Science.gov

Sample records for membrane protein osteoblast

  1. EFFECTS OF MEMBRANE CHOLESTEROL DEPLETION AND GPI-ANCHORED PROTEIN REDUCTION ON OSTEOBLASTIC MECHANOTRANSDUCTION

    PubMed Central

    Xing, Yanghui; Gu, Yan; Xu, Li-Chong; Siedlecki, Christopher A.; Donahue, Henry J.; You, Jun

    2010-01-01

    We previously demonstrated that oscillatory fluid flow activates MC3T3-E1 osteoblastic cell calcium signaling pathways via a mechanism involving ATP releases and P2Y2 puringeric receptors. However, the molecular mechanisms by which fluid flow initiates cellular responses are still unclear. Accumulating evidence suggests that lipid rafts, one of the important membrane structural components, may play an important role in transducing extracellular fluid shear stress to intracellular responses. Due to the limitations of current techniques, there is no direct approach to study the role of lipid rafts in transmitting fluid shear stress. In this study, we targeted two important membrane components associated with lipid rafts, cholesterol and glycosylphosphatidylinositol-anchored proteins, to disrupt the integrity of cell membrane structures. We first demonstrated that membrane cholesterol depletion with the treatment of methyl-β-cyclodextrin inhibits oscillatory fluid flow induced intracellular calcium mobilization and ERK1/2 phosphorylation in MC3T3-E1 osteoblastic cells. Secondly, we used a novel approach to decrease the levels of glycosylphosphatidylinositol-anchored proteins on cell membranes by overexpressing glycosylphosphatidylinositol specific phospholipase D in MC3T3-E1 osteoblastic cells. This resulted in significant inhibition of intracellular calcium mobilization and ERK1/2 phosphorylation in response to oscillatory fluid flow. Finally, we demonstrated that cholesterol depletion inhibited oscillatory fluid flow induced ATP releases, which were responsible for the activation of calcium signaling pathways in MC3T3-E1 osteoblastic cells. Our findings suggest that cholesterol and GPI-anchored proteins, two membrane structural components related to lipid rafts, may play an important role in osteoblastic cell mechanotransduction. PMID:21660958

  2. Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes.

    PubMed

    Solberg, L B; Stang, E; Brorson, S-H; Andersson, G; Reinholt, F P

    2015-02-01

    Tartrate-resistant acid phosphatase (TRAP) is well known as an osteoclast marker; however, a recent study from our group demonstrated enhanced number of TRAP + osteocytes as well as enhanced levels of TRAP located to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis in rats. Such vesicles were especially abundant in osteoblasts and osteocytes in cancellous bone as well as close to bone surface and intracortical remodeling sites. To further investigate TRAP in osteoblasts and osteocytes, long bones from young, growing rats were examined. Immunofluorescence confocal microscopy displayed co-localization of TRAP with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in hypertrophic chondrocytes and diaphyseal osteocytes with Pearson's correlation coefficient ≥0.8. Transmission electron microscopy showed co-localization of TRAP and RANKL in lysosomal-associated membrane protein 1 (LAMP1) + vesicles in osteoblasts and osteocytes supporting the results obtained by confocal microscopy. Recent in vitro data have demonstrated OPG as a traffic regulator for RANKL to LAMP1 + secretory lysosomes in osteoblasts and osteocytes, which seem to serve as temporary storage compartments for RANKL. Our in situ observations indicate that TRAP is located to RANKL-/OPG-positive secretory lysosomes in osteoblasts and osteocytes, which may have implications for osteocyte regulation of osteoclastogenesis.

  3. Fluid shear stress induces calcium transients in osteoblasts through depolarization of osteoblastic membrane.

    PubMed

    Sun, Junqing; Liu, Xifang; Tong, Jie; Sun, Lijun; Xu, Hao; Shi, Liang; Zhang, Jianbao

    2014-12-18

    Intracellular calcium transient ([Ca(2+)]i transient) induced by fluid shear stress (FSS) plays an important role in osteoblastic mechanotransduction. Changes of membrane potential usually affect [Ca(2+)]i level. Here, we sought to determine whether there was a relationship between membrane potential and FSS-induced [Ca(2+)]i transient in osteoblasts. Fluorescent dyes DiBAC4(3) and fura-2AM were respectively used to detect membrane potential and [Ca(2+)]i. Our results showed that FSS firstly induced depolarization of membrane potential and then a transient rising of [Ca(2+)]i in osteoblasts. There was a same threshold for FSS to induce depolarization of membrane potential and [Ca(2+)]i transients. Replacing extracellular Na(+) with tetraethylammonium or blocking stretch-activated channels (SACs) with gadolinium both effectively inhibited FSS-induced membrane depolarization and [Ca(2+)]i transients. However, voltage-activated K(+) channel inhibitor, 4-Aminopyridine, did not affect these responses. Removing extracellular Ca(2+) or blocking of L-type voltage-sensitive Ca(2+) channels (L-VSCCs) with nifedipine inhibited FSS-induced [Ca(2+)]i transients in osteoblasts too. Quantifying membrane potential with patch clamp showed that the resting potential of osteoblasts was -43.3mV and the depolarization induced by FSS was about 44mV. Voltage clamp indicated that this depolarization was enough to activated L-VSCCs in osteoblasts. These results suggested a time line of Ca(2+) mobilization wherein FSS activated SACs to promote Na(+) entry to depolarize membrane that, in turn, activated L-VSCCs and Ca(2+) influx though L-VSCCs switched on [Ca(2+)]i response in osteoblasts.

  4. The LIM protein LIMD1 influences osteoblast differentiation and function

    SciTech Connect

    Luderer, Hilary F.; Bai Shuting; Longmore, Gregory D.

    2008-09-10

    The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1{sup -/-} calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1{sup -/-} mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear {beta}-catenin staining in differentiating Limd1{sup -/-} calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.

  5. Estrogens and Androgens Inhibit Association of RANKL with the Pre-osteoblast Membrane through Post-translational Mechanisms.

    PubMed

    Martin, Anthony; Yu, Jiali; Xiong, Jian; Khalid, Aysha B; Katzenellenbogen, Benita; Kim, Sung Hoon; Katzenellenbogen, John A; Malaivijitnond, Suchinda; Gabet, Yankel; Krum, Susan A; Frenkel, Baruch

    2017-02-18

    We have recently demonstrated that RUNX2 promoted, and 17-β-Estradiol (E2) diminished, association of RANKL with the cell membrane in pre-osteoblast cultures. Here we show that, similar to E2, dihydrotestosterone (DHT) diminishes association of RANKL and transiently transfected GFP-RANKL with the pre-osteoblast membrane without decreasing total RANKL mRNA or protein levels. Diminution of membrane-associated RANKL was accompanied with marked suppression of osteoclast differentiation from co-cultured pre-osteoclasts, even though DHT increased, not decreased, RANKL concentrations in pre-osteoblast conditioned media. A marked decrease in membrane-associated RANKL was observed after 30 minutes of either E2 or DHT treatment, and near-complete inhibition was observed by 1 hour, suggesting that the diminution of RANKL membrane association was mediated through non-genomic mechanisms. Further indicating dispensability of nuclear action of estrogen receptor, E2-mediated inhibition of RANKL membrane association was mimicked by an estrogen dendrimer conjugate (EDC) that cannot enter the cell nucleus. Finally, the inhibitory effect of E2 and DHT on RANKL membrane association was counteracted by the MMP inhibitor NNGH, and the effect of E2 (and not DHT) was antagonized by the Src inhibitor SU6656. Taken together, these results suggest that estrogens and androgens inhibit osteoblast-driven osteoclastogenesis through non-genomic, MMP-mediated RANKL dissociation from the cell membrane. This article is protected by copyright. All rights reserved.

  6. Expression of Na(+)/Ca(2+) exchanger isoforms (NCX1 and NCX3) and plasma membrane Ca(2+) ATPase during osteoblast differentiation.

    PubMed

    Stains, Joseph P; Weber, Janet A; Gay, Carol V

    2002-01-01

    The ability to deliver calcium to the osteoid is critical to osteoblast function as a regulator of bone calcification. There are two known transmembrane proteins capable of translocating calcium out of the osteoblast, the Na(+)/Ca(2+) exchanger (NCX) and the plasma membrane Ca(2+)-ATPase (PMCA). In this study, we reveal the presence of the NCX3 isoform in primary osteoblasts and examine the expression of NCX1, NCX3, and PMCA1 during osteoblast differentiation. The predominant NCX isoform expressed by osteoblasts is NCX3. NCX1 also is expressed, but at low levels. Both NCX isoforms are expressed at nearly static levels throughout differentiation. In contrast, PMCA expression peaks at 8 days of culture, early in osteoblast differentiation, but declines thereafter. Immunocytochemical co-detection of NCX and PMCA reveal that NCX is positioned along surfaces of the osteoblast adjacent to osteoid, while PMCA is localized to plasma membrane sites distal to the osteoid. The expression pattern and spatial distribution of NCX support a role as a regulator of calcium efflux from osteoblasts required for calcification. The expression pattern and spatial distribution of PMCA makes its role in the mineralization process unlikely and suggests a role in calcium homeostasis following signaling events. Copyright 2001 Wiley-Liss, Inc.

  7. Combination of Collagen Barrier Membrane with Enamel Matrix Derivative-Liquid Improves Osteoblast Adhesion and Differentiation.

    PubMed

    Miron, Richard J; Fujioka-Kobayashi, Masako; Buser, Daniel; Zhang, Yufeng; Bosshardt, Dieter D; Sculean, Anton

    Collagen barrier membranes were first introduced to regenerative periodontal and oral surgery to prevent fast ingrowing soft tissues (ie, epithelium and connective tissue) into the defect space. More recent attempts have aimed at combining collagen membranes with various biologics/growth factors to speed up the healing process and improve the quality of regenerated tissues. Recently, a new formulation of enamel matrix derivative in a liquid carrier system (Osteogain) has demonstrated improved physico-chemical properties for the adsorption of enamel matrix derivative to facilitate protein adsorption to biomaterials. The aim of this pioneering study was to investigate the use of enamel matrix derivative in a liquid carrier system in combination with collagen barrier membranes for its ability to promote osteoblast cell behavior in vitro. Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto porcine-derived collagen membranes alone (control) or porcine membranes + enamel matrix derivative in a liquid carrier system. Control and enamel matrix derivative-coated membranes were compared for cell recruitment and cell adhesion at 8 hours; cell proliferation at 1, 3, and 5 days; and real-time polymerase chain reaction (PCR) at 3 and 14 days for genes encoding Runx2, collagen1alpha2, alkaline phosphatase, and bone sialoprotein. Furthermore, alizarin red staining was used to investigate mineralization. A significant increase in cell adhesion was observed at 8 hours for barrier membranes coated with enamel matrix derivative in a liquid carrier system, whereas no significant difference could be observed for cell proliferation or cell recruitment. Enamel matrix derivative in a liquid carrier system significantly increased alkaline phosphatase mRNA levels 2.5-fold and collagen1alpha2 levels 1.7-fold at 3 days, as well as bone sialoprotein levels twofold at 14 days postseeding. Furthermore, collagen membranes coated with enamel matrix derivative in a liquid carrier

  8. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    SciTech Connect

    Yonezawa, Takayuki; Lee, Ji-Won; Hibino, Ayaka; Asai, Midori; Hojo, Hironori; Cha, Byung-Yoon; Teruya, Toshiaki; Nagai, Kazuo; Chung, Ung-Il; Yagasaki, Kazumi; and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  9. Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association.

    PubMed

    Martin, Anthony; Xiong, Jian; Koromila, Theodora; Ji, Jie S; Chang, Stephanie; Song, Yae S; Miller, Jonathan L; Han, Chun-Ya; Kostenuik, Paul; Krum, Susan A; Chimge, Nyam-Osor; Gabet, Yankel; Frenkel, Baruch

    2015-06-01

    In addition to its thoroughly investigated role in bone formation, the osteoblast master transcription factor RUNX2 also promotes osteoclastogenesis and bone resorption. Here we demonstrate that 17β-estradiol (E2), strongly inhibits RUNX2-mediated osteoblast-driven osteoclastogenesis in co-cultures. Towards deciphering the underlying mechanism, we induced premature expression of RUNX2 in primary murine pre-osteoblasts, which resulted in robust differentiation of co-cultured splenocytes into mature osteoclasts. This was attributable to RUNX2-mediated increase in RANKL secretion, determined by ELISA, as well as to RUNX2-mediated increase in RANKL association with the osteoblast membrane, demonstrated using confocal fluorescence microscopy. The increased association with the osteoblast membrane was recapitulated by transiently expressed GFP-RANKL. E2 abolished the RUNX2-mediated increase in membrane-associated RANKL and GFP-RANKL, as well as the concomitant osteoclastogenesis. RUNX2-mediated RANKL cellular redistribution was attributable in part to a decrease in Opg expression, but E2 did not influence Opg expression either in the presence or absence of RUNX2. Diminution of RUNX2-mediated osteoclastogenesis by E2 occurred regardless of whether the pre-osteoclasts were derived from wild type or estrogen receptor alpha (ERα)-knockout mice, suggesting that activated ERα inhibited osteoblast-driven osteoclastogenesis by acting in osteoblasts, possibly targeting RUNX2. Indeed, microarray analysis demonstrated global attenuation of the RUNX2 response by E2, including abrogation of Pstpip2 expression, which likely plays a critical role in membrane trafficking. Finally, the selective ER modulators (SERMs) tamoxifen and raloxifene mimicked E2 in abrogating the stimulatory effect of osteoblastic RUNX2 on osteoclast differentiation in the co-culture assay. Thus, E2 antagonizes RUNX2-mediated RANKL trafficking and subsequent osteoclastogenesis. Targeting RUNX2 and

  10. Biomembranes enriched with TGFbeta1 favor bone matrix protein expression by human osteoblasts in vitro.

    PubMed

    Lilli, C; Marinucci, L; Stabellini, G; Belcastro, S; Becchetti, E; Balducci, C; Staffolani, N; Locci, P

    2002-01-01

    The use of growth factors in oral tissue regeneration is currently under investigation. When growth factors are combined with commercial materials, the in vitro mechanisms of action still remain unclear. The present study first evaluated the capacity of barrier membranes, used in oral surgery, to sequester TGFbeta(1). Resorbable HYAFF, paroguide, poly DL-lactide and nonresorbable PTFE membranes were immersed in MEM containing 0.2 ng (125)I-TGFbeta(1) for different periods of time. It was found that HYAFF membrane and paroguide sequestered the most TGFbeta(1), which was then released in its active form (as shown by the CCL64 cell line bioassay). Untreated membranes and membranes enriched with TGFbeta(1) were then used as substrate for human bone cells to evaluate the synthesis of the osteoblast phenotype, as indicated by specific parameters. Results showed that membranes enriched with TGFbeta(1) increased alkaline phosphatase activity, collagen, and osteocalcin production more than untreated membranes. HYAFF and paroguide membranes, which sequestered the most of TGFbeta(1), were the most suitable for stimulating bone matrix proteins.

  11. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  12. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  13. Mitochondrial membrane potential changes in osteoblasts treated with parathyroid hormone and estradiol.

    PubMed

    Troyan, M B; Gilman, V R; Gay, C V

    1997-06-15

    This study assessed mitochondrial membrane potential changes in cultured osteoblasts treated with hormones known to regulate osteoblasts. A fluorescent carbocyanine dye, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine++ + iodide, also called JC-1, was used as a probe. JC-1 emits photons at 585 nm (orange-red) when the membrane potential in mitochondria is highly negative, but when the potential becomes reduced emission occurs at 527 nm (green). Osteoblasts were rinsed in serum-free medium for 5 min, then loaded with 1 x 10(-6) M JC-1 for 10 min. The distribution and intensity of JC-1 fluorescence were evaluated with a laser-scanning confocal microscope system. Hormone treatments included parathyroid hormone (PTH; 10(-8) M), 17beta-estradiol (10(-8) M), and thyroxine (T4; 10(-8) M). The potassium ionophore valinomycin (10(-6) M) was used as a control since it is known to disrupt the electrochemical gradient of mitochondria without interfering with the pH gradient. Valinomycin caused a profound, rapid increase (22.5% above untreated values) in the green/red ratio, which indicated a lowering of the mitochondrial membrane potential in all samples evaluated. PTH caused a less pronounced, but significant (7-14%), reduction in membrane potential in all cells examined. PTH is known to affect osteoblasts in a number of ways and is inhibitory to mitochondrial respiration; the results confirm this effect. For estradiol, half of the cells responded at a significant level, with a membrane potential reduction of 6 to 13% being recorded; the other half did not respond. Thyroxine did not alter mitochondrial membrane potential. Responses were detectable within 20 s for valinomycin, but occurred at a slower rate, over 200 to 300 s, following PTH and estradiol treatment. Responses to PTH and estradiol could be due to mitochondrial uptake of cytosolic Ca2+.

  14. Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression.

    PubMed

    Leong, Wai Fook; Zhou, Tielin; Lim, Gek Liang; Li, Baojie

    2009-01-01

    Osteoporosis is one of the most common diseases and can be treated by either anti-resorption drugs, anabolic drugs, or both. To search for anabolic drug targets for osteoporosis therapy, it is crucial to understand the biology of bone forming cells, osteoblasts, in terms of their proliferation, differentiation, and function. Here we found that protein palmitoylation participates in signaling pathways that control osterix expression and osteoblast differentiation. Mouse calvarial osteoblasts express most of the 24 palmitoyl transferases, with some being up-regulated during differentiation. Inhibition of protein palmitoylation, with a substrate-analog inhibitor, diminished osteoblast differentiation and mineralization, but not proliferation or survival. The decrease in differentiation capacity is associated with a reduction in osterix, but not Runx2 or Atf4. Inhibition of palmitoyl transferases had little effect in p53(-/-) osteoblasts that show accelerated differentiation due to overexpression of osterix, suggesting that osterix, at least partially, mediated the effect of inhibition of palmitoyl transferases on osteoblast differentiation. BMPs are the major driving force of osteoblast differentiation in the differentiation assays. We found that inhibition of palmitoyl transferases also compromised BMP2-induced osteoblast differentiation through down-regulating osterix induction. However, palmitoyl transferases inhibitor did not inhibit Smad1/5/8 activation. Instead, it compromised the activation of p38 MAPK, which are known positive regulators of osterix expression and differentiation. These results indicate that protein palmitoylation plays an important role in BMP-induced MAPK activation, osterix expression, and osteoblast differentiation.

  15. Characterization of Osteoblastic and Osteolytic Proteins in Prostate Cancer Bone Metastases

    PubMed Central

    Larson, Sandy; Zhang, Xiaotun; Dumpit, Ruth; Coleman, Ilsa; Lakely, Bryce; Roudier, Martine; Higano, Celestia; True, Lawrence D.; Lange, Paul H.; Montgomery, Bruce; Corey, Eva; Nelson, Peter S.; Vessella, Robert L.; Morrissey, Colm

    2014-01-01

    Background Approximately 90% of patients who die of Prostate Cancer (PCa) have bone metastases, which promote a spectrum of osteoblastic, osteolytic or mixed bone responses. Numerous secreted proteins have been reported to promote osteoblastic or osteolytic bone responses. We determined whether previously identified and/or novel proteins were associated with the osteoblastic or osteolytic response in clinical specimens of PCa bone metastases. Methods Gene expression was analyzed on 14 PCa metastases from 11 patients by microarray profiling and qRT-PCR, and protein expression was analyzed on 33 PCa metastases from 30 patients by immunohistochemistry on highly osteoblastic and highly osteolytic bone specimens. Results Transcript and protein levels of BMP-2, BMP-7, DKK-1, ET-1 and Sclerostin were not significantly different between osteoblastic and osteolytic metastases. However, levels of OPG, PGK1 and Substance P proteins were increased in osteoblastic samples. In addition, Emu1, MMP-12 and sFRP-1 were proteins identified with a novel role of being associated with either the osteoblastic or osteolytic bone response. Conclusions This is the first detailed analysis of bone remodeling proteins in human specimens of PCa bone metastases. Three proteins not previously shown to be involved may have a role in the PCa bone response. Furthermore, our data suggests that the relative expression of numerous, rather than a single, bone remodeling proteins determine the bone response in PCa bone metastases. PMID:23334979

  16. Effects of an antibacterial membrane on osteoblast-like cells in vitro

    PubMed Central

    Ye, Jun; Yao, Qianqian; Mo, Anchun; Nie, Jing; Liu, Wenwen; Ye, Cui; Chen, Xianji

    2011-01-01

    Infection around membranes is often found in guided bone regeneration (GBR). The excellent antibacterial properties of Ag-nHA-nTiO2/polyamide-66 (PA66) nanocomposite membranes have been demonstrated previously. The aim of this study was to observe the microstructure of an Ag-nHA-nTiO2/PA66 membrane and its effects on osteoblast-like cells in vitro. An Ag-nHA-nTiO2/PA66 membrane was used in the experimental group, and both nHA/PA66 and expanded poly tetrafluroethylene (e-PTFE) membranes were set as control. MG63 osteoblast-like cells were cultured on the three kinds of membrane and tissue culture polystyrene (TCP). The microstructure of the above membranes and the cells adhered on them were detected by scanning electronic microscope (SEM). Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell viability with a cell viability analyzer, and alkaline phosphatase (ALP) activity and Ca2+ concentration of osteoblast-like cell matrix by enzyme-linked immunosorbent assay. SEM showed that both Ag-nHA-nTiO2/PA66 membranes and nHA/PA66 membranes were composed of porous obverse face and smooth opposite face. The e-PTFE membranes showed elliptic surface structure with many tiny lined cracks. The MG63 cells adhered and proliferated well on all three kinds of membranes. Though cell viability on Ag-nHA-nTiO2/PA66 membranes was significantly lower than that of the control groups (P < 0.05), MTT values, ALP activity, and Ca2+ concentration did not differ significantly among the three kinds of membranes (P > 0.05). From these findings, it can be concluded that Ag-nHA-nTiO2/PA66 membranes are as biocompatible as nHA/ PA66 membranes and TCP, thus may be applied safely in GBR. PMID:21931481

  17. Proteins of Excitable Membranes

    PubMed Central

    Nachmansohn, David

    1969-01-01

    Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a sequence of reactions resulting in increased permeability. The hydrolysis of ACh by ACh-esterase restores the barrier to ions. The enzymes hydrolyzing and forming ACh and the receptor protein are present in the various types of excitable membranes. Properties of the two proteins directly associated with electrical activity, receptor and esterase, will be described in this and subsequent lectures. ACh-esterase has been shown to be located within the excitable membranes. Potent enzyme inhibitors block electrical activity demonstrating the essential role in this function. The enzyme has been recently crystallized and some protein properties will be described. The monocellular electroplax preparation offers a uniquely favorable material for analyzing the properties of the ACh-receptor and its relation to function. The essential role of the receptor in electrical activity has been demonstrated with specific receptor inhibitors. Recent data show the basically similar role of ACh in the axonal and junctional membranes; the differences of electrical events and pharmacological actions are due to variations of shape, structural organization, and environment. PMID:19873642

  18. Biocompatibility of three bioabsorbable membranes assessed in FGH fibroblasts and human osteoblast like cells culture.

    PubMed

    Soares, Michelle Pereira Costa Mundim; Soares, Paulo Vinícius; Pereira, Analice Giovani; Moura, Camilla Christian Gomes; Soares, Priscila Barbosa Ferreira; Naves, Lucas Zago; de Magalhães, Denildo

    2014-08-06

    Specific physical and chemical features of the membranes may influence the healing of periodontal tissues after guided tissue regeneration (GTR). The aim of the present investigation was to analyze the biological effects of three bioabsorbable membranes. The hypothesis is that all tested membranes present similar biological effects. Human osteoblast like-cells (SaOs-2) and gingival fibroblasts FGH (BCRJ -RJ) were cultured in DMEM medium. The viability of the cells cultured on the membranes was assesses using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Quantitative determination of activated human Transforming Growth Factor beta 1 (TGF-β1) on the supernatants of the cell culture was observed. Samples were examined using scanning electron microscope (SEM). SaOs2, in 24 hours, PLA group showed higher values when compared to other groups (P < 0.05). All groups presented statistical significance values when compared two times. In 4 h and 24 h, for the fibroblasts group, significantly difference was found to PLA membrane, when compared with the other groups (p < 0.05). For TGFβ1 analyzes, comparing 4 and 24 h, for the osteoblast supernatant, COL1 and PLA groups showed statistically significant difference (p <0,008). On the analysis of culture supernatants of fibroblasts, in 24 hours, only PLA group presented significant difference (p = 0,008). The biomaterials analyzed did not show cytotoxicity, since no membrane presented lower results than the control group. PLA membrane presented the best performance due to its higher cell viability and absorbance levels of proliferation. Both collagen membranes showed similar results either when compared to each other or to the control group.

  19. Evolutionary origins of membrane proteins

    NASA Astrophysics Data System (ADS)

    Mulkidjanian, Armen Y.; Galperin, Michael Y.

    Although the genes that encode membrane proteins make about 30% of the sequenced genomes, the evolution of membrane proteins and their origins are still poorly understood. Here we address this topic by taking a closer look at those membrane proteins the ancestors of which were present in the Last Universal Common Ancestor, and in particular, the F/V-type rotating ATPases. Reconstruction of their evolutionary history provides hints for understanding not only the origin of membrane proteins, but also of membranes themselves. We argue that the evolution of biological membranes could occur as a process of coevolution of lipid bilayers and membrane proteins, where the increase in the ion-tightness of the membrane bilayer may have been accompanied by a transition from amphiphilic, pore-forming membrane proteins to highly hydrophobic integral membrane complexes.

  20. Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane

    SciTech Connect

    Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G.; Enríquez-Jiménez, Juana; Alcántara-Quintana, Luz E.; Fuentes-Mera, Lizeth; Piña-Barba, María C.; Zepeda-Rodríguez, Armando; and others

    2013-05-10

    Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.

  1. Tracking membrane protein association in model membranes.

    PubMed

    Reffay, Myriam; Gambin, Yann; Benabdelhak, Houssain; Phan, Gilles; Taulier, Nicolas; Ducruix, Arnaud; Hodges, Robert S; Urbach, Wladimir

    2009-01-01

    Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue.We present an original approach that combines the Fluorescence Recovery After fringe Pattern Photobleaching technique and the use of a versatile sponge phase that makes it possible to extract crucial informations about interactions between membrane proteins embedded in the bilayers of a sponge phase. The clear advantage lies in the ability to adjust at will the spacing between two adjacent bilayers. When the membranes are far apart, the only possible interactions occur laterally between proteins embedded within the same bilayer, whereas when membranes get closer to each other, interactions between proteins embedded in facing membranes may occur as well.After validating our approach on the streptavidin-biotinylated peptide complex, we study the interactions between two membrane proteins, MexA and OprM, from a Pseudomonas aeruginosa efflux pump. The mode of interaction, the size of the protein complex and its potential stoichiometry are determined. In particular, we demonstrate that: MexA is effectively embedded in the bilayer; MexA and OprM do not interact laterally but can form a complex if they are embedded in opposite bilayers; the population of bound proteins is at its maximum for bilayers separated by a distance of about 200 A, which is the periplasmic thickness of Pseudomonas aeruginosa. We also show that the MexA-OprM association is enhanced when the position and orientation of the protein is restricted by the bilayers. We extract a

  2. Membrane fission by protein crowding.

    PubMed

    Snead, Wilton T; Hayden, Carl C; Gadok, Avinash K; Zhao, Chi; Lafer, Eileen M; Rangamani, Padmini; Stachowiak, Jeanne C

    2017-04-18

    Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.

  3. Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim.

    PubMed

    Yang, Di; Okamura, Hirohiko; Teramachi, Jumpei; Haneji, Tatsuji

    2016-04-01

    Posttranslational modifications including histone methylation regulate gene transcription through directly affecting the structure of chromatin. Trimethylation of histone H3K27 (H3K27me3) contributes to gene silencing and the histone demethylase Jumonji domain-containing 3 (Jmjd3) specifically removes the methylation of H3K27me3, followed by the activation of gene expression. In the present study, we explored the roles of Jmjd3 in regulating osteoblast apoptosis. Knockdown of Jmjd3 promoted osteoblast apoptosis induced by serum deprivation with decreased mitochondrial membrane potential and increased levels of caspase-3 activation, PARP cleavage, and DNA fragmentation. B cell lymphoma-2 (Bcl-2), an anti-apoptotic protein, was down-regulated by knockdown of Jmjd3 through retaining H3K27me3 on its promoter region. Knockdown of Jmjd3 increased the pro-apoptotic activity of Bim through inhibiting ERK-dependent phosphorylation of Bim. Protein kinase D1 (PKD1), which stimulates ERK phosphorylation, decreased in the Jmjd3-knockdown cells and introduction of PKD1 relieved osteoblast apoptosis in the Jmjd3-knockdown cells through increasing ERK-regulated Bim phosphorylation. These results suggest that Jmjd3 regulates osteoblast apoptosis through targeting Bcl-2 expression and Bim phosphorylation.

  4. Proteins causing membrane fouling in membrane bioreactors.

    PubMed

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs.

  5. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    PubMed

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  6. Conformation of Membrane Proteins: Bacteriorhodopsin

    DTIC Science & Technology

    1994-05-13

    membrane (PM) of Halobacterium halobium, was chemically modified with methoxypolyethylene glycol MINE (MW = 5000) succinimidyl carbonate. The...membrane protein (248 amino acids) which catalyzes the light-induced proton translocation across the membrane of Halobacterium halobium. Research was...purple membrane (PM) of Halobacterium halobium, was chemically modified with methoxypolyethylene glycol (MW = 5000) succinimidyl carbonate. The

  7. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  8. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  9. Regulation of Extracellular Matrix Remodeling Proteins by Osteoblasts in Titanium Nanoparticle-Induced Aseptic Loosening Model.

    PubMed

    Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng

    2015-10-01

    Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones.

  10. Phosphoproteome reveals an atlas of protein signaling networks during osteoblast adhesion.

    PubMed

    Milani, Renato; Ferreira, Carmen V; Granjeiro, José M; Paredes-Gamero, Edgar J; Silva, Rodrigo A; Justo, Giselle Z; Nader, Helena B; Galembeck, Eduardo; Peppelenbosch, Maikel P; Aoyama, Hiroshi; Zambuzzi, Willian F

    2010-04-01

    Cell adhesion on surfaces is a fundamental process in the emerging biomaterials field and developmental events as well. However, the mechanisms regulating this biological process in osteoblasts are not fully understood. Reversible phosphorylation catalyzed by kinases is probably the most important regulatory mechanism in eukaryotes. Therefore, the goal of this study is to assess osteoblast adhesion through a molecular prism under a peptide array technology, revealing essential signaling proteins governing adhesion-related events. First, we showed that there are main morphological changes on osteoblast shape during adhesion up to 3 h. Second, besides classical proteins activated upon integrin activation, our results showed a novel network involving signaling proteins such as Rap1A, PKA, PKC, and GSK3beta during osteoblast adhesion on polystyrene. Third, these proteins were grouped in different signaling cascades including focal adhesion establishment, cytoskeleton rearrangement, and cell-cycle arrest. We have thus provided evidence that a global phosphorylation screening is able to yield a systems-oriented look at osteoblast adhesion, providing new insights for understanding of bone formation and improvement of cell-substratum interactions. Altogether, these statements are necessary means for further intervention and development of new approaches for the progress of tissue engineering.

  11. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts.

    PubMed Central

    Gazzerro, E; Gangji, V; Canalis, E

    1998-01-01

    Bone morphogenetic proteins (BMPs) induce the differentiation of cells of the osteoblastic lineage and enhance the function of the osteoblast. Growth factors are regulated by binding proteins, but there is no information about binding proteins for BMPs in skeletal cells. Noggin specifically binds BMPs, but its expression by cells of the osteoblastic lineage has not been reported. We tested for the expression of noggin and its induction by BMP-2 in cultures of osteoblast-enriched cells from 22-d-old fetal rat calvariae (Ob cells). BMP-2 caused a time- and dose-dependent increase in noggin mRNA and polypeptide levels, as determined by Northern and Western blot analyses. The effects of BMP-2 on noggin transcripts were dependent on protein, but independent of DNA synthesis. BMP-2 increased the rates of noggin transcription as determined by nuclear run-on assays. BMP-4, BMP-6, and TGF-beta1 increased noggin mRNA in Ob cells, but basic fibroblast growth factor, platelet- derived growth factor BB, and IGF-I did not. Noggin decreased the stimulatory effects of BMPs on DNA and collagen synthesis and alkaline phosphatase activity in Ob cells. In conclusion, BMPs induce noggin transcription in Ob cells, a probable mechanism to limit BMP action in osteoblasts. PMID:9854046

  12. Proteins interacting with Membranes: Protein Sorting and Membrane Shaping

    NASA Astrophysics Data System (ADS)

    Callan-Jones, Andrew

    2015-03-01

    Membrane-bound transport in cells requires generating membrane curvature. In addition, transport is selective, in order to establish spatial gradients of membrane components in the cell. The mechanisms underlying cell membrane shaping by proteins and the influence of curvature on membrane composition are active areas of study in cell biophysics. In vitro approaches using Giant Unilamellar Vesicles (GUVs) are a useful tool to identify the physical mechanisms that drive sorting of membrane components and membrane shape change by proteins. I will present recent work on the curvature sensing and generation of IRSp53, a protein belonging to the BAR family, whose members, sharing a banana-shaped backbone, are involved in endocytosis. Pulling membrane tubes with 10-100 nm radii from GUVs containing encapsulated IRSp53 have, unexpectedly, revealed a non-monotonic dependence of the protein concentration on the tube as a function of curvature. Experiments also show that bound proteins alter the tube mechanics and that protein phase separation along the tube occurs at low tensions. I will present accompanying theoretical work that can explain these findings based on the competition between the protein's intrinsic curvature and the effective rigidity of a membrane-protein patch.

  13. Prolyl hydroxylase domain proteins regulate bone mass through their expression in osteoblasts.

    PubMed

    Zhu, Ke; Song, Pingping; Lai, Yumei; Liu, Chuanju; Xiao, Guozhi

    2016-12-05

    The roles of prolyl hydroxylase domain proteins (PHDs) in bone are incompletely understood. Here we deleted the expression of genes encoding PHD1, PHD2, and PHD3 in osteoblasts in mice by breeding the floxed Phd1-3 mice with Col1a1-Cre transgenic mice. Results showed that mice lacking PHD1-3 in osteoblasts (Phd1-3ob-/-) had increased bone mass. Bone parameters such as bone volume/tissue volume (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) were increased, while trabecular spacing (Tb.Sp) was decreased in Phd1-3ob-/- relative to wild-type (WT) femurs. In contrast, loss of PHD1-3 in osteoblasts did not alter cortical thickness (Cort.Th). The mineralization apposition rate (MAR) was increased in Phd1-3ob-/- bone compared to that of wild-type (WT) bone, demonstrating an enhancement of osteoblast function. Loss of PHD1-3 increased the number of osteoblast progenitors (CFU-OBs) in bone marrow cultures. Interestingly, deleting Phd1-3 genes in osteoblasts increased osteoclast formation in vitro and in bone.

  14. Design of membrane proteins: toward functional systems.

    PubMed

    Ghirlanda, Giovanna

    2009-12-01

    Over the years, membrane-soluble peptides have provided a convenient model system to investigate the folding and assembly of integral membrane proteins. Recent advances in experimental and computational methods are now being translated into the design of functional membrane proteins. Applications include artificial modulators of membrane protein function, inhibitors of protein-protein interactions, and redox membrane proteins.

  15. Differential effects and glucocorticoid potentiation of bone morphogenetic protein action during rat osteoblast differentiation in vitro.

    PubMed

    Boden, S D; McCuaig, K; Hair, G; Racine, M; Titus, L; Wozney, J M; Nanes, M S

    1996-08-01

    Bone morphogenetic proteins (BMPs) induce cartilage and bone differentiation in vivo and promote osteoblast differentiation from calvarial and marrow stromal cell preparations. Functional differences between BMP-2, -4, and -6 are not well understood. Recent investigations find that these three closely related osteoinductive proteins may exert different effects in primary rat calvarial cell cultures, suggesting the possibility of unique functions in vivo. In this study, we use a fetal rat secondary calvarial cell culture system to examine the differential effects of BMP-2, -4, and -6 on early osteoblast differentiation. These cells do not spontaneously differentiate into osteoblasts, as do cells in primary calvarial cultures, but rather require exposure to a differentiation initiator such as glucocorticoid or BMP. We determined that BMP-6 is a 2- to 2.5-fold more potent inducer of osteoblast differentiation than BMP-2 or -4. BMP-6 induced the formation of more and larger bone nodules as well as increased osteocalcin secretion. The effects of all three of these BMPs were potentiated up to 10-fold by cotreatment or pretreatment with the glucocorticoid triamcinolone (Trm). The Trm effects were synergistic with those of BMP-2 or -4, suggesting that this glucocorticoid may increase the cell responsiveness to these BMPs. Finally, BMP-6 did not require either cotreatment or pretreatment with Trm to achieve greater amounts of osteoblast differentiation than seen with BMP-2 or BMP-4 treatment, suggesting that BMP-6 may act at an earlier stage of cell differentiation.

  16. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response.

    PubMed

    Tascau, Liana; Gardner, Thomas; Anan, Hussein; Yongpravat, Charlie; Cardozo, Christopher P; Bauman, William A; Lee, Francis Y; Oh, Daniel S; Tawfeek, Hesham A

    2016-01-01

    Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.

  17. Role of diabetes- and obesity-related protein in the regulation of osteoblast differentiation

    PubMed Central

    Linares, Gabriel R.; Xing, Weirong; Burghardt, Hans; Baumgartner, Bernhard; Chen, Shin-Tai; Ricart, Wifredo; Fernández-Real, José Manuel; Zorzano, Antonio

    2011-01-01

    Although thyroid hormone (TH) is known to exert important effects on the skeleton, the nuclear factors constituting the TH receptor coactivator complex and the molecular pathways by which TH mediates its effects on target gene expression in osteoblasts remain poorly understood. A recent study demonstrated that the actions of TH on myoblast differentiation are dependent on diabetes- and obesity-related protein (DOR). However, the role of DOR in osteoblast differentiation is unknown. We found DOR expression increased during in vitro differentiation of bone marrow stromal cells into osteoblasts and also in MC3T3-E1 cells treated with TH. However, DOR expression decreased during cellular proliferation. To determine whether DOR acts as a modulator of TH action during osteoblast differentiation, we examined whether overexpression or knockdown of DOR in MC3T3-E1 cells affects the ability of TH to induce osteoblast differentiation by evaluating alkaline phosphatase (ALP) activity. ALP activity was markedly increased in DOR-overexpressing cells treated with TH. In contrast, loss of DOR dramatically reduced TH stimulation of ALP activity in MC3T3-E1 cells and primary calvaria osteoblasts transduced with lentiviral DOR shRNA. Consistent with reduced ALP activity, mRNA levels of osteocalcin, ALP, and Runx2 were decreased significantly in DOR shRNA cells. In addition, a common single nucleotide polymorphism (SNP), DOR1 found on the promoter of human DOR gene, was associated with circulating osteocalcin levels in nondiabetic subjects. Based on these data, we conclude that DOR plays an important role in TH-mediated osteoblast differentiation, and a DOR SNP associates with plasma osteocalcin in men. PMID:21467300

  18. Role of Protein Phosphatase 2A in Osteoblast Differentiation and Function

    PubMed Central

    Okamura, Hirohiko; Yoshida, Kaya; Morimoto, Hiroyuki; Teramachi, Jumpei; Ochiai, Kazuhiko; Haneji, Tatsuji; Yamamoto, Akihito

    2017-01-01

    The reversible phosphorylation of proteins plays hugely important roles in a variety of cellular processes, such as differentiation, proliferation, and apoptosis. These processes are strictly controlled by protein kinases (phosphorylation) and phosphatases (de-phosphorylation). Here we provide a brief history of the study of protein phosphorylation, including a summary of different types of protein kinases and phosphatases. One of the most physiologically important serine/threonine phosphatases is PP2A. This review provides a description of the phenotypes of various PP2A transgenic mice and further focuses on the known functions of PP2A in bone formation, including its role in osteoblast differentiation and function. A reduction in PP2A promotes bone formation and osteoblast differentiation through the regulation of bone-related transcription factors such as Osterix. Interestingly, downregulation of PP2A also stimulates adipocyte differentiation from undifferentiated mesenchymal cells under the appropriate adipogenic differentiation conditions. In osteoblasts, PP2A is also involved in the ability to control osteoclastogenesis as well as in the proliferation and metastasis of osteosarcoma cells. Thus, PP2A is considered to be a comprehensive factor in controlling the differentiation and function of cells derived from mesenchymal cells such as osteoblasts and adipocytes. PMID:28241467

  19. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways

    USDA-ARS?s Scientific Manuscript database

    It has been suggested that the beneficial effects of soy protein isolate (SPI) on bone quality might be due to either stimulation of estrogenic signaling via isoflavones or through a novel and as yet characterized non-estrogenic pathway. We report here that SPI-fed rat serum inhibited osteoblastic c...

  20. Role of Protein Phosphatase 2A in Osteoblast Differentiation and Function.

    PubMed

    Okamura, Hirohiko; Yoshida, Kaya; Morimoto, Hiroyuki; Teramachi, Jumpei; Ochiai, Kazuhiko; Haneji, Tatsuji; Yamamoto, Akihito

    2017-02-23

    The reversible phosphorylation of proteins plays hugely important roles in a variety of cellular processes, such as differentiation, proliferation, and apoptosis. These processes are strictly controlled by protein kinases (phosphorylation) and phosphatases (de-phosphorylation). Here we provide a brief history of the study of protein phosphorylation, including a summary of different types of protein kinases and phosphatases. One of the most physiologically important serine/threonine phosphatases is PP2A. This review provides a description of the phenotypes of various PP2A transgenic mice and further focuses on the known functions of PP2A in bone formation, including its role in osteoblast differentiation and function. A reduction in PP2A promotes bone formation and osteoblast differentiation through the regulation of bone-related transcription factors such as Osterix. Interestingly, downregulation of PP2A also stimulates adipocyte differentiation from undifferentiated mesenchymal cells under the appropriate adipogenic differentiation conditions. In osteoblasts, PP2A is also involved in the ability to control osteoclastogenesis as well as in the proliferation and metastasis of osteosarcoma cells. Thus, PP2A is considered to be a comprehensive factor in controlling the differentiation and function of cells derived from mesenchymal cells such as osteoblasts and adipocytes.

  1. Bacterial infection of osteoblasts induces interleukin-1beta and interleukin-18 transcription but not protein synthesis.

    PubMed

    Marriott, Ian; Hughes, Francis M; Bost, Kenneth L

    2002-10-01

    A growing body of evidence has shown that bacterially challenged bone-forming osteoblasts are a significant source of an array of cytokines and chemokines that can support immune responses during bone disease. In the present study, Staphylococcus aureus and Salmonella, two common pathogens of bone, were investigated for their ability to induce production of two related inflammatory cytokines, interleukin-1beta (IL-1beta) and IL18, in osteoblasts. Cultured mouse osteoblasts were found to respond rapidly to either bacterial challenge by upregulation in the levels of mRNA encoding both IL-1beta and IL-18. Surprisingly, this mRNA expression did not translate into intracellular accumulation of IL-1beta or IL-18 precursor proteins or secretion of mature cytokines, despite the presence of detectable caspase-1 activity in these cells. These studies demonstrate that although osteoblasts can secrete a number of key proinflammatory mediators in response to bacterial pathogens, IL-1beta and IL-18 are not among this number. We suggest that osteoblasts are an unlikely source of these cytokines during the progression of bacterial infection of bone.

