive and the other negative. Possible organization of the protein in the membrane is discussed. Asymmetry in the amino acid composition of translated DNA sequences was used to distinguish between two possible initiation codons. The use of this method as a criterion for authentication of coding regions is described briefly in an Appendix. PMID:6090403

  8. The Rab11-FIP1/RCP gene codes for multiple protein transcripts related to the plasma membrane recycling system.

    PubMed

    Jin, Min; Goldenring, James R

    2006-06-01

    Rab11a is a member of the Rab11 small GTPase family, and plays an important role in plasma membrane recycling. Rab11-Family Interacting Protein 1 (Rab11-FIP1) binds to Rab11 through a carboxyl-terminal amphipathic alpha helix. We have identified eight alternatively spliced Rab11-FIP1 gene transcripts from human chromosome 8. Among them, Rab11-FIP1A-D have carboxyl terminal Rab11 binding domains, while Rab11-FIP1E-H do not contain the Rab11 binding domain. While Rab11-FIP1B and F gene transcripts are ubiquitous, other Rab11-FIP1 transcripts demonstrate more limited patterns of expression in human tissue cDNAs. EGFP-Rab11-FIP1A-D proteins over-expressed in HeLa cells targeted to Rab11a-containing membranes, while EGFP-Rab11-FIP1E/F and H proteins did not localize with recycling system membranes. However, transferrin trafficking was not significantly altered in HeLa cells over-expressing expressing any of the EGFP-Rab11-FIP1 proteins. Rabbit polyclonal antibodies specific for Rab11-FIP1B and Rab11-FIP1C/RCP demonstrated that Rab11-FIP1B and Rab11-FIP1C/RCP are expressed endogenously. Strikingly, endogenous staining for Rab11-FIP1C/RCP only partially co-localized with EGFP-Rab11-FIP1A, EGFP-Rab11-FIP1B, and EGFP-Rab11a in the perinuclear region, indicating that Rab11-FIP1C/RCP resides in a differentiable subcellular compartment within the plasma membrane recycling system compared with Rab11-FIP1A and Rab11-FIP1B. These data suggest that Rab11-FIP1 proteins may play coordinated roles in regulating plasma membrane recycling with regional specificity within the Rab11a-containing recycling system.

  9. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  10. Cloning and characterization of CSP37, a novel gene encoding a putative membrane protein of Candida albicans.

    PubMed Central

    Sentandreu, M; Nieto, A; Iborra, A; Elorza, M V; Ponton, J; Fonzi, W A; Sentandreu, R

    1997-01-01

    In the course of an analysis of the functions and assembly of the cell wall of Candida albicans, we have cloned and characterized a gene, which we designated CSP37 (cell surface protein), encoding a 37-kDa polypeptide which is a membrane-associated protein. The gene was isolated by immunological screening of a DNA library constructed from mycelial cells with a polyclonal serum raised against cell walls of this morphology. Analysis of the nucleotide sequence of a corresponding genomic DNA fragment revealed a single open reading frame which encodes a predicted protein of 321 amino acids with no significant homology to others in the databases. Disruption of the CSP37 gene by the method described by Fonzi and Irwin (Genetics 134:717-728, 1993) eliminated expression of the Csp37 protein. The mutant strains showed no apparent defect in cell viability, growth, or cell wall assembly but displayed attenuated virulence in systemic infections induced in mice and reduced the ability to adhere to polystyrene. PMID:9244249

  11. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1.

    PubMed Central

    Waterham, H R; de Vries, Y; Russel, K A; Xie, W; Veenhuis, M; Cregg, J M

    1996-01-01

    We report the cloning of PER6, a gene essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. The PER6 sequence predicts that its product Per6p is a 52-kDa polypeptide with the cysteine-rich C3HC4 motif. Per6p has significant overall sequence similarity with the human peroxisome assembly factor PAF-1, a protein that is defective in certain patients suffering from the peroxisomal disorder Zellweger syndrome, and with car1, a protein required for peroxisome biogenesis and caryogamy in the filamentous fungus Podospora anserina. In addition, the C3HC4 motif and two of the three membrane-spanning segments predicted for Per6p align with the C3HC4 motifs and the two membrane-spanning segments predicted for PAF-1 and car1. Like PAF-1, Per6p is a peroxisomal integral membrane protein. In methanol- or oleic acid-induced cells of per6 mutants, morphologically recognizable peroxisomes are absent. Instead, peroxisomal remnants are observed. In addition, peroxisomal matrix proteins are synthesized but located in the cytosol. The similarities between Per6p and PAF-1 in amino acid sequence and biochemical properties, and between mutants defective in their respective genes, suggest that Per6p is the putative yeast homolog of PAF-1. PMID:8628321

  12. CONSTRUCTION OF SILKWORM MIDGUT cDNA LIBRARY FOR SCREEN AND SEQUENCE ANALYSIS OF PERITROPHIC MEMBRANE PROTEIN GENES.

    PubMed

    Zhou, Yi-Jun; Xue, Bin; Li, Yang-Yang; Li, Fan-Chi; Ni, Min; Shen, Wei-De; Gu, Zhi-Ya; Li, Bing; Shen, Wei-De; Gu, Zhi-Ya; Li, Bing

    2016-01-01

    Silkworm is an important economic insect and the model species for Lepidoptera. The midgut of silkworm is an important physiological barrier, as its peritrophic membrane (PM) can resist pathogen invasion. In this study, a silkworm midgut cDNA library was constructed in order to identify silkworm PM genes. The capacity of the initial library was 6.92 × 10(6) pfu/ml, along with a recombination rate of 92.14% and a postamplification titer of 4.10 × 10(9) pfu/ml. Three silkworm PM protein genes were obtained by immunoscreening, two of which were chitin-binding protein (CBP) genes and one of which was a chitin deacetylase (CDA) gene as revealed by sequence analysis. Three genes were named BmCBP02, BmCBP13, and BmCDA17, and their ORF sizes are 678, 1,029, and 645 bp, respectively; all of them contain sequences of chitin-binding domains. Phylogenetic analysis indicated that BmCBP02 has the highest consensus with Mamestra configurata CBP at 61.0%; BmCBP13 has the highest consensus with Loxostege sticticalis PM CBP at 53.35%; BmCDA17 has the highest consensus with Helicoverpa armigera CDA5a at 70.83%. Tissue transcriptional analysis revealed that all three genes were specifically expressed in the midgut, and during the developmental process of fifth-instar silkworms, the transcription of all the genes showed an upward trend. This study laid a foundation for further studies on the functions of silkworm PM genes.

  13. Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and beta-lactamase fusions.

    PubMed Central

    Prinz, W A; Beckwith, J

    1994-01-01

    To compare two approaches to analyzing membrane protein topology, a number of alkaline phosphatase fusions to membrane proteins were converted to beta-lactamase fusions. While some alkaline phosphatase fusions near the N terminus of cytoplasmic loops of membrane proteins have anomalously high levels of activity, the equivalent beta-lactamase fusions do not. This disparity may reflect differences in the folding of beta-lactamase and alkaline phosphatase in the cytoplasm. PMID:7929016

  14. Proteins of Excitable Membranes

    PubMed Central

    Nachmansohn, David

    1969-01-01

    Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a sequence of reactions resulting in increased permeability. The hydrolysis of ACh by ACh-esterase restores the barrier to ions. The enzymes hydrolyzing and forming ACh and the receptor protein are present in the various types of excitable membranes. Properties of the two proteins directly associated with electrical activity, receptor and esterase, will be described in this and subsequent lectures. ACh-esterase has been shown to be located within the excitable membranes. Potent enzyme inhibitors block electrical activity demonstrating the essential role in this function. The enzyme has been recently crystallized and some protein properties will be described. The monocellular electroplax preparation offers a uniquely favorable material for analyzing the properties of the ACh-receptor and its relation to function. The essential role of the receptor in electrical activity has been demonstrated with specific receptor inhibitors. Recent data show the basically similar role of ACh in the axonal and junctional membranes; the differences of electrical events and pharmacological actions are due to variations of shape, structural organization, and environment. PMID:19873642

  15. Analysis of Transcriptionally Active Gene Clusters of Major Outer Membrane Protein Multigene Family in Ehrlichia canis and E. chaffeensis

    PubMed Central

    Ohashi, Norio; Rikihisa, Yasuko; Unver, Ahmet

    2001-01-01

    Ehrlichia canis and E. chaffeensis are tick-borne obligatory intramonocytic ehrlichiae that cause febrile systemic illness in humans and dogs, respectively. The current study analyzed the pleomorphic multigene family encoding approximately 30-kDa major outer membrane proteins (OMPs) of E. canis and E. chaffeensis. Upstream from secA and downstream of hypothetical transcriptional regulator, 22 paralogs of the omp gene family were found to be tandemly arranged except for one or two genes with opposite orientations in a 28- and a 27-kb locus in the E. canis and E. chaffeensis genomes, respectively. Each locus consisted of three highly repetitive regions with four nonrepetitive intervening regions. E. canis, in addition, had a 6.9-kb locus which contained a repeat of three tandem paralogs in the 28-kb locus. These total 47 paralogous and orthologous genes encoded OMPs of approximately 30 to 35 kDa consisting of several hypervariable regions alternating with conserved regions. In the 5′-end half of the 27-kb locus or the 28-kb locus of each Ehrlichia species, 14 paralogs were linked by short intergenic spaces ranging from −8 bp (overlapped) to 27 bp, and 8 remaining paralogs in the 3′-end half were connected by longer intergenic spaces ranging from 213 to 632 bp. All 22 paralogs, five unknown genes, and secA in the omp cluster in E. canis were transcriptionally active in the monocyte culture, and the paralogs with short intergenic spaces were cotranscribed with their adjacent genes, including the respective intergenic spaces at both the 5′ and the 3′ sides. Although omp genes are diverse, our results suggest that the gene organization of the clusters and the gene locus are conserved between two species of Ehrlichia to maintain a unique transcriptional mechanism for adaptation to environmental changes common to them. PMID:11254561

  16. An epidemiologic study of mitochondrial membrane transporter protein gene polymorphism and risk factors for neural tube defects in Shanxi, China.

    PubMed

    Liu, Zhizhen; Xie, Jun; Luo, Tian'e; Zhang, Tao; Zhao, Xia; Zhao, Hong; Li, Peizhen

    2012-02-25

    The present study involved a questionnaire survey of 156 mothers that gave birth to children with neural tube defects or had a history of pregnancy resulting in children with neural tube defects (case group) and 156 control mothers with concurrent healthy children (control group) as well as detection of mitochondrial membrane transporter protein gene [uncoupling protein 2 (UCP2)] polymorphism. The maternal UCP2 3' untranslated region (UTR) D/D genotype and D allele frequency were significantly higher in the case group compared with the control group (odds ratio (OR) 3.233; 95% confidence interval (CI) 1.103-9.476; P = 0.040; OR: 3.484; 95% CI: for neural tube defects 2.109-5.753; P < 0.001). Univariate and multivariate logistic regression analysis of risk factors for neural tube defects showed that a maternal UCP2 3' UTR D/D genotype was negatively interacted with the mothers' consumption of frequent fresh fruit and vegetables (S = 0.007), positively interacted with the mothers' frequency of germinated potato consumption (S = 2.15) and positively interacted with the mothers' body mass index (S = 3.50). These findings suggest that maternal UCP2 3' UTR gene polymorphism, pregnancy time, consumption of germinated potatoes and body mass index are associated with an increased risk for neural tube defects in children from mothers living in Shanxi province, China. Moreover, there is an apparent gene-environment interaction involved in the development of neural tube defects in offspring.

  17. Tracking membrane protein association in model membranes.

    PubMed

    Reffay, Myriam; Gambin, Yann; Benabdelhak, Houssain; Phan, Gilles; Taulier, Nicolas; Ducruix, Arnaud; Hodges, Robert S; Urbach, Wladimir

    2009-01-01

    Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue.We present an original approach that combines the Fluorescence Recovery After fringe Pattern Photobleaching technique and the use of a versatile sponge phase that makes it possible to extract crucial informations about interactions between membrane proteins embedded in the bilayers of a sponge phase. The clear advantage lies in the ability to adjust at will the spacing between two adjacent bilayers. When the membranes are far apart, the only possible interactions occur laterally between proteins embedded within the same bilayer, whereas when membranes get closer to each other, interactions between proteins embedded in facing membranes may occur as well.After validating our approach on the streptavidin-biotinylated peptide complex, we study the interactions between two membrane proteins, MexA and OprM, from a Pseudomonas aeruginosa efflux pump. The mode of interaction, the size of the protein complex and its potential stoichiometry are determined. In particular, we demonstrate that: MexA is effectively embedded in the bilayer; MexA and OprM do not interact laterally but can form a complex if they are embedded in opposite bilayers; the population of bound proteins is at its maximum for bilayers separated by a distance of about 200 A, which is the periplasmic thickness of Pseudomonas aeruginosa. We also show that the MexA-OprM association is enhanced when the position and orientation of the protein is restricted by the bilayers. We extract a

  18. Proteins causing membrane fouling in membrane bioreactors.

    PubMed

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs.

  19. Sulfated galactans from Gracilaria fisheri bind to shrimp haemocyte membrane proteins and stimulate the expression of immune genes.

    PubMed

    Rudtanatip, Tawut; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2015-11-01

    Previous studies demonstrated that sulfated galactans (SG) from Gracilaria fisheri (G. fisheri) exhibit immunostimulant activity in shrimp. The present study was conducted to test the hypothesis that SG stimulates signaling molecules of the immune response of shrimp by binding to receptors on the host cell membrane. Accordingly, we evaluated the ability of SG to bind to shrimp haemocytes and showed that SG bound to the shrimp haemocyte membrane (SHM), potentially to specific receptors. Furthermore, this binding was associated with an activation of immune response genes of shrimp. Data from confocal laser scanning micrographs revealed that FITC-labeled SG bound to haemocytes. Far western blot analysis demonstrated that SHM peptides, with molecular sizes of 13, 14, 15, 17, and 25 kDa, were associated with SG. Peptide sequence analysis of the isolated bands using LC-MS/MS and NCBI blast search revealed the identity of the 13, 14, and 17 kDa peptides as lipopolysaccharide and β-1,3-glucan binding protein (LGBP). SG induced the expression of immune related genes and downstream signaling mediators of LGBP including IMD, IKKs, NF-κB, antimicrobial peptides (crustin and PEN-4), the antiviral immunity (dicer), and proPO system (proPO-I and proPO-II). A LGBP neutralizing assay with anti-LGBP antibody indicated a decrease in SG-induced expression of LGBP downstream signaling mediators and the immune related genes. In conclusion, this study demonstrated that the SG-stimulated immune activity in haemocytes is mediated, in part, through the LGBP, and IMD-NF-κB pathway.

  20. Calmodulin-binding proteins in bryophytes: identification of abscisic acid-, cold-, and osmotic stress-induced genes encoding novel membrane-bound transporter-like proteins.

    PubMed

    Takezawa, Daisuke; Minami, Anzu

    2004-04-30

    Plant responses to environmental stresses are mediated in part by signaling processes involving cytosolic Ca2+ and a Ca(2+)-binding protein, calmodulin. Screening with radiolabeled calmodulin of a cDNA library of the moss Physcomitrella patens resulted in identification of genes encoding novel membrane transporter-like proteins, MCamb1 and MCamb2. These proteins each had a central hydrophobic domain with two putative membrane spans and N- and C-terminal hydrophilic domains, and showed sequence similarity to mammalian inward rectifier potassium channels. Calmodulin binds to MCamb1 and MCamb2 via interaction with basic amphiphilic amino acids in the C-terminal domain. Levels of MCamb1 and MCamb2 transcripts increased dramatically following treatment with low temperature, hyperosmotic solutes, and the stress hormone abscisic acid, all of which were previously shown to increase cellular tolerance to freezing stress. These results suggest that calmodulin participates in cellular signaling events leading to enhancement of stress resistance through regulation of novel transporter-like proteins.

  1. Gene fusions of signal sequences with a modified beta-glucuronidase gene results in retention of the beta-glucuronidase protein in the secretory pathway/plasma membrane.

    PubMed

    Yan, X; Gonzales, R A; Wagner, G J

    1997-11-01

    Signal sequences and endoplasmic reticulum (ER) retention signals are known to play central roles in targeting and translocation in the secretory pathway, but molecular aspects about their involvement are poorly understood. We tested the effectiveness of deduced signal sequences from various genes (hydroxyproline-rich glycoprotein [HRGP] from Phaseolus vulgaris; Serpin from Manduca sexta) to direct a modified beta-glucuronidase (GUS) protein into the secretory pathway in transgenic tobacco (Nicotiana tabacum L.). The reporter protein was not secreted to the cell wall/extracellular space as monitored using extracellular fluid analysis (low- or high-ionic-strength conditions) but occurred in membranes with a density of 1.16 to 1.20 g/mL. Membrane-bound GUS equilibrated with the plasma membrane (PM) and the ER on linear sucrose gradients with or without ethylenediaminetetraacetic acid, suggesting that GUS associates with the ER and the PM. Confocal microscopy of fixed cultured cells prepared from GUS control and HRGP signal peptide (SP)-GUS-expressing plants suggested only cytosolic localization in GUS-expressing plants but substantial peripheral localization in HRGP SP-GUS plants, which is consistent with GUS being associated with the PM. Aqueous two-phase partitioning of microsomal membranes from HRGP SP-GUS and Serpin SP-GUS transgenic leaves also indicated that GUS activity was enriched in the ER and the PM. These observations, together with hydrophobic moment plot analysis, suggest that properties of the SP-GUS protein result in its retention in the secretory pathway and PM.

  2. Gene fusions of signal sequences with a modified beta-glucuronidase gene results in retention of the beta-glucuronidase protein in the secretory pathway/plasma membrane.

    PubMed Central

    Yan, X; Gonzales, R A; Wagner, G J

    1997-01-01

    Signal sequences and endoplasmic reticulum (ER) retention signals are known to play central roles in targeting and translocation in the secretory pathway, but molecular aspects about their involvement are poorly understood. We tested the effectiveness of deduced signal sequences from various genes (hydroxyproline-rich glycoprotein [HRGP] from Phaseolus vulgaris; Serpin from Manduca sexta) to direct a modified beta-glucuronidase (GUS) protein into the secretory pathway in transgenic tobacco (Nicotiana tabacum L.). The reporter protein was not secreted to the cell wall/extracellular space as monitored using extracellular fluid analysis (low- or high-ionic-strength conditions) but occurred in membranes with a density of 1.16 to 1.20 g/mL. Membrane-bound GUS equilibrated with the plasma membrane (PM) and the ER on linear sucrose gradients with or without ethylenediaminetetraacetic acid, suggesting that GUS associates with the ER and the PM. Confocal microscopy of fixed cultured cells prepared from GUS control and HRGP signal peptide (SP)-GUS-expressing plants suggested only cytosolic localization in GUS-expressing plants but substantial peripheral localization in HRGP SP-GUS plants, which is consistent with GUS being associated with the PM. Aqueous two-phase partitioning of microsomal membranes from HRGP SP-GUS and Serpin SP-GUS transgenic leaves also indicated that GUS activity was enriched in the ER and the PM. These observations, together with hydrophobic moment plot analysis, suggest that properties of the SP-GUS protein result in its retention in the secretory pathway and PM. PMID:9390428

  3. Evaluation of a real-time polymerase chain reaction assay of the outer membrane protein P2 gene for the detection of Haemophilus parasuis in clinical samples

    PubMed Central

    McDowall, Rebeccah; Slavic, Durda; MacInnes, Janet I.; Cai, Hugh Y.

    2014-01-01

    A real-time polymerase chain reaction (PCR) assay of the outer membrane protein (OMP) P2 gene was developed and used to test 97 putative Haemophilus parasuis pure cultures and 175 clinical tissue samples. With standard culture isolation as the gold standard, the diagnostic sensitivity and specificity of the PCR assay were determined to be 83% and 80%, respectively. PMID:24688178

  4. Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba×P. tremula var. glandulosa).

    PubMed

    Bae, Eun-Kyung; Lee, Hyoshin; Lee, Jae-Soon; Noh, Eun-Woon

    2011-09-01

    Water uptake across cell membranes is a principal requirement for plant growth at both the cellular and whole-plant levels; water movement through plant membranes is regulated by aquaporins (AQPs) or major intrinsic proteins (MIPs). We examined the expression characteristics of the poplar plasma membrane intrinsic protein 1 gene (PatPIP1), a type of MIP, which was isolated from a suspension cell cDNA library of Populus alba×P. tremula var. glandulosa. Examination of protoplasts expressing the p35S-PatPIP1::sGFP fusion protein revealed that the protein was localized in the plasma membrane. Northern blot analysis revealed that the gene was strongly expressed in poplar roots and leaves. Gene expression was inducible by abiotic factors including drought, salinity, cold temperatures and wounding, and also by plant hormones including gibberellic acid, jasmonic acid and salicylic acid. Since we found that the PatPIP1 gene was strongly expressed in response to mannitol, NaCl, jasmonic acid and wounding, we propose that PatPIP1 plays an essential role in the defense of plants against water stress.

  5. Proteins interacting with Membranes: Protein Sorting and Membrane Shaping

    NASA Astrophysics Data System (ADS)

    Callan-Jones, Andrew

    2015-03-01

    Membrane-bound transport in cells requires generating membrane curvature. In addition, transport is selective, in order to establish spatial gradients of membrane components in the cell. The mechanisms underlying cell membrane shaping by proteins and the influence of curvature on membrane composition are active areas of study in cell biophysics. In vitro approaches using Giant Unilamellar Vesicles (GUVs) are a useful tool to identify the physical mechanisms that drive sorting of membrane components and membrane shape change by proteins. I will present recent work on the curvature sensing and generation of IRSp53, a protein belonging to the BAR family, whose members, sharing a banana-shaped backbone, are involved in endocytosis. Pulling membrane tubes with 10-100 nm radii from GUVs containing encapsulated IRSp53 have, unexpectedly, revealed a non-monotonic dependence of the protein concentration on the tube as a function of curvature. Experiments also show that bound proteins alter the tube mechanics and that protein phase separation along the tube occurs at low tensions. I will present accompanying theoretical work that can explain these findings based on the competition between the protein's intrinsic curvature and the effective rigidity of a membrane-protein patch.

  6. closca, a new gene required for both Torso RTK activation and vitelline membrane integrity. Germline proteins contribute to Drosophila eggshell composition.

    PubMed

    Ventura, Gemma; Furriols, Marc; Martín, Nicolás; Barbosa, Vitor; Casanova, Jordi

    2010-08-01

    The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.

  7. Design of membrane proteins: toward functional systems.

    PubMed

    Ghirlanda, Giovanna

    2009-12-01

    Over the years, membrane-soluble peptides have provided a convenient model system to investigate the folding and assembly of integral membrane proteins. Recent advances in experimental and computational methods are now being translated into the design of functional membrane proteins. Applications include artificial modulators of membrane protein function, inhibitors of protein-protein interactions, and redox membrane proteins.

  8. cmdABCDEF, a cluster of genes encoding membrane proteins for differentiation and antibiotic production in Streptomyces coelicolor A3(2)

    PubMed Central

    2009-01-01

    Background Streptomyces coelicolor is the most studied Streptomyces species and an excellent model for studying differentiation and antibiotic production. To date, many genes have been identified to be required for its differentiation (e.g. bld genes for aerial growth and whi genes for sporulation) and antibiotics production (including actII-orf4, redD, cdaR as pathway-specific regulatory genes and afsR, absA1/A2 as pleiotropic regulatory genes). Results A gene cluster containing six genes (SCO4126-4131) was proved to be co-transcribed in S. coelicolor. Deletions of cmdABCDEF (SCO4126-4131) displayed defective sporulation including formation of aberrant branches, and abnormalities in chromosome segregation and spore septation. Disruption mutants of apparently orthologous genes of S. lividans and S. avermitilis also showed defective sporulation, implying that the role of these genes is similar among Streptomyces. Transcription of cmdB, and therefore presumably of the whole operon, was regulated developmentally. Five of the encoded proteins (CmdA, C, D, E, F) were predicted membrane proteins. The other, CmdB, a predicted ATP/GTP-binding protein with an ABC-transporter-ATPase domain shown here to be essential for its function, was also located on the cell membrane. These results indicate that CmdABCDEF proteins mainly affect Streptomyces differentiation at an early stage of aerial hyphae formation, and suggest that these proteins may form a complex on cell membrane for proper segregation of chromosomes. In addition, deletions of cmdABCDEF also revealed over-production of blue-pigmented actinorhodin (Act) via activation of transcription of the pathway-specific regulatory gene actII-orf4 of actinorhodin biosynthesis. Conclusion In this study, six co-transcribed genes cmdABCDEF were identified by their effects on differentiation and antibiotic production in Streptomyces coelicolor A3(2). These six membrane-located proteins are possibly assembled into a complex to

  9. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas strain.

    PubMed

    Magazin, M D; Moores, J C; Leong, J

    1986-01-15

    Plant growth-promoting Pseudomonas B10 produces its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin under iron-limiting conditions. A structural gene encoding the 85,000-Da putative outer membrane receptor protein for ferric pseudobactin was identified in a gene bank from Pseudomonas B10 prepared with the broad host-range conjugative cosmid cloning vector pLAFR1. Transposon Tn5 mutagenesis of recombinant plasmid pJLM300 localized the functional gene to a region of approximately 2.4 kilobases consistent with the apparent molecular weight of the receptor protein. Mobilization of pJLM300 into Pseudomonas A124 and A225, whose growth was inhibited by Pseudomonas B10 or pseudobactin, rendered these strains no longer susceptible to iron starvation by pseudobactin because they were now able to transport ferric pseudobactin. Pseudobactin biosynthetic genes flanked this receptor gene on both sides and were on separate operons. Transposon Tn5 insertion mutants of Pseudomonas B10 lacking this receptor protein were generated by a marker exchange technique and were defective in ferric pseudobactin transport. Such mutants could be complemented in trans by pJLM300. The production of pseudobactin, the receptor protein, and four other outer membrane proteins in Pseudomonas B10 was coordinately regulated by the level of intracellular iron.

  10. How some proteins tubulate membranes

    NASA Astrophysics Data System (ADS)

    Bassereau, Patricia

    2009-03-01

    Endocytosis, exocytosis, membrane transport between intracellular compartments, virus or toxin entry or exit out of the cell, all imply to deform membrane. Membrane deformation mechanisms of cell membranes by proteins are currently actively studied. Giant vesicles (GUV) are interesting model membrane systems because they are composed of a very limited number of components compared to cellular membranes. The deformations induced by the interaction with a specific protein or any other additional components to the system, can then be directly monitored and the deformation mechanism eventually understood. In this talk, we will focus on different tubular structures induced by proteins. We will show that the B-subunits of Shiga toxin or Cholera Toxin, binding to their lipid receptors, Gb3 or GM1 respectively, incorporated in GUV membrane, induce negative membrane curvature and form tubular invaginations, in absence of any other cellular machinery. Tubular structures can also be obtained when molecular motors walking along microtubules exert a pulling force on the membrane of GUV. The helicoidal assembly of dynamin, a protein involved in vivo in membrane fission can also produce tubular structures. This assembly has been reconstituted around membrane nanotubes of controlled diameter; we will show that the initial tube diameter strongly influences dynamin polymerisation. In each case, a physical framework for understanding deformation mechanism will be presented

  11. In vivo topological analysis of Ste2, a yeast plasma membrane protein, by using beta-lactamase gene fusions.

    PubMed Central

    Cartwright, C P; Tipper, D J

    1991-01-01

    Gene fusions were constructed between Ste2, the receptor for the Saccharomyces cerevisiae alpha-factor, and beta la, the secreted form of beta-lactamase encoded by the bla gene of pBR322. The Ste2 and beta la components were linked by a processing fragment (P) from the yeast killer preprotoxin containing a C-terminal lysine-arginine site for cleavage by the Golgi-associated Kex2 protease. Ste2 is predicted to have a rhodopsinlike topology, with an external N terminus and seven transmembrane segments. Fusions to three of the four Ste2 domains predicted to be external resulted in beta la secretion from yeast cells. A fusion at a site just preceding the first transmembrane segment was an exception; the product was cell associated, indicating that the first 44 residues of Ste2 are insufficient to direct secretion of beta la; translocation of this domain presumably requires the downstream transmembrane segment. Expression of fusions located in two domains predicted to be cytoplasmic failed to result in beta la secretion. Following insertion of the preprotoxin signal peptide (S) between the Ste2 and P components of these cytoplasmic fusions, secretion of beta la activity occurred, which is consistent with inversion of the orientation of the beta la reporter. Conversely, insertion of S between Ste2 and P in an external fusion sharply reduced beta la secretion. Complementary information about both cytoplasmic and external domains of Ste2 was therefore provided, and most aspects of the predicted topology were confirmed. The steady-state levels of beta la detected were low, presumably because of efficient degradation of the fusions in the secretory pathway; levels, however, were easily detectable. This method should be valuable in the analysis of in vivo topologies of both homologous and foreign plasma membrane proteins expressed in yeast cells. Images PMID:2017168

  12. Protein engineering methods applied to membrane protein targets.

    PubMed

    Lluis, M W; Godfroy, J I; Yin, H

    2013-02-01

    Genes encoding membrane proteins have been estimated to comprise as much as 30% of the human genome. Among these membrane, proteins are a large number of signaling receptors, transporters, ion channels and enzymes that are vital to cellular regulation, metabolism and homeostasis. While many membrane proteins are considered high-priority targets for drug design, there is a dearth of structural and biochemical information on them. This lack of information stems from the inherent insolubility and instability of transmembrane domains, which prevents easy obtainment of high-resolution crystals to specifically study structure-function relationships. In part, this lack of structures has greatly impeded our understanding in the field of membrane proteins. One method that can be used to enhance our understanding is directed evolution, a molecular biology method that mimics natural selection to engineer proteins that have specific phenotypes. It is a powerful technique that has considerable success with globular proteins, notably the engineering of protein therapeutics. With respect to transmembrane protein targets, this tool may be underutilized. Another powerful tool to investigate membrane protein structure-function relationships is computational modeling. This review will discuss these protein engineering methods and their tremendous potential in the study of membrane proteins.

  13. Epstein-Barr virus gene expression and latent membrane protein 1 gene polymorphism in pediatric liver transplant recipients.

    PubMed

    Kasztelewicz, Beata; Jankowska, Irena; Pawłowska, Joanna; Teisseyre, Joanna; Dzierżanowska-Fangrat, Katarzyna

    2011-12-01

    Immunosuppressed pediatric transplant recipients are at risk of developing Epstein-Barr virus (EBV)-associated complications (such as post-transplant lymphoproliferative disorders). Monitoring of the EBV DNA level in blood alone has a low predictive value for the post-transplant course of EBV infection and its complications. Therefore, additional prognostic markers are widely sought. The study aim was to analyze EBV gene expression patterns and LMP1 polymorphism in relation to EBV DNA levels in pediatric liver transplant recipients. EBV load measurement, LMP1 variant, and gene expression analysis were performed in collected prospectively multiple blood samples from 30 patients. Several distinct patterns of EBV gene expression were identified: latency 2 (71%), latency 3 (13%), latency 0 (11%), and lytic infection (5%). In most children's multiple blood samples, both EBV gene expression patterns and expression levels of individual EBV genes varied significantly over time. EBV gene expression patterns were not associated with the EBV load. However, the viral load correlated with the LMP1 and LMP2 expression (r = 0.34; P  = 0.006, and r  = 0.45; P = 0.001, respectively). Two variants of the LMP1 gene were detected, and they were consistent over time in individual patients. A wild type of LMP1 was associated with higher EBV-DNA loads (P = 0.03). This indicates that EBV infection in immunosuppressed patients is a very dynamic process, but changes in the state of EBV infection do not influence significantly the viral load. The latter, however, can be associated with the activity of LMP1 and LMP2 genes, as well as polymorphism of LMP1.

  14. Identification and Comparative Analysis of Genes Encoding Outer Membrane Proteins P2 and P5 in Haemophilus parsuis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Haemophilus parasuis is a serious swine pathogen but little is known about how it causes disease. A related human pathogen, Haemophilus influenzae, has been better studied and many of its virulence factors have been identified. Two of these, outer membrane proteins P2 and P5, have been shown to ha...

  15. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility.

    PubMed

    Hong, Jeum Kyu; Choi, Du Seok; Kim, Sang Hee; Yi, Seung Yeon; Kim, Young Jin; Hwang, Byung Kook

    2008-08-01

    Plant integral membrane proteins have essential roles in diverse internal and external physiological processes as signal receptors or ion transporters. The pepper CaPIMP1 gene encoding a putative integral membrane protein with four transmembrane domains was isolated and functionally characterized from pepper leaves infected with the avirulent strain Xanthomonas campestris pv. vesicatoria (Xcv). CaPIMP1-green fluorescence protein (GFP) fusions localized to the plasma membrane in onion cells, as observed by confocal microscopy. CaPIMP1 was expressed in an organ-specific manner in healthy pepper plants. Infection with Xcv induced differential accumulation of CaPIMP1 transcripts in pepper leaf tissues during compatible and incompatible interactions. The function of CaPIMP1 was examined by using the virus-induced gene silencing technique in pepper plants and by overexpression in Arabidopsis. CaPIMP1-silenced pepper plants were highly susceptible to Xcv infection and expressed lower levels of the defense-related gene CaSAR82A. CaPIMP1 overexpression (CaPIMP1-OX) in transgenic Arabidopsis conferred enhanced resistance to P. syringae pv. tomato infection, accompanied by enhanced AtPDF1.2 gene expression. In contrast, CaPIMP1-OX plants were highly susceptible to the biotrophic oomycete Hyaloperonospora parasitica. Taken together, we propose that CaPIMP1 plays distinct roles in both bacterial disease resistance and oomycete disease susceptibility.

  16. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  17. Ponticulin is an atypical membrane protein

    PubMed Central

    1994-01-01

    We have cloned and sequenced ponticulin, a 17,000-dalton integral membrane glycoprotein that binds F-actin and nucleates actin assembly. A single copy gene encodes a developmentally regulated message that is high during growth and early development, but drops precipitously during cell streaming at approximately 8 h of development. The deduced amino acid sequence predicts a protein with a cleaved NH2-terminal signal sequence and a COOH-terminal glycosyl anchor. These predictions are supported by amino acid sequencing of mature ponticulin and metabolic labeling with glycosyl anchor components. Although no alpha- helical membrane-spanning domains are apparent, several hydrophobic and/or sided beta-strands, each long enough to traverse the membrane, are predicted. Although its location on the primary sequence is unclear, an intracellular domain is indicated by the existence of a discontinuous epitope that is accessible to antibody in plasma membranes and permeabilized cells, but not in intact cells. Such a cytoplasmically oriented domain also is required for the demonstrated role of ponticulin in binding actin to the plasma membrane in vivo and in vitro (Hitt, A. L., J. H. Hartwig, and E. J. Luna. 1994. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium. J. Cell Biol. 126:1433-1444). Thus, ponticulin apparently represents a new category of integral membrane proteins that consists of proteins with both a glycosyl anchor and membrane-spanning peptide domain(s). PMID:8089175

  18. Molecular cloning and sequence analysis of the gene encoding OmpL1, a transmembrane outer membrane protein of pathogenic Leptospira spp.

    PubMed Central

    Haake, D A; Champion, C I; Martinich, C; Shang, E S; Blanco, D R; Miller, J N; Lovett, M A

    1993-01-01

    Pathogenic Leptospira spp. are spirochetes that have a low transmembrane outer membrane protein content relative to that of enteric gram-negative bacteria. In a previous study we identified a 31-kDa surface protein that was present in strains of Leptospira alstoni in amounts which correlated with the outer membrane particle density observed by freeze fracture electron microscopy (D. A. Haake, E. M. Walker, D. R. Blanco, C. A. Bolin, J. N. Miller, and M. A. Lovett, Infect. Immun. 59:1131-1140, 1991). The N-terminal amino acid sequence was used to design a pair of oligonucleotides which were utilized to screen a lambda ZAP II library containing EcoRI fragments of L. alstoni DNA. A 2.5-kb DNA fragment which contained the entire structural ompL1 gene was identified. The structural gene deduced from the sequence of this DNA fragment would encode a 320-amino-acid polypeptide with a 24-amino-acid leader peptide and a leader peptidase I cleavage site. Processing of OmpL1 results in a mature protein with a predicted molecular mass of 31,113 Da. Secondary-structure prediction identified repeated stretches of amphipathic beta-sheets typical of outer membrane protein membrane-spanning sequences. A topological model of OmpL1 containing 10 transmembrane segments is suggested. A recombinant OmpL1 fusion protein was expressed in Escherichia coli in order to immunize rabbits with the purified protein. Upon Triton X-114 extraction of L. alstoni and phase separation, anti-OmpL1 antiserum recognized a single band on immunoblots of the hydrophobic detergent fraction which was not present in the hydrophilic aqueous fraction. Immunoelectron microscopy with anti-OmpL1 antiserum demonstrates binding to the surface of intact L. alstoni. DNA hybridization studies indicate that the ompL1 gene is present in a single copy in all pathogenic Leptospira species that have been tested and is absent in nonpathogenic Leptospira species. OmpL1 may be the first spirochetal transmembrane outer membrane

  19. Structural Symmetry in Membrane Proteins.

    PubMed

    Forrest, Lucy R

    2015-01-01

    Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.

  20. Expression of human membrane skeleton protein genes for protein 4.1 and betaIISigma2-spectrin assayed by real-time RT-PCR.

    PubMed

    Taylor-Harris, Pamela M; Felkin, Leanne E; Birks, Emma J; Franklin, Rodney C G; Yacoub, Magdi H; Baines, Anthony J; Barton, Paul J R; Pinder, Jennifer C

    2005-01-01

    The proteins, spectrin and 4.1 confer support and resilience to animal cell membranes, and promote assembly of multimeric, membrane-bound signalling complexes. Protein 4.1 also plays important roles in tumour suppression and the regulation of cell proliferation. To assess relative tissue expression of the four genes encoding human protein 4.1, we measured mRNA levels using quantitative real-time polymerase chain reaction. We compared 4.1 expression with that of a major splice variant of spectrin, betaIISigma2 that has a shortened C-terminus lacking a pleckstrin homology domain. mRNA for 4.1R is four-fold higher in bone marrow than in tissues with the next highest prevalence: cerebellum, lung, testis and thymus. 4.1G mRNA is highly expressed in brain, spinal cord and testis; 4.1N in brain, spinal cord and adrenal gland; 4.1B in testis, brain, spinal cord, and kidney. Thus, 4.1N, 4.1B and 4.1G all show high accumulation in nervous tissues. mRNA for betaIISigma2-spectrin is ubiquitous, but most abundant in cardiac and nervous tissues. Comparative transcript abundance was analysed in heart and brain. betaIISigma2-spectrin was the most abundant transcript in heart with levels 5 fold greater than 4.1G or 4.1N and at least 9 fold greater than 4.1B. In brain, 4.1N was the most abundant transcript, with levels 2.4 fold greater than 4.1B and at least 4 fold greater than 4.1G or betaIISigma2-spectrin. 4.1R abundance was very low in both tissues. Whilst we expected that 4.1 mRNAs would feature highly in muscle and nerve, we note their high abundance in testis, indicating previously unsuspected functions in reproduction.

  1. Phylogenetic profiles of all membrane transport proteins

    PubMed Central

    Weiner, January; Kooij, Taco W.A.

    2016-01-01

    In order to combat the on-going malaria epidemic, discovery of new drug targets remains vital. Proteins that are essential to survival and specific to malaria parasites are key candidates. To survive within host cells, the parasites need to acquire nutrients and dispose of waste products across multiple membranes. Additionally, like all eukaryotes, they must redistribute ions and organic molecules between their various internal membrane bound compartments. Membrane transport proteins mediate all of these processes and are considered important mediators of drug resistance as well as drug targets in their own right. Recently, using advanced experimental genetic approaches and streamlined life cycle profiling, we generated a large collection of Plasmodium berghei gene deletion mutants and assigned essential gene functions, highlighting potential targets for prophylactic, therapeutic, and transmission-blocking anti-malarial drugs. Here, we present a comprehensive orthology assignment of all Plasmodium falciparum putative membrane transport proteins and provide a detailed overview of the associated essential gene functions obtained through experimental genetics studies in human and murine model parasites. Furthermore, we discuss the phylogeny of selected potential drug targets identified in our functional screen. We extensively discuss the results in the context of the functional assignments obtained using gene targeting available to date. PMID:28357319

  2. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGES

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  3. The interactions of peripheral membrane proteins with biological membranes

    SciTech Connect

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approaches continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.