  2. Osteoblastic differentiation and cell calcification of adamantinomatous craniopharyngioma induced by bone morphogenetic protein-2.

    PubMed

    Yan, Xiaorong; Kang, Dezhi; Pan, Jun; Jiang, Changzhen; Lin, Yuanxiang; Qi, Songtao

    2017-01-01

    The calcification of adamantinomatous craniopharyngioma (ACP) often creates difficulties for surgical therapy. Nevertheless, the mechanism of ACP calcification is unclear. Our previous studies demonstrated that osteoblastic factors might play important roles in ACP calcification. We examined the effects of recombinant human Bmp2 on ACP cell differentiation by testing osteoblastic proteins and calcium deposition. The expression of osteoblastic factors including osteopontin (OPN), Runx2, and osterix in Bmp2-treated ACP cells was examined by western blot and/or real time PCR. ALP activity and calcium deposition after Bmp2 induction were also tested. Bmp2 significantly amplified the expression of Runx2, Osterix and OPN, as well as ALP activity. Both of these effects could be repressed by noggin treatment. Bmp2 also significantly induced the calcification of ACP, and noggin inhibited this calcium deposition. Our study demonstrated for the first time that ACP cells could differentiate into an osteoblastic lineage via induction by Bmp2. The mechanism of ACP calcification likely involves osteoblastic differentiation modulated by Bmp2. Further studies targeting Bmp2 cascades could result in novel therapeutic interventions for recurrent ACP.

  3. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways

    PubMed Central

    Zhao, Hongyan; Liu, Wei; Wang, Yi; Dai, Nannan; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Bian, Jianchun

    2015-01-01

    Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs. PMID:26425111

  4. Thermo-responsive poly(N-isopropylacrylamide)-grafted hollow fiber membranes for osteoblasts culture and non-invasive harvest.

    PubMed

    Zhuang, Meiling; Liu, Tianqing; Song, Kedong; Ge, Dan; Li, Xiangqin

    2015-10-01

    Hollow fiber membrane (HFM) culture system is one of the most important bioreactors for the large-scale culture and expansion of therapeutic cells. However, enzymatic and mechanical treatments are traditionally applied to harvest the expanded cells from HFMs, which inevitably causes harm to the cells. In this study, thermo-responsive cellulose acetate HFMs for cell culture and non-invasive harvest were prepared for the first time via free radical polymerization in the presence of cerium (IV). ATR-FTIR and elemental analysis results indicated that the poly(N-isopropylacrylamide) (PNIPAAm) was covalently grafted on HFMs successfully. Dynamic contact angle measurements at different temperatures revealed that the magnitude of volume phase transition was decreased with increasing grafted amount of PNIPAAm. And the amount of serum protein adsorbed on HFMs surface also displayed the same pattern. Meanwhile osteoblasts adhered and spread well on the surface of PNIPAAm-grafted HFMs at 37 °C. And Calcein-AM/PI staining, AB assay, ALP activity and OCN protein expression level all showed that PNIPAAm-grafted HFMs had good cell compatibility. After incubation at 20 °C for 120 min, the adhering cells on PNIPAAm-grafted HFMs turned to be round and detached after being gently pipetted. These results suggest that thermo-responsive HFMs are attractive cell culture substrates which enable cell culture, expansion and the recovery without proteolytic enzyme treatment for the application in tissue engineering and regenerative medicine.

  5. Protein tyrosine phosphatase SHP-1 modulates osteoblast differentiation through direct association with and dephosphorylation of GSK3β.

    PubMed

    Tang, Xiao-Lu; Wang, Chang-Nan; Zhu, Xiao-Yan; Ni, Xin

    2017-01-05

    SHP-1, the Src homology-2 (SH2) domain-containing phosphatase 1, is a cytosolic protein-tyrosine phosphatase (PTP) predominantly expressed in hematopoietic-derived cells. Previous studies have focused on the involvement of SHP-1 in osteoclastogenesis. Using primary cultured mouse fetal calvaria-derived osteoblasts as a model, this study aims to investigate the effects of SHP-1 on differentiation and mineralization of osteoblasts and elucidate the signaling pathways responsible for these effects. We found that osteoblasts treated by osteogenic media showed significant increase in SHP-1 expression, which contributed to osteoblastic differentiation and mineralization. Using immunoprecipitation assay, we found that a direct association between SHP-1 and glycogen synthase kinase (GSK)-3β could be detected in differentiated osteoblasts and was significantly inhibited by SHP-1 inhibitor NSC87877. Inhibition of SHP-1 activated GSK3β, thereby leading to suppression of osteoblast differentiation and mineralization, which could be rescued by the inhibitor of GSK3β. In addition, we found that rosiglitazone (RSG) treatment led to significant decrease in SHP-1 expression. Overexpression of SHP-1 reversed RSG-induced GSK3β activation, thus rescuing the inhibitory effect of RSG on osteoblast differentiation and mineralization. These findings suggest that protein tyrosine phosphatase SHP-1 may act as a positive regulator of osteoblast differentiation through direct association with and dephosphorylation of GSK3β. Downregulation of SHP-1 may contribute to RSG-induced inhibition of mouse calvaria osteoblast differentiation by activating GSK3β-dependent pathway.

  6. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    SciTech Connect

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha; Levi, Edi; Rishi, Arun K.; Datta, Nabanita S.

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  7. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  8. Titanium With Nanotopography Induces Osteoblast Differentiation by Regulating Endogenous Bone Morphogenetic Protein Expression and Signaling Pathway.

    PubMed

    M S Castro-Raucci, Larissa; S Francischini, Marcelo; N Teixeira, Lucas; P Ferraz, Emanuela; B Lopes, Helena; T de Oliveira, Paulo; Hassan, Mohammad Q; Losa, Adalberto L; Beloti, Marcio M

    2016-07-01

    We aimed at evaluating the effect of titanium (Ti) with nanotopography (Nano) on the endogenous expression of BMP-2 and BMP-4 and the relevance of this process to the nanotopography-induced osteoblast differentiation. MC3T3-E1 cells were grown on Nano and machined (Machined) Ti surfaces and the endogenous BMP-2/4 expression and the effect of BMP receptor BMPR1A silencing in both osteoblast differentiation and expression of genes related to TGF-β/BMP signaling were evaluated. Nano supported higher BMP-2 gene and protein expression and upregulated the osteoblast differentiation compared with Machined Ti surface. The BMPR1A silencing inhibited the osteogenic potential induced by Nano Ti surface as indicated by reduced alkaline phosphatase (ALP), osteocalcin and RUNX2 gene expression, RUNX2 protein expression and ALP activity. In addition, the expression of genes related to TGF-β/BMP signaling was deeply affected by BMPR1A-silenced cells grown on Nano Ti surface. In conclusion, we have demonstrated for the first time that nanotopography induces osteoblast differentiation, at least in part, by upregulating the endogenous production of BMP-2 and modulating BMP signaling pathway. J. Cell. Biochem. 117: 1718-1726, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Reduced trabecular bone mass and strength in mice overexpressing Gα11 protein in cells of the osteoblast lineage.

    PubMed

    Dela Cruz, Ariana; Mattocks, Michael; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2014-02-01

    G protein-coupled receptors (GPCRs) require G proteins for intracellular signaling to regulate a variety of growth and maintenance processes, including osteogenesis and bone turnover. Bone maintenance events may be altered by changes in the activity or level of G proteins, which then modify signaling in bone cells such as osteoblasts. We have previously reported increased levels of Gα11 protein and signaling to phospholipase C/protein kinase C pathways in response to dexamethasone in osteoblastic UMR 106-01 cells. Here we generated pOBCol3.6-GNA11 transgenic mice that overexpress Gα11 protein in cells of the osteoblast lineage (G11-Tg mice). G11-Tg mice exhibit an osteopenic phenotype characterized by significant reductions in trabecular bone mineral density, thickness, number and strength. The numbers of osteoblasts and osteocytes were unchanged in G11-Tg bone, but early markers of osteoblast differentiation, Alp and Bsp, were increased while the late stage differentiation marker Ocn was not changed suggesting reduced osteoblast maturation in G11-Tg trabecular bone which was accompanied by a decreased bone formation rate. Furthermore, in vitro cultures of G11-Tg primary osteoblasts show delayed osteoblast differentiation and mineralization. Histological analyses also revealed increased osteoclast parameters, accompanied by elevated mRNA expression of Trap and Ctsk. mRNA levels of Rankl and M-csf were elevated in vitro in bone marrow stromal cells undergoing osteogenesis and in trabecular bone in vivo. Together, these findings demonstrate that increasing Gα11 protein expression in osteoblasts can alter gene expression and result in a dual mechanism of trabecular bone loss.

  10. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts

    NASA Technical Reports Server (NTRS)

    Reich, K. M.; McAllister, T. N.; Gudi, S.; Frangos, J. A.

    1997-01-01

    Interstitial fluid flow may play a role in load-induced bone remodeling. Previously, we have shown that fluid flow stimulates osteoblast production of cAMP inositol trisphosphate (IP3), and PGE2. Flow-induced increases in cAMP and IP3 were shown to be a result of PG production. Thus, PGE2 production appears to be an important component in fluid flow induced signal transduction. In the present study, we investigated the mechanism of flow-induced PGE2 synthesis. Flow-induced a 20-fold increase in PGE2 production in osteoblasts. Increases were also observed with ALF4-(10mM) (98-fold), an activator of guanidine nucleotide-binding proteins (G proteins), and calcium ionophore A23187 (2 microM) (100-fold) in stationary cells. We then investigated whether flow stimulation is mediated by G proteins and increases in intracellular calcium. Flow-induced PGE2 production was inhibited by the G protein inhibitors GDP beta S (100 microM) and pertussis toxin (1 microgram/ml) by 83% and 72%, respectively. Chelation of extracellular calcium by EGTA (2 mM) and intracellular calcium by quin-2/AM (30 microM) blocked flow stimulation by 87% and 67%, respectively. These results suggest that G proteins and calcium play an important role in mediating mechanochemical signal transduction in osteoblasts.

  11. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts

    NASA Technical Reports Server (NTRS)

    Reich, K. M.; McAllister, T. N.; Gudi, S.; Frangos, J. A.

    1997-01-01

    Interstitial fluid flow may play a role in load-induced bone remodeling. Previously, we have shown that fluid flow stimulates osteoblast production of cAMP inositol trisphosphate (IP3), and PGE2. Flow-induced increases in cAMP and IP3 were shown to be a result of PG production. Thus, PGE2 production appears to be an important component in fluid flow induced signal transduction. In the present study, we investigated the mechanism of flow-induced PGE2 synthesis. Flow-induced a 20-fold increase in PGE2 production in osteoblasts. Increases were also observed with ALF4-(10mM) (98-fold), an activator of guanidine nucleotide-binding proteins (G proteins), and calcium ionophore A23187 (2 microM) (100-fold) in stationary cells. We then investigated whether flow stimulation is mediated by G proteins and increases in intracellular calcium. Flow-induced PGE2 production was inhibited by the G protein inhibitors GDP beta S (100 microM) and pertussis toxin (1 microgram/ml) by 83% and 72%, respectively. Chelation of extracellular calcium by EGTA (2 mM) and intracellular calcium by quin-2/AM (30 microM) blocked flow stimulation by 87% and 67%, respectively. These results suggest that G proteins and calcium play an important role in mediating mechanochemical signal transduction in osteoblasts.

  12. Structural Symmetry in Membrane Proteins.

    PubMed

    Forrest, Lucy R

    2015-01-01

    Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.

  13. Bone-specific heparan sulfates induce osteoblast growth arrest and downregulation of retinoblastoma protein.

    PubMed

    Manton, Kerry J; Sadasivam, Murali; Cool, Simon M; Nurcombe, Victor

    2006-10-01

    The heparan sulfate (HSs) sugars of the extracellular matrix (ECM) play a key role during both development and wound repair in regulating the flow of growth and adhesive factors across their cell surface receptors. The aim of this study was to assess the structural and functional differences of HS chains extracted from the conditioned media (soluble), cell surface, and ECM of primary human osteoblast cultures, and to analyze their effects on osteoblast cell growth. HS chains from these compartments were characterized through a combination of enzymatic degradation, anion exchange chromatography, and molecular sieving. Although the chains were all approximately the same size, they varied systematically in their sulfate content, suggesting differences in their protein-binding domains. When added to pre-confluent hFOB1.19 osteoblast cultures, HS doses exceeding 500 ng/ml inhibited proliferation, without affecting viability, irrespective of their origin. Furthermore, HS doses of 500 ng/ml also downregulated retinoblastoma, Cyclin A and CDK1 protein expression, indicating that high doses of osteoblast HS negatively regulate cell cycle, resulting in growth arrest; when high doses of HS were withdrawn after a prolonged period, linear cell growth was reestablished. Thus, despite differences in sulfation, HS from either the soluble, cell surface, or matrix compartments of primary human osteoblast cultures are functionally similar with respect to their effects on growth. Binding assays revealed that the HS chains bound TGFbeta1, a known inhibitor of osteoprogenitor growth, at higher affinity than a suite of other bone-related, heparin-binding growth factors. Overcoming such sugar-mediated inhibition may prove important for wound repair.

  14. The retinoblastoma protein tumor suppressor is important for appropriate osteoblast differentiation and bone development.

    PubMed

    Berman, Seth D; Yuan, Tina L; Miller, Emily S; Lee, Eunice Y; Caron, Alicia; Lees, Jacqueline A

    2008-09-01

    Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit.

  15. Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal stromal cell osteogenic differentiation and mineralization.

    PubMed

    Baroncelli, Marta; van der Eerden, Bram C; Kan, Yik-Yang; Alves, Rodrigo D; Demmers, Jeroen A; van de Peppel, Jeroen; van Leeuwen, Johannes P

    2018-01-01

    The extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell-secreted ECMs have become of interest as they reproduce tissue-architecture and modulate the promising properties of mesenchymal stem cells (MSCs). We have previously created an in vitro model of human osteoblast-derived devitalized ECM that was osteopromotive for MSCs. The aim of this study was to identify ECM regulatory proteins able to modulate MSC differentiation to broaden the spectrum of MSC clinical applications. To this end, we created two additional models of devitalized ECMs with different mineralization phenotypes. Our results showed that the ECM derived from osteoblast-differentiated MSCs had increased osteogenic potential compared to ECM derived from undifferentiated MSCs and non-ECM cultures. Proteomic analysis revealed that structural ECM proteins and ribosomal proteins were upregulated in the ECM from undifferentiated MSCs. A similar response profile was obtained by treating osteoblast-differentiating MSCs with Activin-A. Extracellular proteins were upregulated in Activin-A ECM, whereas mitochondrial and membrane proteins were downregulated. In summary, this study illustrates that the composition of different MSC-secreted ECMs is important to regulate the osteogenic differentiation of MSCs. These models of devitalized ECMs could be used to modulate MSC properties to regulate bone quality. © 2017 Wiley Periodicals, Inc.

  16. Kinetic stability of membrane proteins.

    PubMed

    González Flecha, F Luis

    2017-09-18

    Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.

  17. The interactions of peripheral membrane proteins with biological membranes

    SciTech Connect

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approaches continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.

  18. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGES

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  19. Thermodynamic competition between membrane protein oligomeric states

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Haselwandter, Christoph A.

    2016-10-01

    Self-assembly of protein monomers into distinct membrane protein oligomers provides a general mechanism for diversity in the molecular architectures, and resulting biological functions, of membrane proteins. We develop a general physical framework describing the thermodynamic competition between different oligomeric states of membrane proteins. Using the mechanosensitive channel of large conductance as a model system, we show how the dominant oligomeric states of membrane proteins emerge from the interplay of protein concentration in the cell membrane, protein-induced lipid bilayer deformations, and direct monomer-monomer interactions. Our results suggest general physical mechanisms and principles underlying regulation of protein function via control of membrane protein oligomeric state.

  20. SNARE proteins and 'membrane rafts'.

    PubMed

    Lang, Thorsten

    2007-12-15

    The original 'lipid raft' hypothesis proposed that lipid-platforms/rafts form in the exoplasmic plasmalemmal leaflet by tight clustering of sphingolipids and cholesterol. Their physical state, presumably similar to liquid-ordered phases in model membranes, would confer detergent resistance to rafts and enriched proteins therein. Based on this concept, detergent resistant membranes (DRMs) from solubilized cells were considered to reflect pre-existing 'lipid rafts' in live cells. To date, more than 200 proteins were found in DRMs including also members of the SNARE superfamily, which are small membrane proteins involved in intracellular fusion steps. Their raft association indicates that they are not uniformly distributed, and, indeed, microscopic studies revealed that SNAREs concentrate in submicrometre-sized, cholesterol-dependent clusters at which vesicles fuse. However, the idea that SNARE clusters are 'lipid rafts' was challenged, as they do not colocalize with raft markers, and SNAREs are excluded from liquid-ordered phases in model membranes. Independent from this disagreement, in recent years the solubilization criterion has been criticized for several reasons, calling for a more exact definition of rafts. At a recent consensus on a revised raft model, the term 'lipid rafts' was replaced by 'membrane rafts' that were defined as 'small (10-200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes'. As a result, after dismissing the terms 'detergent resistant' and 'liquid-ordered', it now appears that SNARE clusters are bona fide 'membrane rafts'.

  1. FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Eda, Homare; Aoki, Katsuhiko; Marumo, Keishi; Fujii, Katsuyuki; Ohkawa, Kiyoshi

    2008-02-08

    Transcriptional coactivator with PDZ-binding motif (TAZ) protein is a coactivator of Runx2 and corepressor of PPAR{gamma}. It also induces differentiation of mesenchymal cells into osteoblasts. In this study, we found that FGF-2, which inhibits bone mineralization and stimulates cell proliferation, reduced the TAZ protein expression level in osteoblast-like cells, MC3T3-E1. This reduction was recovered by removing FGF-2 from the culture medium, which also restored the osteoblastic features of MC3T3-E1 cells. Furthermore, FGF-2-induced reduction of TAZ is blocked by a SAPK/JNK-specific inhibitor. These findings suggest that the expression of TAZ protein is involved in osteoblast proliferation and differentiation. This may help elucidate the discrepancies in the effect of FGF-2 and contribute to the understanding of FGF/FGFR-associated craniosynostosis syndrome etiology and treatment.

  2. Expression of the invertebrate sea urchin P16 protein into mammalian MC3T3 osteoblasts transforms and reprograms them into “osteocyte-like” cells

    PubMed Central

    Alvares, Keith; Ren, Yinshi; Feng, Jian Q.; Veis, Arthur

    2015-01-01

    P16 is an acidic phosphoprotein important in both sea urchin embryonic spicule development and transient mineralization during embryogenesis, and syncytium formation and mineralization in mature urchin tooth. Anti-P16 has been used to localize P16 to the syncytial membranes and the calcite mineral. Specific amino acid sequence motifs in P16 are similar to sequences in DSPP a protein common to all vertebrate teeth, and crucial for their mineralization. Here we examine the effect of P16 on vertebrate fibroblastic NIH3T3 cells and osteoblastic MC3T3 cells. Transfection of NIH3T3 cells with P16 cDNA resulted in profound changes in the morphology of the cells. In culture the transfected cells sent out long processes that contacted processes from neighboring cells forming networks or syncytia. There was a similar change in morphology in cultured osteoblastic MC3T3 cells. In addition, the MC3T3 developed numerous dendrites as found in osteocytes. Importantly, there was also a change in the expression of the osteoblast and osteocyte specific genes. MC3T3 cells transfected with P16 showed an 18 fold increase in expression of the osteocyte specific Dentin matrix protein (DMP1) gene, accompanied by decreased expression of osteoblast specific genes: Bone sialoprotein (BSP), osteocalcin (OCN) and β-catenin decreased by 70%, 64% and 68 %, respectively. Thus, invertebrate urchin P16 with no previously known analog in vertebrates was able to induce changes in both cell morphology and gene expression, converting vertebrate-derived osteoblast-like precursor cells to an “osteocyte-like” phenotype, an important process in bone biology. The mechanisms involved are presently under study. PMID:26581835

  3. Ulvan and ulvan/chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts.

    PubMed

    Toskas, Georgios; Heinemann, Sascha; Heinemann, Christiane; Cherif, Chokri; Hund, Rolf-Dieter; Roussis, Vassilios; Hanke, Thomas

    2012-07-01

    A new generation of biomaterials composed of the natural polysaccharides, ulvans extracted from the green seaweed Ulva rigida and chitosan have been investigated. Ulvan, chitosan alone and ulvan/chitosan polyelectrolyte membranes have been synthesised and characterised. The structure of the membranes was altered by the weight ratio of the polyion components. Fibrous and nanofibrous morphology was created, in accordance with a supramolecular self assembly. ATR-FTIR measurements suggested the presence of both polycationic chitosan and polyanionic ulvan in the polyelectrolyte membranes. The cytocompatibility of these new materials was examined by fluorescence microscopy. The results show that ulvan as well as ulvan/chitosan membranes promoted the attachment and proliferation of 7F2 osteoblasts and maintained the cell morphology and viability. Thus, ulvan and chitosan which possess unique properties might have high impact in biomedical applications as potential scaffold materials.

  4. Conditional expression of human bone Gla protein in osteoblasts causes skeletal abnormality in mice.

    PubMed

    Ikeda, Kazuhiro; Tsukui, Tohru; Tanaka, Daisuke; Maruyama, Yojiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-07-20

    Bone Gla protein (BGP), also known as osteocalcin, is one of the most abundant γ-carboxylated noncollagenous protein in bone matrix and plays important roles in mineralization and calcium ion homeostasis. BGP is synthesized specifically in osteoblasts; however, its precise function in bone metabolism has not been fully elucidated. To investigate the in vivo function of human BGP (hBGP), we generated CAG-GFP(floxed)-hBGP transgenic mice carrying a transgene cassette composed of the promoter and a floxed GFP linked to hBGP cDNA. The mice were crossed with ColI-Cre mice, which express the Cre recombinase driven by the mouse collagen type 1a1 gene promoter, to obtain hBGP(ColI) conditional transgenic mice that expressed human BGP in osteoblasts. The hBGP(ColI) mice did not survive more than 2days after birth. The analysis of the 18.5-day post coitum fetuses of the hBGP(ColI) mice revealed that they displayed abnormal skeletal growth such as deformity of the rib and short femur and cranium lengths. Moreover, increased BGP levels were detected in the serum of the neonates. These findings indicate that hBGP expression in osteoblasts resulted in the abnormal skeletal growth in the mice. Our study provides a valuable model for understanding the fundamental role of BGP in vivo. Copyright © 2012. Published by Elsevier Inc.

  5. Diversity of bone matrix adhesion proteins modulates osteoblast attachment and organization of actin cytoskeleton.

    PubMed

    Demais, V; Audrain, C; Mabilleau, G; Chappard, D; Baslé, M F

    2014-06-01

    Interaction of cells with extracellular matrix is an essential event for differentiation, proliferation and activity of osteoblasts. In bone, binding of osteoblasts to bone matrix is required to determine specific activities of the cells and to synthesize matrix bone proteins. Integrins are the major cell receptors involved in the cell linkage to matrix proteins such as fibronectin, type I collagen and vitronectin, via the RGD-sequences. In this study, cultures of osteoblast-like cells (Saos-2) were done on coated glass coverslips in various culture conditions: DMEM alone or DMEM supplemented with poly-L-lysine (PL), fetal calf serum (FCS), fibronectin (FN), vitronectin (VN) and type I collagen (Col-I). The aim of the study was to determine the specific effect of these bone matrix proteins on cell adherence and morphology and on the cytoskeleton status. Morphological characteristics of cultured cells were studied using scanning electron microscopy and image analysis. The heterogeneity of cytoskeleton was studied using fractal analysis (skyscrapers and blanket algorithms) after specific preparation of cells to expose the cytoskeleton. FAK and MAPK signaling pathways were studied by western blotting in these various culture conditions. Results demonstrated that cell adhesion was reduced with PL and VN after 240 min. After 60 min of adhesion, cytoskeleton organization was enhanced with FN, VN and Col-I. No difference in FAK phosphorylation was observed but MAPK phosphorylation was modulated by specific adhesion on extracellular proteins. These results indicate that culture conditions modulate cell adhesion, cytoskeleton organization and intracellular protein pathways according to extracellular proteins present for adhesion.

  6. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60.

    PubMed

    Lu, Ming-Chi; Yu, Chia-Li; Yu, Hui-Chun; Huang, Hsien-Bin; Koo, Malcolm; Lai, Ning-Sheng

    2016-01-01

    We hypothesized that anti-citrullinated protein antibodies (ACPAs) react with osteoblast surface citrullinated proteins and affect cell function, leading to joint damage in patients with rheumatoid arthritis (RA). First, we purified ACPAs by cyclic citrullinated peptide (CCP)-conjugated affinity column chromatography. The cognate antigens of ACPAs on Saos-2 cells, a sarcoma osteogenic cell line generated from human osteoblasts, were probed by ACPAs, and the reactive bands were analyzed using proteomic analyses. We found that ACPAs bind to Saos-2 cell membrane, and several protein candidates, including HSP60, were identified. We then cloned and purified recombinant heat shock protein 60 (HSP60) and citrullinated HSP60 (citHSP60) and investigated the effect of ACPAs on Saos-2 cell. We confirmed that HSP60 obtained from Saos-2 cell membrane were citrullinated and reacted with ACPAs, which induces Saos-2 cells apoptosis via binding to surface-expressed citHSP60 through Toll-like receptor 4 signaling. ACPAs promoted interleukin (IL)-6 and IL-8 expression in Saos-2 cells. Finally, sera from patients with RA and healthy controls were examined for their titers of anti-HSP60 and anti-citHSP60 antibodies using an enzyme-linked immunosorbent assay. The radiographic change in patients with RA was evaluated using the Genant-modified Sharp scoring system. Patients with RA showed higher sera titers of anti-citHSP60, but not anti-HSP60, antibodies when compared with controls. In addition, the anti-citHSP60 level was positively associated with increased joint damage in patients with RA. In conclusion, Saos-2 cell apoptosis was mediated by ACPAs via binding to cell surface-expressed citHSP60 and the titer of anti-citHSP60 in patients with RA positively associated with joint damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Strategies for the purification of membrane proteins.

    PubMed

    Smith, Sinead Marian

    2011-01-01

    Although membrane proteins account for 20-30% of the coding regions of all sequenced genomes and play crucial roles in many fundamental cell processes, there are relatively few membranes proteins with known 3D structure. This is likely due to technical challenges associated with membrane protein extraction, solubilisation, and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non-covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, whose extraction requires phospholipid bilayer disruption by detergents. Here, important criteria for strategies of membrane protein purification are addressed, with a focus on the initial stages of membrane protein solublilisation, where problems are most frequently encountered. Protocols are outlined for the successful extraction of peripheral membrane proteins, solubilisation of integral membrane proteins, and detergent removal which is important not only for retaining native protein stability and biological functions, but also for the efficiency of later purification techniques.

  8. Zinc deprivation inhibits extracellular matrix calcification through decreased synthesis of matrix proteins in osteoblasts.

    PubMed

    Alcantara, Ethel H; Lomeda, Ria-Ann R; Feldmann, Joerg; Nixon, Graeme F; Beattie, John H; Kwun, In-Sook

    2011-10-01

    Zinc is implicated as an activator for bone formation, however, its influence on bone calcification has not been reported. This study examined how zinc regulates the bone matrix calcification in osteoblasts. Two osteoblastic MC3T3-E1 cell subclones (SC 4 and SC 24 as high and low osteogenic differentiation, respectively) were cultured in normal osteogenic (OSM), Zinc deficient (Zn-, 1 μM), or adequate (Zn+, 15 μM) media up to 20 days. Cells (SC 4) were also supplemented with (50 μg/mL) or no ascorbic acid (AA) in combination with Zinc treatment. Zn- decreased collagen synthesis and matrix accumulation. Although AA is essential for collagen formation, its supplementation could not compensate for Zinc deficiency-induced detrimental effects on extracellular matrix mineralization. Zn- also decreased the medium and cell layer alkaline phosphatase ALP activity. This decreased ALP activity might cause the decrease of Pi accumulation in response to Zn-, as measured by von Kossa staining. Ca deposition in cell layers, measured by Alizarin red S staining, was also decreased by Zn(-) . Our findings suggest that zinc deprivation inhibits extracellular matrix calcification in osteoblasts by decreasing the synthesis and activity of matrix proteins, type I collagen and ALP, and decreasing Ca and Pi accumulation. Therefore zinc deficiency can be considered as risk factor for poor extracellular matrix calcification. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Staphylococcus epidermidis serine--aspartate repeat protein G (SdrG) binds to osteoblast integrin alpha V beta 3.

    PubMed

    Claro, T; Kavanagh, N; Foster, T J; O'Brien, F J; Kerrigan, S W

    2015-06-01

    Staphylococcus epidermidis is the leading etiologic agent of orthopaedic implant infection. Contamination of the implanted device during insertion allows bacteria gain entry into the sterile bone environment leading to condition known as osteomyelitis. Osteomyelitis is characterised by weakened bones associated with progressive bone loss. The mechanism through which S. epidermidis interacts with bone cells to cause osteomyelitis is poorly understood. We demonstrate here that S. epidermidis can bind to osteoblasts in the absence of matrix proteins. S. epidermidis strains lacking the cell wall protein SdrG had a significantly reduced ability to bind to osteoblasts. Consistent with this, expression of SdrG in Lactococcus lactis resulted in significantly increased binding to the osteoblasts. Protein analysis identified that SdrG contains a potential integrin recognition motif. αVβ3 is a major integrin expressed on osteoblasts and typically recognises RGD motifs in its ligands. Our results demonstrate that S. epidermidis binds to recombinant purified αVβ3, and that a mutant lacking SdrG failed to bind. Blocking αVβ3 on osteoblasts significantly reduced binding to S. epidermidis. These studies are the first to identify a mechanism through which S. epidermidis binds to osteoblasts and potentially offers a mechanism through which implant infection caused by S. epidermidis leads to osteomyelitis.

  10. Titania nanotubes dimensions-dependent protein adsorption and its effect on the growth of osteoblasts.

    PubMed

    Yang, Weihu; Xi, Xingfeng; Shen, Xinkun; Liu, Peng; Hu, Yan; Cai, Kaiyong

    2014-10-01

    In this study, we report the influence of titania nanotubes (TiNTs) dimensions on the adsorption of collagen (COL) and fibronectin (FN), and its subsequent effect on the growth of osteoblasts. TiNTs with different diameters of around 30 and 100 nm were prepared with anodization. The adsorption profiles of proteins and cell behaviors were evaluated using spectrophotometric measurement, immunofluorescence staining, cell viability, and cytoskeleton morphology, respectively. The results showed that although the growth of osteoblasts was highly sensitive to the dimensions TiNTs, the preadsorbed COL and FN could reduce the difference. Molecular dynamics (MD) simulation results confirmed that the main driving force for protein adsorption was the physical adsorption. The TiNTs with bigger dimensions had higher interaction energies, and thus leading to higher proteins (COL and FN) adsorption and obvious influences on cell behaviors. MD simulation revealed that the orientation and conformation of proteins adsorbed onto surfaces of TiNTs was critical for cell integrins to recognize specific sites. When FN molecules adsorbed onto the surfaces of TiNTs, their RGD (Arg-Gly-Asp) sites were easily exposed to outside and more likely to bond with the fibronectin receptors, in turn regulating the cellular behaviors.

  11. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment.

    PubMed

    Okito, Asuka; Nakahama, Ken-Ichi; Akiyama, Masako; Ono, Takashi; Morita, Ikuo

    2015-03-06

    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment.

  12. Proteomic analysis of integral plasma membrane proteins.

    PubMed

    Zhao, Yingxin; Zhang, Wei; Kho, Yoonjung; Zhao, Yingming

    2004-04-01

    Efficient methods for profiling proteins integral to the plasma membrane are highly desirable for the identification of overexpressed proteins in disease cells. Such methods will aid in both understanding basic biological processes and discovering protein targets for the design of therapeutic monoclonal antibodies. Avoiding contamination by subcellular organelles and cytosolic proteins is crucial to the successful proteomic analysis of integral plasma membrane proteins. Here we report a biotin-directed affinity purification (BDAP) method for the preparation of integral plasma membrane proteins, which involves (1) biotinylation of cell surface membrane proteins in viable cells, (2) affinity enrichment using streptavidin beads, and (3) depletion of plasma membrane-associated cytosolic proteins by harsh washes with high-salt and high-pH buffers. The integral plasma membrane proteins are then extracted and subjected to SDS-PAGE separation and HPLC/MS/MS for protein identification. We used the BDAP method to prepare integral plasma membrane proteins from a human lung cancer cell line. Western blotting analysis showed that the preparation was almost completely devoid of actin, a major cytosolic protein. Nano-HPLC/MS/MS analysis of only 30 microg of protein extracted from the affinity-enriched integral plasma membrane preparation led to the identification of 898 unique proteins, of which 781 were annotated with regard to their plasma membrane localization. Among the annotated proteins, at least 526 (67.3%) were integral plasma membrane proteins. Notable among them were 62 prenylated proteins and 45 Ras family proteins. To our knowledge, this is the most comprehensive proteomic analysis of integral plasma membrane proteins in mammalian cells to date. Given the importance of integral membrane proteins for drug design, the described approach will expedite the characterization of plasma membrane subproteomes and the discovery of plasma membrane protein drug targets.

  13. Membrane stiffness is modified by integral membrane proteins.

    PubMed

    Fowler, Philip W; Hélie, Jean; Duncan, Anna; Chavent, Matthieu; Koldsø, Heidi; Sansom, Mark S P

    2016-09-20

    The ease with which a cell membrane can bend and deform is important for a wide range of biological functions. Peripheral proteins that induce curvature in membranes (e.g. BAR domains) have been studied for a number of years. Little is known, however, about the effect of integral membrane proteins on the stiffness of a membrane (characterised by the bending rigidity, Kc). We demonstrate by computer simulation that adding integral membrane proteins at physiological densities alters the stiffness of the membrane. First we establish that the coarse-grained MARTINI forcefield is able to accurately reproduce the bending rigidity of a small patch of 1500 phosphatidyl choline lipids by comparing the calculated value to both experiment and an atomistic simulation of the same system. This enables us to simulate the dynamics of large (ca. 50 000 lipids) patches of membrane using the MARTINI coarse-grained description. We find that altering the lipid composition changes the bending rigidity. Adding integral membrane proteins to lipid bilayers also changes the bending rigidity, whilst adding a simple peripheral membrane protein has no effect. Our results suggest that integral membrane proteins can have different effects, and in the case of the bacterial outer membrane protein, BtuB, the greater the density of protein, the larger the reduction in stiffness.

  14. Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro.

    PubMed

    Ideno, Hisashi; Takanabe, Rieko; Shimada, Akemi; Imaizumi, Kazuhiko; Araki, Ryoko; Abe, Masumi; Nifuji, Akira

    2009-02-01

    Protein related to DAN and cerberus (PRDC) is a secreted protein characterized by a cysteine knot structure, which binds bone morphogenetic proteins (BMPs) and thereby inhibits their binding to BMP receptors. As an extracellular BMP antagonist, PRDC may play critical roles in osteogenesis; however, its expression and function in osteoblastic differentiation have not been determined. Here, we investigated whether PRDC is expressed in osteoblasts and whether it regulates osteogenesis in vitro. PRDC mRNA was found to be expressed in the pre-osteoblasts of embryonic day 18.5 (E18.5) mouse calvariae. PRDC mRNA expression was elevated by treatment with BMP-2 in osteoblastic cells isolated from E18.5 calvariae (pOB cells). Forced expression of PRDC using adenovirus did not affect cell numbers, whereas it suppressed exogenous BMP activity and endogenous levels of phosphorylated Smad1/5/8 protein. Furthermore, PRDC inhibited the expression of bone marker genes and bone-like mineralized matrix deposition in pOB cells. In contrast, the reduction of PRDC expression by siRNA elevated alkaline phosphatase activity, increased endogenous levels of phosphorylated Smad1/5/8 protein, and promoted bone-like mineralized matrix deposition in pOB cells. These results suggest that PRDC expression in osteoblasts suppresses differentiation and that reduction of PRDC expression promotes osteogenesis in vitro. PRDC is accordingly identified as a potential novel therapeutic target for the regulation of bone formation.

  15. Biopores/membrane proteins in synthetic polymer membranes.

    PubMed

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  16. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment

    SciTech Connect

    Okito, Asuka; Nakahama, Ken-ichi; Akiyama, Masako; Ono, Takashi; Morita, Ikuo

    2015-03-06

    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment. - Highlights: • RANKL expression was increased in osteoblasts under acidosis via cAMP/PKA pathway. • GRP4 knockdown resulted in decrease of RANKL expression. • GRP4 overexpression resulted in increase of RANKL expression. • Osteoblast mineralization was reduced under acidic condition.

  17. Computational modeling of membrane proteins

    PubMed Central

    Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.

    2014-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688

  18. Protein phosphatase 2A Cα regulates osteoblast differentiation and the expressions of bone sialoprotein and osteocalcin via osterix transcription factor.

    PubMed

    Okamura, Hirohiko; Yoshida, Kaya; Yang, Di; Haneji, Tatsuji

    2013-05-01

    Serine/threonine protein phosphatase 2A (PP2A) participates in regulating many important physiological processes such as cell cycle, growth, apoptosis, and signal transduction. Osterix is a zinc-finger-containing transcription factor that is essential for osteoblast differentiation and regulation of many bone-related genes. We have recently reported that decrease in α-isoform of PP2A catalytic subunit (PP2A Cα) accelerates osteoblast differentiation through the expression of bone-related genes. In this study, we further examined the role of PP2A Cα in osteoblast differentiation by establishing the stable cell lines that overexpress PP2A Cα. Overexpression of PP2A Cα reduced alkaline phosphatase (ALP) activity. Osteoblast differentiation and mineralization were also decreased in PP2A Cα-overexpressing cells, with reduction of bone-related genes including osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). Luciferase assay showed that the transcriptional activity of the Osterix promoter region was decreased in PP2A Cα-overexpressing cells. Introduction of ectopic Osterix rescued the expression of Bsp and OCN in PP2A Cα-overexpressing cells. These results indicate that PP2A Cα and its activity play a negative role in osteoblast differentiation and Osterix is a key factor responsible for regulating the expressions of Bsp and OCN during PP2A Cα-mediated osteoblast differentiation.

  19. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOEpatents

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  20. Membrane shape modulates transmembrane protein distribution

    PubMed Central

    Aimon, Sophie; Callan-Jones, Andrew; Berthaud, Alice; Pinot, Mathieu; Toombes, Gilman E. S.; Bassereau, Patricia

    2014-01-01

    Summary Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown due to the numerous sorting mechanisms taking place concurrently in cells. To isolate the effect of membrane shape, cellsized Giant Unilamellar Vesicles (GUVs) containing either the potassium channel, KvAP, or water channel, AQP0, were used to form membrane nanotubes with controlled radii. While the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. FRAP measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins, and provides a method for determining the effective shape and flexibility of membrane proteins. PMID:24480645

  1. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  2. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    PubMed

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function.

  3. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein

    NASA Technical Reports Server (NTRS)

    Jiang, Guang-Liang; White, Charles R.; Stevens, Hazel Y.; Frangos, John A.

    2002-01-01

    Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.

  4. Effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell initial attachment.

    PubMed

    Kern, Travis; Yang, Yunzhi; Glover, Renee; Ong, Joo L

    2005-03-01

    The clinical success of dental implants is governed in part by surface properties of implants and their interactions with the surrounding tissues. The objective of this study was to investigate the effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell attachment in vitro. Passivated titanium samples used in this study were either non heat treated or heat treated at 750 degrees C for 90 minutes. It was observed that the contact angle on heat-treated titanium surfaces was statistically lower compared with the non-heat-treated titanium surfaces. The non-heat-treated titanium surface was also observed to be amorphous oxide, whereas heat treatment of titanium resulted in the conversion of amorphous oxide to crystalline anatase oxide. No significant difference in albumin and fibronectin adsorption was observed between the heat-treated and non-heat-treated titanium surfaces. In addition, no significant difference in initial cell attachment was observed between the two groups. It was concluded that heat treatment of titanium resulted in significantly more hydrophilic surfaces compared to non-heat-treated titanium surfaces. However, differences in oxide crystallinity and wettability were not observed to affect protein adsorption and initial osteoblast precursor cell attachment.

  5. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein

    NASA Technical Reports Server (NTRS)

    Jiang, Guang-Liang; White, Charles R.; Stevens, Hazel Y.; Frangos, John A.

    2002-01-01

    Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.

  6. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation.

    PubMed

    Lin, Kaili; Xia, Lunguo; Gan, Jingbo; Zhang, Zhiyuan; Chen, Hong; Jiang, Xinquan; Chang, Jiang

    2013-08-28

    To promote and understand the biological responses of the implant via nanostructured surface design is essential for the development of bioactive bone implants. However, the control of the surface topography of the bioceramics in nanoscale is a big challenge because of their brittle property. Herein, the hydroxyapatite (HAp) bioceramics with distinct nanostructured topographies were fabricated via hydrothermal treatment using α-tricalcium phosphate ceramic as hard-template under different reaction conditions. HAp bioceramics with nanosheet, nanorod and micro-nanohybrid structured surface in macroscopical size were obtained by controlling the composition of the reaction media. Comparing with the traditional sample with flat and dense surface, the fabricated HAp bioceramics with hierarchical 3D micro-nanotextured surfaces possessed higher specific surface area, which selectively enhanced adsorption of specific proteins including Fn and Vn in plasma, and stimulated osteoblast adhesion, growth, and osoteogenic differentiation. In particular, the biomimetic features of the hierarchical micro-nanohybrid surface resulted in the best ability for simultaneous enhancement of protein adsorption, osteoblast proliferation, and differentiation. The results suggest that the hierarchical micro-nanohybrid topography might be one of the critical factors to be considered in the design of functional bone grafts.

  7. Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene.

    PubMed

    Kalbacova, Marie; Broz, Antonin; Kalbac, Martin

    2012-11-01

    The influence of single-layer graphene produced by chemical vapor deposition on human osteoblast cells under different conditions was studied. Measurements probed the ability of cells to adhere and proliferate on graphene compared with SiO(2)/Si substrates and standard tissue culture plastic when cells were incubated for the first 2 h in the presence or the absence of fetal bovine serum (FBS), thus influencing the initial, direct interaction of cells with the substrate. It was found that after 48 h of human osteoblast incubation on graphene films, there were a comparable number of cells of a similar size irrespective of the presence or the absence of serum proteins. On the other hand, a strong initial influence through the presence of FBS proteins on cell number and cell size was observed in the case of the SiO(2)/Si substrate and control plastic. Thus, our study showed that the initial presence/absence of FBS in the medium does not determine cell fate in the case of a graphene substrate, which is very unusual and different from the behavior of cells on other materials.

  8. Use of green fluorescent fusion protein to track activation of the transcription factor osterix during early osteoblast differentiation

    SciTech Connect

    Tai Guangping; Christodoulou, Ioannis; Bishop, Anne E.; Polak, Julia M. . E-mail: julia.polak@imperial.ac.uk

    2005-08-12

    Osterix (Osx) is a transcription factor required for the differentiation of preosteoblasts into fully functioning osteoblasts. However, the pattern of Osx activation during preosteoblast differentiation and maturation has not been clearly defined. Our aim was to study Osx activation during these processes in osteoblasts differentiating from murine and human embryonic stem cells (ESC). To do this, we constructed an Osx-GFP fusion protein reporter system to track Osx translocation within the cells. The distribution of Osx-GFP at representative stages of differentiation was also investigated by screening primary osteoblasts, mesenchymal stem cells, synoviocytes, and pre-adipocytes. Our experiments revealed that Osx-GFP protein was detectable in the cytoplasm of cultured, differentiated ESC 4 days after plating of enzymatically dispersed embryoid bodies. Osterix-GFP protein became translocated into the nucleus on day 7 following transfer of differentiated ESC to osteogenic medium. After 14 days of differentiation, cells showing nuclear translocation of Osx-GFP formed rudimentary bone nodules that continued to increase in number over the following weeks (through day 21). We also found that Osx translocated into the nuclei of mesenchymal stem cells (C3H10T1/2) and pre-osteoblasts (MC3T3-E1) and showed partial activation in pre-adipocytes (MC3T3-L1). These data suggest that Osx activation occurs at a very early point in the differentiation of the mesenchymal-osteoblastic lineage.

  9. Membrane Structure: Lipid-Protein Interactions in Microsomal Membranes*

    PubMed Central

    Trump, Benjamin F.; Duttera, Sue M.; Byrne, William L.; Arstila, Antti U.

    1970-01-01

    The relationships of phospholipid to membrane structure and function were examined in hepatic microsomes. Findings indicate that normal microsomal membrane structure is dependent on lipid-protein interactions and that it correlates closely with glucose-6-phosphatase activity. Modification of most phospholipid with phospholipase-C is associated with widening of the membrane which can be reversed following readdition of phospholipid. Images PMID:4317915

  10. Membrane proteins: always an insoluble problem?

    PubMed Central

    Rawlings, Andrea E.

    2016-01-01

    Membrane proteins play crucial roles in cellular processes and are often important pharmacological drug targets. The hydrophobic properties of these proteins make full structural and functional characterization challenging because of the need to use detergents or other solubilizing agents when extracting them from their native lipid membranes. To aid membrane protein research, new methodologies are required to allow these proteins to be expressed and purified cheaply, easily, in high yield and to provide water soluble proteins for subsequent study. This mini review focuses on the relatively new area of water soluble membrane proteins and in particular two innovative approaches: the redesign of membrane proteins to yield water soluble variants and how adding solubilizing fusion proteins can help to overcome these challenges. This review also looks at naturally occurring membrane proteins, which are able to exist as stable, functional, water soluble assemblies with no alteration to their native sequence. PMID:27284043

  11. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair.

  12. Effects of bone morphogenetic protein-7 stimulation on osteoblasts cultured on different biomaterials.

    PubMed

    Açil, Yahya; Springer, Ingo N G; Broek, Vanessa; Terheyden, Hendrik; Jepsen, Søren

    2002-01-01

    The objective of the present study was to investigate the effects of an in vitro stimulation of human osteoblasts by recombinant human bone morphogenetic protein-7 (rhBMP-7) on the collagen types and the quantity of the collagen cross-links synthesized in a three-dimensional culture on various biomaterials for bone replacement. Trabecular bone chips were harvested from human iliac crests, and cell cultures were established at standard conditions. One hundred and fifty nanograms per milliliter of rhBMP-7 was added. For the second passage a cell scraper was used to bring the cells into suspension, and 100 microl osteoblasts (at a density of 3.3 x 10(5)) were transferred onto nine blocks of either Bio-Oss, Tutoplast, or PepGen p-15. Blocks incubated with cells that were not treated with rhBMP-7 served as controls. Cell colonization of the biomaterials was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after a period of 2, 4, and 6 weeks. Throughout the experiment medium, supernatants were collected and collagen was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Finally, the collagen cross-link residues hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) were quantified by HPLC. Within 4 weeks the cells became confluent on all of the studied biomaterials. All samples synthesized bone specific LP and collagen type I. However, in rhBMP-7-stimulated samples, the amount of HP and LP found was increased by 45% compared to non-stimulated samples. Cell proliferation and collagen synthesis was similar on the different biomaterials, but was consistently reduced in specimen not stimulated with rhBMP-7. In vitro stimulation of osteoblasts on Bio-Oss, Tutoplast, or PepGen p-15 with rhBMP-7 and subsequent transplantation of the constructs might lead to an enhanced osseointegration of the biomaterials in vivo.

  13. Membrane tension and peripheral protein density mediate membrane shape transitions

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Baumgart, Tobias

    2015-01-01

    Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins.

  14. Heat shock protein 27 (HSPB1) suppresses the PDGF-BB-induced migration of osteoblasts.

    PubMed

    Kainuma, Shingo; Tokuda, Haruhiko; Yamamoto, Naohiro; Kuroyanagi, Gen; Fujita, Kazuhiko; Kawabata, Tetsu; Sakai, Go; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu

    2017-10-01

    Heat shock protein 27 (HSP27/HSPB1), one of the small heat shock proteins, is constitutively expressed in various tissues. HSP27 and its phosphorylation state participate in the regulation of multiple physiological and pathophysiological cell functions. However, the exact roles of HSP27 in osteoblasts remain unclear. In the present study, we investigated the role of HSP27 in the platelet-derived growth factor‑BB (PDGF‑BB)‑stimulated migration of osteoblast-like MC3T3-E1 cells. PDGF-BB by itself barely upregulated the expression of HSP27 protein, but stimulated the phosphorylation of HSP27 in these cells. The PDGF-BB‑induced cell migration was significantly downregulated by HSP27 overexpression. The PDGF-BB-induced migrated cell numbers of the wild‑type HSP27-overexpressing cells and the phospho‑mimic HSP27-overexpressing (3D) cells were less than those of the unphosphorylatable HSP27-overexpressing (3A) cells. PD98059, an inhibitor of MEK1/2, SB203580, an inhibitor of p38 mitogen-activated protein kinase, and SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) reduced the PDGF-BB-induced migration of these cells, whereas Akt inhibitor or rapamycin, an inhibitor of upstream kinase of p70 S6 kinase (mTOR), barely affected the migration. However, the PDGF-BB-induced phosphorylation of p44/p42 MAPΚ, p38 MAPK and SAPK/JNK was not affected by HSP27 overexpression. There were no significant differences in the phosphorylation of p44/p42 MAPΚ, p38 MAP kinase or SAPK/JNK between the 3D cells and the 3A cells. These results strongly suggest that HSP27 functions as a negative regulator in the PDGF-BB-stimulated migration of osteoblasts, and the suppressive effect is amplified by the phosphorylation state of HSP27.

  15. Detection of Proteins on Blot Membranes.

    PubMed

    Goldman, Aaron; Harper, Sandra; Speicher, David W

    2016-11-01

    Staining of blot membranes enables the visualization of bound proteins. Proteins are usually transferred to blot membranes by electroblotting, by direct spotting of protein solutions, or by contact blots. Staining allows the efficiency of transfer to the membrane to be monitored. This unit describes protocols for staining proteins after electroblotting from polyacrylamide gels to blot membranes such as polyvinylidene difluoride (PVDF), nitrocellulose, or nylon membranes. The same methods can be used if proteins are directly spotted, either manually or using robotics. Protocols are included for seven general protein stains (amido black, Coomassie blue, Ponceau S, colloidal gold, colloidal silver, India ink, and MemCode) and three fluorescent protein stains (fluorescamine, IAEDANS, and SYPRO Ruby). Also included is an in-depth discussion of the different blot membrane types and the compatibility of different protein stains with downstream applications, such as immunoblotting or N-terminal Edman sequencing. © 2016 by John Wiley & Sons, Inc.

  16. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  17. Protein-Induced Membrane Curvature Alters Local Membrane Tension

    PubMed Central

    Rangamani, Padmini; Mandadap, Kranthi K.; Oster, George

    2014-01-01

    Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins. PMID:25099814

  18. Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide.

    PubMed

    Tani-Ishii, Nobuyuki; Hamada, Nobushiro; Watanabe, Kiyoko; Tujimoto, Yasuhisa; Teranaka, Toshio; Umemoto, Toshio

    2007-07-01

    The biocompatibility of periapical tissue with mineral trioxide aggregate (MTA) affects its ability to repair and regenerate itself. Here we report the cytotoxicity of MTA and how it affects the expression of bone extracellular matrix protein in MC3T3-E1 osteoblast cells. We quantified the cytotoxicity of MTA, amalgam, and Dycal (Dentsply/Caulk, Milford, DE) on MC3T3-E1 cells by measuring the ability of cells to cleave a tetrazolium salt to produce formazan dye during a period of 24, 48, or 96 hours. We used reverse-transcriptase polymerase chain reaction with primer sets for type I collagen, osteocalcin, and bone sialoprotein to measure the gene-expression response of MC3T3-E1 cells treated with MTA. MTA, amalgam, and Dycal were less toxic after 48 hours. MC3T3-E1 cell growth with MTA and Dycal was greater than nonstimulated controls. MTA caused an upregulation of type I collagen and osteocalcin messenger RNA expression after 24 hours. These results showed that, in the presence of MTA, cells grow faster and produce more mineralized matrix gene expression in osteoblasts.

  19. Internal packing of helical membrane proteins

    PubMed Central

    Eilers, Markus; Shekar, Srinivasan C.; Shieh, Ted; Smith, Steven O.; Fleming, Patrick J.

    2000-01-01

    Helix packing is important in the folding, stability, and association of membrane proteins. Packing analysis of the helical portions of 7 integral membrane proteins and 37 soluble proteins show that the helices in membrane proteins have higher packing values (0.431) than in soluble proteins (0.405). The highest packing values in integral membrane proteins originate from small hydrophobic (G and A) and small hydroxyl-containing (S and T) amino acids, whereas in soluble proteins large hydrophobic and aromatic residues have the highest packing values. The highest packing values for membrane proteins are found in the transmembrane helix–helix interfaces. Glycine and alanine have the highest occurrence among the buried amino acids in membrane proteins, whereas leucine and alanine are the most common buried residue in soluble proteins. These observations are consistent with a shorter axial separation between helices in membrane proteins. The tight helix packing revealed in this analysis contributes to membrane protein stability and likely compensates for the lack of the hydrophobic effect as a driving force for helix–helix association in membranes. PMID:10823938

  20. Artificial membranes for membrane protein purification, functionality and structure studies.

    PubMed

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels.

    PubMed

    Guidon, P T; Salvatori, R; Bockman, R S

    1993-01-01

    Gallium nitrate, a group IIIa metal salt, has been found to be clinically effective for the treatment of accelerated bone resorption in cancer-related hypercalcemia and Paget's disease. Here we report the effects of gallium nitrate on osteocalcin mRNA and protein levels on the rat osteoblast-like cell line ROS 17/2.8. Gallium nitrate reduced both constitutive and vitamin D3-stimulated osteocalcin protein levels in culture medium by one-half and osteocalcin mRNA levels to one-third to one-tenth of control. Gallium nitrate also inhibited vitamin D3 stimulation of osteocalcin and osteopontin mRNA levels but did not affect constitutive osteopontin mRNA levels. Among several different metals examined, gallium was unique in its ability to reduce osteocalcin mRNA levels without decreasing levels of other mRNAs synthesized by ROS 17/2.8 cells. The effects of gallium nitrate on osteocalcin mRNA and protein synthesis mimic those seen when ROS 17/2.8 cells are exposed to transforming growth factor beta 1 (TGF beta 1); however, TGF-beta 1 was not detected in gallium nitrate-treated ROS 17/2.8 cell media. Use of the RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that gallium nitrate did not alter the stability of osteocalcin mRNA. Transient transfection assays using the rat osteocalcin promoter linked to the bacterial reporter gene chloramphenicol acetyltransferase indicated that gallium nitrate blocked reporter gene expression stimulated by the osteocalcin promoter. This is the first reported effect of gallium nitrate on isolated osteoblast cells.

  2. Solid State NMR and Protein-Protein Interactions in Membranes

    PubMed Central

    Miao, Yimin; Cross, Timothy A.

    2013-01-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water soluble proteins and other membrane proteins. PMID:24034903

  3. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  4. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  5. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    PubMed Central

    Terriza, Antonia; Vilches-Pérez, José I.; González-Caballero, Juan L.; de la Orden, Emilio; Yubero, Francisco; Barranco, Angel; Gonzalez-Elipe, Agustín R.; Vilches, José; Salido, Mercedes

    2014-01-01

    New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors. PMID:28788538

  6. Protein Homeostasis at the Plasma Membrane

    PubMed Central

    2014-01-01

    The plasma membrane (PM) and endocytic protein quality control (QC) in conjunction with the endosomal sorting machinery either repairs or targets conformationally damaged membrane proteins for lysosomal/vacuolar degradation. Here, we provide an overview of emerging aspects of the underlying mechanisms of PM QC that fulfill a critical role in preserving cellular protein homeostasis in health and diseases. PMID:24985330

  7. Tuning microbial hosts for membrane protein production

    PubMed Central

    2009-01-01

    The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months. This review covers the most prominent solutions and pitfalls in expression of eukaryotic membrane proteins using microbial hosts (prokaryotes, yeasts), highlights skilful applications of our basic understanding to improve membrane protein production. Omics technologies provide new concepts to engineer microbial hosts for membrane protein production. PMID:20040113

  8. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    SciTech Connect

    Guo, Shiguang; Mao, Li; Ji, Feng; Wang, Shouguo; Xie, Yue; Fei, Haodong; Wang, Xiao-dong

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  9. The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation in vitro.

    PubMed

    Son, You Hwa; Moon, Seong Hee; Kim, Jiyeon

    2013-11-01

    Drug repositioning can identify new therapeutic applications for existing drugs, thus mitigating high R&D costs. The Protein kinase 2 (CK2) inhibitor CX-4945 regulates human cancer cell survival and angiogenesis. Here we found that CX-4945 significantly inhibited the RANKL-induced osteoclast differentiation, but enhanced the BMP2-induced osteoblast differentiation in a cell culture model. CX-4945 inhibited the RANKL-induced activation of TRAP and NFATc1 expression accompanied with suppression of Akt phosphorylation, but in contrast, it enhanced the BMP2-mediated ALP induction and MAPK ERK1/2 phosphorylation. CX-4945 is thus a novel drug candidate for bone-related disorders such as osteoporosis.

  10. Heat shock protein 22 (HSPB8) limits TGF-β-stimulated migration of osteoblasts.

    PubMed

    Yamamoto, Naohiro; Tokuda, Haruhiko; Kuroyanagi, Gen; Kainuma, Shingo; Matsushima-Nishiwaki, Rie; Fujita, Kazuhiko; Kozawa, Osamu; Otsuka, Takanobu

    2016-11-15

    Heat shock proteins (HSPs) are induced in response to various physiological and environmental conditions such as chemical and heat stress, and recognized to function as molecular chaperones. HSP22 (HSPB8), a low-molecular weight HSP, is ubiquitously expressed in many cell types. However, the precise role of HSP22 in bone metabolism remains to be clarified. In the present study, we investigated whether HSP22 is implicated in the transforming growth factor-β (TGF-β)-stimulated migration of osteoblast-like MC3T3-E1 cells. Although protein levels of HSP22 were clearly detected in unstimulated MC3T3-E1 cells, TGF-β failed to induce the protein levels. The TGF-β-stimulated migration was significantly up-regulated by knockdown of HSP22 expression. The cell migration stimulated by platelet-derived growth factor-BB was also enhanced by HSP22 knockdown. SB203580, an inhibitor of p38 mitogen-activated protein kinase, PD98059, an inhibitor of MEK1/2, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase had no effects on the TGF-β-induced migration. SIS3, a specific inhibitor of TGF-β-dependent Smad3 phosphorylation, significantly reduced the migration with or without TGF-β stimulation. Smad2, Smad3, Smad4 or Smad7 was not coimmunoprecipitated with HSP22. On the other hand, the TGF-β-induced Smad2 phosphorylation was enhanced by HSP22 down-regulation. The protein levels of TGF-β type II receptor (TGF-β RII) but not TGF-β type I receptor (TGF-β RI) was significantly up-regulated in HSP22 knockdown cells compared with those in the control cells. However, the levels of TGF-β RII mRNA in HSP22 knockdown cells were little different from those of the control cells. Neither TGF-β RI nor TGF-β RII was coimmunoprecipitated with HSP22. SIS3 reduced the amplification by HSP22 knockdown of the TGF-β-stimulated cell migration almost to the basal level. Our results strongly suggest that HSP22 functions as a negative regulator in the TGF

  11. PCR phenotyping of cytokines, growth factors and their receptors and bone matrix proteins in human osteoblast-like cell lines.

    PubMed

    Bilbe, G; Roberts, E; Birch, M; Evans, D B

    1996-11-01

    The expression of a total of 58 cytokines, growth factors, and their corresponding receptors and bone matrix proteins was assessed using reverse transcription-linked polymerase chain reaction (RT-PCR) analysis to determine the similarity in the expression profile between clonal osteosarcoma-derived human osteoblast-like cell lines and primary human osteoblast-like cell cultures derived from human trabecular bone explants. The spectrum of cytokines, growth factors, and bone-related proteins expressed by three human osteosarcoma-derived cell lines, TE-85, MG-63, SaOS-2, and primary human osteoblast-like cells was found to be highly comparable and for the first time the expression of EGF, ECGF, FGF beta, oncostatin M, TNF beta, and SCF by human osteoblast-like cells was detected. Also the expression of several receptor types including IL-4R, IL-7R, IFN alpha/beta R, and SCFR was detected that has not been previously described for human osteoblast-like cells. For the factors examined, no qualitative variations in the expression profile were observed in the six primary human osteoblast-like cell cultures used in this study. Of the 58 factors examined, only 13 showed some degree of nonuniformity of expression between all of the three cell lines and primary cell cultures. These differences were seen especially in the expression of cytokine receptor mRNA and to a lesser extent with some cytokines. Differences in receptor expression would suggest that the possible spectrum of response to exogenously added factors, or even autocrine/ paracrine networks would be determined by the repertoire of receptors expressed by each cell type. Whether the differences are related to the status of cell maturation within the osteoblast development lineage or to their abberant regulation of expression cannot be concluded at this stage. However, this PCR-phenotyping approach rapidly provides a resource of information, which can be subsequently used for further in depth studies to facilitate

  12. [Membrane protein characterization by photoactivatable localization microscopy].

    PubMed

    Huang, Li; Fang, Weihuan; Yu, Ying; Song, Houhui

    2012-11-01

    The on-site labeling and localization tracking of membrane proteins in pathogenic bacteria are tedious work. In order to develop a novel protein labeling technology at super resolution level (nanometer scale) using the photoactivatable localization microscopy (PALM), the chimeric protein of the outer membrane protein A (OmpA) of Mycobacterium tuberculosis and the photoactivatable mEos2m protein were expressed in the non-pathogenic Mycobacterium smegmatis. The recombinant bacteria were fixed on slide, activated by 405 nm laser and subject to PALM imaging to capture photons released by the fusion protein. Meanwhile, colony and cell morphology were visualized under regular fluorescent stereomicroscope and upright fluorescent microscope to characterize fluorescence conversion and protein localization. The fusion proteins formed a "belt"-like structure on cell membrane of M. smegmatis under PALM, providing direct evidence of on-site imaging of membrane proteins. Expression of fusion protein did not compromise the localization properties of OmpA. Thus, mEos2m could be used as a labeling probe to track localizations of non-oligomer oriented membrane proteins. This indicates non-pathogenic M. smegmatis could be served as a model strain to characterize the function and localization of the proteins derived from pathogenic M. tuberculosis. This is the first report using PALM to characterize localization of membrane proteins.

  13. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts.

    PubMed

    Xu, Wen-Xiao; Liu, Sheng-Zhi; Wu, Di; Qiao, Guo-Fen; Yan, Jinglong

    2015-01-01

    Promyelocytic leukemia (PML) protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα) to contribute to the initiation of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts. © 2015 S. Karger AG, Basel.

  14. Membrane topology of transmembrane proteins: determinants and experimental tools.

    PubMed

    Lee, Hunsang; Kim, Hyun

    2014-10-17

    Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.

  15. Predictions of Protein-Protein Interfaces within Membrane Protein Complexes

    PubMed Central

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz

    2013-01-01

    Background Prediction of interaction sites within the membrane protein complexes using the sequence data is of a great importance, because it would find applications in modification of molecules transport through membrane, signaling pathways and drug targets of many diseases. Nevertheless, it has gained little attention from the protein structural bioinformatics community. Methods In this study, a wide variety of prediction and classification tools were applied to distinguish the residues at the interfaces of membrane proteins from those not in the interfaces. Results The tuned SVM model achieved the high accuracy of 86.95% and the AUC of 0.812 which outperforms the results of the only previous similar study. Nevertheless, prediction performances obtained using most employed models cannot be used in applied fields and needs more effort to improve. Conclusion Considering the variety of the applied tools in this study, the present investigation could be a good starting point to develop more efficient tools to predict the membrane protein interaction site residues. PMID:23919118

  16. Membrane Protein Structure Determination in Membrana

    PubMed Central

    DING, YI; YAO, YONG; MARASSI, FRANCESCA M.

    2014-01-01

    CONSPECTUS The two principal components of biological membranes, the lipid bilayer and the proteins integrated within it, have coevolved for specific functions that mediate the interactions of cells with their environment. Molecular structures can provide very significant insights about protein function. In the case of membrane proteins, the physical and chemical properties of lipids and proteins are highly interdependent; therefore structure determination should include the membrane environment. Considering the membrane alongside the protein eliminates the possibility that crystal contacts or detergent molecules could distort protein structure, dynamics, and function and enables ligand binding studies to be performed in a natural setting. Solid-state NMR spectroscopy is compatible with three-dimensional structure determination of membrane proteins in phospholipid bilayer membranes under physiological conditions and has played an important role in elucidating the physical and chemical properties of biological membranes, providing key information about the structure and dynamics of the phospholipid components. Recently, developments in the recombinant expression of membrane proteins, sample preparation, pulse sequences for high-resolution spectroscopy, radio frequency probes, high-field magnets, and computational methods have enabled a number of membrane protein structures to be determined in lipid bilayer membranes. In this Account, we illustrate solid-state NMR methods with examples from two bacterial outer membrane proteins (OmpX and Ail) that form integral membrane β-barrels. The ability to measure orientation-dependent frequencies in the solid-state NMR spectra of membrane-embedded proteins provides the foundation for a powerful approach to structure determination based primarily on orientation restraints. Orientation restraints are particularly useful for NMR structural studies of membrane proteins because they provide information about both three

  17. Membrane protein structure determination in membrana.

    PubMed

    Ding, Yi; Yao, Yong; Marassi, Francesca M

    2013-09-17

    The two principal components of biological membranes, the lipid bilayer and the proteins integrated within it, have coevolved for specific functions that mediate the interactions of cells with their environment. Molecular structures can provide very significant insights about protein function. In the case of membrane proteins, the physical and chemical properties of lipids and proteins are highly interdependent; therefore structure determination should include the membrane environment. Considering the membrane alongside the protein eliminates the possibility that crystal contacts or detergent molecules could distort protein structure, dynamics, and function and enables ligand binding studies to be performed in a natural setting. Solid-state NMR spectroscopy is compatible with three-dimensional structure determination of membrane proteins in phospholipid bilayer membranes under physiological conditions and has played an important role in elucidating the physical and chemical properties of biological membranes, providing key information about the structure and dynamics of the phospholipid components. Recently, developments in the recombinant expression of membrane proteins, sample preparation, pulse sequences for high-resolution spectroscopy, radio frequency probes, high-field magnets, and computational methods have enabled a number of membrane protein structures to be determined in lipid bilayer membranes. In this Account, we illustrate solid-state NMR methods with examples from two bacterial outer membrane proteins (OmpX and Ail) that form integral membrane β-barrels. The ability to measure orientation-dependent frequencies in the solid-state NMR spectra of membrane-embedded proteins provides the foundation for a powerful approach to structure determination based primarily on orientation restraints. Orientation restraints are particularly useful for NMR structural studies of membrane proteins because they provide information about both three-dimensional structure

  18. Protein Solvation in Membranes and at Water-Membrane Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Wilson, Michael A.

    2002-01-01

    Different salvation properties of water and membranes mediate a host of biologically important processes, such as folding, insertion into a lipid bilayer, associations and functions of membrane proteins. These processes will be discussed in several examples involving synthetic and natural peptides. In particular, a mechanism by which a helical peptide becomes inserted into a model membrane will be described. Further, the molecular mechanism of recognition and association of protein helical segments in membranes will be discussed. These processes are crucial for proper functioning of a cell. A membrane-spanning domain of glycophorin A, which exists as a helical dimer, serves as the model system. For this system, the free energy of dissociation of the helices is being determined for both the wild type and a mutant, in which dimerization is disrupted.

  19. Crystallization of Membrane protein under Microgravity

    NASA Astrophysics Data System (ADS)

    Henning, C.; Frank, J.; Laubender, G.; Fromme, P.

    2002-01-01

    Proteins are biological molecules which catalyse all essential reactions of cells. The knowledge on the structure of these molecular machines is necessary for the understanding of their function. Many diseases are caused by defects of membrane proteins. In order to develop new medical therapies the construction principle of the proteins must be known. The main difficulty in the determination of the structure of these membrane protein complexes is the crystallisation. Membrane proteins are normally not soluble in water and have therefore to be solubilised from the membranes by use of detergents. The whole protein-detergent micelle must be crystallised to maintain the functional integrity of the protein complexes. These difficulties are the reasons for the fact that crystals of membrane proteins are difficult to grow and most of them are badly ordered, being not appropriate for X-ray structure analysis. The crystallisation of proteins under microgravity leads to the growth of better-ordered crystals by reduction of nucleation rate and the undisturbed growth of the hovering seeds by the absence of sedimentation and convection. The successful crystallistation of a membrane protein under microgravity has been performed during the space shuttle missions USML2 and STS95 in the Space Shuttle with Photosystem I as model protein. Photosystem I is a large membrane protein complex which catalyses one of the first and fundamental steps in oxygen photosynthesis. The crystals of Photosystem I, grown under microgravity were twenty times larger than all Photosystem I crystals which have been grown on earth. They were the basis for the determination of an improved X-ray structure of Photo- system I. These experiments opened the way for the structure enlightenment of more membrane proteins on the basis of microgravity experiments. On board of the International Space Station ideal conditions for the crystallisation of proteins under zero gravity are existing.

  20. IFITM Proteins Restrict Viral Membrane Hemifusion

    PubMed Central

    Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C.; Gratton, Enrico; Cohen, Fredric S.; Liu, Shan-Lu

    2013-01-01

    The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous

  1. A predictor of membrane class: Discriminating alpha-helical and beta-barrel membrane proteins from non-membranous proteins.

    PubMed

    Taylor, Paul D; Toseland, Christopher P; Attwood, Teresa K; Flower, Darren R

    2006-10-07

    Accurate protein structure prediction remains an active objective of research in bioinformatics. Membrane proteins comprise approximately 20% of most genomes. They are, however, poorly tractable targets of experimental structure determination. Their analysis using bioinformatics thus makes an important contribution to their on-going study. Using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we have addressed the alignment-free discrimination of membrane from non-membrane proteins. The method successfully identifies prokaryotic and eukaryotic alpha-helical membrane proteins at 94.4% accuracy, beta-barrel proteins at 72.4% accuracy, and distinguishes assorted non-membranous proteins with 85.9% accuracy. The method here is an important potential advance in the computational analysis of membrane protein structure. It represents a useful tool for the characterisation of membrane proteins with a wide variety of potential applications.

  2. Recombinant mussel proximal thread matrix protein promotes osteoblast cell adhesion and proliferation.

    PubMed

    Yoo, Hee Young; Song, Young Hoon; Foo, Mathias; Seo, Eunseok; Hwang, Dong Soo; Seo, Jeong Hyun

    2016-02-16

    von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix.

  3. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  4. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  5. Lateral proton transfer between the membrane and a membrane protein.

    PubMed

    Ojemyr, Linda; Sandén, Tor; Widengren, Jerker; Brzezinski, Peter

    2009-03-17

    Proton transport across biological membranes is a key step of the energy conservation machinery in living organisms, and it has been proposed that the membrane itself plays an important role in this process. In the present study we have investigated the effect of incorporation of a proton transporter, cytochrome c oxidase, into a membrane on the protonation kinetics of a fluorescent pH-sensitive probe attached at the surface of the protein. The results show that proton transfer to the probe was slightly accelerated upon attachment at the protein surface (approximately 7 x 1010 s(-1) M(-1), compared to the expected value of (1-2) x 10(10) s(-1) M(-1)), which is presumably due to the presence of acidic/His groups in the vicinity. Upon incorporation of the protein into small unilamellar phospholipid vesicles the rate increased by more than a factor of 400 to approximately 3 x 10(13) s(-1) M(-1), which indicates that the protein-attached probe is in rapid protonic contact with the membrane surface. The results indicate that the membrane acts to accelerate proton uptake by the membrane-bound proton transporter.

  6. Inherently tunable electrostatic assembly of membrane proteins.

    PubMed

    Liang, Hongjun; Whited, Gregg; Nguyen, Chi; Okerlund, Adam; Stucky, Galen D

    2008-01-01

    Membrane proteins are a class of nanoscopic entities that control the matter, energy, and information transport across cellular boundaries. Electrostatic interactions are shown to direct the rapid co-assembly of proteorhodopsin (PR) and lipids into long-range crystalline arrays. The roles of inherent charge variations on lipid membranes and PR variants with different compositions are examined by tuning recombinant PR variants with different extramembrane domain sizes and charged amino acid substitutions, lipid membrane compositions, and lipid-to-PR stoichiometric ratios. Rational control of this predominantly electrostatic assembly for PR crystallization is demonstrated, and the same principles should be applicable to the assembly and crystallization of other integral membrane proteins.

  7. Membrane injury by pore-forming proteins.

    PubMed

    Bischofberger, Mirko; Gonzalez, Manuel R; van der Goot, F Gisou

    2009-08-01

    The plasma membrane defines the boundary of every living cell, and its integrity is essential for life. The plasma membrane may, however, be challenged by mechanical stress or pore-forming proteins produced by the organism itself or invading pathogens. We will here review recent findings about pore-forming proteins from different organisms, highlighting their structural and functional similarities, and describe the mechanisms that lead to membrane repair, since remarkably, cells can repair breaches in their plasma membrane of up to 10,000 microm(2).

  8. Extracellular ATP stimulates the early growth response protein 1 (Egr-1) via a protein kinase C-dependent pathway in the human osteoblastic HOBIT cell line.

    PubMed Central

    Pines, Alex; Romanello, Milena; Cesaratto, Laura; Damante, Giuseppe; Moro, Luigi; D'andrea, Paola; Tell, Gianluca

    2003-01-01

    Extracellular nucleotides exert an important role in controlling cell physiology by activating intracellular signalling cascades. Osteoblast HOBIT cells express P2Y(1) and P2Y(2) G-protein-coupled receptors, and respond to extracellular ATP by increasing cytosolic calcium concentrations. Early growth response protein 1 (Egr-1) is a C(2)H(2)-zinc-finger-containing transcriptional regulator responsible for the activation of several genes involved in the control of cell proliferation and apoptosis, and is thought to have a central role in osteoblast biology. We show that ATP treatment of HOBIT cells increases Egr-1 protein levels and binding activity via a mechanism involving a Ca(2+)-independent protein kinase C isoform. Moreover, hypotonic stress and increased medium turbulence, by inducing ATP release, result in a similar effect on Egr-1. Increased levels of Egr-1 protein expression and activity are achieved at very early times after stimulation (5 min), possibly accounting for a rapid way for changing the osteoblast gene-expression profile. A target gene for Egr-1 that is fundamental in osteoblast physiology, COL1A2, is up-regulated by ATP stimulation of HOBIT cells in a timescale that is compatible with that of Egr-1 activation. PMID:12729460

  9. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  10. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.

    PubMed

    Knowles, Timothy J; Scott-Tucker, Anthony; Overduin, Michael; Henderson, Ian R

    2009-03-01

    The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

  11. Helical Membrane Protein Conformations and their Environment

    PubMed Central

    Cross, Timothy A.; Murray, Dylan T.; Watts, Anthony

    2013-01-01

    Evidence that membrane proteins respond conformationally and functionally to their environment is gaining pace. Structural models, by necessity, have been characterized in preparations where the protein has been removed from its native environment. Different structural methods have used various membrane mimetics that have recently included lipid bilayers as a more native-like environment. Structural tools applied to lipid bilayer-embedded integral proteins are informing us about important generic characteristics of how membrane proteins respond to the lipid environment as compared with their response to other non-lipid environments. Here, we review the current status of the field, with specific reference to observations of some well-studied α-helical membrane proteins, as a starting point to aid the development of possible generic principals for model refinement. PMID:23996195

  12. Thermostabilisation of membrane proteins for structural studies

    PubMed Central

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.

    2017-01-01

    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  13. Polyene antibiotic that inhibits membrane transport proteins.

    PubMed

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan

    2012-07-10

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains.

  14. G-protein Stimulatory α Subunit Is Involved in Osteogenic Activity in Osteoblastic Cell Line SaOS-2 Cells

    PubMed Central

    Yamazaki, Miwa; Suzuki, Akira; Ozono, Keiichi; Michigami, Toshimi

    2006-01-01

    In an attempt to study the roles of G-protein stimulatory subunit α (Gsα) in osteoblasts, we introduced an expression vector encoding Gsα into human osteoblastic cell line SaOS-2, and established the clones stably overexpressing Gsα (SaOS-2-Gsα). In SaOS-2-Gsα, the intracellular content of cyclic AMP (cAMP) was increased compared with the parental SaOS-2 cells. In addition, when treated with PTH[1-34], SaOS-2-Gsα exhibited more accumulation of intracellular cAMP compared with the parental cells, suggesting an increased responsiveness to PTH. We evaluated the proliferation rates of SaOS-2-Gsα and the parental SaOS-2 cells, and found that the proliferation was accelerated in SaOS-2-Gsα cells. Reverse transcription-polymerase chain reaction (RT-PCR) analyses exhibited the increased expression of Runx2, a transcription factor involved in osteoblast differentiation, in SaOS-2-Gsα cells. Finally, to examine the osteoblastic function in vivo, we inoculated SaOS-2-Gsα or parental SaOS-2 cells subcutaneously to immunocompromised nude mice. Although tumors in nude mice were not formed after inoculation of parental SaOS-2 cells, SaOS-2-Gsα cells proliferated in host animals leading to the formation of tumors with mineralized bone-like tissues. Taken together, these results suggest that the signals via Gsα play critical roles in the proliferation and osteogenic functions of osteoblasts. PMID:24790323

  15. Ghrelin Increases Beta-Catenin Level through Protein Kinase A Activation and Regulates OPG Expression in Rat Primary Osteoblasts

    PubMed Central

    Mrak, Emanuela; Casati, Lavinia; Pagani, Francesca; Rubinacci, Alessandro; Zarattini, Guido; Sibilia, Valeria

    2015-01-01

    Ghrelin, by binding growth hormone secretagogue receptor (GHS-R), promotes osteoblast proliferation but the signaling mechanism of GHS-R on these cells remains unclear. Since canonical Wnt/β-catenin pathway is critically associated with bone homeostasis, we investigated its involvement in mediating ghrelin effects in osteoblasts and in osteoblast-osteoclast cross talk. Ghrelin (10−10M) significantly increased β-catenin levels in rat osteoblasts (rOB). This stimulatory action on β-catenin involves a specific interaction with GHS-R1a, as it is prevented by the selective GHS-R1a antagonist, D-Lys3-GHRP-6 (10−7M). The effect of ghrelin on β-catenin involves the phosphorylation and inactivation of GSK-3β via protein kinase A (PKA). Inhibition of PKA activity reduces the facilitatory action of ghrelin on β-catenin stabilization. Ghrelin treatment of rOB significantly increases the expression of osteoprotegerin (OPG), which plays an important role in the regulation of osteoclastogenesis, and this effect is blocked by D-Lys3-GHRP-6. Furthermore, ghrelin reduced RANKL/OPG ratio thus contrasting osteoclastogenesis. Accordingly, conditioned media from rOB treated with ghrelin decreased the number of multinucleated TRAcP+ cells as compared with the conditioned media from untreated-control rOB. Our data suggest new roles for ghrelin in modulating bone homeostasis via a specific interaction with GHSR-1a in osteoblasts with subsequent enhancement of both β-catenin levels and OPG expression. PMID:25866509

  16. G-protein Stimulatory α Subunit Is Involved in Osteogenic Activity in Osteoblastic Cell Line SaOS-2 Cells.

    PubMed

    Yamazaki, Miwa; Suzuki, Akira; Ozono, Keiichi; Michigami, Toshimi

    2006-01-01

    In an attempt to study the roles of G-protein stimulatory subunit α (Gsα) in osteoblasts, we introduced an expression vector encoding Gsα into human osteoblastic cell line SaOS-2, and established the clones stably overexpressing Gsα (SaOS-2-Gsα). In SaOS-2-Gsα, the intracellular content of cyclic AMP (cAMP) was increased compared with the parental SaOS-2 cells. In addition, when treated with PTH[1-34], SaOS-2-Gsα exhibited more accumulation of intracellular cAMP compared with the parental cells, suggesting an increased responsiveness to PTH. We evaluated the proliferation rates of SaOS-2-Gsα and the parental SaOS-2 cells, and found that the proliferation was accelerated in SaOS-2-Gsα cells. Reverse transcription-polymerase chain reaction (RT-PCR) analyses exhibited the increased expression of Runx2, a transcription factor involved in osteoblast differentiation, in SaOS-2-Gsα cells. Finally, to examine the osteoblastic function in vivo, we inoculated SaOS-2-Gsα or parental SaOS-2 cells subcutaneously to immunocompromised nude mice. Although tumors in nude mice were not formed after inoculation of parental SaOS-2 cells, SaOS-2-Gsα cells proliferated in host animals leading to the formation of tumors with mineralized bone-like tissues. Taken together, these results suggest that the signals via Gsα play critical roles in the proliferation and osteogenic functions of osteoblasts.

  17. Solid-state NMR and Membrane Proteins

    PubMed Central

    Opella, Stanley J.

    2015-01-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers. PMID:25681966

  18. Solid-state NMR and membrane proteins

    NASA Astrophysics Data System (ADS)

    Opella, Stanley J.

    2015-04-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects of solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers.

  19. Tributyltin-binding protein type 1, a lipocalin, prevents inhibition of osteoblastic activity by tributyltin in fish scales.

    PubMed

    Satone, Hina; Lee, Jae Man; Oba, Yumi; Kusakabe, Takahiro; Akahoshi, Eriko; Miki, Shizuho; Suzuki, Nobuo; Sasayama, Yuichi; Nassef, Mohamed; Shimasaki, Yohei; Kawabata, Shun-Ichiro; Honjo, Tsuneo; Oshima, Yuji

    2011-05-01

    Tributyltin-binding protein type 1 (TBT-bp1) is a member of the lipocalin family of proteins which bind to small hydrophobic molecules. In this study, we expressed a recombinant TBT-bp1 (rTBT-bp1, ca. 35kDa) in a baculovirus expression system and purified the protein from the hemolymph of silkworm larvae injected with recombinant baculovirus. After incubation of a mixture of rTBT-bp1 and TBT and its fractionation by means of gel filtration chromatography, TBT was detected in the elution peak of rTBT-bp1, confirming the binding potential of rTBT-bp1 for TBT. An assay of the ability of rTBT-bp1 or native TBT-bp1 (nTBT-bp1) to restore osteoblastic activity inhibited by TBT showed that co-treatment of the scales with rTBT-bp1 or nTBT-bp1 in combination with TBT restored osteoblastic activity in goldfish scales, whereas treatment with TBT alone significantly inhibited osteoblastic activity. These results suggest that TBT-bp1 as a lipocalin member might function to decrease the toxicity of TBT by binding to TBT. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    NASA Technical Reports Server (NTRS)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  1. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    NASA Technical Reports Server (NTRS)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  2. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive G{sub s}–G protein signaling in osteoblasts

    SciTech Connect

    Wattanachanya, Lalita; Wang, Liping; Millard, Susan M.; Lu, Wei-Dar; O’Carroll, Dylan; Hsiao, Edward C.; Conklin, Bruce R.; Nissenson, Robert A.

    2015-05-01

    G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were increased in

  3. Expression and purification of membrane proteins.

    PubMed

    Kubicek, Jan; Block, Helena; Maertens, Barbara; Spriestersbach, Anne; Labahn, Jörg

    2014-01-01

    Approximately 30% of a genome encodes for membrane proteins. They are one of the most important classes of proteins in that they can receive, differentiate, and transmit intra- and intercellular signals. Some examples of classes of membrane proteins include cell-adhesion molecules, translocases, and receptors in signaling pathways. Defects in membrane proteins may be involved in a number of serious disorders such as neurodegenerative diseases (e.g., Alzheimer's) and diabetes. Furthermore, membrane proteins provide natural entry and anchoring points for the molecular agents of infectious diseases. Thus, membrane proteins constitute ~50% of known and novel drug targets. Progress in this area is slowed by the requirement to develop methods and procedures for expression and isolation that are tailored to characteristic properties of membrane proteins. A set of standard protocols for the isolation of the targets in quantities that allow for the characterization of their individual properties for further optimization is required. The standard protocols given below represent a workable starting point. If optimization of yields is desired, a variation of conditions as outlined in the theory section is recommended.

  4. Protein profiles of hatchery egg shell membrane

    USDA-ARS?s Scientific Manuscript database

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  5. Detergents in Membrane Protein Purification and Crystallisation.

    PubMed

    Anandan, Anandhi; Vrielink, Alice

    2016-01-01

    Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.

  6. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    NASA Astrophysics Data System (ADS)

    Ba, Xiaolan

    biomineralization is investigated by SEM, GIXRD and energy dispersive X-ray spectroscopy (EDXS). Gene expression during the exposure of SMF is also studies by RT-PCR. The results indicated that exposure to SMF induces osteoblasts to produce larger quantities of HA, with higher degree of crystalline order. The controlling and understanding of protein on the surface is of great interest in biomedical application such as implant medicine, biosensor design, food processing, and chromatographic separations. The adsorbed protein onto the surface significantly determines the performance of biomaterials in a biological environment. Recent studies have suggested that the preservation of the native secondary structure of protein adsorbed is essential for biological application. In order to manipulate protein adsorption and design biocompatible materials, the mechanisms underlying protein-surface interactions, especially how surface properties of materials induce conformational changes of adsorbed proteins, needs to be well understood. Here we demonstrated that even though SPS is a necessary condition, it is not sufficient. We show that low substrate conductivity as well as proper salt concentration are also critical in sustained protein adsorption continuously. These factors allow one to pattern regions of different conducting properties and for the first time patterns physiologically relevant protein structures. Here we show that we can achieve patterned biomineralized regimes, both with plasma proteins in a simple and robust manner without additional functionalization or application of electrochemical gradients. Since the data indicate that the patterns just need to differ in electrical conductivity, rather than surface chemistry, we propose that the creation of transient image charges, due to incomplete charge screening, may be responsible for sustain the driving force for continual protein absorption.