  4. The secretory carrier membrane protein family: structure and membrane topology.

    PubMed

    Hubbard, C; Singleton, D; Rauch, M; Jayasinghe, S; Cafiso, D; Castle, D

    2000-09-01

    Secretory carrier membrane proteins (SCAMPs) are integral membrane proteins found in secretory and endocytic carriers implicated to function in membrane trafficking. Using expressed sequence tag database and library screens and DNA sequencing, we have characterized several new SCAMPs spanning the plant and animal kingdoms and have defined a broadly conserved protein family. No obvious fungal homologue has been identified, however. We have found that SCAMPs share several structural motifs. These include NPF repeats, a leucine heptad repeat enriched in charged residues, and a proline-rich SH3-like and/or WW domain-binding site in the N-terminal domain, which is followed by a membrane core containing four putative transmembrane spans and three amphiphilic segments that are the most highly conserved structural elements. All SCAMPs are 32-38 kDa except mammalian SCAMP4, which is approximately 25 kDa and lacks most of the N-terminal hydrophilic domain of other SCAMPs. SCAMP4 is authentic as determined by Northern and Western blotting, suggesting that this portion of the larger SCAMPs encodes the functional domain. Focusing on SCAMP1, we have characterized its structure further by limited proteolysis and Western blotting with the use of isolated secretory granules as a uniformly oriented source of antigen and by topology mapping through expression of alkaline phosphatase gene fusions in Escherichia coli. Results show that SCAMP1 is degraded sequentially from the N terminus and then the C terminus, yielding an approximately 20-kDa membrane core that contains four transmembrane spans. Using synthetic peptides corresponding to the three conserved amphiphilic segments of the membrane core, we have demonstrated their binding to phospholipid membranes and shown by circular dichroism spectroscopy that the central amphiphilic segment linking transmembrane spans 2 and 3 is alpha-helical. In the intact protein, these segments are likely to reside in the cytoplasm-facing membrane

  5. Thermodynamic competition between membrane protein oligomeric states

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Haselwandter, Christoph A.

    2016-10-01

    Self-assembly of protein monomers into distinct membrane protein oligomers provides a general mechanism for diversity in the molecular architectures, and resulting biological functions, of membrane proteins. We develop a general physical framework describing the thermodynamic competition between different oligomeric states of membrane proteins. Using the mechanosensitive channel of large conductance as a model system, we show how the dominant oligomeric states of membrane proteins emerge from the interplay of protein concentration in the cell membrane, protein-induced lipid bilayer deformations, and direct monomer-monomer interactions. Our results suggest general physical mechanisms and principles underlying regulation of protein function via control of membrane protein oligomeric state.

  6. Overexpression of a new putative membrane protein gene AtMRB1 results in organ size enlargement in Arabidopsis.

    PubMed

    Guan, Hua; Kang, Dingming; Fan, Min; Chen, Zhangliang; Qu, Li-Jia

    2009-02-01

    Arabidopsis AtMRB1 is predicted to encode a novel protein of 432 amino acid residues in length, with four putative trans-membrane domains. In the present study, characterization of AtMRB1 is conducted. Green fluorescent protein (GFP) fusion protein assay showed that AtMRB1 was located in the plasma membrane. Transgenic lines overexpressing AtMRB1 driven by a CaMV 35S promoter were generated. Statistic analysis showed that, during the seedling stage, the organ sizes of the transgenic lines including hypocotyl length, root length and root weight were significantly larger than those of the wild type plants under both light and dark conditions. In the adult plant stage, the AtMRB1 overexpressor plants were found to have larger organ sizes in terms of leaf length and width, and increased number of cauline leaves and branches when bolting. Further observation indicated that the larger leaf size phenotype was due to a larger number of mesophyll cells, the size of which was not altered. Quantitative real-time polymerase chain reaction analysis showed that the transcription of ANT, ROT3 and GRF5 were upregulated in the AtMRB1-overexpressor plants. These data suggest that AtMRB1 is possibly a positive regulator of organ size development in Arabidopsis, mainly through cell number control.

  7. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes

    PubMed Central

    Teves, Maria E.; Pearson, Laurel N.; Parikh, Hardik I.; Chaemsaithong, Piya; Sheth, Nihar U.; York, Timothy P.; Romero, Roberto; Strauss, Jerome F.

    2017-01-01

    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest—fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans. PMID:28346524

  8. Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the beta-galactosidase gene.

    PubMed Central

    Vialard, J; Lalumière, M; Vernet, T; Briedis, D; Alkhatib, G; Henning, D; Levin, D; Richardson, C

    1990-01-01

    An improved baculovirus expression vector was developed to expedite screening and facilitate oligonucleotide-directed mutagenesis. This vector contained twin promoters derived from the P10 and polyhedrin genes of Autographica californica nuclear polyhedrosis virus. The P10 promoter directed the synthesis of beta-galactosidase, whereas the polyhedrin promoter controlled the synthesis of foreign gene products. These two genes recombined with wild-type virus genome to yield recombinants which were polyhedrin negative, produced the foreign gene product, and formed blue plaques when beta-galactosidase indicator was present in the agarose overlay. An origin of replication derived from M13 or f1 bacteriophage was also included in the plasmid to permit the synthesis of single-stranded DNA. This template DNA was used to introduce or delete sequences through the process of site-specific mutagenesis. The measles virus virion possesses a membrane envelope which contains two glycoproteins: the hemagglutinin (H) and membrane fusion (F) proteins. The H polypeptide has receptor-binding and hemagglutinating activity, whereas the F protein mediates virus penetration of the host cell, formation of syncytia, and hemolysis of erythrocytes. Genes for these two glycoproteins were inserted into the NheI cloning site of the modified expression vector described above. The vector and purified wild-type viral DNA were introduced into Sf9 insect cells by calcium phosphate precipitation. A mixture of wild-type and recombinant virus was generated and used to infect Sf9 cells, which were subsequently overlaid with agarose. After 3 days, 0.1 to 1% of the plaques became blue in the presence of beta-galactosidase indicator. At least 70% of these blue viral colonies contained the foreign gene of interest as determined by dot blot analysis. Recombinant virus was separated from contaminating wild-type virus through several rounds of plaque purification. Insect cells were then infected with the purified

  9. Strategies for the purification of membrane proteins.

    PubMed

    Smith, Sinead Marian

    2011-01-01

    Although membrane proteins account for 20-30% of the coding regions of all sequenced genomes and play crucial roles in many fundamental cell processes, there are relatively few membranes proteins with known 3D structure. This is likely due to technical challenges associated with membrane protein extraction, solubilisation, and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non-covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, whose extraction requires phospholipid bilayer disruption by detergents. Here, important criteria for strategies of membrane protein purification are addressed, with a focus on the initial stages of membrane protein solublilisation, where problems are most frequently encountered. Protocols are outlined for the successful extraction of peripheral membrane proteins, solubilisation of integral membrane proteins, and detergent removal which is important not only for retaining native protein stability and biological functions, but also for the efficiency of later purification techniques.

  10. The Schizosaccharomyces pombe spo3+ Gene Is Required for Assembly of the Forespore Membrane and Genetically Interacts with psy1+-encoding Syntaxin-like Protein

    PubMed Central

    Nakamura, Taro; Nakamura-Kubo, Michiko; Hirata, Aiko; Shimoda, Chikashi

    2001-01-01

    Formation of the forespore membrane, which becomes the plasma membrane of spores, is an intriguing step in the sporulation of the fission yeast Schizosaccharomyces pombe. Here we report two novel proteins that localize to the forespore membrane. spo3+ encodes a potential membrane protein, which was expressed only during sporulation. Green fluorescent protein (GFP) fusion revealed that Spo3 localized to the forespore membrane. The spo3 disruptant was viable and executed meiotic nuclear divisions as efficiently as the wild type but did not form spores. One of the spo3 alleles, spo3-KC51, was dose-dependently suppressed by psy1+, which encodes a protein similar to mammalian syntaxin-1A, a component of the plasma membrane docking/fusion complex. psy1+ was essential for vegetative growth, and its transcription was enhanced during sporulation. As expected, Psy1 localized to the plasma membrane during vegetative growth. Interestingly, Psy1 on the plasma membrane disappeared immediately after first meiotic division and relocalized to the forespore membrane as the second division initiated. In the spo3 null mutant, the forespore membrane was initiated but failed to develop a normal morphology. Electron microscopy revealed that membrane vesicles were accumulated in the cytoplasm of immature spo3Δ asci. These results suggest that Spo3 is a key component of the forespore membrane and is essential for its assembly acting in collaboration with the syntaxin-like protein. PMID:11739793

  11. Specific detection of Xanthomonas oryzae pv. oryzicola in infected rice plant by use of PCR assay targeting a membrane fusion protein gene.

    PubMed

    Kang, Man Jung; Shim, Jae Kyung; Cho, Min Seok; Seol, Young Joo; Hahn, Jang Ho; Hwang, Duk Ju; Park, Dong Suk

    2008-09-01

    Successful control of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak, requires a specific and reliable diagnostic tool. A pathovar-specific PCR assay was developed for the rapid and accurate detection of the plant pathogenic bacterium Xanthomonas oryzae pv. oryzicola in diseased plant. Based on differences in a membrane fusion protein gene of Xanthomonas oryzae pv. oryzicola and other microorganisms, which was generated from NCBI (http://www.ncbi.nlm.nih.gov/) and CMR (http://cmr.tigr.org/) BLAST searches, one pair of pathovar-specific primers, XOCMF/XOCMR, was synthesized. Primers XOCMF and XOCMR from a membrane fusion protein gene were used to amplify a 488-bp DNA fragment. The PCR product was only produced from 4 isolates of Xanthomonas oryzae pv. oryzicola among 37 isolates of other pathovars and species of Xanthomonas, Pectobacterium, Pseudomonas, Burkholderia, Escherichia coli, and Fusarium oxysporum f.sp. dianthi. The results suggested that the assay detected the pathogen more rapidly and accurately than standard isolation methods.

  12. A Novel Deletion Mutation of Exon 2 of the C19orf12 Gene in an Omani Family with Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN)

    PubMed Central

    Al Macki, Nabil; Al Rashdi, Ismail

    2017-01-01

    Mutations in the C19orf12 gene are known to cause mitochondrial membrane protein-associated neurodegeneration (MPAN), which is a neurodegeneration with brain iron accumulation (NBIA) type 4 disorder. To the best of our knowledge, this is the first report of a genetically confirmed case of MPAN from Oman. A novel homozygous deletion of exon 2 of the C19orf12 gene was confirmed on the proband, a seven-year-old girl, who presented with gait instability. Brain magnetic resonance imaging showed iron deposition on the basal ganglia. This report highlights the importance of genetic testing of such a clinically and genetically heterogeneous condition among a population with a high consanguinity rate. To overcome the diagnostic difficulty, implementation of a cost-effective approach to perform cascade screening of carriers at risk is needed as well as programs to address risky consanguineous marriages. PMID:28042406

  13. Gene Therapy in Patient-specific Stem Cell Lines and a Preclinical Model of Retinitis Pigmentosa With Membrane Frizzled-related Protein Defects

    PubMed Central

    Li, Yao; Wu, Wen-Hsuan; Hsu, Chun-Wei; Nguyen, Huy V; Tsai, Yi-Ting; Chan, Lawrence; Nagasaki, Takayuki; Maumenee, Irene H; Yannuzzi, Lawrence A; Hoang, Quan V; Hua, Haiqing; Egli, Dieter; Tsang, Stephen H

    2014-01-01

    Defects in Membrane Frizzled-related Protein (MFRP) cause autosomal recessive retinitis pigmentosa (RP). MFRP codes for a retinal pigment epithelium (RPE)-specific membrane receptor of unknown function. In patient-specific induced pluripotent stem (iPS)-derived RPE cells, precise levels of MFRP, and its dicistronic partner CTRP5, are critical to the regulation of actin organization. Overexpression of CTRP5 in naïve human RPE cells phenocopied behavior of MFRP-deficient patient RPE (iPS-RPE) cells. AAV8 (Y733F) vector expressing human MFRP rescued the actin disorganization phenotype and restored apical microvilli in patient-specific iPS-RPE cell lines. As a result, AAV-treated MFRP mutant iPS-RPE recovered pigmentation and transepithelial resistance. The efficacy of AAV-mediated gene therapy was also evaluated in Mfrprd6/Mfrprd6 mice—an established preclinical model of RP—and long-term improvement in visual function was observed in AAV-Mfrp-treated mice. This report is the first to indicate the successful use of human iPS-RPE cells as a recipient for gene therapy. The observed favorable response to gene therapy in both patient-specific cell lines, and the Mfrprd6/Mfrprd6 preclinical model suggests that this form of degeneration caused by MFRP mutations is a potential target for interventional trials. PMID:24895994

  14. Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects.

    PubMed

    Li, Yao; Wu, Wen-Hsuan; Hsu, Chun-Wei; Nguyen, Huy V; Tsai, Yi-Ting; Chan, Lawrence; Nagasaki, Takayuki; Maumenee, Irene H; Yannuzzi, Lawrence A; Hoang, Quan V; Hua, Haiqing; Egli, Dieter; Tsang, Stephen H

    2014-09-01

    Defects in Membrane Frizzled-related Protein (MFRP) cause autosomal recessive retinitis pigmentosa (RP). MFRP codes for a retinal pigment epithelium (RPE)-specific membrane receptor of unknown function. In patient-specific induced pluripotent stem (iPS)-derived RPE cells, precise levels of MFRP, and its dicistronic partner CTRP5, are critical to the regulation of actin organization. Overexpression of CTRP5 in naïve human RPE cells phenocopied behavior of MFRP-deficient patient RPE (iPS-RPE) cells. AAV8 (Y733F) vector expressing human MFRP rescued the actin disorganization phenotype and restored apical microvilli in patient-specific iPS-RPE cell lines. As a result, AAV-treated MFRP mutant iPS-RPE recovered pigmentation and transepithelial resistance. The efficacy of AAV-mediated gene therapy was also evaluated in Mfrp(rd6)/Mfrp(rd6) mice--an established preclinical model of RP--and long-term improvement in visual function was observed in AAV-Mfrp-treated mice. This report is the first to indicate the successful use of human iPS-RPE cells as a recipient for gene therapy. The observed favorable response to gene therapy in both patient-specific cell lines, and the Mfrp(rd6)/Mfrp(rd6) preclinical model suggests that this form of degeneration caused by MFRP mutations is a potential target for interventional trials.

  15. Proteomic analysis of integral plasma membrane proteins.

    PubMed

    Zhao, Yingxin; Zhang, Wei; Kho, Yoonjung; Zhao, Yingming

    2004-04-01

    Efficient methods for profiling proteins integral to the plasma membrane are highly desirable for the identification of overexpressed proteins in disease cells. Such methods will aid in both understanding basic biological processes and discovering protein targets for the design of therapeutic monoclonal antibodies. Avoiding contamination by subcellular organelles and cytosolic proteins is crucial to the successful proteomic analysis of integral plasma membrane proteins. Here we report a biotin-directed affinity purification (BDAP) method for the preparation of integral plasma membrane proteins, which involves (1) biotinylation of cell surface membrane proteins in viable cells, (2) affinity enrichment using streptavidin beads, and (3) depletion of plasma membrane-associated cytosolic proteins by harsh washes with high-salt and high-pH buffers. The integral plasma membrane proteins are then extracted and subjected to SDS-PAGE separation and HPLC/MS/MS for protein identification. We used the BDAP method to prepare integral plasma membrane proteins from a human lung cancer cell line. Western blotting analysis showed that the preparation was almost completely devoid of actin, a major cytosolic protein. Nano-HPLC/MS/MS analysis of only 30 microg of protein extracted from the affinity-enriched integral plasma membrane preparation led to the identification of 898 unique proteins, of which 781 were annotated with regard to their plasma membrane localization. Among the annotated proteins, at least 526 (67.3%) were integral plasma membrane proteins. Notable among them were 62 prenylated proteins and 45 Ras family proteins. To our knowledge, this is the most comprehensive proteomic analysis of integral plasma membrane proteins in mammalian cells to date. Given the importance of integral membrane proteins for drug design, the described approach will expedite the characterization of plasma membrane subproteomes and the discovery of plasma membrane protein drug targets.

  16. Membrane stiffness is modified by integral membrane proteins.

    PubMed

    Fowler, Philip W; Hélie, Jean; Duncan, Anna; Chavent, Matthieu; Koldsø, Heidi; Sansom, Mark S P

    2016-09-20

    The ease with which a cell membrane can bend and deform is important for a wide range of biological functions. Peripheral proteins that induce curvature in membranes (e.g. BAR domains) have been studied for a number of years. Little is known, however, about the effect of integral membrane proteins on the stiffness of a membrane (characterised by the bending rigidity, Kc). We demonstrate by computer simulation that adding integral membrane proteins at physiological densities alters the stiffness of the membrane. First we establish that the coarse-grained MARTINI forcefield is able to accurately reproduce the bending rigidity of a small patch of 1500 phosphatidyl choline lipids by comparing the calculated value to both experiment and an atomistic simulation of the same system. This enables us to simulate the dynamics of large (ca. 50 000 lipids) patches of membrane using the MARTINI coarse-grained description. We find that altering the lipid composition changes the bending rigidity. Adding integral membrane proteins to lipid bilayers also changes the bending rigidity, whilst adding a simple peripheral membrane protein has no effect. Our results suggest that integral membrane proteins can have different effects, and in the case of the bacterial outer membrane protein, BtuB, the greater the density of protein, the larger the reduction in stiffness.

  17. Computational modeling of membrane proteins

    PubMed Central

    Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.

    2014-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688

  18. Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13.

    PubMed

    Wiggins, R C; Wiggins, J E; Goyal, M; Wharram, B L; Thomas, P E

    1995-05-01

    Human glomerular epithelial protein 1 (GLEPP1), a receptor-like membrane protein tyrosine phosphatase (PTPase), was cloned and sequenced from a human renal cortical cDNA library. The human nucleotide and derived amino acid sequences were, respectively, 90 and 97% identical to those of rabbit. Human GLEPP1 is predicted to contain 1188 amino acids. The predicted mature protein is 1159 amino acids long and contains a large extracellular domain, a single transmembrane domain, and a single intracellular PTPase domain. Monoclonal and polyclonal antibodies raised against a human GLEPP1 fusion protein recognized a protein with distribution restricted to the glomerulus in human kidney and with an apparent molecular weight of approximately 200 kDa. The GLEPP1 gene was assigned to human chromosome 12p12-p13 by fluorescence in situ hybridization.

  19. Membrane proteins: always an insoluble problem?

    PubMed Central

    Rawlings, Andrea E.

    2016-01-01

    Membrane proteins play crucial roles in cellular processes and are often important pharmacological drug targets. The hydrophobic properties of these proteins make full structural and functional characterization challenging because of the need to use detergents or other solubilizing agents when extracting them from their native lipid membranes. To aid membrane protein research, new methodologies are required to allow these proteins to be expressed and purified cheaply, easily, in high yield and to provide water soluble proteins for subsequent study. This mini review focuses on the relatively new area of water soluble membrane proteins and in particular two innovative approaches: the redesign of membrane proteins to yield water soluble variants and how adding solubilizing fusion proteins can help to overcome these challenges. This review also looks at naturally occurring membrane proteins, which are able to exist as stable, functional, water soluble assemblies with no alteration to their native sequence. PMID:27284043

  20. Membrane Structure: Lipid-Protein Interactions in Microsomal Membranes*

    PubMed Central

    Trump, Benjamin F.; Duttera, Sue M.; Byrne, William L.; Arstila, Antti U.

    1970-01-01

    The relationships of phospholipid to membrane structure and function were examined in hepatic microsomes. Findings indicate that normal microsomal membrane structure is dependent on lipid-protein interactions and that it correlates closely with glucose-6-phosphatase activity. Modification of most phospholipid with phospholipase-C is associated with widening of the membrane which can be reversed following readdition of phospholipid. Images PMID:4317915

  1. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes.

    PubMed

    Magrì, Andrea; Di Rosa, Maria Carmela; Tomasello, Marianna Flora; Guarino, Francesca; Reina, Simona; Messina, Angela; De Pinto, Vito

    2016-06-01

    Cu/Zn Superoxide Dismutase (SOD1), the most important antioxidant defense against ROS in eukaryotic cells, localizes in cytosol and intermembrane space of mitochondria (IMS). Several evidences show a SOD1 intersection with both fermentative and respiratory metabolism. The Voltage Dependent Anion Channel (VDAC) is the main pore-forming protein in the mitochondrial outer membrane (MOM), and is considered the gatekeeper of mitochondrial metabolism. Saccharomyces cerevisiae lacking VDAC1 (Δpor1) is a very convenient model system, since it shows an impaired growth rate on non-fermentable carbon source. Transformation of Δpor1 yeast with human SOD1 completely restores the cell growth deficit in non-fermentative conditions and re-establishes the physiological levels of ROS, as well as the mitochondrial membrane potential. No similar result was found upon yeast SOD1 overexpression. A previous report highlighted the action of SOD1 as a transcription factor. Quantitative Real-Time PCR showed that β-barrel outer-membrane encoding-genes por2, tom40, sam50 are induced by hSOD1, but the same effect was not obtained in Δpor1Δpor2 yeast, indicating a crucial function for yVDAC2. Since the lack of VDAC1 in yeast can be considered a stress factor for the cell, hSOD1 could relieve it stimulating the expression of genes bringing to the recovery of the MOM function. Our results suggest a direct influence of SOD1 on VDAC.

  2. Membrane tension and peripheral protein density mediate membrane shape transitions

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Baumgart, Tobias

    2015-01-01

    Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins.

  3. Nucleotide sequence and expression of the gene encoding the major 25-kilodalton outer membrane protein of Brucella ovis: Evidence for antigenic shift, compared with other Brucella species, due to a deletion in the gene.

    PubMed Central

    Cloeckaert, A; Verger, J M; Grayon, M; Zygmunt, M S; Grépinet, O

    1996-01-01

    The nucleotide sequences encoding the major 25-kDa outer membrane protein (OMP) (omp25 genes) of Brucella ovis 63/290, Brucella melitensis 16M, Brucella suis 1330, Brucella canis RM6/66, and Brucella neotomae 5K33 (all reference strains) were determined and compared with that of Brucella abortus 544 (P. de Wergifosse, P. Lintermans, J. N. Limet, and A. Cloeckaert, J. Bacteriol. 177:1911-1914, 1995). The major difference found was between the omp25 gene of B. ovis and those of the other Brucella species; the B. ovis gene had a 36-bp deletion located at the 3' end of the gene. The corresponding regions of other Brucella species contain two 8-bp direct repeats and two 4-bp inverted repeats, which could have been involved in the genesis of the deletion. The mechanism responsible for the genesis of the deletion appears to be related to the "slipped mispairing" mechanism described in the literature. Expression of the 25-kDa outer membrane protein (Omp25) in Brucella spp. or expression from the cloned omp25 gene in Escherichia coli cells was studied with a panel of anti-Omp25 monoclonal antibodies (MAbs). As shown by enzyme-linked immunosorbent assay (ELISA) and immunoelectron microscopy, Omp25 was exported to the outer membrane in E. coli expressing either the truncated omp25 gene of B. ovis or the entire omp25 genes of the other Brucella species. Size and antigenic shifts due to the 36-bp deletion were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting and by the differences in binding patterns in ELISA of the anti-Omp25 MAbs at the cell surface of E. coli cells harboring the appropriate gene and of cells of B. ovis and other Brucella species. In particular, MAbs directed against discontinuous epitopes of the entire Omp25 showed the absence of, or a significant reduction in, antibody reactivity with the B. ovis truncated Omp25. The results indicated that, as defined by the MAbs, exported Omp25 probably presents similar

  4. Repair of Nerve Cell Membrane Damage by Calcium-Dependent, Membrane-Binding Proteins (Revised)

    DTIC Science & Technology

    2012-09-01

    family exhibit a “ bivalent ” activity resulting in the aggregation of membranes coincident with the binding of the annexin to the membrane [7,8]. Such...10. [12] D.J. Selkoe, Alzheimer’s disease: genes , proteins, and therapy, Physiol Rev 81 (2001) 741-766. [13] A. Demuro, I. Parker, G.E. Stutzmann

  5. Detection of Proteins on Blot Membranes.

    PubMed

    Goldman, Aaron; Harper, Sandra; Speicher, David W

    2016-11-01

    Staining of blot membranes enables the visualization of bound proteins. Proteins are usually transferred to blot membranes by electroblotting, by direct spotting of protein solutions, or by contact blots. Staining allows the efficiency of transfer to the membrane to be monitored. This unit describes protocols for staining proteins after electroblotting from polyacrylamide gels to blot membranes such as polyvinylidene difluoride (PVDF), nitrocellulose, or nylon membranes. The same methods can be used if proteins are directly spotted, either manually or using robotics. Protocols are included for seven general protein stains (amido black, Coomassie blue, Ponceau S, colloidal gold, colloidal silver, India ink, and MemCode) and three fluorescent protein stains (fluorescamine, IAEDANS, and SYPRO Ruby). Also included is an in-depth discussion of the different blot membrane types and the compatibility of different protein stains with downstream applications, such as immunoblotting or N-terminal Edman sequencing. © 2016 by John Wiley & Sons, Inc.

  6. Isolation and nucleotide sequence of the gene (aniA) encoding the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae.

    PubMed Central

    Hoehn, G T; Clark, V L

    1992-01-01

    When grown under anaerobic conditions, Neisseria gonorrhoeae, the etiologic agent of the sexually transmitted disease gonorrhea, expresses several novel outer membrane proteins. One of these, Pan 1, has an apparent molecular mass of 54 kDa in electrophoresis and is recognized by serum samples from patients with gonococcal infection. The presence of antibodies to this protein in patient sera suggests that Pan 1 is expressed during gonococcal infection and, more importantly, that N. gonorrhoeae grows anaerobically in vivo. We have cloned the Pan 1 structural gene, aniA, by screening a gonococcal lambda gt11 expression library with monospecific, polyclonal anti-Pan 1 antiserum. Three distinct immunoreactive recombinants, containing overlapping fragments of DNA, were isolated and confirmed to be coding for Pan 1 protein sequences. Northern (RNA blot) hybridization of an insert from an aniA recombinant to total gonococcal cellular RNA revealed the presence of a 1.5-kb transcript that was specific to RNA from anaerobically grown gonococci, indicating that the aniA gene is regulated at the transcriptional level and is monocistronic. To characterize the aniA gene, we have sequenced the entire 2-kb region spanned by the overlapping recombinants. We have also performed primer extension analysis on RNA isolated from aerobically and anaerobically grown gonococci in order to define the aniA promoter region. Two putative primer extension products specific to organisms grown anaerobically were identified by homology to known Escherichia coli promoter sequences, suggesting that the regulation of aniA expression involves multiple promoter regions. Images PMID:1383156

  7. Ectopic Expression of Aeluropus littoralis Plasma Membrane Protein Gene AlTMP1 Confers Abiotic Stress Tolerance in Transgenic Tobacco by Improving Water Status and Cation Homeostasis.

    PubMed

    Ben Romdhane, Walid; Ben-Saad, Rania; Meynard, Donaldo; Verdeil, Jean-Luc; Azaza, Jalel; Zouari, Nabil; Fki, Lotfi; Guiderdoni, Emmanuel; Al-Doss, Abdullah; Hassairi, Afif

    2017-03-24

    We report here the isolation and functional analysis of AlTMP1 gene encoding a member of the PMP3 protein family. In Aeluropus littoralis, AlTMP1 is highly induced by abscisic acid (ABA), cold, salt, and osmotic stresses. Transgenic tobacco expressing AlTMP1 exhibited enhanced tolerance to salt, osmotic, H₂O₂, heat and freezing stresses at the seedling stage. Under greenhouse conditions, the transgenic plants showed a higher level of tolerance to drought than to salinity. Noteworthy, AlTMP1 plants yielded two- and five-fold more seeds than non-transgenic plants (NT) under salt and drought stresses, respectively. The leaves of AlTMP1 plants accumulated lower Na⁺ but higher K⁺ and Ca(2+) than those of NT plants. Tolerance to osmotic and salt stresses was associated with higher membrane stability, low electrolyte leakage, and improved water status. Finally, accumulation of AlTMP1 in tobacco altered the regulation of some stress-related genes in either a positive (NHX1, CAT1, APX1, and DREB1A) or negative (HKT1 and KT1) manner that could be related to the observed tolerance. These results suggest that AlTMP1 confers stress tolerance in tobacco through maintenance of ion homeostasis, increased membrane integrity, and water status. The observed tolerance may be due to a direct or indirect effect of AlTMP1 on the expression of stress-related genes which could stimulate an adaptive potential not present in NT plants.

  8. Plasma membrane calcium ATPase (PMCA4): A housekeeper for RT-PCR relative quantification of polytopic membrane proteins

    PubMed Central

    Calcagno, Anna Maria; Chewning, Katherine J; Wu, Chung-Pu; Ambudkar, Suresh V

    2006-01-01

    Background Although relative quantification of real-time RT-PCR data can provide valuable information, one limitation remains the selection of an appropriate reference gene. No one gene has emerged as a universal reference gene and much debate surrounds some of the more commonly used reference genes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). At this time, no gene encoding for a plasma membrane protein serves as a reference gene, and relative quantification of plasma membrane proteins is performed with genes encoding soluble proteins, which differ greatly in quantity and in targeting and trafficking from plasma membrane proteins. In this work, our aim was to identify a housekeeping gene, ideally one that codes for a plasma membrane protein, whose expression remains the same regardless of drug treatment and across a wide range of tissues to be used for relative quantification of real-time RT-PCR data for ATP binding cassette (ABC) plasma membrane transporters. Results In studies evaluating the expression levels of two commonly used reference genes coding for soluble proteins and two genes coding for membrane proteins, one plasma membrane protein, plasma membrane calcium-ATPase 4 (PMCA4), was comparable to the two reference genes already in use. In addition, PMCA4 expression shows little variation across eight drug-treated cell lines and was found to be superior to GAPDH and HPRT1, commonly used reference genes. Finally, we show PMCA4 used as a reference gene for normalizing ABC transporter expression in a drug-resistant lung carcinoma cell line. Conclusion We have found that PMCA4 is a good housekeeping gene for normalization of gene expression for polytopic membrane proteins including transporters and receptors. PMID:16978418

  9. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  10. A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators.

    PubMed Central

    Ueda, K; Miyake, K; Horinouchi, S; Beppu, T

    1993-01-01

    Mutants of Streptomyces griseus deficient in A-factor production are sporulation negative, since A-factor is an essential hormonal regulator for the induction of morphological and physiological differentiation in this bacterium. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this mutant strain. Subcloning experiments and nucleotide sequencing showed that two open reading frames, ORF1 with 656 amino acids and ORF2 with 201 amino acids, were required in order to induce sporulation. The amino acid sequence of ORF1 significantly resembled that of the Escherichia coli HlyB protein, a member of a family of bacterial membrane proteins engaged in ATP-dependent secretion mechanisms. Conserved features of this surface translocator family, such as the transmembrane structure predicted by their hydropathy profiles and the amino acid sequence forming an ATP-binding fold, were also conserved in ORF1. The ORF1 gene appeared to constitute a transcriptional unit with an additional upstream gene encoding ORF3, which was greatly similar to ORF1 in size and amino acid sequence. The other protein, ORF2, showed significant end-to-end homology with the E. coli uhpA product, a regulatory protein for the uptake of sugar phosphates. Like UhpA as a response regulator of a bacterial two-component regulatory system, ORF2 contained a helix-turn-helix DNA-binding domain at its COOH-terminal portion and an Asp residue (Asp-54) probably to be phosphorylated at its NH2-terminal portion. An amino acid replacement from Asp-54 to Asn resulted in the loss of the ability of ORF2 to induce sporulation in strain HH1. Images PMID:8458843

  11. Internal packing of helical membrane proteins

    PubMed Central

    Eilers, Markus; Shekar, Srinivasan C.; Shieh, Ted; Smith, Steven O.; Fleming, Patrick J.

    2000-01-01

    Helix packing is important in the folding, stability, and association of membrane proteins. Packing analysis of the helical portions of 7 integral membrane proteins and 37 soluble proteins show that the helices in membrane proteins have higher packing values (0.431) than in soluble proteins (0.405). The highest packing values in integral membrane proteins originate from small hydrophobic (G and A) and small hydroxyl-containing (S and T) amino acids, whereas in soluble proteins large hydrophobic and aromatic residues have the highest packing values. The highest packing values for membrane proteins are found in the transmembrane helix–helix interfaces. Glycine and alanine have the highest occurrence among the buried amino acids in membrane proteins, whereas leucine and alanine are the most common buried residue in soluble proteins. These observations are consistent with a shorter axial separation between helices in membrane proteins. The tight helix packing revealed in this analysis contributes to membrane protein stability and likely compensates for the lack of the hydrophobic effect as a driving force for helix–helix association in membranes. PMID:10823938

  12. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  13. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  14. Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway

    PubMed Central

    Majumder, Sanjukta; Zappulla, Frank; Silbart, Lawrence K.

    2014-01-01

    Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (Rlow) or a non-virulent (Rhigh) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, Rlow exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either Rlow or Rhigh exposure. Taken together we conclude that LAMPs isolated from both Rhigh and Rlow induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway. PMID:25401327

  15. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  16. Protein Homeostasis at the Plasma Membrane

    PubMed Central

    2014-01-01

    The plasma membrane (PM) and endocytic protein quality control (QC) in conjunction with the endosomal sorting machinery either repairs or targets conformationally damaged membrane proteins for lysosomal/vacuolar degradation. Here, we provide an overview of emerging aspects of the underlying mechanisms of PM QC that fulfill a critical role in preserving cellular protein homeostasis in health and diseases. PMID:24985330

  17. Silencing of the Epstein-Barr Virus Latent Membrane Protein 1 Gene by the Max-Mad1-mSin3A Modulator of Chromatin Structure

    PubMed Central

    Sjöblom-Hallén, Anna; Yang, Weiwen; Jansson, Ann; Rymo, Lars

    1999-01-01

    The tumor-associated latent membrane protein 1 (LMP1) gene in the Epstein-Barr virus (EBV) genome is activated by EBV-encoded proteins and cellular factors that are part of general signal transduction pathways. As previously demonstrated, the proximal region of the LMP1 promoter regulatory sequence (LRS) contains a negative cis element with a major role in EBNA2-mediated regulation of LMP1 gene expression in B cells. Here, we show that this silencing activity overlaps with a transcriptional enhancer in an LRS sequence that contains an E-box-homologous motif. Mutation of the putative repressor binding site relieved the repression both in a promoter-proximal context and in a complete LRS context, indicating a functional role of the repressor. Gel retardation assays showed that members of the basic helix-loop-helix transcription factor family, including Max, Mad1, USF, E12, and E47, and the corepressor mSin3A bound to the E-box-containing sequence. The enhancer activity correlated with the binding of USF. Moreover, the activity of the LMP1 promoter in reporter constructs was upregulated by overexpression of USF1 and USF2a, and the transactivation was inhibited by the concurrent expression of Max and Mad1. This suggests that Max-Mad1-mediated anchorage of a multiprotein complex including mSin3A and histone deacetylases to the E-box site constitutes the basis for the repression. Removal of acetyl moieties from histones H3 and H4 should result in a chromatin structure that is inaccessible to transcription factors. Accordingly, inhibition of deacetylase activity with trichostatin A induced expression of the endogenous LMP1 gene in EBV-transformed cells. PMID:10074148

  18. Protein quality control at the inner nuclear membrane.

    PubMed

    Khmelinskii, Anton; Blaszczak, Ewa; Pantazopoulou, Marina; Fischer, Bernd; Omnus, Deike J; Le Dez, Gaëlle; Brossard, Audrey; Gunnarsson, Alexander; Barry, Joseph D; Meurer, Matthias; Kirrmaier, Daniel; Boone, Charles; Huber, Wolfgang; Rabut, Gwenaël; Ljungdahl, Per O; Knop, Michael

    2014-12-18

    The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by endoplasmic-reticulum-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is known about protein quality control at the INM. Here we describe a protein degradation pathway at the INM in yeast (Saccharomyces cerevisiae) mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex functions together with the ubiquitin-conjugating enzymes Ubc6 and Ubc7 to degrade soluble and integral membrane proteins. Genetic evidence suggests that the Asi ubiquitin ligase defines a pathway distinct from, but complementary to, ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalized integral membrane proteins, thus acting to maintain and safeguard the identity of the INM.

  19. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life

    PubMed Central

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-01-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. PMID:27501943

  20. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    PubMed Central

    Milano, Teresa

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  1. Concentrating membrane proteins using asymmetric traps and AC electric fields.

    PubMed

    Cheetham, Matthew R; Bramble, Jonathan P; McMillan, Duncan G G; Krzeminski, Lukasz; Han, Xiaojun; Johnson, Benjamin R G; Bushby, Richard J; Olmsted, Peter D; Jeuken, Lars J C; Marritt, Sophie J; Butt, Julea N; Evans, Stephen D

    2011-05-04

    Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery 2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature 1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a "nested trap" and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins.

  2. Regulation of the beta-lactamase BlaL of Streptomyces cacaoi: the product of the blaB regulatory gene is an internal membrane-bound protein.

    PubMed Central

    Magdalena, J; Joris, B; Van Beeumen, J; Brasseur, R; Dusart, J

    1995-01-01

    The beta-lactamase-encoding gene blaL, cloned from Streptomyces cacaoi in Streptomyces lividans, is inducible by beta-lactam compounds. This regulation has been shown to depend on the products of two open reading frames, ORF1 (blaA) and ORF2 (blaB) [Lenzini, Magdalena, Fraipont, Joris, Matagne and Dusart (1992) Mol. Gen. Genet. 235, 41-48]. BlaA belongs to the LysR family of transcription activators, whereas BlaB shares some features with the penicillin-recognizing proteins. BlaB has now been overexpressed in Escherichia coli, purified and used for antibody preparation. Immunoblotting of cell-fractionated materials from S. cacaoi showed that BlaB is attached to the internal face of the cytoplasmic membrane. It could not be released by high salt concentrations or EDTA, but only by protease treatment. Under the assay conditions, BlaB did not act as a penicillin-binding protein, a beta-lactamase, a D-amino-peptidase or a target in a phosphorylation step. Images Figure 2 Figure 3 Figure 4 PMID:7575447

  3. [Membrane protein characterization by photoactivatable localization microscopy].

    PubMed

    Huang, Li; Fang, Weihuan; Yu, Ying; Song, Houhui

    2012-11-01

    The on-site labeling and localization tracking of membrane proteins in pathogenic bacteria are tedious work. In order to develop a novel protein labeling technology at super resolution level (nanometer scale) using the photoactivatable localization microscopy (PALM), the chimeric protein of the outer membrane protein A (OmpA) of Mycobacterium tuberculosis and the photoactivatable mEos2m protein were expressed in the non-pathogenic Mycobacterium smegmatis. The recombinant bacteria were fixed on slide, activated by 405 nm laser and subject to PALM imaging to capture photons released by the fusion protein. Meanwhile, colony and cell morphology were visualized under regular fluorescent stereomicroscope and upright fluorescent microscope to characterize fluorescence conversion and protein localization. The fusion proteins formed a "belt"-like structure on cell membrane of M. smegmatis under PALM, providing direct evidence of on-site imaging of membrane proteins. Expression of fusion protein did not compromise the localization properties of OmpA. Thus, mEos2m could be used as a labeling probe to track localizations of non-oligomer oriented membrane proteins. This indicates non-pathogenic M. smegmatis could be served as a model strain to characterize the function and localization of the proteins derived from pathogenic M. tuberculosis. This is the first report using PALM to characterize localization of membrane proteins.

  4. Membrane topology of transmembrane proteins: determinants and experimental tools.

    PubMed

    Lee, Hunsang; Kim, Hyun

    2014-10-17

    Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.

  5. Outer Membrane Protein C (ompC) Gene as the Target for Diagnosis of Salmonella Species Isolated from Human and Animal Sources

    PubMed Central

    Jawad, Alaa Abdel-Kadhim; Al-Charrakh, Alaa H.