  7. The secretory carrier membrane protein family: structure and membrane topology.

    PubMed

    Hubbard, C; Singleton, D; Rauch, M; Jayasinghe, S; Cafiso, D; Castle, D

    2000-09-01

    Secretory carrier membrane proteins (SCAMPs) are integral membrane proteins found in secretory and endocytic carriers implicated to function in membrane trafficking. Using expressed sequence tag database and library screens and DNA sequencing, we have characterized several new SCAMPs spanning the plant and animal kingdoms and have defined a broadly conserved protein family. No obvious fungal homologue has been identified, however. We have found that SCAMPs share several structural motifs. These include NPF repeats, a leucine heptad repeat enriched in charged residues, and a proline-rich SH3-like and/or WW domain-binding site in the N-terminal domain, which is followed by a membrane core containing four putative transmembrane spans and three amphiphilic segments that are the most highly conserved structural elements. All SCAMPs are 32-38 kDa except mammalian SCAMP4, which is approximately 25 kDa and lacks most of the N-terminal hydrophilic domain of other SCAMPs. SCAMP4 is authentic as determined by Northern and Western blotting, suggesting that this portion of the larger SCAMPs encodes the functional domain. Focusing on SCAMP1, we have characterized its structure further by limited proteolysis and Western blotting with the use of isolated secretory granules as a uniformly oriented source of antigen and by topology mapping through expression of alkaline phosphatase gene fusions in Escherichia coli. Results show that SCAMP1 is degraded sequentially from the N terminus and then the C terminus, yielding an approximately 20-kDa membrane core that contains four transmembrane spans. Using synthetic peptides corresponding to the three conserved amphiphilic segments of the membrane core, we have demonstrated their binding to phospholipid membranes and shown by circular dichroism spectroscopy that the central amphiphilic segment linking transmembrane spans 2 and 3 is alpha-helical. In the intact protein, these segments are likely to reside in the cytoplasm-facing membrane

  8. Mass Spectrometry of Intact Membrane Protein Complexes

    PubMed Central

    Laganowsky, Arthur; Reading, Eamonn; Hopper, Jonathan T.S.; Robinson, Carol V.

    2014-01-01

    Mass spectrometry of intact soluble protein complexes has emerged as a powerful technique to study the stoichiometry, structure-function and dynamics of protein assemblies. Recent developments have extended this technique to the study of membrane protein complexes where it has already revealed subunit stoichiometries and specific phospholipid interactions. Here, we describe a protocol for mass spectrometry of membrane protein complexes. The protocol begins with preparation of the membrane protein complex enabling not only the direct assessment of stoichiometry, delipidation, and quality of the target complex, but also evaluation of the purification strategy. A detailed list of compatible non-ionic detergents is included, along with a protocol for screening detergents to find an optimal one for mass spectrometry, biochemical and structural studies. This protocol also covers the preparation of lipids for protein-lipid binding studies and includes detailed settings for a Q-ToF mass spectrometer after introduction of complexes from gold-coated nanoflow capillaries. PMID:23471109

  9. Protein engineering methods applied to membrane protein targets.

    PubMed

    Lluis, M W; Godfroy, J I; Yin, H

    2013-02-01

    Genes encoding membrane proteins have been estimated to comprise as much as 30% of the human genome. Among these membrane, proteins are a large number of signaling receptors, transporters, ion channels and enzymes that are vital to cellular regulation, metabolism and homeostasis. While many membrane proteins are considered high-priority targets for drug design, there is a dearth of structural and biochemical information on them. This lack of information stems from the inherent insolubility and instability of transmembrane domains, which prevents easy obtainment of high-resolution crystals to specifically study structure-function relationships. In part, this lack of structures has greatly impeded our understanding in the field of membrane proteins. One method that can be used to enhance our understanding is directed evolution, a molecular biology method that mimics natural selection to engineer proteins that have specific phenotypes. It is a powerful technique that has considerable success with globular proteins, notably the engineering of protein therapeutics. With respect to transmembrane protein targets, this tool may be underutilized. Another powerful tool to investigate membrane protein structure-function relationships is computational modeling. This review will discuss these protein engineering methods and their tremendous potential in the study of membrane proteins.

  10. Histone Deacetylase Inhibitors Target the Leukemic Microenvironment by Enhancing a Nherf1-Protein Phosphatase 1α-TAZ Signaling Pathway in Osteoblasts*

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; van Wijnen, Andre J.; Hedin, Karen E.

    2015-01-01

    Disrupting the protective signals provided by the bone marrow microenvironment will be critical for more effective combination drug therapies for acute myeloid leukemia (AML). Cells of the osteoblast lineage that reside in the endosteal niche have been implicated in promoting survival of AML cells. Here, we investigated how to prevent this protective interaction. We previously showed that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis of AML cells, unless the leukemic cells receive protective signals provided by differentiating osteoblasts (8, 10). We now identify a novel signaling pathway in differentiating osteoblasts that can be manipulated to disrupt the osteoblast-mediated protection of AML cells. Treating differentiating osteoblasts with histone deacetylase inhibitors (HDACi) abrogated their ability to protect co-cultured AML cells from SDF-1-induced apoptosis. HDACi prominently up-regulated expression of the Nherf1 scaffold protein, which played a major role in preventing osteoblast-mediated protection of AML cells. Protein phosphatase-1α (PP1α) was identified as a novel Nherf1 interacting protein that acts as the downstream mediator of this response by promoting nuclear localization of the TAZ transcriptional modulator. Moreover, independent activation of either PP1α or TAZ was sufficient to prevent osteoblast-mediated protection of AML cells even in the absence of HDACi. Together, these results indicate that HDACi target the AML microenvironment by enhancing activation of the Nherf1-PP1α-TAZ pathway in osteoblasts. Selective drug targeting of this osteoblast signaling pathway may improve treatments of AML by rendering leukemic cells in the bone marrow more susceptible to apoptosis. PMID:26491017

  11. Osteopontin inhibits osteoblast responsiveness through the downregulation of focal adhesion kinase mediated by the induction of low molecular weight-protein tyrosine phosphatase.

    PubMed

    Kusuyama, Joji; Bandow, Kenjiro; Ohnishi, Tomokazu; Hisadome, Mitsuhiro; Shima, Kaori; Semba, Ichiro; Matsuguchi, Tetsuya

    2017-03-22

    Osteopontin (OPN) is an osteogenic marker protein. Osteoblast functions are affected by inflammatory cytokines and pathological conditions. OPN is highly expressed in bone legions such as rheumatoid arthritis. However, local regulatory effects of OPN on osteoblasts remain ambiguous. Here, we examined how OPN influences osteoblast responses to mechanical stress and growth factors. Expression of NO synthase 1 (Nos1) and Nos2 was increased by low intensity pulsed ultrasound (LIPUS) in MC3T3-E1 cells and primary osteoblasts. The increase of Nos1/2 expression was abrogated by both exogenous OPN overexpression and recombinant OPN treatment, whereas it was promoted by OPN-specific siRNA and OPN antibody. Moreover, LIPUS-induced phosphorylation of focal adhesion kinase (FAK), a crucial regulator of mechano-responses, was downregulated by OPN treatments. OPN also attenuated hepatocyte growth factor (HGF)-induced vitamin D receptor (Vdr) expression and platelet-derived growth factor (PDGF)-induced cell mobility through the repression of FAK activity. Notably, the expression of low molecular-weight protein tyrosine phosphatase (LMW-PTP), a FAK phosphatase, was increased in both OPN-treated and differentiated osteoblasts. CD44 was a specific OPN receptor for LWW-PTP induction. Consistently, the suppressive influence of OPN on osteoblast responsiveness was abrogated by LMW-PTP knockdown. Taken together, these results have revealed novel functions of OPN on osteoblast physiology.

  12. Staphylococcus aureus Fibronectin Binding Proteins Are Essential for Internalization by Osteoblasts but Do Not Account for Differences in Intracellular Levels of Bacteria

    PubMed Central

    Ahmed, Saddif; Meghji, Sajeda; Williams, Rachel J.; Henderson, Brian; Brock, Jeremy H.; Nair, Sean P.

    2001-01-01

    Staphylococcus aureus is a major pathogen of bone that has been shown to be internalized by osteoblasts via a receptor-mediated pathway. Here we report that there are strain-dependent differences in the uptake of S. aureus by osteoblasts. An S. aureus septic arthritis isolate, LS-1, was internalized some 10-fold more than the laboratory strain 8325-4. Disruption of the genes for the fibronectin binding proteins in these two strains of S. aureus blocked their ability to be internalized by osteoblasts, thereby demonstrating the essentiality of these genes in this process. However, there were no differences in the capacity of these two strains to bind to fibronectin or osteoblasts. Analysis of the kinetics of internalization of the two strains by osteoblasts revealed that strain 8325-4 was internalized only over a short period of time (2 h) and to low numbers, while LS-1 was taken up by osteoblasts in large numbers for over 3 h. These differences in the kinetics of uptake explain the fact that the two strains of S. aureus are internalized by osteoblasts to different extents and suggest that in addition to the fibronectin binding proteins there are other, as yet undetermined virulence factors that play a role in the internalization process. PMID:11292701

  13. Protein profiles of hatchery egg shell membrane.

    PubMed

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  14. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature.

    PubMed

    Chatakun, P; Núñez-Toldrà, R; Díaz López, E J; Gil-Recio, C; Martínez-Sarrà, E; Hernández-Alfaro, F; Ferrés-Padró, E; Giner-Tarrida, L; Atari, M

    2014-01-01

    Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.

  15. Tuning Escherichia coli for membrane protein overexpression.

    PubMed

    Wagner, Samuel; Klepsch, Mirjam M; Schlegel, Susan; Appel, Ansgar; Draheim, Roger; Tarry, Michael; Högbom, Martin; van Wijk, Klaas J; Slotboom, Dirk J; Persson, Jan O; de Gier, Jan-Willem

    2008-09-23

    A simple generic method for optimizing membrane protein overexpression in Escherichia coli is still lacking. We have studied the physiological response of the widely used "Walker strains" C41(DE3) and C43(DE3), which are derived from BL21(DE3), to membrane protein overexpression. For unknown reasons, overexpression of many membrane proteins in these strains is hardly toxic, often resulting in high overexpression yields. By using a combination of physiological, proteomic, and genetic techniques we have shown that mutations in the lacUV5 promoter governing expression of T7 RNA polymerase are key to the improved membrane protein overexpression characteristics of the Walker strains. Based on this observation, we have engineered a derivative strain of E. coli BL21(DE3), termed Lemo21(DE3), in which the activity of the T7 RNA polymerase can be precisely controlled by its natural inhibitor T7 lysozyme (T7Lys). Lemo21(DE3) is tunable for membrane protein overexpression and conveniently allows optimizing overexpression of any given membrane protein by using only a single strain rather than a multitude of different strains. The generality and simplicity of our approach make it ideal for high-throughput applications.

  16. Tuning Escherichia coli for membrane protein overexpression

    PubMed Central

    Wagner, Samuel; Klepsch, Mirjam M.; Schlegel, Susan; Appel, Ansgar; Draheim, Roger; Tarry, Michael; Högbom, Martin; van Wijk, Klaas J.; Slotboom, Dirk J.; Persson, Jan O.; de Gier, Jan-Willem

    2008-01-01

    A simple generic method for optimizing membrane protein overexpression in Escherichia coli is still lacking. We have studied the physiological response of the widely used “Walker strains” C41(DE3) and C43(DE3), which are derived from BL21(DE3), to membrane protein overexpression. For unknown reasons, overexpression of many membrane proteins in these strains is hardly toxic, often resulting in high overexpression yields. By using a combination of physiological, proteomic, and genetic techniques we have shown that mutations in the lacUV5 promoter governing expression of T7 RNA polymerase are key to the improved membrane protein overexpression characteristics of the Walker strains. Based on this observation, we have engineered a derivative strain of E. coli BL21(DE3), termed Lemo21(DE3), in which the activity of the T7 RNA polymerase can be precisely controlled by its natural inhibitor T7 lysozyme (T7Lys). Lemo21(DE3) is tunable for membrane protein overexpression and conveniently allows optimizing overexpression of any given membrane protein by using only a single strain rather than a multitude of different strains. The generality and simplicity of our approach make it ideal for high-throughput applications. PMID:18796603

  17. Ponticulin is an atypical membrane protein

    PubMed Central

    1994-01-01

    We have cloned and sequenced ponticulin, a 17,000-dalton integral membrane glycoprotein that binds F-actin and nucleates actin assembly. A single copy gene encodes a developmentally regulated message that is high during growth and early development, but drops precipitously during cell streaming at approximately 8 h of development. The deduced amino acid sequence predicts a protein with a cleaved NH2-terminal signal sequence and a COOH-terminal glycosyl anchor. These predictions are supported by amino acid sequencing of mature ponticulin and metabolic labeling with glycosyl anchor components. Although no alpha- helical membrane-spanning domains are apparent, several hydrophobic and/or sided beta-strands, each long enough to traverse the membrane, are predicted. Although its location on the primary sequence is unclear, an intracellular domain is indicated by the existence of a discontinuous epitope that is accessible to antibody in plasma membranes and permeabilized cells, but not in intact cells. Such a cytoplasmically oriented domain also is required for the demonstrated role of ponticulin in binding actin to the plasma membrane in vivo and in vitro (Hitt, A. L., J. H. Hartwig, and E. J. Luna. 1994. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium. J. Cell Biol. 126:1433-1444). Thus, ponticulin apparently represents a new category of integral membrane proteins that consists of proteins with both a glycosyl anchor and membrane-spanning peptide domain(s). PMID:8089175

  18. Effects of transforming growth factor type beta on expression of cytoskeletal proteins in endosteal mouse osteoblastic cells

    SciTech Connect

    Lomri, A.; Marie, P.J. )

    1990-01-01

    Transforming growth factor beta (TGF beta) has been shown to influence the growth and differentiation of many cell types in vitro. We have examined the effects of TGF beta on cell morphology and cytoskeletal organization in relation to parameters of cell proliferation and differentiation in endosteal osteoblastic cells isolated from mouse caudal vertebrae. Treatment of mouse osteoblastic cells cultured in serum free medium for 24 hours with TGF beta (1.5-30 ng/mL) slightly (-23%) inhibited alkaline phosphatase activity. In parallel, TGF beta (0.5-30 ng/mL, 24 hours) greatly increased cell replication as evaluated by (3H)-thymidine incorporation into DNA (157% to 325% of controls). At a median dose (1.5 ng/mL) that affected both alkaline phosphatase and DNA synthesis (235% of controls) TGF beta induced rapid (six hours) cell respreading of quiescent mouse osteoblastic cells. This effect was associated with increased polymerization of actin, alpha actinin, and tubulins, as evaluated by both biochemical and immunofluorescence methods. In addition, TGF beta (1.5 ng/mL) increased the de novo biosynthesis of actin, alpha actinin, vimentin, and tubulins, as determined by {sup 35}S methionine labeling and fractionation of cytoskeletal proteins using two-dimensional gel electrophoresis. These effects were rapid and transient, as they occurred at six hours and were reversed after 24 hours of TGF beta exposure. The results indicate that the stimulatory effect of TGF beta on DNA synthesis in endosteal mouse osteoblastic cells is associated with a transient increase in cell spreading associated with enhanced polymerization and synthesis of cytoskeletal proteins.

  19. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

  20. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

    PubMed Central

    Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

    2011-01-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  1. Overexpression of membrane proteins using Pichia pastoris.

    PubMed

    Bornert, Olivier; Alkhalfioui, Fatima; Logez, Christel; Wagner, Renaud

    2012-02-01

    Among the small number of expression systems validated for the mass production of eukaryotic membrane proteins (EMPs), the methylotrophic yeast Pichia pastoris stands as one of the most efficient hosts. This system has been used to produce crystallization-grade proteins for a variety of EMPs, from which high-resolution 3D structures have been determined. This unit describes a set of guidelines and instructions to overexpress membrane proteins using the P. pastoris system. Using a G protein-coupled receptor (GPCR) as a model EMP, these protocols illustrate the necessary steps, starting with the design of the DNA sequence to be expressed, through the preparation and analysis of samples containing the corresponding membrane protein of interest. In addition, recommendations are given on a series of experimental parameters that can be optimized to substantially improve the amount and/or the functionality of the expressed EMPs.

  2. Protein quality control at the plasma membrane

    PubMed Central

    Okiyoneda, Tsukasa; Apaja, Pirjo M.; Lukacs, Gergely L.

    2011-01-01

    Cellular proteostasis (or protein homeostasis) depends on the timely folding and disposal of conformationally damaged polypeptides during their life span at all subcellular locations. This process is particularly important for membrane proteins confined to the cell surface with critical regulatory role in cellular homoeostasis and intercellular communication. Accumulating evidences indicate that membrane proteins exported from the endoplasmic reticulum (ER) are subjected to peripheral quality control (QC) along the late secretory and endocytic pathways, as well as at the plasma membrane (PM). Recently identified components of the PM QC recognition and effector mechanisms responsible for ubiquitination and lysosomal degradation of conformationally damaged PM proteins uncovered striking similarities to and differences from that of the ER QC machinery. Possible implications of the peripheral protein QC activity in phenotypic modulation of conformational diseases are also outlined. PMID:21571517

  3. Protein quality control at the plasma membrane.

    PubMed

    Okiyoneda, Tsukasa; Apaja, Pirjo M; Lukacs, Gergely L

    2011-08-01

    Cellular proteostasis (or protein homeostasis) depends on the timely folding and disposal of conformationally damaged polypeptides during their life span at all subcellular locations. This process is particularly important for membrane proteins confined to the cell surface with crucial regulatory role in cellular homoeostasis and intercellular communication. Accumulating evidences indicate that membrane proteins exported from the endoplasmic reticulum (ER) are subjected to peripheral quality control (QC) along the late secretory and endocytic pathways, as well as at the plasma membrane (PM). Recently identified components of the PM QC recognition and effector mechanisms responsible for ubiquitination and lysosomal degradation of conformationally damaged PM proteins uncovered striking similarities to and differences from that of the ER QC machinery. Possible implications of the peripheral protein QC activity in phenotypic modulation of conformational diseases are also outlined. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Electrophysiological characterization of membrane transport proteins.

    PubMed

    Grewer, Christof; Gameiro, Armanda; Mager, Thomas; Fendler, Klaus

    2013-01-01

    Active transport in biological membranes has been traditionally studied using a variety of biochemical and biophysical techniques, including electrophysiology. This review focuses on aspects of electrophysiological methods that make them particularly suited for the investigation of transporter function. Two major approaches to electrical recording of transporter activity are discussed: (a) artificial planar lipid membranes, such as the black lipid membrane and solid supported membrane, which are useful for studies on bacterial transporters and transporters of intracellular compartments, and (b) patch clamp and voltage clamp techniques, which investigate transporters in native cellular membranes. The analytical power of these methods is highlighted by several examples of mechanistic studies of specific membrane proteins, including cytochrome c oxidase, NhaA Na(+)/H(+) exchanger, ClC-7 H(+)/Cl(-) exchanger, glutamate transporters, and neutral amino acid transporters. These examples reveal the wealth of mechanistic information that can be obtained when electrophysiological methods are used in combination with rapid perturbation approaches.

  5. Quantification of Detergents Complexed with Membrane Proteins

    PubMed Central

    Chaptal, Vincent; Delolme, Frédéric; Kilburg, Arnaud; Magnard, Sandrine; Montigny, Cédric; Picard, Martin; Prier, Charlène; Monticelli, Luca; Bornert, Olivier; Agez, Morgane; Ravaud, Stéphanie; Orelle, Cédric; Wagner, Renaud; Jawhari, Anass; Broutin, Isabelle; Pebay-Peyroula, Eva; Jault, Jean-Michel; Kaback, H. Ronald; le Maire, Marc; Falson, Pierre

    2017-01-01

    Most membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins. We automated the process, thereby allowing routine quantification for a broad spectrum of usage. As a first illustration, we show how to obtain information of the amount of detergent in complex with a membrane protein, essential for liposome or nanodiscs reconstitutions. Thanks to the method, we also show how to reliably and easily estimate the detergent corona diameter and select the smallest size, critical for favoring protein-protein contacts and triggering/promoting membrane protein crystallization, and to visualize the detergent belt for Cryo-EM studies. PMID:28176812

  6. 1,25-Dihydroxyvitamin D3 and the aging-related forkhead box O and sestrin proteins in osteoblasts.

    PubMed

    Eelen, Guy; Verlinden, Lieve; Meyer, Mark B; Gijsbers, Rik; Pike, J Wesley; Bouillon, Roger; Verstuyf, Annemieke

    2013-07-01

    Forkhead Box O (FoxO) transcription factors and Sestrins (SESN) are highly conserved and related stress-responsive proteins that protect the organism against age-related pathologies. For FoxOs, growing evidence shows a crucial role in osteoblast function. Here we investigated the role of different FoxO and SESN isoforms in 1,25(OH)2D3-treated MC3T3-E1 osteoblasts. 1,25(OH)2D3 rapidly and strongly induced the expression of SESN1 and FoxO3a but down-regulated the expression of SESN3 and FoxO1. SESN2 and FoxO4 levels were hardly affected by 1,25(OH)2D3. Chromatin Immunoprecipitation (ChIP)-sequencing revealed significant VDR/RXR binding to a DR3-type VDRE in SESN1 but not in the genomic region where FoxO3a is located. Mutation of the SESN1 VDRE abolished responsiveness to 1,25(OH)2D3 in luciferase-based transfection assays. siRNA-mediated knock-down of SESN1, SESN3, FoxO1 or FoxO3a did not prevent 1,25(OH)2D3 from reducing the expression of cell cycle markers like Cyclin D1 and Cdc6 and from exerting its characteristic antiproliferative effect on MC3T3-E1 osteoblasts. Accordingly, the 1,25(OH)2D3-induced reduction in the number of S-phase cells was also maintained. The antiproliferative effect was still present in primary osteoblast in which all three FoxO isoforms were deleted (TKOpOB). Interestingly, both MC3T3-E1 osteoblasts in which FoxO1 was knocked-down and TKOpOBs accumulated significantly more reactive oxygen species (ROS) after treatment with 1,25(OH)2D3 than control cells. siRNA-mediated knock-down of individual SESN isoforms did not result in significant differences in ROS levels. In conclusion, 1,25(OH)2D3 directly and indirectly alters the expression levels of different FoxO and SESN isoforms in osteoblasts, presumably not to exert its antiproliferative action but to control ROS levels. This article is part of a Special Issue entitled 'Vitamin D Workshop'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Conformation of Membrane Proteins: Bacteriorhodopsin

    DTIC Science & Technology

    1991-12-09

    2-0-methoxypolyethylene glycol-N-hydroxy succinimyl carbonate. (MeO-PEG-SC). MeO- PEG-SC was coupled with the purple membrane (PM) of Halobacterium ...transient intermediate with an absorbance maximum of 480-510 nm was also found. RESULTS 1. The growth of the Halobacterium halobium was optimized (e.g

  8. Hypergravity-induced enrichment of β1 integrin on the cell membranes of osteoblast-like cells via caveolae-dependent endocytosis.

    PubMed

    Zhou, Shuai; Zu, Yan; Zhuang, Fengyuan; Yang, Chun

    2015-08-07

    In bone cells, integrins on the cellular surface are the primary sensors of their mechanical environment. Although gravitational changes are known to affect the adhesion and functions of bone cells, whether integrins respond to hypergravity in osteoblasts remains unclear. In this work, we demonstrate that exposure to a hypergravitational environment (20 × g via centrifugation) resulted in the concentration of β1, but not β3, integrin on the cell membrane of osteoblast-like (MC3T3-E1) cells. Notably, the total expression of both integrins was unaffected by the hypergravitational environment. In addition, caveolin-dependent endocytosis was discovered to be involved in the regulation of the enrichment of β1 integrin on the cell surface after stimulation by hypergravity. These findings could aid in the improvement of our understanding of the mechanisms underlying the effects of different gravitational forces on the human body.

  9. Intrinsically disordered proteins drive membrane curvature

    PubMed Central

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-01-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. PMID:26204806

  10. Intrinsically disordered proteins drive membrane curvature

    NASA Astrophysics Data System (ADS)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  11. Intrinsically disordered proteins drive membrane curvature.

    PubMed

    Busch, David J; Houser, Justin R; Hayden, Carl C; Sherman, Michael B; Lafer, Eileen M; Stachowiak, Jeanne C

    2015-07-24

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  12. Protein transfer to membranes upon shape deformation

    NASA Astrophysics Data System (ADS)

    Sagis, L. M. C.; Bijl, E.; Antono, L.; de Ruijter, N. C. A.; van Valenberg, H.

    2013-05-01

    Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is an important factor in several diseases involving obstructions of the microcirculatory system, and deformation induced protein adsorption will alter the rigidity of their membranes. Deformation induced protein transfer will also affect adsorption of cells onto implant surfaces, and the performance of liposome based controlled release systems. Quantitative models describing this phenomenon in biomaterials do not exist. Using a simple quantitative model, we provide new insight in this phenomenon. We present data that show convincingly that for cells or droplets with diameters upwards of a few micrometers, shape deformations induce adsorption of proteins at their interface even at moderate flow rates.

  13. Bone morphogenetic protein-induced cell differentiation involves Atg7 and Wnt16 sequentially in human stem cell-derived osteoblastic cells.

    PubMed

    Ozeki, Nobuaki; Mogi, Makio; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Matsumoto, Toru; Nakata, Kazuhiko

    2016-09-10

    We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7(+)hSMSC)-derived osteoblast-like cells with bone morphogenetic protein (BMP)-2. To explore the early signaling cascade for osteoblastic differentiation, we examined the upregulation of autophagy-related gene (Atg) and wingless/int1 (Wnt) signaling during BMP-2-mediated human osteoblastic differentiation. In a screening experiment, BMP-2 increased the mRNA and protein levels of Atg7, Wnt16, and Lrp5/Fzd2 (a Wnt receptor), but not microtubule-associated protein 1 light chain (LC3; a mammalian homolog of yeast Atg8), TFE3, Beclin1, Atg5, Atg12, Wnt3a, or Wnt5, together with the amounts of autophagosomes and autophagy fluxes. Treatment with siRNAs against Atg7 and Wnt16 individually suppressed the BMP-2-induced increase in osteoblastic differentiation. The osteoblastic phenotype, involving osteocalcin (BGLAP), osteopontin (SPP1), and osterix (SP7) expression, decreased when autophagy was inhibited by chloroquine (an autophagy inhibitor), but increased after treatment with rapamycin (an autophagy enhancer). Taken together with our previous findings, we have revealed a unique sequential cascade of BMP-2→Atg7→Wnt16→Lrp5/Fzd2→matrix metalloproteinase-13→osteoblastic differentiation. This cascade results in a potent increase in osteoblastic cell differentiation, indicating the unique involvement of Atg7, autophagy, and Wnt16 signaling in BMP-2-induced differentiation of α7(+)hSMSCs into osteoblast-like cells at a relatively early stage. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Protein separation using an electrically tunable membrane

    NASA Astrophysics Data System (ADS)

    Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria

    Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.

  15. Crystallization of Membrane Proteins by Vapor Diffusion

    PubMed Central

    Delmar, Jared A.; Bolla, Jani Reddy; Su, Chih-Chia; Yu, Edward W.

    2016-01-01

    X-ray crystallography remains the most robust method to determine protein structure at the atomic level. However, the bottlenecks of protein expression and purification often discourage further study. In this chapter, we address the most common problems encountered at these stages. Based on our experiences in expressing and purifying antimicrobial efflux proteins, we explain how a pure and homogenous protein sample can be successfully crystallized by the vapor diffusion method. We present our current protocols and methodologies for this technique. Case studies show step-by-step how we have overcome problems related to expression and diffraction, eventually producing high quality membrane protein crystals for structural determinations. It is our hope that a rational approach can be made of the often anecdotal process of membrane protein crystallization. PMID:25950974

  16. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells.

    PubMed

    Mathews, Smitha; Bhonde, Ramesh; Gupta, Pawan Kumar; Totey, Satish

    2012-09-01

    The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.

  17. Protein aggregation in a membrane environment.

    PubMed

    Gorbenko, Galyna; Trusova, Valeriya

    2011-01-01

    Biological membranes are featured by a remarkable ability to modulate a wide range of physiological and pathological processes. Of these, protein aggregation is currently receiving the greatest attention, as one type of the ordered protein aggregates, amyloid fibrils, proved to be involved in molecular etiology of a number of fatal diseases. It has been hypothesized that nucleation of amyloid fibrils and toxic action of their precursors is mediated by lipid-protein interactions. Lipid bilayer provides a variety of environments in which aggregated state of polypeptide chain appears to be more thermodynamically favorable than its monomeric form. The major factors responsible for the enhanced self-association propensity of membrane-bound proteins include (i) structural transition of polypeptide chain into aggregation-prone conformation; (ii) protein crowding in a lipid phase; (iii) particular aggregation-favoring orientation and bilayer embedment of the protein molecules. All these factors are considered in the present review with an emphasis being put on the role of electrostatic, hydrophobic, and hydrogen-bonding phenomena in initiating and modulating the protein aggregation on a membrane template. Likewise, we survey the advanced experimental techniques employed for detection and structural characterization of the aggregated species in membrane systems.

  18. Fluorescence spectroscopy of protein oligomerization in membranes.

    PubMed

    Gorbenko, Galyna P

    2011-05-01

    Fluorescence spectroscopy is one of the most powerful tools for characterization of a multitude of biological processes. Of these, the phenomenon of protein oligomerization attracts especial interest due to its crucial role in the formation of fibrillar protein aggregates (amyloid fibrils) involved in ethiology of so-called protein misfolding diseases. It is becoming increasingly substantiated that protein fibrillization in vivo can be initiated and modulated at membrane-water interface. All steps of membrane-assisted fibrillogenesis, viz., protein adsorption onto lipid bilayer, structural transition of polypeptide chain into a highly aggregation-prone partially folded conformation, assembly of oligomeric nucleus from membrane-bound monomeric species and fiber elongation can be monitored with a mighty family of fluorescence-based techniques. Furthermore, the mechanisms behind cytotoxicity of prefibrillar protein oligomers are highly amenable to fluorescence analysis. The applications of fluorescence spectroscopy to monitoring protein oligomerization in a membrane environment are exemplified and some problems encountered in such kinds of studies are highlighted.

  19. Breaking the barriers in membrane protein crystallography.

    PubMed

    Kang, Hae Joo; Lee, Chiara; Drew, David

    2013-03-01

    As we appreciate the importance of stabilising membrane proteins, the barriers towards their structure determination are being broken down. This change in mindset comes hand-in-hand with more effort placed on developing methods focused at screening for membrane proteins which are naturally stable in detergent solution or improving those that are not so. In practice, however, it is not easy to decide the best strategy to monitor and improve detergent stability, requiring a decision-making process that can be even more difficult for those new to the field. In this review we outline the importance of membrane protein stability with discussions of the stabilisation strategies applied in context with the use of crystallisation scaffolds and the different types of crystallisation methods themselves. Where possible we also highlight areas that we think could push this field forward with emerging technologies, such as X-ray free electron lasers (X-feL), which could have a big impact on the membrane protein structural biology community. We hope this review will serve as a useful guide for those striving to solve structures of both pro- and eukaryotic membrane proteins.

  20. Curvature-mediated interactions between membrane proteins.

    PubMed Central

    Kim, K S; Neu, J; Oster, G

    1998-01-01

    Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence of stable protein aggregates, despite their pairwise repulsions. PMID:9788923

  1. Tissue engineering of composite grafts: Cocultivation of human oral keratinocytes and human osteoblast-like cells on laminin-coated polycarbonate membranes and equine collagen membranes under different culture conditions.

    PubMed

    Glaum, R; Wiedmann-Al-Ahmad, M; Huebner, U; Schmelzeisen, R

    2010-05-01

    In complex craniomaxillofacial defects, the simultaneous reconstruction of hard and soft tissue is often necessary. Until now, oral keratinocytes and osteoblast-like cells have not been cocultivated on the same carrier. For the first time, the cocultivation of human oral keratinocytes and human osteoblast-like cells has been investigated in this study. Different carriers (laminin-coated polycarbonate and equine collagen membranes) and various culture conditions were examined. Human oral keratinocytes and human osteoblast-like cells from five patients were isolated from tissue samples, seeded on the opposite sides of the carriers and cultivated for 1 and 2 weeks under static conditions in an incubator and in a perfusion chamber. Proliferation and morphology of the cells were analyzed by EZ4U-tests, light microscopy, and scanning electron microscopy. Cocultivation of both cell-types seeded on one carrier was possible. Quantitative and qualitative growth was significantly better on collagen membranes when compared with laminin-coated polycarbonate membranes independent of the culture conditions. Using perfusion culture in comparison to static culture, the increase of cell proliferation after 2 weeks of cultivation when compared with the proliferation after 1 week was significantly lower, independent of the carriers used. In conclusion, the contemporaneous cultivation of human oral keratinocytes and human osteoblast-like cells on the same carrier is possible, a prerequisite for planned in vivo studies. As carrier collagen is superior to laminin-coated polycarbonate membranes. Regarding the development over time, the increase of proliferation rate is lower in perfusion culture. Examinations of cellular differentiation over time under various culture conditions will be subject of further investigations. Copyright 2009 Wiley Periodicals, Inc.

  2. The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors.

    PubMed

    Gadi, Jogeswar; Jung, Seung-Hyun; Lee, Min-Jung; Jami, Ajita; Ruthala, Kalyani; Kim, Kyoung-Min; Cho, Nam-Hoon; Jung, Han-Sung; Kim, Cheol-Hee; Lim, Sung-Kil

    2013-08-30

    Sox11 deletion mice are known to exhibit developmental defects of craniofacial skeletal malformations, asplenia, and hypoplasia of the lung, stomach, and pancreas. Despite the importance of Sox11 in the developing skeleton, the role of Sox11 in osteogenesis has not been studied yet. In this study, we identified that Sox11 is an important transcription factor for regulating the proliferation and survival of osteoblast precursor cells as well as the self-renewal potency of mesenchymal progenitor cells via up-regulation of Tead2. Furthermore, Sox11 also plays an important role in the segregation of functional osteoblast lineage progenitors from osteochondrogenic progenitors. Facilitation of osteoblast differentiation from mesenchymal cells was achieved by enhanced expression of the osteoblast lineage specific transcription factors Runx2 and Osterix. Morpholino-targeted disruption of Sox11 in zebrafish impaired organogenesis, including the bones, which were under mineralized. These results indicated that Sox11 plays a crucial role in the proliferation and survival of mesenchymal and osteoblast precursors by Tead2, and osteogenic differentiation by regulating Runx2 and Osterix.

  3. Transmembrane protein sorting driven by membrane curvature

    NASA Astrophysics Data System (ADS)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  4. Transmembrane protein sorting driven by membrane curvature.

    PubMed

    Strahl, H; Ronneau, S; González, B Solana; Klutsch, D; Schaffner-Barbero, C; Hamoen, L W

    2015-11-02

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  5. Model-building codes for membrane proteins.

    SciTech Connect

    Shirley, David Noyes; Hunt, Thomas W.; Brown, W. Michael; Schoeniger, Joseph S.; Slepoy, Alexander; Sale, Kenneth L.; Young, Malin M.; Faulon, Jean-Loup Michel; Gray, Genetha Anne

    2005-01-01

    We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.

  6. An N-terminal Domain of Adenovirus Protein VI Fragments Membranes By Inducing Positive Membrane Curvature

    PubMed Central

    Maier, Oana; Galan, Debra L.; Wodrich, Harald; Wiethoff, Christopher M.

    2010-01-01

    Adenovirus (Ad) membrane penetration during cell entry is poorly understood. Here we show that antibodies which neutralize the membrane lytic activity of the Ad capsid protein VI interfere with Ad endosomal membrane penetration. In vitro studies using a peptide corresponding to an N-terminal amphipathic α-helix of protein VI (VI-Φ), as well as other truncated forms of protein VI suggest that VI-Φ is largely responsible for protein VI binding to and lysing of membranes. Additional studies suggest that VI-Φ lies nearly parallel to the membrane surface. Protein VI fragments membranes and induces highly curved structures. Further studies suggest that Protein VI induces positive membrane curvature. These data support a model in which protein VI binds membranes, inducing positive curvature strain which ultimately leads to membrane fragmentation. These results agree with previous observations of Ad membrane permeabilization during cell entry and provide an initial mechanistic description of a nonenveloped virus membrane lytic protein. PMID:20409568

  7. Predicting membrane protein types with bragging learner.

    PubMed

    Niu, Bing; Jin, Yu-Huan; Feng, Kai-Yan; Liu, Liang; Lu, Wen-Cong; Cai, Yu-Dong; Li, Guo-Zheng

    2008-01-01

    The membrane protein type is an important feature in characterizing the overall topological folding type of a protein or its domains therein. Many investigators have put their efforts to the prediction of membrane protein type. Here, we propose a new approach, the bootstrap aggregating method or bragging learner, to address this problem based on the protein amino acid composition. As a demonstration, the benchmark dataset constructed by K.C. Chou and D.W. Elrod was used to test the new method. The overall success rate thus obtained by jackknife cross-validation was over 84%, indicating that the bragging learner as presented in this paper holds a quite high potential in predicting the attributes of proteins, or at least can play a complementary role to many existing algorithms in this area. It is anticipated that the prediction quality can be further enhanced if the pseudo amino acid composition can be effectively incorporated into the current predictor. An online membrane protein type prediction web server developed in our lab is available at http://chemdata.shu.edu.cn/protein/protein.jsp.

  8. MicroRNA-221 is involved in the regulation of osteoporosis through regulates RUNX2 protein expression and osteoblast differentiation

    PubMed Central

    Zhang, Yinquan; Gao, Yulei; Cai, Lijun; Li, Fengning; Lou, Yi; Xu, Ning; Kang, Yifan; Yang, Huilin

    2017-01-01

    Introduction: MicroRNAs (miRNAs) has emerged as important factors in osteogenesis and chondrogenesis. This study aimed to determine whether miR-221 is involved in the regulation of osteoporosis and its underlying mechanism. Methods: Total RNA was extracted from fresh femoral neck trabecular bone from women undergoing hip replacement due to either osteoporotic fracture (OP group, n = 12) or osteoarthritis in the absence of osteoporosis (Control group, n = 12). Gene expression was quantified using TaqMan quantitative RT-PCR assays and protein production was determined by western blot analysis. The role of miR-221 in osteoblast differentiation was identified by gain or loss function experiment. MiRNA targets were identified using bioinformatics and luciferase reporter assay. Results: MiR-221 was down-regulated in the osteoporotic samples compared with non-osteoporotic controls, and decreased in a C2C12 cell model of osteogenic differentiation. Overexpression of miR-221 resulted in a decrease in the osteogenic potential, as indicated by the reduced expression levels of key osteoblast markers, including osteocalcin (OC), alkaline phosphatase (ALP) and collagen, type I, α 1 (COL1A1), whereas inhibition of miR-221 promoted the activity of OC, ALP and COL1A1. Then bioinformatic analysis identified potential target sites of the miR-221 located in the 3’ untranslated regions of RUNX2. Western blot analysis demonstrated that miR-221 inhibited RUNX2 gene expression. Furthermore, dual-luciferase reporter assays confirmed that RUNX2 was a direct target of miR-221. Rescue experiments showed that overexpression of RUNX2 significantly attenuated the effect of miR-221 on osteoblast markers providing strong evidence that miR-221 mediated the osteoblast differentiation by targeting RUNX2. Conclusions: Taken together, these data implied that miR-221 played an important part in osteoporosis through regulating RUNX2 expression and osteoblast differentiation. PMID:28123639

  9. Proteomics characterization of abundant Golgi membrane proteins.

    PubMed

    Bell, A W; Ward, M A; Blackstock, W P; Freeman, H N; Choudhary, J S; Lewis, A P; Chotai, D; Fazel, A; Gushue, J N; Paiement, J; Palcy, S; Chevet, E; Lafrenière-Roula, M; Solari, R; Thomas, D Y; Rowley, A; Bergeron, J J

    2001-02-16

    A mass spectrometric analysis of proteins partitioning into Triton X-114 from purified hepatic Golgi apparatus (84% purity by morphometry, 122-fold enrichment over the homogenate for the Golgi marker galactosyl transferase) led to the unambiguous identification of 81 proteins including a novel Golgi-associated protein of 34 kDa (GPP34). The membrane protein complement was resolved by SDS-polyacrylamide gel electrophoresis and subjected to a hierarchical approach using delayed extraction matrix-assisted laser desorption ionization mass spectrometry characterization by peptide mass fingerprinting, tandem mass spectrometry to generate sequence tags, and Edman sequencing of proteins. Major membrane proteins corresponded to known Golgi residents, a Golgi lectin, anterograde cargo, and an abundance of trafficking proteins including KDEL receptors, p24 family members, SNAREs, Rabs, a single ARF-guanine nucleotide exchange factor, and two SCAMPs. Analytical fractionation and gold immunolabeling of proteins in the purified Golgi fraction were used to assess the intra-Golgi and total cellular distribution of GPP34, two SNAREs, SCAMPs, and the trafficking proteins GBF1, BAP31, and alpha(2)P24 identified by the proteomics approach as well as the endoplasmic reticulum contaminant calnexin. Although GPP34 has never previously been identified as a protein, the localization of GPP34 to the Golgi complex, the conservation of GPP34 from yeast to humans, and the cytosolically exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking.

  10. Major intrinsic proteins in biomimetic membranes.

    PubMed

    Nielsen, Claus Hélix

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport

  11. Stimulation of Periodontal Ligament Stem Cells by Dentin Matrix Protein 1 Activates Mitogen-Activated Protein Kinase and Osteoblast Differentiation

    PubMed Central

    Chandrasekaran, Sangeetha; Ramachandran, Amsaveni; Eapen, Asha; George, Anne

    2013-01-01

    Background Periodontitis can ultimately result in tooth loss. Many natural and synthetic materials have been tried to achieve periodontal regeneration, but the results remain variable and unpredictable. We hypothesized that exogenous treatment with dentin matrix protein 1 (DMP1) activates specific genes and results in phenotypic and functional changes in human periodontal ligament stem cells (hPDLSCs). Methods hPDLSCs were isolated from extracted teeth and cultured in the presence or absence of DMP1. Quantitative polymerase chain reactions were performed to analyze the expression of several genes involved in periodontal regeneration. hPDLSCs were also processed for immunocytochemical and Western blot analysis using phosphorylated extracellular signal-regulated kinase (pERK) and ERK antibodies. Alkaline phosphatase and von Kossa staining were performed to characterize the differentiation of hPDLSCs into osteoblasts. Field emission scanning electron microscopic analysis of the treated and control cell cultures were also performed. Results Treatment with DMP1 resulted in the upregulation of genes, such as matrix metalloproteinase-2, alkaline phosphatase, and transforming growth factor β1. Activation of ERK mitogen-activated protein kinase signaling pathway and translocation of pERK from the cytoplasm to the nucleus was observed. Overall, DMP1-treated cells showed increased expression of alkaline phosphatase, increased matrix, and mineralized nodule formation when compared with untreated controls. Conclusion DMP1 can orchestrate a coordinated expression of genes and phenotypic changes in hPDLSCs by activation of the ERK signaling pathway, which may provide a valuable strategy for tissue engineering approaches in periodontal regeneration. PMID:22612367

  12. Protein permeation through an electrically tunable membrane

    NASA Astrophysics Data System (ADS)

    Jou, Ining A.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2016-05-01

    Protein filtration is important in many fields of science and technology such as medicine, biology, chemistry, and engineering. Recently, protein separation and filtering with nanoporous membranes has attracted interest due to the possibility of fast separation and high throughput volume. This, however, requires understanding of the protein’s dynamics inside and in the vicinity of the nanopore. In this work, we utilize a Brownian dynamics approach to study the motion of the model protein insulin in the membrane-electrolyte electrostatic potential. We compare the results of the atomic model of the protein with the results of a coarse-grained and a single-bead model, and find that the coarse-grained representation of protein strikes the best balance between the accuracy of the results and the computational effort required. Contrary to common belief, we find that to adequately describe the protein, a single-bead model cannot be utilized without a significant effort to tabulate the simulation parameters. Similar to results for nanoparticle dynamics, our findings also indicate that the electric field and the electro-osmotic flow due to the applied membrane and electrolyte biases affect the capture and translocation of the biomolecule by either attracting or repelling it to or from the nanopore. Our computational model can also be applied to other types of proteins and separation conditions.

  13. Constitutive protein kinase A activity in osteocytes and late osteoblasts produces an anabolic effect on bone

    PubMed Central

    Kao, Richard S.; Abbott, Marcia J.; Louie, Alyssa; O’Carroll, Dylan; Lu, Weidar; Nissenson, Robert

    2013-01-01

    Osteocytes have been implicated in the control of bone formation. However, the signal transduction pathways that regulate the biological function of osteocytes are poorly defined. Limited evidence suggests an important role for the Gs/cAMP pathway in osteocyte function. In the present study, we explored the hypothesis that cAMP-dependent kinase A (PKA) activation in osteocytes plays a key role in controlling skeletal homeostasis. To test this hypothesis, we mated mice harboring a Cre-conditional, mutated PKA catalytic subunit allele that encodes a constitutively active form of PKA (CαR) with mice expressing Cre under the control of the osteocyte-specific promoter, DMP1. This allowed us to direct the expression of CαR to osteocytes in double transgenic progeny. Examination of Cre expression indicated that CαR was also expressed in late osteoblasts. Cortical and trabecular bone parameters from 12-week old mice were determined by μCT. Expression of CαR in osteocytes and late osteoblasts altered the shape of cortical bone proximal to the tibia-fibular junction (TFJ) and produced a significant increase in its size. In trabecular bone of the distal femur, fractional bone volume, trabecular number, and trabecular thickness were increased. These increases were partially the results of increased bone formation rates (BFRs) on the endosteal surface of the cortical bone proximal to the TFJ as well as increased BFR on the trabecular bone surface of the distal femur. Mice expressing CαR displayed a marked increase in the expression of osteoblast markers such as osterix, runx2, collagen 1α1, and alkaline phosphatase (ALP). Interestingly, expression of osteocyte marker gene, DMP1, was significantly up-regulated but the osteocyte number per bone area was not altered. Expression of SOST, a presumed target for PKA signaling in osteocytes, was significantly down-regulated in females. Importantly, no changes in bone resorption were detected. In summary, constitutive PKA

  14. The HIV proteins Tat and Nef promote human bone marrow mesenchymal stem cell senescence and alter osteoblastic differentiation.

    PubMed

    Beaupere, Carine; Garcia, Marie; Larghero, Jerome; Fève, Bruno; Capeau, Jacqueline; Lagathu, Claire

    2015-08-01

    To maintain bone mass turnover and bone mineral density (BMD), bone marrow (BM) mesenchymal stem cells (MSCs) are constantly recruited and subsequently differentiated into osteoblasts. HIV-infected patients present lower BMD than non-HIV infected individuals and a higher prevalence of osteopenia/osteoporosis. In antiretroviral treatment (ART)-naive patients, encoded HIV proteins represent pathogenic candidates. They are released by infected cells within BM and can impact on neighbouring cells. In this study, we tested whether HIV proteins Tat and/or Nef could induce senescence of human BM-MSCs and reduce their capacity to differentiate into osteoblasts. When compared to nontreated cells, MSCs chronically treated with Tat and/or Nef up to 30 days reduced their proliferative activity and underwent early senescence, associated with increased oxidative stress and mitochondrial dysfunction. The antioxidant molecule N-acetyl- cysteine had no or minimal effects on Tat- or Nef-induced senescence. Tat but not Nef induced an early increase in NF-κB activity and cytokine/chemokine secretion. Tat-induced effects were prevented by the NF-κB inhibitor parthenolide, indicating that Tat triggered senescence via NF-κB activation leading to oxidative stress. Otherwise, Nef- but not Tat-treated cells displayed early inhibition of autophagy. Rapamycin, an autophagy inducer, reversed Nef-induced senescence and oxidative stress. Moreover, Tat+Nef had cumulative effects. Finally, Tat and/or Nef decreased the MSC potential of osteoblastic differentiation. In conclusion, our in vitro data show that Tat and Nef could reduce the number of available precursors by inducing MSC senescence, through either enhanced inflammation or reduced autophagy. These results offer new insights into the pathophysiological mechanisms of decreased BMD in HIV-infected patients.

  15. The HIV proteins Tat and Nef promote human bone marrow mesenchymal stem cell senescence and alter osteoblastic differentiation

    PubMed Central

    Beaupere, Carine; Garcia, Marie; Larghero, Jerome; Fève, Bruno; Capeau, Jacqueline; Lagathu, Claire

    2015-01-01

    To maintain bone mass turnover and bone mineral density (BMD), bone marrow (BM) mesenchymal stem cells (MSCs) are constantly recruited and subsequently differentiated into osteoblasts. HIV-infected patients present lower BMD than non-HIV infected individuals and a higher prevalence of osteopenia/osteoporosis. In antiretroviral treatment (ART)-naive patients, encoded HIV proteins represent pathogenic candidates. They are released by infected cells within BM and can impact on neighbouring cells. In this study, we tested whether HIV proteins Tat and/or Nef could induce senescence of human BM-MSCs and reduce their capacity to differentiate into osteoblasts. When compared to nontreated cells, MSCs chronically treated with Tat and/or Nef up to 30 days reduced their proliferative activity and underwent early senescence, associated with increased oxidative stress and mitochondrial dysfunction. The antioxidant molecule N-acetyl- cysteine had no or minimal effects on Tat- or Nef-induced senescence. Tat but not Nef induced an early increase in NF-κB activity and cytokine/chemokine secretion. Tat-induced effects were prevented by the NF-κB inhibitor parthenolide, indicating that Tat triggered senescence via NF-κB activation leading to oxidative stress. Otherwise, Nef- but not Tat-treated cells displayed early inhibition of autophagy. Rapamycin, an autophagy inducer, reversed Nef-induced senescence and oxidative stress. Moreover, Tat+Nef had cumulative effects. Finally, Tat and/or Nef decreased the MSC potential of osteoblastic differentiation. In conclusion, our in vitro data show that Tat and Nef could reduce the number of available precursors by inducing MSC senescence, through either enhanced inflammation or reduced autophagy. These results offer new insights into the pathophysiological mechanisms of decreased BMD in HIV-infected patients. PMID:25847297

  16. Directional interactions and cooperativity between mechanosensitive membrane proteins

    NASA Astrophysics Data System (ADS)

    Haselwandter, Christoph A.; Phillips, Rob

    2013-03-01

    While modern structural biology has provided us with a rich and diverse picture of membrane proteins, the biological function of membrane proteins is often influenced by the mechanical properties of the surrounding lipid bilayer. Here we explore the relation between the shape of membrane proteins and the cooperative function of membrane proteins induced by membrane-mediated elastic interactions. For the experimental model system of mechanosensitive ion channels we find that the sign and strength of elastic interactions depend on the protein shape, yielding distinct cooperative gating curves for distinct protein orientations. Our approach predicts how directional elastic interactions affect the molecular structure, organization, and biological function of proteins in crowded membranes.

  17. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2).

    PubMed

    Maegawa, Naoki; Kawamura, Kenji; Hirose, Motohiro; Yajima, Hiroshi; Takakura, Yoshinori; Ohgushi, Hajime

    2007-01-01

    It is well known that bone marrow contains mesenchymal stromal cells (MSCs), which can show osteoblastic differentiation when cultured in osteogenic medium containing ascorbic acid, beta-glycerophosphate and dexamethasone. The differentiation results in the appearance of osteoblasts, together with the formation of bone matrix; thus, in vitro cultured bone (osteoblasts/bone matrix) could be fabricated by MSC culture. This type of cultured bone has already been used in clinical cases involving orthopaedic problems. To improve the therapeutic effect of the cultured bone, we investigated the culture conditions that contributed to extensive osteoblastic differentiation. Rat bone marrow was primarily cultured to expand the number of MSCs and further cultured in osteogenic medium for 12 days. The culture was also conducted in a medium supplemented with either bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor (FGF-2), or with sequential combinations of both supplements. Among them, the sequential supplementation of FGF-2 followed by BMP-2 showed high alkaline phosphatase activity, sufficient bone-specific osteocalcein expression and abundant bone matrix formation of the MSC culture. These data implied that the number of responding cells or immature osteoblasts was increased by the supplementation of FGF-2 in the early phase of the culture and that these cells can show osteoblastic differentiation, of which capability was augmented by BMP-2 in the late phase. The sequential supplementation of these cytokines into MSC culture might be suitable for the fabrication of ideal cultured bone for use in bone tissue engineering.

  18. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5)

    PubMed Central

    Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas

    2016-01-01

    MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17–24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism. PMID:28025541

  19. Reduction of protein phosphatase 2A Cα enhances bone formation and osteoblast differentiation through the expression of bone-specific transcription factor Osterix.

    PubMed

    Okamura, Hirohiko; Yoshida, Kaya; Ochiai, Kazuhiko; Haneji, Tatsuji

    2011-09-01

    The serine/threonine protein phosphatase 2A (PP2A) participates in regulating many important physiological processes such as control of cell cycle, growth, and division. On the other hand, Osterix is a zinc-finger-containing transcription factor that is essential for the differentiation of osteoblasts and regulation of many bone-related genes. Here we examined the effect of okadaic acid (OA), a specific inhibitor of PP2A, on bone formation in vivo and the molecular mechanism regulated by PP2A Cα in osteoblast differentiation. Administration of 1nM OA to the calvarial region in mice increased bone mineral density, as shown by μCT, while histomorphological analysis showed an increase in mineral apposition and bone thickness in the same region. In addition, treatment with 1nM OA stimulated osteoblast differentiation and the expression of Osterix, bone sialoprotein (Bsp), and osteocalcin (OCN) in mouse osteoblastic MC3T3-E1 cells. Moreover, the expression and phosphatase activity of PP2A Cα was decreased in the initial step of osteoblast differentiation, which was in parallel with an increase in Osterix expression. To further clarify the role of PP2A Cα in osteoblast differentiation, we constructed PP2A knock-down cells by infecting MC3T3-E1 cells with a lentivirus expressing shRNA specific for the PP2A Cα. Accordingly, the silencing of PP2A Cα in MC3T3-E1 cells dramatically increased osteoblast differentiation and mineralization, which were accompanied with expressions of Osterix, Bsp, and OCN. Our data indicate that PP2A Cα plays an important role in the regulation of bone formation and osteoblast differentiation through the bone-related genes.

  20. Effects of fibroblast growth factor 2 on osteoblastic proliferation and differentiation by regulating bone morphogenetic protein receptor expression.

    PubMed

    Park, Jun-Beom

    2011-09-01

    Fibroblast growth factors (FGFs) are known to play a critical role in bone growth and development, affecting both osteogenesis and chondrogenesis. Fibroblast growth factor 2 (FGF-2) is produced intracellularly by osteoblasts and secreted into the surrounding matrix in bone.The dose-dependent effects of FGF-2 were tested to examine the relationship between FGF-2 and osteoblast proliferation and differentiation. Tests used included a cell viability test, an alkaline phosphatase activity test, and a Western blot analysis.Cultures growing in the presence of FGF-2 showed an increased value for 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and a decreased value for alkaline phosphatase activity. Results of the Western blot analysis showed that the addition of FGF-2 seems to decrease osteocalcin and bone morphogenetic protein receptor IA.These data show that FGF-2 in the tested dosage within MC3T3-E1 cells seems to affect proliferation and differentiation. Results of the Western blot analysis may add some possible mechanisms, and it may be suggested that treatment of FGF-2 may have an influence on the expression of bone morphogenetic protein receptors in osteoprecursor cells. Further elucidation of the mechanisms related to this mechanism within the in vivo model may be necessary to ascertain greater detail.

  1. Self diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The

  2. Microgravity and Signaling Molecules in Rat Osteoblasts: Downstream of Receptor Tyrosine Kinase, G-Protein-Coupled Receptor, and Small GTP-Binding Proteins

    NASA Technical Reports Server (NTRS)

    Kumel, Yasuhiro; Shimokawa, Hitoyata; Morita, Sadao; Katano, Hisako; Akiyama, Hideo; Hirano, Masahiko; Ohya, Keiichi; Sams, Clarence F.; Whitson, Peggy A.

    2005-01-01

    Rat osteoblasts were cultured for 4 and 5 days aboard Space Shuttle and solubilized on board. The mRNA levels of the post-receptor signaling molecules were analyzed by quantitative RT-PCR. The G-protein alpha subunit G(alpha)q mRNA levels were elevated 3-fold by microgravity. G(alpha)q stimulates PLC(beta), and then PKC. PKC(delta) and PKC(theta) mRNA levels were increased 2- to 5-fold by microgravity The mRNA levels of SOS and Ras GRF were increased 4 to 5-fold by microgravity, while Ras GAP was not altered. Spaceflight-induced bone loss might be attributed to microgravity modulation of the signaling pathway in osteoblasts.

  3. Microgravity and Signaling Molecules in Rat Osteoblasts: Downstream of Receptor Tyrosine Kinase, G-Protein-Coupled Receptor, and Small GTP-Binding Proteins

    NASA Technical Reports Server (NTRS)

    Kumel, Yasuhiro; Shimokawa, Hitoyata; Morita, Sadao; Katano, Hisako; Akiyama, Hideo; Hirano, Masahiko; Ohya, Keiichi; Sams, Clarence F.; Whitson, Peggy A.

    2005-01-01

    Rat osteoblasts were cultured for 4 and 5 days aboard Space Shuttle and solubilized on board. The mRNA levels of the post-receptor signaling molecules were analyzed by quantitative RT-PCR. The G-protein alpha subunit G(alpha)q mRNA levels were elevated 3-fold by microgravity. G(alpha)q stimulates PLC(beta), and then PKC. PKC(delta) and PKC(theta) mRNA levels were increased 2- to 5-fold by microgravity The mRNA levels of SOS and Ras GRF were increased 4 to 5-fold by microgravity, while Ras GAP was not altered. Spaceflight-induced bone loss might be attributed to microgravity modulation of the signaling pathway in osteoblasts.

  4. Membrane Fluctuations Destabilize Clathrin Protein Lattice Order

    PubMed Central

    Cordella, Nicholas; Lampo, Thomas J.; Mehraeen, Shafigh; Spakowitz, Andrew J.

    2014-01-01

    We develop a theoretical model of a clathrin protein lattice on a flexible cell membrane. The clathrin subunit is modeled as a three-legged pinwheel with elastic deformation modes and intersubunit binding interactions. The pinwheels are constrained to lie on the surface of an elastic sheet that opposes bending deformation and is subjected to tension. Through Monte Carlo simulations, we predict the equilibrium phase behavior of clathrin lattices at various levels of tension. High membrane tensions, which correspond to suppressed membrane fluctuations, tend to stabilize large, flat crystalline structures similar to plaques that have been observed in vivo on cell membranes that are adhered to rigid surfaces. Low tensions, on the other hand, give rise to disordered, defect-ridden lattices that behave in a fluidlike manner. The principles of two-dimensional melting theory are applied to our model system to further clarify how high tensions can stabilize crystalline order on flexible membranes. These results demonstrate the importance of environmental physical cues in dictating the collective behavior of self-assembled protein structures. PMID:24703309

  5. Engineering Lipid Bilayer Membranes for Protein Studies

    PubMed Central

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton

    2013-01-01

    Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908

  6. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    NASA Technical Reports Server (NTRS)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  7. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    NASA Technical Reports Server (NTRS)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  8. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes

    PubMed Central

    Stansfeld, Phillip J.; Goose, Joseph E.; Caffrey, Martin; Carpenter, Elisabeth P.; Parker, Joanne L.; Newstead, Simon; Sansom, Mark S.P.

    2015-01-01

    Summary There has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to be identified upon their release into the PDB and embedded into a membrane. The simulations are analyzed for protein-lipid interactions, identifying lipid binding sites, and revealing local bilayer deformations plus molecular access pathways within the membrane. The coarse-grained models of membrane protein/bilayer complexes are transformed to atomistic resolution for further analysis and simulation. Using this automated simulation pipeline, we have analyzed a number of recently determined membrane protein structures to predict their locations within a membrane, their lipid/protein interactions, and the functional implications of an enhanced understanding of the local membrane environment of each protein. PMID:26073602

  9. Subdiffusion of proteins and oligomers on membranes

    NASA Astrophysics Data System (ADS)

    Lepzelter, David; Zaman, Muhammad

    2012-11-01

    Diffusion of proteins on lipid membranes plays a central role in cell signaling processes. From a mathematical perspective, most membrane diffusion processes are explained by the Saffman-Delbrück theory. However, recent studies have suggested a major limitation in the theoretical framework, the lack of complexity in the modeled lipid membrane. Lipid domains (sometimes termed membrane rafts) are known to slow protein diffusion, but there have been no quantitative theoretical examinations of how much diffusion is slowed in a general case. We provide an overall theoretical framework for confined-domain ("corralled") diffusion. Further, there have been multiple apparent contradictions of the basic conclusions of Saffman and Delbrück, each involving cases in which a single protein or an oligomer has multiple transmembrane regions passing through a lipid phase barrier. We present a set of corrections to the Saffman-Delbrück theory to account for these experimental observations. Our corrections are able to provide a quantitative explanation of numerous cellular signaling processes that have been considered beyond the scope of the Saffman-Delbrück theory, and may be extendable to other forms of subdiffusion.

  10. Phylogenetic profiles of all membrane transport proteins

    PubMed Central

    Weiner, January; Kooij, Taco W.A.

    2016-01-01

    In order to combat the on-going malaria epidemic, discovery of new drug targets remains vital. Proteins that are essential to survival and specific to malaria parasites are key candidates. To survive within host cells, the parasites need to acquire nutrients and dispose of waste products across multiple membranes. Additionally, like all eukaryotes, they must redistribute ions and organic molecules between their various internal membrane bound compartments. Membrane transport proteins mediate all of these processes and are considered important mediators of drug resistance as well as drug targets in their own right. Recently, using advanced experimental genetic approaches and streamlined life cycle profiling, we generated a large collection of Plasmodium berghei gene deletion mutants and assigned essential gene functions, highlighting potential targets for prophylactic, therapeutic, and transmission-blocking anti-malarial drugs. Here, we present a comprehensive orthology assignment of all Plasmodium falciparum putative membrane transport proteins and provide a detailed overview of the associated essential gene functions obtained through experimental genetics studies in human and murine model parasites. Furthermore, we discuss the phylogeny of selected potential drug targets identified in our functional screen. We extensively discuss the results in the context of the functional assignments obtained using gene targeting available to date. PMID:28357319

  11. Helix-packing motifs in membrane proteins.

    PubMed

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd membrane proteins.

  12. Low-Intensity Pulsed Ultrasound Stimulation Enhances Heat-Shock Protein 90 and Mineralized Nodule Formation in Mouse Calvaria-Derived Osteoblasts

    PubMed Central

    Miyasaka, Munemitsu; Nakata, Hidemi; Hao, Jia; Kim, You-Kyoung; Kasugai, Shohei

    2015-01-01

    Low-intensity pulsed ultrasound (LIPUS) has demonstrated its positive effects on osteogenic differentiation of mesenchymal stem cells and the proliferation and differentiation of osteoblasts, negative effects on osteoclast growth, and promotion of angiogenesis, leading to improvement of the tissue perfusion. Heat-shock proteins (HSPs) are initially identified as molecules encouraged and expressed by heat stress or chemical stress to cells and involved in the balance between differentiation and apoptosis of osteoblasts. However, it remains unclear if the effect of LIPUS on osteoblast differentiation could involve HSP expression and contribution. In this study, mouse calvarial osteoblasts were exposed to LIPUS at a frequency of 3.0 MHz by 30 mW/cm2 for 15 min or to 42°C heat shock for 20 min at day 3 of cell culture and examined for osteogenesis with pursuing induction of HSP27, HSP70, and HSP90. LIPUS as well as heat shock initially upregulated HSP90 and phosphorylation of Smad1 and Smad5, encouraging cell viability and proliferation at 24 h, enhancing mineralized nodule formation stronger by LIPUS after 10 days. However, HSP27, associated with BMP2-stimulated p38 mitogen-activated protein kinase during osteoblast differentiation, was downregulated by both stimulations at this early time point. Notably, these two stimuli maintained Smad1 phosphorylation with mineralized nodule formation even under BMP2 signal blockage. Therefore, LIPUS might be a novel inducer of osteoblastic differentiation through a noncanonical signal pathway. In conclusion, LIPUS stimulation enhanced cell viability and proliferation as early as 24 h after treatment, and HSP90 was upregulated, leading to dense mineralization in the osteoblast cell culture after 10 days. PMID:26421522

  13. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    PubMed Central

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  14. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    PubMed

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  15. Identification and proteomic analysis of osteoblast-derived exosomes

    SciTech Connect

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2015-11-06

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. - Highlights: • We for the first time identified exosomes from mouse osteoblast. • Osteoblasts-derived exosomes contain osteoblast peculiar proteins. • Proteins from osteoblasts-derived exosomes are intently involved in EIF2 pathway. • EIF2α from the EIF2 pathway plays an important role in osteogenesis.

  16. When physics takes over: BAR proteins and membrane curvature

    PubMed Central

    Simunovic, Mijo; Voth, Gregory A.; Callan-Jones, Andrew; Bassereau, Patricia

    2016-01-01

    Cell membranes become highly curved during membrane trafficking, cytokinesis, infection, immune response or cell motion. Bin/amphiphysin/Rvs (BAR) domain proteins with their intrinsically curved and anisotropic shape are involved in many of these processes, but with a large spectrum of modes of action. In vitro experiments and multiscale computer simulations have contributed in identifying a minimal set of physical parameters, namely protein density on the membrane, membrane tension, and membrane shape, that control how bound BAR domain proteins behave on the membrane. In this review, we summarize the multifaceted coupling of BAR proteins to membrane mechanics and propose a simple phase diagram that recapitulates the effects of these parameters. PMID:26519988

  17. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes.

    PubMed

    Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San

    2017-02-06

    An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo.

  18. Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells.

    PubMed

    Nakamura, Toshiaki; Shinohara, Yukiya; Momozaki, Sawako; Yoshimoto, Takehiko; Noguchi, Kazuyuki

    2013-10-18

    Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-β superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2+FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9+FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.

  19. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  20. Suppressing membrane height fluctuations leads to a membrane-mediated interaction among proteins.

    PubMed

    Sapp, Kayla; Maibaum, Lutz

    2016-11-01

    Membrane-induced interactions can play a significant role in the spatial distribution of membrane-bound proteins. We develop a model that combines a continuum description of lipid bilayers with a discrete particle model of proteins to probe the emerging structure of the combined membrane-protein system. Our model takes into account the membrane's elastic behavior, the steric repulsion between proteins, and the quenching of membrane shape fluctuations due to the presence of the proteins. We employ coupled Langevin equations to describe the dynamics of the system. We show that coupling to the membrane induces an attractive interaction among proteins, which may contribute to the clustering of proteins in biological membranes. We investigate the lateral protein diffusion and find that it is reduced due to transient fluctuations in membrane shape.

  1. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  2. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification.

    PubMed

    Hu, Jian; Qin, Huajun; Gao, Fei Philip; Cross, Timothy A

    2011-11-01

    Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.

  3. Stochastic single-molecule dynamics of synaptic membrane protein domains

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  4. Xanthophylls as modulators of membrane protein function.

    PubMed

    Ruban, Alexander V; Johnson, Matthew P

    2010-12-01

    This review discusses the structural aspect of the role of photosynthetic antenna xanthophylls. It argues that xanthophyll hydrophobicity/polarity could explain the reason for xanthophyll variety and help to understand their recently emerging function--control of membrane organization and the work of membrane proteins. The structure of a xanthophyll molecule is discussed in relation to other amphiphilic compounds like lipids, detergents, etc. Xanthophyll composition of membrane proteins, the role of their variety in protein function are discussed using as an example for the major light harvesting antenna complex of photosystem II, LHCII, from higher plants. A new empirical parameter, hydrophobicity parameter (H-parameter), has been introduced as an effective measure of the hydrophobicity of the xanthophyll complement of LHCII from different xanthophyll biosynthesis mutants of Arabidopsis. Photosystem II quantum efficiency was found to correlate well with the H-parameter of LHCII xanthophylls. PSII down-regulation by non-photochemical chlorophyll fluorescence quenching, NPQ, had optimum corresponding to the wild-type xanthophyll composition, where lutein occupies intrinsic sites, L1 and L2. Xanthophyll polarity/hydrophobicity alteration by the activity of the xanthophyll cycle explains the allosteric character of NPQ regulation, memory of illumination history and the hysteretic nature of the relationship between the triggering factor, ΔpH, and the energy dissipation process. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Effect of Butyrate on Collagen Expression, Cell Viability, Cell Cycle Progression and Related Proteins Expression of MG-63 Osteoblastic Cells

    PubMed Central

    Chang, Mei-Chi; Tsai, Yi-Ling; Liou, Eric Jein-Wein; Tang, Chia-Mei; Wang, Tong-Mei; Liu, Hsin-Cheng; Liao, Ming-Wei; Yeung, Sin-Yuet; Chan, Chiu-Po; Jeng, Jiiang-Huei

    2016-01-01

    Aims Butyric acid is one major metabolic product generated by anaerobic Gram-negative bacteria of periodontal and root canal infection. Butyric acid affects the activity of periodontal cells such as osteoblasts. The purposes of this study were to investigate the effects of butyrate on MG-63 osteoblasts. Methods MG-63 cells were exposed to butyrate and cell viability was estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mRNA and protein expression of type I collagen and cell cycle-related proteins were measured by reverse-transcriptase polymerase chain reaction (RT-PCR), western blotting or immunofluorescent staining. Cellular production of reactive oxygen species (ROS) was analyzed by 2',7'-dichlorofluorescein (DCF) fluorescence flow cytometry. Results Exposure to butyrate suppressed cell proliferation, and induced G2/M (8 and 16 mM) cell cycle arrest of MG-63 cells. Some cell apoptosis was noted. The mRNA expression of cdc2 and cyclin-B1 decreased after exposure to butyrate. The protein expression of type I collagen, cdc2 and cyclin B1 were decreased, whereas the expression of p21, p27 and p57 was stimulated. Under the treatment of butyrate, ROS production in MG-63 cells markedly increased. Conclusions The secretion of butyric acid by periodontal and root canal microorganisms may inhibit bone cell growth and matrix turnover. This is possibly due to induction of cell cycle arrest and ROS generation and inhibition of collagen expression. These results suggest the involvement of butyric acid in the pathogenesis of periodontal and periapical tissue destruction by impairing bone healing responses. PMID:27893752

  6. Mutual enhancement of differentiation of osteoblasts and osteocytes occurs through direct cell-cell contact.

    PubMed

    Fujita, Koji; Xing, Qian; Khosla, Sundeep; Monroe, David G

    2014-11-01

    There is increasing evidence that osteocytes regulate multiple aspects of bone remodeling through bi-directional communication with osteoblasts. This is potentially mediated through cell-cell contact via osteocytic dendritic processes, through the activity of secreted factors, or both. To test whether cell-cell contact affects gene expression patterns in osteoblasts and osteocytes, we used a co-culture system where calvarial osteoblasts and IDG-SW3 osteocytes were allowed to touch through a porous membrane, while still being physically separated to allow for phenotypic characterization. Osteoblast/osteocyte cell-contact resulted in up-regulation of osteoblast differentiation genes in the osteoblasts, when compared to wells where no cell contact was allowed. Examination of osteocyte gene expression when in direct contact with osteoblasts also revealed increased expression of osteocyte-specific genes. These data suggest that physical contact mutually enhances both the osteoblastic and osteocytic character of each respective cell type. Interestingly, Gja1 (a gap junction protein) was increased in the osteoblasts only when in direct contact with the osteocytes, suggesting that Gja1 may mediate some of the effects of direct cell contact. To test this hypothesis, we treated the direct contact system with the gap junction inhibitor 18-alpha-glycyrrhetinic acid and found that Bglap expression was significantly inhibited. This suggests that osteocytes may regulate late osteoblast differentiation at least in part through Gja1. Identification of the specific factors involved in the enhancement of differentiation of both osteoblasts and osteocytes when in direct contact will uncover new biology concerning how these bone cells communicate.

  7. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2015-01-01

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation. PMID:25714881

  8. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19).

    PubMed

    Pan, Xiao-Wen; Zhao, Xin-Huai

    2015-06-17

    Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%-13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01-0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%-114% and 104%-123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  9. Crystallizing Membrane Proteins Using Lipidic Mesophases

    PubMed Central

    Caffrey, Martin; Cherezov, Vadim

    2009-01-01

    A detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human engineered β2-adrenergic and adenosine A2A G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase, and for setting up crystallizations in manual mode. Methods for harvesting micro-crystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour. PMID:19390528

  10. Increased proliferation and differentiation of pre-osteoblasts MC3T3-E1 cells on nanostructured polypyrrole membrane under combined electrical and mechanical stimulation.

    PubMed

    Liu, Lizhen; Li, Ping; Zhou, Gang; Wang, Menghang; Jia, Xiaoling; Liu, Meili; Niu, Xufeng; Song, Wei; Liu, Haifeng; Fan, Yubo

    2013-09-01

    Polypyrrole (PPy), as an electrical conductive polymer, has been widely investigated in biomedical fields. In this study, PPy membrane at nanoscale was electrically deposited on indium-tin oxide glass slide with sodium p-toluenesulfonate as supporting electrolyte. Electropolymerization of PPy was performed under a constant 800 mV voltage for 10 seconds. Chemical compositions and morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that the nanoscaled PPy particles distributed uniformly and the average diameter of PPy particles was 62 nm. Since bone cells can respond to both electrical and mechanical stimulation in vivo, pre-osteoblasts MC3T3-E1 cells were cultured ort nanostructured PPy membrane under the combined electrical and mechanical stimulation. The nano-PPy membrane was conducive to transferring uniform electrical stimulation and applying steady mechanical stimulation. It is suggested that the combined stimulation did not affect cells morphologies significantly. However, cell proliferation tested by MTT, alkaline phosphatase activities, and gene expression of Collagen-I indicated that combined stimulation can enhance the proliferation and differentiation of MC3T3-E1 cells more efficiently than single electrical stimulation or single mechanical stimulation. The combined stimulation through a nano-PPy membrane may provide a highly potential stimulated method in bone tissue engineering.

  11. Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways.

    PubMed

    Brama, M; Politi, L; Santini, P; Migliaccio, S; Scandurra, R

    2012-02-01

    Cadmium is a widespread environmental pollutant which induces severe toxic alterations, including osteomalacia and osteoporosis, likely by estrogen receptor-dependent mechanisms. Indeed, cadmium has been described to act as an endocrine disruptor and its toxicity is exerted both in vivo and in vitro through induction of apoptosis and/or necrosis by not fully clarified intracellular mechanism(s) of action. Aim of the present study was to further investigate the molecular mechanism by which cadmium might alter homeostasis of estrogen target cells, such as osteoblast homeostasis, inducing cell apoptosis and/or necrosis. Human osteoblastic cells (hFOB 1.19) in culture were used as an in vitro model to characterize the intracellular mechanisms induced by this heavy metal. Cells were incubated in the presence/ absence of 10-50 μM cadmium chloride at different times and DNA fragmentation and activation of procaspases- 8 and -3 were induced upon CdCl(2) treatment triggering apoptotic and necrotic pathways. Addition of caspase-8 and -3 inhibitors (Z-IETD-FMK and Z-DQMD-FMK) partially blocked these effects. No activation of procaspase-9 was observed. To determine the role of mitogen-activated protein kinases (MAPK) in these events, we investigated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated protein kinase (ERK1/2) phosphorylation which were activated by 10 μM CdCl(2). Chemical inhibitors of JNK, p38, and ERK1/2, SP600125, SB202190, and PD98059, significantly reduced the phosphorylation of the kinases and blunted apoptosis. In contrast, caspase inhibitors did not reduce the cadmium-induced MAPK phosphorylation, suggesting an independent activation of these pathways. In conclusion, at least 2 pathways appear activated by cadmium in osteoblasts: a direct induction of caspase-8 followed by activation of caspase-3 and an indirect induction by phosphorylation of ERK1/2, p38, and JNK MAPK triggering activation of caspase-8 and -3.

  12. Membrane tension controls the assembly of curvature-generating proteins

    NASA Astrophysics Data System (ADS)

    Simunovic, Mijo; Voth, Gregory A.

    2015-05-01

    Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell.

  13. Quantification of detergent using colorimetric methods in membrane protein crystallography.

    PubMed

    Prince, Chelsy; Jia, Zongchao

    2015-01-01

    Membrane protein crystallography has the potential to greatly aid our understanding of membrane protein biology. Yet, membrane protein crystals remain challenging to produce. Although robust methods for the expression and purification of membrane proteins continue to be developed, the detergent component of membrane protein samples is equally important to crystallization efforts. This chapter describes the development of three colorimetric assays for the quantitation of detergent in membrane protein samples and provides detailed protocols. All of these techniques use small sample volumes and have potential applications in crystallography. The application of these techniques in crystallization prescreening, detergent concentration modification, and detergent exchange experiments is demonstrated. It has been observed that the concentration of detergent in a membrane protein sample can be just as important as the protein concentration when attempting to reproduce crystallization lead conditions. © 2015 Elsevier Inc. All rights reserved.

  14. Deoxycholate-Based Glycosides (DCGs) for Membrane Protein Stabilisation.

    PubMed

    Bae, Hyoung Eun; Gotfryd, Kamil; Thomas, Jennifer; Hussain, Hazrat; Ehsan, Muhammad; Go, Juyeon; Loland, Claus J; Byrne, Bernadette; Chae, Pil Seok

    2015-07-06

    Detergents are an absolute requirement for studying the structure of membrane proteins. However, many conventional detergents fail to stabilise denaturation-sensitive membrane proteins, such as eukaryotic proteins and membrane protein complexes. New amphipathic agents with enhanced efficacy in stabilising membrane proteins will be helpful in overcoming the barriers to studying membrane protein structures. We have prepared a number of deoxycholate-based amphiphiles with carbohydrate head groups, designated deoxycholate-based glycosides (DCGs). These DCGs are the hydrophilic variants of previously reported deoxycholate-based N-oxides (DCAOs). Membrane proteins in these agents, particularly the branched diglucoside-bearing amphiphiles DCG-1 and DCG-2, displayed favourable behaviour compared to previously reported parent compounds (DCAOs) and conventional detergents (LDAO and DDM). Given their excellent properties, these agents should have significant potential for membrane protein studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid – recombinant mussel adhesive protein coatings on titanium

    PubMed Central

    Hwang, Dong Soo; Waite, J. Herbert; Tirrell, Matthew

    2010-01-01

    Many biological polyelectrolytes are capable of undergoing a fluid–fluid phase separation known as complex coacervation. Coacervates were prepared using hyaluronic acid (HA) and a recombinant fusion protein consisting of mussel adhesive motifs and the RGD peptide (fp-151-RGD). The low interfacial energy of the coacervate was exploited to coat titanium (Ti), a metal widely used in implant materials. The coacervate effectively distributed both HA and fp-151-RGD over the Ti surfaces and enhanced osteoblast proliferation. Approximately half of total fp-151-RGD and HA in the solution transferred to the titanium surface within 2 h. Titanium coated with coacervates having high residual negative surface charge showed the highest cell proliferation of preosteoblast cells (MC-3T3) compared to the treatments tested. Indeed, MC-3T3 cells on complex coacervate coated titanium foils exhibited over 5 times greater cell proliferation than bare, HA coated or fp-151-RGD coated titanium. PMID:19892396

  16. ADAM-9 is an insulin-like growth factor binding protein-5 protease produced and secreted by human osteoblasts.

    PubMed

    Mohan, Subburaman; Thompson, Garrett R; Amaar, Yousef G; Hathaway, Gary; Tschesche, Harald; Baylink, David J

    2002-12-24

    IGF binding protein-5 (BP-5) is an important bone formation regulator. Therefore, elucidation of the identity of IGF binding protein-5 (BP-5) protease produced by osteoblasts is important for our understanding of the molecular pathways that control the action of BP-5. In this regard, BP-5 protease purified by various chromatographic steps from a conditioned medium of U2 human osteosarcoma cells migrated as a single major band, which comigrated with the protease activity in native PAGE and yielded multiple bands in SDS-PAGE under reducing conditions. N-Terminal sequencing of these bands revealed that three of the bands yielded amino acid sequences that were identical to that of alpha2 macroglobulin (alpha2M). Although alpha2M was produced by human osteoblasts (OBs), it was not found to be a BP-5 protease. Because alpha2M had been shown to complex with ADAM proteases and because ADAM-12 was found to cleave BP-3 and BP-5, we evaluated if one of the members of ADAM family was the BP-5 protease. On the basis of the findings that (1) purified preparations of BP-5 protease from U2 cell CM contained ADAM-9, (2) ADAM-9 is produced and secreted in high abundance by various human OB cell types, (3) purified ADAM-9 cleaved BP-5 effectively while it did not cleave other IGFBPs or did so with less potency, and (4) purified ADAM-9 bound to alpha2M, we conclude that ADAM-9 is a BP-5 protease produced by human OBs.

  17. Mass spectrometry of membrane proteins: a focus on aquaporins.

    PubMed

    Schey, Kevin L; Grey, Angus C; Nicklay, Joshua J

    2013-06-04

    Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.

  18. Structure Determination of Membrane Proteins in Five Easy Pieces

    PubMed Central

    Marassi, Francesca M.; Das, Bibhuti B.; Lu, George J.; Nothnagel, Henry J.; Park, Sang Ho; Son, Woo Sung; Tian, Ye; Opella, Stanley J.

    2011-01-01

    A general method for determining the structures of membrane proteins in phospholipid bilayers under physiological conditions is described. Membrane proteins are high priority targets for structure determination, and are challenging for the existing experimental methods. Because membrane proteins reside in a liquid crystalline phospholipid bilayer membranes it is important to study them in this type of environment. The approach we have developed can be summarized in five steps, and incorporates methods of molecular biology, biochemistry, sample preparation, construction and modification of NMR instrumentation, the development and execution of NMR experiments, and structure calculations. It relies on solid-state NMR spectroscopy to obtain high-resolution spectra and residue-specific structural restraints for membrane proteins which undergo rotational diffusion around the membrane normal, but whose mobility is otherwise restricted by interactions with the membrane phospholipids. The spectra of membrane proteins alone and in complex with other proteins and ligands set the stage for structure determination and functional studies. PMID:21964394

  19. Involvement of small G protein RhoB in the regulation of proliferation, adhesion and migration by dexamethasone in osteoblastic cells

    PubMed Central

    Wang, Yan; Li, Yidong; Xu, Weidong; Lu, Jian

    2017-01-01

    Long-term exposure to therapeutic doses of glucocorticoids (GCs) results in bone remodeling, which frequently causes osteoporosis and fracture healing retardation because of the abnormality of osteoblastic proliferation and differentiation. The mechanisms of GCs’ effect on osteoblasts are largely unknown. In this present study, we found that dexamethasone (Dex) could induce the expression of the small G protein, RhoB, in mRNA and protein levels in the osteoblast-derived osteosarcoma cell lines MG-63. The up-regulation of RhoB mRNA by Dex mainly occurs at posttranscriptional level by increasing its mRNA stability through PI-3K/Akt and p38 mitogen-activated protein kinase signaling pathways. Over-expression of RhoB in MG-63 cells magnified while down-regulation of RhoB level by RNA interference impaired Dex-induced growth inhibition but not differentiation. What’s more, over-expression of RhoB mimicked the effect of Dex on cell adhesion and migration. And interfering RhoB expression partially suppressed Dex-induced pro-adhesion and anti-migration in MG-63 cells. In conclusion, these results indicate that RhoB plays an important role in the pathological effect of Dex on osteoblastic growth and migration, which is a part of the mechanisms of GCs’ adverse effect on bone remodeling. PMID:28323887

  20. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    PubMed Central

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  1. Reconstitution of the membrane protein OmpF into biomimetic block copolymer-phospholipid hybrid membranes.

    PubMed

    Bieligmeyer, Matthias; Artukovic, Franjo; Nussberger, Stephan; Hirth, Thomas; Schiestel, Thomas; Müller, Michaela

    2016-01-01

    Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness.

  2. Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions

    PubMed Central

    Zilly, Felipe E; Halemani, Nagaraj D; Walrafen, David; Spitta, Luis; Schreiber, Arne; Jahn, Reinhard; Lang, Thorsten

    2011-01-01

    Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid–lipid interactions, lipid–protein interactions and protein–protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca2+ in membrane protein organization. We find that Ca2+ at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca2+ influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca2+ strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes. PMID:21364530

  3. MEK5 suppresses osteoblastic differentiation

    SciTech Connect

    Kaneshiro, Shoichi; Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki; Higuchi, Chikahisa

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  4. Abnormal membrane protein methylation and merocyanine 540 fluorescence in sickle erythrocyte membranes.

    PubMed

    Manna, C; Hermanowicz, N; Ro, J Y; Neilan, B; Glushko, V; Kim, S

    1984-06-01

    Sickle cell erythrocytes exhibit reduced carboxyl methylation of membrane proteins compared to normal erythrocytes. This altered methylation in sickle membrane proteins is also observable when extracted membranes, both intact and alkali treated, were used as substrates for the homologous protein methylase II (S-adenosylmethionine:protein-carboxyl O-methyltransferase, EC. 2.1.1.24). However, when glycophorin A, one of the major methyl acceptors in both membranes, was extracted by lithium diiodosalicylate and used as the methyl acceptor, the proteins from both membranes were methylated equally, suggesting an involvement of membrane structure in membrane-bound protein methylation. Merocyanine 540 (MC-540), a fluorescent probe, was used to determine if the membranes differed in organization. Incubation of both normal and sickle erythrocytes membranes with MC-540 produced a marked increase in extrinsic fluorescence, reflecting a relatively nonpolar environment for the dye bound to the membranes. The fluorescence from sickle cell ghosts was only 87% as intense as that from normal ghosts, while the actual amount of MC-540 associated with sickle cell membranes was only 62% of normal. These data suggest that differences exist in the distribution of surface charges on these plasma membranes. These results are consistent with the hypothesis that abnormal levels of membrane protein methylation observed in sickle erythrocytes may be a result of abnormal membrane organization characteristic to sickle cell anemia.