    2016-01-01

    Background: The use of selective and differential plating media is a simple method for the isolation of Salmonella spp. Recently, there has been a general move toward molecular methods of Salmonella detection and typing. Methods: A total of 1200 different specimens collected from human and animal sources were involved in his study. 600 stool specimens from patients suffering from diarrhea and 600 specimens from gall bladder (bile) of cattle from Al-Diwaniya slaughter house, Iraq were used. Salmonella spp. were isolated and identified using bacterial culturing on selective media and colonies were tested by API 20Eand then serotyping through polyvalent antisera and conformation by Polymerase Chain Reaction (PCR). PCR was used to detect ompC gene encoding biosynthesis of outer membrane protein C of Salmonella genus. Results: The results revealed that the rate of Salmonella isolates was 0.5% (3/600) from human and 1% (6/600) from animals. The PCR technique revealed that 9 isolates of Salmonella spp. harbored ompC gene. The results of this study revealed that the PCR technique had a high specificity in detection of Salmonella spp., in comparison to culture and biochemical test, Mini API 20 E and serological tests. The present study found no significant differences between human and animal isolates. Conclusion: Detection of ompC gene is a good method for detection of Salmonella species isolated from clinical specimens. It has a high specificity in comparison with other tests, with its advantages of greater speed and effectiveness than conventional detection methods. PMID:26855735

  6. Predictions of Protein-Protein Interfaces within Membrane Protein Complexes

    PubMed Central

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz

    2013-01-01

    Background Prediction of interaction sites within the membrane protein complexes using the sequence data is of a great importance, because it would find applications in modification of molecules transport through membrane, signaling pathways and drug targets of many diseases. Nevertheless, it has gained little attention from the protein structural bioinformatics community. Methods In this study, a wide variety of prediction and classification tools were applied to distinguish the residues at the interfaces of membrane proteins from those not in the interfaces. Results The tuned SVM model achieved the high accuracy of 86.95% and the AUC of 0.812 which outperforms the results of the only previous similar study. Nevertheless, prediction performances obtained using most employed models cannot be used in applied fields and needs more effort to improve. Conclusion Considering the variety of the applied tools in this study, the present investigation could be a good starting point to develop more efficient tools to predict the membrane protein interaction site residues. PMID:23919118

  7. Proteomic analysis of protein adsorption capacity of different haemodialysis membranes.

    PubMed

    Urbani, Andrea; Lupisella, Santina; Sirolli, Vittorio; Bucci, Sonia; Amoroso, Luigi; Pavone, Barbara; Pieroni, Luisa; Sacchetta, Paolo; Bonomini, Mario

    2012-04-01

    Protein-adsorptive properties are a key feature of membranes used for haemodialysis treatment. Protein adsorption is vital to the biocompatibility of a membrane material and influences membrane's performance. The object of the present study is to investigate membrane biocompatibility by correlating the adsorbed proteome repertoire with chemical feature of the membrane surfaces. Dialyzers composed of either cellulose triacetate (Sureflux 50 L, effective surface area 0.5 m(2); Nipro Corporation, Japan) or the polysulfone-based helixone (FX40, effective surface area 0.4 m(2); Fresenius Medical Care AG, Germany) materials were employed to develop an ex vivo apparatus to study protein adsorption. Adsorbed proteins were eluted by a strong chaotropic buffer condition and investigated by a proteomic approach. The profiling strategy was based on 2D-electrophoresis separation of desorbed protein coupled to MALDI-TOF/TOF analysis. The total protein adsorption was not significantly different between the two materials. An average of 179 protein spots was visualised for helixone membranes while a map of retained proteins of cellulose triacetate membranes was made up of 239 protein spots. The cellulose triacetate material showed a higher binding capacity for albumin and apolipoprotein. In fact, a number of different protein spots belonging to the gene transcript of albumin were visible in the cellulose triacetate map. In contrast, helixone bound only a small proportion of albumin, while proved to be particularly active in retaining protein associated with the coagulation cascade, such as the fibrinogen isoforms. Our data indicate that proteomic techniques are a useful approach for the investigation of proteins surface-adsorbed onto haemodialysis membranes, and may provide a molecular base for the interpretation of the efficacy and safety of anticoagulation treatment during renal replacement therapy.

  8. Protein Solvation in Membranes and at Water-Membrane Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Wilson, Michael A.

    2002-01-01

    Different salvation properties of water and membranes mediate a host of biologically important processes, such as folding, insertion into a lipid bilayer, associations and functions of membrane proteins. These processes will be discussed in several examples involving synthetic and natural peptides. In particular, a mechanism by which a helical peptide becomes inserted into a model membrane will be described. Further, the molecular mechanism of recognition and association of protein helical segments in membranes will be discussed. These processes are crucial for proper functioning of a cell. A membrane-spanning domain of glycophorin A, which exists as a helical dimer, serves as the model system. For this system, the free energy of dissociation of the helices is being determined for both the wild type and a mutant, in which dimerization is disrupted.

  9. Crystallization of Membrane protein under Microgravity

    NASA Astrophysics Data System (ADS)

    Henning, C.; Frank, J.; Laubender, G.; Fromme, P.

    2002-01-01

    Proteins are biological molecules which catalyse all essential reactions of cells. The knowledge on the structure of these molecular machines is necessary for the understanding of their function. Many diseases are caused by defects of membrane proteins. In order to develop new medical therapies the construction principle of the proteins must be known. The main difficulty in the determination of the structure of these membrane protein complexes is the crystallisation. Membrane proteins are normally not soluble in water and have therefore to be solubilised from the membranes by use of detergents. The whole protein-detergent micelle must be crystallised to maintain the functional integrity of the protein complexes. These difficulties are the reasons for the fact that crystals of membrane proteins are difficult to grow and most of them are badly ordered, being not appropriate for X-ray structure analysis. The crystallisation of proteins under microgravity leads to the growth of better-ordered crystals by reduction of nucleation rate and the undisturbed growth of the hovering seeds by the absence of sedimentation and convection. The successful crystallistation of a membrane protein under microgravity has been performed during the space shuttle missions USML2 and STS95 in the Space Shuttle with Photosystem I as model protein. Photosystem I is a large membrane protein complex which catalyses one of the first and fundamental steps in oxygen photosynthesis. The crystals of Photosystem I, grown under microgravity were twenty times larger than all Photosystem I crystals which have been grown on earth. They were the basis for the determination of an improved X-ray structure of Photo- system I. These experiments opened the way for the structure enlightenment of more membrane proteins on the basis of microgravity experiments. On board of the International Space Station ideal conditions for the crystallisation of proteins under zero gravity are existing.

  10. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  11. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  12. Lateral proton transfer between the membrane and a membrane protein.

    PubMed

    Ojemyr, Linda; Sandén, Tor; Widengren, Jerker; Brzezinski, Peter

    2009-03-17

    Proton transport across biological membranes is a key step of the energy conservation machinery in living organisms, and it has been proposed that the membrane itself plays an important role in this process. In the present study we have investigated the effect of incorporation of a proton transporter, cytochrome c oxidase, into a membrane on the protonation kinetics of a fluorescent pH-sensitive probe attached at the surface of the protein. The results show that proton transfer to the probe was slightly accelerated upon attachment at the protein surface (approximately 7 x 1010 s(-1) M(-1), compared to the expected value of (1-2) x 10(10) s(-1) M(-1)), which is presumably due to the presence of acidic/His groups in the vicinity. Upon incorporation of the protein into small unilamellar phospholipid vesicles the rate increased by more than a factor of 400 to approximately 3 x 10(13) s(-1) M(-1), which indicates that the protein-attached probe is in rapid protonic contact with the membrane surface. The results indicate that the membrane acts to accelerate proton uptake by the membrane-bound proton transporter.

  13. Inherently tunable electrostatic assembly of membrane proteins.

    PubMed

    Liang, Hongjun; Whited, Gregg; Nguyen, Chi; Okerlund, Adam; Stucky, Galen D

    2008-01-01

    Membrane proteins are a class of nanoscopic entities that control the matter, energy, and information transport across cellular boundaries. Electrostatic interactions are shown to direct the rapid co-assembly of proteorhodopsin (PR) and lipids into long-range crystalline arrays. The roles of inherent charge variations on lipid membranes and PR variants with different compositions are examined by tuning recombinant PR variants with different extramembrane domain sizes and charged amino acid substitutions, lipid membrane compositions, and lipid-to-PR stoichiometric ratios. Rational control of this predominantly electrostatic assembly for PR crystallization is demonstrated, and the same principles should be applicable to the assembly and crystallization of other integral membrane proteins.

  14. Evolution of a Membrane Protein Regulon in Saccharomyces

    PubMed Central

    Martin, Hilary C.; Roop, Jeremy I.; Schraiber, Joshua G.; Hsu, Tiffany Y.; Brem, Rachel B.

    2012-01-01

    Expression variation is widespread between species. The ability to distinguish regulatory change driven by natural selection from the consequences of neutral drift remains a major challenge in comparative genomics. In this work, we used observations of mRNA expression and promoter sequence to analyze signatures of selection on groups of functionally related genes in Saccharomycete yeasts. In a survey of gene regulons with expression divergence between Saccharomyces cerevisiae and S. paradoxus, we found that most were subject to variation in trans-regulatory factors that provided no evidence against a neutral model. However, we identified one regulon of membrane protein genes controlled by unlinked cis- and trans-acting determinants with coherent effects on gene expression, consistent with a history of directional, nonneutral evolution. For this membrane protein group, S. paradoxus alleles at regulatory loci were associated with elevated expression and altered stress responsiveness relative to other yeasts. In a phylogenetic comparison of promoter sequences of the membrane protein genes between species, the S. paradoxus lineage was distinguished by a short branch length, indicative of strong selective constraint. Likewise, sequence variants within the S. paradoxus population, but not across strains of other yeasts, were skewed toward low frequencies in promoters of genes in the membrane protein regulon, again reflecting strong purifying selection. Our results support a model in which a distinct expression program for the membrane protein genes in S. paradoxus has been preferentially maintained by negative selection as the result of an increased importance to organismal fitness. These findings illustrate the power of integrating expression- and sequence-based tests of natural selection in the study of evolutionary forces that underlie regulatory change. PMID:22319167

  15. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.

    PubMed

    Knowles, Timothy J; Scott-Tucker, Anthony; Overduin, Michael; Henderson, Ian R

    2009-03-01

    The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

  16. Thermostabilisation of membrane proteins for structural studies

    PubMed Central

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.

    2017-01-01

    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  17. Helical Membrane Protein Conformations and their Environment

    PubMed Central

    Cross, Timothy A.; Murray, Dylan T.; Watts, Anthony

    2013-01-01

    Evidence that membrane proteins respond conformationally and functionally to their environment is gaining pace. Structural models, by necessity, have been characterized in preparations where the protein has been removed from its native environment. Different structural methods have used various membrane mimetics that have recently included lipid bilayers as a more native-like environment. Structural tools applied to lipid bilayer-embedded integral proteins are informing us about important generic characteristics of how membrane proteins respond to the lipid environment as compared with their response to other non-lipid environments. Here, we review the current status of the field, with specific reference to observations of some well-studied α-helical membrane proteins, as a starting point to aid the development of possible generic principals for model refinement. PMID:23996195

  18. TRIM proteins in therapeutic membrane repair of muscular dystrophy.

    PubMed

    Alloush, Jenna; Weisleder, Noah

    2013-07-01

    Muscular dystrophy represents a major unmet medical need; only palliative treatments exist for this group of debilitating diseases. Because multiple forms of muscular dystrophy arise from compromised sarcolemmal membrane integrity, a therapeutic approach that can target this loss of membrane function could be applicable to a number of these distinct diseases.One promising therapeutic approach involves the process the cell uses to repair injuries to the plasma membrane. Recent discoveries of genes associated with the membrane repair process provide an opportunity to promote this process as a way to treat muscular dystrophy. One such gene is mitsugumin 53 (MG53), a member of the tripartite motif (TRIM) family of proteins (TRIM72), which is an essential component of the membrane repair pathway in muscle. Recent results indicate that MG53/TRIM72 protein can be directly applied as a therapeutic agent to increase membrane repair capacity of many cell types and treat some aspects of the disease in mouse models of muscular dystrophy. There is great potential for the use of recombinant human MG53 in treating muscular dystrophy and other diseases in which compromised membrane integrity contributes to the disease. Other TRIM family proteins may provide additional targets for therapeutic intervention in similar disease states.

  19. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  20. Expression and purification of membrane proteins.

    PubMed

    Kubicek, Jan; Block, Helena; Maertens, Barbara; Spriestersbach, Anne; Labahn, Jörg

    2014-01-01

    Approximately 30% of a genome encodes for membrane proteins. They are one of the most important classes of proteins in that they can receive, differentiate, and transmit intra- and intercellular signals. Some examples of classes of membrane proteins include cell-adhesion molecules, translocases, and receptors in signaling pathways. Defects in membrane proteins may be involved in a number of serious disorders such as neurodegenerative diseases (e.g., Alzheimer's) and diabetes. Furthermore, membrane proteins provide natural entry and anchoring points for the molecular agents of infectious diseases. Thus, membrane proteins constitute ~50% of known and novel drug targets. Progress in this area is slowed by the requirement to develop methods and procedures for expression and isolation that are tailored to characteristic properties of membrane proteins. A set of standard protocols for the isolation of the targets in quantities that allow for the characterization of their individual properties for further optimization is required. The standard protocols given below represent a workable starting point. If optimization of yields is desired, a variation of conditions as outlined in the theory section is recommended.

  1. Protein profiles of hatchery egg shell membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  2. Activation of NFAT-Dependent Gene Expression by Nef: Conservation among Divergent Nef Alleles, Dependence on SH3 Binding and Membrane Association, and Cooperation with Protein Kinase C-θ

    PubMed Central

    Manninen, Aki; Huotari, Päivi; Hiipakka, Marita; Renkema, G. Herma; Saksela, Kalle

    2001-01-01

    Here we show that the potential to regulate NFAT is a conserved property of different Nef alleles and that Nef residues involved in membrane targeting and SH3 binding are critical for this function. Cotransfection of an activated protein kinase C-θ (PKC-θ) with Nef implicated PKC-θ as a possible physiological cofactor of Nef in promoting NFAT-dependent gene expression and T-cell activation. PMID:11222731

  3. The Saccharomyces cerevisiae YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum

    PubMed Central

    Famá, M. Carla; Raden, David; Zacchi, Nicolás; Lemos, Darío R.; Robinson, Anne S.; Silberstein, Susana

    2007-01-01

    YFR041C/ERJ5 was identified in Saccharomyces cerevisiae as a gene regulated by the unfolded protein response pathway (UPR). The open reading frame of the gene has a J domain characteristic of the DnaJ chaperone family of proteins that regulate the activity of Hsp70 chaperones. We determined the expression and topology of Erj5p, a type I membrane protein with a J domain in the lumen of the endoplasmic reticulum (ER) that colocalizes with Kar2p, the major Hsp70 in the yeast ER. We identified synthetic interactions of Δerj5 with mutations in genes involved in protein folding in the ER (kar2-159, Δscj1Δjem1) and in the induction of the unfolded protein response (Δire1). Loss of Erj5p in yeast cells with impaired ER protein folding capacity increased sensitivity to agents that cause ER stress. We identified the ERJ5 mRNA and confirmed that agents that promote accumulation of misfolded proteins in the ER regulate its abundance. We found that loss of the non-essential ERJ5 gene leads to a constitutively induced UPR, indicating that ERJ5 is required for maintenance of an optimal folding environment in the yeast ER. PMID:17157937

  4. Overexpression of membrane proteins using Pichia pastoris.

    PubMed

    Bornert, Olivier; Alkhalfioui, Fatima; Logez, Christel; Wagner, Renaud

    2012-02-01

    Among the small number of expression systems validated for the mass production of eukaryotic membrane proteins (EMPs), the methylotrophic yeast Pichia pastoris stands as one of the most efficient hosts. This system has been used to produce crystallization-grade proteins for a variety of EMPs, from which high-resolution 3D structures have been determined. This unit describes a set of guidelines and instructions to overexpress membrane proteins using the P. pastoris system. Using a G protein-coupled receptor (GPCR) as a model EMP, these protocols illustrate the necessary steps, starting with the design of the DNA sequence to be expressed, through the preparation and analysis of samples containing the corresponding membrane protein of interest. In addition, recommendations are given on a series of experimental parameters that can be optimized to substantially improve the amount and/or the functionality of the expressed EMPs.

  5. Quantification of Detergents Complexed with Membrane Proteins

    PubMed Central

    Chaptal, Vincent; Delolme, Frédéric; Kilburg, Arnaud; Magnard, Sandrine; Montigny, Cédric; Picard, Martin; Prier, Charlène; Monticelli, Luca; Bornert, Olivier; Agez, Morgane; Ravaud, Stéphanie; Orelle, Cédric; Wagner, Renaud; Jawhari, Anass; Broutin, Isabelle; Pebay-Peyroula, Eva; Jault, Jean-Michel; Kaback, H. Ronald; le Maire, Marc; Falson, Pierre

    2017-01-01

    Most membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins. We automated the process, thereby allowing routine quantification for a broad spectrum of usage. As a first illustration, we show how to obtain information of the amount of detergent in complex with a membrane protein, essential for liposome or nanodiscs reconstitutions. Thanks to the method, we also show how to reliably and easily estimate the detergent corona diameter and select the smallest size, critical for favoring protein-protein contacts and triggering/promoting membrane protein crystallization, and to visualize the detergent belt for Cryo-EM studies. PMID:28176812

  6. Electrophysiological characterization of membrane transport proteins.

    PubMed

    Grewer, Christof; Gameiro, Armanda; Mager, Thomas; Fendler, Klaus

    2013-01-01

    Active transport in biological membranes has been traditionally studied using a variety of biochemical and biophysical techniques, including electrophysiology. This review focuses on aspects of electrophysiological methods that make them particularly suited for the investigation of transporter function. Two major approaches to electrical recording of transporter activity are discussed: (a) artificial planar lipid membranes, such as the black lipid membrane and solid supported membrane, which are useful for studies on bacterial transporters and transporters of intracellular compartments, and (b) patch clamp and voltage clamp techniques, which investigate transporters in native cellular membranes. The analytical power of these methods is highlighted by several examples of mechanistic studies of specific membrane proteins, including cytochrome c oxidase, NhaA Na(+)/H(+) exchanger, ClC-7 H(+)/Cl(-) exchanger, glutamate transporters, and neutral amino acid transporters. These examples reveal the wealth of mechanistic information that can be obtained when electrophysiological methods are used in combination with rapid perturbation approaches.

  7. Palmitoylation of POTE family proteins for plasma membrane targeting

    SciTech Connect

    Das, Sudipto; Ise, Tomoko; Nagata, Satoshi; Maeda, Hiroshi; Bera, Tapan K.; Pastan, Ira

    2007-11-23

    The POTE gene family is composed of 13 paralogs and likely evolved by duplications and remodeling of the human genome. One common property of POTE proteins is their localization on the inner aspect of the plasma membrane. To determine the structural elements required for membrane localization, we expressed mutants of different POTEs in 293T cells as EGFP fusion proteins. We also tested their palmitoylation by a biotin-switch assay. Our data indicate that the membrane localizations of different POTEs are mediated by similar 3-4 short cysteine rich repeats (CRRs) near the amino-terminuses and that palmitoylation on paired cysteine residues in each CRR motif is responsible for the localization. Multiple palmitoylation in the small CRRs can result in the strong association of whole POTEs with plasma membrane.

  8. etramps, a New Plasmodium falciparum Gene Family Coding for Developmentally Regulated and Highly Charged Membrane Proteins Located at the Parasite–Host Cell Interface

    PubMed Central

    Spielmann, Tobias; Fergusen, David J. P.; Beck, Hans-Peter

    2003-01-01

    After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole and develops from morphologically and metabolically distinct ring to trophozoite stages. During these developmental phases, major structural changes occur within the erythrocyte, but neither the molecular events governing this development nor the molecular composition of the parasitophorous vacuole membrane (PVM) is well known. Herein, we describe a new family of highly cationic proteins from P. falciparum termed early transcribed membrane proteins (ETRAMPs). Thirteen members were identified sharing a conserved structure, of which six were found only during ring stages as judged from Northern and Western analysis. Other members showed different stage-specific expression patterns. Furthermore, ETRAMPs were associated with the membrane fractions in Western blots, and colocalization and selective permeabilization studies demonstrated that ETRAMPs were located in the PVM. This was confirmed by immunoelectron microscopy where the PVM and tubovesicular extensions of the PVM were labeled. Early expressed ETRAMPs clearly defined separate PVM domains compared with the negatively charged integral PVM protein EXP-1, suggesting functionally different domains in the PVM with an oppositely charged surface coat. We also show that the dynamic change of ETRAMP composition in the PVM coincides with the morphological changes during development. The P. falciparum PVM is an important structure for parasite survival, and its analysis might provide better understanding of the requirements of intracellular parasites. PMID:12686607

  9. Horizontal Gene Transfer and Assortative Recombination within the Acinetobacter baumannii Clinical Population Provide Genetic Diversity at the Single carO Gene, Encoding a Major Outer Membrane Protein Channel ▿ † ‡

    PubMed Central

    Mussi, María Alejandra; Limansky, Adriana S.; Relling, Verónica; Ravasi, Pablo; Arakaki, Adrián; Actis, Luis A.; Viale, Alejandro M.

    2011-01-01

    We described previously the presence in Acinetobacter baumannii of a novel outer membrane (OM) protein, CarO, which functions as an l-ornithine OM channel and whose loss was concomitant with increased carbapenem resistance among clonally related nosocomial isolates of this opportunistic pathogen. Here, we describe the existence of extensive genetic diversity at the carO gene within the A. baumannii clinical population. The systematic analysis of carO sequences from A. baumannii isolates obtained from public hospitals in Argentina revealed the existence of four highly polymorphic carO variants among them. Sequence polymorphism between the different A. baumannii CarO variants was concentrated in three well-defined protein regions that superimposed mostly to predicted surface-exposed loops. Polymorphism among A. baumannii CarO variants was manifested in differential electrophoretic mobilities, antigenic properties, abilities to form stable oligomeric structures, and l-ornithine influx abilities through the A. baumannii OM under in vivo conditions. Incongruence between the phylogenies of the clinical A. baumannii isolates analyzed and those of the carO variants they harbor suggests the existence of assortative (entire-gene) carO recombinational exchange within the A. baumannii population. Exchange of carO variants possessing differential characteristics mediated by horizontal gene transfer may constitute an A. baumannii population strategy to survive radically changing environmental conditions, such as the leap from inanimate sources to human hosts and vice versa, persistence in a compromised host, and/or survival in health care facilities. PMID:21764928

  10. Intrinsically disordered proteins drive membrane curvature

    NASA Astrophysics Data System (ADS)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  11. Intrinsically disordered proteins drive membrane curvature

    PubMed Central

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-01-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. PMID:26204806

  12. Intrinsically disordered proteins drive membrane curvature.

    PubMed

    Busch, David J; Houser, Justin R; Hayden, Carl C; Sherman, Michael B; Lafer, Eileen M; Stachowiak, Jeanne C

    2015-07-24

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  13. Protein transfer to membranes upon shape deformation

    NASA Astrophysics Data System (ADS)

    Sagis, L. M. C.; Bijl, E.; Antono, L.; de Ruijter, N. C. A.; van Valenberg, H.

    2013-05-01

    Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is an important factor in several diseases involving obstructions of the microcirculatory system, and deformation induced protein adsorption will alter the rigidity of their membranes. Deformation induced protein transfer will also affect adsorption of cells onto implant surfaces, and the performance of liposome based controlled release systems. Quantitative models describing this phenomenon in biomaterials do not exist. Using a simple quantitative model, we provide new insight in this phenomenon. We present data that show convincingly that for cells or droplets with diameters upwards of a few micrometers, shape deformations induce adsorption of proteins at their interface even at moderate flow rates.

  14. Protein separation using an electrically tunable membrane

    NASA Astrophysics Data System (ADS)

    Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria

    Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.

  15. Protein splicing: selfish genes invade cellular proteins.

    PubMed

    Neff, N F

    1993-12-01

    Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the 'protein intron' is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.

  16. Protein aggregation in a membrane environment.

    PubMed

    Gorbenko, Galyna; Trusova, Valeriya

    2011-01-01

    Biological membranes are featured by a remarkable ability to modulate a wide range of physiological and pathological processes. Of these, protein aggregation is currently receiving the greatest attention, as one type of the ordered protein aggregates, amyloid fibrils, proved to be involved in molecular etiology of a number of fatal diseases. It has been hypothesized that nucleation of amyloid fibrils and toxic action of their precursors is mediated by lipid-protein interactions. Lipid bilayer provides a variety of environments in which aggregated state of polypeptide chain appears to be more thermodynamically favorable than its monomeric form. The major factors responsible for the enhanced self-association propensity of membrane-bound proteins include (i) structural transition of polypeptide chain into aggregation-prone conformation; (ii) protein crowding in a lipid phase; (iii) particular aggregation-favoring orientation and bilayer embedment of the protein molecules. All these factors are considered in the present review with an emphasis being put on the role of electrostatic, hydrophobic, and hydrogen-bonding phenomena in initiating and modulating the protein aggregation on a membrane template. Likewise, we survey the advanced experimental techniques employed for detection and structural characterization of the aggregated species in membrane systems.

  17. Fluorescence spectroscopy of protein oligomerization in membranes.

    PubMed

    Gorbenko, Galyna P

    2011-05-01

    Fluorescence spectroscopy is one of the most powerful tools for characterization of a multitude of biological processes. Of these, the phenomenon of protein oligomerization attracts especial interest due to its crucial role in the formation of fibrillar protein aggregates (amyloid fibrils) involved in ethiology of so-called protein misfolding diseases. It is becoming increasingly substantiated that protein fibrillization in vivo can be initiated and modulated at membrane-water interface. All steps of membrane-assisted fibrillogenesis, viz., protein adsorption onto lipid bilayer, structural transition of polypeptide chain into a highly aggregation-prone partially folded conformation, assembly of oligomeric nucleus from membrane-bound monomeric species and fiber elongation can be monitored with a mighty family of fluorescence-based techniques. Furthermore, the mechanisms behind cytotoxicity of prefibrillar protein oligomers are highly amenable to fluorescence analysis. The applications of fluorescence spectroscopy to monitoring protein oligomerization in a membrane environment are exemplified and some problems encountered in such kinds of studies are highlighted.

  18. Breaking the barriers in membrane protein crystallography.

    PubMed

    Kang, Hae Joo; Lee, Chiara; Drew, David

    2013-03-01

    As we appreciate the importance of stabilising membrane proteins, the barriers towards their structure determination are being broken down. This change in mindset comes hand-in-hand with more effort placed on developing methods focused at screening for membrane proteins which are naturally stable in detergent solution or improving those that are not so. In practice, however, it is not easy to decide the best strategy to monitor and improve detergent stability, requiring a decision-making process that can be even more difficult for those new to the field. In this review we outline the importance of membrane protein stability with discussions of the stabilisation strategies applied in context with the use of crystallisation scaffolds and the different types of crystallisation methods themselves. Where possible we also highlight areas that we think could push this field forward with emerging technologies, such as X-ray free electron lasers (X-feL), which could have a big impact on the membrane protein structural biology community. We hope this review will serve as a useful guide for those striving to solve structures of both pro- and eukaryotic membrane proteins.

  19. Curvature-mediated interactions between membrane proteins.

    PubMed Central

    Kim, K S; Neu, J; Oster, G

    1998-01-01

    Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence of stable protein aggregates, despite their pairwise repulsions. PMID:9788923

  20. Model-building codes for membrane proteins.

    SciTech Connect

    Shirley, David Noyes; Hunt, Thomas W.; Brown, W. Michael; Schoeniger, Joseph S.; Slepoy, Alexander; Sale, Kenneth L.; Young, Malin M.; Faulon, Jean-Loup Michel; Gray, Genetha Anne

    2005-01-01

    We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.

  1. Transmembrane protein sorting driven by membrane curvature

    NASA Astrophysics Data System (ADS)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  2. Predicting membrane protein types with bragging learner.

    PubMed

    Niu, Bing; Jin, Yu-Huan; Feng, Kai-Yan; Liu, Liang; Lu, Wen-Cong; Cai, Yu-Dong; Li, Guo-Zheng

    2008-01-01

    The membrane protein type is an important feature in characterizing the overall topological folding type of a protein or its domains therein. Many investigators have put their efforts to the prediction of membrane protein type. Here, we propose a new approach, the bootstrap aggregating method or bragging learner, to address this problem based on the protein amino acid composition. As a demonstration, the benchmark dataset constructed by K.C. Chou and D.W. Elrod was used to test the new method. The overall success rate thus obtained by jackknife cross-validation was over 84%, indicating that the bragging learner as presented in this paper holds a quite high potential in predicting the attributes of proteins, or at least can play a complementary role to many existing algorithms in this area. It is anticipated that the prediction quality can be further enhanced if the pseudo amino acid composition can be effectively incorporated into the current predictor. An online membrane protein type prediction web server developed in our lab is available at http://chemdata.shu.edu.cn/protein/protein.jsp.

  3. Proteomics characterization of abundant Golgi membrane proteins.

    PubMed

    Bell, A W; Ward, M A; Blackstock, W P; Freeman, H N; Choudhary, J S; Lewis, A P; Chotai, D; Fazel, A; Gushue, J N; Paiement, J; Palcy, S; Chevet, E; Lafrenière-Roula, M; Solari, R; Thomas, D Y; Rowley, A; Bergeron, J J

    2001-02-16

    A mass spectrometric analysis of proteins partitioning into Triton X-114 from purified hepatic Golgi apparatus (84% purity by morphometry, 122-fold enrichment over the homogenate for the Golgi marker galactosyl transferase) led to the unambiguous identification of 81 proteins including a novel Golgi-associated protein of 34 kDa (GPP34). The membrane protein complement was resolved by SDS-polyacrylamide gel electrophoresis and subjected to a hierarchical approach using delayed extraction matrix-assisted laser desorption ionization mass spectrometry characterization by peptide mass fingerprinting, tandem mass spectrometry to generate sequence tags, and Edman sequencing of proteins. Major membrane proteins corresponded to known Golgi residents, a Golgi lectin, anterograde cargo, and an abundance of trafficking proteins including KDEL receptors, p24 family members, SNAREs, Rabs, a single ARF-guanine nucleotide exchange factor, and two SCAMPs. Analytical fractionation and gold immunolabeling of proteins in the purified Golgi fraction were used to assess the intra-Golgi and total cellular distribution of GPP34, two SNAREs, SCAMPs, and the trafficking proteins GBF1, BAP31, and alpha(2)P24 identified by the proteomics approach as well as the endoplasmic reticulum contaminant calnexin. Although GPP34 has never previously been identified as a protein, the localization of GPP34 to the Golgi complex, the conservation of GPP34 from yeast to humans, and the cytosolically exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking.

  4. Identification of Protective Epitopes by Sequencing of the Major Outer Membrane Protein Gene of a Variant Strain of Chlamydia psittaci Serotype 1 (Chlamydophila abortus)

    PubMed Central

    Vretou, Evangelia; Psarrou, Evgenia; Kaisar, Maria; Vlisidou, Isabella; Salti-Montesanto, Viviane; Longbottom, David

    2001-01-01

    Protective monoclonal antibodies (MAbs) to the major outer membrane protein (MOMP) of species of the family Chlamydiaceae, which is the primary vaccine candidate antigen, recognize nonlinear epitopes conferred by the oligomeric conformation of the molecule. Protective MAbs failed to recognize oligomeric MOMP of the variant strain LLG, which bears amino acid substitutions in variable segments (VSs) 1, 2, and 4, and competed with monomer-specific MAbs mapping to these VSs in reference strain 577. The results suggest that multiple sites located in the three VSs contribute to the epitope of protective MAbs. PMID:11119563

  5. Major intrinsic proteins in biomimetic membranes.

    PubMed

    Nielsen, Claus Hélix

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport

  6. Electrophoretic separation method for membrane pore-forming proteins in multilayer lipid membranes.

    PubMed

    Okamoto, Yukihiro; Tsujimoto, Yusuke; Umakoshi, Hiroshi

    2016-03-01

    In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore-forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high-performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore-forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore-forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore-forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high-performance by utilizing the specific properties of lipid membranes.

  7. Protein permeation through an electrically tunable membrane

    NASA Astrophysics Data System (ADS)

    Jou, Ining A.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2016-05-01

    Protein filtration is important in many fields of science and technology such as medicine, biology, chemistry, and engineering. Recently, protein separation and filtering with nanoporous membranes has attracted interest due to the possibility of fast separation and high throughput volume. This, however, requires understanding of the protein’s dynamics inside and in the vicinity of the nanopore. In this work, we utilize a Brownian dynamics approach to study the motion of the model protein insulin in the membrane-electrolyte electrostatic potential. We compare the results of the atomic model of the protein with the results of a coarse-grained and a single-bead model, and find that the coarse-grained representation of protein strikes the best balance between the accuracy of the results and the computational effort required. Contrary to common belief, we find that to adequately describe the protein, a single-bead model cannot be utilized without a significant effort to tabulate the simulation parameters. Similar to results for nanoparticle dynamics, our findings also indicate that the electric field and the electro-osmotic flow due to the applied membrane and electrolyte biases affect the capture and translocation of the biomolecule by either attracting or repelling it to or from the nanopore. Our computational model can also be applied to other types of proteins and separation conditions.

  8. Acinetobacter baumannii Outer Membrane Vesicles Elicit a Potent Innate Immune Response via Membrane Proteins

    PubMed Central

    Jun, So Hyun; Lee, Jung Hwa; Kim, Bo Ra; Kim, Seung Il; Park, Tae In

    2013-01-01

    Acinetobacter baumannii is increasingly becoming a major nosocomial pathogen. This opportunistic pathogen secretes outer membrane vesicles (OMVs) that interact with host cells. The aim of this study was to investigate the ability of A. baumannii OMVs to elicit a pro-inflammatory response in vitro and the immunopathology in response to A. baumannii OMVs in vivo. OMVs derived from A. baumannii ATCC 19606T induced expression of pro-inflammatory cytokine genes, interleukin (IL)-1β and IL-6, and chemokine genes, IL-8, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1, in epithelial cells in a dose-dependent manner. Disintegration of OMV membrane with ethylenediaminetetraacetic acid resulted in low expression of pro-inflammatory cytokine genes, as compared with the response to intact OMVs. In addition, proteinase K-treated A. baumannii OMVs did not induce significant increase in expression of pro-inflammatory cytokine genes above the basal level, suggesting that the surface-exposed membrane proteins in intact OMVs are responsible for pro-inflammatory response. Early inflammatory processes, such as vacuolization and detachment of epithelial cells and neutrophilic infiltration, were clearly observed in lungs of mice injected with A. baumannii OMVs. Our data demonstrate that OMVs produced by A. baumannii elicit a potent innate immune response, which may contribute to immunopathology of the infected host. PMID:23977136

  9. Directional interactions and cooperativity between mechanosensitive membrane proteins

    NASA Astrophysics Data System (ADS)

    Haselwandter, Christoph A.; Phillips, Rob

    2013-03-01

    While modern structural biology has provided us with a rich and diverse picture of membrane proteins, the biological function of membrane proteins is often influenced by the mechanical properties of the surrounding lipid bilayer. Here we explore the relation between the shape of membrane proteins and the cooperative function of membrane proteins induced by membrane-mediated elastic interactions. For the experimental model system of mechanosensitive ion channels we find that the sign and strength of elastic interactions depend on the protein shape, yielding distinct cooperative gating curves for distinct protein orientations. Our approach predicts how directional elastic interactions affect the molecular structure, organization, and biological function of proteins in crowded membranes.

  10. Proteomic analysis of membrane proteins of vero cells: exploration of potential proteins responsible for virus entry.

    PubMed

    Guo, Donghua; Zhu, Qinghe; Zhang, Hong; Sun, Dongbo

    2014-01-01

    Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells.

  11. Self diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The

  12. Engineering Lipid Bilayer Membranes for Protein Studies

    PubMed Central

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton

    2013-01-01

    Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908

  13. Membrane Fluctuations Destabilize Clathrin Protein Lattice Order

    PubMed Central

    Cordella, Nicholas; Lampo, Thomas J.; Mehraeen, Shafigh; Spakowitz, Andrew J.

    2014-01-01

    We develop a theoretical model of a clathrin protein lattice on a flexible cell membrane. The clathrin subunit is modeled as a three-legged pinwheel with elastic deformation modes and intersubunit binding interactions. The pinwheels are constrained to lie on the surface of an elastic sheet that opposes bending deformation and is subjected to tension. Through Monte Carlo simulations, we predict the equilibrium phase behavior of clathrin lattices at various levels of tension. High membrane tensions, which correspond to suppressed membrane fluctuations, tend to stabilize large, flat crystalline structures similar to plaques that have been observed in vivo on cell membranes that are adhered to rigid surfaces. Low tensions, on the other hand, give rise to disordered, defect-ridden lattices that behave in a fluidlike manner. The principles of two-dimensional melting theory are applied to our model system to further clarify how high tensions can stabilize crystalline order on flexible membranes. These results demonstrate the importance of environmental physical cues in dictating the collective behavior of self-assembled protein structures. PMID:24703309

  14. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes

    PubMed Central

    Stansfeld, Phillip J.; Goose, Joseph E.; Caffrey, Martin; Carpenter, Elisabeth P.; Parker, Joanne L.; Newstead, Simon; Sansom, Mark S.P.

    2015-01-01

    Summary There has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to be identified upon their release into the PDB and embedded into a membrane. The simulations are analyzed for protein-lipid interactions, identifying lipid binding sites, and revealing local bilayer deformations plus molecular access pathways within the membrane. The coarse-grained models of membrane protein/bilayer complexes are transformed to atomistic resolution for further analysis and simulation. Using this automated simulation pipeline, we have analyzed a number of recently determined membrane protein structures to predict their locations within a membrane, their lipid/protein interactions, and the functional implications of an enhanced understanding of the local membrane environment of each protein. PMID:26073602

  15. Subdiffusion of proteins and oligomers on membranes

    NASA Astrophysics Data System (ADS)

    Lepzelter, David; Zaman, Muhammad

    2012-11-01

    Diffusion of proteins on lipid membranes plays a central role in cell signaling processes. From a mathematical perspective, most membrane diffusion processes are explained by the Saffman-Delbrück theory. However, recent studies have suggested a major limitation in the theoretical framework, the lack of complexity in the modeled lipid membrane. Lipid domains (sometimes termed membrane rafts) are known to slow protein diffusion, but there have been no quantitative theoretical examinations of how much diffusion is slowed in a general case. We provide an overall theoretical framework for confined-domain ("corralled") diffusion. Further, there have been multiple apparent contradictions of the basic conclusions of Saffman and Delbrück, each involving cases in which a single protein or an oligomer has multiple transmembrane regions passing through a lipid phase barrier. We present a set of corrections to the Saffman-Delbrück theory to account for these experimental observations. Our corrections are able to provide a quantitative explanation of numerous cellular signaling processes that have been considered beyond the scope of the Saffman-Delbrück theory, and may be extendable to other forms of subdiffusion.

  16. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    PubMed Central

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  17. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    PubMed

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  18. When physics takes over: BAR proteins and membrane curvature

    PubMed Central

    Simunovic, Mijo; Voth, Gregory A.; Callan-Jones, Andrew; Bassereau, Patricia

    2016-01-01

    Cell membranes become highly curved during membrane trafficking, cytokinesis, infection, immune response or cell motion. Bin/amphiphysin/Rvs (BAR) domain proteins with their intrinsically curved and anisotropic shape are involved in many of these processes, but with a large spectrum of modes of action. In vitro experiments and multiscale computer simulations have contributed in identifying a minimal set of physical parameters, namely protein density on the membrane, membrane tension, and membrane shape, that control how bound BAR domain proteins behave on the membrane. In this review, we summarize the multifaceted coupling of BAR proteins to membrane mechanics and propose a simple phase diagram that recapitulates the effects of these parameters. PMID:26519988

  19. Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host

    PubMed Central

    Pochon, Nathalie; Dementin, Sébastien; Hivin, Patrick; Boutigny, Sylvain; Rioux, Jean-Baptiste; Salvi, Daniel; Seigneurin-Berny, Daphné; Richaud, Pierre; Joyard, Jacques; Pignol, David; Sabaty, Monique; Desnos, Thierry; Pebay-Peyroula, Eva; Darrouzet, Elisabeth; Vernet, Thierry; Rolland, Norbert

    2011-01-01

    Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein. PMID:22216205

  20. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes.

    PubMed

    Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San

    2017-02-06

    An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo.

  1. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  2. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane.

    PubMed

    Nothwehr, S F; Conibear, E; Stevens, T H

    1995-04-01

    The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4-ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.

  3. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  4. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification.

    PubMed

    Hu, Jian; Qin, Huajun; Gao, Fei Philip; Cross, Timothy A

    2011-11-01

    Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.

  5. Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli.

    PubMed Central

    Moll, A; Manning, P A; Timmis, K N

    1980-01-01

    Resistance to the bactericidal activity of serum appears to be an important virulence property of invasive bacteria. The conjugative multiple-antibiotic-resistance plasmid R6-5 was found to confer upon Escherichia coli host bacteria increased resistance against rabbit serum. Gene-cloning techniques were used to localize the serum resistance determinant of R6-5 to a segment of the plasmid that encodes conjugal transfer functions, and a pACYC184 hybrid plasmid, designated pKT107, that contains this segment was constructed. The generation and analysis of deletion and insertion mutant derivatives of the pKT107 plasmid that no longer specify serum resistance permitted precise localization of the serum-resistance cistron on the R6-5 map and demonstrated that this locus is coincident with that of traT, one of the two surface exclusion genes of R6-5. Examination of the proteins synthesized in E. coli minicells of pKT107 and its serum-sensitive mutant derivative plasmids confirmed that the serum-resistance gene product of R6-5 is the traT protein and showed that this protein is a major structural component (about 21,000 copies per cell) of the bacterial outer membrane. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:6995306

  6. Stochastic single-molecule dynamics of synaptic membrane protein domains

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  7. Mutation of the gene encoding a major outer-membrane protein in Xanthomonas campestris pv. campestris causes pleiotropic effects, including loss of pathogenicity.