  5. High lateral mobility of endogenous and transfected alkaline phosphatase: a phosphatidylinositol-anchored membrane protein

    PubMed Central

    1987-01-01

    The lateral mobility of alkaline phosphatase (AP) in the plasma membrane of osteoblastic and nonosteoblastic cells was estimated by fluorescence redistribution after photobleaching in embryonic and in tumor cells, in cells that express AP naturally, and in cells transfected with an expression vector containing AP cDNA. The diffusion coefficient (D) and the mobile fraction, estimated from the percent recovery (%R), were found to be cell-type dependent ranging from (0.58 +/- 0.16) X 10(-9) cm2s-1 and 73.3 +/- 10.5 in rat osteosarcoma cells ROS 17/2.8 to (1.77 +/- 0.51) X 10(-9) cm2s-1 and 82.8 +/- 2.5 in rat osteosarcoma cells UMR106. Similar values of D greater than or equal to 10(-9) cm2s-1 with approximately 80% recovery were also found in fetal rat calvaria cells, transfected skin fibroblasts, and transfected AP- negative osteosarcoma cells ROS 25/1. These values of D are many times greater than "typical" values for membrane proteins, coming close to those of membrane lipid in fetal rat calvaria and ROS 17/2.8 cells (D = [4(-5)] X 10(-9) cm2s-1 with 75-80% recovery), estimated with the hexadecanoyl aminofluorescein probe. In all cell types, phosphatidylinositol (PI)-specific phospholipase C released 60-90% of native and transfection-expressed AP, demonstrating that, as in other tissue types, AP in these cells is anchored in the membrane via a linkage to PI. These results indicate that the transfected cells used in this study possess the machinery for AP insertion into the membrane and its binding to PI. The fast AP mobility appears to be an intrinsic property of the way the protein is anchored in the membrane, a conclusion with general implications for the understanding of the slow diffusion of other membrane proteins. PMID:2889741

  6. Membrane curvature and its generation by BAR proteins

    PubMed Central

    Mim, Carsten; Unger, Vinzenz M

    2012-01-01

    Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the bin/amphiphysin/rvs domain (BAR) proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR-domain proteins sense, stabilize and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent. PMID:23058040

  7. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains.

    PubMed

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J; Eggeling, Christian; Hell, Stefan W; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-30

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  8. Ankyrin protein networks in membrane formation and stabilization

    PubMed Central

    Cunha, Shane R; Mohler, Peter J

    2009-01-01

    In eukaryotic cells, ankyrins serve as adaptor proteins that link membrane proteins to the underlying cytoskeleton. These adaptor proteins form protein complexes consisting of integral membrane proteins, signalling molecules and cytoskeletal components. With their modular architecture and ability to interact with many proteins, ankyrins organize and stabilize these protein networks, thereby establishing the infrastructure of membrane domains with specialized functions. To this end, ankyrin collaborates with a number of proteins including cytoskeletal proteins, cell adhesion molecules and large structural proteins. This review addresses the targeting and stabilization of protein networks related to ankyrin interactions with the cytoskeletal protein β-spectrin, L1-cell adhesion molecules and the large myofibrillar protein obscurin. The significance of these interactions for differential targeting of cardiac proteins and neuronal membrane formation is also presented. Finally, this review concludes with a discussion about ankyrin dysfunction in human diseases such as haemolytic anaemia, cardiac arrhythmia and neurological disorders. PMID:19840192

  9. Differential effects of amnion and chorion membrane extracts on osteoblast-like cells due to the different growth factor composition of the extracts.

    PubMed

    Go, Yoon Young; Kim, Sung Eun; Cho, Geum Joon; Chae, Sung-Won; Song, Jae-Jun

    2017-01-01

    Human amniotic membrane extracts contain numerous growth factors and bioactive substances. However, osteogenic effects of amnion and chorion membrane extracts (AME and CME, respectively) on osteoblasts are unclear. In this study, we explored the ability of AME and CME to promote the osteogenic differentiation of osteoblast-like MG-63 cells. MG-63 cells were cultured in osteogenic induction medium (OIM) with or without exogenous AME and CME. CME enhanced the osteogenic differentiation of MG-63 cells compared with AME, as indicated by increased mineralization; alkaline phosphatase activity; and mRNA expression of osteogenic marker genes encoding integrin-binding sialoprotein (IBSP), RUNX2, OSTERIX, and osteocalcin (OCN). Interestingly, AME and CME contained different combinations of osteogenesis-related growth factors, including basic fibroblast growth factor (bFGF), transforming growth factor beta-1 (TGFβ-1), and epidermal growth factor (EGF), which differentially regulated the osteogenic differentiation of MG-63 cells. bFGF and TGFβ-1 present in CME positively regulated the osteogenic differentiation of MG-63 cells, whereas EGF present in AME negatively regulated the differentiation of MG-63 cells. Moreover, exogenous treatment of EGF antagonized CME-induced mineralization of extracellular matrix on MG-63 cells. We compared the osteogenic efficacy of CME with that of BMP2, bFGF, and TGFβ-1 alone or their combinations. We observed that CME greatly enhanced osteogenesis by providing a conductive environment for the differentiation of MG-63 cells. Together, our results indicated that human AME and CME exerted differential effects on osteogenesis because of the presence of different compositions of growth factors. In addition, our results highlighted a new possible strategy of using CME as a biocompatible therapeutic material for bone regeneration.

  10. Purification of basolateral integral membrane proteins by cationic colloidal silica-based apical membrane subtraction.

    PubMed

    Goode, Robert J A; Simpson, Richard J

    2009-01-01

    Epithelial cell polarity mediates many essential biological functions and perturbation of the apical/basolateral divide is a hallmark of epithelial to mesenchymal transition in carcinoma. Therefore, correct targeting of proteins to the apical and basolateral surfaces is essential to proper epithelial cell function. However, proteomic characterisation of apical/basolateral sorting has been largely ignored, due to ineffectual separation techniques and contamination of plasma-membrane preparations with housekeeping proteins. Here we describe a method that strips the apical membrane from the adherent cells and releases the intracellular contents, thereby leaving the basolateral membrane available for stringent washes and collection. Analysis of the basolateral membrane of an adherent colon adenocarcinoma cell line resulted in 66% of identified proteins being integral membrane proteins, which possessed either a transmembrane domain or lipid modification, including 35 CD antigens. Based on the abundance of peptides from basolateral marker proteins, this method efficiently captures basolateral integral membrane proteins, with minimal contamination from other membranes and basic proteins.

  11. Identification of C-terminal Hsp70-interacting protein as a mediator of tumour necrosis factor action in osteoblast differentiation by targeting osterix for degradation.

    PubMed

    Xie, Jianmin; Gu, Jieruo

    2015-08-01

    In patients with inflammatory arthritis, tumour necrosis factor (TNF)-α are overproduced in inflamed joints. This leads to local erosion of cartilage and bone, periarticular osteopenia, as well as osteoporosis. But less is known regarding the molecular mechanisms that mediate the effect of TNF-α on osteoblast function. The purpose of this study was to test that C terminus of Hsc70-interacting protein (CHIP) has a specific role in suppressing the osteogenic activity of osteoblasts under inflammatory conditions. C2C12, MC3T3-E1 and HEK293T cell lines were cultured and cotransfected with related plasmids. After transfection, the cells were cultured further in the presence or absence of murine TNF-α and subjected to real time RT-PCR, Western blot, Ubiquitination assay, Co-immunoprecipitation, Luciferase reporter assay, Small interfering RNAs and Mineralization assay. The expression levels of TNF-α-induced CHIP and Osx were examined by RT-PCR and Western blot analysis. Co-immunoprecipitation and ubiquitination assays revealed ubiquitinated Osx, confirmed that CHIP indeed interacted with Osx and identified K55 and K386 residues as the ubiquitination sites in Osx, Luciferase reporter assay and Small interfering RNAs examined whether TNF-α target the bone morphogenetic protein signalling through CHIP. We established stable cell lines with the overexpression of HA-CHIP, Mineralization assay and CHIP siRNA demonstrated the important roles of CHIP on osteoblast function in conditions in which TNF-α is overexpressed. We found that the K55 and K386 residues are ubiquitination site(s) in Osx, and that TNF-α inhibits osteoblast differentiation by promoting Osx degradation through up-regulation of E3 ubiquitin ligase CHIP in osteoblast. Thus, CHIP targets Osx for ubiquitination and degradation in osteoblasts after chronic exposure to TNF-α, and inhibition of CHIP expression in osteoblasts may be a new mechanism to limit inflammation-mediated osteoporosis by promoting their

  12. Membrane shape instabilities induced by BAR domain proteins

    NASA Astrophysics Data System (ADS)

    Baumgart, Tobias

    2014-03-01

    Membrane curvature has developed into a forefront of membrane biophysics. Numerous proteins involved in membrane curvature sensing and membrane curvature generation have recently been discovered, including proteins containing the crescent-shaped BAR domain as membrane binding and shaping module. Accordingly, the structure determination of these proteins and their multimeric complexes is increasingly well-understood. Substantially less understood, however, are thermodynamic and kinetic aspects and the detailed mechanisms of how these proteins interact with membranes in a curvature-dependent manner. New experimental approaches need to be combined with established techniques to be able to fill in these missing details. Here we use model membrane systems in combination with a variety of biophysical techniques to characterize mechanistic aspects of BAR domain protein function. This includes a characterization of membrane curvature sensing and membrane generation. We also establish kinetic and thermodynamic aspects of BAR protein dimerization in solution, and investigate kinetic aspects of membrane binding. We present two new approaches to investigate membrane shape instabilities and demonstrate that membrane shape instabilities can be controlled by protein binding and lateral membrane tension. This work is supported through NIH grant GM-097552 and NSF grant CBET-1053857.

  13. Large-scale proteomic analysis of membrane proteins

    SciTech Connect

    Ahram, Mamoun; Springer, David L.

    2004-10-01

    Proteomic analysis of membrane proteins is promising in identification of novel candidates as drug targets and/or disease biomarkers. Despite notable technological developments, obstacles related to extraction and solubilization of membrane proteins are frequently encountered. A critical discussion of the different preparative methods of membrane proteins is offered in relation to downstream proteomic applications, mainly gel-based analyses and mass spectrometry. Unknown proteins are often identified by high-throughput profiling of membrane proteins. In search for novel membrane proteins, analysis of protein sequences using computational tools is performed to predict for the presence of transmembrane domains. Here, we also present these bioinformatic tools with the human proteome as a case study. Along with technological innovations, advancements in the areas of sample preparation and computational prediction of membrane proteins will lead to exciting discoveries.

  14. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.

    PubMed

    De Marothy, Minttu T; Elofsson, Arne

    2015-07-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices-implying a dynamic relationship between membrane proteins and their environment. © 2015 The Protein Society.

  15. Staining membrane-bound proteins with coomassie blue r250.

    PubMed

    Stochaj, Wayne R; Berkelman, Tom; Laird, Nancy

    2006-10-01

    INTRODUCTIONCoomassie Blue R250 permanently stains membrane-bound proteins and is compatible with PVDF and nitrocellulose membranes, but it is incompatible with nylon membranes. This technique is relatively insensitive, with a detection limit of ~1.5 μg of protein. One drawback of Coomassie Blue staining is that it produces a high background that can make interpretation of results difficult.

  16. Mass Spectrometry of Membrane Proteins: A Focus on Aquaporins

    PubMed Central

    Schey, Kevin L.; Grey, Angus C.; Nicklay, Joshua J.

    2015-01-01

    Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein–protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein–protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins. PMID:23394619

  17. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    PubMed Central

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869

  18. Durable vesicles for reconstitution of membrane proteins in biotechnology

    PubMed Central

    Khan, Sanobar; Muench, Stephen P.; Jeuken, Lars J.C.

    2017-01-01

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. PMID:28202656

  19. A Prediction Model for Membrane Proteins Using Moments Based Features

    PubMed Central

    Butt, Ahmad Hassan; Khan, Sher Afzal; Jamil, Hamza; Rasool, Nouman; Khan, Yaser Daanial

    2016-01-01

    The most expedient unit of the human body is its cell. Encapsulated within the cell are many infinitesimal entities and molecules which are protected by a cell membrane. The proteins that are associated with this lipid based bilayer cell membrane are known as membrane proteins and are considered to play a significant role. These membrane proteins exhibit their effect in cellular activities inside and outside of the cell. According to the scientists in pharmaceutical organizations, these membrane proteins perform key task in drug interactions. In this study, a technique is presented that is based on various computationally intelligent methods used for the prediction of membrane protein without the experimental use of mass spectrometry. Statistical moments were used to extract features and furthermore a Multilayer Neural Network was trained using backpropagation for the prediction of membrane proteins. Results show that the proposed technique performs better than existing methodologies. PMID:26966690

  20. Charged ultrafiltration membranes increase the selectivity of whey protein separations.

    PubMed

    Bhushan, S; Etzel, M R

    2009-04-01

    Ultrafiltration is widely used to concentrate proteins, but fractionation of one protein from another is much less common. This study examined the use of positively charged membranes to increase the selectivity of ultrafiltration and allow the fractionation of proteins from cheese whey. By adding a positive charge to ultrafiltration membranes, and adjusting the solution pH, it was possible to permeate proteins having little or no charge, such as glycomacropeptide, and retain proteins having a positive charge. Placing a charge on the membrane increased the selectivity by over 600% compared to using an uncharged membrane. The data were fit using the stagnant film model that relates the observed sieving coefficient to membrane parameters such as the flux, mass transfer coefficient, and membrane Peclet number. The model was a useful tool for data analysis and for the scale up of membrane separations for whey protein fractionation.

  1. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    PubMed

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 < 1 min) between the plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  2. Effects of Membrane Charge and Order on Membrane Binding of the Retroviral Structural Protein Gag

    PubMed Central

    Wen, Yi; Dick, Robert A.

    2016-01-01

    ABSTRACT The retroviral structural protein Gag binds to the inner leaflet of the plasma membrane (PM), and many cellular proteins do so as well. We used Rous sarcoma virus (RSV) Gag together with membrane sensors to study the principles governing peripheral protein membrane binding, including electrostatics, specific recognition of phospholipid headgroups, sensitivity to phospholipid acyl chain compositions, preference for membrane order, and protein multimerization. We used an in vitro liposome-pelleting assay to test protein membrane binding properties of Gag, the well-characterized MARCKS peptide, a series of fluorescent electrostatic sensor proteins (mNG-KRn), and the specific phosphatidylserine (PS) binding protein Evectin2. RSV Gag and mNG-KRn bound well to membranes with saturated and unsaturated acyl chains, whereas the MARCKS peptide and Evectin2 preferentially bound to membranes with unsaturated acyl chains. To further discriminate whether the primary driving force for Gag membrane binding is electrostatic interactions or preference for membrane order, we measured protein binding to giant unilamellar vesicles (GUVs) containing the same PS concentration in both disordered (Ld) and ordered (Lo) phases. RSV Gag and mNG-KRn membrane association followed membrane charge, independent of membrane order. Consistent with pelleting data, the MARCKS peptide showed preference for the Ld domain. Surprisingly, the PS sensor Evectin2 bound to the PS-rich Ld domain with 10-fold greater affinity than to the PS-rich Lo domain. In summary, we found that RSV Gag shows no preference for membrane order, while proteins with reported membrane-penetrating domains show preference for disordered membranes. IMPORTANCE Retroviral particles assemble on the PM and bud from infected cells. Our understanding of how Gag interacts with the PM and how different membrane properties contribute to overall Gag assembly is incomplete. This study examined how membrane charge and membrane order

  3. Role of membrane contact sites in protein import into mitochondria.

    PubMed

    Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus

    2015-03-01

    Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.

  4. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    PubMed

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (HII) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dynamic membrane protein topological switching upon changes in phospholipid environment

    PubMed Central

    Vitrac, Heidi; MacLean, David M.; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2015-01-01

    A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids. PMID:26512118

  6. Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties.

    PubMed

    Brennan-Speranza, Tara C; Rizzoli, René; Kream, Barbara E; Rosen, Clifford; Ammann, Patrick

    2011-11-01

    Protein deficiency is frequently observed in elderly osteoporotic patients. Undernutrition leads to decreased levels of IGF-I, an important factor in regulating bone homeostasis throughout life. IGF-I is produced in the liver and locally in the skeleton. We hypothesized that increasing IGF-I expression in the osteoblasts, the bone forming cells, would protect the skeleton from the negative effects of a low-protein diet. To test our hypothesis, we employed a mouse model in which IGF-I was overexpressed exclusively in osteoblasts and fed either a 15% (normal) or a 2.5% (low) protein isocaloric diet to the transgenic (TG) mice and their wild-type (WT) littermates for 8 weeks. Blood was collected for biochemical determinations and weight was monitored weekly. Bones were excised for microstructural analysis (μCT), as well as biomechanical and material level properties. Histomorphometric analysis was performed for bone formation parameters. A low protein diet decreased body weight, circulating IGF-I and osteocalcin levels regardless of genotype. Overexpression of IGF-I in the osteoblasts was, however, able to protect the negative effects of low protein diet on microstructure including tibia cortical thickness and volumetric density, and on bone strength. Overexpression of IGF-I in osteoblasts in these mice protected the vertebrae from the substantial negative effects of low protein on the material level properties as measured my nanoindentation. TG mice also had larger overall geometric properties than WT mice regardless of diet. This study provides evidence that while a low protein diet leads to decreased circulating IGF-I, altered microstructure and decreased bone strength, these negative effects can be prevented with IGF-I overexpression exclusively in bone cells.

  7. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

    PubMed Central

    De Marothy, Minttu T; Elofsson, Arne

    2015-01-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment. PMID:25970811

  8. Directional interactions and cooperativity between mechanosensitive membrane proteins

    PubMed Central

    Haselwandter, Christoph A.; Phillips, Rob

    2013-01-01

    While modern structural biology has provided us with a rich and diverse picture of membrane proteins, the biological function of membrane proteins is often influenced by the mechanical properties of the surrounding lipid bilayer. Here we explore the relation between the shape of membrane proteins and the cooperative function of membrane proteins induced by membrane-mediated elastic interactions. For the experimental model system of mechanosensitive ion channels we find that the sign and strength of elastic interactions depend on the protein shape, yielding distinct cooperative gating curves for distinct protein orientations. Our approach predicts how directional elastic interactions affect the molecular structure, organization, and biological function of proteins in crowded membranes. PMID:25309021

  9. Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches

    PubMed Central

    MÜLLER, DANIEL J.; WU, NAN; PALCZEWSKI, KRZYSZTOF

    2008-01-01

    Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function. PMID:18321962

  10. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    SciTech Connect

    Kihara, Tasuku; Ichikawa, Saki; Yonezawa, Takayuki; Lee, Ji-Won; Akihisa, Toshihiro; Woo, Je Tae; Michi, Yasuyuki; Amagasa, Teruo; Yamaguchi, Akira

    2011-03-11

    Research highlights: {yields} Acerogenin A stimulated osteoblast differentiation in osteogenic cells. {yields} Acerogenin A-induced osteoblast differentiation was inhibited by noggin. {yields} Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. {yields} Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  11. Fluctuating hydrodynamics of multicomponent membranes with embedded proteins

    SciTech Connect

    Camley, Brian A.; Brown, Frank L. H.

    2014-08-21

    A simulation method for the dynamics of inhomogeneous lipid bilayer membranes is presented. The membrane is treated using stochastic Saffman-Delbrück hydrodynamics, coupled to a phase-field description of lipid composition and discrete membrane proteins. Multiple applications are considered to validate and parameterize the model. The dynamics of membrane composition fluctuations above the critical point and phase separation dynamics below the critical point are studied in some detail, including the effects of adding proteins to the mixture.

  12. Fluctuating hydrodynamics of multicomponent membranes with embedded proteins.

    PubMed

    Camley, Brian A; Brown, Frank L H

    2014-08-21

    A simulation method for the dynamics of inhomogeneous lipid bilayer membranes is presented. The membrane is treated using stochastic Saffman-Delbrück hydrodynamics, coupled to a phase-field description of lipid composition and discrete membrane proteins. Multiple applications are considered to validate and parameterize the model. The dynamics of membrane composition fluctuations above the critical point and phase separation dynamics below the critical point are studied in some detail, including the effects of adding proteins to the mixture.

  13. Continuum electromechanical modeling of protein-membrane interactions.

    PubMed

    Zhou, Y C; Lu, Benzhuo; Gorfe, Alemayehu A

    2010-10-01

    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.

  14. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts.

    PubMed

    Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T

    2000-09-01

    Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.

  15. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    SciTech Connect

    Biver, Emmanuel; Soubrier, Anne-Sophie; Thouverey, Cyril; Cortet, Bernard; Broux, Odile; Caverzasio, Joseph; Hardouin, Pierre

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  16. A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translation

    PubMed Central

    1991-01-01

    The immediate environment of nascent membrane proteins undergoing integration into the ER membrane was investigated by photocrosslinking. Nascent polypeptides of different lengths, each containing a single IgM transmembrane sequence that functions either as a stop-transfer or a signal-anchor sequence, were synthesized by in vitro translation of truncated mRNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)- Lys-tRNA, signal recognition particle, and microsomal membranes. This yielded nascent chains with photoreactive probes at one end of the transmembrane sequence where two lysine residues are located. When irradiated, these nascent chains reacted covalently with several ER proteins. One prominent crosslinking target was a glycoprotein similar in size to a protein termed mp39, shown previously to be situated adjacent to a secretory protein during its translocation across the ER membrane (Krieg, U. C., A. E. Johnson, and P. Walter. 1989. J. Cell Biol. 109:2033-2043; Wiedmann, M., D. Goerlich, E. Hartmann, T. V. Kurzchalia, and T. A. Rapoport. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 257:263-268) and likely to be identical to a protein previously designated the signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature (Lond.). 328:830-833). Changing the orientation of the transmembrane domain in the bilayer, or making the transmembrane domain the first topogenic sequence in the nascent chain instead of the second, did not significantly alter the identities of the ER proteins that were the primary crosslinking targets. Furthermore, the nascent chains crosslinked to the mp39-like glycoprotein and other microsomal proteins even after the cytoplasmic tail of the nascent chain had been lengthened by nearly 100 amino acids beyond the stop-transfer sequence. Yet when the nascent chain was allowed to terminate normally, the major photocrosslinks were no longer observed, including in particular that to the mp39-like

  17. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces.

    PubMed

    Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E

    2015-04-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.

  18. Proteomic approaches to identify cold-regulated plasma membrane proteins.

    PubMed

    Takahashi, Daisuke; Nakayama, Takato; Miki, Yushi; Kawamura, Yukio; Uemura, Matsuo

    2014-01-01

    Plasma membrane is the primary determinant of freezing tolerance in plants because of its central role in freeze-thaw cycle. Changes in the plasma membrane proteins have been one of the major research areas in plant cold acclimation. To obtain comprehensive profiles of the plasma membrane proteomes and their changes during the cold acclimation process, a plasma membrane purification method using a dextran-polyethylene glycol two polymer system and a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for the plasma membrane proteins are described. The proteomic results obtained are further applied to label-free protein semiquantification.

  19. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    PubMed

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  20. Membrane proteins, lipids and detergents: not just a soap opera.

    PubMed

    Seddon, Annela M; Curnow, Paul; Booth, Paula J

    2004-11-03

    Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.

  1. High-throughput production of prokaryotic membrane proteins.

    PubMed

    Dobrovetsky, Elena; Lu, Ming Liang; Andorn-Broza, Ronit; Khutoreskaya, Galina; Bray, James E; Savchenko, Alexei; Arrowsmith, Cheryl H; Edwards, Aled M; Koth, Christopher M

    2005-01-01

    Membrane proteins constitute ~30% of prokaryotic and eukaryotic genomes but comprise a small fraction of the entries in protein structural databases. A number of features of membrane proteins render them challenging targets for the structural biologist, among which the most important is the difficulty in obtaining sufficient quantities of purified protein. We are exploring procedures to express and purify large numbers of prokaryotic membrane proteins. A set of 280 membrane proteins from Escherichia coli and Thermotoga maritima, a thermophile, was cloned and tested for expression in Escherichia coli. Under a set of standard conditions, expression could be detected in the membrane fraction for approximately 30% of the cloned targets. About 22 of the highest expressing membrane proteins were purified, typically in just two chromatographic steps. There was a clear correlation between the number of predicted transmembrane domains in a given target and its propensity to express and purify. Accordingly, the vast majority of successfully expressed and purified proteins had six or fewer transmembrane domains. We did not observe any clear advantage to the use of thermophilic targets. Two of the purified membrane proteins formed crystals. By comparison with protein production efforts for soluble proteins, where approximately 70% of cloned targets express and approximately 25% can be readily purified for structural studies [Christendat et al. (2000) Nat. Struct. Biol., 7, 903], our results demonstrate that a similar approach will succeed for membrane proteins, albeit with an expected higher attrition rate.

  2. Phase separation in the isolation and purification of membrane proteins.

    PubMed

    Arnold, Thomas; Linke, Dirk

    2007-10-01

    Phase separation is a simple, efficient, and cheap method to purify and concentrate detergent-solubilized membrane proteins. In spite of this, phase separation is not widely used or even known among membrane protein scientists, and ready-to-use protocols are available for only relatively few detergent/membrane protein combinations. Here, we summarize the physical and chemical parameters that influence the phase separation behavior of detergents commonly used for membrane protein studies. Examples for the successful purification of membrane proteins using this method with different classes of detergents are provided. As the choice of the detergent is critical in many downstream applications (e.g., membrane protein crystallization or functional assays), we discuss how new phase separation protocols can be developed for a given detergent buffer system.

  3. Determining Membrane Protein Topology Using Fluorescence Protease Protection (FPP).

    PubMed

    White, Carl; Nixon, Alex; Bradbury, Neil A

    2015-04-20

    The correct topology and orientation of integral membrane proteins are essential for their proper function, yet such information has not been established for many membrane proteins. A simple technique called fluorescence protease protection (FPP) is presented, which permits the determination of membrane protein topology in living cells. This technique has numerous advantages over other methods for determining protein topology, in that it does not require the availability of multiple antibodies against various domains of the membrane protein, does not require large amounts of protein, and can be performed on living cells. The FPP method employs the spatially confined actions of proteases on the degradation of green fluorescent protein (GFP) tagged membrane proteins to determine their membrane topology and orientation. This simple approach is applicable to a wide variety of cell types, and can be used to determine membrane protein orientation in various subcellular organelles such as the mitochondria, Golgi, endoplasmic reticulum and components of the endosomal/recycling system. Membrane proteins, tagged on either the N-termini or C-termini with a GFP fusion, are expressed in a cell of interest, which is subject to selective permeabilization using the detergent digitonin. Digitonin has the ability to permeabilize the plasma membrane, while leaving intracellular organelles intact. GFP moieties exposed to the cytosol can be selectively degraded through the application of protease, whereas GFP moieties present in the lumen of organelles are protected from the protease and remain intact. The FPP assay is straightforward, and results can be obtained rapidly.

  4. A novel lipoprotein nanoparticle system for membrane proteins

    PubMed Central

    Frauenfeld, Jens; Löving, Robin; Armache, Jean-Paul; Sonnen, Andreas; Guettou, Fatma; Moberg, Per; Zhu, Lin; Jegerschöld, Caroline; Flayhan, Ali; Briggs, John A.G.; Garoff, Henrik; Löw, Christian; Cheng, Yifan; Nordlund, Pär

    2016-01-01

    Membrane proteins are of outstanding importance in biology, drug discovery and vaccination. A common limiting factor in research and applications involving membrane proteins is the ability to solubilize and stabilize membrane proteins. Although detergents represent the major means for solubilizing membrane proteins, they are often associated with protein instability and poor applicability in structural and biophysical studies. Here, we present a novel lipoprotein nanoparticle system that allows for the reconstitution of membrane proteins into a lipid environment that is stabilized by a scaffold of Saposin proteins. We showcase the applicability of the method on two purified membrane protein complexes as well as the direct solubilization and nanoparticle-incorporation of a viral membrane protein complex from the virus membrane. We also demonstrate that this lipid nanoparticle methodology facilitates high-resolution structural studies of membrane proteins in a lipid environment by single-particle electron cryo-microscopy (cryo-EM) and allows for the stabilization of the HIV-envelope glycoprotein in a functional state. PMID:26950744

  5. Electrophoretic separation method for membrane pore-forming proteins in multilayer lipid membranes.

    PubMed

    Okamoto, Yukihiro; Tsujimoto, Yusuke; Umakoshi, Hiroshi

    2016-03-01

    In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore-forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high-performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore-forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore-forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore-forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high-performance by utilizing the specific properties of lipid membranes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    PubMed

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein

  7. Surfactant-free purification of membrane proteins with intact native membrane environment.

    PubMed

    Jamshad, Mohammed; Lin, Yu-Pin; Knowles, Timothy J; Parslow, Rosemary A; Harris, Craig; Wheatley, Mark; Poyner, David R; Bill, Roslyn M; Thomas, Owen R T; Overduin, Michael; Dafforn, Tim R

    2011-06-01

    In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10 nm disc-like structure ideally suited to purification and further biochemical study.

  8. Membrane Protein Production in Lactococcus lactis for Functional Studies.

    PubMed

    Seigneurin-Berny, Daphne; King, Martin S; Sautron, Emiline; Moyet, Lucas; Catty, Patrice; André, François; Rolland, Norbert; Kunji, Edmund R S; Frelet-Barrand, Annie

    2016-01-01

    Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

  9. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    PubMed

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  10. Chitosan-based membrane chromatography for protein adsorption and separation.

    PubMed

    Liu, Yezhuo; Feng, Zhicheng; Shao, Zhengzhong; Chen, Xin

    2012-08-01

    A chitosan-based membrane chromatography was set up by using natural chitosan/carboxymethylchitosan (CS/CMCS) blend membrane as the matrix. The dynamic adsorption property for protein (lysozyme as model protein) was detailed discussed with the change in pore size of the membrane, the flow rate and the initial concentration of the feed solution, and the layer of membrane in membrane stack. The best dynamic adsorption capacity of lysozyme on the CS/CMCS membrane chromatography was found to be 15.3mg/mL under the optimal flow conditions. Moreover, the CS/CMCS membrane chromatography exhibited good repeatability and reusability with the desorption efficiency of ~90%. As an application, lysozyme and ovalbumin were successfully separated from their binary mixture through the CS/CMCS membrane chromatography. This implies that such a natural chitosan-based membrane chromatography may have great potential on the bioseparation field in the future.

  11. Challenges in the Development of Functional Assays of Membrane Proteins

    PubMed Central

    Tiefenauer, Louis; Demarche, Sophie

    2012-01-01

    Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  12. An Integrated Framework Advancing Membrane Protein Modeling and Design

    PubMed Central

    Weitzner, Brian D.; Duran, Amanda M.; Tilley, Drew C.; Elazar, Assaf; Gray, Jeffrey J.

    2015-01-01

    Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167

  13. Simple model of membrane proteins including solvent.

    PubMed

    Pagan, D L; Shiryayev, A; Connor, T P; Gunton, J D

    2006-05-14

    We report a numerical simulation for the phase diagram of a simple two-dimensional model, similar to the one proposed by Noro and Frenkel [J. Chem. Phys. 114, 2477 (2001)] for membrane proteins, but one that includes the role of the solvent. We first use Gibbs ensemble Monte Carlo simulations to determine the phase behavior of particles interacting via a square-well potential in two dimensions for various values of the interaction range. A phenomenological model for the solute-solvent interactions is then studied to understand how the fluid-fluid coexistence curve is modified by solute-solvent interactions. It is shown that such a model can yield systems with liquid-liquid phase separation curves that have both upper and lower critical points, as well as closed loop phase diagrams, as is the case with the corresponding three-dimensional model.

  14. Tetra Detector Analysis of Membrane Proteins

    PubMed Central

    Robbins, Rebecca A.; Stroud, Robert M.

    2014-01-01

    Well-characterized membrane protein detergent complexes (PDC) that are pure, homogenous and stable with minimized excess detergent micelles are essential for functional assays and crystallization studies. Procedural steps to measure the mass, size, shape, homogeneity and molecular composition of PDCs and their host detergent micelle using size exclusion chromatography (SEC) with a Viscotek tetra detector array (TDA; absorbance, refractive index, light scattering and viscosity detectors) are presented. The value of starting with a quality PDC sample, the precision and accuracy of the results, and the use of a digital bench top refractometer are emphasized. An alternate and simplified purification and characterization approach using SEC with dual absorbance and refractive index detectors to optimize detergent and lipid concentration while measuring the PDC homogeneity are also described. Applications relative to purification and characterization goals are illustrated as well. PMID:25081744

  15. Detergent-Specific Membrane Protein Crystallization Screens

    NASA Technical Reports Server (NTRS)

    Wiener, Michael

    2007-01-01

    A suite of reagents has been developed for three-dimensional crystallization of integral membranes present in solution as protein-detergent complexes (PDCs). The compositions of these reagents have been determined in part by proximity to the phase boundaries (lower consolute boundaries) of the detergents present in the PDCs. The acquisition of some of the requisite phase-boundary data and the preliminary design of several of the detergent- specific screens was supported by a NASA contract. At the time of expiration of the contract, a partial set of preliminary screens had been developed. This work has since been extended under non-NASA sponsorship, leading to near completion of a set of 20 to 30 different and unique detergent- specific 96-condition screens.

  16. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.

    PubMed

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra

    2014-10-21

    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  17. The mesoscopic membrane with proteins (MesM-P) model

    NASA Astrophysics Data System (ADS)

    Davtyan, Aram; Simunovic, Mijo; Voth, Gregory A.

    2017-07-01

    We present the Mesoscopic Membrane with Proteins (MesM-P) model, an extension of a previously developed elastic membrane model for mesoscale simulations of lipid membranes. MesM-P employs a discrete mesoscopic quasi-particle approach to model protein-facilitated shape and topology changes of the lipid membrane on length and time scales inaccessible to all-atom and quasimolecular coarse-grained molecular dynamics simulations. We investigate the ability of MesM-P to model the behavior of large lipid vesicles as a function of bound protein density. We find four distinct mechanisms for protein aggregation on the surface of the membrane, depending on membrane stiffness and protein spontaneous curvature. We also establish a connection between MesM-P and the results of higher resolution coarse-grained molecular dynamics simulations.

  18. The Use of Detergents to Purify Membrane Proteins.

    PubMed

    Orwick-Rydmark, Marcella; Arnold, Thomas; Linke, Dirk

    2016-04-01

    Extraction of membrane proteins from biological membranes is usually accomplished with the help of detergents. This unit describes the use of detergents to solubilize and purify membrane proteins. The chemical and physical properties of the different classes of detergents typically used with biological samples are discussed. A separate section addresses the compatibility of detergents with applications downstream of the membrane protein purification process, such as optical spectroscopy, mass spectrometry, protein crystallography, biomolecular NMR, or electron microscopy. A brief summary of alternative membrane protein solubilizing and stabilizing systems is also included. Protocols in this unit include the isolation and solubilization of biological membranes and phase separation; support protocols for detergent removal, detergent exchange, and the determination of critical micelle concentration using different methods are also included. Copyright © 2016 John Wiley & Sons, Inc.

  19. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic. PMID:11023883

  20. Cultured Human Periosteum-Derived Cells Can Differentiate into Osteoblasts in a Perioxisome Proliferator-Activated Receptor Gamma-Mediated Fashion via Bone Morphogenetic Protein signaling.

    PubMed

    Chung, Jin-Eun; Park, Jin-Ho; Yun, Jeong-Won; Kang, Young-Hoon; Park, Bong-Wook; Hwang, Sun-Chul; Cho, Yeong-Cheol; Sung, Iel-Yong; Woo, Dong Kyun; Byun, June-Ho

    2016-01-01

    The differentiation of mesenchymal stem cells towards an osteoblastic fate depends on numerous signaling pathways, including activation of bone morphogenetic protein (BMP) signaling components. Commitment to osteogenesis is associated with activation of osteoblast-related signal transduction, whereas inactivation of this signal transduction favors adipogenesis. BMP signaling also has a critical role in the processes by which mesenchymal stem cells undergo commitment to the adipocyte lineage. In our previous study, we demonstrated that an agonist of the perioxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipocyte differentiation, stimulates osteoblastic differentiation of cultured human periosteum-derived cells. In this study, we used dorsomorphin, a selective small molecule inhibitor of BMP signaling, to investigate whether BMP signaling is involved in the positive effects of PPARγ agonists on osteogenic phenotypes of cultured human periosteum-derived cells. Both histochemical detection and bioactivity of ALP were clearly increased in the periosteum-derived cells treated with the PPARγ agonist at day 10 of culture. Treatment with the PPARγ agonist also caused an increase in alizarin red S staining and calcium content in the periosteum-derived osteoblasts at 2 and 3 weeks of culture. In contrast, dorsomorphin markedly decreased ALP activity, alizarin red S staining and calcium content in both the cells treated with PPARγ agonist and the cells cultured in osteogenic induction media without PPARγ agonist during the culture period. In addition, the PPARγ agonist clearly increased osteogenic differentiation medium-induced BMP-2 upregulation in the periosteum-derived osteoblastic cells at 2 weeks of culture as determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemical analyses. Although further study will be needed to clarify the mechanisms of PPARγ-regulated osteogenesis

  1. Cultured Human Periosteum-Derived Cells Can Differentiate into Osteoblasts in a Perioxisome Proliferator-Activated Receptor Gamma-Mediated Fashion via Bone Morphogenetic Protein signaling

    PubMed Central

    Chung, Jin-Eun; Park, Jin-Ho; Yun, Jeong-Won; Kang, Young-Hoon; Park, Bong-Wook; Hwang, Sun-Chul; Cho, Yeong-Cheol; Sung, Iel-Yong; Woo, Dong Kyun; Byun, June-Ho

    2016-01-01

    The differentiation of mesenchymal stem cells towards an osteoblastic fate depends on numerous signaling pathways, including activation of bone morphogenetic protein (BMP) signaling components. Commitment to osteogenesis is associated with activation of osteoblast-related signal transduction, whereas inactivation of this signal transduction favors adipogenesis. BMP signaling also has a critical role in the processes by which mesenchymal stem cells undergo commitment to the adipocyte lineage. In our previous study, we demonstrated that an agonist of the perioxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipocyte differentiation, stimulates osteoblastic differentiation of cultured human periosteum-derived cells. In this study, we used dorsomorphin, a selective small molecule inhibitor of BMP signaling, to investigate whether BMP signaling is involved in the positive effects of PPARγ agonists on osteogenic phenotypes of cultured human periosteum-derived cells. Both histochemical detection and bioactivity of ALP were clearly increased in the periosteum-derived cells treated with the PPARγ agonist at day 10 of culture. Treatment with the PPARγ agonist also caused an increase in alizarin red S staining and calcium content in the periosteum-derived osteoblasts at 2 and 3 weeks of culture. In contrast, dorsomorphin markedly decreased ALP activity, alizarin red S staining and calcium content in both the cells treated with PPARγ agonist and the cells cultured in osteogenic induction media without PPARγ agonist during the culture period. In addition, the PPARγ agonist clearly increased osteogenic differentiation medium-induced BMP-2 upregulation in the periosteum-derived osteoblastic cells at 2 weeks of culture as determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemical analyses. Although further study will be needed to clarify the mechanisms of PPARγ-regulated osteogenesis

  2. Bilayer-thickness-mediated interactions between integral membrane proteins.

    PubMed

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  3. Discriminating lysosomal membrane protein types using dynamic neural network.

    PubMed

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  4. Bacteriophage membrane protein P9 as a fusion partner for the efficient expression of membrane proteins in Escherichia coli.

    PubMed

    Jung, Yuna; Jung, Hyeim; Lim, Dongbin

    2015-12-01

    Despite their important roles and economic values, studies of membrane proteins have been hampered by the difficulties associated with obtaining sufficient amounts of protein. Here, we report a novel membrane protein expression system that uses the major envelope protein (P9) of phage φ6 as an N-terminal fusion partner. Phage membrane protein P9 facilitated the synthesis of target proteins and their integration into the Escherichia coli cell membrane. This system was used to produce various multi-pass transmembrane proteins, including G-protein-coupled receptors, transporters, and ion channels of human origin. Green fluorescent protein fusion was used to confirm the correct folding of the expressed proteins. Of the 14 membrane proteins tested, eight were highly expressed, three were moderately expressed, and three were barely expressed in E. coli. Seven of the eight highly expressed proteins could be purified after extraction with the mild detergent lauryldimethylamine-oxide. Although a few proteins have previously been developed as fusion partners to augment membrane protein production, we believe that the major envelope protein P9 described here is better suited to the efficient expression of eukaryotic transmembrane proteins in E. coli.

  5. In vitro effects of Choukroun's PRF (platelet-rich fibrin) on human gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts in primary cultures.

    PubMed

    Dohan Ehrenfest, David M; Diss, Antoine; Odin, Guillaume; Doglioli, Pierre; Hippolyte, Marie-Pascale; Charrier, Jean-Baptiste

    2009-09-01

    The objective of this study was to analyze the effects of Choukroun's PRF (platelet-rich fibrin), a leucocyte and platelet concentrate clinically usable as fibrin membrane or clot, on human primary cultures of gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts. For the proliferation study, these cells were cultivated with or without a PRF membrane originating from the same donor as for the cells. For osteoblasts and fibroblasts, dose-dependent effect was assessed (using 2 membranes). Cell counts and cytotoxicity tests were performed at 3, 7, 14, and 21 days, and even 28 days for osteoblasts. More osteoblast cultures were prepared in differentiation conditions according to 3 modalities (without PRF, with PRF, with PRF the first day and differentiation medium applied only after the first week of culture). Osteoblast differentiation was analyzed using Von Kossa staining and alkaline phosphatase, DNA and total cell proteins dosage. PRF induced a significant and continuous stimulation of proliferation in all cell types. It was dose dependent during all the experiment with osteoblasts, but only on day 14 with fibroblasts. Moreover, PRF induced a strong differentiation in the osteoblasts, whatever the culture conditions. The analysis of osteoblast cultures in differentiation conditions with PRF, using light and scanning electron microscopy, revealed a starting mineralization process in the PRF membrane itself after 14 days. Moreover, PRF leucocytes seemed to proliferate and interact with osteoblasts. Cultures with PRF are always cocultures with leucocytes. These "chaperone leucocytes" could be the source of differential geographic regulation within the culture and explain the double contradictory effect proliferation/differentiation observed on osteoblasts.

  6. Membrane Interacting Regions of Dengue Virus NS2A Protein

    PubMed Central

    2015-01-01

    The Dengue virus (DENV) NS2A protein, essential for viral replication, is a poorly characterized membrane protein. NS2A displays both protein/protein and membrane/protein interactions, yet neither its functions in the viral cycle nor its active regions are known with certainty. To highlight the different membrane-active regions of NS2A, we characterized the effects of peptides derived from a peptide library encompassing this protein’s full length on different membranes by measuring their membrane leakage induction and modulation of lipid phase behavior. Following this initial screening, one region, peptide dens25, had interesting effects on membranes; therefore, we sought to thoroughly characterize this region’s interaction with membranes. This peptide presents an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment. We show that dens25 strongly interacts with membranes that contain a large proportion of lipid molecules with a formal negative charge, and that this effect has a major electrostatic contribution. Considering its membrane modulating capabilities, this region might be involved in membrane rearrangements and thus be important for the viral cycle. PMID:25119664

  7. Psoralen stimulates osteoblast proliferation through the activation of nuclear factor-κB-mitogen-activated protein kinase signaling.

    PubMed

    Li, Feimeng; Li, Qihuo; Huang, Xiaoqing; Wang, Yunting; Ge, Chana; Qi, Yong; Guo, Wei; Sun, Hongtao

    2017-09-01

    Osteoporosis is a systemic skeletal disease that leads to increased bone fragility and susceptibility to fracture. Approximately 50% of postmenopausal women develop osteoporosis as a result of postmenopausal estrogen deficiency. To reduce fractures related to osteoporosis in women, previous studies have focused on therapeutic strategies that aim to increase bone formation or decrease bone resorption. However, pharmacological agents that aim to improve bone fracture susceptibility exhibit side effects. Current studies are investigating natural alternatives that possess the benefits of selective estrogen receptor modulators (SERMs) without the adverse effects. Recent studies have indicated that phytoestrogen may be an ideal natural SERM for the treatment of osteoporosis. In Chinese herbal medicine, psoralen, as the predominant substance of Psoralea corylifolia, is considered to be a phytoestrogen and is used as a remedy for osteoporosis. A number of studies have demonstrated the efficacy of psoralen in bone formation. However, the pathways and underlying molecular mechanisms that participate in psoralen-induced osteoblast formation are not well understood. In the present study, hFOB1.19 cells were treated with psoralen at different concentrations (0, 5, 10, 15 and 20 µM) for 0, 24, 36, 48 and 72 h, respectively. Reverse transcription-quantitative polymerase chain reaction and western blot assays were performed to detect glucose transporter 3 (GLUT3) expression. A cell counting kit-8 assay was used to analyze cell proliferation. In addition the effects of mitogen activated protein kinase inhibitors on extracellular signal-regulated kinase (ERK), phosphorylated (p)-ERK, p38, p-p38, c-Jun N-terminal kinase (JNK) and p-JNK expressions and cell proliferation were measured, as was the effect of nuclear factor (NF)-κB inhibitor on P65 and GLUT3 expressions and cell proliferation. The results indicated that psoralen stimulates hFOB1.19 cell proliferation in a dose

  8. Ciliary intraflagellar transport protein 80 balances canonical versus non-canonical hedgehog signaling for osteoblast differentiation

    USDA-ARS?s Scientific Manuscript database

    Mutation of different IFT proteins cause numerous different clinical bone disorders accompanied with or without the disruption of cilia formation. Currently, there is no any effective treatment for these disorders due to lack of understanding in the function and mechanism of these proteins. IFT80 is...

  9. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    PubMed

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  10. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol

    NASA Astrophysics Data System (ADS)

    Mitra, Kakoli; Ubarretxena-Belandia, Iban; Taguchi, Tomohiko; Warren, Graham; Engelman, Donald M.

    2004-03-01

    A biological membrane is conceptualized as a system in which membrane proteins are naturally matched to the equilibrium thickness of the lipid bilayer. Cholesterol, in addition to lipid composition, has been suggested to be a major regulator of bilayer thickness in vivo because measurements in vitro have shown that cholesterol can increase the thickness of simple phospholipid/cholesterol bilayers. Using solution x-ray scattering, we have directly measured the average bilayer thickness of exocytic pathway membranes, which contain increasing amounts of cholesterol. The bilayer thickness of membranes of the endoplasmic reticulum, the Golgi, and the basolateral and apical plasma membranes, purified from rat hepatocytes, were determined to be 37.5 ± 0.4 Å, 39.5 ± 0.4 Å, 35.6 ± 0.6 Å, and 42.5 ± 0.3 Å, respectively. After cholesterol depletion using cyclodextrins, Golgi and apical plasma membranes retained their respective bilayer thicknesses whereas the bilayer thickness of the endoplasmic reticulum and the basolateral plasma membrane decreased by 1.0 Å. Because cholesterol was shown to have a marginal effect on the thickness of these membranes, we measured whether membrane proteins could modulate thickness. Protein-depleted membranes demonstrated changes in thickness of up to 5 Å, suggesting that (i) membrane proteins rather than cholesterol modulate the average bilayer thickness of eukaryotic cell membranes, and (ii) proteins and lipids are not naturally hydrophobically matched in some biological membranes. A marked effect of membrane proteins on the thickness of Escherichia coli cytoplasmic membranes, which do not contain cholesterol, was also observed, emphasizing the generality of our findings.

  11. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol

    PubMed Central

    Mitra, Kakoli; Ubarretxena-Belandia, Iban; Taguchi, Tomohiko; Warren, Graham; Engelman, Donald M.

    2004-01-01

    A biological membrane is conceptualized as a system in which membrane proteins are naturally matched to the equilibrium thickness of the lipid bilayer. Cholesterol, in addition to lipid composition, has been suggested to be a major regulator of bilayer thickness in vivo because measurements in vitro have shown that cholesterol can increase the thickness of simple phospholipid/cholesterol bilayers. Using solution x-ray scattering, we have directly measured the average bilayer thickness of exocytic pathway membranes, which contain increasing amounts of cholesterol. The bilayer thickness of membranes of the endoplasmic reticulum, the Golgi, and the basolateral and apical plasma membranes, purified from rat hepatocytes, were determined to be 37.5 ± 0.4 Å, 39.5 ± 0.4 Å, 35.6 ± 0.6 Å, and 42.5 ± 0.3 Å, respectively. After cholesterol depletion using cyclodextrins, Golgi and apical plasma membranes retained their respective bilayer thicknesses whereas the bilayer thickness of the endoplasmic reticulum and the basolateral plasma membrane decreased by 1.0 Å. Because cholesterol was shown to have a marginal effect on the thickness of these membranes, we measured whether membrane proteins could modulate thickness. Protein-depleted membranes demonstrated changes in thickness of up to 5 Å, suggesting that (i) membrane proteins rather than cholesterol modulate the average bilayer thickness of eukaryotic cell membranes, and (ii) proteins and lipids are not naturally hydrophobically matched in some biological membranes. A marked effect of membrane proteins on the thickness of Escherichia coli cytoplasmic membranes, which do not contain cholesterol, was also observed, emphasizing the generality of our findings. PMID:15016920

  12. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis.

    PubMed

    Delion, Martial; Braux, Julien; Jourdain, Marie-Laure; Guillaume, Christine; Bour, Camille; Gangloff, Sophie; Pimpec-Barthes, Françoise Le; Sermet-Gaudelus, Isabelle; Jacquot, Jacky; Velard, Frédéric

    2016-09-01

    Bone fragility and loss are a significant cause of morbidity in patients with cystic fibrosis (CF), and the lack of effective therapeutic options means that treatment is more often palliative rather than curative. A deeper understanding of the pathogenesis of CF-related bone disease (CFBD) is necessary to develop new therapies. Defective CF transmembrane conductance regulator (CFTR) protein and chronic inflammation in bone are important components of the CFBD development. The receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) drive the regulation of bone turnover. To investigate their roles in CFBD, we evaluated the involvement of defective CFTR in their production level in CF primary human osteoblasts with and without inflammatory stimulation, in the presence or not of pharmacological correctors of the CFTR. No major difference in cell ultrastructure was noted between cultured CF and non-CF osteoblasts, but a delayed bone matrix mineralization was observed in CF osteoblasts. Strikingly, resting CF osteoblasts exhibited strong production of RANKL protein, which was highly localized at the cell membrane and was enhanced in TNF (TNF-α) or IL-17-stimulated conditions. Under TNF stimulation, a defective response in OPG production was observed in CF osteoblasts in contrast to the elevated OPG production of non-CF osteoblasts, leading to an elevated RANKL-to-OPG protein ratio in CF osteoblasts. Pharmacological inhibition of CFTR chloride channel conductance in non-CF osteoblasts replicated both the decreased OPG production and the enhanced RANKL-to-OPG ratio. Interestingly, using CFTR correctors such as C18, we significantly reduced the production of RANKL by CF osteoblasts, in both resting and TNF-stimulated conditions. In conclusion, the overexpression of RANKL and high membranous RANKL localization in osteoblasts are related to defective CFTR, and may worsen bone resorption, leading to bone loss in patients with CF. Targeting

  13. Abnormal erythrocyte membrane protein pattern in severe megaloblastic anemia.

    PubMed Central

    Ballas, S K

    1978-01-01

    The erythrocyte membrane protein pattern of patients with megaloblastic anemia was determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In severe megaloblastic anemia, secondary either to folic acid or vitamin B12 deficiency, the erythrocyte membrane protein pattern was grossly abnormal, lacking bands 1, 2 (spectrin), and 3 and having several diffuse, faster migrating bands. After adequate vitamin replacement therapy, the erythrocyte membrane protein pattern returned to normal. In mild megaloblastic anemia, secondary either to folic acid of vitamin B12 deficiency, and in severe iron deficiency anemia, the erythrocyte membrane protein pattern was normal. Erythrocyte membrane protein pattern of normal membranes did not change after mixing with abnormal membranes before polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Protease activity extracted from membranes of megalocytes was not different from normal. These findings indicate that the erythrocyte membrane protein pattern is abnormal in severe megaloblastic anemia and that this abnormality is not secondary to increased activity of the endogenous erythrocyte membrane proteinase. Images PMID:659579

  14. Characterization of the mycoplasma membrane proteins. VI. Composition and disposition of proteins in membranes from aging Mycoplasma hominis cultures.

    PubMed

    Amar, A; Rottem, S; Kahane, I; Razin, S

    1976-03-05

    Membranes of Mycoplasma hominis cells from cultures progressing from the mid to the end of the logarithmic phase of growth became richer in protein, poorer in phospholipids and cholesterol, heavier in density, and more viscous as determined by EPR. The membrane-bound ATPase activity declined steeply. Electrophoretic analysis failed to show marked changes in membrane protein composition on aging, apart from an increase in the staining intensity of one protein band (Mr approximately 130 000) concomitant with a decrease in the staining intensity of several minor protein bands of high molecular weight. To test for possible changes in the disposition of the various membrane proteins on aging of cultures, a comparison was made of the susceptibility of membrane proteins of intact cells and isolated membranes to trypsinization and lactoperoxidase-mediated iodination. The iodination values and the percent of membrane protein released by trypsinization of intact cells were similar in cells from cultures of different ages, indicating no significant changes in the organization of the proteins on the outer surface. On the other hand, trypsinization and iodination of isolated membranes were found to be most markedly affected by the culture age, indicating significant changes in the organization of the proteins on the inner membrane surface. Thus, the iodination values of isolated membranes decreased by almost two fold, while the percentage of protein released from the membrane by trypsin increased from 28% to 50% during the experimental period. It is suggested that aging in M. hominis cultures is accompanied by a continuous increase in the packing density of the protein molecules on the inner surface of the cell membrane.

  15. How curvature-generating proteins build scaffolds on membrane nanotubes.

    PubMed

    Simunovic, Mijo; Evergren, Emma; Golushko, Ivan; Prévost, Coline; Renard, Henri-François; Johannes, Ludger; McMahon, Harvey T; Lorman, Vladimir; Voth, Gregory A; Bassereau, Patricia

    2016-10-04

    Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube's length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30-40% of a tube's surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes.

  16. Toward understanding driving forces in membrane protein folding.

    PubMed

    Hong, Heedeok

    2014-12-15

    α-Helical membrane proteins are largely composed of nonpolar residues that are embedded in the lipid bilayer. An enigma in the folding of membrane proteins is how a polypeptide chain can be condensed into the compact folded state in the environment where the hydrophobic effect cannot strongly drive molecular interactions. Probably other forces such as van der Waals packing, hydrogen bonding, and weakly polar interactions, which are regarded less important in the folding of water-soluble proteins, should emerge. However, it is not clearly understood how those individual forces operate and how they are balanced for stabilizing membrane proteins. Studying this problem is not a trivial task mainly because of the methodological challenges in controlling the reversible folding of membrane proteins in the lipid bilayer. Overcoming the hurdles, meaningful progress has been made in the field in the last few decades. This review will focus on recent studies tackling the problem of driving forces in membrane protein folding.

  17. Size-dependent protein segregation at membrane interfaces

    NASA Astrophysics Data System (ADS)

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.

    2016-07-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  18. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  19. Lattice-Boltzmann-based simulations of membrane protein dynamics

    NASA Astrophysics Data System (ADS)

    Sharby, Tyler; Phelps, Ryan; Antonelli, Michael; Kreft Pearce, Jennifer

    2014-11-01

    The cell membrane is a complex structure composed of a phospholipid bilayer and embedded proteins. Recent work has shown that regions of different mobility exist in the membrane due to a variety of factors and that protein motion can be significantly subdiffusive due to the presence of stationary obstacles. We present work that shows that the combination of stationary obstacles and regions of different mobility can lead to aggregation of proteins in certain regions of the cell membrane. The concentration of stationary proteins is below the percolation threshold. The mechanism of this process is hydrodynamically-mediated interactions of diffusing proteins with themselves, as in hydrodynamic memory, and with obstacles.

  20. Integrated system for extraction, purification, and digestion of membrane proteins.

    PubMed

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Deng, Chunhui; Zhang, Xiangmin

    2016-05-01

    An integrated system was developed for directly processing living cells into peptides of membrane proteins. Living cells were directly injected into the system and cracked in a capillary column by ultrasonic treatment. Owing to hydrophilicity for broken pieces of the cell membrane, the obtained membranes were retained in a well-designed bi-filter. While cytoplasm proteins were eluted from the bi-filter, the membranes were dissolved and protein released by flushing 4% SDS buffer through the bi-filter. The membrane proteins were subsequently transferred into a micro-reactor and covalently bound in the reactor for purification and digestion. As the system greatly simplified the whole pretreatment processes and minimized both sample loss and contamination, it could be used to analyze the membrane proteome samples of thousand-cell-scales with acceptable reliability and stability. We totally identified 1348 proteins from 5000 HepG2 cells, 615 of which were annotated as membrane proteins. In contrast, with conventional method, only 233 membrane proteins were identified. It is adequately demonstrated that the integrated system shows promising practicability for the membrane proteome analysis of small amount of cells.

  1. Assembly of outer-membrane proteins in bacteria and mitochondria.

    PubMed

    Tommassen, Jan

    2010-09-01

    The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic alpha-helices, integral outer-membrane proteins (OMPs) form beta-barrels. Similar beta-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these beta-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of beta-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial beta-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.

  2. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  3. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  4. Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling

    PubMed Central

    Yoo, Han-Seok; Chung, Kang-Hyun; Lee, Kwon-Jai; Kim, Dong-Hee

    2017-01-01

    BACKGROUND/OBJECTIVES Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. MATERIALS/METHODS The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. RESULTS The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of 50-250 µg/mL. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to 250 µg/mL and were 149% and 129% at 250 µg/mL concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of 500 µg/mL. CONCLUSIONS This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and

  5. Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling.

    PubMed

    Yoo, Han-Seok; Chung, Kang-Hyun; Lee, Kwon-Jai; Kim, Dong-Hee; An, Jeung Hee

    2017-06-01

    Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of 50-250 µg/mL. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to 250 µg/mL and were 149% and 129% at 250 µg/mL concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of 500 µg/mL. This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and regulating transcription of osteogenic genes such as ALP, type I

  6. How curvature-generating proteins build scaffolds on membrane nanotubes

    PubMed Central

    Evergren, Emma; Golushko, Ivan; Prévost, Coline; Renard, Henri-François; Johannes, Ludger; McMahon, Harvey T.; Lorman, Vladimir; Voth, Gregory A.; Bassereau, Patricia

    2016-01-01

    Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube’s length. Our work implies that the nature of local protein–membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30–40% of a tube’s surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes. PMID:27655892

  7. Disturbed vesicular trafficking of membrane proteins in prion disease

    PubMed Central

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases. PMID:24335150

  8. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  9. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome.

    PubMed

    Marmagne, Anne; Rouet, Marie-Aude; Ferro, Myriam; Rolland, Norbert; Alcon, Carine; Joyard, Jacques; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève

    2004-07-01

    Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.

  10. Probing Single Membrane Proteins by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Scheuring, S.; Sapra, K. Tanuj; Müller, Daniel J.

    In this book chapter, we describe the working principle of the atomic force microscope (AFM), followed by the applications of AFM in high-resolution imaging and single-molecule force spectroscopy of membrane proteins. In the imaging mode, AFM allows observing the assembly of membrane proteins directly in native membranes approaching a resolution of ~0.5 nm with an outstanding signal-to-noise ratio. Conformational deviations of individual membrane proteins can be observed and their functional states directly imaged. Time-lapse AFM can image membrane proteins at work. In conjunction with high- resolution imaging, the use of the AFM as a single-molecule force spectroscope (SMFS) has gained tremendous importance in recent years. This combination allows to locate the inter- and intramolecular interactions of single membrane proteins. SMFS allows characterization of interactions that guide the folding of proteins and describe the parameters that lead to their destabilization, malfunction and misfolding. Moreover, it enables to measure the interactions established by ligand- and inhibitor-binding and in membrane protein assemblies. Because of its practical use in characterizing various parameters of membrane proteins in their native environment, AFM can be aptly described as a `lab on a tip' device.

  11. Separation of the outer membrane and identification of major outer membrane proteins from Porphyromonas gingivalis.

    PubMed

    Murakami, Yukitaka; Imai, Masashi; Nakamura, Hiroshi; Yoshimura, Fuminobu

    2002-04-01

    The outer membrane of Porphyromonas gingivalis, an oral strict anaerobe, was isolated by sucrose density gradient centrifugation. The outer membrane obtained by the differential detergent extraction method, previously reported, showed an essentially similar protein pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), confirming that the latter method is suitable for the study of outer membrane proteins in this organism. N-terminal amino acid sequence analysis revealed that major outer membrane proteins in this organism included Arg-gingipain, Lys-gingipain, RagA (a TonB-linked receptor), and putative porins that were homologous to Escherichia coli OmpA.

  12. Hen oviduct signal peptidase is an integral membrane protein.

    PubMed

    Lively, M O; Walsh, K A

    1983-08-10

    Membrane preparations from rough endoplasmic reticulum of hen oviduct resemble those of dog pancreas in their capacity to translocate nascent secretory proteins into membrane vesicles present during cell-free protein synthesis. As with the dog membranes, the precursor form of human placental lactogen is transported into the vesicles and processed to the native secretory form by an associated "signal peptidase." The oviduct microsomal membranes glycosylate nascent ovomucoid and ovalbumin in vitro. Attempts to extract the signal peptidase from these membrane vesicles revealed that it is one of the least easily solubilized proteins. A protocol for enrichment of signal peptidase was developed that took advantage of its tight association with these vesicles. These studies indicate that the enzyme has the characteristics of an integral membrane protein which remains active in membrane vesicles even after extraction with low concentrations of detergent that do not dissolve the lipid bilayer or after disruption of membrane vesicles in ice-cold 0.1 M Na2CO3, pH 11.5 (Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P.B. (1982) J. Cell Biol. 93, 97-102), which releases the majority of membrane-associated proteins. Solubilization requires concentrations of nondenaturing detergents that totally dissolve the lipid bilayer. The detergent-solubilized enzyme retains the activity and the characteristic specificity of the membrane-bound form.

  13. Phosphoproteome analysis reveals a critical role for hedgehog signalling in osteoblast morphological transitions.

    PubMed

    Marumoto, Ariane; Milani, Renato; da Silva, Rodrigo A; da Costa Fernandes, Célio Junior; Granjeiro, José Mauro; Ferreira, Carmen V; Peppelenbosch, Maikel P; Zambuzzi, Willian F

    2017-10-01

    The reciprocal and adaptive interactions between cells and substrates governing morphological transitions in the osteoblast compartment remain largely obscure. Here we show that osteoblast cultured in basement membrane matrix (Matrigel™) exhibits significant morphological changes after ten days of culture, and we decided to exploit this situation to investigate the molecular mechanisms responsible for guiding osteoblast morphological transitions. As almost all aspects of cellular physiology are under control of kinases, we generated more or less comprehensive cellular kinome profiles employing PepChip peptide arrays that contain over 1000 consensus substrates of kinase peptide. The results obtained were used to construct interactomes, and these revealed an important role for FoxO in mediating morphological changes of osteoblast, which was validated by Western blot technology when FoxO was significantly up-expressed in response to Matrigel™. As FoxO is a critical protein in canonical hedgehog signalling, we decided to explore the possible involvement of hedgehog signalling during osteoblast morphological changes. It appeared that osteoblast culture in Matrigel™ stimulates release of a substantial amounts Shh while concomitantly inducing upregulation of the expression of the bona fide hedgehog target genes Gli-1 and Patched. Functional confirmation of the relevance of these results for osteoblast morphological transitions came from experiments in which Shh hedgehog signalling was inhibited using the well-established pathway inhibitor cyclopamine (Cyc). In the presence of Cyc, culture of osteoblasts in Matrigel™ is not capable of inducing morphological changes but appears to provoke a proliferative response as evident from the upregulation of Cyclin D3 and cdk4. The most straightforward interpretation of our results is that hedgehog signalling is both necessary and sufficient for membrane matrix-based morphological transitions. Copyright © 2017 Elsevier Inc

  14. Negative Ions Enhance Survival of Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Liko, Idlir; Hopper, Jonathan T. S.; Allison, Timothy M.; Benesch, Justin L. P.; Robinson, Carol V.

    2016-06-01

    Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.

  15. Pathogen receptor discovery with a microfluidic human membrane protein array.

    PubMed

    Glick, Yair; Ben-Ari, Ya'ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella; Gerber, Doron

    2016-04-19

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.

  16. A sliding selectivity scale for lipid binding to membrane proteins

    PubMed Central

    Landreh, Michael; Marty, Michael T.; Gault, Joseph; Robinson, Carol V.

    2017-01-01

    Biological membranes form barriers that are essential for cellular integrity and compartmentalisation. Proteins that reside in the membrane have co-evolved with their hydrophobic lipid environment which serves as a solvent for proteins with very diverse requirements. As a result, membrane protein-lipid interactions range from completely non-selective to highly discriminating. Mass spectrometry (MS), in combination with X-ray crystallography and molecular dynamics simulations, enables us to monitor how lipids interact with intact membrane protein complexes and assess their effects on structure and dynamics. Recent studies illustrate the ability to differentiate specific lipid binding, preferential interactions with lipid subsets, and nonselective annular contacts. In this review, we consider the biological implications of different lipid-binding scenarios and propose that binding occurs on a sliding selectivity scale, in line with the view of biological membranes as facilitators of dynamic protein and lipid organization. PMID:27155089

  17. Protein quality control at the inner nuclear membrane.

    PubMed

    Khmelinskii, Anton; Blaszczak, Ewa; Pantazopoulou, Marina; Fischer, Bernd; Omnus, Deike J; Le Dez, Gaëlle; Brossard, Audrey; Gunnarsson, Alexander; Barry, Joseph D; Meurer, Matthias; Kirrmaier, Daniel; Boone, Charles; Huber, Wolfgang; Rabut, Gwenaël; Ljungdahl, Per O; Knop, Michael

    2014-12-18

    The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by endoplasmic-reticulum-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is known about protein quality control at the INM. Here we describe a protein degradation pathway at the INM in yeast (Saccharomyces cerevisiae) mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex functions together with the ubiquitin-conjugating enzymes Ubc6 and Ubc7 to degrade soluble and integral membrane proteins. Genetic evidence suggests that the Asi ubiquitin ligase defines a pathway distinct from, but complementary to, ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalized integral membrane proteins, thus acting to maintain and safeguard the identity of the INM.

  18. The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: structure-function property relationship.

    PubMed

    Depan, D; Misra, R D K

    2013-04-01

    The rapid adsorption of proteins occurs during the early stages of biomedical device implantation into physiological systems. In this regard, the adsorption of proteins is a strong function of the nature of a biomedical device, which ultimately governs the biological functions. The objective of this study was to elucidate the interplay between nanostructured carbon-modified (graphene oxide and single-walled carbon nanohorn) chitosan scaffolds and consequent protein adsorption and biological function (osteoblast function). We compare and contrast the footprint of protein adsorption on unmodified chitosan and nanostructured carbon-modified chitosan. A comparative analysis of cell-substrate interactions using an osteoblast cell line (MC3T3-E1) implied that biological functions were significantly enhanced in the presence of nanostructured carbon, compared with unmodified chitosan. The difference in their respective behaviors is related to the degree and topography of protein adsorption on the scaffolds. Furthermore, there was a synergistic effect of nanostructured carbon and protein adsorption in terms of favorably modulating biological functions, including cell attachment, proliferation and viability, with the effect being greater on nanostructured carbon-modified scaffolds. The study also underscores that protein adsorption is favored in nanostructured carbon-modified scaffolds such that bioactivity and biological function are promoted.

  19. Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells.

    PubMed

    Matsumoto, Rena; Uemura, Toshimasa; Xu, Zhefeng; Yamaguchi, Isamu; Ikoma, Toshiyuki; Tanaka, Junzo

    2015-08-01

    We studied the effect of fibril formation of fish scale collagen on the osteoblastic differentiation of human mesenchymal stem cells (hMSCs). We found that hMSCs adhered easily to tilapia scale collagen, which remarkably accelerated the early stage of osteoblastic differentiation in hMSCs during in vitro cell culture. Osteoblastic markers such as ALP activity, osteopontin, and bone morphogenetic protein 2 were markedly upregulated when the hMSCs were cultured on a tilapia collagen surface, especially in the early osteoblastic differentiation stage. We hypothesized that this phenomenon occurs due to specific fibril formation of tilapia collagen. Thus, we examined the time course of collagen fibril formation using high-speed atomic force microscopy. Moreover, to elucidate the effect of the orientation of fibril formation on the differentiation of hMSCs, we measured ALP activity of hMSCs cultured on two types of tilapia scale collagen membranes with different degrees of fibril formation. The ALP activity in hMSCs cultured on a fibrous collagen membrane was significantly higher than on a non-fibrous collagen membrane even before adding osteoblastic differentiation medium. These results showed that the degree of the fibril formation of tilapia collagen was essential for the osteoblastic differentiation of hMSCs.

  20. Curvature Forces in Membrane Lipid-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Brown, Michael F.

    2012-02-01

    Membrane protein conformational changes, folding, and stability may all involve elastic deformation of the bilayer. Non-specific properties of the bilayer play a significant role in modulating protein conformational energetics. A flexible-surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. The FSM describes elastic coupling of membrane lipids to integral membrane proteins. Curvature and hydrophobic matching to the lipid bilayer entails a stress field that explains membrane protein stability. Rhodopsin provides an important example, where solid-state NMR and FTIR spectroscopy characterize the energy landscape of the dynamically activated receptor. Time-resolved UV-visible and FTIR spectroscopic studies show how membrane lipids affect the metarhodopsin equilibrium due to non-specific material properties. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress on rhodopsin function are all explained by the new biomembrane model. By contrast, the older fluid-mosaic model fails to account for such effects on membrane protein activity. According to the FSM proteins are regulated by membrane lipids whose spontaneous curvature most closely matches the activated state within the lipid membrane.

  1. BPROMPT: A consensus server for membrane protein prediction.

    PubMed

    Taylor, Paul D; Attwood, Teresa K; Flower, Darren R

    2003-07-01

    Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.

  2. Membrane-Protein Crystallography and Potentiality for Drug Design

    NASA Astrophysics Data System (ADS)

    Yamashita, Atsuko

    Structure-based drug design for membrane proteins is far behind that for soluble proteins due to difficulty in crystallographic structure determination, despite the fact that about 60% of FDA-approved drugs target membrane proteins located at the cell surface. Stable homologs for a membrane protein of interest, such as prokaryotic neurotransmitter transporter homolog LeuT, might enable cooperative analyses by crystallography and functional assays, provide useful information for functional mechanisms, and thus serve as important probes for drug design based on mechanisms as well as structures.

  3. Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*

    PubMed Central

    Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.

    2011-01-01

    In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982

  4. Glycosomal membrane proteins and lipids from Leishmania mexicana.

    PubMed

    Quiñones, Wilfredo; Cáceres, Ana J; Ruiz, Maria Tibisay; Concepción, Juan Luis

    2015-04-01

    Constituents of the glycosomal membrane from Leishmania mexicana should play a critical role in the coordination of metabolic processes occurring in the cytosol and those compartmentalized within glycosomes. We have made an inventory of glycosomal membrane-associated proteins using approaches specific for enriching both integral and peripheral membrane proteins. Surprisingly, 70% of the proteins were recovered in the hydrophobic fraction of membranes solubilized with Triton X-114, while 20% were present in the soluble fraction obtained upon treatment with Na2CO3. 14 major polypeptides, ranging in molecular weight from 65 to 16 kDa, were found to be associated with the membrane, nine of them behaving as integral membrane proteins. Assessment of their topology in the membrane indicated that the polypeptides of 56, 50, 46 and 32 kDa have no domains exposed to the cytosol. The 50 kDa protein is the most abundant one of the glycosomal membrane, where it is peripherically located at the matrix face. The major phospholipids of glycosomal membranes are phosphatidyl-ethanolamine, phosphatidyl-choline and phosphatidyl-serine, with smaller proportions of sphingomyelin and phosphatidyl-inositol. The sterols found were of 5-dehydroepisterol, ergosta-5,7,24(24(1))-trien-3β-ol, and also their precursors, consistent with the notion that these organelles are involved in de novo biosynthesis of sterols in trypanosomatids. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Oriented Membrane Protein Reconstitution into Tethered Lipid Membranes for AFM Force Spectroscopy.

    PubMed

    Bronder, Anna M; Bieker, Adeline; Elter, Shantha; Etzkorn, Manuel; Häussinger, Dieter; Oesterhelt, Filipp

    2016-11-01

    Membrane proteins act as a central interface between the extracellular environment and the intracellular response and as such represent one of the most important classes of drug targets. The characterization of the molecular properties of integral membrane proteins, such as topology and interdomain interaction, is key to a fundamental understanding of their function. Atomic force microscopy (AFM) and force spectroscopy have the intrinsic capabilities of investigating these properties in a near-native setting. However, atomic force spectroscopy of membrane proteins is traditionally carried out in a crystalline setup. Alternatively, model membrane systems, such as tethered bilayer membranes, have been developed for surface-dependent techniques. While these setups can provide a more native environment, data analysis may be complicated by the normally found statistical orientation of the reconstituted protein in the model membrane. We have developed a model membrane system that enables the study of membrane proteins in a defined orientation by single-molecule force spectroscopy. Our approach is demonstrated using cell-free expressed bacteriorhodopsin coupled to a quartz glass surface in a defined orientation through a protein anchor and reconstituted inside an artificial membrane system. This approach offers an effective way to study membrane proteins in a planar lipid bilayer. It can be easily transferred to all membrane proteins that possess a suitable tag and can be reconstituted into a lipid bilayer. In this respect, we anticipate that this technique may contribute important information on structure, topology, and intra- and intermolecular interactions of other seven-transmembrane helical receptors. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Applications of solid-state NMR to membrane proteins.

    PubMed

    Ladizhansky, Vladimir

    2017-07-12

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  8. Membrane protein production in Escherichia coli cell-free lysates.

    PubMed

    Henrich, Erik; Hein, Christopher; Dötsch, Volker; Bernhard, Frank

    2015-07-08

    Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.

  9. Virulent strain associated outer membrane proteins of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Shang, E S; Foley, D M; Blanco, D R; Champion, C I; Mirzabekov, T; Sokolov, Y; Kagan, B L; Miller, J N; Lovett, M A

    1995-01-01

    We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase activity indicating their outer membrane origin and their lack of inner membrane contamination, respectively. Hydrophobic proteins were identified by phase partitioning with Triton X-114. Most of these hydrophobic membrane proteins were not acylated, suggesting that they are outer membrane-spanning proteins. Identification of palmitate-labeled lipoproteins revealed that several were enriched in the OMV, several were enriched in the protoplasmic cylinder inner membrane fraction, and others were found exclusively associated with the inner membrane. The protein composition of OMV changed significantly with successive in vitro cultivation of strain B31. Using antiserum with specificity for virulent strain B31, we identified OMV antigens on the surface of the spirochete and identified proteins whose presence in OMV could be correlated with virulence and protective immunity in the rabbit Lyme disease model. These virulent strain associated outer membrane-spanning proteins may provide new insight into the pathogenesis of Lyme disease. Images PMID:7593626

  10. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  11. Misfolding of amyloidogenic proteins and their interactions with membranes.

    PubMed

    Relini, Annalisa; Marano, Nadia; Gliozzi, Alessandra

    2013-12-27

    In this paper, we discuss amyloidogenic proteins, their misfolding, resulting structures, and interactions with membranes, which lead to membrane damage and subsequent cell death. Many of these proteins are implicated in serious illnesses such as Alzheimer's disease and Parkinson's disease. Misfolding of amyloidogenic proteins leads to the formation of polymorphic oligomers and fibrils. Oligomeric aggregates are widely thought to be the toxic species, however, fibrils also play a role in membrane damage. We focus on the structure of these aggregates and their interactions with model membranes. Study of interactions of amlyoidogenic proteins with model and natural membranes has shown the importance of the lipid bilayer in protein misfolding and aggregation and has led to the development of several models for membrane permeabilization by the resulting amyloid aggregates. We discuss several of these models: formation of structured pores by misfolded amyloidogenic proteins, extraction of lipids, interactions with receptors in biological membranes, and membrane destabilization by amyloid aggregates perhaps analogous to that caused by antimicrobial peptides.

  12. Metaproteomic analysis of biocake proteins to understand membrane fouling in a submerged membrane bioreactor.

    PubMed

    Zhou, Zhongbo; Meng, Fangang; He, Xiang; Chae, So-Ryong; An, Yujia; Jia, Xiaoshan

    2015-01-20

    Metaproteomic analyses, including two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation and matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/TOF mass spectrometer (MS) detection, were used to trace and identify biocake proteins on membranes in a bench-scale submerged membrane bioreactor (MBR). 2D-PAGE images showed that proteins in the biocake (S3) at a low transmembrane pressure (TMP) level (i.e., before the TMP jump) had larger gray intensities in the pH 5.5–7.0 region regardless of the membrane flux, similar to soluble microbial product (SMP) proteins. However, the biocake (S2 and S4) at a high TMP level (i.e., after the TMP jump) had many more proteins in the pH range of 4.0–5.5, similar to extracellular polymeric substance (EPS) proteins. Such similarities between biocake proteins and SMP or EPS proteins can be useful for tracing the sources of proteins resulting in membrane fouling. In total, 183 differentially abundant protein spots were marked in the three biocakes (S2, S3, and S4). However, only 32 protein spots co-occurred in the 2D gels of the three biocakes, indicating that membrane fluxes and TMP evolution levels had significant effects on the abundance of biocake proteins. On the basis of the MS and MS/MS data, 23 of 71 protein spots were successfully identified. Of the 23 proteins, outer membrane proteins (Omp) were a major contributor (60.87%). These Omps were mainly from potential surface colonizers such as Aeromonas, Enterobacter, Pseudomonas, and Thauera. Generally, the metaproteomic analysis is a useful alternative to trace the sources and compositions of biocake proteins on the levels of molecules and bacteria species that can provide new insight into membrane fouling.

  13. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts.

    PubMed

    Schleiff, Enrico; Soll, Jürgen

    2005-11-01

    Proteins are translocated across or inserted into membranes by machines that are composed of soluble and membrane-anchored subunits. The molecular action of these machines and their evolutionary origin are at present the focus of intense research. For instance, our understanding of the mode of insertion of beta-barrel membrane proteins into the outer membrane of endosymbiotically derived organelles has increased rapidly during the past few years. In particular, the identification of the Omp85/YaeT-involving pathways in Neisseria meningitidis, Escherichia coli and cyanobacteria, and homologues of Omp85/YaeT in chloroplasts and mitochondria, has provided new clues about the ancestral beta-barrel protein insertion pathway. This review focuses on recent advances in the elucidation of the evolutionarily conserved concepts that underlie the translocation and insertion of beta-barrel membrane proteins.

  14. Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization

    PubMed Central

    Hansen, Debra T.; Robida, Mark D.; Craciunescu, Felicia M.; Loskutov, Andrey V.; Dörner, Katerina; Rodenberry, John-Charles; Wang, Xiao; Olson, Tien L.; Patel, Hetal; Fromme, Petra; Sykes, Kathryn F.

    2016-01-01

    Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins. PMID:26908053

  15. Amyloid Aggregation and Membrane Disruption by Amyloid Proteins

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2013-03-01

    Amyloidogenesis has been the focus of intense basic and clinical research, as an increasing number of amyloidogenic proteins have been linked to common and incurable degenerative diseases including Alzheimer's, type II diabetes, and Parkinson's. Recent studies suggest that the cell toxicity is mainly due to intermediates generated during the assembly process of amyloid fibers, which have been proposed to attack cells in a variety of ways. Disruption of cell membranes is believed to be one of the key components of amyloid toxicity. However, the mechanism by which this occurs is not fully understood. Our research in this area is focused on the investigation of the early events in the aggregation and membrane disruption of amyloid proteins, Islet amyloid polypeptide protein (IAPP, also known as amylin) and amyloid-beta peptide, on the molecular level. Structural insights into the mechanisms of membrane disruption by these amyloid proteins and the role of membrane components on the membrane disruption will be presented.

  16. Protein-membrane interactions: blood clotting on nanoscale bilayers.

    PubMed

    Morrissey, J H; Pureza, V; Davis-Harrison, R L; Sligar, S G; Rienstra, C M; Kijac, A Z; Ohkubo, Y Z; Tajkhorshid, E

    2009-07-01

    The clotting cascade requires the assembly of protease-cofactor complexes on membranes with exposed anionic phospholipids. Despite their importance, protein-membrane interactions in clotting remain relatively poorly understood. Calcium ions are known to induce anionic phospholipids to cluster, and we propose that clotting proteins assemble preferentially on such anionic lipid-rich microdomains. Until recently, there was no way to control the partitioning of clotting proteins into or out of specific membrane microdomains, so experimenters only knew the average contributions of phospholipids to blood clotting. The development of nanoscale membrane bilayers (Nanodiscs) has now allowed us to probe, with nanometer resolution, how local variations in phospholipid composition regulate the activity of key protease-cofactor complexes in blood clotting. Furthermore, exciting new progress in solid-state NMR and large-scale molecular dynamics simulations allow structural insights into interactions between proteins and membrane surfaces with atomic resolution.

  17. Protein-membrane interactions: Blood clotting on nanoscale bilayers

    PubMed Central

    Morrissey, J.H.; Pureza, V.; Davis-Harrison, R.L.; Sligar, S.G.; Rienstra, C.M.; Kijac, A.Z.; Ohkubo, Y. Z.; Tajkhorshid, E.

    2010-01-01

    Summary The clotting cascade requires the assembly of protease-cofactor complexes on membranes with exposed anionic phospholipids. Despite their importance, protein-membrane interactions in clotting remain relatively poorly understood. Calcium ions are known to induce anionic phospholipids to cluster, and we propose that clotting proteins assemble preferentially on such anionic lipid-rich microdomains. Until recently, there was no way to control the partitioning of clotting proteins into or out of specific membrane microdomains, so experimenters only knew the average contributions of phospholipids to blood clotting. The development of nanoscale membrane bilayers (Nanodiscs) has now allowed us to probe, with nanometer resolution, how local variations in phospholipid composition regulate the activity of key protease-cofactor complexes in blood clotting. Furthermore, exciting new progress in solid-state NMR and large-scale molecular dynamics simulations are allowing structural insights into interactions between proteins and membrane surfaces with atomic resolution. PMID:19630793

  18. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    PubMed

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  19. Proteomic analysis of protein adsorption capacity of different haemodialysis membranes.

    PubMed

    Urbani, Andrea; Lupisella, Santina; Sirolli, Vittorio; Bucci, Sonia; Amoroso, Luigi; Pavone, Barbara; Pieroni, Luisa; Sacchetta, Paolo; Bonomini, Mario

    2012-04-01

    Protein-adsorptive properties are a key feature of membranes used for haemodialysis treatment. Protein adsorption is vital to the biocompatibility of a membrane material and influences membrane's performance. The object of the present study is to investigate membrane biocompatibility by correlating the adsorbed proteome repertoire with chemical feature of the membrane surfaces. Dialyzers composed of either cellulose triacetate (Sureflux 50 L, effective surface area 0.5 m(2); Nipro Corporation, Japan) or the polysulfone-based helixone (FX40, effective surface area 0.4 m(2); Fresenius Medical Care AG, Germany) materials were employed to develop an ex vivo apparatus to study protein adsorption. Adsorbed proteins were eluted by a strong chaotropic buffer condition and investigated by a proteomic approach. The profiling strategy was based on 2D-electrophoresis separation of desorbed protein coupled to MALDI-TOF/TOF analysis. The total protein adsorption was not significantly different between the two materials. An average of 179 protein spots was visualised for helixone membranes while a map of retained proteins of cellulose triacetate membranes was made up of 239 protein spots. The cellulose triacetate material showed a higher binding capacity for albumin and apolipoprotein. In fact, a number of different protein spots belonging to the gene transcript of albumin were visible in the cellulose triacetate map. In contrast, helixone bound only a small proportion of albumin, while proved to be particularly active in retaining protein associated with the coagulation cascade, such as the fibrinogen isoforms. Our data indicate that proteomic techniques are a useful approach for the investigation of proteins surface-adsorbed onto haemodialysis membranes, and may provide a molecular base for the interpretation of the efficacy and safety of anticoagulation treatment during renal replacement therapy.

  20. Quenching of fluorescence in membrane protein by hypocrellin B.

    PubMed

    Yue, J; Pang, S

    1997-04-01

    The hypocrellin B (HB) was used as a fluorescence quencher to study the basic physical charactcristics of HB in membrane systems, including the diffusion speed of quencher from aqueous phase into membrane phase, the partition coefficient (P) of quenchtr between membrane and water, and the fluorescence quenching constant of protein (K(sv); K(q),). The experimental results show that the quenching of fluorescence in membrane protein by HB can be determined by the principle of dynamic quenching. The experimental process of fluorescence quenching was observed in detail by using the ESR technique. The signal of HB- was found to arise from an electron transfer from excited trytophan to HB.

  1. Host membrane proteins involved in the replication of tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Miyashita, Shuhei; Katoh, Etsuko; Ishikawa, Masayuki

    2012-12-01

    Eukaryotic positive-strand RNA viruses replicate their genomes in membrane-bound replication complexes composed of viral replication proteins and negative-strand RNA templates. These replication proteins are programmed to exhibit RNA polymerase and other replication-related activities only in replication complexes to avoid inducing double-stranded RNA-mediated host defenses. Host membrane components (e.g. proteins and lipids) should play important roles in the activation of replication proteins. Two host membrane proteins are components of the replication complex and activate the replication proteins of tobamoviruses. Interaction analyses using deletion mutants constructed based on structural information suggest a conformational change in replication proteins during the formation of a protein complex with RNA 5'-capping activity.

  2. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  3. Surface-Bound Membrane-Mimetic Assemblies: Electrostatic Attributes of Integral Membrane Proteins

    DTIC Science & Technology

    1988-10-31

    other than bovine rhodopsin, we have used analogous techniques with a second retinal-containing protein, bacteriorhodopsin . This protein is found in the...purple membrane of Halobacterium halobium and serves as a light-driven proton pump to generate a transmembrane proton gradient used by the bacterium...and characterized by its absorption spectra. Figure 3 compares the spectra of bacteriorhodopsin in the natural purple membrane with that from protein

  4. MALDI tissue profiling of integral membrane proteins from ocular tissues.

    PubMed

    Thibault, Danielle B; Gillam, Christopher J; Grey, Angus C; Han, Jun; Schey, Kevin L

    2008-06-01

    MALDI tissue profiling and imaging have become valuable tools for rapid, direct analysis of tissues to investigate spatial distributions of proteins, potentially leading to an enhanced understanding of the molecular basis of disease. Sample preparation methods developed to date for these techniques produce protein expression profiles from predominantly hydrophilic, soluble proteins. The ability to obtain information about the spatial distribution of integral membrane proteins is critical to more fully understand their role in physiological processes, including transport, adhesion, and signaling. In this article, a sample preparation method for direct tissue profiling of integral membrane proteins is presented. Spatially resolved profiles for the abundant lens membrane proteins aquaporin 0 (AQP0) and MP20, and the retinal membrane protein opsin, were obtained using this method. MALDI tissue profiling results were validated by analysis of dissected tissue prepared by traditional membrane protein processing methods. Furthermore, direct tissue profiling of lens membrane proteins revealed age related post-translational modifications, as well as a novel modification that had not been detected using conventional tissue homogenization methods.

  5. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity.

    PubMed

    Nune, K C; Kumar, A; Murr, L E; Misra, R D K

    2016-02-01

    Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds. © 2015 Wiley Periodicals, Inc.