    PubMed

    Chen, Yih-Yuan; Wu, Chieh-Hao; Lin, Juey-Wen; Weng, Shu-Fen; Tseng, Yi-Hsiung

    2010-09-01

    Xanthomonas campestris pv. campestris (Xcc) is the phytopathogen that causes black rot in crucifers. The xanthan polysaccharide and extracellular enzymes produced by this organism are virulence factors, the expression of which is upregulated by Clp (CRP-like protein) and DSF (diffusible signal factor), which is synthesized by RpfF. It is also known that biofilm formation/dispersal, regulated by the effect of controlled synthesis of DSF on cell-cell signalling, is required for virulence. Furthermore, a deficiency in DSF causes cell aggregation with concomitant production of a gum-like substance that can be dispersed by addition of DSF or digested by exogenous endo-beta-1,4-mannanase expressed by Xcc. In this study, Western blotting of proteins from a mopB mutant (XcMopB) showed Xcc MopB to be the major outer-membrane protein (OMP); Xcc MopB shared over 97 % identity with homologues from other members of Xanthomonas. Similarly to the rpfF mutant, XcMopB formed aggregates with simultaneous production of a gummy substance, but these aggregates could not be dispersed by DSF or endo-beta-1,4-mannanase, indicating that different mechanisms were involved in aggregation. In addition, XcMopB showed surface deformation, altered OMP composition, impaired xanthan production, increased sensitivity to stressful conditions including SDS, elevated temperature and changes in pH, reduced adhesion and motility and defects in pathogenesis. The finding that the major OMP is required for pathogenicity is unprecedented in phytopathogenic bacteria.

  8. Identification, characterization, and precise mapping of a human gene encoding a novel membrane-spanning protein from the 22q11 region deleted in velo-cardio-facial syndrome.

    PubMed

    Sirotkin, H; Morrow, B; Saint-Jore, B; Puech, A; Das Gupta, R; Patanjali, S R; Skoultchi, A; Weissman, S M; Kucherlapati, R

    1997-06-01

    Velo-cardio-facial syndrome (VCFS) and DiGeorge syndrome (DGS) are characterized by a wide spectrum of phenotypes including cleft palate, conotruncal heart defects, and facial dysmorphology. Hemizygosity for a portion of chromosome 22q11 has been detected in 80-85% of VCFS/DGS patients. Using a cDNA selection protocol, we have identified a new gene, TMVCF (transmembrane protein deleted in VCFS), which maps to the deleted interval. The genomic locus is positioned between polymorphic markers D22S944 and D22S941. TMVCF encodes a small protein of 219 amino acids that is predicted to contain two membrane-spanning domains. TMVCF is expressed abundantly in human adult lung, heart, and skeletal muscle, and transcripts can be detected at least as early as Day 9 of mouse development.

  9. Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions.

    PubMed

    Zilly, Felipe E; Halemani, Nagaraj D; Walrafen, David; Spitta, Luis; Schreiber, Arne; Jahn, Reinhard; Lang, Thorsten

    2011-04-06

    Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid-lipid interactions, lipid-protein interactions and protein-protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca(2+) in membrane protein organization. We find that Ca(2+) at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca(2+) influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca(2+) strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes.

  10. Crystallizing Membrane Proteins Using Lipidic Mesophases

    PubMed Central

    Caffrey, Martin; Cherezov, Vadim

    2009-01-01

    A detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human engineered β2-adrenergic and adenosine A2A G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase, and for setting up crystallizations in manual mode. Methods for harvesting micro-crystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour. PMID:19390528

  11. Membrane tension controls the assembly of curvature-generating proteins

    NASA Astrophysics Data System (ADS)

    Simunovic, Mijo; Voth, Gregory A.

    2015-05-01

    Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell.

  12. Quantification of detergent using colorimetric methods in membrane protein crystallography.

    PubMed

    Prince, Chelsy; Jia, Zongchao

    2015-01-01

    Membrane protein crystallography has the potential to greatly aid our understanding of membrane protein biology. Yet, membrane protein crystals remain challenging to produce. Although robust methods for the expression and purification of membrane proteins continue to be developed, the detergent component of membrane protein samples is equally important to crystallization efforts. This chapter describes the development of three colorimetric assays for the quantitation of detergent in membrane protein samples and provides detailed protocols. All of these techniques use small sample volumes and have potential applications in crystallography. The application of these techniques in crystallization prescreening, detergent concentration modification, and detergent exchange experiments is demonstrated. It has been observed that the concentration of detergent in a membrane protein sample can be just as important as the protein concentration when attempting to reproduce crystallization lead conditions.

  13. The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins.

    PubMed

    Ellen, Albert F; Rohulya, Olha V; Fusetti, Fabrizia; Wagner, Michaela; Albers, Sonja-Verena; Driessen, Arnold J M

    2011-09-01

    Crenarchaea, such as Sulfolobus acidocaldarius and Sulfolobus tokodaii, produce antimicrobial proteins called sulfolobicins. These antimicrobial proteins inhibit the growth of closely related species. Here we report the identification of the sulfolobicin-encoding genes in S. acidocaldarius. The active sulfolobicin comprises two proteins that are equipped with a classical signal sequence. These proteins are secreted by the cells and found to be membrane vesicle associated. Gene inactivation studies demonstrate that both proteins are required for the bacteriostatic antimicrobial activity. Sulfolobicins constitute a novel class of antimicrobial proteins without detectable homology to any other protein.

  14. Mass spectrometry of membrane proteins: a focus on aquaporins.

    PubMed

    Schey, Kevin L; Grey, Angus C; Nicklay, Joshua J

    2013-06-04

    Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.

  15. Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria.

    PubMed

    Warimwe, George M; Abdi, Abdirahman I; Muthui, Michelle; Fegan, Gregory; Musyoki, Jennifer N; Marsh, Kevin; Bull, Peter C

    2016-05-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.

  16. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    PubMed Central

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  17. Reconstitution of the membrane protein OmpF into biomimetic block copolymer-phospholipid hybrid membranes.

    PubMed

    Bieligmeyer, Matthias; Artukovic, Franjo; Nussberger, Stephan; Hirth, Thomas; Schiestel, Thomas; Müller, Michaela

    2016-01-01

    Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness.

  18. Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions

    PubMed Central

    Zilly, Felipe E; Halemani, Nagaraj D; Walrafen, David; Spitta, Luis; Schreiber, Arne; Jahn, Reinhard; Lang, Thorsten

    2011-01-01

    Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid–lipid interactions, lipid–protein interactions and protein–protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca2+ in membrane protein organization. We find that Ca2+ at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca2+ influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca2+ strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes. PMID:21364530

  19. Membrane curvature and its generation by BAR proteins

    PubMed Central

    Mim, Carsten; Unger, Vinzenz M

    2012-01-01

    Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the bin/amphiphysin/rvs domain (BAR) proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR-domain proteins sense, stabilize and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent. PMID:23058040

  20. Abnormal membrane protein methylation and merocyanine 540 fluorescence in sickle erythrocyte membranes.

    PubMed

    Manna, C; Hermanowicz, N; Ro, J Y; Neilan, B; Glushko, V; Kim, S

    1984-06-01

    Sickle cell erythrocytes exhibit reduced carboxyl methylation of membrane proteins compared to normal erythrocytes. This altered methylation in sickle membrane proteins is also observable when extracted membranes, both intact and alkali treated, were used as substrates for the homologous protein methylase II (S-adenosylmethionine:protein-carboxyl O-methyltransferase, EC. 2.1.1.24). However, when glycophorin A, one of the major methyl acceptors in both membranes, was extracted by lithium diiodosalicylate and used as the methyl acceptor, the proteins from both membranes were methylated equally, suggesting an involvement of membrane structure in membrane-bound protein methylation. Merocyanine 540 (MC-540), a fluorescent probe, was used to determine if the membranes differed in organization. Incubation of both normal and sickle erythrocytes membranes with MC-540 produced a marked increase in extrinsic fluorescence, reflecting a relatively nonpolar environment for the dye bound to the membranes. The fluorescence from sickle cell ghosts was only 87% as intense as that from normal ghosts, while the actual amount of MC-540 associated with sickle cell membranes was only 62% of normal. These data suggest that differences exist in the distribution of surface charges on these plasma membranes. These results are consistent with the hypothesis that abnormal levels of membrane protein methylation observed in sickle erythrocytes may be a result of abnormal membrane organization characteristic to sickle cell anemia.

  1. The PURE system for the cell-free synthesis of membrane proteins.

    PubMed

    Kuruma, Yutetsu; Ueda, Takuya

    2015-09-01

    Cell-free gene expression systems are biotechnological tools for the in vitro production of proteins of interest. The addition of membrane vesicles (liposomes) enables the production of membrane proteins, including those in large-molecular-weight complexes, such as the SecYEG translocon or ATP synthase. Here we describe a protocol for the cell-free synthesis of membrane proteins using the protein synthesis using recombinant elements (PURE) system, and for subsequent quantification of products and analyses of membrane localization efficiency, product orientation in the membrane and complex formation in the membrane. In addition, measurements of ATP synthase activity are used as an example to demonstrate the functional nature of the cell-free synthesized proteins. This protocol allows the rapid production and the detailed analysis of membrane proteins, and the complete process from template DNA preparation to activity measurement can be accomplished within 1 d. In contrast to alternative methods using living cells, this protocol can also help to prevent the difficulties in membrane protein purification and the risks of protein aggregation during reconstitution into lipid membranes.

  2. Purification of basolateral integral membrane proteins by cationic colloidal silica-based apical membrane subtraction.

    PubMed

    Goode, Robert J A; Simpson, Richard J

    2009-01-01

    Epithelial cell polarity mediates many essential biological functions and perturbation of the apical/basolateral divide is a hallmark of epithelial to mesenchymal transition in carcinoma. Therefore, correct targeting of proteins to the apical and basolateral surfaces is essential to proper epithelial cell function. However, proteomic characterisation of apical/basolateral sorting has been largely ignored, due to ineffectual separation techniques and contamination of plasma-membrane preparations with housekeeping proteins. Here we describe a method that strips the apical membrane from the adherent cells and releases the intracellular contents, thereby leaving the basolateral membrane available for stringent washes and collection. Analysis of the basolateral membrane of an adherent colon adenocarcinoma cell line resulted in 66% of identified proteins being integral membrane proteins, which possessed either a transmembrane domain or lipid modification, including 35 CD antigens. Based on the abundance of peptides from basolateral marker proteins, this method efficiently captures basolateral integral membrane proteins, with minimal contamination from other membranes and basic proteins.

  3. Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I.

    PubMed

    Stroud, David A; Formosa, Luke E; Wijeyeratne, Xiaonan W; Nguyen, Thanh N; Ryan, Michael T

    2013-01-18

    Transcription activator-like effector nucleases (TALENs) represent a promising approach for targeted knock-out of genes in cultured human cells. We used TALEN-technology to knock out the nuclear gene encoding NDUFA9, a subunit of mitochondrial respiratory chain complex I in HEK293T cells. Screening for the knock-out revealed a mixture of NDUFA9 cell clones that harbored partial deletions of the mitochondrial N-terminal targeting signal but were still capable of import. A cell line lacking functional copies of both NDUFA9 alleles resulted in a loss of NDUFA9 protein expression, impaired assembly of complex I, and cells incapable of growth in galactose medium. Cells lacking NDUFA9 contained a complex I subcomplex consisting of membrane arm subunits but not marker subunits of the matrix arm. Re-expression of NDUFA9 restored the defects in complex I assembly. We conclude that NDUFA9 is involved in stabilizing the junction between membrane and matrix arms of complex I, a late assembly step critical for complex I biogenesis and activity.

  4. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    PubMed

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  5. Identification of Yeast Genes Involved in K+ Homeostasis: Loss of Membrane Traffic Genes Affects K+ Uptake

    PubMed Central

    Fell, Gillian L.; Munson, Amanda M.; Croston, Merriah A.; Rosenwald, Anne G.

    2011-01-01

    Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K+ homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K+ homolog, 86Rb+. Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K+ influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K+ homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1. PMID:22384317

  6. Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake.

    PubMed

    Fell, Gillian L; Munson, Amanda M; Croston, Merriah A; Rosenwald, Anne G

    2011-06-01

    Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K(+) homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K(+) homolog, (86)Rb(+). Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K(+) influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K(+) homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1.

  7. Membrane shape instabilities induced by BAR domain proteins

    NASA Astrophysics Data System (ADS)

    Baumgart, Tobias

    2014-03-01

    Membrane curvature has developed into a forefront of membrane biophysics. Numerous proteins involved in membrane curvature sensing and membrane curvature generation have recently been discovered, including proteins containing the crescent-shaped BAR domain as membrane binding and shaping module. Accordingly, the structure determination of these proteins and their multimeric complexes is increasingly well-understood. Substantially less understood, however, are thermodynamic and kinetic aspects and the detailed mechanisms of how these proteins interact with membranes in a curvature-dependent manner. New experimental approaches need to be combined with established techniques to be able to fill in these missing details. Here we use model membrane systems in combination with a variety of biophysical techniques to characterize mechanistic aspects of BAR domain protein function. This includes a characterization of membrane curvature sensing and membrane generation. We also establish kinetic and thermodynamic aspects of BAR protein dimerization in solution, and investigate kinetic aspects of membrane binding. We present two new approaches to investigate membrane shape instabilities and demonstrate that membrane shape instabilities can be controlled by protein binding and lateral membrane tension. This work is supported through NIH grant GM-097552 and NSF grant CBET-1053857.

  8. Can proteins be intrinsically disordered inside a membrane?

    PubMed Central

    Kjaergaard, Magnus

    2015-01-01

    Intrinsically disorder has evolved in many soluble proteins because it confers a unique set of functional advantages. In contrast, the functions of membrane proteins are largely understood in terms of well-defined structures. This raises the question: Why would the evolutionary pressures that select for disorder leave membrane proteins untouched. In this hypothesis piece, I argue that intrinsic disorder may exist in membrane embedded proteins, but that it will take a different form due to the different environment. Disordered membrane proteins are thus likely to have fully formed secondary structure, but little tertiary structure. Furthermore, the sequence signature for disorder in membrane proteins is likely to be reversed; so disordered proteins are more hydrophobic than their folded counterparts. At present it is impossible to tell how common this type of disordered membrane protein is.

  9. Mass Spectrometry of Membrane Proteins: A Focus on Aquaporins

    PubMed Central

    Schey, Kevin L.; Grey, Angus C.; Nicklay, Joshua J.

    2015-01-01

    Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein–protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein–protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins. PMID:23394619

  10. A Prediction Model for Membrane Proteins Using Moments Based Features

    PubMed Central

    Butt, Ahmad Hassan; Khan, Sher Afzal; Jamil, Hamza; Rasool, Nouman; Khan, Yaser Daanial

    2016-01-01

    The most expedient unit of the human body is its cell. Encapsulated within the cell are many infinitesimal entities and molecules which are protected by a cell membrane. The proteins that are associated with this lipid based bilayer cell membrane are known as membrane proteins and are considered to play a significant role. These membrane proteins exhibit their effect in cellular activities inside and outside of the cell. According to the scientists in pharmaceutical organizations, these membrane proteins perform key task in drug interactions. In this study, a technique is presented that is based on various computationally intelligent methods used for the prediction of membrane protein without the experimental use of mass spectrometry. Statistical moments were used to extract features and furthermore a Multilayer Neural Network was trained using backpropagation for the prediction of membrane proteins. Results show that the proposed technique performs better than existing methodologies. PMID:26966690

  11. Durable vesicles for reconstitution of membrane proteins in biotechnology

    PubMed Central

    Khan, Sanobar; Muench, Stephen P.; Jeuken, Lars J.C.

    2017-01-01

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. PMID:28202656

  12. Charged ultrafiltration membranes increase the selectivity of whey protein separations.

    PubMed

    Bhushan, S; Etzel, M R

    2009-04-01

    Ultrafiltration is widely used to concentrate proteins, but fractionation of one protein from another is much less common. This study examined the use of positively charged membranes to increase the selectivity of ultrafiltration and allow the fractionation of proteins from cheese whey. By adding a positive charge to ultrafiltration membranes, and adjusting the solution pH, it was possible to permeate proteins having little or no charge, such as glycomacropeptide, and retain proteins having a positive charge. Placing a charge on the membrane increased the selectivity by over 600% compared to using an uncharged membrane. The data were fit using the stagnant film model that relates the observed sieving coefficient to membrane parameters such as the flux, mass transfer coefficient, and membrane Peclet number. The model was a useful tool for data analysis and for the scale up of membrane separations for whey protein fractionation.

  13. Effects of Membrane Charge and Order on Membrane Binding of the Retroviral Structural Protein Gag

    PubMed Central

    Wen, Yi; Dick, Robert A.

    2016-01-01

    ABSTRACT The retroviral structural protein Gag binds to the inner leaflet of the plasma membrane (PM), and many cellular proteins do so as well. We used Rous sarcoma virus (RSV) Gag together with membrane sensors to study the principles governing peripheral protein membrane binding, including electrostatics, specific recognition of phospholipid headgroups, sensitivity to phospholipid acyl chain compositions, preference for membrane order, and protein multimerization. We used an in vitro liposome-pelleting assay to test protein membrane binding properties of Gag, the well-characterized MARCKS peptide, a series of fluorescent electrostatic sensor proteins (mNG-KRn), and the specific phosphatidylserine (PS) binding protein Evectin2. RSV Gag and mNG-KRn bound well to membranes with saturated and unsaturated acyl chains, whereas the MARCKS peptide and Evectin2 preferentially bound to membranes with unsaturated acyl chains. To further discriminate whether the primary driving force for Gag membrane binding is electrostatic interactions or preference for membrane order, we measured protein binding to giant unilamellar vesicles (GUVs) containing the same PS concentration in both disordered (Ld) and ordered (Lo) phases. RSV Gag and mNG-KRn membrane association followed membrane charge, independent of membrane order. Consistent with pelleting data, the MARCKS peptide showed preference for the Ld domain. Surprisingly, the PS sensor Evectin2 bound to the PS-rich Ld domain with 10-fold greater affinity than to the PS-rich Lo domain. In summary, we found that RSV Gag shows no preference for membrane order, while proteins with reported membrane-penetrating domains show preference for disordered membranes. IMPORTANCE Retroviral particles assemble on the PM and bud from infected cells. Our understanding of how Gag interacts with the PM and how different membrane properties contribute to overall Gag assembly is incomplete. This study examined how membrane charge and membrane order

  14. Role of membrane contact sites in protein import into mitochondria.

    PubMed

    Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus

    2015-03-01

    Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.

  15. Dynamic membrane protein topological switching upon changes in phospholipid environment

    PubMed Central

    Vitrac, Heidi; MacLean, David M.; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2015-01-01

    A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids. PMID:26512118

  16. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

    PubMed Central

    De Marothy, Minttu T; Elofsson, Arne

    2015-01-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment. PMID:25970811

  17. Induction of the lac carrier and an associated membrane protein in Escherichia coli

    SciTech Connect

    Lagarias, D.M.

    1985-01-01

    Induction of the lac operon in wild type Escherichia coli strains results in synthesis of a 16 kilodalton inner membrane protein in addition to the known products of the lacZ, lacY and lacA genes. Cells carrying the lacY gene on a plasmid over produce this 16 kilodalton polypeptide as well as the Lac carrier, the membrane protein product of the lacY gene. However, (/sup 35/S)methionine labeling of minicells carrying the lacY plasmid shows that the 16 kDa protein is not synthesized from the plasmid DNA. The 16 kDa protein was purified and partially characterized. It is an acidic membrane protein of apparent molecular weight 15,800 whose amino terminal sequence (NH/sub 2/-Met-Arg-Asn-Phe-Asp-Leu-) does not correspond to any nucleotide sequence known in lac operon DNA. Using antibody prepared to the purified 16 kDa protein, a quantitative analysis of conditions under which this protein is made was accomplished, and reveals that the amount of 16 kDa protein which appears in the membrane is proportional to lac operon expression. Hybridization of a synthetic oligonucleotide probe complementary to the 5' end of 16 kDa protein mRNA shows that its synthesis is regulated at the level of transcription. A description of attempts to clone this gene is given. Possible functional roles for the 16 kDa protein are discussed.

  18. Mapping the yeast host cell response to recombinant membrane protein production: relieving the biological bottlenecks.

    PubMed

    Ashe, Mark P; Bill, Roslyn M

    2011-06-01

    Understanding the structures and functions of membrane proteins is an active area of research within bioscience. Membrane proteins are key players in essential cellular processes such as the uptake of nutrients, the export of waste products, and the way in which cells communicate with their environment. It is therefore not surprising that membrane proteins are targeted by over half of all prescription drugs. Since most membrane proteins are not abundant in their native membranes, it is necessary to produce them in recombinant host cells to enable further structural and functional studies. Unfortunately, achieving the required yields of functional recombinant membrane proteins is still a bottleneck in contemporary bioscience. This has highlighted the need for defined and rational optimization strategies based upon experimental observation rather than relying on trial and error. We have published a transcriptome and subsequent genetic analysis that has identified genes implicated in high-yielding yeast cells. These results have highlighted a role for alterations to a cell's protein synthetic capacity in the production of high yields of recombinant membrane protein: paradoxically, reduced protein synthesis favors higher yields. These results highlight a potential bottleneck at the protein folding or translocation stage of protein production.

  19. Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda

    PubMed Central

    Peng, Bo; Wang, Chao; Li, Hui; Su, Yu-bin; Ye, Jin-zhou; Yang, Man-jun; Jiang, Ming; Peng, Xuan-xian

    2017-01-01

    Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication. PMID:28210241

  20. Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda.

    PubMed

    Peng, Bo; Wang, Chao; Li, Hui; Su, Yu-Bin; Ye, Jin-Zhou; Yang, Man-Jun; Jiang, Ming; Peng, Xuan-Xian

    2017-01-01

    Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication.

  1. Membrane channel gene expression in human costal and articular chondrocytes

    PubMed Central

    Asmar, A.; Barrett-Jolley, R.; Werner, A.; Kelly, R.; Stacey, M.

    2016-01-01

    ABSTRACT Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  2. Fluctuating hydrodynamics of multicomponent membranes with embedded proteins

    SciTech Connect

    Camley, Brian A.; Brown, Frank L. H.

    2014-08-21

    A simulation method for the dynamics of inhomogeneous lipid bilayer membranes is presented. The membrane is treated using stochastic Saffman-Delbrück hydrodynamics, coupled to a phase-field description of lipid composition and discrete membrane proteins. Multiple applications are considered to validate and parameterize the model. The dynamics of membrane composition fluctuations above the critical point and phase separation dynamics below the critical point are studied in some detail, including the effects of adding proteins to the mixture.

  3. Fluctuating hydrodynamics of multicomponent membranes with embedded proteins.

    PubMed

    Camley, Brian A; Brown, Frank L H

    2014-08-21

    A simulation method for the dynamics of inhomogeneous lipid bilayer membranes is presented. The membrane is treated using stochastic Saffman-Delbrück hydrodynamics, coupled to a phase-field description of lipid composition and discrete membrane proteins. Multiple applications are considered to validate and parameterize the model. The dynamics of membrane composition fluctuations above the critical point and phase separation dynamics below the critical point are studied in some detail, including the effects of adding proteins to the mixture.

  4. Continuum electromechanical modeling of protein-membrane interactions.

    PubMed

    Zhou, Y C; Lu, Benzhuo; Gorfe, Alemayehu A

    2010-10-01

    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.

  5. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces.

    PubMed

    Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E

    2015-04-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.

  6. A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translation

    PubMed Central

    1991-01-01

    The immediate environment of nascent membrane proteins undergoing integration into the ER membrane was investigated by photocrosslinking. Nascent polypeptides of different lengths, each containing a single IgM transmembrane sequence that functions either as a stop-transfer or a signal-anchor sequence, were synthesized by in vitro translation of truncated mRNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)- Lys-tRNA, signal recognition particle, and microsomal membranes. This yielded nascent chains with photoreactive probes at one end of the transmembrane sequence where two lysine residues are located. When irradiated, these nascent chains reacted covalently with several ER proteins. One prominent crosslinking target was a glycoprotein similar in size to a protein termed mp39, shown previously to be situated adjacent to a secretory protein during its translocation across the ER membrane (Krieg, U. C., A. E. Johnson, and P. Walter. 1989. J. Cell Biol. 109:2033-2043; Wiedmann, M., D. Goerlich, E. Hartmann, T. V. Kurzchalia, and T. A. Rapoport. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 257:263-268) and likely to be identical to a protein previously designated the signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature (Lond.). 328:830-833). Changing the orientation of the transmembrane domain in the bilayer, or making the transmembrane domain the first topogenic sequence in the nascent chain instead of the second, did not significantly alter the identities of the ER proteins that were the primary crosslinking targets. Furthermore, the nascent chains crosslinked to the mp39-like glycoprotein and other microsomal proteins even after the cytoplasmic tail of the nascent chain had been lengthened by nearly 100 amino acids beyond the stop-transfer sequence. Yet when the nascent chain was allowed to terminate normally, the major photocrosslinks were no longer observed, including in particular that to the mp39-like

  7. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    PubMed

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  8. Membrane proteins, lipids and detergents: not just a soap opera.

    PubMed

    Seddon, Annela M; Curnow, Paul; Booth, Paula J

    2004-11-03

    Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.

  9. Phase separation in the isolation and purification of membrane proteins.

    PubMed

    Arnold, Thomas; Linke, Dirk

    2007-10-01

    Phase separation is a simple, efficient, and cheap method to purify and concentrate detergent-solubilized membrane proteins. In spite of this, phase separation is not widely used or even known among membrane protein scientists, and ready-to-use protocols are available for only relatively few detergent/membrane protein combinations. Here, we summarize the physical and chemical parameters that influence the phase separation behavior of detergents commonly used for membrane protein studies. Examples for the successful purification of membrane proteins using this method with different classes of detergents are provided. As the choice of the detergent is critical in many downstream applications (e.g., membrane protein crystallization or functional assays), we discuss how new phase separation protocols can be developed for a given detergent buffer system.

  10. A novel lipoprotein nanoparticle system for membrane proteins

    PubMed Central

    Frauenfeld, Jens; Löving, Robin; Armache, Jean-Paul; Sonnen, Andreas; Guettou, Fatma; Moberg, Per; Zhu, Lin; Jegerschöld, Caroline; Flayhan, Ali; Briggs, John A.G.; Garoff, Henrik; Löw, Christian; Cheng, Yifan; Nordlund, Pär

    2016-01-01

    Membrane proteins are of outstanding importance in biology, drug discovery and vaccination. A common limiting factor in research and applications involving membrane proteins is the ability to solubilize and stabilize membrane proteins. Although detergents represent the major means for solubilizing membrane proteins, they are often associated with protein instability and poor applicability in structural and biophysical studies. Here, we present a novel lipoprotein nanoparticle system that allows for the reconstitution of membrane proteins into a lipid environment that is stabilized by a scaffold of Saposin proteins. We showcase the applicability of the method on two purified membrane protein complexes as well as the direct solubilization and nanoparticle-incorporation of a viral membrane protein complex from the virus membrane. We also demonstrate that this lipid nanoparticle methodology facilitates high-resolution structural studies of membrane proteins in a lipid environment by single-particle electron cryo-microscopy (cryo-EM) and allows for the stabilization of the HIV-envelope glycoprotein in a functional state. PMID:26950744

  11. Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function.

    PubMed

    Kim, Sungsu; Naylor, Sarah A; DiAntonio, Aaron

    2012-05-01

    Autophagy is a self-degradative process in which cellular material is enclosed within autophagosomes and trafficked to lysosomes for degradation. Autophagosomal biogenesis is well described; however mechanisms controlling the growth and ultimate size of autophagosomes are unclear. Here we demonstrate that the Drosophila membrane protein Ema is required for the growth of autophagosomes. In an ema mutant, autophagosomes form in response to starvation and developmental cues, and these autophagosomes can mature into autolysosomes; however the autophagosomes are very small, and autophagy is impaired. In fat body cells, Ema localizes to the Golgi complex and is recruited to the membrane of autophagosomes in response to starvation. The Drosophila Golgi protein Lva also is recruited to the periphery of autophagosomes in response to starvation, and this recruitment requires ema. Therefore, we propose that Golgi is a membrane source for autophagosomal growth and that Ema facilitates this process. Clec16A, the human ortholog of Ema, is a candidate autoimmune susceptibility locus. Expression of Clec16A can rescue the autophagosome size defect in the ema mutant, suggesting that regulation of autophagosome morphogenesis may be a fundamental function of this gene family.

  12. Surfactant-free purification of membrane proteins with intact native membrane environment.

    PubMed

    Jamshad, Mohammed; Lin, Yu-Pin; Knowles, Timothy J; Parslow, Rosemary A; Harris, Craig; Wheatley, Mark; Poyner, David R; Bill, Roslyn M; Thomas, Owen R T; Overduin, Michael; Dafforn, Tim R

    2011-06-01

    In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10 nm disc-like structure ideally suited to purification and further biochemical study.

  13. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    PubMed

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein

  14. Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development

    PubMed Central

    Calvo-Garrido, Javier; Carilla-Latorre, Sergio; Lázaro-Diéguez, Francisco; Egea, Gustavo

    2008-01-01

    Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised. PMID:18550798

  15. Chitosan-based membrane chromatography for protein adsorption and separation.

    PubMed

    Liu, Yezhuo; Feng, Zhicheng; Shao, Zhengzhong; Chen, Xin

    2012-08-01

    A chitosan-based membrane chromatography was set up by using natural chitosan/carboxymethylchitosan (CS/CMCS) blend membrane as the matrix. The dynamic adsorption property for protein (lysozyme as model protein) was detailed discussed with the change in pore size of the membrane, the flow rate and the initial concentration of the feed solution, and the layer of membrane in membrane stack. The best dynamic adsorption capacity of lysozyme on the CS/CMCS membrane chromatography was found to be 15.3mg/mL under the optimal flow conditions. Moreover, the CS/CMCS membrane chromatography exhibited good repeatability and reusability with the desorption efficiency of ~90%. As an application, lysozyme and ovalbumin were successfully separated from their binary mixture through the CS/CMCS membrane chromatography. This implies that such a natural chitosan-based membrane chromatography may have great potential on the bioseparation field in the future.

  16. An Integrated Framework Advancing Membrane Protein Modeling and Design

    PubMed Central

    Weitzner, Brian D.; Duran, Amanda M.; Tilley, Drew C.; Elazar, Assaf; Gray, Jeffrey J.

    2015-01-01

    Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167

  17. Simple model of membrane proteins including solvent.

    PubMed

    Pagan, D L; Shiryayev, A; Connor, T P; Gunton, J D

    2006-05-14

    We report a numerical simulation for the phase diagram of a simple two-dimensional model, similar to the one proposed by Noro and Frenkel [J. Chem. Phys. 114, 2477 (2001)] for membrane proteins, but one that includes the role of the solvent. We first use Gibbs ensemble Monte Carlo simulations to determine the phase behavior of particles interacting via a square-well potential in two dimensions for various values of the interaction range. A phenomenological model for the solute-solvent interactions is then studied to understand how the fluid-fluid coexistence curve is modified by solute-solvent interactions. It is shown that such a model can yield systems with liquid-liquid phase separation curves that have both upper and lower critical points, as well as closed loop phase diagrams, as is the case with the corresponding three-dimensional model.

  18. Detergent-Specific Membrane Protein Crystallization Screens

    NASA Technical Reports Server (NTRS)

    Wiener, Michael

    2007-01-01

    A suite of reagents has been developed for three-dimensional crystallization of integral membranes present in solution as protein-detergent complexes (PDCs). The compositions of these reagents have been determined in part by proximity to the phase boundaries (lower consolute boundaries) of the detergents present in the PDCs. The acquisition of some of the requisite phase-boundary data and the preliminary design of several of the detergent- specific screens was supported by a NASA contract. At the time of expiration of the contract, a partial set of preliminary screens had been developed. This work has since been extended under non-NASA sponsorship, leading to near completion of a set of 20 to 30 different and unique detergent- specific 96-condition screens.

  19. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.

    PubMed

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra

    2014-10-21

    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  20. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  1. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  2. The Use of Detergents to Purify Membrane Proteins.

    PubMed

    Orwick-Rydmark, Marcella; Arnold, Thomas; Linke, Dirk

    2016-04-01

    Extraction of membrane proteins from biological membranes is usually accomplished with the help of detergents. This unit describes the use of detergents to solubilize and purify membrane proteins. The chemical and physical properties of the different classes of detergents typically used with biological samples are discussed. A separate section addresses the compatibility of detergents with applications downstream of the membrane protein purification process, such as optical spectroscopy, mass spectrometry, protein crystallography, biomolecular NMR, or electron microscopy. A brief summary of alternative membrane protein solubilizing and stabilizing systems is also included. Protocols in this unit include the isolation and solubilization of biological membranes and phase separation; support protocols for detergent removal, detergent exchange, and the determination of critical micelle concentration using different methods are also included.

  3. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic. PMID:11023883

  4. The human platelet membrane proteome reveals several new potential membrane proteins.

    PubMed

    Moebius, Jan; Zahedi, René Peiman; Lewandrowski, Urs; Berger, Claudia; Walter, Ulrich; Sickmann, Albert

    2005-11-01

    We present the first focused proteome study on human platelet membranes. Due to the removal of highly abundant cytoskeletal proteins a wide spectrum of known platelet membrane proteins and several new and hypothetical proteins were accessible. In contrast to other proteome studies we focused on prefractionation and purification of membranes from human platelets according to published protocols to reduce sample complexity and enrich interesting membrane proteins. Subsequently protein separation by common one-dimensional SDS-PAGE as well as the combined benzyldimethyl-n-hexadecylammonium chloride/SDS separation technique was performed prior to mass spectrometry analysis by nano-LC-ESI-MS/MS. We demonstrate that the application of both separation systems in parallel is required for maximization of protein tagging out of a complex sample. Furthermore the identification of several potential membrane proteins in human platelets yields new potential targets in functional platelet research.

  5. Bilayer-thickness-mediated interactions between integral membrane proteins.

    PubMed

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  6. Discriminating lysosomal membrane protein types using dynamic neural network.

    PubMed

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  7. Bacteriophage membrane protein P9 as a fusion partner for the efficient expression of membrane proteins in Escherichia coli.

    PubMed

    Jung, Yuna; Jung, Hyeim; Lim, Dongbin

    2015-12-01

    Despite their important roles and economic values, studies of membrane proteins have been hampered by the difficulties associated with obtaining sufficient amounts of protein. Here, we report a novel membrane protein expression system that uses the major envelope protein (P9) of phage φ6 as an N-terminal fusion partner. Phage membrane protein P9 facilitated the synthesis of target proteins and their integration into the Escherichia coli cell membrane. This system was used to produce various multi-pass transmembrane proteins, including G-protein-coupled receptors, transporters, and ion channels of human origin. Green fluorescent protein fusion was used to confirm the correct folding of the expressed proteins. Of the 14 membrane proteins tested, eight were highly expressed, three were moderately expressed, and three were barely expressed in E. coli. Seven of the eight highly expressed proteins could be purified after extraction with the mild detergent lauryldimethylamine-oxide. Although a few proteins have previously been developed as fusion partners to augment membrane protein production, we believe that the major envelope protein P9 described here is better suited to the efficient expression of eukaryotic transmembrane proteins in E. coli.

  8. Protein Array-Based Detection of Proteins in Kidney Tissues from Patients with Membranous Nephropathy

    PubMed Central

    Lu, Yang; Fan, Meng

    2017-01-01

    Membranous nephropathy (MN) is an autoimmune inflammatory disease in which proteins related with plenty of biological processes play an important role. However, the role of these proteins in the pathogenesis of MN is still unclear. This study aimed to screen differential proteins in kidney tissue samples from MN patients by using protein arrays and determine the pathways involved in the pathogenesis of MN. This study first tested a quantitative protein array (QAH-INF-3) and two semiquantitative protein arrays (L-493 and L-507) with normal renal tissue and identified L-493 as the most appropriate assay to compare protein levels between MN tissues and normal control tissues. The L-493 array identified 66 differentially expressed proteins (DEPs) that may be associated with MN. The gene oncology (GO) and protein-protein interaction (PPI) analyses revealed several processes potentially involved in MN, including extracellular matrix disassembly and organization, cell adhesion, cell-cell signaling, cellular protein metabolic process, and immune response (P < 0.05). We suggest that these different pathways work together via protein signaling and result in the pathogenesis and progression of MN. PMID:28337458

  9. Construction of a synthetic messenger RNA encoding a membrane protein

    PubMed Central

    1983-01-01

    We have synthesized microgram quantities of a functional eucaryotic mRNA by in vitro transcription. For this purpose, we constructed a plasmid in which the Escherichia coli lactose promoter was 5' to the vesicular stomatitis virus (VSV) G protein gene (Rose, J. K., and C. J. Gallione, 1981, J. Virol., 39:519-528). This DNA served as the template in an in vitro transcription reaction utilizing E. coli RNA polymerase. The RNA product was capped using the vaccinia guanylyltransferase. A typical preparation of the synthetic G mRNA was equivalent to the amount of G mRNA that can be isolated from approximately 10(8) VSV- infected cells. This synthetic mRNA was translated by a wheat germ extract in the presence of microsomes, producing a polypeptide that was indistinguishable from G protein in its size, antigenicity, degree of glycosylation, and its membrane insertion. This technique should aid in identifying features needed by proteins for insertion into membranes. PMID:6341380

  10. Membrane Interacting Regions of Dengue Virus NS2A Protein

    PubMed Central

    2015-01-01

    The Dengue virus (DENV) NS2A protein, essential for viral replication, is a poorly characterized membrane protein. NS2A displays both protein/protein and membrane/protein interactions, yet neither its functions in the viral cycle nor its active regions are known with certainty. To highlight the different membrane-active regions of NS2A, we characterized the effects of peptides derived from a peptide library encompassing this protein’s full length on different membranes by measuring their membrane leakage induction and modulation of lipid phase behavior. Following this initial screening, one region, peptide dens25, had interesting effects on membranes; therefore, we sought to thoroughly characterize this region’s interaction with membranes. This peptide presents an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment. We show that dens25 strongly interacts with membranes that contain a large proportion of lipid molecules with a formal negative charge, and that this effect has a major electrostatic contribution. Considering its membrane modulating capabilities, this region might be involved in membrane rearrangements and thus be important for the viral cycle. PMID:25119664

  11. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    PubMed

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  12. Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase

    PubMed Central

    Török, Zsolt; Tsvetkova, Nelly M.; Balogh, Gábor; Horváth, Ibolya; Nagy, Enikő; Pénzes, Zoltán; Hargitai, Judit; Bensaude, Olivier; Csermely, Péter; Crowe, John H.; Maresca, Bruno; Vígh, László

    2003-01-01

    The hydroxylamine derivative bimoclomol (BM) has been shown to activate natural cytoprotective homeostatic responses by enhancing the capability of cells to cope with various pathophysiological conditions. It exerts its effect in synergy with low levels of stress to induce the synthesis of members of major stress protein families. We show here that the presence of BM does not influence protein denaturation in the cells. BM and its derivatives selectively interact with acidic lipids and modulate their thermal and dynamic properties. BM acts as a membrane fluidizer at normal temperature, but it is a highly efficient membrane stabilizer, inhibiting the bilayer–nonbilayer phase transitions during severe heat shock. We suggest that BM and the related compounds modify those domains of membrane lipids where the thermally or chemically induced perturbation of lipid phase is sensed and transduced into a cellular signal, leading to enhanced activation of heat shock genes. BM may be a prototype for clinically safe membrane-interacting drug candidates that rebalance the level and composition of heat shock proteins. PMID:12615993

  13. Characterization of the mycoplasma membrane proteins. VI. Composition and disposition of proteins in membranes from aging Mycoplasma hominis cultures.

    PubMed

    Amar, A; Rottem, S; Kahane, I; Razin, S

    1976-03-05

    Membranes of Mycoplasma hominis cells from cultures progressing from the mid to the end of the logarithmic phase of growth became richer in protein, poorer in phospholipids and cholesterol, heavier in density, and more viscous as determined by EPR. The membrane-bound ATPase activity declined steeply. Electrophoretic analysis failed to show marked changes in membrane protein composition on aging, apart from an increase in the staining intensity of one protein band (Mr approximately 130 000) concomitant with a decrease in the staining intensity of several minor protein bands of high molecular weight. To test for possible changes in the disposition of the various membrane proteins on aging of cultures, a comparison was made of the susceptibility of membrane proteins of intact cells and isolated membranes to trypsinization and lactoperoxidase-mediated iodination. The iodination values and the percent of membrane protein released by trypsinization of intact cells were similar in cells from cultures of different ages, indicating no significant changes in the organization of the proteins on the outer surface. On the other hand, trypsinization and iodination of isolated membranes were found to be most markedly affected by the culture age, indicating significant changes in the organization of the proteins on the inner membrane surface. Thus, the iodination values of isolated membranes decreased by almost two fold, while the percentage of protein released from the membrane by trypsin increased from 28% to 50% during the experimental period. It is suggested that aging in M. hominis cultures is accompanied by a continuous increase in the packing density of the protein molecules on the inner surface of the cell membrane.

  14. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol

    NASA Astrophysics Data System (ADS)

    Mitra, Kakoli; Ubarretxena-Belandia, Iban; Taguchi, Tomohiko; Warren, Graham; Engelman, Donald M.

    2004-03-01

    A biological membrane is conceptualized as a system in which membrane proteins are naturally matched to the equilibrium thickness of the lipid bilayer. Cholesterol, in addition to lipid composition, has been suggested to be a major regulator of bilayer thickness in vivo because measurements in vitro have shown that cholesterol can increase the thickness of simple phospholipid/cholesterol bilayers. Using solution x-ray scattering, we have directly measured the average bilayer thickness of exocytic pathway membranes, which contain increasing amounts of cholesterol. The bilayer thickness of membranes of the endoplasmic reticulum, the Golgi, and the basolateral and apical plasma membranes, purified from rat hepatocytes, were determined to be 37.5 ± 0.4 Å, 39.5 ± 0.4 Å, 35.6 ± 0.6 Å, and 42.5 ± 0.3 Å, respectively. After cholesterol depletion using cyclodextrins, Golgi and apical plasma membranes retained their respective bilayer thicknesses whereas the bilayer thickness of the endoplasmic reticulum and the basolateral plasma membrane decreased by 1.0 Å. Because cholesterol was shown to have a marginal effect on the thickness of these membranes, we measured whether membrane proteins could modulate thickness. Protein-depleted membranes demonstrated changes in thickness of up to 5 Å, suggesting that (i) membrane proteins rather than cholesterol modulate the average bilayer thickness of eukaryotic cell membranes, and (ii) proteins and lipids are not naturally hydrophobically matched in some biological membranes. A marked effect of membrane proteins on the thickness of Escherichia coli cytoplasmic membranes, which do not contain cholesterol, was also observed, emphasizing the generality of our findings.

  15. Toward understanding driving forces in membrane protein folding.

    PubMed

    Hong, Heedeok

    2014-12-15

    α-Helical membrane proteins are largely composed of nonpolar residues that are embedded in the lipid bilayer. An enigma in the folding of membrane proteins is how a polypeptide chain can be condensed into the compact folded state in the environment where the hydrophobic effect cannot strongly drive molecular interactions. Probably other forces such as van der Waals packing, hydrogen bonding, and weakly polar interactions, which are regarded less important in the folding of water-soluble proteins, should emerge. However, it is not clearly understood how those individual forces operate and how they are balanced for stabilizing membrane proteins. Studying this problem is not a trivial task mainly because of the methodological challenges in controlling the reversible folding of membrane proteins in the lipid bilayer. Overcoming the hurdles, meaningful progress has been made in the field in the last few decades. This review will focus on recent studies tackling the problem of driving forces in membrane protein folding.

  16. Size-dependent protein segregation at membrane interfaces

    NASA Astrophysics Data System (ADS)

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.

    2016-07-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  17. Integrated system for extraction, purification, and digestion of membrane proteins.

    PubMed

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Deng, Chunhui; Zhang, Xiangmin

    2016-05-01

    An integrated system was developed for directly processing living cells into peptides of membrane proteins. Living cells were directly injected into the system and cracked in a capillary column by ultrasonic treatment. Owing to hydrophilicity for broken pieces of the cell membrane, the obtained membranes were retained in a well-designed bi-filter. While cytoplasm proteins were eluted from the bi-filter, the membranes were dissolved and protein released by flushing 4% SDS buffer through the bi-filter. The membrane proteins were subsequently transferred into a micro-reactor and covalently bound in the reactor for purification and digestion. As the system greatly simplified the whole pretreatment processes and minimized both sample loss and contamination, it could be used to analyze the membrane proteome samples of thousand-cell-scales with acceptable reliability and stability. We totally identified 1348 proteins from 5000 HepG2 cells, 615 of which were annotated as membrane proteins. In contrast, with conventional method, only 233 membrane proteins were identified. It is adequately demonstrated that the integrated system shows promising practicability for the membrane proteome analysis of small amount of cells.

  18. Assembly of outer-membrane proteins in bacteria and mitochondria.

    PubMed

    Tommassen, Jan

    2010-09-01

    The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic alpha-helices, integral outer-membrane proteins (OMPs) form beta-barrels. Similar beta-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these beta-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of beta-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial beta-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.

  19. The conserved carboxyl domain of MorC, an inner membrane protein of Aggregatibacter actinomycetemcomitans, is essential for membrane function.

    PubMed

    Smith, K P; Voogt, R D; Ruiz, T; Mintz, K P

    2016-02-01

    Morphogenesis protein C (MorC) of Aggregatibacter actinomycetemcomitans is important for maintaining the membrane morphology and integrity of the cell envelope of this oral pathogen. The MorC sequence and operon organization were found to be conserved in Gammaproteobacteria, based on a bioinformatic analysis of 435 sequences from representative organisms. Functional conservation of MorC was investigated using an A. actinomycetemcomitans morC mutant as a model system to express MorC homologs from four phylogenetically diverse representatives of the Gammaproteobacteria: Haemophilus influenzae, Escherichia coli, Pseudomonas aeruginosa, and Moraxella catarrhalis. The A. actinomycetemcomitans strains expressing the homologous proteins were assessed for sensitivity to bile salts, leukotoxin secretion, autoaggregation and membrane morphology. MorC from the most closely related organism (H. influenzae) was functionally identical to MorC from A. actinomycetemcomitans. However, the genes from more distantly related organisms restored some but not all A. actinomycetemcomitans mutant phenotypes. In addition, deletion mutagenesis indicated that the most conserved portion of the protein, the C-terminus DUF490 domain, was necessary to maintain the integrity of the membrane. Deletion of the last 10 amino acids of this domain of the A. actinomycetemcomitans MorC protein was sufficient to disrupt membrane stability and leukotoxin secretion. The data suggest that the MorC sequence is functionally conserved across Gammaproteobacteria and the C-terminus of the protein is essential for maintaining membrane physiology.

  20. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  1. How curvature-generating proteins build scaffolds on membrane nanotubes

    PubMed Central

    Evergren, Emma; Golushko, Ivan; Prévost, Coline; Renard, Henri-François; Johannes, Ludger; McMahon, Harvey T.; Lorman, Vladimir; Voth, Gregory A.; Bassereau, Patricia

    2016-01-01

    Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube’s length. Our work implies that the nature of local protein–membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30–40% of a tube’s surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes. PMID:27655892

  2. Probing Single Membrane Proteins by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Scheuring, S.; Sapra, K. Tanuj; Müller, Daniel J.

    In this book chapter, we describe the working principle of the atomic force microscope (AFM), followed by the applications of AFM in high-resolution imaging and single-molecule force spectroscopy of membrane proteins. In the imaging mode, AFM allows observing the assembly of membrane proteins directly in native membranes approaching a resolution of ~0.5 nm with an outstanding signal-to-noise ratio. Conformational deviations of individual membrane proteins can be observed and their functional states directly imaged. Time-lapse AFM can image membrane proteins at work. In conjunction with high- resolution imaging, the use of the AFM as a single-molecule force spectroscope (SMFS) has gained tremendous importance in recent years. This combination allows to locate the inter- and intramolecular interactions of single membrane proteins. SMFS allows characterization of interactions that guide the folding of proteins and describe the parameters that lead to their destabilization, malfunction and misfolding. Moreover, it enables to measure the interactions established by ligand- and inhibitor-binding and in membrane protein assemblies. Because of its practical use in characterizing various parameters of membrane proteins in their native environment, AFM can be aptly described as a `lab on a tip' device.

  3. Negative Ions Enhance Survival of Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Liko, Idlir; Hopper, Jonathan T. S.; Allison, Timothy M.; Benesch, Justin L. P.; Robinson, Carol V.

    2016-06-01

    Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.

  4. A sliding selectivity scale for lipid binding to membrane proteins

    PubMed Central

    Landreh, Michael; Marty, Michael T.; Gault, Joseph; Robinson, Carol V.

    2017-01-01

    Biological membranes form barriers that are essential for cellular integrity and compartmentalisation. Proteins that reside in the membrane have co-evolved with their hydrophobic lipid environment which serves as a solvent for proteins with very diverse requirements. As a result, membrane protein-lipid interactions range from completely non-selective to highly discriminating. Mass spectrometry (MS), in combination with X-ray crystallography and molecular dynamics simulations, enables us to monitor how lipids interact with intact membrane protein complexes and assess their effects on structure and dynamics. Recent studies illustrate the ability to differentiate specific lipid binding, preferential interactions with lipid subsets, and nonselective annular contacts. In this review, we consider the biological implications of different lipid-binding scenarios and propose that binding occurs on a sliding selectivity scale, in line with the view of biological membranes as facilitators of dynamic protein and lipid organization. PMID:27155089

  5. Pathogen receptor discovery with a microfluidic human membrane protein array.

    PubMed

    Glick, Yair; Ben-Ari, Ya'ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella; Gerber, Doron

    2016-04-19

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.

  6. Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins.

    PubMed

    Carroll, Joe; Fearnley, Ian M; Walker, John E

    2006-10-31

    The covalent structure of a protein is incompletely defined by its gene sequence, and mass spectrometric analysis of the intact protein is needed to detect the presence of any posttranslational modifications. Because most membrane proteins are purified in detergents that are incompatible with mass spectrometric ionization techniques, this essential measurement has not been made on many hydrophobic proteins, and so proteomic data are incomplete. We have extracted membrane proteins from bovine mitochondria and detergent-purified NADH:ubiquinone oxidoreductase (complex I) with organic solvents, fractionated the mixtures by hydrophilic interaction chromatography, and measured the molecular masses of the intact membrane proteins, including those of six subunits of complex I that are encoded in mitochondrial DNA. These measurements resolve long-standing uncertainties about the interpretation of the mitochondrial genome, and they contribute significantly to the definition of the covalent composition of complex I.

  7. BPROMPT: A consensus server for membrane protein prediction.

    PubMed

    Taylor, Paul D; Attwood, Teresa K; Flower, Darren R

    2003-07-01

    Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.

  8. Membrane-Protein Crystallography and Potentiality for Drug Design

    NASA Astrophysics Data System (ADS)

    Yamashita, Atsuko

    Structure-based drug design for membrane proteins is far behind that for soluble proteins due to difficulty in crystallographic structure determination, despite the fact that about 60% of FDA-approved drugs target membrane proteins located at the cell surface. Stable homologs for a membrane protein of interest, such as prokaryotic neurotransmitter transporter homolog LeuT, might enable cooperative analyses by crystallography and functional assays, provide useful information for functional mechanisms, and thus serve as important probes for drug design based on mechanisms as well as structures.

  9. Membrane protein production in Escherichia coli cell-free lysates.

    PubMed

    Henrich, Erik; Hein, Christopher; Dötsch, Volker; Bernhard, Frank

    2015-07-08

    Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.

  10. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  11. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts.

    PubMed

    Schleiff, Enrico; Soll, Jürgen

    2005-11-01

    Proteins are translocated across or inserted into membranes by machines that are composed of soluble and membrane-anchored subunits. The molecular action of these machines and their evolutionary origin are at present the focus of intense research. For instance, our understanding of the mode of insertion of beta-barrel membrane proteins into the outer membrane of endosymbiotically derived organelles has increased rapidly during the past few years. In particular, the identification of the Omp85/YaeT-involving pathways in Neisseria meningitidis, Escherichia coli and cyanobacteria, and homologues of Omp85/YaeT in chloroplasts and mitochondria, has provided new clues about the ancestral beta-barrel protein insertion pathway. This review focuses on recent advances in the elucidation of the evolutionarily conserved concepts that underlie the translocation and insertion of beta-barrel membrane proteins.

  12. Amyloid Aggregation and Membrane Disruption by Amyloid Proteins

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2013-03-01

    Amyloidogenesis has been the focus of intense basic and clinical research, as an increasing number of amyloidogenic proteins have been linked to common and incurable degenerative diseases including Alzheimer's, type II diabetes, and Parkinson's. Recent studies suggest that the cell toxicity is mainly due to intermediates generated during the assembly process of amyloid fibers, which have been proposed to attack cells in a variety of ways. Disruption of cell membranes is believed to be one of the key components of amyloid toxicity. However, the mechanism by which this occurs is not fully understood. Our research in this area is focused on the investigation of the early events in the aggregation and membrane disruption of amyloid proteins, Islet amyloid polypeptide protein (IAPP, also known as amylin) and amyloid-beta peptide, on the molecular level. Structural insights into the mechanisms of membrane disruption by these amyloid proteins and the role of membrane components on the membrane disruption will be presented.

  13. Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization

    PubMed Central

    Hansen, Debra T.; Robida, Mark D.; Craciunescu, Felicia M.; Loskutov, Andrey V.; Dörner, Katerina; Rodenberry, John-Charles; Wang, Xiao; Olson, Tien L.; Patel, Hetal; Fromme, Petra; Sykes, Kathryn F.

    2016-01-01

    Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins. PMID:26908053

  14. Metaproteomic analysis of biocake proteins to understand membrane fouling in a submerged membrane bioreactor.

    PubMed

    Zhou, Zhongbo; Meng, Fangang; He, Xiang; Chae, So-Ryong; An, Yujia; Jia, Xiaoshan

    2015-01-20

    Metaproteomic analyses, including two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation and matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/TOF mass spectrometer (MS) detection, were used to trace and identify biocake proteins on membranes in a bench-scale submerged membrane bioreactor (MBR). 2D-PAGE images showed that proteins in the biocake (S3) at a low transmembrane pressure (TMP) level (i.e., before the TMP jump) had larger gray intensities in the pH 5.5–7.0 region regardless of the membrane flux, similar to soluble microbial product (SMP) proteins. However, the biocake (S2 and S4) at a high TMP level (i.e., after the TMP jump) had many more proteins in the pH range of 4.0–5.5, similar to extracellular polymeric substance (EPS) proteins. Such similarities between biocake proteins and SMP or EPS proteins can be useful for tracing the sources of proteins resulting in membrane fouling. In total, 183 differentially abundant protein spots were marked in the three biocakes (S2, S3, and S4). However, only 32 protein spots co-occurred in the 2D gels of the three biocakes, indicating that membrane fluxes and TMP evolution levels had significant effects on the abundance of biocake proteins. On the basis of the MS and MS/MS data, 23 of 71 protein spots were successfully identified. Of the 23 proteins, outer membrane proteins (Omp) were a major contributor (60.87%). These Omps were mainly from potential surface colonizers such as Aeromonas, Enterobacter, Pseudomonas, and Thauera. Generally, the metaproteomic analysis is a useful alternative to trace the sources and compositions of biocake proteins on the levels of molecules and bacteria species that can provide new insight into membrane fouling.

  15. Host membrane proteins involved in the replication of tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Miyashita, Shuhei; Katoh, Etsuko; Ishikawa, Masayuki

    2012-12-01

    Eukaryotic positive-strand RNA viruses replicate their genomes in membrane-bound replication complexes composed of viral replication proteins and negative-strand RNA templates. These replication proteins are programmed to exhibit RNA polymerase and other replication-related activities only in replication complexes to avoid inducing double-stranded RNA-mediated host defenses. Host membrane components (e.g. proteins and lipids) should play important roles in the activation of replication proteins. Two host membrane proteins are components of the replication complex and activate the replication proteins of tobamoviruses. Interaction analyses using deletion mutants constructed based on structural information suggest a conformational change in replication proteins during the formation of a protein complex with RNA 5'-capping activity.

  16. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  17. Protein kinase and phosphatase activities of thylakoid membranes

    SciTech Connect

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  18. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    PubMed Central

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  19. MALDI tissue profiling of integral membrane proteins from ocular tissues.

    PubMed

    Thibault, Danielle B; Gillam, Christopher J; Grey, Angus C; Han, Jun; Schey, Kevin L

    2008-06-01

    MALDI tissue profiling and imaging have become valuable tools for rapid, direct analysis of tissues to investigate spatial distributions of proteins, potentially leading to an enhanced understanding of the molecular basis of disease. Sample preparation methods developed to date for these techniques produce protein expression profiles from predominantly hydrophilic, soluble proteins. The ability to obtain information about the spatial distribution of integral membrane proteins is critical to more fully understand their role in physiological processes, including transport, adhesion, and signaling. In this article, a sample preparation method for direct tissue profiling of integral membrane proteins is presented. Spatially resolved profiles for the abundant lens membrane proteins aquaporin 0 (AQP0) and MP20, and the retinal membrane protein opsin, were obtained using this method. MALDI tissue profiling results were validated by analysis of dissected tissue prepared by traditional membrane protein processing methods. Furthermore, direct tissue profiling of lens membrane proteins revealed age related post-translational modifications, as well as a novel modification that had not been detected using conventional tissue homogenization methods.

  20. Analysis and Characterization of Proteins Associated with Outer Membrane Vesicles Secreted by Cronobacter spp.

    PubMed Central

    Kothary, Mahendra H.; Gopinath, Gopal R.; Gangiredla, Jayanthi; Rallabhandi, Prasad V.; Harrison, Lisa M.; Yan, Qiong Q.; Chase, Hannah R.; Lee, Boram; Park, Eunbi; Yoo, YeonJoo; Chung, Taejung; Finkelstein, Samantha B.; Negrete, Flavia J.; Patel, Isha R.; Carter, Laurenda; Sathyamoorthy, Venugopal; Fanning, Séamus; Tall, Ben D.

    2017-01-01

    Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport. PMID:28232819

  1. β-Barrel membrane protein assembly by the Bam complex.

    PubMed

    Hagan, Christine L; Silhavy, Thomas J; Kahne, Daniel

    2011-01-01

    β-barrel membrane proteins perform important functions in the outer membranes (OMs) of Gram-negative bacteria and of the mitochondria and chloroplasts of eukaryotes. The protein complexes that assemble these proteins in their respective membranes have been identified and shown to contain a component that has been conserved from bacteria to humans. β-barrel proteins are handled differently from α-helical membrane proteins in the cell in order to efficiently transport them to their final locations in unfolded but folding-competent states. The mechanism by which the assembly complex then binds, folds, and inserts β-barrels into the membrane is not well understood, but recent structural, biochemical, and genetic studies have begun to elucidate elements of how the complex provides a facilitated pathway for β-barrel assembly. Ultimately, studies of the mechanism of β-barrel assembly and comparison to the better-understood process of α-helical membrane protein assembly will reveal whether there are general principles that guide the folding and insertion of all membrane proteins.

  2. Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing.

    PubMed Central

    Hincha, Dirk K

    2002-01-01

    Plants from temperate and cold climates are able to increase their freezing tolerance during exposure to low non-freezing temperatures. It has been shown that several genes are induced in a coordinated manner during this process of cold acclimation. The functional role of most of the corresponding cold-regulated proteins is not yet known. We summarize our knowledge of those cold-regulated proteins that are able to stabilize membranes during a freeze-thaw cycle. Special emphasis is placed on cryoprotectin, a lipid-transfer protein homologue that was isolated from cold-acclimated cabbage leaves and that protects isolated chloroplast thylakoid membranes from freeze-thaw damage. PMID:12171654

  3. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma.

    PubMed

    Płaszczyca, Anna; Nilsson, Jenny; Magnusson, Linda; Brosjö, Otte; Larsson, Olle; Vult von Steyern, Fredrik; Domanski, Henryk A; Lilljebjörn, Henrik; Fioretos, Thoas; Tayebwa, Johnbosco; Mandahl, Nils; Nord, Karolin H; Mertens, Fredrik

    2014-08-01

    Benign fibrous histiocytoma (BFH) is a mesenchymal tumor that most often occurs in the skin (so-called dermatofibroma), but may also appear in soft tissues (so-called deep BFH) and in the skeleton (so-called non-ossifying fibroma). The origin of BFH is unknown, and it has been questioned whether it is a true neoplasm. Chromosome banding, fluorescence in situ hybridization, single nucleotide polymorphism arrays, RNA sequencing, RT-PCR and quantitative real-time PCR were used to search for recurrent somatic mutations in a series of BFH. BFHs were found to harbor recurrent fusions of genes encoding membrane-associated proteins (podoplanin, CD63 and LAMTOR1) with genes encoding protein kinase C (PKC) isoforms PRKCB and PRKCD. PKCs are serine-threonine kinases that through their many phosphorylation targets are implicated in a variety of cellular processes, as well as tumor development. When inactive, the amino-terminal, regulatory domain of PKCs suppresses the activity of their catalytic domain. Upon activation, which requires several steps, they typically translocate to cell membranes, where they interact with different signaling pathways. The detected PDPN-PRKCB, CD63-PRKCD and LAMTOR1-PRKCD gene fusions are all predicted to result in chimeric proteins consisting of the membrane-binding part of PDPN, CD63 or LAMTOR1 and the entire catalytic domain of the PKC. This novel pathogenetic mechanism should result in constitutive kinase activity at an ectopic location. The results show that BFH indeed is a true neoplasm, and that distorted PKC activity is essential for tumorigenesis. The findings also provide means to differentiate BFH from other skin and soft tissue tumors. This article is part of a Directed Issue entitled: Rare cancers.

  4. Yeast mitochondrial fission proteins induce antagonistic Gaussian membrane curvatures to regulate apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Michelle; Hwee Lai, Ghee; Schmidt, Nathan; Xian, Wujing; Wong, Gerard C. L.

    2013-03-01

    Mitochondria form a dynamic and interconnected network, which disintegrates during apoptosis to generate numerous smaller mitochondrial fragments. This process is at present not well understood. Yeast mitochondrial fission machinery proteins, Dnm1 and Fis1, are believed to regulate programmed cell death in yeast. Yeast Dnm1 has been previously shown to promote mitochondrial fragmentation and degradation characteristic of apoptotic cells, while yeast Fis1 inhibits cell death by limiting the mitochondrial fission induced by Dnm1 [Fannjiang et al, Genes & Dev. 2004. 18: 2785-2797]. To better understand the mechanisms of these antagonistic fission proteins, we use synchrotron small angle x-ray scattering (SAXS) to investigate their interaction with model cell membranes. The relationship between each protein, Dnm1 and Fis1, and protein-induced changes in membrane curvature and topology is examined. Through the comparison of the membrane rearrangement and phase behavior induced by each protein, we will discuss their respective roles in the regulation of mitochondrial fission.

  5. Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom.

    PubMed

    Xu, Yanjie; Xia, Jixiang; Liu, Suxuan; Stein, Sam; Ramon, Cueto; Xi, Hang; Wang, Luqiao; Xiong, Xinyu; Zhang, Lixiao; He, Dingwen; Yang, William; Zhao, Xianxian; Cheng, Xiaoshu; Yang, Xiaofeng; Wang, Hong

    2017-03-01

    Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via its binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complexes and their intracellular trafficking based on protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair.

  6. Mapping of four mouse genes encoding eye lens-specific structural, gap junction, and integral membrane proteins: Cryba1 (crystallin{beta}A3/A1), Crybb2 (crystallin{beta}B2), Gja8 (MP70), and Lim2 (MP19)

    SciTech Connect

    Kerscher, S.; Boyd, Y.; Lyon, M.F.

    1995-09-20

    Four genes encoding eye lens-specific proteins, potential candidate genes for congenital cataract (CC) mutations, were mapped in the mouse genome using a panel of somatic cell hybrids and DNAs from the EUCIB (European Collaborative Interspecific Backcross). Two of them are lens fiber cell structural proteins: the Cryba1 locus encoding crystallin{beta}A3/A1 maps to chromosome 11, 2.5 {+-} 2.5 cM distal to D11Mit31, and the Crybb2 locus encoding crystallin{beta}B2 maps to chromosome 5, 9.1 {+-} 4.3 cM distal to D5Mit88. The other two genes encode lens-specific gap junction and integral membrane proteins, respectively: the Gja8 locus encoding gap junction membrane channel protein {alpha}8, also called connexin50 or MP70, maps to chromosome 3, 11.9 {+-} 5.0 cM distal to D3Mit22, and the Lim2 locus encoding lens intrinsic membrane protein 2, also call MP19, maps to chromosome 7, 2.5 {+-} 2.5 cM proximal to Ngfg. All four map positions, when compared with the corresponding positions in human, lie within known regions of conserved synteny between mouse and human chromosomes. 43 refs., 2 figs., 1 tab.

  7. Dynamic Nuclear Polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces

    PubMed Central

    Wylie, Benjamin J; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2016-01-01

    We demonstrate that dynamic nuclear polarization (DNP) of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of 6-fold for the dimeric protein. The enhancement affect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256

  8. The electrical interplay between proteins and lipids in membranes.

    PubMed

    Richens, Joanna L; Lane, Jordan S; Bramble, Jonathan P; O'Shea, Paul

    2015-09-01

    All molecular interactions that are relevant to cellular and molecular structures are electrical in nature but manifest in a rich variety of forms that each has its own range and influences on the net effect of how molecular species interact. This article outlines how electrical interactions between the protein and lipid membrane components underlie many of the activities of membrane function. Particular emphasis is placed on spatially localised behaviour in membranes involving modulation of protein activity and microdomain structure. The interactions between membrane lipids and membrane proteins together with their role within cell biology represent an enormous body of work. Broad conclusions are not easy given the complexities of the various systems and even consensus with model membrane systems containing two or three lipid types is difficult. By defining two types of broad lipid-protein interaction, respectively Type I as specific and Type II as more non-specific and focussing on the electrical interactions mostly in the extra-membrane regions it is possible to assemble broad rules or a consensus of the dominant features of the interplay between these two fundamentally important classes of membrane component. This article is part of a special issue entitled: Lipid-protein interactions.

  9. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    SciTech Connect

    Chance, S.C.

    1987-01-01

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of ({sup 3}H)thymidine or ({sup 3}H)uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both ({sup 35}S)methionine and ({sup 3}H)leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties.

  10. Genetically Encoded Protein Sensors of Membrane Potential.

    PubMed

    Storace, Douglas; Rad, Masoud Sepehri; Han, Zhou; Jin, Lei; Cohen, Lawrence B; Hughes, Thom; Baker, Bradley J; Sung, Uhna

    2015-01-01

    Organic voltage-sensitive dyes offer very high spatial and temporal resolution for imaging neuronal function. However these dyes suffer from the drawbacks of non-specificity of cell staining and low accessibility of the dye to some cell types. Further progress in imaging activity is expected from the development of genetically encoded fluorescent sensors of membrane potential. Cell type specificity of expression of these fluorescent protein (FP) voltage sensors can be obtained via several different mechanisms. One is cell type specificity of infection by individual virus subtypes. A second mechanism is specificity of promoter expression in individual cell types. A third, depends on the offspring of transgenic animals with cell type specific expression of cre recombinase mated with an animal that has the DNA for the FP voltage sensor in all of its cells but its expression is dependent on the recombinase activity. Challenges remain. First, the response time constants of many of the new FP voltage sensors are slower (2-10 ms) than those of organic dyes. This results in a relatively small fractional fluorescence change, ΔF/F, for action potentials. Second, the largest signal presently available is only ~40% for a 100 mV depolarization and many of the new probes have signals that are substantially smaller. Large signals are especially important when attempting to detect fast events because the shorter measurement interval results in a relatively small number of detected photons and therefore a relatively large shot noise (see Chap. 1). Another kind of challenge has occurred when attempts were made to transition from one species to another or from one cell type to another or from cell culture to in vivo measurements.Several laboratories have recently described a number of novel FP voltage sensors. Here we attempt to critically review the current status of these developments in terms of signal size, time course, and in vivo function.

  11. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    PubMed

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  12. Tight binding of proteins to membranes from older human cells.

    PubMed

    Truscott, Roger J W; Comte-Walters, Susana; Ablonczy, Zsolt; Schwacke, John H; Berry, Yoke; Korlimbinis, Anastasia; Friedrich, Michael G; Schey, Kevin L

    2011-12-01

    The lens is an ideal model system for the study of macromolecular aging and its consequences for cellular function, since there is no turnover of lens fibre cells. To examine biochemical processes that take place in the lens and that may also occur in other long-lived cells, membranes were isolated from defined regions of human lenses that are synthesised at different times during life, and assayed for the presence of tightly bound cytosolic proteins using quantitative iTRAQ proteomics technology. A majority of lens beta crystallins and all gamma crystallins became increasingly membrane bound with age, however, the chaperone proteins alpha A and alpha B crystallin, as well as the thermally-stable protein, βB2 crystallin, did not. Other proteins such as brain-associated signal protein 1 and paralemmin 1 became less tightly bound in the older regions of the lens. It is evident that protein-membrane interactions change significantly with age. Selected proteins that were formerly cytosolic become increasingly tightly bound to cell membranes with age and are not removed even by treatment with 7 M urea. It is likely that such processes reflect polypeptide denaturation over time and the untoward binding of proteins to membranes may alter membrane properties and contribute to impairment of communication between older cells.

  13. LdFlabarin, a New BAR Domain Membrane Protein of Leishmania Flagellum

    PubMed Central

    Thonnus, Magali; Salin, Bénédicte; Boissier, Fanny; Blancard, Corinne; Sauvanet, Cécile; Metzler, Christelle; Espiau, Benoît; Sahin, Annelise; Merlin, Gilles

    2013-01-01

    During the Leishmania life cycle, the flagellum undergoes successive assembly and disassembly of hundreds of proteins. Understanding these processes necessitates the study of individual components. Here, we investigated LdFlabarin, an uncharacterized L. donovani flagellar protein. The gene is conserved within the Leishmania genus and orthologous genes only exist in the Trypanosoma genus. LdFlabarin associates with the flagellar plasma membrane, extending from the base to the tip of the flagellum as a helicoidal structure. Site-directed mutagenesis, deletions and chimera constructs showed that LdFlabarin flagellar addressing necessitates three determinants: an N-terminal potential acylation site and a central BAR domain for membrane targeting and the C-terminal domain for flagellar specificity. In vitro, the protein spontaneously associates with liposomes, triggering tubule formation, which suggests a structural/morphogenetic function. LdFlabarin is the first characterized Leishmania BAR domain protein, and the first flagellum-specific BAR domain protein. PMID:24086735

  14. Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Engel, Andreas; Janovjak, Harald; Fotiadis, Dimtrios; Kedrov, Alexej; Cisneros, David; Müller, Daniel J.

    Single-molecule atomic force microscopy (AFM) provides novel ways to characterize the structure-function relationship of native membrane proteins. High-resolution AFM topographs allow observing the structure of single proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. We will review these feasibilities illustrating examples of membrane proteins in native and reconstituted membranes. Classification of individual topographs of single proteins allows understanding the principles of motions of their extrinsic domains, to learn about their local structural flexibilities and to find the entropy minima of certain conformations. Combined with the visualization of functionally related conformational changes these insights allow understanding why certain flexibilities are required for the protein to function and how structurally flexible regions allow certain conformational changes. Complementary to AFM imaging, single-molecule force spectroscopy (SMFS) experiments detect molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to measure interactions that stabilize secondary structures such as transmembrane α-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the locations of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes.

  15. Fully Quantified Spectral Imaging Reveals in Vivo Membrane Protein Interactions

    PubMed Central

    King, Christopher; Stoneman, Michael; Raicu, Valerica; Hristova, Kalina

    2016-01-01

    Here we introduce the Fully Quantified Spectral Imaging (FSI) method as a new tool to probe the stoichiometry and stability of protein complexes in biological membranes. The FSI method yields two dimensional membrane concentrations and FRET efficiencies in native plasma membranes. It can be used to characterize the association of membrane proteins: to differentiate between monomers, dimers, or oligomers, to produce binding (association) curves, and to measure the free energies of association in the membrane. We use the FSI method to study the lateral interactions of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a member of the receptor tyrosine kinase (RTK) superfamily, in plasma membranes, in vivo. The knowledge gained through the use of the new method challenges the current understanding of VEGFR2 signaling. PMID:26787445

  16. Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins

    PubMed Central

    Picard, Martin; Duval-Terrié, Caroline; Dé, Emmanuelle; Champeil, Philippe

    2004-01-01

    Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C10, was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrié et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca2+-dependent ATPase and Ca2+-pumping activity. We found that 18C10-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions. PMID:15459343

  17. Production of okara and soy protein concentrates using membrane technology.

    PubMed

    Vishwanathan, K H; Govindaraju, K; Singh, Vasudeva; Subramanian, R

    2011-01-01

    Microfiltration (MF) membranes with pore sizes of 200 and 450 nm and ultrafiltration (UF) membranes with molecular weight cut off of 50, 100, and 500 kDa were assessed for their ability to eliminate nonprotein substances from okara protein extract in a laboratory cross-flow membrane system. Both MF and UF improved the protein content of okara extract to a similar extent from approximately 68% to approximately 81% owing to the presence of protein in the feed leading to the formation of dynamic layer controlling the performance rather than the actual pore size of membranes. Although normalized flux in MF-450 (117 LMH/MPa) was close to UF-500 (118 LMH/MPa), the latter was selected based on higher average flux (47 LMH) offering the advantage of reduced processing time. Membrane processing of soy extract improved the protein content from 62% to 85% much closer to the target value. However, the final protein content in okara (approximately 80%) did not reach the target value (90%) owing to the greater presence of soluble fibers that were retained by the membrane. Solubility curve of membrane okara protein concentrate (MOPC) showed lower solubility than soy protein concentrate and a commercial isolate in the entire pH range. However, water absorption and fat-binding capacities of MOPC were either superior or comparable while emulsifying properties were in accordance with its solubility. The results of this study showed that okara protein concentrate (80%) could be produced using membrane technology without loss of any true proteins, thus offering value addition to okara, hitherto underutilized. Practical Application: Okara, a byproduct obtained during processing soybean for soymilk, is either underutilized or unutilized in spite of the fact that its protein quality is as good as that of soy milk and tofu. Membrane-processed protein products have been shown to possess superior functional properties compared to conventionally produced protein products. However, the

  18. Association of the Cytoplasmic Membrane Protein XpsN with the Outer Membrane Protein XpsD in the Type II Protein Secretion Apparatus of Xanthomonas campestris pv. Campestris

    PubMed Central

    Lee, Hsien-Ming; Wang, Kuan-Cheng; Liu, Yi-Ling; Yew, Hsin-Yan; Chen, Ling-Yun; Leu, Wei-Ming; Chen, David Chanhen; Hu, Nien-Tai

    2000-01-01

    An xps gene cluster composed of 11 open reading frames is required for the type II protein secretion in Xanthomonas campestris pv. campestris. Immediately upstream of the xpsD gene, which encodes an outer membrane protein that serves as the secretion channel by forming multimers, there exists an open reading frame (previously designated ORF2) that could encode a protein of 261 amino acid residues. Its N-terminal hydrophobic region is a likely membrane-anchoring sequence. Antibody raised against this protein could detect in the wild-type strain of X. campestris pv. campestris a protein band with an apparent molecular mass of 36 kDa by Western blotting. Its aberrant slow migration in sodium dodecyl sulfate-polyacrylamide gels might be due to its high proline content. We designated this protein XpsN. By constructing a mutant strain with an in-frame deletion of the chromosomal xpsN gene, we demonstrated that it is required for the secretion of extracellular enzyme by X. campestris pv. campestris. Subcellular fractionation studies indicated that the XpsN protein was tightly associated with the membrane. Sucrose gradient sedimentation followed by immunoblot analysis revealed that it primarily appeared in the cytoplasmic membrane fractions. Immune precipitation experiments indicated that the XpsN protein was coprecipitated with the XpsD protein. In addition, the XpsN protein was co-eluted with the (His)6-tagged XpsD protein from the metal affinity chromatography column. All observations suggested that the XpsN protein forms a stable complex with the XpsD protein. In addition, immune precipitation analysis of the XpsN protein with various truncated XpsD proteins revealed that the C-terminal region of the XpsD protein between residues 650 and 759 was likely to be involved in complex formation between the two. PMID:10692359

  19. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

    PubMed

    Itel, Fabian; Najer, Adrian; Palivan, Cornelia G; Meier, Wolfgang

    2015-06-10

    The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

  20. Selection for Genes Encoding Secreted Proteins and Receptors

    NASA Astrophysics Data System (ADS)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  1. Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes.

    PubMed

    Cheng, Xi; Jo, Sunhwan; Qi, Yifei; Marassi, Francesca M; Im, Wonpil

    2015-04-21

    Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys(40), residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein

  2. Overexpression of membrane proteins from higher eukaryotes in yeasts.

    PubMed

    Emmerstorfer, Anita; Wriessnegger, Tamara; Hirz, Melanie; Pichler, Harald

    2014-09-01

    Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.

  3. Architecture and Function of Mechanosensitive Membrane Protein Lattices

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-01-01

    Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function. Using the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct lattice activation barriers. Our results suggest general physical mechanisms linking protein symmetry, the lattice architecture of membrane protein clusters, and the collective function of membrane protein lattices.

  4. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species.

    PubMed Central

    Kaltenboeck, B; Kousoulas, K G; Storz, J

    1993-01-01

    DNA sequences coding for 81% of the ompA gene from 24 chlamydial strains, representing all chlamydial species, were determined from DNA amplified by polymerase chain reactions. Chlamydial strains of serovars and strains with similar chromosomal restriction fragment length polymorphism had identical ompA DNA sequences. The ompA sequences were segregated into 23 different ompA alleles and aligned with each other, and phylogenetic relationships among them were inferred by neighbor-joining and maximum parsimony analyses. The neighbor-joining method produced a single phylogram which was rooted at the branch between two major clusters. One cluster included all Chlamydia trachomatis ompA alleles (trachoma group). The second cluster was composed of three major groups of ompA alleles: psittacosis group (alleles MN, 6BC, A22/M, B577, LW508, FEPN, and GPIC), pneumonia group (Chlamydia pneumoniae AR388 with the allele KOALA), and polyarthritis group (ruminant and porcine chlamydial alleles LW613, 66P130, L71, and 1710S with propensity for polyarthritis). These groups were distinguished through specific DNA sequence signatures. Maximum parsimony analysis yielded two equally most parsimonious phylograms with topologies similar to the ompA tree of neighbor joining. Two phylograms constructed from chlamydial genomic DNA distances had topologies identical to that of the ompA phylogram with respect to branching of the chlamydial species. Human serovars of C. trachomatis with essentially identical genomes represented a single taxonomic unit, while they were divergent in the ompA tree. Consistent with the ompA phylogeny, the porcine isolate S45, previously considered to be Chlamydia psittaci, was identified as C. trachomatis through biochemical characteristics. These data demonstrate that chlamydial ompA allelic relationships, except for human serovars of C. trachomatis, are cognate with chromosomal phylogenies. Images PMID:8419295

  5. Molecular interactions between proteins and synthetic membrane polymer films

    SciTech Connect

    Pincet, F.; Perez, E.; Belfort, G.

    1995-04-01

    To help understand the effects of protein adsorption on membrane filtration performance, we have measured the molecular interactions between cellulose acetate films and two proteins with different properties (ribonuclease A and human serum albumin) with a surface force apparatus. Comparison of forces between two protein layers with those between a protein layer and a cellulose acetate (CA) film shows that, at high pH, both proteins retained their native conformation on interacting with the CA film while at the isoelectric point (pI) or below the tertiary structure of proteins was disturbed. These measurements provide the first molecular evidence that disruption of protein tertiary structure could be responsible for the reduced permeation flows observed during membrane filtration of protein solutions and suggest that operating at high pH values away from the pI of proteins will reduce such fouling. 60 refs., 9 figs., 5 tabs.

  6. Organization and dynamics of SNARE proteins in the presynaptic membrane

    PubMed Central

    Milovanovic, Dragomir; Jahn, Reinhard

    2015-01-01

    Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters. PMID:25852575

  7. Prediction of buried helices in multispan alpha helical membrane proteins.

    PubMed

    Adamian, Larisa; Liang, Jie

    2006-04-01

    Analysis of a database of structures of membrane proteins shows that membrane proteins composed of 10 or more transmembrane (TM) helices often contain buried helices that are inaccessible to phospholipids. We introduce a method for identifying TM helices that are least phospholipid accessible and for prediction of fully buried TM helices in membrane proteins from sequence information alone. Our method is based on the calculation of residue lipophilicity and evolutionary conservation. Given that the number of buried helices in a membrane protein is known, our method achieves an accuracy of 78% and a Matthew's correlation coefficient of 0.68. A server for this tool (RANTS) is available online at http://gila.bioengr.uic.edu/lab/.

  8. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    SciTech Connect

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani; Fox, Daniel A.; Sim, Adelene Y.L.; Doniach, Sebastian; Lesley, Scott A.

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based on these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.

  9. Curvature forces in membrane lipid-protein interactions.

    PubMed

    Brown, Michael F

    2012-12-11

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function.

  10. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores.

    PubMed

    Petrosyan, Rafayel; Bippes, Christian A; Walheim, Stefan; Harder, Daniel; Fotiadis, Dimitrios; Schimmel, Thomas; Alsteens, David; Müller, Daniel J

    2015-05-13

    Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.

  11. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    SciTech Connect

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-07-11

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination.

  12. Membranes: a meeting point for lipids, proteins and therapies

    PubMed Central

    Escribá, Pablo V; González-Ros, José M; Goñi, Félix M; Kinnunen, Paavo K J; Vigh, Lászlo; Sánchez-Magraner, Lissete; Fernández, Asia M; Busquets, Xavier; Horváth, Ibolya; Barceló-Coblijn, Gwendolyn

    2008-01-01

    Abstract Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy. PMID:18266954

  13. Membranes: a meeting point for lipids, proteins and therapies.

    PubMed

    Escribá, Pablo V; González-Ros, José M; Goñi, Félix M; Kinnunen, Paavo K J; Vigh, Lászlo; Sánchez-Magraner, Lissete; Fernández, Asia M; Busquets, Xavier; Horváth, Ibolya; Barceló-Coblijn, Gwendolyn

    2008-06-01

    Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.

  14. [Molecular interactions of membrane proteins and erythrocyte deformability].

    PubMed

    Boivin, P

    1984-06-01

    The structural and functional properties of the erythrocytic membrane constitute one of the essential elements of the red cell deformability. They intervene not only in the flexibility of the membrane, but also in the surface/volume relation and, through transmembrane exchanges, in the internal viscosity of the red cells. These properties depend essentially on the molecular composition of the elements which constitute the membrane, and on their interactions. The shape of the red cell and the flexibility of its membrane depend, to a great extent, on the membrane skeleton, whose main components are spectrin, actin, and protein 4.1. The spectrin basic molecule is a heterodimer, but there occur interactions between dimers in vitro as well as in vivo, which lead to the formation of tetrameric and oligomeric structures of higher complexity. Disturbances of these interactions, such as have been observed in pathological cases, lead to an instability of the membrane, a loss of membrane fragments, and a decrease in the surface/volume relation, with, as a consequence, a reduced deformability. The stability of the membrane skeleton also depends on the interactions between spectrin and protein 4.1. These interactions occur through a binding site on the beta chain of spectrin apparently close to actin and calmodulin binding sites. Other interactions occur between the hydrophobic segment of spectrin and membrane lipids. The cytoskeleton is bound to the transmembrane proteins: by ankyrin to the internal segment of protein band 3, and by protein 4.1 to a glycoprotein named glycoconnectin. There seems to exist other, more direct, lower affinity bindings between the cytoskeleton on the one hand, and band 3 and glycophorin transmembrane proteins on the other hand, whose lateral mobilities are modified when the structure of the skeleton is perturbed. The membrane proteins, which are in contact with the cytosol, interact with the cytosolic proteins, in particular with certain enzymes

  15. Subcellular localization of mammalian type II membrane proteins.

    PubMed

    Aturaliya, Rajith N; Fink, J Lynn; Davis, Melissa J; Teasdale, Melvena S; Hanson, Kelly A; Miranda, Kevin C; Forrest, Alistair R R; Grimmond, Sean M; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Teasdale, Rohan D

    2006-05-01

    Application of a computational membrane organization prediction pipeline, MemO, identified putative type II membrane proteins as proteins predicted to encode a single alpha-helical transmembrane domain (TMD) and no signal peptides. MemO was applied to RIKEN's mouse isoform protein set to identify 1436 non-overlapping genomic regions or transcriptional units (TUs), which encode exclusively type II membrane proteins. Proteins with overlapping predicted InterPro and TMDs were reviewed to discard false positive predictions resulting in a dataset comprised of 1831 transcripts in 1408 TUs. This dataset was used to develop a systematic protocol to document subcellular localization of type II membrane proteins. This approach combines mining of published literature to identify subcellular localization data and a high-throughput, polymerase chain reaction (PCR)-based approach to experimentally characterize subcellular localization. These approaches have provided localization data for 244 and 169 proteins. Type II membrane proteins are localized to all major organelle compartments; however, some biases were observed towards the early secretory pathway and punctate structures. Collectively, this study reports the subcellular localization of 26% of the defined dataset. All reported localization data are presented in the LOCATE database (http://www.locate.imb.uq.edu.au).

  16. NMR Structures of Membrane Proteins in Phospholipid Bilayers

    PubMed Central

    Radoicic, Jasmina; Lu, George J.; Opella, Stanley J.

    2014-01-01

    Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins; especially those accomplished with the proteins in phospholipid bilayer environments where they function. PMID:25032938

  17. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  18. Exceptional overproduction of a functional human membrane protein.

    PubMed

    Nyblom, Maria; Oberg, Fredrik; Lindkvist-Petersson, Karin; Hallgren, Karin; Findlay, Heather; Wikström, Jennie; Karlsson, Anders; Hansson, Orjan; Booth, Paula J; Bill, Roslyn M; Neutze, Richard; Hedfalk, Kristina

    2007-11-01

    Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization.

  19. Detergent selection for enhanced extraction of membrane proteins.

    PubMed

    Arachea, Buenafe T; Sun, Zhen; Potente, Nina; Malik, Radhika; Isailovic, Dragan; Viola, Ronald E

    2012-11-01

    Generating stable conditions for membrane proteins after extraction from their lipid bilayer environment is essential for subsequent characterization. Detergents are the most widely used means to obtain this stable environment; however, different types of membrane proteins have been found to require detergents with varying properties for optimal extraction efficiency and stability after extraction. The extraction profiles of several detergent types have been examined for membranes isolated from bacteria and yeast, and for a set of recombinant target proteins. The extraction efficiencies of these detergents increase at higher concentrations, and were shown to correlate with their respective CMC values. Two alkyl sugar detergents, octyl-β-d-glucoside (OG) and 5-cyclohexyl-1-pentyl-β-d-maltoside (Cymal-5), and a zwitterionic surfactant, N-decylphosphocholine (Fos-choline-10), were generally effective in the extraction of a broad range of membrane proteins. However, certain detergents were more effective than others in the extraction of specific classes of integral membrane proteins, offering guidelines for initial detergent selection. The differences in extraction efficiencies among this small set of detergents supports the value of detergent screening and optimization to increase the yields of targeted membrane proteins.

  20. Optimal separation of jojoba protein using membrane processes

    SciTech Connect

    Nabetani, Hiroshi; Abbott, T.P.; Kleiman, R.

    1995-05-01

    The efficiency of a pilot-scale membrane system for purifying and concentrating jojoba protein was estimated. In this system, a jojoba extract was first clarified with a microfiltration membrane. The clarified extract was diafiltrated and the protein was purified with an ultrafiltration membrane. Then the protein solution was concentrated with the ultrafiltration membrane. Permeate flux during microfiltration was essentially independent of solids concentration in the feed, in contrast with the permeate flux during ultrafiltration which was a function of protein concentration. Based on these results, a mathematical model which describes the batchwise concentration process with ultrafiltration membranes was developed. Using this model, the combination of batchwise concentration with diafiltration was optimized, and an industrial-scale process was designed. The effect of ethylenediaminetetraacetic acid (EDTA) on the performance of the membrane system was also investigated. The addition of EDTA increased the concentration of protein in the extract and improved the recovery of protein in the final products. The quality of the final product (color and solubility) was also improved. However, EDTA decreased permeate flux during ultrafiltration.

  1. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    NASA Astrophysics Data System (ADS)

    Sun, Junfen; Wu, Lishun

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  2. Escherichia coli pleiotropic mutant that reduces amounts of several periplasmic and outer membrane proteins.

    PubMed Central

    Wanner, B L; Sarthy, A; Beckwith, J

    1979-01-01

    We have isolated a mutant of Escherichia coli K-12 that is reduced from 6- to 10-fold in the amount of alkaline phosphatase found in the periplasmic space. The reduced synthesis is not due to effects at the level of transcription regulation of the phoA gene, the structural gene for the enzyme. In addition, the mutation (termed perA) responsible for this phenotype results in reduced amounts of possibly six or more other periplasmic proteins and at least three outer membrane proteins. One of the outer membrane proteins affected is protein IA (D. L. Diedrich, A. O. Summers, and C. A. Schnaitman, J. Bacteriol. 131:598-607, 1977). Although other possibilities exist, one explanation for the phenotype of the perA mutation is that it affects the cell's secretory apparatus. Images PMID:387722

  3. Determining the Topology of Membrane-Bound Proteins Using PEGylation.

    PubMed

    Howe, Vicky; Brown, Andrew J

    2017-01-01

    Biochemical methods can help elucidate the membrane topology of hydrophobic membrane proteins where X-ray crystallography is difficult or impractical, providing important structural data. Here, we describe the method of PEGylation, which uses a cysteine-reactive molecule, maleimide polyethylene glycol (mPEG), to determine the cytosolic accessibility of introduced cysteine residues. This accessibility is visualized using Western blotting to detect a band shift that indicates cysteine labeling by mPEG. Using scanning cysteine mutagenesis, followed by PEGylation, one can map the accessibility of the introduced cysteines, hence inferring the membrane topology of the protein.We used PEGylation to determine the membrane topology of the sterol regulatory domain of a cholesterol synthesis enzyme, squalene monooxygenase, identifying that it is anchored to the membrane via a re-entrant loop.

  4. Membrane protein properties revealed through data-rich electrostatics calculations

    PubMed Central

    Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael

    2015-01-01

    SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532

  5. Curvature Forces in Membrane Lipid-Protein Interactions

    PubMed Central

    Brown, Michael F.

    2012-01-01

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284

  6. Predictive energy landscapes for folding membrane protein assemblies

    NASA Astrophysics Data System (ADS)

    Truong, Ha H.; Kim, Bobby L.; Schafer, Nicholas P.; Wolynes, Peter G.

    2015-12-01

    We study the energy landscapes for membrane protein oligomerization using the Associative memory, Water mediated, Structure and Energy Model with an implicit membrane potential (AWSEM-membrane), a coarse-grained molecular dynamics model previously optimized under the assumption that the energy landscapes for folding α-helical membrane protein monomers are funneled once their native topology within the membrane is established. In this study we show that the AWSEM-membrane force field is able to sample near native binding interfaces of several oligomeric systems. By predicting candidate structures using simulated annealing, we further show that degeneracies in predicting structures of membrane protein monomers are generally resolved in the folding of the higher order assemblies as is the case in the assemblies of both nicotinic acetylcholine receptor and V-type Na+-ATPase dimers. The physics of the phenomenon resembles domain swapping, which is consistent with the landscape following the principle of minimal frustration. We revisit also the classic Khorana study of the reconstitution of bacteriorhodopsin from its fragments, which is the close analogue of the early Anfinsen experiment on globular proteins. Here, we show the retinal cofactor likely plays a major role in selecting the final functional assembly.

  7. The functions of tryptophan residues in membrane proteins

    SciTech Connect

    Schiffer, M.; Chang, C.H.; Stevens, F.J.

    1994-08-01

    Membrane proteins in general have a significantly higher Trp content than do soluble proteins. This is especially true for the M and L subunits of the photosynthetic reaction center from purple bacteria. The Trp residues are located mostly in the segments that connect the transmembrane helices. Further, they are concentrated at the periplasmic side of the complex. Within the protein subunits, many form hydrogen bonds with carbonyl oxygens of the main chain, thereby stabilizing the protein. On the surface of the molecule, they are correctly positioned to form hydrogen bonds with the lipid head groups while their hydrophobic rings are immersed in the lipid part of the bilayer. We suggest that Trp residues are involved in the translocation of protein through the membrane and that following translocation, Trp residues serve as anchors on the periplasmic side of the membrane.

  8. Atomic force microscopy and spectroscopy of native membrane proteins.

    PubMed

    Müller, Daniel J; Engel, Andreas

    2007-01-01

    Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.

  9. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  10. Isothermal titration calorimetry of membrane proteins - progress and challenges.

    PubMed

    Rajarathnam, Krishna; Rösgen, Jörg

    2014-01-01

    Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.

  11. The extracellular matrix protein WARP is a novel component of a distinct subset of basement membranes.

    PubMed

    Allen, Justin M; Brachvogel, Bent; Farlie, Peter G; Fitzgerald, Jamie; Bateman, John F

    2008-05-01

    WARP is a recently described member of the von Willebrand factor A domain superfamily of extracellular matrix proteins, and is encoded by the Vwa1 gene. We have previously shown that WARP is a multimeric component of the chondrocyte pericellular matrix in articular cartilage and intervertebral disc, where it interacts with the basement membrane heparan sulfate proteoglycan perlecan. However, the tissue-specific expression of WARP in non-cartilaginous tissues and its localization in the extracellular matrix of other perlecan-containing tissues have not been analyzed in detail. To visualize WARP-expressing cells, we generated a reporter gene knock-in mouse by targeted replacement of the Vwa1 gene with beta-galactosidase. Analysis of reporter gene expression and WARP protein localization by immunostaining demonstrates that WARP is a component of a limited number of distinct basement membranes. WARP is expressed in the vasculature of neural tissues and in basement membrane structures of the peripheral nervous system. Furthermore, WARP is also expressed in the apical ectodermal ridge of developing limb buds, and in skeletal and cardiac muscle. These findings are the first evidence for WARP expression in non-cartilaginous tissues, and the identification of WARP as a component of a limited range of specialized basement membranes provides further evidence for the heterogeneous composition of basement membranes between different tissues.

  12. Hydrodynamics of bilayer membranes with diffusing transmembrane proteins.

    PubMed

    Callan-Jones, Andrew; Durand, Marc; Fournier, Jean-Baptiste

    2016-02-14

    We consider the hydrodynamics of lipid bilayers containing transmembrane proteins of arbitrary shape. This biologically-motivated problem is relevant to the cell membrane, whose fluctuating dynamics play a key role in phenomena ranging from cell migration, intercellular transport, and cell communication. Using Onsager's variational principle, we derive the equations that govern the relaxation dynamics of the membrane shape, of the mass densities of the bilayer leaflets, and of the diffusing proteins' concentration. With our generic formalism, we obtain several results on membrane dynamics. We find that proteins that span the bilayer increase the intermonolayer friction coefficient. The renormalization, which can be significant, is in inverse proportion to the protein's mobility. Second, we find that asymmetric proteins couple to the membrane curvature and to the difference in monolayer densities. For practically all accessible membrane tensions (σ > 10(-8) N m(-1)) we show that the protein density is the slowest relaxing variable. Furthermore, its relaxation rate decreases at small wavelengths due to the coupling to curvature. We apply our formalism to the large-scale diffusion of a concentrated protein patch. We find that the diffusion profile is not self-similar, owing to the wavevector dependence of the effective diffusion coefficient.

  13. [Membrane fouling based on change of membrane characteristic parameters during ultrafiltration of protein].

    PubMed

    Wang, Xu-Dong; Zhang, Yin-Hui; Wang, Lei; Zhang, Hui-Hui; Xia, Si-Qing

    2014-11-01

    In order to further understand membrane fouling mechanism of various protein systems during ultrafiltration, polyethersulfone (PES) ultrafiltration membrane with relative molecular weight cut off of 50 x 10(3) was used, the ultrafiltration processes of three kinds of protein solution were investigated: lysozyme ( LYS), bovine serum albumin ( BSA), and LYS + BSA. Contact angle meter, field emission scanning electron microscope (FESEM) and atomic force microscope (AFM) were adopted to determine the change of membrane characteristic parameters at different fouling stages. The results indicated that the changes of ultrafiltration membrane flux obviously exhibited three stages: sharp flux decline in the initial stage (approximately between 0-5 min), slow flux decline during the transition stage (approximately between 5-60 min), and stable flux in the late stage (approximately between 60-120 min). During the whole ultrafiltration process, the LYS-fouled membrane had the largest flux decline, followed by the LYS + BSA-fouled membrane, and the BSA-fouled membrane had the least decline. The changes of membrane characteristic parameters clearly indicated that the initial filtration stage of LYS was controlled by pore constriction, while pore blocking and pore constriction were the main fouling mechanism at the transition stage. Pore blocking was the main fouling mechanism of BSA in the initial fouling stage, while the transition stage was controlled by pore constriction. Cake filtration was the main fouling mechanism of LYS and BSA in the late stage. The membrane fouling of binary mixtures LYS + BSA appeared to be dominated by LYS.

  14. Lipids and topological rules governing membrane protein assembly☆

    PubMed Central

    Bogdanov, Mikhail; Dowhan, William; Vitrac, Heidi

    2014-01-01

    Membrane protein folding and topogenesis are tuned to a given lipid profile since lipids and proteins have co-evolved to follow a set of interdependent rules governing final protein topological organization. Transmembrane domain (TMD) topology is determined via a dynamic process in which topogenic signals in the nascent protein are recognized and interpreted initially by the translocon followed by a given lipid profile in accordance with the Positive Inside Rule. The net zero charged phospholipid phosphatidylethanolamine and other neutral lipids dampen the translocation potential of negatively charged residues in favor of the cytoplasmic retention potential of positively charged residues (Charge Balance Rule). This explains why positively charged residues are more potent topological signals than negatively charged residues. Dynamic changes in orientation of TMDs during or after membrane insertion are attributed to non-sequential cooperative and collective lipid–protein charge interactions as well as long-term interactions within a protein. The proportion of dual topological conformers of a membrane protein varies in a dose responsive manner with changes in the membrane lipid composition not only in vivo but also in vitro and therefore is determined by the membrane lipid composition. Switching between two opposite TMD topologies can occur in either direction in vivo and also in liposomes (designated as fliposomes) independent of any other cellular factors. Such lipid-dependent post-insertional reversibility of TMD orientation indicates a thermodynamically driven process that can occur at any time and in any cell membrane driven by changes in the lipid composition. This dynamic view of protein topological organization influenced by the lipid environment reveals previously unrecognized possibilities for cellular regulation and understanding of disease states resulting from mis-folded proteins. This article is part of a Special Issue entitled: Protein Trafficking

  15. Alignment of Helical Membrane Protein Sequences Using AlignMe

    PubMed Central

    Khafizov, Kamil; Forrest, Lucy R.

    2013-01-01

    Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set. PMID:23469223

  16. Genomic analysis of membrane protein families: abundance and conserved motifs

    PubMed Central

    Liu, Yang; Engelman, Donald M; Gerstein, Mark

    2002-01-01

    Background Polytopic membrane proteins can be related to each other on the basis of the number of transmembrane helices and sequence similarities. Building on the Pfam classification of protein domain families, and using transmembrane-helix prediction and sequence-similarity searching, we identified a total of 526 well-characterized membrane protein families in 26 recently sequenced genomes. To this we added a clustering of a number of predicted but unclassified membrane proteins, resulting in a total of 637 membrane protein families. Results Analysis of the occurrence and composition of these families revealed several interesting trends. The number of assigned membrane protein domains has an approximately linear relationship to the total number of open reading frames (ORFs) in 26 genomes studied. Caenorhabditis elegans is an apparent outlier, because of its high representation of seven-span transmembrane (7-TM) chemoreceptor families. In all genomes, including that of C. elegans, the number of distinct membrane protein families has a logarithmic relation to the number of ORFs. Glycine, proline, and tyrosine locations tend to be conserved in transmembrane regions within families, whereas isoleucine, valine, and methionine locations are relatively mutable. Analysis of motifs in putative transmembrane helices reveals that GxxxG and GxxxxxxG (which can be written GG4 and GG7, respectively; see Materials and methods) are among the most prevalent. This was noted in earlier studies; we now find these motifs are particularly well conserved in families, however, especially those corresponding to transporters, symporters, and channels. Conclusions We carried out a genome-wide analysis on patterns of the classified polytopic membrane protein families and analyzed the distribution of conserved amino acids and motifs in the transmembrane helix regions in these families. PMID:12372142

  17. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    PubMed Central

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel; Löw, Mirjam; Eriksson, Jonas; Bonde, Ida; Herrgård, Markus J.; Heipieper, Hermann J.; Nørholm, Morten H. H.; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3) changes one amino acid in its T7 RNAP, which weakens the binding of the T7 RNAP to the T7 promoter governing target gene expression rather than lowering T7 RNAP levels. For most membrane proteins tested yields in Mutant56(DE3) were considerably higher than in C41(DE3) and C43(DE3). Thus, the isolation of Mutant56(DE3) shows that the evolution of BL21(DE3) can be promoted towards further enhanced membrane protein production. PMID:28338018

  18. Fast and efficient protein purification using membrane adsorber systems.

    PubMed

    Suck, Kirstin; Walter, Johanna; Menzel, Frauke; Tappe, Alexander; Kasper, Cornelia; Naumann, Claudia; Zeidler, Robert; Scheper, Thomas

    2006-02-10

    The purification of proteins from complex cell culture samples is an essential step in proteomic research. Traditional chromatographic methods often require several steps resulting in time consuming and costly procedures. In contrast, protein purification via membrane adsorbers offers the advantage of fast and gentle but still effective isolation. In this work, we present a new method for purification of proteins from crude cell extracts via membrane adsorber based devices. This isolation procedure utilises the membranes favourable pore structure allowing high flow rates without causing high back pressure. Therefore, shear stress to fragile structures is avoided. In addition, mass transfer takes place through convection rather than diffusion, thus allowing very rapid separation processes. Based on this membrane adsorber technology the separation of two model proteins, human serum albumin (HSA) and immungluboline G (IgG) is shown. The isolation of human growth hormone (hGH) from chinese hamster ovary (CHO) cell culture supernatant was performed using a cation exchange membrane. The isolation of the enzyme penicillin acylase from the crude Escherichia coli supernatant was achieved using an anion exchange spin column within one step at a considerable purity. In summary, the membrane adsorber devices have proven to be suitable tools for the purification of proteins from different complex cell culture samples.

  19. The time frame of Epstein-Barr virus latent membrane protein-1 gene to disappear in nasopharyngeal swabs after initiation of primary radiotherapy is an independently significant prognostic factor predicting local control for patients with nasopharyngeal carcinoma

    SciTech Connect

    Lin, S.-Y.; Chang, K.-P.; Hsieh, M.-S.; Ueng, S.-H.; Hao, S.-P.; Tseng, C.-K.; Pai, P.-C.; Chang, F.-T.; Tsai, M.-H.; Tsang, N.-M. . E-mail: rt3126@adm.cgmh.org.tw

    2005-12-01

    Purpose: The presence of Epstein-Barr virus latent membrane protein-1 (LMP-1) gene in nasopharyngeal swabs indicates the presence of nasopharyngeal carcinoma (NPC) mucosal tumor cells. This study was undertaken to investigate whether the time taken for LMP-1 to disappear after initiation of primary radiotherapy (RT) was inversely associated with NPC local control. Methods and Materials: During July 1999 and October 2002, there were 127 nondisseminated NPC patients receiving serial examinations of nasopharyngeal swabbing with detection of LMP-1 during the RT course. The time for LMP-1 regression was defined as the number of days after initiation of RT for LMP-1 results to turn negative. The primary outcome was local control, which was represented by freedom from local recurrence. Results: The time for LMP-1 regression showed a statistically significant influence on NPC local control both univariately (p < 0.0001) and multivariately (p = 0.004). In multivariate analysis, the administration of chemotherapy conferred a significantly more favorable local control (p = 0.03). Advanced T status ({>=} T2b), overall treatment time of external photon radiotherapy longer than 55 days, and older age showed trends toward being poor prognosticators. The time for LMP-1 regression was very heterogeneous. According to the quartiles of the time for LMP-1 regression, we defined the pattern of LMP-1 regression as late regression if it required 40 days or more. Kaplan-Meier plots indicated that the patients with late regression had a significantly worse local control than those with intermediate or early regression (p 0.0129). Conclusion: Among the potential prognostic factors examined in this study, the time for LMP-1 regression was the most independently significant factor that was inversely associated with NPC local control.

  20. Vaccinia virus virion membrane biogenesis protein A11 associates with viral membranes in a manner that requires the expression of another membrane biogenesis protein, A6.

    PubMed

    Wu, Xiang; Meng, Xiangzhi; Yan, Bo; Rose, Lloyd; Deng, Junpeng; Xiang, Yan

    2012-10-01

    A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.

  1. Membrane Proteins in Four Acts: Function Precedes Structure Determination

    PubMed Central

    Cramer, W. A.; Zakharov, S. D.; Hasan, S. Saif; Zhang, H.; Baniulis, D.; Zhalnina, M. V.; Soriano, G. M.; Sharma, O.; Rochet, J. C.; Ryan, C.; Whitelegge., J.; Kurisu, G.; Yamashita, E.

    2011-01-01

    Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/ proton translocation). (1) Crystal structures of the eight subunit heterooligomeric trans-membrane dimeric cytochrome b6f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of seventeen monotopic and polytopic hetero-subunits. (II) β-barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B12 binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins (1). A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a “fishing pole” model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83 Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained (2). A crystal structure of the N-terminal translocation domain of colicin E3

  2. Quality control of nonstop membrane proteins at the ER membrane and in the cytosol.

    PubMed

    Arakawa, Shunsuke; Yunoki, Kaori; Izawa, Toshiaki; Tamura, Yasushi; Nishikawa, Shuh-Ichi; Endo, Toshiya

    2016-08-02

    Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop proteins into the organellar lumen. Here we followed the fate of nonstop endoplasmic reticulum (ER) membrane proteins with different membrane topologies in yeast to evaluate the importance of the Ltn1-dependent cytosolic degradation and the Dom34-dependent release of the nonstop membrane proteins. Ltn1-dependent degradation differed for membrane proteins with different topologies and its failure did not affect ER protein import or cell growth. On the other hand, failure in the Dom34-dependent release of the nascent polypeptide from the ribosome led to the block of the Sec61 channel and resultant inhibition of other protein import into the ER caused cell growth defects. Therefore, the nascent chain release from the translation apparatus is more instrumental in clearance of the clogged ER translocon channel and thus maintenance of normal cellular functions.

  3. Quality control of nonstop membrane proteins at the ER membrane and in the cytosol

    PubMed Central

    Arakawa, Shunsuke; Yunoki, Kaori; Izawa, Toshiaki; Tamura, Yasushi; Nishikawa, Shuh-ichi; Endo, Toshiya

    2016-01-01

    Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop proteins into the organellar lumen. Here we followed the fate of nonstop endoplasmic reticulum (ER) membrane proteins with different membrane topologies in yeast to evaluate the importance of the Ltn1-dependent cytosolic degradation and the Dom34-dependent release of the nonstop membrane proteins. Ltn1-dependent degradation differed for membrane proteins with different topologies and its failure did not affect ER protein import or cell growth. On the other hand, failure in the Dom34-dependent release of the nascent polypeptide from the ribosome led to the block of the Sec61 channel and resultant inhibition of other protein import into the ER caused cell growth defects. Therefore, the nascent chain release from the translation apparatus is more instrumental in clearance of the clogged ER translocon channel and thus maintenance of normal cellular functions. PMID:27481473

  4. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  5. Lipopolysaccharide Membranes and Membrane Proteins of Pseudomonas aeruginosa Studied by Computer Simulation

    SciTech Connect

    Straatsma, TP

    2006-12-01

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is also a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid

  6. Human Mitochondrial DNA-Protein Complexes Attach to a Cholesterol-Rich Membrane Structure

    PubMed Central

    Gerhold, Joachim M.; Cansiz-Arda, Şirin; Lõhmus, Madis; Engberg, Oskar; Reyes, Aurelio; van Rennes, Helga; Sanz, Alberto; Holt, Ian J.; Cooper, Helen M.; Spelbrink, Johannes N.

    2015-01-01

    The helicase Twinkle is indispensable for mtDNA replication in nucleoids. Previously, we showed that Twinkle is tightly membrane-associated even in the absence of mtDNA, which suggests that Twinkle is part of a membrane-attached replication platform. Here we show that this platform is a cholesterol-rich membrane structure. We fractionated mitochondrial membrane preparations on flotation gradients and show that membrane-associated nucleoids accumulate at the top of the gradient. This fraction was shown to be highly enriched in cholesterol, a lipid that is otherwise low abundant in mitochondria. In contrast, more common mitochondrial lipids, and abundant inner-membrane associated proteins concentrated in the bottom-half of these gradients. Gene silencing of ATAD3, a protein with proposed functions related to nucleoid and mitochondrial cholesterol homeostasis, modified the distribution of cholesterol and nucleoids in the gradient in an identical fashion. Both cholesterol and ATAD3 were previously shown to be enriched in ER-mitochondrial junctions, and we detect nucleoid components in biochemical isolates of these structures. Our data suggest an uncommon membrane composition that accommodates platforms for replicating mtDNA, and reconcile apparently disparate functions of ATAD3. We suggest that mtDNA replication platforms are organized in connection with ER-mitochondrial junctions, facilitated by a specialized membrane architecture involving mitochondrial cholesterol. PMID:26478270

  7. Sequence and TnphoA analysis of a Mycoplasma hyorhinis protein with membrane export function.

    PubMed

    Yogev, D; Watson-McKown, R; McIntosh, M A; Wise, K S

    1991-03-01

    Proteins translocated across the single plasma membrane of mycoplasmas (class Mollicutes) represent important components likely to affect several interactions of these wall-less microbes with their respective hosts. However, identification and functional analysis of such proteins is hampered by the lack of mutational systems in mycoplasmas and by a perceived limitation in translating recombinant mycoplasma genes containing UGA (Trp) codons in other eubacteria. Here we directly analyze a gene encoding a Mycoplasma hyorhinis protein capable of promoting its membrane translocation. It was initially detected by screening a recombinant phage genomic library with antibody from a host with M. hyorhinis-induced arthritis and was localized by Tn5 and deletion mutations affecting expression of antigenic translational products. Sequence analysis of the isolated gene predicted a hydrophilic protein, P101, containing three UGA codons and a putative signal peptide with an uncharacteristic cluster of positively charged amino acids near its C terminus. Nevertheless, lambda::TnphoA transposon mutagenesis of an Escherichia coli plasmid bearing the p101 gene resulted in p101::TnphoA fusions expressing products that could translocate as much as 48 kDa of the P101 sequence (up to the first UGA codon) across the E. coli plasma membrane. Fusion proteins containing mature P101 sequences expressed mycoplasma epitopes and were found by cell fractionation and detergent phase partitioning to be integral membrane proteins in E. coli, suggesting a lack of signal peptide cleavage in this system. Importantly, identification of P101 by direct analysis of its export function relied neither on prior identification of the mycoplasmal product nor on complete expression of the product from the cloned mycoplasma gene.

  8. Current strategies for protein production and purification enabling membrane protein structural biology.

    PubMed

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  9. Prediction of membrane protein types using maximum variance projection

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Yang, Jie

    2011-05-01

    Predicting membrane protein types has a positive influence on further biological function analysis. To quickly and efficiently annotate the type of an uncharacterized membrane protein is a challenge. In this work, a system based on maximum variance projection (MVP) is proposed to improve the prediction performance of membrane protein types. The feature extraction step is based on a hybridization representation approach by fusing Position-Specific Score Matrix composition. The protein sequences are quantized in a high-dimensional space using this representation strategy. Some problems will be brought when analysing these high-dimensional feature vectors such as high computing time and high classifier complexity. To solve this issue, MVP, a novel dimensionality reduction algorithm is introduced by extracting the essential features from the high-dimensional feature space. Then, a K-nearest neighbour classifier is employed to identify the types of membrane proteins based on their reduced low-dimensional features. As a result, the jackknife and independent dataset test success rates of this model reach 86.1 and 88.4%, respectively, and suggest that the proposed approach is very promising for predicting membrane proteins types.

  10. Preparation of Gnathostoma protein by ultrafiltration method using Nanosep membrane.

    PubMed

    Sugaroon, Suphan; Saksirisampant, Wilai; Kraivichian, Kanyarattana; Suwansaksri, Jamsai; Wiwanitkit, Viroj

    2003-01-01

    We report our experience with Gnathostoma protein preparation by the ultrafiltration method. Crude antigen was sonicated and ultrafiltrated using the Nanosep 100 K membrane. SDS-PAGE electrophoresis showed protein bands at 43, 41, 24, 22, 21, 19.5 kDa. Use of the ultrafiltration method can provide specific protein (24 kDa), similar to the non-ultrafiltration method, with the other 5 non-specific proteins. Using the non-ultrafiltration method, there were more (20) non-specific protein. The ultrafiltration method can be an alternative method for the preparation of protein, which can provide better results than non-ultrafiltration.

  11. Molecular dynamics simulations of a membrane protein/amphipol complex.

    PubMed

    Perlmutter, Jason D; Popot, Jean-Luc; Sachs, Jonathan N

    2014-10-01

    Amphipathic polymers known as "amphipols" provide a highly stabilizing environment for handling membrane proteins in aqueous solutions. A8-35, an amphipol with a polyacrylate backbone and hydrophobic grafts, has been extensively characterized and widely employed for structural and functional studies of membrane proteins using biochemical and biophysical approaches. Given the sensitivity of membrane proteins to their environment, it is important to examine what effects amphipols may have on the structure and dynamics of the proteins they complex. Here we present the first molecular dynamics study of an amphipol-stabilized membrane protein, using Escherichia coli OmpX as a model. We begin by describing the structure of the complexes formed by supplementing OmpX with increasing amounts of A8-35, in order to determine how the amphipol interacts with the transmembrane and extramembrane surfaces of the protein. We then compare the dynamics of the protein in either A8-35, a detergent, or a lipid bilayer. We find that protein dynamics on all accessible length scales is restrained by A8-35, which provides a basis to understanding some of the stabilizing and functional effects of amphipols that have been experimentally observed.

  12. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    PubMed

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  13. The Multifaceted Role of SNARE Proteins in Membrane Fusion

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686

  14. Ultrafast permeation of water through protein-based membranes

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Jin, Jian; Nakamura, Yoshimichi; Ohno, Takahisa; Ichinose, Izumi

    2009-06-01

    Pressure-driven filtration by porous membranes is widely used in the production of drinking water from ground and surface water. Permeation theory predicts that filtration rate is proportional to the pressure difference across the filtration membrane and inversely proportional to the thickness of the membrane. However, these membranes need to be able to withstand high water fluxes and pressures, which means that the active separation layers in commercial filtration systems typically have a thickness of a few tens to several hundreds of nanometres. Filtration performance might be improved by the use of ultrathin porous silicon membranes or carbon nanotubes immobilized in silicon nitride or polymer films, but these structures are difficult to fabricate. Here, we report a new type of filtration membrane made of crosslinked proteins that are mechanically robust and contain channels with diameters of less than 2.2 nm. We find that a 60-nm-thick membrane can concentrate aqueous dyes from fluxes up to 9,000 l h-1 m-2 bar-1, which is ~1,000 times higher than the fluxes that can be withstood by commercial filtration membranes with similar rejection properties. Based on these results and molecular dynamics simulations, we propose that protein-surrounded channels with effective lengths of less than 5.8 nm can separate dye molecules while allowing the ultrafast permeation of water at applied pressures of less than 1 bar.

  15. Sculpting membranes: a mechanism of curvature generation by proteins

    NASA Astrophysics Data System (ADS)

    Campelo, Felix

    2010-03-01

    A wide spectrum of intracellular processes is dependent on the ability of cells to dynamically regulate membrane shape. Membrane bending by proteins is necessary for the generation of intracellular transport carriers and for the maintenance of otherwise intrinsically unstable regions of high membrane curvature in cell organelles. Understanding the mechanisms by which proteins curve membranes is therefore of primary importance. Crescent shaped N-BAR domains containing amphipathic helices can induce membrane curvature by two mechanisms: the scaffolding mechanism due to the very shape of the BAR dimer, and the hydrophobic insertion mechanism by which small shallow inclusions penetrate the membrane matrix and act as a wedge changing the local membrane curvature. We will focus on this latter mechanism, and study it from a quantitative point of view. We use an elastic model of the lipid bilayer, taking into account the internal strains and stresses generated by the presence of an inclusion. We show that large membrane curvatures found in in vitro experiments can be ascribed to this mechanism, and that shallow insertions are more powerful curvature generators than lipids.

  16. Interaction and conformational dynamics of membrane-spanning protein helices

    PubMed Central

    Langosch, Dieter; Arkin, Isaiah T

    2009-01-01

    Within 1 or 2 decades, the reputation of membrane-spanning α-helices has changed dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now recognized as major instigators of protein–protein interaction. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. These domains can move relative to each other in different functional protein conformations. In addition, small-scale backbone fluctuations may affect their function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate structural features are encoded by the amino acid sequences will be a fascinating subject of research for years to come. PMID:19530249

  17. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    PubMed

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  18. Analysis of lysosomal membrane proteins exposed to melanin in HeLa cells

    PubMed Central

    2016-01-01

    Objectives There have been developed to use targeting ability for antimicrobial, anticancerous, gene therapy and cosmetics through analysis of various membrane proteins isolated from cell organelles. Methods It was examined about the lysosomal membrane protein extracted from lysosome isolated from HeLa cell treated by 100 ppm melanin for 24 hours in order to find associated with targeting ability to melanin using by 2-dimensional electrophoresis. Results The result showed 14 up-regulated (1.5-fold) and 13 down-regulated (2.0-fold) spots in relation to melanin exposure. Conclusions It has been found that lysosomal membrane proteins are associated with melanin to decolorize and quantity through cellular activation of lysosome. PMID:27158002

  19. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    PubMed

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  20. Measuring dendritic distribution of membrane proteins.

    PubMed

    Ballou, Edmund W; Smith, W Bryan; Anelli, Roberta; Heckman, C J

    2006-09-30

    Neurons perform much of their integrative work in the dendritic tree, and spinal motoneurons have the largest tree of any cell. Electrical excitability is strongly influenced by dendrite membrane properties, which are difficult to measure directly. We describe a method to measure the distribution of ion channel membrane densities along dendritic trajectories. The method combines standard immunohistochemistry with reconstruction procedures for both large-scale and small-scale optical microscopy. Software written for Matlab then extracts the colocalization of the target ion channel with the target dye injected cell, and calculates the relative channel density per square micron of cell surface area, as a function of distance from the cell body. The technique can be used to quantify the localization and distribution of any immunoreactive moiety, and the software provides a flexible vehicle for sensitivity analysis, to validate heuristics for selecting thresholds.

  1. A Phenotypic High-Content Screening Assay to Identify Regulators of Membrane Protein Localization.

    PubMed

    Smith, Lorey K; Thomas, Daniel W; Simpson, Kaylene J; Humbert, Patrick O

    2016-10-01

    Correct subcellular localization of proteins is a requirement for appropriate function. This is especially true in epithelial cells, which rely on the precise localization of a diverse array of epithelial polarity and cellular adhesion proteins. Loss of cell polarity and adhesion is a hallmark of cancer, and mislocalization of core polarity proteins, such as Scribble, is observed in a range of human epithelial tumors and is prognostic of poor survival. Despite this, little is known about how Scribble membrane localization is regulated. Here, we describe the development and application of a phenotypic high-content screening assay that is designed to specifically quantify membrane levels of Scribble to identify regulators of its membrane localization. A screening platform that is capable of resolving individual cells and quantifying membrane protein localization in confluent epithelial monolayers was developed by using the cytoplasm-to-cell-membrane bioapplication integrated with the Cellomics ArrayScan high-content imaging platform. Application of this method to a boutique human epithelial polarity and signaling small interfering RNA (siRNA) library resulted in highly robust coefficient-of-variance and Z' factor values. As proof of concept, we present two candidate genes whose depletion specifically reduces Scribble protein levels at the membrane. Data mining revealed that these proteins interact with components of the Scribble polarity complex, providing support for the utility of the screening approach. This method is broadly applicable to genome-wide and large-scale compound screening of membrane-bound proteins, and when coupled with pathway analysis the dataset becomes even more valuable and can provide predictive mechanistic insight.

  2. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    PubMed Central

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  3. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  4. Novel silk protein barrier membranes for guided bone regeneration.

    PubMed

    Smeets, Ralf; Knabe, Christine; Kolk, Andreas; Rheinnecker, Michael; Gröbe, Alexander; Heiland, Max; Zehbe, Rolf; Sachse, Manuela; Große-Siestrup, Christian; Wöltje, Michael; Hanken, Henning

    2016-10-12

    This study assesses the biocompatibility of novel silk protein membranes with and without modification, and evaluates their effect on facilitating bone formation and defect repair in guided bone regeneration. Two calvarian bone defects 12 mm in diameter were created in each of a total of 38 rabbits. Four different types of membranes, (silk-, hydroxyapatite-modified silk-, β-TCP-modified silk- and commonly clinically used collagen-membranes) were implanted to cover one of the two defects in each animal. Histologic analysis did not show any adverse tissue reactions in any of the defect sites indicating good biocompatibility of all silk protein membranes. Histomorphometric and histologic evaluation revealed that collagen and β-TCP modified silk membranes supported bone formation (collagen: bone area fraction p = 0.025; significant; β-TCP modified silk membranes bone area fraction: p = 0.24, not significant), guided bone regeneration and defect bridging. The bone, which had formed in defects covered by β-TCP modified silk membranes, displayed a more advanced stage of bone tissue maturation with restoration of the original calvarial bone microarchitecture when compared to the bone which had formed in defects, for which any of the other test membranes were used. Micro-CT analysis did not reveal any differences in the amount of bone formation between defects with and without membranes. In contrast to the collagen membranes, β-TCP modified silk membranes were visible in all cases and may therefore be advantageous for further supporting bone formation beyond 10 weeks and preventing soft tissue ingrowth from the periphery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  5. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption

    PubMed Central

    Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.

    2012-01-01

    The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494

  6. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    PubMed

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  7. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins.

    PubMed

    Bhatia, Vikram Kjøller; Hatzakis, Nikos S; Stamou, Dimitrios

    2010-06-01

    The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology.

  8. Symmetry and Size of Membrane Protein Polyhedral Nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Di; Kahraman, Osman; Haselwandter, Christoph A.

    2016-09-01

    In recent experiments [T. Basta et al., Proc. Natl. Acad. Sci. U.S.A. 111, 670 (2014)] lipids and membrane proteins were observed to self-assemble into membrane protein polyhedral nanoparticles (MPPNs) with a well-defined polyhedral protein arrangement and characteristic size. We develop a model of MPPN self-assembly in which the preferred symmetry and size of MPPNs emerge from the interplay of protein-induced lipid bilayer deformations, topological defects in protein packing, and thermal effects. With all model parameters determined directly from experiments, our model correctly predicts the observed symmetry and size of MPPNs. Our model suggests how key lipid and protein properties can be modified to produce a range of MPPN symmetries and sizes in experiments.

  9. The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in Saccharomyces cerevisiae.

    PubMed

    Okumura, Yuuya; Nakamura, Tsuyoshi S; Tanaka, Takayuki; Inoue, Ichiro; Suda, Yasuyuki; Takahashi, Tetsuo; Nakanishi, Hideki; Nakamura, Shugo; Gao, Xiao-Dong; Tachikawa, Hiroyuki

    2016-01-01

    Sporulation of Saccharomyces cerevisiae is a developmental process in which an ascus containing four haploid spores forms from a diploid cell. During this process, newly formed membrane structures called prospore membranes extend along the nuclear envelope and engulf and package daughter nuclei along with cytosol and organelles to form precursors of spores. Proteins involved in prospore membrane extension, Vps13 and Spo71, have recently been reported; however, the overall mechanism of membrane extension remains unclear. Here, we identified Spo73 as an additional factor involved in prospore membrane extension. Analysis of a spo73∆ mutant revealed that it shows defects similar to those of a spo71∆ mutant during prospore membrane formation. Spo73 localizes to the prospore membrane, and this localization is independent of Spo71 and Vps13. In contrast, a Spo73 protein carrying mutations in a surface basic patch mislocalizes to the cytoplasm and overexpression of Spo71 can partially rescue localization to the prospore membrane. Similar to spo71∆ mutants, spo73∆ mutants display genetic interactions with the mutations in the SMA2 and SPO1 genes involved in prospore membrane bending. Further, our bioinformatic analysis revealed that Spo73 is a dysferlin domain-only protein. Thus, these results suggest that a dysferlin domain-only protein, Spo73, functions with a dual pleckstrin homology domain protein, Spo71, in prospore membrane extension. Analysis of Spo73 will provide insights into the conserved function of dysferlin domains, which is related to dysferlinopathy. IMPORTANCE Prospore membrane formation consists of de novo double-membrane formation, which occurs during the developmental process of sporulation in Saccharomyces cerevisiae. Membranes are formed into their proper size and shape, and thus, prospore membrane formation has been studied as a general model of membrane formation. We identified SPO73, previously shown to be required for spore wall formation

  10. More Membranes, more Proteins: Complex Protein Import Mechanisms into Secondary Plastids

    PubMed Central

    Agrawal, Swati; Striepen, Boris

    2010-01-01

    Plastids are found across the tree of life in a tremendous diversity of life forms. Surprisingly they are not limited to photosynthetic organisms but also found in numerous predators and parasites. An important reason for the pervasiveness of plastids has been their ability to move laterally and to jump from one branch of the tree of life to the next through secondary endosymbiosis. Eukaryotic algae have entered endosymbiotic relationships with other eukaryotes on multiple independent occasions. The descendants of these endosymbiotic events now carry complex plastids, organelles that are bound by three or even four membranes. As in all endosymbiotic organelles most of the symbiont’s genes have been transferred to the host and their protein products have to be imported into the organelle. As four membranes might suggest, this is a complex process. The emerging mechanisms display a series of translocons that mirror the divergent ancestry of the membranes they cross. This review is written from a parasite biologist viewpoint and seeks to provide a brief overview of plastid evolution in particular for readers not already familiar with plant and algal biology and then focuses on recent molecular discoveries using genetically tractable Apicomplexa and diatoms. PMID:21036664

  11. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes.

    PubMed Central

    Pestonjamasp, K; Amieva, M R; Strassel, C P; Nauseef, W M; Furthmayr, H; Luna, E J

    1995-01-01

    Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein. Images PMID:7612961

  12. Proteomic identification of erythrocyte membrane protein deficiency in hereditary spherocytosis.

    PubMed

    Peker, Selen; Akar, Nejat; Demiralp, Duygu Ozel

    2012-03-01

    Hereditary spherocytosis (HS) is the most common congenital hemolytic anemia in Caucasians, with an estimated prevalence ranging from 1:2000 to 1:5000. The molecular defect in one of the erythrocytes (RBC) membrane proteins underlying HS like; spectrin-α, spectrin-β, ankyrin, band 3 and protein 4.2 that lead to membrane destabilization and vesiculation, may change the RBCs into denser and more rigid cells (spherocytes), which are removed by the spleen, leading to the development of hemolytic anemia. It is classified as mild, moderate and severe, according to the degree of the hemolytic anemia and the associated symptoms. Two-dimensional gel electrophoresis (2-DE) is potentially valuable method for studying heritable disorders as HS that involve membrane proteins. This separation technique of proteins based upon two biophysically unrelated parameters; molecular weight and charge, is a good option in clinical proteomics in terms of ability to separate complex mixtures, display post-translational modifications and changes after phosphorylation. In this study, we have used contemporary methods with some modifications for the solubilisation, separation and identification of erythrocyte membrane proteins in normal and in HS RBCs. Spectrin alpha and beta chain, ankyrin and band 3 proteins expression differences were found with PDQuest software 8.0.1. and peptide mass fingerprinting (PMF) analysis performed for identification of proteins in this study.

  13. Steady-state compartmentalization of lipid membranes by active proteins.

    PubMed Central

    Sabra, M C; Mouritsen, O G

    1998-01-01

    Using a simple microscopic model of lipid-protein interactions, based on the hydrophobic matching principle, we study some generic aspects of lipid-membrane compartmentalization controlled by a dispersion of active integral membrane proteins. The activity of the proteins is simulated by conformational excitations governed by an external drive, and the deexcitation is controlled by interaction of the protein with its lipid surroundings. In response to the flux of energy into the proteins from the environment and the subsequent dissipation of energy into the lipid bilayer, the lipid-protein assembly reorganizes into a steady-state structure with a typical length scale determined by the strength of the external drive. In the specific case of a mixed dimyristoylphosphatidylcholine-distearoylphosphatidylcholine bilayer in the gel-fluid coexistence region, it is shown explicitly by computer simulation that the activity of an integral membrane protein can lead to a compartmentalization of the lipid-bilayer membrane. The compartmentalization is related to the dynamical process of phase separation and lipid domain formation. PMID:9533687

  14. Production of membrane proteins through the wheat-germ cell-free technology.

    PubMed

    Nozawa, Akira; Nanamiya, Hideaki; Tozawa, Yuzuru

    2010-01-01

    Membrane proteins play crucial roles in various processes. However, biochemical characterization of the membrane proteins remains challenging due to the difficulty in producing membrane proteins in a functional state. Here, we describe a novel method for the production of functional membrane proteins based on a wheat germ cell-free translation system. Using this method, functional membrane proteins are successfully synthesized in the presence of liposomes and a detergent. In addition, the synthesized membrane proteins are easily purified from the cell-free translation mixture as proteoliposomes by sucrose density gradient ultracentrifugation. These advantages over conventional approaches are very helpful for the clarification of the function of membrane proteins.

  15. A new window into the molecular physiology of membrane proteins

    PubMed Central

    Landreh, Michael; Robinson, Carol V

    2015-01-01

    Integral membrane proteins comprise ∼25% of the human proteome. Yet, our understanding of their molecular physiology is still in its infancy. This can be attributed to two factors: the experimental challenges that arise from the difficult chemical nature of membrane proteins, and the unclear relationship between their activity and their native environment. New approaches are therefore required to address these challenges. Recent developments in mass spectrometry have shown that it is possible to study membrane proteins in a solvent-free environment and provide detailed insights into complex interactions, ligand binding and folding processes. Interestingly, not only detergent micelles but also lipid bilayer nanodiscs or bicelles can serve as a means for the gentle desolvation of membrane proteins in the gas phase. In this manner, as well as by direct addition of lipids, it is possible to study the effects of different membrane components on the structure and function of the protein components allowing us to add functional data to the least accessible part of the proteome. PMID:25630257

  16. Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes

    PubMed Central

    Goose, Joseph E.; Sansom, Mark S. P.

    2013-01-01

    Coarse-grained molecular dynamics simulations of the E. coli outer membrane proteins FhuA, LamB, NanC, OmpA and OmpF in a POPE/POPG (3∶1) bilayer were performed to characterise the diffusive nature of each component of the membrane. At small observation times (<10 ns) particle vibrations dominate phospholipid diffusion elevating the calculated values from the longer time-scale bulk value (>50 ns) of 8.5×10−7 cm2 s−1. The phospholipid diffusion around each protein was found to vary based on distance from protein. An asymmetry in the diffusion of annular lipids in the inner and outer leaflets was observed and correlated with an asymmetry in charged residues in the vicinity of the inner and outer leaflet head-groups. Protein rotational and translational diffusion were also found to vary with observation time and were inversely correlated with the radius of gyration of the protein in the plane of the bilayer. As the concentration of protein within the bilayer was increased, the overall mobility of the membrane decreased reflected in reduced lipid diffusion coefficients for both lipid and protein components. The increase in protein concentration also resulted in a decrease in the anomalous diffusion exponent α of the lipid. Formation of extended clusters and networks of proteins led to compartmentalisation of lipids in extreme cases. PMID:23592975

  17. Photolabeling of brain membrane proteins by lysergic acid diethylamide

    SciTech Connect

    Mahon, A.C.; Hartig, P.R.

    1982-04-05

    /sup 3/H-Lysergic acid diethylamide (/sup 3/H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a sub-population of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. /sup 3/H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays.

  18. Modeling membrane shaping by proteins: focus on EHD2 and N-BAR domains.

    PubMed

    Campelo, Felix; Fabrikant, Gur; McMahon, Harvey T; Kozlov, Michael M

    2010-05-03

    Cellular membranes are highly dynamic, undergoing both persistent and dynamic shape changes driven by specialized proteins. The observed membrane shaping can be simple deformations of existing shapes or membrane remodeling involving fission or fusion. Here we describe several mechanistic principles by which membrane shaping proteins act. We especially consider models for membrane bending and fission by EHD2 proteins and membrane bending by N-BAR domains. There are major challenges ahead to understand the general principles by which diverse membrane bending proteins act and to understand how some proteins appear to span multiple modes of action from driving curvature to inducing membrane remodeling.

  19. Secretory Granule Membrane Protein Recycles Through Multivesicular Bodies

    PubMed Central

    Bäck, Nils; Rajagopal, Chitra; Mains, Richard E.; Eipper, Betty A.

    2010-01-01

    The recycling of secretory granule membrane proteins that reach the plasma membrane following exocytosis is poorly understood. As a model, peptidylglycine α-amidating monooxygenase (PAM), a granule membrane protein that catalyzes a final step in peptide processing was examined. Ultrastructural analysis of antibody internalized by PAM and surface biotinylation demonstrated efficient return of plasma membrane PAM to secretory granules. Electron microscopy revealed the rapid movement of PAM from early endosomes to the limiting membranes of multivesicular bodies and then into intralumenal vesicles. Wheat germ agglutinin and PAM antibody internalized simultaneously were largely segregated when they reached multivesicular bodies. Mutation of basally phosphorylated residues (Thr946, Ser949) in the cytoplasmic domain of PAM to Asp (TS/DD) substantially slowed its entry into intralumenal vesicles. Mutation of the same sites to Ala (TS/AA) facilitated the entry of internalized PAM into intralumenal vesicles and its subsequent return to secretory granules. Entry of PAM into intralumenal vesicles is also associated with a juxtamembrane endoproteolytic cleavage that releases a 100 kDa soluble PAM fragment that can be returned to secretory granules. Controlled entry into the intralumenal vesicles of multivesicular bodies plays a key role in the recycling of secretory granule membrane proteins. PMID:20374556

  20. Outer membrane protein biogenesis in Gram-negative bacteria

    PubMed Central

    Rollauer, Sarah E.; Sooreshjani, Moloud A.; Noinaj, Nicholas; Buchanan, Susan K.

    2015-01-01

    Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM. PMID:26370935

  1. Purification and biophysical characterization of the CapA membrane protein FTT0807 from Francisella tularensis.

    PubMed

    Martin-Garcia, Jose M; Hansen, Debra T; Zook, James; Loskutov, Andrey V; Robida, Mark D; Craciunescu, Felicia M; Sykes, Kathryn F; Wachter, Rebekka M; Fromme, Petra; Allen, James P

    2014-04-01

    The capA gene (FTT0807) from Francisella tularensis subsp. tularensis SCHU S4 encodes a 44.4 kDa integral membrane protein composed of 403 amino acid residues that is part of an apparent operon that encodes at least two other membrane proteins, CapB, and CapC, which together play a critical role in the virulence and pathogenesis of this bacterium. The capA gene was overexpressed in Escherichia coli as a C-terminal His6-tagged fusion with a folding reporter green fluorescent protein (frGFP). Purification procedures using several detergents were developed for the fluorescing and membrane-bound product, yielding approximately 30 mg of pure protein per liter of bacterial culture. Dynamic light scattering indicated that CapA-frGFP was highly monodisperse, with a size that was dependent upon both the concentration and choice of detergent. Circular dichroism showed that CapA-frGFP was stable over the range of 3-9 for the pH, with approximately half of the protein having well-defined α-helical and β-sheet secondary structure. The addition of either sodium chloride or calcium chloride at concentrations producing ionic strengths above 0.1 M resulted in a small increase of the α-helical content and a corresponding decrease in the random-coil content. Secondary-structure predictions on the basis of the analysis of the sequence indicate that the CapA membrane protein has two transmembrane helices with a substantial hydrophilic domain. The hydrophilic domain is predicted to contain a long disordered region of 50-60 residues, suggesting that the increase of α-helical content at high ionic strength could arise because of electrostatic interactions involving the disordered region. CapA is shown to be an inner-membrane protein and is predicted to play a key cellular role in the assembly of polysaccharides.

  2. Purification and Biophysical Characterization of the CapA Membrane Protein FTT0807 from Francisella tularensis

    PubMed Central

    2015-01-01

    The capA gene (FTT0807) from Francisella tularensis subsp. tularensis SCHU S4 encodes a 44.4 kDa integral membrane protein composed of 403 amino acid residues that is part of an apparent operon that encodes at least two other membrane proteins, CapB, and CapC, which together play a critical role in the virulence and pathogenesis of this bacterium. The capA gene was overexpressed in Escherichia coli as a C-terminal His6-tagged fusion with a folding reporter green fluorescent protein (frGFP). Purification procedures using several detergents were developed for the fluorescing and membrane-bound product, yielding approximately 30 mg of pure protein per liter of bacterial culture. Dynamic light scattering indicated that CapA-frGFP was highly monodisperse, with a size that was dependent upon both the concentration and choice of detergent. Circular dichroism showed that CapA-frGFP was stable over the range of 3–9 for the pH, with approximately half of the protein having well-defined α-helical and β-sheet secondary structure. The addition of either sodium chloride or calcium chloride at concentrations producing ionic strengths above 0.1 M resulted in a small increase of the α-helical content and a corresponding decrease in the random-coil content. Secondary-structure predictions on the basis of the analysis of the sequence indicate that the CapA membrane protein has two transmembrane helices with a substantial hydrophilic domain. The hydrophilic domain is predicted to contain a long disordered region of 50–60 residues, suggesting that the increase of α-helical content at high ionic strength could arise because of electrostatic interactions involving the disordered region. CapA is shown to be an inner-membrane protein and is predicted to play a key cellular role in the assembly of polysaccharides. PMID:24593131

  3. Stimulation of cleavage of membrane proteins by calmodulin inhibitors.

    PubMed Central

    Díaz-Rodríguez, E; Esparís-Ogando, A; Montero, J C; Yuste, L; Pandiella, A

    2000-01-01

    The ectodomain of several membrane-bound proteins can be shed by proteolytic cleavage. The activity of the proteases involved in shedding is highly regulated by several intracellular second messenger pathways, such as protein kinase C (PKC) and intracellular Ca(2+). Recently, the shedding of the adhesion molecule L-selectin has been shown to be regulated by the interaction of calmodulin (CaM) with the cytosolic tail of L-selectin. Prevention of CaM-L-selectin interaction by CaM inhibitors or mutation of a CaM binding site in L-selectin induced L-selectin ectodomain shedding. Whether this action of CaM inhibitors also affects other membrane-bound proteins is not known. In the present paper we show that CaM inhibitors also stimulate the cleavage of several other transmembrane proteins, such as the membrane-bound growth factor precursors pro-transforming growth factor-alpha and pro-neuregulin-alpha2c, the receptor tyrosine kinase, TrkA, and the beta-amyloid precursor protein. Cleavage induced by CaM inhibitors was a rapid event, and resulted from the activation of a mechanism that was independent of PKC or intracellular Ca(2+) increases, but was highly sensitive to hydroxamic acid-based metalloprotease inhibitors. Mutational analysis of the intracellular domain of the TrkA receptor indicated that CaM inhibitors may stimulate membrane-protein ectodomain cleavage by mechanisms independent of CaM-substrate interaction. PMID:10677354

  4. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  5. Integral membrane protein interaction with Triton cytoskeletons of erythrocytes.

    PubMed

    Sheetz, M P

    1979-10-19

    The organization of erythrocyte membrane lipids and proteins has been studied following the release of cytoplasmic components with the non-ionic detergent Triton X-100. After detergent extraction, a detergent-resistant complex called the erythrocyte cytoskeleton is separated from detergent, solubilized lipid and protein by sucrose buoyant density sedimentation. In cytoskeletons prepared under isotonic conditions all of the major erythrocyte membrane proteins are retained except for the integral protein, glycophorin, which is quantitatively solubilized and another integral glycoprotein, band 3, which is only 60% removed. When cytoskeletons are prepared in hypertonic KCl solutions, band 3 is fully solubilized along with bands 2.1 and 4.2 and several minor components. The resulting cytoskeletons have the same morphology as those prepared in isotonic buffer but they are composed of only three major peripheral proteins, spectrin, actin and band 4.1. We have designated this peripheral protein complex the 'shell' of the erythrocyte membrane, and have shown that the attachment of band 3 to the shell satisfies the criteria for a specific interaction. Although Triton did affect erythrocyte shape, cytoskeleton lipid content and the activity of membrane proteases, there was no indication that Triton altered the attachment of band 3 to the shell. We suggest that band 3 attaches to the shell as part of a ternary complex of bands 2.1, 3 and 4.2.

  6. Molecular mechanisms of protein and lipid targeting to ciliary membranes

    PubMed Central

    Emmer, Brian T.; Maric, Danijela; Engman, David M.

    2010-01-01

    Cilia are specialized surface regions of eukaryotic cells that serve a variety of functions, ranging from motility to sensation and to regulation of cell growth and differentiation. The discovery that a number of human diseases, collectively known as ciliopathies, result from defective cilium function has expanded interest in these structures. Among the many properties of cilia, motility and intraflagellar transport have been most extensively studied. The latter is the process by which multiprotein complexes associate with microtubule motors to transport structural subunits along the axoneme to and from the ciliary tip. By contrast, the mechanisms by which membrane proteins and lipids are specifically targeted to the cilium are still largely unknown. In this Commentary, we review the current knowledge of protein and lipid targeting to ciliary membranes and outline important issues for future study. We also integrate this information into a proposed model of how the cell specifically targets proteins and lipids to the specialized membrane of this unique organelle. PMID:20145001

  7. Novel benzanthrone probes for membrane and protein studies

    NASA Astrophysics Data System (ADS)

    Ryzhova, Olga; Vus, Kateryna; Trusova, Valeriya; Kirilova, Elena; Kirilov, Georgiy; Gorbenko, Galyna; Kinnunen, Paavo

    2016-09-01

    The applicability of a series of novel benzanthrone dyes to monitoring the changes in physicochemical properties of lipid bilayer and to differentiating between the native and aggregated protein states has been evaluated. Based on the quantitative parameters of the dye-membrane and dye-protein binding derived from the fluorimetric titration data, the most prospective membrane probes and amyloid tracers have been selected from the group of examined compounds. Analysis of the red edge excitation shifts of the membrane- and amyloid-bound dyes provided information on the properties of benzanthrone binding sites within the lipid and protein matrixes. To understand how amyloid specificity of benzanthrones correlates with their structure, quantitative structure activity relationship (QSAR) analysis was performed involving a range of quantum chemical molecular descriptors. A statistically significant model was obtained for predicting the sensitivity of novel benzanthrone dyes to amyloid fibrils.

  8. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    PubMed

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  9. Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients.

    PubMed

    Pesciotta, Esther N; Sriswasdi, Sira; Tang, Hsin-Yao; Speicher, David W; Mason, Philip J; Bessler, Monica

    2014-01-01

    Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.

  10. Construction of a multivalent meningococcal vaccine strain based on the class 1 outer membrane protein.

    PubMed Central

    Van Der Ley, P; Poolman, J T

    1992-01-01

    Outer membrane complexes (OMCs) are promising vaccine candidates for protection against meningococcal disease. However, a major obstacle to this approach is the fact that the protective antibodies induced are generally type specific. In an attempt to overcome this problem, we have investigated the possibility of constructing a multivalent vaccine strain by insertion of an additional class 1 outer membrane protein-encoding gene. Starting with a derivative of strain H44/76 deficient in class 3 outer membrane protein, a second class 1 gene was inserted into the chromosome, through homologous recombination with a suicide plasmid carrying the class 1 gene from strain 2996 placed within a class 5 gene. In this way, a strain was obtained in which a class 3 protein was in effect replaced by a class 1 protein from another subtype, i.e. P1.5,2 in addition to the P1.7,16 protein of H44/76. Immunization of mice with such OMCs resulted in high bactericidal titers against both H44/76 and 2996, where normally only strain-specific antibodies are induced. Mutational removal of class 3 protein from the immunizing OMCs had no detectable effect on the bactericidal titer against H44/76, whereas removal of class 1 protein led to a strong reduction. These results demonstrate the dominant role of the subtype-specific sequences of class 1 protein in the induction of bactericidal antibodies and show that construction of a multivalent OMC-based vaccine should be feasible. Images PMID:1639486

  11. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels.

    PubMed

    Itel, Fabian; Al-Samir, Samer; Öberg, Fredrik; Chami, Mohamed; Kumar, Manish; Supuran, Claudiu T; Deen, Peter M T; Meier, Wolfgang; Hedfalk, Kristina; Gros, Gerolf; Endeward, Volker

    2012-12-01

    Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.g., MDCK and tsA201 cells, in fact possess an unexpectedly low CO(2) permeability (P(CO2)) of ∼0.01 cm/s, which is 2 orders of magnitude lower than the P(CO2) of pure planar phospholipid bilayers (∼1 cm/s). Phospholipid vesicles enriched with similar amounts of cholesterol also exhibit P(CO2) ≈ 0.01 cm/s, identifying cholesterol as the major determinant of membrane P(CO2). This is confirmed by the demonstration that MDCK cells depleted of or enriched with membrane cholesterol show dramatic increases or decreases in P(CO2), respectively. We demonstrate, furthermore, that reconstitution of human AQP-1 into cholesterol-containing vesicles, as well as expression of human AQP-1 in MDCK cells, leads to drastic increases in P(CO2), indicating that gas channels are of high functional significance for gas transfer across membranes of low intrinsic gas permeability.

  12. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    PubMed

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells.

  13. Pathogen receptor discovery with a microfluidic human membrane protein array

    PubMed Central

    Glick, Yair; Ben-Ari, Ya’ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella

    2016-01-01

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein–pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism. PMID:27044079

  14. MISTIC-fusion proteins as antigens for high quality membrane protein antibodies

    PubMed Central

    Alves, Natalia Silva; Astrinidis, Susanne Adina; Eisenhardt, Nathalie; Sieverding, Cornelia; Redolfi, Josef; Lorenz, Michael; Weberruss, Marion; Moreno-Andrés, Daniel; Antonin, Wolfram

    2017-01-01

    Lack of high-quality antibodies against transmembrane proteins is a widely recognized hindrance in biomedical and cell biological research. Here we present a robust pipeline for the generation of polyclonal antibodies employing full-length membrane proteins as immunogens to overcome this “antibody bottleneck”. We express transmembrane proteins fused to a MISTIC fragment that enhances expression of eukaryotic membrane proteins in E. coli. Purified membrane proteins are used as immunogen for rabbit injection employing standard immunizing protocols. The raised antibodies against membrane proteins of the endoplasmic reticulum and the nuclear envelope, which we use as test cases, function in a wide range of applications and are superior to ones produced against soluble domains as immunogens. PMID:28148968

  15. Calreticulin: one protein, one gene, many functions.

    PubMed Central

    Michalak, M; Corbett, E F; Mesaeli, N; Nakamura, K; Opas, M

    1999-01-01

    The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology. PMID:10567207

  16. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function

    PubMed Central

    Scott, Emily E.; Wolf, C. Roland; Otyepka, Michal; Humphreys, Sara C.; Reed, James R.; Henderson, Colin J.; McLaughlin, Lesley A.; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P.; Barnaba, Carlo; Brozik, James A.; Jones, Jeffrey P.; Estrada, D. Fernando; Laurence, Jennifer S.; Park, Ji Won

    2016-01-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to “helicopter” above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  17. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae.

    PubMed

    Sandkvist, M; Michel, L O; Hough, L P; Morales, V M; Bagdasarian, M; Koomey, M; DiRita, V J; Bagdasarian, M

    1997-11-01

    The general secretion pathway (GSP) of Vibrio cholerae is required for secretion of proteins including chitinase, enterotoxin, and protease through the outer membrane. In this study, we report the cloning and sequencing of a DNA fragment from V. cholerae, containing 12 open reading frames, epsC to -N, which are similar to GSP genes of Aeromonas, Erwinia, Klebsiella, Pseudomonas, and Xanthomonas spp. In addition to the two previously described genes, epsE and epsM (M. Sandkvist, V. Morales, and M. Bagdasarian, Gene 123: 81-86, 1993; L. J. Overbye, M. Sandkvist, and M. Bagdasarian, Gene 132:101-106, 1993), it is shown here that epsC, epsF, epsG, and epsL also encode proteins essential for GSP function. Mutations in the eps genes result in aberrant outer membrane protein profiles, which indicates that the GSP, or at least some of its components, is required not only for secretion of soluble proteins but also for proper outer membrane assembly. Several of the Eps proteins have been identified by use of the T7 polymerase-promoter system in Escherichia coli. One of them, a pilin-like protein, EpsG, was analyzed also in V. cholerae and found to migrate as two bands on polyacrylamide gels, suggesting that in this organism it might be processed or otherwise modified by a prepilin peptidase. We believe that TcpJ prepilin peptidase, which processes the subunit of the toxin-coregulated pilus, TcpA, is not involved in this event. This is supported by the observations that apparent processing of EpsG occurs in a tcpJ mutant of V. cholerae and that, when coexpressed in E. coli, TcpJ cannot process EpsG although the PilD peptidase from Neisseria gonorrhoeae can.

  18. Strategies for crystallization of large membrane protein complexes

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shinya; Shinzawa-Itoh, Kyoko; Ueda, Hidefumi; Tsukihara, Tomitake; Fukumoto, Yoshihisa; Kubota, Tomomi; Kawamoto, Masahide; Fukuyama, Keiichi; Matsubara, Hiroshi

    1992-08-01

    Crystalline cytochrome c oxidase and ubiquinol: cytochrome c oxidoreductase which diffracted X-rays at 7-8A˚resolution were obtained from bovine heart mitochondria. The methods for the purification and crystallization of these enzymes indicate that large membrane protein complexes are easier to purify and crystallize than smaller homologous membrane protein complexes, because the former have more hydrophilic surface than the latter. Bulky and polydispersed detergents such as Brij-35 and Tween 20 attached to the isolated complex are not always obstructive to crystallization if they are effective for stabilizing the complexes.

  19. The heat-modifiable outer membrane protein of Actinobacillus actinomycetemcomitans: relationship to OmpA proteins.

    PubMed Central

    Wilson, M E

    1991-01-01

    The outer membrane of Actinobacillus actinomycetemcomitans contains a 29-kDa protein which exhibits heat modifiability on sodium dodecyl sulfate-polyacrylamide gels and represents a major target for immunoglobulin G antibody in sera of periodontitis patients colonized by this organism. In the present study, the N-terminal amino acid sequence of the 29-kDa outer membrane protein was determined and compared with reported sequences for other known proteins. The heat-modifiable outer membrane protein of A. actinomycetemcomitans was found to exhibit significant N-terminal homology with the OmpA proteins of other gram-negative bacteria. Moreover, this protein reacted with antiserum raised against the purified OmpA protein of Escherichia coli K-12. Whether the heat-modifiable OMP of A. actinomycetemcomitans also shares functional properties of OmpA proteins, particularly with respect to bacteriophage receptor activity, is presently under investigation. Images PMID:2050416

  20. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4

  1. The Charcot Marie Tooth disease protein LITAF is a zinc-binding monotopic membrane protein

    PubMed Central

    Qin, Wenxia; Wunderley, Lydia; Barrett, Anne L.; High, Stephen; Woodman, Philip G.

    2016-01-01

    LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61β, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins. PMID:27582497

  2. Leptospiral Outer Membrane Protein Microarray, a Novel Approach to Identification of Host Ligand-Binding Proteins

    PubMed Central

    Matsunaga, James; Haake, David A.

    2012-01-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens. PMID:22961849

  3. Statistical thermodynamics of membrane bending-mediated protein-protein attractions.

    PubMed Central

    Chou, T; Kim, K S; Oster, G

    2001-01-01

    Highly wedge-shaped integral membrane proteins, or membrane-adsorbed proteins can induce long-ranged deformations. The strain in the surrounding bilayer creates relatively long-ranged forces that contribute to interactions with nearby proteins. In contrast, to direct short-ranged interactions such as van der Waal's, hydrophobic, or electrostatic interactions, both local membrane Gaussian curvature and protein ellipticity can induce forces acting at distances of up to a few times their typical radii. These forces can be attractive or repulsive, depending on the proteins' shape, height, contact angle with the bilayer, and a pre-existing local membrane curvature. Although interaction energies are not pairwise additive, for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair interaction potentials and entropic contributions to the two-dimensional osmotic pressure of a collection of noncircular proteins. For flat membranes, bending rigidities of approximately 100k(B)T, moderate ellipticities, and large contact angle proteins, we find thermally averaged attractive interactions of order k(B)T. These interactions may play an important role in the intermediate stages of protein aggregation. Numerous biological processes where membrane bending-mediated interactions may be relevant are cited, and possible experiments are discussed. PMID:11222274

  4. Purification of a membrane protein with conjugated engineered micelles.

    PubMed

    Patchornik, Guy; Danino, Dganit; Kesselman, Ellina; Wachtel, Ellen; Friedman, Noga; Sheves, Mordechai

    2013-07-17

    A novel method for purifying membrane proteins is presented. The approach makes use of engineered micelles composed of a nonionic detergent, β-octylglucoside, and a hydrophobic metal chelator, bathophenanthroline. Via the chelators, the micelles are specifically conjugated, i.e., tethered, in the presence of Fe(2+) ions, thereby forming micellar aggregates which provide the environment for separation of lipid-soluble membrane proteins from water-soluble proteins. The micellar aggregates (here imaged by cryo-transmission electron microscopy) successfully purify the light driven proton pump, bacteriorhodopsin (bR), from E. coli lysate. Purification takes place within 15 min and can be performed both at room temperature and at 4 °C. More than 94% of the water-soluble macromolecules in the lysate are excluded, with recovery yields of the membrane protein ranging between 74% and 85%. Since this approach does not require precipitants, high concentrations of detergent to induce micellar aggregates, high temperature, or changes in pH, it is suggested that it may be applied to the purification of a wide variety of membrane proteins.

  5. Capture-stabilize approach for membrane protein SPR assays.

    PubMed

    Chu, Ruiyin; Reczek, David; Brondyk, William

    2014-12-08

    Measuring the binding kinetics of antibodies to intact membrane proteins by surface plasmon resonance has been challenging largely because of the inherent difficulties in capturing membrane proteins on chip surfaces while retaining their native conformation. Here we describe a method in which His-tagged CXCR5, a GPCR, was purified and captured on a Biacore chip surface via the affinity tag. The captured receptor protein was then stabilized on the chip surface by limited cross-linking. The resulting chip surface retained ligand binding activity and was used for monoclonal antibody kinetics assays by a standard Biacore kinetics assay method with a simple low pH regeneration step. We demonstrate the advantages of this whole receptor assay when compared to available peptide-based binding assays. We further extended the application of the capture-stabilize approach to virus-like particles and demonstrated its utility analyzing antibodies against CD52, a GPI-anchored protein, in its native membrane environment. The results are the first demonstration of chemically stabilized chip surfaces for membrane protein SPR assays.

  6. Detergent interaction with tethered bilayer lipid membranes for protein reconstitution

    NASA Astrophysics Data System (ADS)

    Broccio, Matteo; Zan Goh, Haw; Loesche, Mathias

    2009-03-01

    Tethered bilayer lipid membranes (tBLMs) are self-assembled biomimetic structures in which the membrane is separated from a solid substrate by a nm-thick hydrated submembrane space. These model systems are being used in binding studies of peripheral proteins and exotoxins. Here we aim at their application for the reconstitution of water-insoluble integral membrane proteins. As an alternative to fusion of preformed proteoliposomes we study the direct reconstitution of such proteins for applications in biosensing and pharmaceutical screening. For reconstitution, highly insulating tBLMs (R˜10^5-10^6 φ) were temporarily incubated with a detergent to screen for conditions that keep the detergent-saturated membranestable and ready to incorporate detergent-solubilized proteins. We assess the electrical characteristics, i.e. specific resistance and capacitance, by means of electrochemical impedance spectroscopy (EIS) under timed incubation with decylmaltoside and dodecylmaltoside detergents in a regime around their critical micelle concentration, 1.8 mM and 0.17 mM respectively and demonstrate the restoration of the tBLM upon detergent removal. Thereby a range of concentration and incubation times was identified, that represents optimal conditions for the subsequent membrane protein reconstitution.

  7. Analysis of Surface-Exposed Outer Membrane Proteins in Helicobacter pylori

    PubMed Central

    Voss, Bradley J.; Gaddy, Jennifer A.; McDonald, W. Hayes

    2014-01-01

    More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins. PMID:24769695

  8. The size and detergent binding of membrane proteins.

    PubMed

    Clarke, S

    1975-07-25

    Sucrose density gradient centrifugation has been used to measure the binding of Triton X-100 above its critical micellar concentration to a variety of purified membrane and non-membrane proteins. In addition, binding studies were done on the three proteins below the critical micellar concentration of detergent to distinguish between the interaction of proteins with detergent monomers and detergent micelles. A procedure is described for the calculation of the molecular weight of these Triton X-100 protein complexes and measurements were made for opsin, plasma low density lipoprotein, the (Na-+ plus K-+)-dependent adenosine triphosphatase, the human red blood cell major sialoglycoprotein (PAS-1) and the human red blood cell minor glycoprotein (bandIII). These proteins behave as monomers or dimers in detergent and bind between 0.28 and 1.12 g of detergent per g of protein. A general method is also present for calculating the molecular size and shape of impure membrane proteins in detergent. Finally, Triton X-100 was shown to replace bound Na dodecyl-SO4 on the minor glycoprotein of the red blood cell.

  9. Carotenoid binding to proteins: Modeling pigment transport to lipid membranes.

    PubMed

    Reszczynska, Emilia; Welc, Renata; Grudzinski, Wojciech; Trebacz, Kazimierz; Gruszecki, Wieslaw I

    2015-10-15

    Carotenoid pigments play numerous important physiological functions in human organism. Very special is a role of lutein and zeaxanthin in the retina of an eye and in particular in its central part, the macula lutea. In the retina, carotenoids can be directly present in the lipid phase of the membranes or remain bound to the protein-pigment complexes. In this work we address a problem of binding of carotenoids to proteins and possible role of such structures in pigment transport to lipid membranes. Interaction of three carotenoids, beta-carotene, lutein and zeaxanthin with two proteins: bovine serum albumin and glutathione S-transferase (GST) was investigated with application of molecular spectroscopy techniques: UV-Vis absorption, circular dichroism and Fourier transform infrared spectroscopy (FTIR). Interaction of pigment-protein complexes with model lipid bilayers formed with egg yolk phosphatidylcholine was investigated with application of FTIR, Raman imaging of liposomes and electrophysiological technique, in the planar lipid bilayer models. The results show that in all the cases of protein and pigment studied, carotenoids bind to protein and that the complexes formed can interact with membranes. This means that protein-carotenoid complexes are capable of playing physiological role in pigment transport to biomembranes.

  10. Plasma Membrane Targeting of Protocadherin 15 Is Regulated by the Golgi-Associated Chaperone Protein PIST.

    PubMed

    Nie, Hongyun; Liu, Yueyue; Yin, Xiaolei; Cao, Huiren; Wang, Yanfei; Xiong, Wei; Lin, Yushuang; Xu, Zhigang

    2016-01-01

    Protocadherin 15 (PCDH15) is a core component of hair cell tip-links and crucial for proper function of inner ear hair cells. Mutations of PCDH15 gene cause syndromic and nonsyndromic hearing loss. At present, the regulatory mechanisms responsible for the intracellular transportation of PCDH15 largely remain unknown. Here we show that PIST, a Golgi-associated, PDZ domain-containing protein, interacts with PCDH15. The interaction is mediated by the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI) of PCDH15. Through this interaction, PIST retains PCDH15 in the trans-Golgi network (TGN) and reduces the membrane expression of PCDH15. We have previously showed that PIST regulates the membrane expression of another tip-link component, cadherin 23 (CDH23). Taken together, our finding suggests that PIST regulates the intracellular trafficking and membrane targeting of the tip-link proteins CDH23 and PCDH15.

  11. Conserved outer membrane protein of Neisseria meningitidis involved in capsule expression.

    PubMed Central

    Frosch, M; Müller, D; Bousset, K; Müller, A

    1992-01-01

    In Neisseria meningitidis, translocation of capsular polysaccharides to the cell surface is mediated by a transport system that fits the characteristics of ABC (ATP-binding cassette) transporters. One protein of this transport system, termed CtrA, is located in the outer membrane. By use of a CtrA-specific monoclonal antibody, we could demonstrate that CtrA occurs exclusively in N. meningitidis and not in other pathogenic or nonpathogenic Neisseria species. Nucleotide sequence comparison of the ctrA gene from different meningococcal serogroups indicated that CtrA is strongly conserved in all meningococcal serogroups, independent of the chemical composition of the capsular polysaccharide. Secondary structure analysis revealed that CtrA is anchored in the outer membrane by eight membrane-spanning amphipathic beta strands, a structure of proteins that function as porins. Images PMID:1371768

  12. Integral membrane proteins in proteomics. How to break open the black box?

    PubMed

    Vit, O; Petrak, J

    2017-02-05

    Integral membrane proteins (IMPs) are coded by 20-30% of human genes and execute important functions - transmembrane transport, signal transduction, cell-cell communication, cell adhesion to the extracellular matrix, and many other processes. Due to their hydrophobicity, low expression and lack of trypsin cleavage sites in their transmembrane segments, IMPs have been generally under-represented in routine proteomic analyses. However, the field of membrane proteomics has changed markedly in the past decade, namely due to the introduction of filter assisted sample preparation (FASP), the establishment of cell surface capture (CSC) protocols, and the development of methods that enable analysis of the hydrophobic transmembrane segments. This review will summarize the recent developments in the field and outline the most successful strategies for the analysis of integral membrane proteins.

  13. A Model for Shaping Membrane Sheets by Protein Scaffolds

    PubMed Central

    Schweitzer, Yonatan; Shemesh, Tom; Kozlov, Michael M.

    2015-01-01

    Membranes of peripheral endoplasmic reticulum form intricate morphologies consisting of tubules and sheets as basic elements. The physical mechanism of endoplasmic-reticulum shaping has been suggested to originate from the elastic behavior of the sheet edges formed by linear arrays of oligomeric protein scaffolds. The heart of this mechanism, lying in the relationships between the structure of the protein scaffolds and the effective intrinsic shapes and elastic properties of the sheets’ edges, has remained hypothetical. Here we provide a detailed computational analysis of these issues. By minimizing the elastic energy of membrane bending, we determine the effects of a rowlike array of semicircular arclike membrane scaffolds on generation of a membrane fold, which shapes the entire membrane surface into a flat double-membrane sheet. We show, quantitatively, that the sheet’s edge line tends to adopt a positive or negative curvature depending on the scaffold’s geometrical parameters. We compute the effective elastic properties of the sheet edge and analyze the dependence of the equilibrium distance between the scaffolds along the edge line on the scaffold geometry. PMID:26244738

  14. Cell Cycle Programs of Gene Expression Control Morphogenetic Protein Localization

    PubMed Central

    Lord, Matthew; Yang, Melody C.; Mischke, Michelle; Chant, John

    2000-01-01

    Genomic studies in yeast have revealed that one eighth of genes are cell cycle regulated in their expression. Almost without exception, the significance of cell cycle periodic gene expression has not been tested. Given that many such genes are critical to cellular morphogenesis, we wanted to examine the importance of periodic gene expression to this process. The expression profiles of two genes required for the axial pattern of cell division, BUD3 and BUD10/AXL2/SRO4, are strongly cell cycle regulated. BUD3 is expressed close to the onset of mitosis. BUD10 is expressed in late G1. Through promotor-swap experiments, the expression profile of each gene was altered and the consequences examined. We found that an S/G2 pulse of BUD3 expression controls the timing of Bud3p localization, but that this timing is not critical to Bud3p function. In contrast, a G1 pulse of BUD10 expression plays a direct role in Bud10p localization and function. Bud10p, a membrane protein, relies on the polarized secretory machinery specific to G1 to be delivered to its proper location. Such a secretion-based targeting mechanism for membrane proteins provides cells with flexibility in remodeling their architecture or evolving new forms. PMID:11134078

  15. Cholesterol and the interaction of proteins with membrane domains.

    PubMed

    Epand, Richard M

    2006-07-01

    Cholesterol is not uniformly distributed in biological membranes. One of the factors influencing the formation of cholesterol-rich domains in membranes is the unequal lateral distribution of proteins in membranes. Certain proteins are found in cholesterol-rich domains. In some of these cases, it is as a consequence of the proteins interacting directly with cholesterol. There are several structural features of a protein that result in the protein preferentially associating with cholesterol-rich domains. One of the best documented of these is certain types of lipidations. In addition, however, there are segments of a protein that can preferentially sequester cholesterol. We discuss two examples of these cholesterol-recognition elements: the cholesterol recognition/interaction amino acid consensus (CRAC) domain and the sterol-sensing domain (SSD). The requirements for a CRAC motif are quite flexible and predict that a large number of sequences could recognize cholesterol. There are, however, certain proteins that are known to interact with cholesterol-rich domains of cell membranes that have CRAC motifs, and synthetic peptides corresponding to these segments also promote the formation of cholesterol-rich domains. Modeling studies have provided a rationale for certain requirements of the CRAC motif. The SSD is a larger protein segment comprising five transmembrane domains. The amino acid sequence YIYF is found in several SSD and in certain other proteins for which there is evidence that they interact with cholesterol-rich domains. The CRAC sequences as well as YIYF are generally found adjacent to a transmembrane helical segment. These regions appear to have a strong influence of the localization of certain proteins into domains in biological membranes. In addition to the SSD, there is also a domain found in soluble proteins, the START domain, that binds lipids. Certain proteins with START domains specifically bind cholesterol and are believed to function in

  16. Membrane proteins in four acts: function precedes structure determination.

    PubMed

    Cramer, W A; Zakharov, S D; Saif Hasan, S; Zhang, H; Baniulis, D; Zhalnina, M V; Soriano, G M; Sharma, O; Rochet, J C; Ryan, C; Whitelegge, J; Kurisu, G; Yamashita, E

    2011-12-01

    Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/proton translocation. (1) Crystal structures of the eight subunit hetero-oligomeric trans-membrane dimeric cytochrome b(6)f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of 17 monotopic and polytopic hetero-subunits. (II) β-Barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B(12) binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins [1]. A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a "fishing pole" model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained [2]. A crystal structure of the N-terminal translocation domain of colicin E3 complexed to

  17. Pseudomonas syringae Effector Avirulence Protein E Localizes to the Host Plasma Membrane and Down-Regulates the Expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 Gene Required for Antibacterial Immunity in Arabidopsis1[OPEN

    PubMed Central

    Xin, Xiu-Fang; Nomura, Kinya; Ding, Xinhua; Chen, Xujun; Wang, Kun; Aung, Kyaw; Uribe, Francisco; Rosa, Bruce; Yao, Jian; Chen, Jin; He, Sheng Yang

    2015-01-01

    Many bacterial pathogens of plants and animals deliver effector proteins into host cells to promote infection. Elucidation of how pathogen effector proteins function not only is critical for understanding bacterial pathogenesis but also provides a useful tool in discovering the functions of host genes. In this study, we characterized the Pseudomonas syringae pv tomato DC3000 effector protein Avirulence Protein E (AvrE), the founding member of a widely distributed, yet functionally enigmatic, bacterial effector family. We show that AvrE is localized in the plasma membrane (PM) and PM-associated vesicle-like structures in the plant cell. AvrE contains two physically interacting domains, and the amino-terminal portion contains a PM-localization signal. Genome-wide microarray analysis indicates that AvrE, as well as the functionally redundant effector Hypersensitive response and pathogenicity-dependent Outer Protein M1, down-regulates the expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 (NHL13) gene in Arabidopsis (Arabidopsis thaliana). Mutational analysis shows that NHL13 is required for plant immunity, as the nhl13 mutant plant displayed enhanced disease susceptibility. Our results defined the action site of one of the most important bacterial virulence proteins in plants and the antibacterial immunity function of the NHL13 gene. PMID:26206852

  18. The Membrane Protein LasM Promotes the Culturability of Legionella pneumophila in Water

    PubMed Central

    Li, Laam; Faucher, Sébastien P.

    2016-01-01

    The water-borne pathogen Legionella pneumophila (Lp) strongly expresses the lpg1659 gene in water. This gene encodes a hypothetical protein predicted to be a membrane protein using in silico analysis. While no conserved domains were identified in Lpg1659, similar proteins are found in many Legionella species and other aquatic bacteria. RT-qPCR showed that lpg1659 is positively regulated by the alternative sigma factor RpoS, which is essential for Lp to survive in water. These observations suggest an important role of this novel protein in the survival of Lp in water. Deletion of lpg1659 did not affect cell morphology, membrane integrity or tolerance to high temperature. Moreover, lpg1659 was dispensable for growth of Lp in rich medium, and during infection of the amoeba Acanthamoeba castellanii and of THP-1 human macrophages. However, deletion of lpg1659 resulted in an early loss of culturability in water, while over-expression of this gene promoted the culturability of Lp. Therefore, these results suggest that lpg1659 is required for Lp to maintain culturability, and possibly long-term survival, in water. Since the loss of culturability observed in the absence of Lpg1659 was complemented by the addition of trace metals into water, this membrane protein is likely a transporter for acquiring essential trace metal for maintaining culturability in water and potentially in other metal-deprived conditions. Given its role in the survival of Lp in water, Lpg1659 was named LasM for Legionella aquatic survival membrane protein. PMID:27734007

  19. Modulation of membrane protein lateral mobility by polyphosphates and polyamines.

    PubMed

    Schindler, M; Koppel, D E; Sheetz, M P

    1980-03-01

    The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of "fluorescence redistribution after fusion." Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.

  20. Mutual diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    The generalized Stokes-Einstein equation is used, together with the two-dimensional pressure equation, to analyze mutual diffusion in concentrated membrane systems. These equations can be used to investigate the role that both direct and hydrodynamic interactions play in determining diffusive behavior. Here only direct interactions are explicitly incorporated into the theory at high densities; however, both direct and hydrodynamic interactions are analyzed for some dilute solutions. We look at diffusion in the presence of weak attractions, soft repulsions, and hard-core repulsions. It is found that, at low densities, attractions retard mutual diffusion while repulsions enhance it. Mechanistically, attractions tend to tether particles together and oppose the dissipation of gradients or fluctuations in concentration, while repulsions provide a driving force that pushes particles apart. At higher concentrations, changes in the structure of the fluid enhance mutual diffusion even in the presence of attractions. It is shown that the theoretical description of postelectrophoresis relaxation and fluorescence correlation spectroscopy experiments must be modified if interacting systems are studied. The effects of interactions on mutual diffusion coefficients have probably already been seen in postelectrophoresis relaxation experiments. PMID:2775829

  1. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.

  2. Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies

    PubMed Central

    Zheng, JiaLin C.; Tham, Chook Teng; Keatings, Kathleen; Fan, Steven; Liou, Angela Yen-Chun; Numata, Yuka; Allan, Douglas; Numata, Masayuki

    2014-01-01

    Secretory Carrier Membrane Proteins (SCAMPs) are a group of tetraspanning integral membrane proteins evolutionarily conserved from insects to mammals and plants. Mammalian genomes contain five SCAMP genes SCAMP1-SCAMP5 that regulate membrane dynamics, most prominently membrane-depolarization and Ca2+-induced regulated secretion, a key mechanism for neuronal and neuroendocrine signaling. However, the biological role of SCAMPs has remained poorly understood primarily owing to the lack of appropriate model organisms and behavior assays. Here we generate Drosophila Scamp null mutants and show that they exhibit reduced lifespan and behavioral abnormalities including impaired climbing, deficiency in odor associated long-term memory, and a susceptibility to heat-induced seizures. Neuron-specific restoration of Drosophila Scamp rescues all Scamp null behavioral phenotypes, indicating that the phenotypes are due to loss of neuronal Scamp. Remarkably, neuronal expression of human SCAMP genes rescues selected behavioral phenotypes of the mutants, suggesting the conserved function of SCAMPs across species. The newly developed Drosophila mutants present the first evidence that genetic depletion of SCAMP at the organismal level leads to varied behavioral abnormalities, and the obtained results indicate the importance of membrane dynamics in neuronal functions in vivo. PMID:25478561

  3. Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies.

    PubMed

    Zheng, JiaLin C; Tham, Chook Teng; Keatings, Kathleen; Fan, Steven; Liou, Angela Yen-Chun; Numata, Yuka; Allan, Douglas; Numata, Masayuki

    2014-01-01

    Secretory Carrier Membrane Proteins (SCAMPs) are a group of tetraspanning integral membrane proteins evolutionarily conserved from insects to mammals and plants. Mammalian genomes contain five SCAMP genes SCAMP1-SCAMP5 that regulate membrane dynamics, most prominently membrane-depolarization and Ca(2+)-induced regulated secretion, a key mechanism for neuronal and neuroendocrine signaling. However, the biological role of SCAMPs has remained poorly understood primarily owing to the lack of appropriate model organisms and behavior assays. Here we generate Drosophila Scamp null mutants and show that they exhibit reduced lifespan and behavioral abnormalities including impaired climbing, deficiency in odor associated long-term memory, and a susceptibility to heat-induced seizures. Neuron-specific restoration of Drosophila Scamp rescues all Scamp null behavioral phenotypes, indicating that the phenotypes are due to loss of neuronal Scamp. Remarkably, neuronal expression of human SCAMP genes rescues selected behavioral phenotypes of the mutants, suggesting the conserved function of SCAMPs across species. The newly developed Drosophila mutants present the first evidence that genetic depletion of SCAMP at the organismal level leads to varied behavioral abnormalities, and the obtained results indicate the importance of membrane dynamics in neuronal functions in vivo.

  4. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE PAGES

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; ...

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Heremore » we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can

  5. Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins

    PubMed Central

    Kleanthous, Colin; Rassam, Patrice; Baumann, Christoph G

    2015-01-01

    It has until recently been unclear whether outer membrane proteins (OMPs) of Gram-negative bacteria are organized or distributed randomly. Studies now suggest promiscuous protein–protein interactions (PPIs) between β-barrel OMPs in Escherichia coli govern their local and global dynamics, engender spatiotemporal patterning of the outer membrane into micro-domains and are the basis of β-barrel protein turnover. We contextualize these latest advances, speculate on areas of bacterial cell biology that might be influenced by the organization of OMPs into supramolecular assemblies, and highlight the new questions and controversies this revised view of the bacterial outer membrane raises. PMID:26629934

  6. Mutual control of membrane fission and fusion proteins.

    PubMed

    Peters, Christopher; Baars, Tonie L; Bühler, Susanne; Mayer, Andreas

    2004-11-24

    Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.

  7. Heat Shock Protein translocation induced by membrane fluidization increases tumor-cell sensitivity to chemotherapeutic drugs.

    PubMed

    Dempsey, Nina C; Ireland, H Elyse; Smith, Carly M; Hoyle, Christine F; Williams, John H H

    2010-10-28

    Treatment of chronic lymphocytic leukemia (CLL) remains a challenge due to the frequency of drug resistance amongst patients. Improving the delivery of chemotherapeutic agents while reducing the expression of anti-apoptotic Heat Shock Proteins (HSPs) within the cancer cells may facilitate in overcoming this drug resistance. We demonstrate for the first time that sub-lethal doses of chemotherapeutic agents can be combined with membrane fluidizing treatments to produce a significant increase in drug efficacy and apoptosis in vitro. We show that fluidizers result in a transient decrease in intracellular HSPs, resulting in increased tumor-cell sensitivity and a membrane-associated induction of HSP gene expression.

  8. Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages.

    PubMed Central

    Roy, C R; Isberg, R R

    1997-01-01

    The Legionella pneumophila dotA gene is required for intracellular growth of the bacterium in macrophages. In this study, a structure-function analysis of the DotA protein was conducted to elucidate the role of this protein in L. pneumophila pathogenesis. Translational fusions of dotA to the Escherichia coli phoA and lacZ genes indicated that DotA is an integral cytoplasmic membrane protein with eight membrane-spanning domains. DotA contains two large periplasmic domains of approximately 503 and 73 amino acids and a carboxyl-terminal cytoplasmic domain of 122 amino acids. Protein fractionation studies were consistent with DotA residing in the inner membrane. An alkaline phosphatase fusion located 9 amino acids upstream from the C terminus of DotA still retained function and was able to restore intracellular growth when harbored by two L. pneumophila dotA mutants. A hybrid protein from which the carboxyl-terminal 48 amino acids of DotA were deleted was unable to complement the intracellular growth defect in the dotA mutants, indicating that this cytoplasmic region is required for function. PMID:9009315

  9. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology.

    PubMed

    Joly, Nicolas; Engl, Christoph; Jovanovic, Goran; Huvet, Maxime; Toni, Tina; Sheng, Xia; Stumpf, Michael P H; Buck, Martin

    2010-09-01

    The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.

  10. A role for the membrane Golgi protein Ema in autophagy.

    PubMed

    Kim, Sungsu; DiAntonio, Aaron

    2012-08-01

    Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.

  11. Renaturing Membrane Proteins in the Lipid Cubic Phase, a Nanoporous Membrane Mimetic

    PubMed Central

    Li, Dianfan; Caffrey, Martin

    2014-01-01

    Membrane proteins play vital roles in the life of the cell and are important therapeutic targets. Producing them in large quantities, pure and fully functional is a major challenge. Many promising projects end when intractable aggregates or precipitates form. Here we show how such unfolded aggregates can be solubilized and the solution mixed with lipid to spontaneously self-assemble a bicontinuous cubic mesophase into the bilayer of which the protein, in a confined, chaperonin-like environment, reconstitutes with 100% efficiency. The test protein, diacylglycerol kinase, reconstituted in the bilayer of the mesophase, was then crystallized in situ by the in meso or lipid cubic phase method providing an X-ray structure to a resolution of 2.55 Å. This highly efficient, inexpensive, simple and rapid approach should find application wherever properly folded, membrane reconstituted and functional proteins are required where the starting material is a denatured aggregate. PMID:25055873

  12. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  13. Comparative genomic analysis of evolutionarily conserved but functionally uncharacterized membrane proteins in archaea: Prediction of novel components of secretion, membrane remodeling and glycosylation systems.

    PubMed

    Makarova, Kira S; Galperin, Michael Y; Koonin, Eugene V

    2015-11-01

    A systematic comparative genomic analysis of all archaeal membrane proteins that have been projected to the last archaeal common ancestor gene set led to the identification of several novel components of predicted secretion, membrane remodeling, and protein glycosylation systems. Among other findings, most crenarchaea have been shown to encode highly diverged orthologs of the membrane insertase YidC, which is nearly universal in bacteria, eukaryotes, and euryarchaea. We also identified a vast family of archaeal proteins, including the C-terminal domain of N-glycosylation protein AglD, as membrane flippases homologous to the flippase domain of bacterial multipeptide resistance factor MprF, a bifunctional lysylphosphatidylglycerol synthase and flippase. Additionally, several proteins were predicted to function as membrane transporters. The results of this work, combined with our previous analyses, reveal an unexpected diversity of putative archaeal membrane-associated functional systems that remain to be functionally characterized. A more general conclusion from this work is that the currently available collection of archaeal (and bacterial) genomes could be sufficient to identify (almost) all widespread functional modules and develop experimentally testable predictions of their functions.

  14. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins

    PubMed Central

    Gorfe, Alemayehu A.

    2015-01-01

    Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation. PMID:26506102

  15. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  16. Membrane composition influences the topology bias of bacterial integral membrane proteins.

    PubMed

    Bay, Denice C; Turner, Raymond J

    2013-02-01

    Small multidrug resistance (SMR) protein family members confer bacterial resistance to toxic antiseptics and are believed to function as dual topology oligomers. If dual topology is essential for SMR activity, then the topology bias should change as bacterial membrane lipid compositions alter to maintain a "neutral" topology bias. To test this hypothesis, a bioinformatic analysis of bacterial SMR protein sequences was performed to determine a membrane protein topology based on charged amino acid residues within loops, and termini regions according to the positive inside rule. Three bacterial lipid membrane parameters were examined, providing the proportion of polar lipid head group charges at the membrane surface (PLH), the relative hydrophobic fatty acid length (FAL), and the proportion of fatty acid unsaturation (FAU). Our analysis indicates that individual SMR pairs, and to a lesser extent SMR singleton topology biases, are significantly correlated to increasing PLH, FAL and FAU differences validating the hypothesis. Correlations between the topology biases of SMR proteins identified in Gram+ compared to Gram- species and each lipid parameter demonstrated a linear inverse relationship.

  17. Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies

    PubMed Central

    1984-01-01

    As the spike proteins of Semliki Forest virus (SFV) pass from their site of synthesis in the endoplasmic reticulum (ER) to the cell surface, they must be concentrated and freed from endogenous proteins. To determine the magnitude of this sorting process we have measured the density of spike proteins in membranes of the intracellular transport pathway. In this first paper, using stereological procedures, we have estimated the surface areas of the ER, Golgi complex, and plasma membrane of infected and mock-infected baby hamster kidney cells. First, we estimated the mean cell volume in absolute units. This was done using a novel in situ method which is described in detail. Infection by SFV was found to have no effect on any of the parameters measured. In the accompanying paper ( Quinn , P., G. Griffiths, and G. Warren, 1984, J. Cell Biol., 2142-2147) these stereological estimates were combined with biochemical estimates of the amount of spike proteins in ER, Golgi complex, and plasma membrane to determine the density in the membranes of these compartments. PMID:6563037

  18. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli*

    PubMed Central

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H.; Pessi, Gabriella; Eberl, Leo; Robinson, John A.

    2016-01-01

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. PMID:26627837

  19. Fc-receptor and M-protein genes of group A streptococci are products of gene duplication.

    PubMed Central

    Heath, D G; Cleary, P P

    1989-01-01

    The partial nucleotide sequence for an Fc-receptor gene from an M-type 76 group A streptococcus was determined. DNA sequence analysis revealed considerable sequence similarity between the Fc-receptor and M-protein genes in their proposed promoter regions, signal sequences, and 3' termini. Additional analysis indicated that the deduced Fc-receptor protein contains a proline-rich region and membrane anchor region highly similar to that of M protein. In view of these results, we postulated that Fc-receptor and M-protein genes of group A streptococci are the products of gene duplication from a common ancestral gene. It is proposed that DNA sequence similarity between these two genes may allow for extragenic homologous recombination as a means of generating antigenic diversity in these two surface proteins. PMID:2660147

  20. Improved protein refolding using hollow-fibre membrane dialysis.

    PubMed

    West, S M; Chaudhuri, J B; Howell, J A

    1998-03-05

    We have used a cellulose acetate, hollow-fibre (HF) ultrafiltration membrane to refold bovine carbonic anhydrase, loaded into the lumen space, by removing the denaturant through controlled dialysis via the shell side space. When challenged with GdnHCl-denatured carbonic anhydrase, 70% of the loaded protein reptated through the membrane into the circulating dialysis buffer. Reptation occurred because the protein, in its fully unfolded configuration, was able to pass through the pores. The loss of carbonic anhydrase through the membrane was controlled by the dialysis conditions. Dialysis against 0.05 M Tris-HCl for 30 min reduced the denaturant around the protein to a concentration that allowed the return of secondary structure, increasing the hydrodynamic radius, thus preventing protein transmission. Under these conditions a maximum of 42% of carbonic anhydrase was recovered (from a starting concentration of 5 mg/mL) with 94% activity. This is an improvement over refolding carbonic anhydrase by simple batch dilution, which gave a maximum reactivation of 85% with 35% soluble protein yield. The batch refolding of carbonic anhydrase is very sensitive to temperature; however, during HF refolding between 0 and 25 degrees C the temperature sensitivity was considerably reduced. In order to reduce the convection forces that give rise to aggregation and promote refolding the dialyzate was slowly heated from 4 to 25 degrees C. This slow, temperature-controlled refolding gave an improved soluble protein recovery of 55% with a reactivation yield of 90%. The effect of a number of additives on the refolding system performance were tested: the presence of PEG improved both the protein recovery and the recovered activity from the membrane, while the detergents Tween 20 and IGEPAL CA-630 increased only the refolding yield.

  1. Rhamnose Links Moonlighting Proteins to Membrane Phospholipid in Mycoplasmas

    PubMed Central

    Daubenspeck, James M.; Liu, Runhua; Dybvig, Kevin

    2016-01-01

    Many proteins that have a primary function as a cytoplasmic protein are known to have the ability to moonlight on the surface of nearly all organisms. An example is the glycolytic enzyme enolase, which can be found on the surface of many types of cells from bacteria to human. Surface enolase is not enzymatic because it is monomeric and oligomerization is required for glycolytic activity. It can bind various molecules and activate plasminogen. Enolase lacks a signal peptide and the mechanism by which it attaches to the surface is unknown. We found that treatment of whole cells of the murine pathogen Mycoplasma pulmonis with phospholipase D released enolase and other common moonlighting proteins. Glycostaining suggested that the released proteins were glycosylated. Cytoplasmic and membrane-bound enolase was isolated by immunoprecipitation. No post-translational modification was detected on cytoplasmic enolase, but membrane enolase was associated with lipid, phosphate and rhamnose. Treatment with phospholipase released the lipid and phosphate from enolase but not the rhamnose. The site of rhamnosylation was identified as a glutamine residue near the C-terminus of the protein. Rhamnose has been found in all species of mycoplasma examined but its function was previously unknown. Mycoplasmas are small bacteria with have no peptidoglycan, and rhamnose in these organisms is also not associated with polysaccharide. We suggest that rhamnose has a central role in anchoring proteins to the membrane by linkage to phospholipid, which may be a general mechanism for the membrane association of moonlighting proteins in mycoplasmas and perhaps other bacteria. PMID:27603308

  2. Membrane interaction of the portal protein gp20 of bacteriophage T4.

    PubMed

    Quinten, Tobias A; Kuhn, Andreas

    2012-10-01

    Assembly of the bacteriophage T4 head structure occurs at the cytoplasmic face of the inner membrane of Escherichia coli with the formation of proheads. The proheads contain an internal scaffolding core that determines the size and the structure of the capsid. In a mutant where the major shell protein gp23 was compromised, core structures without a shell had been detected. Such core structures were also found in the mutant T4am20am23. Since the mutation in gene 20 is at the N terminus of gp20, it was assumed that these core structures assemble in the absence of gp20. However, sequencing showed that the mutation introduces a new ribosome binding site that leads to a restart at codon 15. Although the mutant protein gp20s lacks the very N-terminal sequence, we found that it still binds to the membrane of the host cell and can initiate prohead assembly. This explains its activity to allow the assembly of core structures and proheads at the membrane surface. With a cross-linking approach, we show here that gp20 and gp20s are escorted by the chaperones DnaK, trigger factor, and GroEL and dock on the membrane at the membrane protein YidC.

  3. Pxmp2 Is a Channel-Forming Protein in Mammalian Peroxisomal Membrane

    PubMed Central

    Rokka, Aare; Soininen, Raija; Immonen, Hanna L.; Pirilä, Päivi L.; Bergmann, Ulrich; Sormunen, Raija T.; Weckström, Matti; Hiltunen, J. Kalervo

    2009-01-01

    Background Peroxisomal metabolic machinery requires a continuous flow of organic and inorganic solutes across peroxisomal membrane. Concerning small solutes, the molecular nature of their traffic has remained an enigma. Methods/Principal Findings In this study, we show that disruption in mice of the Pxmp2 gene encoding Pxmp2, which belongs to a family of integral membrane proteins with unknown function, leads to partial restriction of peroxisomal membrane permeability to solutes in vitro and in vivo. Multiple-channel recording of liver peroxisomal preparations reveals that the channel-forming components with a conductance of 1.3 nS in 1.0 M KCl were lost in Pxmp2−/− mice. The channel-forming properties of Pxmp2 were confirmed with recombinant protein expressed in insect cells and with native Pxmp2 purified from mouse liver. The Pxmp2 channel, with an estimated diameter of 1.4 nm, shows weak cation selectivity and no voltage dependence. The long-lasting open states of the channel indicate its functional role as a protein forming a general diffusion pore in the membrane. Conclusions/Significance Pxmp2 is the first peroxisomal channel identified, and its existence leads to prediction that the mammalian peroxisomal membrane is permeable to small solutes while transfer of “bulky” metabolites, e.g., cofactors (NAD/H, NADP/H, and CoA) and ATP, requires specific transporters. PMID:19352492

  4. From Gene Mutation to Protein Characterization

    ERIC Educational Resources Information Center

    Moffet, David A.

    2009-01-01

    A seven-week "gene to protein" laboratory sequence is described for an undergraduate biochemistry laboratory course. Student pairs were given the task of introducing a point mutation of their choosing into the well studied protein, enhanced green fluorescent protein (EGFP). After conducting literature searches, each student group chose the…

  5. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae.

    PubMed

    Nasution, Olviyani; Lee, Jaok; Srinivasa, Kavitha; Choi, In-Geol; Lee, Young Mi; Kim, Eunjung; Choi, Wonja; Kim, Wankee

    2015-08-01

    The protein product of Saccharomyces cerevisiae DFG5 gene is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein and a putative glycosidase/glycosyltransferase that links other GPI-anchored proteins to β-glucans in the cell wall. Upon exposure to heat (41°C), DFG5 deletion mutant dfg5Δ displayed significantly enhanced heat tolerance as well as lowered level of reactive oxygen species and decreased membrane permeability compared with those in the control (BY4741). Comparative transcriptome profiles of BY4741 and dfg5Δ revealed that 38 and 23 genes were up- and down-regulated in dfg5Δ respectively. Of the 23 down-regulated genes, 11 of 13 viable deletion mutants were identified to be tolerant to heat, suggesting that the down-regulation of those genes might have contributed to the enhanced heat tolerance in dfg5Δ. Deletion of DFG5 caused slight activation of mitogen-activated protein kinases Hog1 in the high-osmolarity glycerol pathway and Slt2 in the cell wall integrity pathway. Therefore, a model is proposed on the signal transduction pathways associated with deletion of DFG5 upon heat stress.

  6. Toward structure determination using membrane-protein nanocrystals and microcrystals

    PubMed Central

    Hunter, Mark S.; Fromme, Petra

    2012-01-01

    Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals. This work has been focused on showing the first proof of concept for using membrane protein nanocrystals and microcrystals for high-resolution structure determination. Upon determining that crystals of the membrane protein Photosystem I, which is the largest and most complex membrane protein crystallized to date, exist with only a hundred unit cells with sizes of less than 200 nm on an edge, work was done to develop a technique that could exploit the growth of the Photosystem I nanocrystals and microcrystals. Femtosecond X-ray protein nanocrystallography was developed for use at the first high-energy X-ray free electron laser, the LCLS at SLAC National Accelerator Laboratory, in which a liquid jet brought fully-hydrated Photosystem I nanocrystals into the interaction region of the pulsed X-ray source. Diffraction patterns were recorded from millions of individual PSI nanocrystals and data from thousands of different, randomly oriented crystallites were integrated using Monte Carlo integration of the peak intensities. The short pulses (~ 70 fs) provided by the LCLS allowed the possibility to collect the diffraction data before the onset of radiation damage, exploiting the diffract-before-destroy principle. During the initial experiments at the AMO beamline using 6.9-Å wavelength, Bragg peaks were recorded to 8.5-Å resolution, and an electron-density map was determined that did not show any effects of X-ray-induced radiation damage [Chapman H.N., et al. Femtosecond X-ray protein nanocrystallography, Nature 470 (2011) 73–81]. Many additional techniques still need to be developed to explore the

  7. Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae

    PubMed Central

    Buck, Teresa M.; Jordan, Rick; Lyons-Weiler, James; Adelman, Joshua L.; Needham, Patrick G.; Kleyman, Thomas R.

    2015-01-01

    Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses. PMID:25759377

  8. Functional aspects of membrane association of reggie/flotillin proteins.

    PubMed

    Banning, Antje; Tomasovic, Ana; Tikkanen, Ritva

    2011-12-01

    Flotillin-2 and flotillin-1, also called reggie-1 and reggie-2, are ubiquitously expressed and highly conserved proteins. Originally, they were described as neuronal regeneration proteins, but they appear to function in a wide variety of cellular processes, such as membrane receptor signaling, endocytosis, phagocytosis and cell adhesion. The molecular details of the function of flotillins in these processes have only been partially clarified. Flotillins are associated with cholesterol and sphingolipid enriched membrane microdomains known as rafts, and some findings even suggest that they define their own kind of a microdomain. The mechanism of the membrane association of flotillins appears to rely mainly on acylation (myristoylation and/or palmitoylation), localizing flotillins onto the cytosolic side of the membranes, whereas no transmembrane domains are present. In addition, flotillins show a strong tendency to form homo- and hetero-oligomers with each other. In this review, we will summarize the recent findings on the function of flotillins and discuss the mechanisms that might regulate their function, such as membrane association, oligomerization and phosphorylation.

  9. Chicken Egg Shell Membrane Associated Proteins and Peptides.

    PubMed

    Makkar, Sarbjeet; Liyanage, Rohana; Kannan, Lakshmi; Packialakshmi, Balamurugan; Lay, Jack O; Rath, Narayan C

    2015-11-11

    Egg shells are poultry industry byproducts with potential for use in various biological and agricultural applications. We have been interested in the membranes underlying the calcareous shell as a feed supplement, which showed potential to improve immunity and performance of post hatch poultry. Therefore, to determine their protein and peptide profiles, we extracted the egg shell membranes (ESM) from fresh unfertilized eggs with methanol and guanidine hydrochloride (GdHCl) to obtain soluble proteins for analysis by mass spectrometry. The methanol extract was subjected to matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), high-performance reverse phase liquid chromatographic separation (HPLC), and tandem mass spectrometry (MS/MS) to determine its peptide and protein profiles. The GdHCl extract was subjected to ESI-HPLC-MS/MS following trypsin digestion of reduced/alkylated proteins. Nine proteins from the methanol extract and >275 proteins from the GdHCl extract were tentatively identified. The results suggested the presence of several abundant proteins from egg whites, such as ovoalbumin, ovotransferrin, and lysozyme as well as many others associated with antimicrobial, biomechanical, cytoskeletal organizational, cell signaling, and enzyme activities. Collagens, keratin, agrin, and laminin were some of the structural proteins present in the ESM. The methanol-soluble fraction contained several clusterin peptides and defensins, particularly, two isoforms of gallin. The ratios of the two isoforms of gallin differed between the membranes obtained from brown and white eggs. The high abundance of several antimicrobial, immunomodulatory, and other bioactive proteins in the ESM along with its potential to entrap various microbes and antigens may make it a suitable vehicle for oral immunization of post hatch poultry and improve their disease resistance.

  10. Erythrocyte membrane protein band 3: its biosynthesis and incorporation into membranes

    PubMed Central

    1981-01-01

    Band 3, a transmembrane protein that provides the anion channel of the erythrocyte plasma membrane, crosses the membrane more than once and has a large amino terminal segment exposes on the cytoplasmic side of the membrane. The biosynthesis of band 3 and the process of its incorporation into membranes were studied in vivo in erythroid spleen cells of anemic mice and in vitro in protein synthesizing cell-free systems programmed with polysomes and messenger RNA (mRNA). In intact cells newly synthesized band 3 is rapidly incorporated into intracellular membranes where it is glycosylated and it is subsequently transferred to the plasma membrane where it becomes sensitive to digestion by exogenous chymotrypsin. The appearance of band 3 in the cell surface is not contingent upon its glycosylation because it proceeds efficiently in cells treated with tunicamycin. The site of synthesis of band 3 in bound polysomes was established directly by in vitro translation experiments with purified polysomes or with mRNA extracted from them. The band-3 polypeptide synthesized in an mRNA- dependent system had the same electrophoretic mobility as that synthesized in cells treated with tunicamycin. When microsomal membranes were present during translation, the in vitro synthesized band-3 polypeptide was cotranslationally glycosylated and inserted into the membranes. This was inferred from the facts that when synthesis was carried out in the presence of membranes the product had a lower electrophoretic mobility and showed partial resistance to protease digestion. Our observations indicate that the primary translation product of band-3 mRNA is not proteolytically processed either co- or posttranslationally. It is, therefore, proposed that the incorporation of band 3 into the endoplasmic reticulum (ER) membrane is initiated by a permanent insertion signal. To account for the cytoplasmic exposure of the amino terminus of the polypeptide we suggest that this signal is located within the

  11. Separation of membrane protein complexes by native LDS-PAGE.

    PubMed

    Arnold, Janine; Shapiguzov, Alexey; Fucile, Geoffrey; Rochaix, Jean-David; Goldschmidt-Clermont, Michel; Eichacker, Lutz Andreas

    2014-01-01

    Gel electrophoresis has become one of the most important methods for the analysis of proteins and protein complexes in a molecular weight range of 1-10(7) kDa. The separation of membrane protein complexes remained challenging to standardize until the demonstration of Blue Native PAGE in 1991 [1] and Clear Native PAGE in 1994 [2]. We present a robust protocol for high-resolution separation of photosynthetic complexes from Arabidopsis thaliana using lithium dodecyl sulfate as anion in a modified Blue Native PAGE (LDS-PAGE). Here, non-covalently bound chlorophyll is used as a sensitive probe to characterize the assembly/biogenesis of the pigment-protein complexes essential for photosynthesis. The high fluorescence yield recorded from chlorophyll-binding protein complexes can also be used to establish the separation of native protein complexes as an electrophoretic standard.

  12. The membrane-water interface region of membrane proteins: structural bias and the anti-snorkeling effect.

    PubMed

    Liang, Jie; Adamian, Larisa; Jackups, Ronald

    2005-07-01

    Membrane proteins have important roles in many cellular processes. Computational analysis of their sequences and structures has provided much insight into the organizing principles of transmembrane helices. In a recent study, the membrane-water interface region was examined in detail for the first time. The results have revealed that this interface region has an important role in constraining protein secondary structure. This study raises new questions and opens up new directions for studying membrane proteins.

  13. Vaccinia virus A43R gene encodes an orthopoxvirus-specific late non-virion type-1 membrane protein that is dispensable for replication but enhances intradermal lesion formation

    PubMed Central

    Sood, Cindy L.; Moss, Bernard

    2013-01-01

    The vaccinia virus A43R open reading frame encodes a 168-aminoacid protein with a predicted N-terminal signal sequence and a C-terminal transmembrane domain. Although A43R is conserved in all sequenced members of the orthopoxvirus genus, no non-orthopoxvirus homolog or functional motif was recognized. Biochemical and confocal microscopic studies indicated that A43 is expressed at late times following viral DNA synthesis and is a type-1 membrane protein with two N-linked oligosaccharide chains. A43 was present in Golgi and plasma membranes but only a trace amount was detected in sucrose gradient purified mature virions and none in CsCl gradient purified enveloped virions. Prevention of A43R expression had no effect on plaque size or virus replication in cell culture and little effect on virulence after mouse intranasal infection. Although the A43 mutant produced significantly smaller lesions in skin of mice than the control, the amounts of virus recovered from the lesions were similar. PMID:19900687

  14. Green fluorescent protein-based expression screening of membrane proteins in Escherichia coli.

    PubMed

    Bird, Louise E; Rada, Heather; Verma, Anil; Gasper, Raphael; Birch, James; Jennions, Matthew; Lӧwe, Jan; Moraes, Isabel; Owens, Raymond J

    2015-01-06

    The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.

  15. Dynamic Electrochemical Membranes for Continuous Affinity Protein Separation

    PubMed Central

    Chen, Zhiqiang; Chen, Tao; Sun, Xinghua

    2014-01-01

    A membrane system with nm-scale thick electrodes is able to selectively bind genetically modified proteins and pump them across the membrane with sequential voltage pulses. The electrodes are located at the first 20nm of pore entrances to specifically capture targeted proteins and block non-specific protein transport through the pores during the binding cycle. During the release cycle, concentration of imidazole is controlled to keep the pore blocked while releasing proteins at the bottom edge of the electrode. A separation factor for GFP:BSA of 16 was achieved with observed GFP electrophoretic mobility of 2.54×10-6cm2v-1S-1. This non-optimized system with a membrane area of 0.75 cm2 has the same throughput as 1ml of commercially available chromatography columns showing viability as a continuous process. This system will enable continuous separation of expressed proteins directly from fermentation broths dramatically simplifying the separation process as well as reducing biopharmaceutical production costs. PMID:25383076

  16. Probing protein-lipid interactions by FRET between membrane fluorophores

    NASA Astrophysics Data System (ADS)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  17. Interaction of Serum Proteins with Surface of Hemodialysis Fiber Membranes

    NASA Astrophysics Data System (ADS)

    Afrin, Rehana; Shirako, Yuji; Kishimoto, Kikuo; Ikai, Atsushi

    2012-08-01

    The poly(vinyl pyrrolidone)-covered hydrophilic surface of hollow-fiber membranes (fiber membrane, hereafter) for hemodialysis was mechanically probed using modified tips on an atomic force microscope (AFM) with covalent crosslinkers and several types of serum protein. The retraction part of many of the force extension (F-E) curves obtained with AFM tips coated with serum albumin had a long and smooth extension up to 200-300 nm indicating forced elongation of poly(vinyl pyrrolidone) chains. When fibrinogen-coated tips were used, long extension F-E curves up to 500 nm with multiple peaks were obtained in addition to smooth curves most likely reflecting the unfolding of fibrinogen molecules. The results indicated that individual polymer chains had a significant affinity toward serum proteins. The adhesion frequency of tips coated with serum proteins was lower on the poly(vinyl pyrrolidone) surface than on the uncoated hydrophobic polysulfone surface.

  18. Rotavirus protein rearrangements in purified membrane-enveloped intermediate particles.

    PubMed Central

    Poruchynsky, M S; Atkinson, P H

    1991-01-01

    Rotavirus, a double-shelled nonenveloped member of the REoviridae family, becomes transiently membrane enveloped during its maturation process, as single-shelled particles bud from cytoplasmic viroplasm structures into the adjacent endoplasmic reticulum. The present study describes the isolation of these membrane-enveloped viral intermediates from rotavirus SA11-infected Ma104 cells. The enveloped intermediates comprised the proteins VP1, VP2, VP4, VP6, VP7, and NS28 and small amounts of NS35 and NS34. VP7 in the intermediate particles was recognized by either a polyclonal antibody to VP7, which previous studies had shown recognizes the membrane-associated form of VP7, or a monoclonal antibody which recognizes VP7 on mature virus. NS28, VP7, and VP4 could be complexed to a higher-molecular-weight form when the membrane-permeable cross-linker dithiobis(succinimidylproprionate) was used. However, when an impermeable cross-linker was used, the structural proteins, including VP7, were not accessible to cross-linking. Velocity sedimentation of cross-linked immunoisolated enveloped virus particles showed that VP7 and VP4 were located in the same fractions only when the membrane-permeable cross-linker was used, implying their heterooligomeric association during outer capsid formation. When intermediate enveloped virus particles were treated with protease, VP6 and VP7 were protected, but not in the presence of detergent. Taken together, these results support the idea that in the membrane-enveloped intermediate, VP7 is repositioned from its location in the endoplasmic reticulum lumen back across the viral membrane envelope to the inferior of the virus particle during the maturation process. Images PMID:1651404

  19. Identification of membrane proteins by tandem mass spectrometry of protein ions.

    PubMed

    Carroll, Joe; Altman, Matthew C; Fearnley, Ian M; Walker, John E

    2007-09-04

    The most common way of identifying proteins in proteomic analyses is to use short segments of sequence ("tags") determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning alpha-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1-4 transmembrane alpha-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5-18 transmembrane alpha-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase.

  20. Bcl-2 apoptosis proteins, mitochondrial membrane curvature, and cancer

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Schmidt, Nathan; Sanders, Lori; Mishra, Abhijit; Wong, Gerard; Ivashyna, Olena; Christenson, Eric; Schlesinger, Paul; Akabori, Kiyotaka; Santangelo, Christian

    2012-02-01

    Critical interactions between Bcl-2 family proteins permeabilize the outer mitochondrial membrane, a common decision point early in the intrinsic apoptotic pathway that irreversibly commits the cell to death. However, a unified picture integrating the essential non-passive role of lipid membranes with the contested dynamics of Bcl-2 regulation remains unresolved. Correlating results between synchrotron x-ray diffraction and microscopy in cell-free assays, we report activation of pro-apoptotic Bax induces strong pure negative Gaussian membrane curvature topologically necessary for pore formation and membrane remodeling events. Strikingly, Bcl-xL suppresses not only Bax-induced pore formation, but also membrane remodeling by disparate systems including cell penetrating, antimicrobial or viral fusion peptides, and bacterial toxin, none of which have BH3 allosteric domains to mediate direct binding. We propose a parallel mode of Bcl-2 pore regulation in which Bax and Bcl-xL induce antagonistic and mutually interacting Gaussian membrane curvatures. The universal nature of curvature-mediated interactions allows synergy with direct binding mechanisms, and potentially accounts for the Bcl-2 family modulation of mitochondrial fission/fusion dynamics.