  6. Predicting residue and helix contacts in membrane proteins

    NASA Astrophysics Data System (ADS)

    Fuchs, Angelika; Kirschner, Andreas; Frishman, Dmitrij

    Helix-helix contacts are an important feature of alpha-helical membrane proteins as they define their characteristic helix bundle structure. No bioinformatics approaches for the prediction of pairwise residue contacts in membrane proteins have existed until recently. In this chapter we describe novel contact prediction methods based on residue coevolution and machine learning techniques specifically geared towards membrane proteins. While contact prediction accuracies are limited to ~10% using co-evolving residues alone, machine learning methods are able to improve these accuracies significantly to more than 25% by using available membrane protein structures as a training dataset and incorporating membrane protein specific sequence features into the prediction process. Importantly, predicted residue contacts allow for identification of interacting transmembrane helices with high accuracy. As different membrane protein structures can be distinguished by their specific pattern of helix interactions, predicted residue contacts may not only serve as structural constraints in modeling experiments, but also constitute valuable information for structural classification of membrane proteins with unknown structure.

  7. β-Barrel membrane protein assembly by the Bam complex.

    PubMed

    Hagan, Christine L; Silhavy, Thomas J; Kahne, Daniel

    2011-01-01

    β-barrel membrane proteins perform important functions in the outer membranes (OMs) of Gram-negative bacteria and of the mitochondria and chloroplasts of eukaryotes. The protein complexes that assemble these proteins in their respective membranes have been identified and shown to contain a component that has been conserved from bacteria to humans. β-barrel proteins are handled differently from α-helical membrane proteins in the cell in order to efficiently transport them to their final locations in unfolded but folding-competent states. The mechanism by which the assembly complex then binds, folds, and inserts β-barrels into the membrane is not well understood, but recent structural, biochemical, and genetic studies have begun to elucidate elements of how the complex provides a facilitated pathway for β-barrel assembly. Ultimately, studies of the mechanism of β-barrel assembly and comparison to the better-understood process of α-helical membrane protein assembly will reveal whether there are general principles that guide the folding and insertion of all membrane proteins.

  8. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.

    2000-01-01

    Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.

  9. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.

    2000-01-01

    Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.

  10. Inhibition of Ca²⁺/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation.

    PubMed

    Cary, Rachel L; Waddell, Seid; Racioppi, Luigi; Long, Fanxin; Novack, Deborah V; Voor, Michael J; Sankar, Uma

    2013-07-01

    Bone remodeling, a physiological process characterized by bone formation by osteoblasts (OBs) and resorption of preexisting bone matrix by osteoclasts (OCs), is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this vital process result in pathological conditions including osteoporosis. Owing to its initial asymptomatic nature, osteoporosis is often detected only after the patient has sustained significant bone loss or a fracture. Hence, anabolic therapeutics that stimulate bone accrual is in high clinical demand. Here we identify Ca²⁺/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) as a potential target for such therapeutics because its inhibition enhances OB differentiation and bone growth and suppresses OC differentiation. Mice null for CaMKK2 possess higher trabecular bone mass in their long bones, along with significantly more OBs and fewer multinuclear OCs. In vitro, although Camkk2⁻/⁻ mesenchymal stem cells (MSCs) yield significantly higher numbers of OBs, bone marrow cells from Camkk2⁻/⁻ mice produce fewer multinuclear OCs. Acute inhibition of CaMKK2 by its selective, cell-permeable pharmacological inhibitor STO-609 also results in increased OB and diminished OC formation. Further, we find phospho-protein kinase A (PKA) and Ser¹³³ phosphorylated form of cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) to be markedly elevated in OB progenitors deficient in CaMKK2. On the other hand, genetic ablation of CaMKK2 or its pharmacological inhibition in OC progenitors results in reduced pCREB as well as significantly reduced levels of its transcriptional target, nuclear factor of activated T cells, cytoplasmic (NFATc1). Moreover, in vivo administration of STO-609 results in increased OBs and diminished OCs, conferring significant protection from ovariectomy (OVX)-induced osteoporosis in adult mice. Overall, our findings reveal a novel function for CaMKK2 in bone remodeling and

  11. Properties of the membrane proteins of rat liver lysosomes. The majority of lysosomal membrane proteins are exposed to the cytoplasm.

    PubMed Central

    Schneider, D L; Burnside, J; Gorga, F R; Nettleton, C J

    1978-01-01

    Rat liver lysosomes were lysed and subfractionated by differential centrifugation through 0.2M-NaCl to yield a membranous pellet. This membrane fraction contains less than 20% of the lysosomal protein, adenosine triphosphatase activity of about 1.2mumol/min per mg of protein, 120nmol of thiol groups/mg of protein and at least 16 protein and glycoprotein bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The gel patterns of membranes isolated from lysosomes after treatment with (1) [125I]iodidehydrogen peroxide-lactoperoxidase, (2) toluene 2,4-di-isocyanate-activated bovine serum albumin, (3) trypsin and (4) subtilisin indicate that most of the membrane proteins are exposed to the cytoplasm. These exposed proteins are candidates for intracellular receptors which recognize either substances that are to be degraded or vesicles containing those substances. PMID:153136

  12. Genetically Encoded Protein Sensors of Membrane Potential.

    PubMed

    Storace, Douglas; Rad, Masoud Sepehri; Han, Zhou; Jin, Lei; Cohen, Lawrence B; Hughes, Thom; Baker, Bradley J; Sung, Uhna

    2015-01-01

    Organic voltage-sensitive dyes offer very high spatial and temporal resolution for imaging neuronal function. However these dyes suffer from the drawbacks of non-specificity of cell staining and low accessibility of the dye to some cell types. Further progress in imaging activity is expected from the development of genetically encoded fluorescent sensors of membrane potential. Cell type specificity of expression of these fluorescent protein (FP) voltage sensors can be obtained via several different mechanisms. One is cell type specificity of infection by individual virus subtypes. A second mechanism is specificity of promoter expression in individual cell types. A third, depends on the offspring of transgenic animals with cell type specific expression of cre recombinase mated with an animal that has the DNA for the FP voltage sensor in all of its cells but its expression is dependent on the recombinase activity. Challenges remain. First, the response time constants of many of the new FP voltage sensors are slower (2-10 ms) than those of organic dyes. This results in a relatively small fractional fluorescence change, ΔF/F, for action potentials. Second, the largest signal presently available is only ~40% for a 100 mV depolarization and many of the new probes have signals that are substantially smaller. Large signals are especially important when attempting to detect fast events because the shorter measurement interval results in a relatively small number of detected photons and therefore a relatively large shot noise (see Chap. 1). Another kind of challenge has occurred when attempts were made to transition from one species to another or from one cell type to another or from cell culture to in vivo measurements.Several laboratories have recently described a number of novel FP voltage sensors. Here we attempt to critically review the current status of these developments in terms of signal size, time course, and in vivo function.

  13. The electrical interplay between proteins and lipids in membranes.

    PubMed

    Richens, Joanna L; Lane, Jordan S; Bramble, Jonathan P; O'Shea, Paul

    2015-09-01

    All molecular interactions that are relevant to cellular and molecular structures are electrical in nature but manifest in a rich variety of forms that each has its own range and influences on the net effect of how molecular species interact. This article outlines how electrical interactions between the protein and lipid membrane components underlie many of the activities of membrane function. Particular emphasis is placed on spatially localised behaviour in membranes involving modulation of protein activity and microdomain structure. The interactions between membrane lipids and membrane proteins together with their role within cell biology represent an enormous body of work. Broad conclusions are not easy given the complexities of the various systems and even consensus with model membrane systems containing two or three lipid types is difficult. By defining two types of broad lipid-protein interaction, respectively Type I as specific and Type II as more non-specific and focussing on the electrical interactions mostly in the extra-membrane regions it is possible to assemble broad rules or a consensus of the dominant features of the interplay between these two fundamentally important classes of membrane component. This article is part of a special issue entitled: Lipid-protein interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    SciTech Connect

    Chance, S.C.

    1987-01-01

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of ({sup 3}H)thymidine or ({sup 3}H)uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both ({sup 35}S)methionine and ({sup 3}H)leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties.

  15. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    PubMed

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  16. Plant plasma membrane protein extraction and solubilization for proteomic analysis.

    PubMed

    Santoni, Véronique

    2007-01-01

    The plasma membrane (PM) exists as the interface between the cytosol and the environment in all living cells and is one of the most complex and differentiated membrane. The identification and characterization of membrane proteins (either extrinsic or intrinsic) is a crucial challenge since many of these proteins are involved in essential cellular functions such as cell signaling, osmoregulation, nutrition, and metabolism. Methods to isolate PM fractions vary according to organisms, tissues, and cell type. This chapter emphasizes isolation, from the model plant Arabidopsis thaliana, of PM fractions from a microsomal membrane fraction by two-phase partitioning, a methodology that utilizes the different surface properties of membranes. PM proteins that do not span the lipid bilayer are generally well recovered after 2D gel electrophoresis. By contrast, the recovery of transmembrane proteins requires first the depletion of the PM fraction from soluble proteins, being either cytosolic contaminants or functionally associated proteins, and second, to the use of specific solubilization procedures. This chapter presents protocols to strip PM based on alkaline treatment of membranes and to solubilize hydrophobic proteins to increase their recovery on 2D gels. Aquaporins that are highly hydrophobic proteins are used to probe the relevance of the procedures.

  17. Improving membrane protein expression by optimizing integration efficiency.

    PubMed

    Niesen, Michiel J M; Marshall, Stephen S; Miller, Thomas F; Clemons, William M

    2017-09-16

    The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were four-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effect of double mutations, on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  18. Structures and Mechanisms of Viral Membrane Fusion Proteins

    PubMed Central

    White, Judith M.; Delos, Sue E.; Brecher, Matthew; Schornberg, Kathryn

    2009-01-01

    Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus. PMID:18568847

  19. Tight binding of proteins to membranes from older human cells.

    PubMed

    Truscott, Roger J W; Comte-Walters, Susana; Ablonczy, Zsolt; Schwacke, John H; Berry, Yoke; Korlimbinis, Anastasia; Friedrich, Michael G; Schey, Kevin L

    2011-12-01

    The lens is an ideal model system for the study of macromolecular aging and its consequences for cellular function, since there is no turnover of lens fibre cells. To examine biochemical processes that take place in the lens and that may also occur in other long-lived cells, membranes were isolated from defined regions of human lenses that are synthesised at different times during life, and assayed for the presence of tightly bound cytosolic proteins using quantitative iTRAQ proteomics technology. A majority of lens beta crystallins and all gamma crystallins became increasingly membrane bound with age, however, the chaperone proteins alpha A and alpha B crystallin, as well as the thermally-stable protein, βB2 crystallin, did not. Other proteins such as brain-associated signal protein 1 and paralemmin 1 became less tightly bound in the older regions of the lens. It is evident that protein-membrane interactions change significantly with age. Selected proteins that were formerly cytosolic become increasingly tightly bound to cell membranes with age and are not removed even by treatment with 7 M urea. It is likely that such processes reflect polypeptide denaturation over time and the untoward binding of proteins to membranes may alter membrane properties and contribute to impairment of communication between older cells.

  20. [Plasmatic membrane protein synthesis in cells of the regenerating liver].

    PubMed

    Pospelov, A V; Gorelova, N V

    1978-05-01

    Protein synthesis in the cells of the regenerating rat liver was studied. The rate of 3H-glycine incorporation into the total proteins of the liver, those of microsomal fraction, proteins of hyaloplasm, and plasmatic membrane proteins, soluble and non-soluble in 0.05 M K2CO3, was determined. The rate of 3H-glycine incorporation into soluble proteines of plasma membranes became maximal one hour after partial hepatectomy. The peak of the rate of synthesis of proteins of other fractions fell on the end of the G1-period. A sharp increase of the synthesis rate of plasma membrane proteins seems to be one of the earliest biochemical events in the regenerating liver hepatocytes ready for division.

  1. Tuning membrane protein mobility by confinement into nanodomains

    NASA Astrophysics Data System (ADS)

    Karner, Andreas; Nimmervoll, Benedikt; Plochberger, Birgit; Klotzsch, Enrico; Horner, Andreas; Knyazev, Denis G.; Kuttner, Roland; Winkler, Klemens; Winter, Lukas; Siligan, Christine; Ollinger, Nicole; Pohl, Peter; Preiner, Johannes

    2017-03-01

    High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.

  2. Fully Quantified Spectral Imaging Reveals in Vivo Membrane Protein Interactions

    PubMed Central

    King, Christopher; Stoneman, Michael; Raicu, Valerica; Hristova, Kalina

    2016-01-01

    Here we introduce the Fully Quantified Spectral Imaging (FSI) method as a new tool to probe the stoichiometry and stability of protein complexes in biological membranes. The FSI method yields two dimensional membrane concentrations and FRET efficiencies in native plasma membranes. It can be used to characterize the association of membrane proteins: to differentiate between monomers, dimers, or oligomers, to produce binding (association) curves, and to measure the free energies of association in the membrane. We use the FSI method to study the lateral interactions of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a member of the receptor tyrosine kinase (RTK) superfamily, in plasma membranes, in vivo. The knowledge gained through the use of the new method challenges the current understanding of VEGFR2 signaling. PMID:26787445

  3. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope

    SciTech Connect

    Butt, H.J.; Downing, K.H.; Hansma, P.K. )

    1990-12-01

    The membrane protein bacteriorhodopsin was imaged in buffer solution at room temperature with the atomic force microscope. Three different substrates were used: mica, silanized glass and lipid bilayers. Single bacteriorhodopsin molecules could be imaged in purple membranes adsorbed to mica. A depression was observed between the bacteriorhodopsin molecules. The two dimensional Fourier transform showed the hexagonal lattice with a lattice constant of 6.21 +/- 0.20 nm which is in agreement with results of electron diffraction experiments. Spots at a resolution of approximately 1.1 nm could be resolved. A protein, cationic ferritin, could be imaged bound to the purple membranes on glass which was silanized with aminopropyltriethoxysilane. This opens the possibility of studying receptor/ligand binding under native conditions. In addition, purple membranes bound to a lipid bilayer were imaged. These images may help in interpreting results of functional studies done with purple membranes adsorbed to black lipid membranes.

  4. Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins

    PubMed Central

    Picard, Martin; Duval-Terrié, Caroline; Dé, Emmanuelle; Champeil, Philippe

    2004-01-01

    Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C10, was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrié et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca2+-dependent ATPase and Ca2+-pumping activity. We found that 18C10-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions. PMID:15459343

  5. Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins.

    PubMed

    Picard, Martin; Duval-Terrié, Caroline; Dé, Emmanuelle; Champeil, Philippe

    2004-11-01

    Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C(10), was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrie et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca(2+)-dependent ATPase and Ca(2+)-pumping activity. We found that 18C(10)-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions.

  6. Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Engel, Andreas; Janovjak, Harald; Fotiadis, Dimtrios; Kedrov, Alexej; Cisneros, David; Müller, Daniel J.

    Single-molecule atomic force microscopy (AFM) provides novel ways to characterize the structure-function relationship of native membrane proteins. High-resolution AFM topographs allow observing the structure of single proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. We will review these feasibilities illustrating examples of membrane proteins in native and reconstituted membranes. Classification of individual topographs of single proteins allows understanding the principles of motions of their extrinsic domains, to learn about their local structural flexibilities and to find the entropy minima of certain conformations. Combined with the visualization of functionally related conformational changes these insights allow understanding why certain flexibilities are required for the protein to function and how structurally flexible regions allow certain conformational changes. Complementary to AFM imaging, single-molecule force spectroscopy (SMFS) experiments detect molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to measure interactions that stabilize secondary structures such as transmembrane α-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the locations of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes.

  7. Synaptic vesicle membrane proteins interact to form a multimeric complex

    PubMed Central

    1992-01-01

    Potential interactions between membrane components of rat brain synaptic vesicles were analyzed by detergent solubilization followed by size fractionation or immunoprecipitation. The behavior of six synaptic vesicle membrane proteins as well as a plasma membrane protein was monitored by Western blotting. Solubilization of synaptic vesicle membranes in CHAPS resulted in the recovery of a large protein complex that included SV2, p65, p38, vesicle-associated membrane protein, and the vacuolar proton pump. Solubilization in octylglucoside resulted in the preservation of interactions between SV2, p38, and rab3A, while solubilization of synaptic vesicles with Triton X-100 resulted in two predominant interactions, one involving p65 and SV2, and the other involving p38 and vesicle-associated membrane protein. The multicomponent complex preserved with CHAPS solubilization was partially reconstituted following octylglucoside solubilization and subsequent dialysis against CHAPS. Reduction of the CHAPS concentration by gel filtration chromatography resulted in increased recovery of the multicomponent complex. Examination of the large complex isolated from CHAPS-solubilized vesicles by negative stain EM revealed structures with multiple globular domains, some of which were specifically labeled with gold-conjugated antibodies directed against p65 and SV2. The protein interactions defined in this report are likely to underlie aspects of neurotransmitter secretion, membrane traffic, and the spatial organization of vesicles within the nerve terminal. PMID:1730776

  8. Durable vesicles for reconstitution of membrane proteins in biotechnology.

    PubMed

    Beales, Paul A; Khan, Sanobar; Muench, Stephen P; Jeuken, Lars J C

    2017-02-08

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. © 2017 The Author(s).

  9. Production of okara and soy protein concentrates using membrane technology.

    PubMed

    Vishwanathan, K H; Govindaraju, K; Singh, Vasudeva; Subramanian, R

    2011-01-01

    Microfiltration (MF) membranes with pore sizes of 200 and 450 nm and ultrafiltration (UF) membranes with molecular weight cut off of 50, 100, and 500 kDa were assessed for their ability to eliminate nonprotein substances from okara protein extract in a laboratory cross-flow membrane system. Both MF and UF improved the protein content of okara extract to a similar extent from approximately 68% to approximately 81% owing to the presence of protein in the feed leading to the formation of dynamic layer controlling the performance rather than the actual pore size of membranes. Although normalized flux in MF-450 (117 LMH/MPa) was close to UF-500 (118 LMH/MPa), the latter was selected based on higher average flux (47 LMH) offering the advantage of reduced processing time. Membrane processing of soy extract improved the protein content from 62% to 85% much closer to the target value. However, the final protein content in okara (approximately 80%) did not reach the target value (90%) owing to the greater presence of soluble fibers that were retained by the membrane. Solubility curve of membrane okara protein concentrate (MOPC) showed lower solubility than soy protein concentrate and a commercial isolate in the entire pH range. However, water absorption and fat-binding capacities of MOPC were either superior or comparable while emulsifying properties were in accordance with its solubility. The results of this study showed that okara protein concentrate (80%) could be produced using membrane technology without loss of any true proteins, thus offering value addition to okara, hitherto underutilized. Practical Application: Okara, a byproduct obtained during processing soybean for soymilk, is either underutilized or unutilized in spite of the fact that its protein quality is as good as that of soy milk and tofu. Membrane-processed protein products have been shown to possess superior functional properties compared to conventionally produced protein products. However, the

  10. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

    PubMed

    Itel, Fabian; Najer, Adrian; Palivan, Cornelia G; Meier, Wolfgang

    2015-06-10

    The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

  11. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life

    PubMed Central

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-01-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. PMID:27501943

  12. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    PubMed

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes.

    PubMed

    Cheng, Xi; Jo, Sunhwan; Qi, Yifei; Marassi, Francesca M; Im, Wonpil

    2015-04-21

    Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys(40), residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein

  14. The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces.

    PubMed

    Miron, Richard J; Oates, Christine J; Molenberg, Aart; Dard, Michel; Hamilton, Douglas W

    2010-01-01

    Modifications of implant surface topography and chemistry have proven a means to enhance osseointegration, a process that ensures the stability of bone-contacting devices, including titanium dental implants. The commercial product Emdogain is an enamel matrix derivative (EMD) extracted from porcine teeth commonly used in periodontal surgery, where it has been shown to potentiate regeneration of bone. The aim of the present study was to evaluate the effect of EMD on the attachment, proliferation and differentiation of osteoblasts on titanium surfaces in vitro. Pickled (smooth) and SLA (roughened) titanium discs were coated with EMD or left uncoated. Primary rat calvarial osteoblasts were cultured on each surface from 1h to 4 weeks. EMD significantly increased cell spreading and proliferation at time points ranging from 3 to 7 days on both topographies. Alkaline phosphatase activity was significantly increased on EMD-coated titanium compared with titanium alone. Moreover, there was a 6 fold increase in levels of mRNA encoding bone sialoprotein and osteocalcin in osteoblasts cultured on EMD-coated titanium surfaces compared with uncoated surfaces. We conclude that coating of titanium with EMD enhances the proliferation and differentiation of osteoblasts irrespective of the titanium substratum topography.

  15. Analysis of Protein Interactions at Native Chloroplast Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Mustafa, Mohd K.; Al-Ammar, Rukaiah; Tsargorodskaya, Anna; Smith, David P.; Abell, Ben M.

    2012-01-01

    Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins. PMID:22479632

  16. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    PubMed

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  17. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  18. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  19. Overexpression of membrane proteins from higher eukaryotes in yeasts.

    PubMed

    Emmerstorfer, Anita; Wriessnegger, Tamara; Hirz, Melanie; Pichler, Harald

    2014-09-01

    Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.

  20. Architecture and Function of Mechanosensitive Membrane Protein Lattices

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-01-01

    Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function. Using the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct lattice activation barriers. Our results suggest general physical mechanisms linking protein symmetry, the lattice architecture of membrane protein clusters, and the collective function of membrane protein lattices.

  1. AMP-activated protein kinase inhibitor decreases prostaglandin F2α-stimulated interleukin-6 synthesis through p38 MAP kinase in osteoblasts.

    PubMed

    Kondo, Akira; Otsuka, Takanobu; Kato, Kenji; Natsume, Hideo; Kuroyanagi, Gen; Mizutani, Jun; Ito, Yoshiki; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko

    2012-12-01

    We previously showed that prostaglandin F(2α) (PGF(2α)) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in part via p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase but not stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) among the MAP kinase superfamily in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of AMP-activated protein kinase (AMPK), an intracellular energy sensor, in PGF(2α)-stimulated IL-6 synthesis in MC3T3-E1 cells. PGF(2α) time-dependently induced the phosphorylation of the AMPK α-subunit. Compound C, an inhibitor of AMPK, dose-dependently suppressed PGF(2α)-stimulated IL-6 release. Compound C reduced the PGF(2α)-induced acetyl-CoA carboxylase phosphorylation. In addition, PGF(2α)-stimulated IL-6 release in human osteoblasts was also inhibited by compound C. The IL-6 mRNA expression induced by PGF(2α) was markedly reduced by compound C. Downregulation of the AMPK α1-subunit by short interfering RNA (siRNA) significantly suppressed the PGF(2α)-stimulated IL-6 release. PGF(2α)-induced phosphorylation of p38 MAP kinase was inhibited by compound C, which failed to affect the p44/p42 MAP kinase phosphorylation. These results strongly suggest that AMPK regulates PGF(2α)-stimulated IL-6 synthesis via p38 MAP kinase in osteoblasts.

  2. Molecular interactions between proteins and synthetic membrane polymer films

    SciTech Connect

    Pincet, F.; Perez, E.; Belfort, G.

    1995-04-01

    To help understand the effects of protein adsorption on membrane filtration performance, we have measured the molecular interactions between cellulose acetate films and two proteins with different properties (ribonuclease A and human serum albumin) with a surface force apparatus. Comparison of forces between two protein layers with those between a protein layer and a cellulose acetate (CA) film shows that, at high pH, both proteins retained their native conformation on interacting with the CA film while at the isoelectric point (pI) or below the tertiary structure of proteins was disturbed. These measurements provide the first molecular evidence that disruption of protein tertiary structure could be responsible for the reduced permeation flows observed during membrane filtration of protein solutions and suggest that operating at high pH values away from the pI of proteins will reduce such fouling. 60 refs., 9 figs., 5 tabs.

  3. Chemical synthesis and biophysical applications of membrane proteins.

    PubMed

    Zuo, Chao; Tang, Shan; Zheng, Ji-Shen

    2015-07-01

    Chemical synthesis or semi-synthesis of membrane proteins can provide unique molecular tools, such as site-specific isotope labeling or post-translationally modified membrane proteins to gain insight into their biophysical and functional characteristics. However, during preparation, purification, and ligation of transmembrane peptides, tremendous challenges are encountered owing to their hydrophobic nature. This review focuses on the recent advances in chemical synthesis strategies of membrane proteins. These strategies help to solubilize the hydrophobic transmembrane peptide sequences under standard purification and chemical ligation conditions to improve their handling properties. Biophysical and functional studies of synthetic membrane proteins are reviewed as well. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  4. Prediction of buried helices in multispan alpha helical membrane proteins.

    PubMed

    Adamian, Larisa; Liang, Jie

    2006-04-01

    Analysis of a database of structures of membrane proteins shows that membrane proteins composed of 10 or more transmembrane (TM) helices often contain buried helices that are inaccessible to phospholipids. We introduce a method for identifying TM helices that are least phospholipid accessible and for prediction of fully buried TM helices in membrane proteins from sequence information alone. Our method is based on the calculation of residue lipophilicity and evolutionary conservation. Given that the number of buried helices in a membrane protein is known, our method achieves an accuracy of 78% and a Matthew's correlation coefficient of 0.68. A server for this tool (RANTS) is available online at http://gila.bioengr.uic.edu/lab/.

  5. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    SciTech Connect

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani; Fox, Daniel A.; Sim, Adelene Y.L.; Doniach, Sebastian; Lesley, Scott A.

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based on these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.

  6. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores.

    PubMed

    Petrosyan, Rafayel; Bippes, Christian A; Walheim, Stefan; Harder, Daniel; Fotiadis, Dimitrios; Schimmel, Thomas; Alsteens, David; Müller, Daniel J

    2015-05-13

    Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.

  7. Curvature forces in membrane lipid-protein interactions.

    PubMed

    Brown, Michael F

    2012-12-11

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function.

  8. Structuring detergents for extracting and stabilizing functional membrane proteins.

    PubMed

    Matar-Merheb, Rima; Rhimi, Moez; Leydier, Antoine; Huché, Frédéric; Galián, Carmen; Desuzinges-Mandon, Elodie; Ficheux, Damien; Flot, David; Aghajari, Nushin; Kahn, Richard; Di Pietro, Attilio; Jault, Jean-Michel; Coleman, Anthony W; Falson, Pierre

    2011-03-31

    Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. Anionic calix[4]arene based detergents (C4Cn, n=1-12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. These compounds seem promising to extract in a functional state membrane proteins obeying the positive inside rule. In that context, they may

  9. Structuring Detergents for Extracting and Stabilizing Functional Membrane Proteins

    PubMed Central

    Matar-Merheb, Rima; Galián, Carmen; Desuzinges-Mandon, Elodie; Ficheux, Damien; Flot, David; Aghajari, Nushin; Kahn, Richard; Di Pietro, Attilio; Jault, Jean-Michel; Coleman, Anthony W.; Falson, Pierre

    2011-01-01

    Background Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. Methodology/Principal Findings Anionic calix[4]arene based detergents (C4Cn, n = 1–12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5–24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. Conclusion/Significance These compounds seem promising to extract in a functional state

  10. Membranes: a meeting point for lipids, proteins and therapies.

    PubMed

    Escribá, Pablo V; González-Ros, José M; Goñi, Félix M; Kinnunen, Paavo K J; Vigh, Lászlo; Sánchez-Magraner, Lissete; Fernández, Asia M; Busquets, Xavier; Horváth, Ibolya; Barceló-Coblijn, Gwendolyn

    2008-06-01

    Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.

  11. Membranes: a meeting point for lipids, proteins and therapies

    PubMed Central

    Escribá, Pablo V; González-Ros, José M; Goñi, Félix M; Kinnunen, Paavo K J; Vigh, Lászlo; Sánchez-Magraner, Lissete; Fernández, Asia M; Busquets, Xavier; Horváth, Ibolya; Barceló-Coblijn, Gwendolyn

    2008-01-01

    Abstract Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy. PMID:18266954

  12. [Molecular interactions of membrane proteins and erythrocyte deformability].

    PubMed

    Boivin, P

    1984-06-01

    The structural and functional properties of the erythrocytic membrane constitute one of the essential elements of the red cell deformability. They intervene not only in the flexibility of the membrane, but also in the surface/volume relation and, through transmembrane exchanges, in the internal viscosity of the red cells. These properties depend essentially on the molecular composition of the elements which constitute the membrane, and on their interactions. The shape of the red cell and the flexibility of its membrane depend, to a great extent, on the membrane skeleton, whose main components are spectrin, actin, and protein 4.1. The spectrin basic molecule is a heterodimer, but there occur interactions between dimers in vitro as well as in vivo, which lead to the formation of tetrameric and oligomeric structures of higher complexity. Disturbances of these interactions, such as have been observed in pathological cases, lead to an instability of the membrane, a loss of membrane fragments, and a decrease in the surface/volume relation, with, as a consequence, a reduced deformability. The stability of the membrane skeleton also depends on the interactions between spectrin and protein 4.1. These interactions occur through a binding site on the beta chain of spectrin apparently close to actin and calmodulin binding sites. Other interactions occur between the hydrophobic segment of spectrin and membrane lipids. The cytoskeleton is bound to the transmembrane proteins: by ankyrin to the internal segment of protein band 3, and by protein 4.1 to a glycoprotein named glycoconnectin. There seems to exist other, more direct, lower affinity bindings between the cytoskeleton on the one hand, and band 3 and glycophorin transmembrane proteins on the other hand, whose lateral mobilities are modified when the structure of the skeleton is perturbed. The membrane proteins, which are in contact with the cytosol, interact with the cytosolic proteins, in particular with certain enzymes

  13. Subcellular localization of mammalian type II membrane proteins.

    PubMed

    Aturaliya, Rajith N; Fink, J Lynn; Davis, Melissa J; Teasdale, Melvena S; Hanson, Kelly A; Miranda, Kevin C; Forrest, Alistair R R; Grimmond, Sean M; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Teasdale, Rohan D

    2006-05-01

    Application of a computational membrane organization prediction pipeline, MemO, identified putative type II membrane proteins as proteins predicted to encode a single alpha-helical transmembrane domain (TMD) and no signal peptides. MemO was applied to RIKEN's mouse isoform protein set to identify 1436 non-overlapping genomic regions or transcriptional units (TUs), which encode exclusively type II membrane proteins. Proteins with overlapping predicted InterPro and TMDs were reviewed to discard false positive predictions resulting in a dataset comprised of 1831 transcripts in 1408 TUs. This dataset was used to develop a systematic protocol to document subcellular localization of type II membrane proteins. This approach combines mining of published literature to identify subcellular localization data and a high-throughput, polymerase chain reaction (PCR)-based approach to experimentally characterize subcellular localization. These approaches have provided localization data for 244 and 169 proteins. Type II membrane proteins are localized to all major organelle compartments; however, some biases were observed towards the early secretory pathway and punctate structures. Collectively, this study reports the subcellular localization of 26% of the defined dataset. All reported localization data are presented in the LOCATE database (http://www.locate.imb.uq.edu.au).

  14. NMR Structures of Membrane Proteins in Phospholipid Bilayers

    PubMed Central

    Radoicic, Jasmina; Lu, George J.; Opella, Stanley J.

    2014-01-01

    Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins; especially those accomplished with the proteins in phospholipid bilayer environments where they function. PMID:25032938

  15. Comprehensive Proteomic Analysis of Membrane Proteins in Toxoplasma gondii*

    PubMed Central

    Che, Fa-Yun; Madrid-Aliste, Carlos; Burd, Berta; Zhang, Hongshan; Nieves, Edward; Kim, Kami; Fiser, Andras; Angeletti, Ruth Hogue; Weiss, Louis M.

    2011-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that is an important human and animal pathogen. Experimental information on T. gondii membrane proteins is limited, and the majority of gene predictions with predicted transmembrane motifs are of unknown function. A systematic analysis of the membrane proteome of T. gondii is important not only for understanding this parasite's invasion mechanism(s), but also for the discovery of potential drug targets and new preventative and therapeutic strategies. Here we report a comprehensive analysis of the membrane proteome of T. gondii, employing three proteomics strategies: one-dimensional gel liquid chromatography-tandem MS analysis (one-dimensional gel electrophoresis LC-MS/MS), biotin labeling in conjunction with one-dimensional gel LC-MS/MS analysis, and a novel strategy that combines three-layer “sandwich” gel electrophoresis with multidimensional protein identification technology. A total of 2241 T. gondii proteins with at least one predicted transmembrane segment were identified and grouped into 841 sequentially nonredundant protein clusters, which account for 21.8% of the predicted transmembrane protein clusters in the T. gondii genome. A large portion (42%) of the identified T. gondii membrane proteins are hypothetical proteins. Furthermore, many of the membrane proteins validated by mass spectrometry are unique to T. gondii or to the Apicomplexa, providing a set of gene predictions ripe for experimental investigation, and potentially suitable targets for the development of therapeutic strategies. PMID:20935347

  16. Detergent selection for enhanced extraction of membrane proteins.

    PubMed

    Arachea, Buenafe T; Sun, Zhen; Potente, Nina; Malik, Radhika; Isailovic, Dragan; Viola, Ronald E

    2012-11-01

    Generating stable conditions for membrane proteins after extraction from their lipid bilayer environment is essential for subsequent characterization. Detergents are the most widely used means to obtain this stable environment; however, different types of membrane proteins have been found to require detergents with varying properties for optimal extraction efficiency and stability after extraction. The extraction profiles of several detergent types have been examined for membranes isolated from bacteria and yeast, and for a set of recombinant target proteins. The extraction efficiencies of these detergents increase at higher concentrations, and were shown to correlate with their respective CMC values. Two alkyl sugar detergents, octyl-β-d-glucoside (OG) and 5-cyclohexyl-1-pentyl-β-d-maltoside (Cymal-5), and a zwitterionic surfactant, N-decylphosphocholine (Fos-choline-10), were generally effective in the extraction of a broad range of membrane proteins. However, certain detergents were more effective than others in the extraction of specific classes of integral membrane proteins, offering guidelines for initial detergent selection. The differences in extraction efficiencies among this small set of detergents supports the value of detergent screening and optimization to increase the yields of targeted membrane proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Exceptional overproduction of a functional human membrane protein.

    PubMed

    Nyblom, Maria; Oberg, Fredrik; Lindkvist-Petersson, Karin; Hallgren, Karin; Findlay, Heather; Wikström, Jennie; Karlsson, Anders; Hansson, Orjan; Booth, Paula J; Bill, Roslyn M; Neutze, Richard; Hedfalk, Kristina

    2007-11-01

    Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization.

  18. Optimal separation of jojoba protein using membrane processes

    SciTech Connect

    Nabetani, Hiroshi; Abbott, T.P.; Kleiman, R.

    1995-05-01

    The efficiency of a pilot-scale membrane system for purifying and concentrating jojoba protein was estimated. In this system, a jojoba extract was first clarified with a microfiltration membrane. The clarified extract was diafiltrated and the protein was purified with an ultrafiltration membrane. Then the protein solution was concentrated with the ultrafiltration membrane. Permeate flux during microfiltration was essentially independent of solids concentration in the feed, in contrast with the permeate flux during ultrafiltration which was a function of protein concentration. Based on these results, a mathematical model which describes the batchwise concentration process with ultrafiltration membranes was developed. Using this model, the combination of batchwise concentration with diafiltration was optimized, and an industrial-scale process was designed. The effect of ethylenediaminetetraacetic acid (EDTA) on the performance of the membrane system was also investigated. The addition of EDTA increased the concentration of protein in the extract and improved the recovery of protein in the final products. The quality of the final product (color and solubility) was also improved. However, EDTA decreased permeate flux during ultrafiltration.

  19. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  20. Recombinant Dengue virus protein NS2B alters membrane permeability in different membrane models.

    PubMed

    León-Juárez, Moisés; Martínez-Castillo, Macario; Shrivastava, Gaurav; García-Cordero, Julio; Villegas-Sepulveda, Nicolás; Mondragón-Castelán, Mónica; Mondragón-Flores, Ricardo; Cedillo-Barrón, Leticia

    2016-01-04

    One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B serves a viroporin function. We cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays and transmission electron microscopy were performed to identify structures involved in permeability changes. The DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and generate organized structures on eukaryotes membranes. Our data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.

  1. Isothermal Titration Calorimetry of Membrane Proteins – Progress and Challenges

    PubMed Central

    Rajarathnam, Krishna; Rösgen, Jörg

    2013-01-01

    Summary Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. PMID:23747362

  2. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    NASA Astrophysics Data System (ADS)

    Sun, Junfen; Wu, Lishun

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  3. Age-related changes in gap junctional intercellular communication in osteoblastic cells

    PubMed Central

    Genetos, Damian C.; Zhou, Zhiyi; Li, Zhongyong; Donahue, Henry J.

    2013-01-01

    Aging demonstrates deleterious effects upon the skeleton which can predispose an individual to osteoporosis and related fractures. Despite the well-documented evidence that aging decreases bone formation, there remains little understanding whereby cellular aging alters skeletal homeostasis. We, and others, have previously demonstrated that gap junctions—membrane-spanning channels that allow direct cell-to-cell conductance of small signaling molecules—are critically involved in osteoblast differentiation and skeletal homeostasis. We examined whether the capacity of rat osteoblastic cells to form gap junctions and respond to known modulators of gap junction intercellular communication (GJIC) was dependent on the age of the animal from which they were isolated. We observed no effect of age upon osteoblastic Cx43 mRNA, protein or GJIC. We also examined age-related changes in PTH-stimulated GJIC. PTH demonstrated age-dependent effects upon GJIC: osteoblastic cells from young rats increased GJIC in response to PTH, whereas there was no change in GJIC in response to PTH in osteoblastic cells from mature or old rats. PTH-stimulated GJIC occurred independently of changes in Cx43 mRNA or protein expression. Cholera toxin significantly increased GJIC in osteoblastic cells from young rats compared to those from mature and old rats. These data demonstrate an age-related impairment in the capacity of osteoblastic cells to generate functional gap junctions in response to PTH, and suggest that an age-related defect in G protein-coupled adenylate cyclase activity at least partially contributes to decreased PTH-stimulated GJIC. PMID:22696456

  4. Clipping or Extracting: Two Ways to Membrane Protein Degradation.

    PubMed

    Avci, Dönem; Lemberg, Marius K

    2015-10-01

    Protein degradation is a fundamentally important process that allows cells to recognize and remove damaged protein species and to regulate protein abundance according to functional need. A fundamental challenge is to understand how membrane proteins are recognized and removed from cellular organelles. While most of our understanding of this mechanism comes from studies on p97/Cdc48-mediated protein dislocation along the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, recent studies have revealed intramembrane proteolysis to be an additional mechanism that can extract transmembrane segments. Here, we review these two principles in membrane protein degradation and discuss how intramembrane proteolysis, which introduces an irreversible step in protein dislocation, is used to drive regulated protein turnover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Osteoblast Differentiation at a Glance

    PubMed Central

    Rutkovskiy, Arkady; Stensløkken, Kåre-Olav; Vaage, Ingvar Jarle

    2016-01-01

    Ossification is a tightly regulated process, performed by specialized cells called osteoblasts. Dysregulation of this process may cause inadequate or excessive mineralization of bones or ectopic calcification, all of which have grave consequences for human health. Understanding osteoblast biology may help to treat diseases such as osteogenesis imperfecta, calcific heart valve disease, osteoporosis, and many others. Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from mesenchymal progenitors, either directly or via an osteochondroprogenitor. The direct pathway is typical for intramembranous ossification of the skull and clavicles, while the latter is a hallmark of endochondral ossification of the axial skeleton and limbs. The pathways merge at the level of preosteoblasts, which progress through 3 stages: proliferation, matrix maturation, and mineralization. Osteoblasts can also differentiate into osteocytes, which are stellate cells populating narrow interconnecting passages within the bone matrix. The key molecular switch in the commitment of mesenchymal progenitors to osteoblast lineage is the transcription factor cbfa/runx2, which has multiple upstream regulators and a wide variety of targets. Upstream is the Wnt/Notch system, Sox9, Msx2, and hedgehog signaling. Cofactors of Runx2 include Osx, Atf4, and others. A few paracrine and endocrine factors serve as coactivators, in particular, bone morphogenetic proteins and parathyroid hormone. The process is further fine-tuned by vitamin D and histone deacetylases. Osteoblast differentiation is subject to regulation by physical stimuli to ensure the formation of bone adequate for structural and dynamic support of the body. Here, we provide a brief description of the various stimuli that influence osteogenesis: shear stress, compression, stretch, micro- and macrogravity, and ultrasound. A complex understanding of factors necessary for osteoblast differentiation paves a way to introduction

  6. Determining the Topology of Membrane-Bound Proteins Using PEGylation.

    PubMed

    Howe, Vicky; Brown, Andrew J

    2017-01-01

    Biochemical methods can help elucidate the membrane topology of hydrophobic membrane proteins where X-ray crystallography is difficult or impractical, providing important structural data. Here, we describe the method of PEGylation, which uses a cysteine-reactive molecule, maleimide polyethylene glycol (mPEG), to determine the cytosolic accessibility of introduced cysteine residues. This accessibility is visualized using Western blotting to detect a band shift that indicates cysteine labeling by mPEG. Using scanning cysteine mutagenesis, followed by PEGylation, one can map the accessibility of the introduced cysteines, hence inferring the membrane topology of the protein.We used PEGylation to determine the membrane topology of the sterol regulatory domain of a cholesterol synthesis enzyme, squalene monooxygenase, identifying that it is anchored to the membrane via a re-entrant loop.

  7. Parathyroid hormone regulates osterix and Runx2 mRNA expression predominantly through protein kinase A signaling in osteoblast-like cells.

    PubMed

    Wang, B L; Dai, C L; Quan, J X; Zhu, Z F; Zheng, F; Zhang, H X; Guo, S Y; Guo, G; Zhang, J Y; Qiu, M C

    2006-02-01

    Runt-related transcription factor 2 (Runx2) and osterix are osteoblast-specific transcription factors essential for the development of osteoblastic cells and bone formation. PTH given intermittently has anabolic effects on bone; however, the exact role remains to be understood completely. The purpose of this study was both to investigate whether PTH regulates Runx2 as well as osterix expression and to identify the signaling used. Using RT-PCR, we confirmed that PTH (1-34) regulated Runx2 and osterix mRNA expression, in rat osteoblast-like cell line UMR 106, in a dose- and time-dependent manner. PTH in low concentrations stimulated both Runx2 and osterix mRNA expression while that in high concentrations did not. Forskolin, an adenylate cyclase activator, also enhanced Runx2 and osterix transcription, and the stimulatory effects of PTH and forskolin were blocked by the pre-treatment of the cells with H-89, a protein kinase A (PKA) inhibitor. In contrast, the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) had no effect on Runx2 transcription, but induced an increase in osterix mRNA level at the concentration of 500 nM at 12 h after treatment. Moreover, pre-treatment of the cells with calphostin C, a PKC-specific inhibitor, reduced the increase in osterix transcripts enhanced by PTH and PMA 12 h after treatment. However, these inhibitory effects were not sustained for longer terms. These observations demonstrate that PTH stimulates Runx2 and osterix expression in vitro, at least in part, at transcriptional level. Induction of Runx2 mRNA is mediated through the activation of cAMP/PKA signal transduction. In the case of osterix, although the increase in mRNA level is predominantly mediated via cAMP/PKA signaling, PKC activation might also be involved in this process.

  8. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitoge