Science.gov

Sample records for membrane skeleton organization

  1. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte

    SciTech Connect

    Shen, B.W.

    1995-02-01

    To understand the role of ankyrin-band 3 complexes in the organization of the spectrin-based membrane skeleton and its contribution to the mechanical properties of human erythrocytes, intact skeletons and single-layered skeleton leaflets were prepared from intact and physically sheared membrane ghosts, expanded in low salt buffer, and examined by transmission electron microscopy. While the structures of intact skeletons and single-layered skeleton leaflets shared many common features, including rigid junctional complexes of spectrin, actin, and band 4.1; short stretches ({approximately}50 {angstrom}) of flexible spectrin filaments; and globular masses of ankyrin-band 3 complexes situated close to the middle of the spectrin filaments, the definition of structural units in the intact skeleton is obscured by the superposition of the two layers. However, the spatial disposition of structural elements can be clearly defined in the images of the single-layered skeleton leaflets. Partially expanded skeletal leaflets contain conglomerates of ankyrin-band 3 complexes arranged in a circular or clove-leaf configuration that straddles multiple strands of thick spectrin cables, presumably reflecting the association of ankyrin-band 3 complexes on neighboring spectrin tetramers as well as the lateral association of the spectrin filaments. Hyperexpansion of the skeleton leaflets led to dissociation of the conglomerates of ankyrin-band 3 complexes, full-extension of the spectrin tetramers, and separation of the individual strands of spectrin tetramers. Clearly defined stands of spectrin tetramers in the hyperexpanded single-layered skeletal leaflets often contained two sets of globular protein masses that divided the spectrin tetramers into three segments of approximately equal length.

  2. Identification of a membrane skeleton in platelets

    PubMed Central

    1988-01-01

    Platelets have previously been shown to contain actin filaments that are linked, through actin-binding protein, to the glycoprotein (GP) Ib- IX complex, GP Ia, GP IIa, and an unidentified GP of Mr 250,000 on the plasma membrane. The objective of the present study was to use a morphological approach to examine the distribution of these membrane- bound filaments within platelets. Preliminary experiments showed that the Triton X-100 lysis buffers used previously to solubilize platelets completely disrupt the three-dimensional organization of the cytoskeletons. Conditions were established that minimized these postlysis changes. The cytoskeletons remained as platelet-shaped structures. These structures consisted of a network of long actin filaments and a more amorphous layer that outlined the periphery. When Ca2+ was present, the long actin filaments were lost but the amorphous layer at the periphery remained; conditions were established in which this amorphous layer retained the outline of the platelet from which it originated. Immunocytochemical experiments showed that the GP Ib-IX complex and actin-binding protein were associated with the amorphous layer. Analysis of the amorphous material on SDS-polyacrylamide gels showed that it contained actin, actin-binding protein, and all actin- bound GP Ib-IX. Although actin filaments could not be visualized in thin section, the actin presumably was in a filamentous form because it was solubilized by DNase I and bound phalloidin. These studies show that platelets contain a membrane skeleton and suggest that it is distinct from the network of cytoplasmic actin filaments. This membrane skeleton exists as a submembranous lining that, by analogy to the erythrocyte membrane skeleton, may stabilize the plasma membrane and contribute to determining its shape. PMID:3372587

  3. Ultrastructure of the intact skeleton of the human erythrocyte membrane.

    PubMed

    Shen, B W; Josephs, R; Steck, T L

    1986-03-01

    Filamentous skeletons were liberated from isolated human erythrocyte membranes in Triton X-100, spread on fenestrated carbon films, negatively stained, and viewed intact and unfixed in the transmission electron microscope. Two forms of the skeleton were examined: (a) basic skeletons, stripped of accessory proteins with 1.5 M NaCl so that they contain predominantly polypeptide bands 1, 2, 4.1, and 5; and (b) unstripped skeletons, which also bore accessory proteins such as ankyrin and band 3 and small plaques of residual lipid. Freshly prepared skeletons were highly condensed. Incubation at low ionic strength and in the presence of dithiothreitol for an hour or more caused an expansion of the skeletons, which greatly increased the visibility of their elements. The expansion may reflect the opening of spectrin from a compact to an elongated disposition. Expanded skeletons appeared to be organized as networks of short actin filaments joined by multiple (5-8) spectrin tetramers. In unstripped preparations, globular masses were observed near the centers of the spectrin filaments, probably corresponding to complexes of ankyrin with band 3 oligomers. Some of these globules linked pairs of spectrin filaments. Skeletons prepared with a minimum of perturbation had thickened actin protofilaments, presumably reflecting the presence of accessory proteins. The length of these actin filaments was highly uniform, averaging 33 +/- 5 nm. This is the length of nonmuscle tropomyosin. Since there is almost enough tropomyosin present to saturate the F-actin, our data support the hypothesis that tropomyosin may determine the length of actin protofilaments in the red cell membrane.

  4. Anatomy of the red cell membrane skeleton: unanswered questions.

    PubMed

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias.

  5. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.

    PubMed

    Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W

    2015-10-14

    Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton

  6. The skeleton as an endocrine organ.

    PubMed

    DiGirolamo, Douglas J; Clemens, Thomas L; Kousteni, Stavroula

    2012-11-01

    Surprising new discoveries in the field of skeletal biology show that bone cells produce endocrine hormones that regulate phosphate and glucose homeostasis. In this Review, we examine the features of these new endocrine pathways and discuss their physiological importance in the context of our current understanding of energy metabolism and mineral homeostasis. Consideration of evolutionary and comparative biology provides clues that a key driving force for the emergence of these hormonal pathways was the development of a large, energy-expensive musculoskeletal system. Specialized bone cells also evolved and produced endocrine hormones to integrate the skeleton in global mineral and nutrient homeostasis. The recognition of bone as a true endocrine organ represents a fertile area for further research and should improve the diagnosis and treatment of metabolic diseases such as osteoporosis and diabetes mellitus.

  7. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton.

    PubMed

    Liu, S C; Derick, L H; Palek, J

    1987-03-01

    The isolated membrane skeleton of human erythrocytes was studied by high resolution negative staining electron microscopy. When the skeletal meshwork is spread onto a thin carbon film, clear images of a primarily hexagonal lattice of junctional F-actin complexes crosslinked by spectrin filaments are obtained. The regularly ordered network extends over the entire membrane skeleton. Some of the junctional complexes are arranged in the form of pentagons and septagons, approximately 3 and 8%, respectively. At least five forms of spectrin crosslinks are detected in the spread skeleton including a single spectrin tetramer linking two junctional complexes, three-armed Y-shaped spectrin molecules linking three junctional complexes, three-armed spectrin molecules connecting two junctional complexes with two arms bound to one complex and the third arm bound to the adjacent complex, double spectrin filaments linking two junctional complexes, and four-armed spectrin molecules linking two junctional complexes. Of these, the crosslinks of single spectrin tetramers and three-armed molecules are the most abundant and represent 84 and 11% of the total crosslinks, respectively. These observations are compatible with the presence of spectrin tetramers and oligomers in the erythrocyte membrane skeleton. Globular structures (9-12 nm in diameter) are attached to the majority of the spectrin tetramers or higher order oligomer-like molecules, approximately 80 nm from the distal ends of the spectrin tetramers. These globular structures are ankyrinor ankyrin/band 3-containing complexes, since they are absent when ankyrin and residual band 3 are extracted from the skeleton under hypertonic conditions.

  8. Multifractal characterization of morphology of human red blood cells membrane skeleton.

    PubMed

    Ţălu, Ş; Stach, S; Kaczmarska, M; Fornal, M; Grodzicki, T; Pohorecki, W; Burda, K

    2016-04-01

    The purpose of this paper is to show applicability of multifractal analysis in investigations of the morphological changes of ultra-structures of red blood cells (RBCs) membrane skeleton measured using atomic force microscopy (AFM). Human RBCs obtained from healthy and hypertensive donors as well as healthy erythrocytes irradiated with neutrons (45 μGy) were studied. The membrane skeleton of the cells was imaged using AFM in a contact mode. Morphological characterization of the three-dimensional RBC surfaces was realized by a multifractal method. The nanometre scale study of human RBCs surface morphology revealed a multifractal geometry. The generalized dimensions Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of their membrane skeleton organization. Surface characterization was made using areal ISO 25178-2: 2012 topography parameters in combination with AFM topography measurement. The surface structure of human RBCs is complex with hierarchical substructures resulting from the organization of the erythrocyte membrane skeleton. The analysed AFM images confirm a multifractal nature of the surface that could be useful in histology to quantify human RBC architectural changes associated with different disease states. In case of very precise measurements when the red cell surface is not wrinkled even very fine differences can be uncovered as was shown for the erythrocytes treated with a very low dose of ionizing radiation.

  9. Dipole relaxation in erythrocyte membrane: involvement of spectrin skeleton.

    PubMed

    Ivanov, I T; Paarvanova, B; Slavov, T

    2012-12-01

    Polarization of spectrin-actin undermembrane skeleton of red blood cell (RBC) plasma membranes was studied by impedance spectroscopy. Relatedly, dielectric spectra of suspensions that contained RBCs of humans, mammals (bovine, horse, dog, cat) and birds (turkey, pigeon, duck), and human RBC ghost membranes were continuously obtained during heating from 20 to 70°C. Data for the complex admittance and capacitance were used to derive the suspension resistance, R, and capacitance, C, as well as the energy loss as a function of temperature. As in previous studies, two irreversible temperature-induced transitions in the human RBC plasma membrane were detected at 49.5°C and at 60.7°C (at low heating rate). The transition at 49.5°C was evident from the abrupt changes in R, and C and the fall in the energy loss, due to dipole relaxation. For the erythrocytes of indicated species the changes in R and C displayed remarkable and similar frequency profiles within the 0.05-13MHz domain. These changes were subdued after cross-linking of membranes by diamide (0.3-1.3mM) and glutaraldehyde (0.1-0.4%) and at the presence of glycerol (10%). Based on the above results and previous reports, the dielectric changes at 49.5°C were related to dipole relaxation and segmental mobility of spectrin cytoskeleton. The results open the possibility for selective dielectric thermolysis of cell cytoskeleton.

  10. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells.

    PubMed

    Kats, Lev M; Proellocks, Nicholas I; Buckingham, Donna W; Blanc, Lionel; Hale, John; Guo, Xinhua; Pei, Xinhong; Herrmann, Susann; Hanssen, Eric G; Coppel, Ross L; Mohandas, Narla; An, Xiuli; Cooke, Brian M

    2015-07-01

    During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.

  11. Visualization of the Protein Associations in the Erythrocyte Membrane Skeleton

    NASA Astrophysics Data System (ADS)

    Byers, Timothy J.; Branton, Daniel

    1985-09-01

    We have obtained clear images of the erythrocyte membrane skeleton from negatively stained preparations that originate directly from the intact cell but in which the spectrin meshwork is artificially spread to allow close inspection. Our procedure requires less than 2 min at 5 degrees C in phosphate buffers. We find 200-nm-long spectrin tetramers crosslinked by junctional complexes. Each junction contains a regular 37-nm rod, probably an actin oligomer of approximately 13 monomers. Densities appear at variable places in the meshwork but distinct globules occur with great frequency 78 nm from the spectrin tetramer's junctional insertion end, very close to the known binding site for ankyrin. Most frequently, five or six spectrin tetramers insert into each junction, producing a meshwork that displays remarkably regular long range order.

  12. Developmental mechanism of the periodic membrane skeleton in axons

    PubMed Central

    Zhong, Guisheng; He, Jiang; Zhou, Ruobo; Lorenzo, Damaris; Babcock, Hazen P; Bennett, Vann; Zhuang, Xiaowei

    2014-01-01

    Actin, spectrin, and associated molecules form a periodic sub-membrane lattice structure in axons. How this membrane skeleton is developed and why it preferentially forms in axons are unknown. Here, we studied the developmental mechanism of this lattice structure. We found that this structure emerged early during axon development and propagated from proximal regions to distal ends of axons. Components of the axon initial segment were recruited to the lattice late during development. Formation of the lattice was regulated by the local concentration of βII spectrin, which is higher in axons than in dendrites. Increasing the dendritic concentration of βII spectrin by overexpression or by knocking out ankyrin B induced the formation of the periodic structure in dendrites, demonstrating that the spectrin concentration is a key determinant in the preferential development of this structure in axons and that ankyrin B is critical for the polarized distribution of βII spectrin in neurites. DOI: http://dx.doi.org/10.7554/eLife.04581.001 PMID:25535840

  13. Learning about Skeletons and Other Organ Systems of Vertebrate Animals.

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Reiss, Michael

    1999-01-01

    Describes students' (n=175) understandings of the structure of animal (including human) skeletons and the internal organs found in them. Finds that older students have a better knowledge of animals' internal anatomies, although knowledge of human internal structure is significantly better than knowledge of rat, bird, and fish internal structure.…

  14. Membrane skeleton orchestrates the platelet glycoprotein (GP) Ib-IX complex clustering and signaling.

    PubMed

    Shang, Dan; Zhang, Zuping; Wang, Qian; Ran, Yali; Shaw, Tanner S; Van, John N; Peng, Yuandong

    2016-10-01

    Platelet glycoprotein Ib-IX complex is affixed to the membrane skeleton through interaction with actin binding protein 280 (ABP-280). We find that removal of the ABP-280 binding sites in GP Ibα cytoplasmic tail has little impact on the complex clustering induced by antibody crosslinking. However, large truncation of the GP Ibα cytoplasmic tail allows the formation of larger patches of the complex, suggesting that an ABP-280 independent force may exist. Besides, we observe that the signaling upon GP Ib-IX clustering is elicited in both membrane lipid domain dependent and independent manner, a choice that relies on how the membrane skeleton interacts with the complex. Our findings suggest a more complex mechanism for how the membrane skeleton regulates the GP Ib-IX function. © 2016 IUBMB Life, 68(10):823-829, 2016.

  15. XANES mapping of organic sulfate in three scleractinian coral skeletons

    NASA Astrophysics Data System (ADS)

    Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean

    2003-01-01

    The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.

  16. Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton.

    PubMed

    Ciana, Annarita; Balduini, Cesare; Minetti, Giampaolo

    2005-06-01

    In cell membranes, local inhomogeneity in the lateral distribution of lipids and proteins is thought to exist in vivo in the form of lipid 'rafts', microdomains enriched in cholesterol and sphingolipids, and in specific classes of proteins, that appear to play specialized roles for signal transduction, cell-cell recognition, parasite or virus infection, and vesicular trafficking. These structures are operationally defined as membranes resistant to solubilization by nonionic detergents at 4 degree C (detergent-resistant membranes, DRMs). This definition appears to be necessary and sufficient, although additional manoeuvres, not always described with sufficient detail, may be needed to ensure isolation of DRMs, like mechanical homogenization, and changes in the pH and/or ionic strength of the solubilization medium. We show here for the human erythrocyte that the different conditions adopted may lead to the isolation of qualitatively and quantitatively different DRM fractions, thus contributing to the complexity of the notion itself of lipid raft. A significant portion of erythrocyte DRMs enriched in reported lipid raft markers, such as flotillin-1, flotillin-2 and GM1, is anchored to the spectrin membrane-skeleton via electrostatic interactions that can be disrupted by the simultaneous increase in pH and ionic strength of the solubilization medium.

  17. The skeleton as an intracrine organ for vitamin D metabolism.

    PubMed

    Anderson, Paul H; Atkins, Gerald J

    2008-12-01

    The endocrine hormone, 1alpha,25-dihydroxyvitamin D(3) (1,25D) is an important regulator of calcium and phosphorus homeostasis. In this context, 1,25D is generally recognized as necessary for the maintenance of a healthy skeleton through its actions on the small intestine. In this review, we highlight the direct effects of 1,25D on the constituent cells of the bone, actions that are independent of effects on the intestine and kidney. We also consider the evidence that 25D levels, not 1,25D levels, correlate best with parameters of bone health, and that the bone itself is a site of metabolic conversion of 25D into 1,25D, by virtue of its expression of the 25-hydroxyvitamin D 1alpha-hydroxylase, CYP27B1. We review the evidence that at least osteoblasts and chondrocytes, and possibly also bone resorbing osteoclasts, are capable of such metabolic conversion, and therefore that these cells likely participate in autocrine and paracrine loops of vitamin D metabolism. We conclude that the skeleton is an intracrine organ for vitamin D metabolism, challenging the long-held notion that 1,25D is solely an endocrine hormone.

  18. Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes.

    PubMed

    Gudi, S R; Kumar, A; Bhakuni, V; Gokhale, S M; Gupta, C M

    1990-03-30

    Transbilayer phospholipid distribution, membrane skeleton dissociation/association, and spectrin structure have been analysed in human erythrocytes after subjecting them to heating at 50 degrees C for 15 min. The membrane skeleton dissociation/association was determined by measuring the Tris-induced dissociation of Triton-insoluble membrane skeletons (Triton shells), the spectrin-actin extractability under low ionic conditions, and the binding of spectrin-actin with normal erythrocyte membrane inside-out vesicles (IOVs). The spectrin structure was ascertained by measuring the spectrin dimer-to-tetramer ratio as well as the spectrin tryptophan fluorescence. Both the Tris-induced Triton shell dissociation and the spectrin-actin extractability under low ionic conditions were considerably reduced by the heat treatment. Also, the binding of heated erythrocyte spectrin-actin to IOVs was significantly smaller than that observed with the normal cell spectrin-actin. Further, the quantity of spectrin dimers was appreciably increased in heat-treated erythrocytes as compared to the normal cells. This change in the spectrin dimer-to-tetramer ratio was accompanied by marked changes in the spectrin tryptophan fluorescence. In spite of these heat-induced alterations in structure and bilayer interactions of the membrane skeleton, the inside-outside glycerophospholipid distribution remained virtually unaffected in the heat-treated cells, as judged by employing bee venom and pancreatic phospholipase A2, fluorescamine and Merocyanine 540 as the external membrane probes. These results strongly indicate that membrane bilayer-skeleton interaction is not the major factor in determining the transbilayer phospholipid asymmetry in human erythrocyte membrane.

  19. 2,3-Diphosphoglycerate and ATP dissociate erythrocyte membrane skeletons.

    PubMed

    Sheetz, M P; Casaly, J

    1980-10-25

    Since ATP and 2,3-diphosphoglycerate cause an increase in the lateral mobility of integral membrane proteins in the erythrocyte (Schindler, M., Koppel, D., and Sheetz, M. P. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 1457-1461), we have studied their effects on the membrane skeletal complex or shell (composed of spectrin, actin, and bands 4.1 (78,000 daltons) and 4.9 (50,000 daltons)) and its interaction with the erythrocyte membrane. Both phosphate compounds dissociated the delipidated shell complex, with half-maximal dissociation at 2.5 mM 2,3-diphosphoglycerate and 8 mM ATP, whereas equivalent concentrations of EDTA did not. Concomitant with complex dissociation, spectrin was solubilized but band 4.1 and actin remained in a complexed or polymeric form. When proteins which were involved in linking spectrin to the membrane were present on the shell, higher concentrations of the phosphate compounds still dissociated the complex but less spectrin was solubilized. Treatment of erythrocyte membranes with the same phosphate compounds caused membrane vesiculation but no proteins were solubilized. We suggest that ATP and 2,3-diphosphoglycerate, at concentrations which are normally present in erythrocytes, can weaken associations in the shell but will not dissociate the complex from membrane attachment sites.

  20. Modeling of the axon membrane skeleton structure and implications for its mechanical properties

    PubMed Central

    Tzingounis, Anastasios V.

    2017-01-01

    Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young’s modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration. PMID:28241082

  1. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    PubMed Central

    Picart, C; Dalhaimer, P; Discher, D E

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606

  2. Actin Skeletons at the Membrane as Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Dalhaimer, Paul; Levine, Alex; Lubensky, Tom

    2002-03-01

    Actin filaments crosslinked by proteins such as spectrin form plasma membrane networks in a number of cell-types, including the red blood cell and the outer hair cell of the inner ear. Actin filaments are stiff compared to spectrin and can be considered hard rods. We statistically simulate network phase behavior at finite temperature by Monte Carlo methods, and explore the effects of spectrin and actin length as well as isotropic and shear stresses. Relative lengths required for a zero pressure nematic phase are determined, for exmaple, and indicate structural requirements for obtaining a 2D anisotropic elastomer. Emerging studies of network elasticity examine the anisotropic state and begin to probe the relevance of hyper-soft modes to hearing.

  3. Elliptical erythrocyte membrane skeletons and heat-sensitive spectrin in hereditary elliptocytosis.

    PubMed

    Tomaselli, M B; John, K M; Lux, S E

    1981-03-01

    Erythrocyte membranes (ghosts) and membrane skeletons (submembranous reticula of spectrin, actin, and protein 4.1 prepared by extracting ghosts with Triton X-100) from 15 patients with hereditary elliptocytosis (HE) were elliptical, which indicates that the primary defect responsible for the abnormal shape of these cells resides in the skeleton. The protein composition of HE skeletons was normal, but in three kindreds purified spectrin heterodimer from 7/7 HE patients was heat sensitive and denatured at 48.0 +/- 0.1 degrees C instead of 49.0 +/- 0.3 degrees C (P less than 0.0005). Heat sensitivity was detected by precipitation and, in the spectrin from one patient, by changes in circular dichroism. In one other kindred spectrin dimer from 3/3 patients denatured at the normal temperature. In two of the three kindreds with heat-sensitive spectrin, intact erythrocytes exhibited budding and fragmentation at the temperature at which spectrin denatured. In the third kindred spectrin was heat sensitive, but erythrocytes were not. The symptoms in the latter kindred were clinically more severe (hemolytic HE with spherocytosis) than in the other three (mild HE). We conclude that defects in the erythrocyte membrane skeleton may be a common feature of HE. As judged by heat denaturation of erythrocytes and purified spectrin dimer, three phenotypically distinct forms of HE exist, two of which are characterized by defective, heat-sensitive spectrin. It remains to be determined whether the molecular defect in spectrin responsible for heat sensitivity is the primary genetic defect responsible for HE.

  4. Antibodies to betaISigma2 spectrin identify in-homogeneities in the erythrocyte membrane skeleton.

    PubMed

    Pradhan, Deepti; Tseng, Kenneth; Cianci, Carol D; Morrow, Jon S

    2004-01-01

    The cortical cytoskeleton of the mammalian red cell, composed of spectrin, actin, protein 4.1, adducin, and protein 4.9, is generally regarded as a homogeneous structure that maintains the integrity of the membrane and the lateral disposition of integral membrane proteins. The major component of this structure is a hetero-oligomer of alphaI and betaISigma1 spectrin. In other tissues, most notably muscle and brain, a transcript of the betaI spectrin gene is generated by alternative exon utilization, yielding a protein that has the COOH-terminal 19 residues of betaISigma1 spectrin replaced by 210 novel residues to generate betaISigma2 spectrin. This new transcript contains a pleckstrin homology (PH) domain and may even exist under some conditions in a homopolymeric form. Using antibodies specific for the COOH-terminal domains of either betaISigma1 or betaISigma2 spectrin, we find that contrary to previous understandings, mature human erythrocytes contain a subpopulation of spectrin that is immunoreactive with antibodies to the betaISigma2 isoform, and that this spectrin is distributed into distinct plasma membrane patches. These results suggest that the native mammalian erythrocyte membrane skeleton, rather than being homogeneous, contains discrete submicron-scale microdomains that differ in both their composition and dispersion across the cell surface. The precise nature and role of these putative microdomains is under active investigation.

  5. Structural and functional changes in the membrane and membrane skeleton of red blood cells induced by peroxynitrite.

    PubMed

    Starodubtseva, Maria N; Tattersall, Amanda L; Kuznetsova, Tatyana G; Yegorenkov, Nicolai I; Ellory, J Clive

    2008-08-01

    The changes in passive ion permeability of the red blood cell membrane after peroxynitrite action (3 microM-3 mM) have been studied by biophysical (using radioisotopes of rubidium, sodium and sulphur (sulphate)) and electrophysiological methods. The enhancement of passive membrane permeability to cations (potassium and sodium ions) and the inhibition of anion flux through the anion exchanger in peroxynitrite-treated red blood cells were revealed. In patch-clamp experiments the whole-cell conductance after peroxynitrite (80 microM) treatment of red blood cells increased 3-3.5-fold with a shift in the reversal potential from -7.0+/-1.5 mV to -4.3+/-0.9 mV (n=7, p=0.005). The addition of cobalt and nickel ions to red blood cell suspensions before peroxynitrite treatment had no effect on the peroxynitrite-induced cation flux but zinc ions in the same condition decreased cation flux about 2-fold. Using atomic force microscopy methods we revealed an increase in red blood cell membrane stiffness and the membrane skeleton complexity after peroxynitrite action. We conclude that the peroxynitrite-induced water and ion imbalance and reorganization in membrane structure lead to crenation of red blood cells.

  6. Skeleton-supported stochastic networks of organic memristive devices: Adaptations and learning

    SciTech Connect

    Erokhina, Svetlana; Sorokin, Vladimir; Erokhin, Victor

    2015-02-15

    Stochastic networks of memristive devices were fabricated using a sponge as a skeleton material. Cyclic voltage-current characteristics, measured on the network, revealed properties, similar to the organic memristive device with deterministic architecture. Application of the external training resulted in the adaptation of the network electrical properties. The system revealed an improved stability with respect to the networks, composed from polymer fibers.

  7. What's Inside Bodies? Learning about Skeletons and Other Organ Systems of Vertebrate Animals.

    ERIC Educational Resources Information Center

    Tunnicliffe, Sue Dale; Reiss, Michael

    This paper describes a study of young children's understanding of what is on the inside of animals--skeletons and other organ systems. The study uses 2-D drawings based on the idea that a drawing is the representational model and is the outward expression of the mental model. The 617 drawings made by participants in the study were awarded one of…

  8. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics.

  9. Hollow silica-copper-carbon anodes using copper metal-organic frameworks as skeletons

    NASA Astrophysics Data System (ADS)

    Sun, Zixu; Xin, Fengxia; Cao, Can; Zhao, Chongchong; Shen, Cai; Han, Wei-Qiang

    2015-12-01

    Hollow silica-copper-carbon (H-SCC) nanocomposites are first synthesized using copper metal-organic frameworks as skeletons to form Cu-MOF@SiO2 and then subjected to heat treatment. In the composites, the hollow structure and the void space from the collapse of the MOF skeleton can accommodate the huge volume change, buffer the mechanical stress caused by lithium ion insertion/extraction and maintain the structural integrity of the electrode and a long cycling stability. The ultrafine copper with a uniform size of around 5 nm and carbon with homogeneous distribution from the decomposition of the MOF skeleton can not only enhance the electrical conductivity of the composite and preserve the structural and interfacial stabilization, but also suppress the aggregation of silica nanoparticles and cushion the volume change. In consequence, the resulting material as an anode for lithium-ion batteries (LIBs) delivers a reversible capacity of 495 mA h g-1 after 400 cycles at a current density of 500 mA g-1. The synthetic method presented in this paper provides a facile and low-cost strategy for the large-scale production of hollow silica/copper/carbon nanocomposites as an anode in LIBs.Hollow silica-copper-carbon (H-SCC) nanocomposites are first synthesized using copper metal-organic frameworks as skeletons to form Cu-MOF@SiO2 and then subjected to heat treatment. In the composites, the hollow structure and the void space from the collapse of the MOF skeleton can accommodate the huge volume change, buffer the mechanical stress caused by lithium ion insertion/extraction and maintain the structural integrity of the electrode and a long cycling stability. The ultrafine copper with a uniform size of around 5 nm and carbon with homogeneous distribution from the decomposition of the MOF skeleton can not only enhance the electrical conductivity of the composite and preserve the structural and interfacial stabilization, but also suppress the aggregation of silica nanoparticles and

  10. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.

    PubMed

    Svetina, Saša; Kokot, Gašper; Kebe, Tjaša Švelc; Žekš, Boštjan; Waugh, Richard E

    2016-06-01

    Red blood cell (RBC) membrane skeleton is a closed two-dimensional elastic network of spectrin tetramers with nodes formed by short actin filaments. Its three-dimensional shape conforms to the shape of the bilayer, to which it is connected through vertical linkages to integral membrane proteins. Numerous methods have been devised over the years to predict the response of the RBC membrane to applied forces and determine the corresponding increase in the skeleton elastic energy arising either directly from continuum descriptions of its deformation, or seeking to relate the macroscopic behavior of the membrane to its molecular constituents. In the current work, we present a novel continuum formulation rooted in the molecular structure of the membrane and apply it to analyze model deformations similar to those that occur during aspiration of RBCs into micropipettes. The microscopic elastic properties of the skeleton are derived by treating spectrin tetramers as simple linear springs. For a given local deformation of the skeleton, we determine the average bond energy and define the corresponding strain energy function and stress-strain relationships. The lateral redistribution of the skeleton is determined variationally to correspond to the minimum of its total energy. The predicted dependence of the length of the aspirated tongue on the aspiration pressure is shown to describe the experimentally observed system behavior in a quantitative manner by taking into account in addition to the skeleton energy an energy of attraction between RBC membrane and the micropipette surface.

  11. Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets. Identification of one of the glycoproteins as glycoprotein Ib.

    PubMed Central

    Fox, J E

    1985-01-01

    Experiments were performed to determine whether platelets contain a membrane skeleton. Platelets were labeled by a sodium periodate/sodium [3H]borohydride method and lysed with Triton X-100. Much of the filamentous actin could be sedimented at low g forces (15,600 g, 4 min), but some of the actin filaments required high-speed centrifugation for their sedimentation (100,000 g, 3 h). The latter filaments differed from those in the low-speed pellet in that they could not be depolymerized by Ca2+ and could not be sedimented at low g forces even from Triton X-100 lysates of platelets that had been activated with thrombin. Actin-binding protein sedimented with both types of filaments, but 3H-labeled membrane glycoproteins were recovered mainly with the high-speed filaments. The primary 3H-labeled glycoprotein recovered with this "membrane skeleton" was glycoprotein (GP) Ib. Approximately 70% of the platelet GP Ib was present in this skeleton. Several other minor glycoproteins, including greater than 50% of the GP Ia and small amounts of three unidentified glycoproteins of Mr greater than 200,000, were also recovered with the membrane skeleton. The Triton X-100 insolubility of GP Ib, GP Ia, a minor membrane glycoprotein of 250,000 Mr, and actin-binding protein resulted from their association with actin filaments as they were rendered Triton X-100-soluble when actin filaments were depolymerized with deoxyribonuclease I and co-isolated with actin filaments on sucrose gradients. When isolated platelet plasma membranes were extracted with Triton X-100, actin, actin-binding protein, and GP Ib were recovered as the Triton X-100 residue. These studies show that unstimulated platelets contain a membrane skeleton composed of actin filaments and actin-binding protein that is distinct from the rest of the cytoskeleton and is attached to GP Ib, GP Ia, and a minor glycoprotein of 250,000 Mr on the plasma membrane. Images PMID:2932470

  12. A 39-kD plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton of Euglena gracilis

    SciTech Connect

    Rosiere, T.K.; Marrs, J.A.; Bouck, G.B. )

    1990-04-01

    The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39.

  13. Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin.

    PubMed

    Moon, R T; Lazarides, E

    1984-05-01

    Ankyrin is an extrinsic membrane protein in human erythrocytes that links the alpha beta-spectrin-based extrinsic membrane skeleton to the membrane by binding simultaneously to the beta-spectrin subunit and to the transmembrane anion transporter. To analyse the temporal and spatial regulation of assembly of this membrane skeleton, we investigated the kinetics of synthesis and assembly of ankyrin ( goblin ) with respect to those of spectrin in chicken embryo erythroid cells. Electrophoretic analysis of Triton X-100 soluble and cytoskeletal fractions show that at steady state both ankyrin and spectrin are detected exclusively in the cytoskeleton. In contrast, continuous labeling of erythroid cells with [35S]methionine, and immunoprecipitation of ankyrin and alpha- and beta-spectrin, reveals that newly synthesized ankyrin and spectrin are partitioned into both the cytoskeletal and Triton X-100 soluble fractions. The soluble pools of ankyrin and beta-spectrin reach a plateau of labeling within 1 h, whereas the soluble pool of alpha-spectrin is substantially larger and reaches a plateau more slowly, reflecting an approximately 3:1 ratio of synthesis of alpha- to beta-spectrin. Ankyrin and beta-spectrin enter the cytoskeletal fraction within 10 min of labeling, and the amount assembled into the cytoskeletal fraction exceeds the amount present in their respective soluble pools within 1 h of labeling. Although alpha-spectrin enters the cytoskeletal fraction with similar kinetics to beta-spectrin and ankyrin, and in amounts equimolar to beta-spectrin, the amount of cytoskeletal alpha-spectrin does not exceed the amount of soluble alpha-spectrin even after 3 h of labeling. Pulse-chase labeling experiments reveal that ankyrin and alpha- and beta-spectrin assembled into the cytoskeleton exhibit no detectable turnover, whereas the Triton X-100 soluble polypeptides are rapidly catabolized, suggesting that stable assembly of the three polypeptides is dependent upon their

  14. Lipids and Membrane Lateral Organization

    PubMed Central

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word “lipid rafts” returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, “ceramide” returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as “lipid raft-dependent.” However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes. PMID:21423393

  15. Effect of actuating cell source on locomotion of organic living machines with electrocompacted collagen skeleton.

    PubMed

    Webster, Victoria A; Hawley, Emma L; Akkus, Ozan; Chiel, Hillel J; Quinn, Roger D

    2016-05-09

    In robotics, there is a need for small scale, compliant actuators for use in medical applications or minimally invasive environmental monitoring. Biohybrid devices offer one solution to this need by using muscle cells to actuate compliant scaffolds. Such devices typically use biocompatible synthetic polymers as compliant scaffolds, which require additional processing steps to promote cellular alignment and attachment. Instead, electrocompacted and aligned collagen (ELAC) can be used as a completely organic scaffold, requiring no additional processing steps, with alignment being innately promoted by the topography. Locomotive living machines have been fabricated in this study using ELAC scaffolds. Devices have been produced using either primary cardiomyocytes or primary skeletal muscle cells isolated from chick embryos as actuators. When tested under the same conditions, skeletal muscle cell powered devices were approximately an order of magnitude faster, having a mean velocity of 77.6 ± 86.4 μm min(-1), compared to 9.34 ± 6.69 μm min(-1) for cardiomyocyte powered devices. In conclusion, completely organic living machines have been fabricated using electrocompacted collagen skeletons, and it was found that skeletal muscle powered devices were significantly faster than cardiomyocyte powered devices.

  16. Mechanical compression insults induce nanoscale changes of membrane-skeleton arrangement which could cause apoptosis and necrosis in dorsal root ganglion neurons.

    PubMed

    Quan, Xin; Guo, Kai; Wang, Yuqing; Huang, Liangliang; Chen, Beiyu; Ye, Zhengxu; Luo, Zhuojing

    2014-01-01

    In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.

  17. Comparative analysis of the soluble organic matrix of axial skeleton and sclerites of Corallium rubrum: insights for biomineralization.

    PubMed

    Debreuil, J; Tambutté, S; Zoccola, D; Segonds, N; Techer, N; Allemand, D; Tambutté, E

    2011-05-01

    We analysed the soluble organic matrix (SOM) of two biominerals formed by the same organism but differing by their morphological characteristics: the axial skeleton and the sclerites of Corallium rubrum. The results of 1D SDS-PAGE electrophoresis show for the two biominerals that SOM proteins bands have similar apparent molecular weight but differ in quantity. Further analysis by 2D electrophoresis reveals each protein band as a line of spots with different isoelectric points. Our results suggest that each SOM protein band consists of a mix of proteins and/or one unique protein with post-translational modifications. By immunohistochemistry, we show that antibodies raised against the SOM of axial skeleton and sclerites label the SOM of the two biominerals but also label the insoluble organic matrix suggesting the presence of common epitopes between the two biominerals and the two organic fractions.

  18. The membrane skeleton in Paramecium: Molecular characterization of a novel epiplasmin family and preliminary GFP expression results.

    PubMed

    Pomel, Sébastien; Diogon, Marie; Bouchard, Philippe; Pradel, Lydie; Ravet, Viviane; Coffe, Gérard; Viguès, Bernard

    2006-02-01

    Previous attempts to identify the membrane skeleton of Paramecium cells have revealed a protein pattern that is both complex and specific. The most prominent structural elements, epiplasmic scales, are centered around ciliary units and are closely apposed to the cytoplasmic side of the inner alveolar membrane. We sought to characterize epiplasmic scale proteins (epiplasmins) at the molecular level. PCR approaches enabled the cloning and sequencing of two closely related genes by amplifications of sequences from a macronuclear genomic library. Using these two genes (EPI-1 and EPI-2), we have contributed to the annotation of the Paramecium tetraurelia macronuclear genome and identified 39 additional (paralogous) sequences. Two orthologous sequences were found in the Tetrahymena thermophila genome. Structural analysis of the 43 sequences indicates that the hallmark of this new multigenic family is a 79 aa domain flanked by two Q-, P- and V-rich stretches of sequence that are much more variable in amino-acid composition. Such features clearly distinguish members of the multigenic family from epiplasmic proteins previously sequenced in other ciliates. The expression of Green Fluorescent Protein (GFP)-tagged epiplasmin showed significant labeling of epiplasmic scales as well as oral structures. We expect that the GFP construct described herein will prove to be a useful tool for comparative subcellular localization of different putative epiplasmins in Paramecium.

  19. Heat-induced alterations in monkey erythrocyte membrane phospholipid organization and skeletal protein structure and interactions.

    PubMed

    Kumar, A; Gudi, S R; Gokhale, S M; Bhakuni, V; Gupta, C M

    1990-12-14

    Rhesus monkey erythrocytes were subjected to heating at 50 degrees C for 5-15 min, and the heat-induced effects on the membrane structure were ascertained by analysing the membrane phospholipid organization and membrane skeleton dynamics and interactions in the heated cells. Membrane skeleton dynamics and interactions were determined by measuring the Tris-induced dissociation of the Triton-insoluble membrane skeleton (Triton shells), the spectrin-actin extractability at low ionic strength, spectrin self-association and spectrin binding to normal monkey erythrocyte membrane inside-out vesicles (IOVs). The Tris-induced Triton shell dissociation and spectrin-actin extractability were markedly decreased by the erythrocyte heating. Also, the binding of the heated erythrocyte membrane spectrin-actin with the IOVs was much smaller than that observed with the normal erythrocyte spectrin-actin. Further, the spectrin structure was extensively modified in the heated cells, as compared to the normal erythrocytes. Transbilayer phospholipid organization was ascertained by employing bee venom and pancreatic phospholipases A2, fluorescamine, and Merocyanine 540 as the external membrane probes. The amounts of aminophospholipids hydrolysed by phospholipases A2 or labeled by fluorescamine in intact erythrocytes considerably increased after subjecting them to heating at 50 degrees C for 15 min. Also, the fluorescent dye Merocyanine 540 readily stained the 15-min-heated cells but not the fresh erythrocytes. Unlike these findings, the extent of aminophospholipid hydrolysis in 5-min-heated cells by phospholipases A2 depended on the incubation time. While no change in the membrane phospholipid organization could be detected in 10 min, prolonged incubations led to the increased aminophospholipid hydrolysis. Similarly, fluorescamine failed to detect any change in the transbilayer phospholipid distribution soon after the 5 min heating, but it labeled greater amounts of aminophospholipids in

  20. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    PubMed Central

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-01-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104

  1. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery.

    PubMed

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-05

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  2. Alterations of erythrocyte membrane organization in alcoholics.

    PubMed

    Beaugé, F; Stibler, H; Borg, S

    1987-01-01

    Studies of fluorescence polarization of DPH have shown that erythrocyte membrane "fluidity" and fluidization by ethanol are significantly reduced in alcoholics. By using probes of the polar part of the membrane, ANS and TMA-DPH, in addition to DPH, it was shown in the present study that disturbances also exist in the polar region of the membrane which probably are related to changes in surface glycoconjugates. Furthermore, the acute fluidizing effect of ethanol was correlated with the capacity of the membrane to bind ethanol, which in turn appeared to be linked to the glycans. Chronic ethanol abuse thus causes complex disturbances of membrane organization at different levels of the membrane.

  3. The combined application of organic sulphur and isotope geochemistry to assess multiple sources of palaeobiochemicals with identical carbon skeletons

    NASA Technical Reports Server (NTRS)

    Kohnen, M. E.; Schouten, S.; Sinninghe Damste, J. S.; de Leeuw, J. W.; Merrit, D.; Hayes, J. M.

    1992-01-01

    Five immature sediments from a Messinian evaporitic basin, representing one evaporitic cycle, were studied using molecular organic sulphur and isotope geochemistry. It is shown that a specific carbon skeleton which is present in different "modes of occurrence" ("free" hydrocarbon, alkylthiophene, alkylthiolane, alkyldithiane, alkylthiane, and sulphur-bound in macromolecules) may have different biosynthetic precursors which are possibly derived from different biota. It is demonstrated that the mode of occurrence and the carbon isotopic composition of a sedimentary lipid can be used to "reconstruct" its biochemical precursor. This novel approach of recognition of the suite of palaeobiochemicals present during the time of deposition allows for identification of the biological sources with an unprecedented specificity.

  4. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species.

    PubMed

    He, Jiang; Zhou, Ruobo; Wu, Zhuhao; Carrasco, Monica A; Kurshan, Peri T; Farley, Jonathan E; Simon, David J; Wang, Guiping; Han, Boran; Hao, Junjie; Heller, Evan; Freeman, Marc R; Shen, Kang; Maniatis, Tom; Tessier-Lavigne, Marc; Zhuang, Xiaowei

    2016-05-24

    Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens.

  5. Prevalent presence of periodic actin–spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species

    PubMed Central

    He, Jiang; Zhou, Ruobo; Wu, Zhuhao; Carrasco, Monica A.; Kurshan, Peri T.; Farley, Jonathan E.; Simon, David J.; Wang, Guiping; Han, Boran; Hao, Junjie; Heller, Evan; Freeman, Marc R.; Shen, Kang; Maniatis, Tom; Tessier-Lavigne, Marc

    2016-01-01

    Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens. PMID:27162329

  6. Evidence that red blood cell protein p55 may participate in the skeleton-membrane linkage that involves protein 4.1 and glycophorin C.

    PubMed

    Alloisio, N; Dalla Venezia, N; Rana, A; Andrabi, K; Texier, P; Gilsanz, F; Cartron, J P; Delaunay, J; Chishti, A H

    1993-08-15

    Human erythrocyte p55 is a peripheral membrane protein that contains three distinct domains in its primary structure: an N-terminal domain, an SH3 motif, and a C-terminal guanylate kinase domain. We used naturally mutated red blood cells (RBCs) with primary genetic defects resulting in the absence of protein 4.1 (4.1[-] hereditary elliptocytosis) or glycophorin C (Leach elliptocytosis). The absence of either protein was associated with the absence of p55. On a stoichiometric basis, the reduction in glycophorin C (about 80%) was concomitant to the lack of p55 in RBCs devoid of protein 4.1. Similarly, the reduction of protein 4.1 (about 20%) was equivalent to the absence of p55 in RBCs devoid of glycophorin C. These correlations suggest that p55 is associated, in precise proportions, with the protein 4.1-glycophorin-C complex, linking the skeleton and the membrane. The protein 4.1-glycophorin-C cross-bridge is known to be critically important for the stability and mechanical properties of human RBC plasma membrane. Because isoforms of protein 4.1, glycophorin C, and p55 exist in many tissues, these results provide evidence of a linkage between the skeleton and the membrane that may have implications in many nonerythroid cells.

  7. Biochemical analysis of potential sites for protein 4.1-mediated anchoring of the spectrin-actin skeleton to the erythrocyte membrane.

    PubMed

    Workman, R F; Low, P S

    1998-03-13

    Erythrocyte protein 4.1 has been hypothesized to link the spectrin-actin junctional complex directly to the cytoplasmic domain of glycophorin C, but this bridging function has never been directly demonstrated. Because an alternative protein-mediated bridge between the junctional complex and the cytoplasmic domain of band 3 is also plausible, we have undertaken to characterize the membrane sites to which protein 4.1 can anchor the spectrin and actin skeleton. We demonstrate that proteolytic removal of the cytoplasmic domain of band 3 has minimal effect on the ability of protein 4.1 to promote 125I-labeled spectrin and actin binding to KI-stripped erythrocyte membrane vesicles. We also show that quantitative blockade of all band 3 sites with either monoclonal or polyclonal antibodies to band 3 is equally ineffective in preventing protein 4.1-mediated association of spectrin and actin with the membrane. In contrast, obstruction of protein 4.1 binding to its docking site on the cytoplasmic pole of glycophorin C is demonstrated to reduce the same protein 4.1 bridging function by approximately 85%. We conclude from these data that (i) glycophorin C contributes the primary anchoring site of the protein 4.1-mediated bridge to the spectrin-actin skeleton; (ii) band 3 is incapable of serving the same function; and (iii) additional minor protein 4.1 bridging sites may exist on the human erythrocyte membrane.

  8. Image of the Month: Multifocal 68Ga Prostate-Specific Membrane Antigen Ligand Uptake in the Skeleton in a Man With Both Prostate Cancer and Multiple Myeloma.

    PubMed

    Rauscher, Isabel; Maurer, Tobias; Steiger, Katja; Schwaiger, Markus; Eiber, Matthias

    2017-03-31

    Ga prostate-specific membrane antigen (PSMA) HBED-CC PET/CT in a 65-year-old man with first diagnosis of prostate cancer (PC) and a history of multiple myeloma showing multifocal PSMA ligand uptake in the skeleton with corresponding osteolytic lesions in CT. Although osteolytic bone metastases are very rare in PC, PSMA expression in PET raised the suspicion of PC bone metastases. Bone marrow biopsy excluded PC metastases with immunohistochemistry showing endothelial expression of PSMA in small vessels within the myeloma.

  9. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    DTIC Science & Technology

    2015-04-29

    Organic Cations for Polymer Hydroxide Exchange Membranes Hydroxide exchange membranes (HEMs) are important polymer electrolytes for electrochemical...Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes Report Title Hydroxide exchange membranes (HEMs) are important polymer ...constructing HEMs. EXPLORING ALKALINE STABLE ORGANIC CATIONS FOR POLYMER HYDROXIDE EXCHANGE MEMBRANES by Bingzi Zhang

  10. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: a study with bio-orthogonal chemical probes.

    PubMed

    Ciana, Annarita; Achilli, Cesare; Hannoush, Rami N; Risso, Angela; Balduini, Cesare; Minetti, Giampaolo

    2013-03-01

    Erythrocyte lipid rafts are anchored to the underlying spectrin membrane skeleton [A. Ciana, C. Achilli, C. Balduini, G. Minetti, On the association of lipid rafts to the spectrin skeleton in human erythrocytes, Biochim. Biophys. Acta 1808 (2011) 183-190]. The nature of this linkage and the molecules involved are poorly understood. The interaction is sensitive to the increase in pH and ionic strength induced by carbonate. Given the role of palmitoylation in modulating the partitioning of certain proteins between various sub-cellular compartments and the plasma membrane, we asked whether palmitoylation of p55, a peripheral protein located at the junctional complex between spectrin-actin-protein 4.1 that anchors the membrane skeleton to the lipid bilayer via the transmembrane protein glycophorin C, could contribute to the anchoring of lipid rafts to the membrane skeleton. We adopted a new, non-radioactive method for studying protein palmitoylation, based on bio-orthogonal chemical analogues of fatty acids, containing an omega-alkynyl group, to metabolically label cell proteins, which are then revealed by a "click chemistry" reaction of the alkynyl moiety with an azide-containing reporter tag. We show that the membrane localization and palmitoylation levels of p55 did not change after carbonate treatment. 2-bromopalmitate and cerulenin, two known palmitoylation inhibitors, completely inhibited p55 palmitoylation, and protein palmitoyl thioesterase-1 (PPT1) reduced it, without affecting the association between lipid rafts and membrane-skeleton, indicating, on the one hand, that p55 palmitoylation is enzymatic, and, on the other, that it is not involved in the modulation of the linkage of lipid rafts to the membrane-skeleton.

  11. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  12. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface.

    PubMed

    Maier, Alexander G; Rug, Melanie; O'Neill, Matthew T; Beeson, James G; Marti, Matthias; Reeder, John; Cowman, Alan F

    2007-02-01

    A key feature of Plasmodium falciparum, the parasite causing the most severe form of malaria in humans, is its ability to export parasite molecules onto the surface of the erythrocyte. The major virulence factor and variant surface protein PfEMP1 (P falciparum erythrocyte membrane protein 1) acts as a ligand to adhere to endothelial receptors avoiding splenic clearance. Because the erythrocyte is devoid of protein transport machinery, the parasite provides infrastructure for trafficking across membranes it traverses. In this study, we show that the P falciparum skeleton-binding protein 1 (PfSBP1) is required for transport of PfEMP1 to the P falciparum-infected erythrocyte surface. We present evidence that PfSBP1 functions at the parasitophorous vacuole membrane to load PfEMP1 into Maurer clefts during formation of these structures. Furthermore, the major reactivity of antibodies from malaria-exposed multigravid women is directed toward PfEMP1 because this is abolished in the absence of PfSBP1.

  13. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOEpatents

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  14. Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlu; Gao, Qiuming; Lin, Zhi; Zhang, Tao; Xu, Jiandong; Tan, Yanli; Tian, Weiqian; Jiang, Lei

    2014-05-01

    Metal organic framework (MOF) materials have attracted great attention due to their well-ordered and controllable pores possessing of prominent potentials for gas molecule sorption and separation performances. Organizing the MOF crystals to a continuous membrane with a certain scale will better exhibit their prominent potentials. Reports in recent years concentrate on well grown MOF membranes on specific substrates. Free standing MOF membranes could have more important applications since they are independent from the substrates. However, the method to prepare such a membrane has been a great challenge because good mechanical properties and stabilities are highly required. Here, we demonstrate a novel and facile technique for preparing the free standing membrane with a size as large as centimeter scale. The substrate we use proved itself not only a good skeleton but also an excellent precursor to fulfill the reaction. This kind of membrane owns a strong mechanical strength, based on the fact that it is much thinner than the composite membranes grown on substrates and it could exhibit good property of gas separation.

  15. Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor

    PubMed Central

    Zhang, Yunlu; Gao, Qiuming; Lin, Zhi; Zhang, Tao; Xu, Jiandong; Tan, Yanli; Tian, Weiqian; Jiang, Lei

    2014-01-01

    Metal organic framework (MOF) materials have attracted great attention due to their well-ordered and controllable pores possessing of prominent potentials for gas molecule sorption and separation performances. Organizing the MOF crystals to a continuous membrane with a certain scale will better exhibit their prominent potentials. Reports in recent years concentrate on well grown MOF membranes on specific substrates. Free standing MOF membranes could have more important applications since they are independent from the substrates. However, the method to prepare such a membrane has been a great challenge because good mechanical properties and stabilities are highly required. Here, we demonstrate a novel and facile technique for preparing the free standing membrane with a size as large as centimeter scale. The substrate we use proved itself not only a good skeleton but also an excellent precursor to fulfill the reaction. This kind of membrane owns a strong mechanical strength, based on the fact that it is much thinner than the composite membranes grown on substrates and it could exhibit good property of gas separation. PMID:24821299

  16. Analysis of the kinetics of band 3 diffusion in human erythroblasts during assembly of the erythrocyte membrane skeleton.

    PubMed

    Kodippili, Gayani C; Spector, Jeff; Kang, Grace E; Liu, Hui; Wickrema, Amittha; Ritchie, Ken; Low, Philip S

    2010-09-01

    During definitive erythropoiesis, erythroid precursors undergo differentiation through multiple nucleated states to an enucleated reticulocyte, which loses its residual RNA/organelles to become a mature erythrocyte. Over the course of these transformations, continuous changes in membrane proteins occur, including shifts in protein abundance, rates of expression, isoform prominence, states of phosphorylation, and stability. In an effort to understand when assembly of membrane proteins into an architecture characteristic of the mature erythrocyte occurs, we quantitated the lateral diffusion of the most abundant membrane protein, band 3 (AE1), during each stage of erythropoiesis using single particle tracking. Analysis of the lateral trajectories of individual band 3 molecules revealed a gradual reduction in mobility of the anion transporter as erythroblasts differentiated. Evidence for this progressive immobilization included a gradual decline in diffusion coefficients as determined at a video acquisition rate of 120 frames/s and a decrease in the percentage of compartment sizes >100 nm. Because complete acquisition of the properties of band 3 seen in mature erythrocytes is not observed until circulating erythrocytes are formed, we suggest that membrane maturation involves a gradual and cooperative assembly process that is not triggered by the synthesis of any single protein.

  17. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life.

    PubMed

    Baines, Anthony J

    2010-08-01

    The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.

  18. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  19. Characterization of organic membrane foulants in a forward osmosis membrane bioreactor treating anaerobic membrane bioreactor effluent.

    PubMed

    Ding, Yi; Tian, Yu; Li, Zhipeng; Liu, Feng; You, Hong

    2014-09-01

    In this study, two aerobic forward osmosis (FO) membrane bioreactors (MBR) were utilized to treat the effluent of mesophilic (35°C) and atmospheric (25°C) anaerobic MBRs, respectively. The results showed that the FO membrane process could significantly improve the removal efficiencies of N and P. Meanwhile, the flux decline of the FOMBR treating effluent of mesophilic AnMBR (M-FOMBR) was higher than that treating effluent of atmospheric AnMBR (P-FOMBR). The organic membrane foulants in the two FOMBRs were analyzed to understand the membrane fouling behavior in FO processes. It was found that the slightly increased accumulation of protein-like substances into external foulants did not cause faster flux decline in P-FOMBR than that in M-FOMBR. However, the quantity of organic matter tended to deposit or adsorb into FO membrane pores in P-FOMBR was less than that in M-FOMBR, which was accordance with the tendency of membrane fouling indicated by flux decline.

  20. Intertwined αβ spectrin meeting helical actin protofilament in the erythrocyte membrane skeleton: wrap-around vs. point-attachment.

    PubMed

    Sche, Paul; Vera, Carlos; Sung, L Amy

    2011-07-01

    Our 3-D model for a junctional complex (JC) in the erythrocyte membrane skeleton proposed that the helical actin protofilament functions as a mechanical axis for three pairs of αβ spectrin (Sp), and each pair wraps around the protofilament in a back-to-back fashion. The distal end of each Sp is further associated with the lipid bilayer by a suspension complex (SC). Here, we detail how splitting and rejoining of αβ Sp around a protofilament may form a loop that sustains and equilibrates tension. Sequential association of β and α Sp solves the challenge of constructing multiple loops along the protofilament, and topological connection facilitates their re-association. The wrap-around model minimizes the strain of the actin binding site on β Sp due to tension, redirection, or sliding of intertwined Sp. Pairing Sp balances the opposing forces and provides a mechanism for elastic recovery. The wrap-around junction thus provides mechanical advantages over a point-attachment junction in maintaining the integrity and functionality of the network. Severing α or β Sp may convert a wrapping-around junction to a point-attachment junction. In that case, a "bow up" motion of JC during deformation may disturb or flip the overlaid lipid bilayer, and mark stressed erythrocytes for phagocytosis.

  1. Chlorine-resistant composite membranes with high organic rejection

    DOEpatents

    McCray, Scott B.; Friesen, Dwayne T.; Barss, Robert P.; Nelson, Leslie D.

    1996-01-01

    A method for making a chlorine-resistant composite polyamide membrane having high organic rejection, the essential step of which comprises treating a conventional composite membrane with an acyl halide. The novel membrane is especially suitable for the treatment of water containing chlorine or lower molecular weight organic compounds.

  2. Purification, in vitro reassembly, and preliminary sequence analysis of epiplasmins, the major constituent of the membrane skeleton of Paramecium.

    PubMed

    Coffe, G; Le Caer, J P; Lima, O; Adoutte, A

    1996-01-01

    The epiplasmic layer, a continuous rigid granulo-fibrillar sheet directly subtending the surface membranes of Paramecium, is one of the outermost of the various cytoskeletal networks that compose it cortex. We have previously shown that the epiplasm consists of a set of 30 to 50 protein bands on SDS-PAGE in the range 50 to 33 kDa, the epiplasmins. We report a purification procedure for the set of epiplasmic proteins, a description of their physicochemical and reassembly properties, and a preliminary characterization of their sequence. The conditions for solubilization of the epiplasm and for in vitro reassembly of its purified constituents ar described. Reassembly of the entire set of proteins and of some (but not all) subsets are shown to yield filamentous aggregates. Microsequences of two purified bands of epiplasmins reveal a striking amino acid sequence consisting of heptad repeats of only three main amino acids, P, V, and Q. These repeats were confirmed by DNA sequencing of polymerase chain reaction products. The motif is QPVQ-h, in which h is a hydrophobic residue. This may constitute the core of the epiplasmin sequence and, in view of the tendency of such a sequence to form a coiled-coil, may account for the remarkable self-aggregation properties of epiplasmins.

  3. The origin of the vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  4. Organic fluid permeation through fluoropolymer membranes

    DOEpatents

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  5. Lateral organization of membranes and cell shapes.

    PubMed Central

    Markin, V S

    1981-01-01

    The relations among membrane structure, mechanical properties, and cell shape have been investigated. The fluid mosaic membrane models used contains several components that move freely in the membrane plane. These components interact with each other and determine properties of the membrane such as curvature and elasticity. A free energy equation is postulated for such a multicomponent membrane and the condition of free energy minimum is used to obtain differential equations relating the distribution of membrane components and the local membrane curvature. The force that moves membrane components along the membrane in a variable curvature field is calculated. A change in the intramembrane interactions can bring about phase separation or particle clustering. This, in turn, may strongly affect the local curvature. The numerical solution of the set of equations for the two dimensional case allows determination of the cell shape and the component distribution along the membrane. The model has been applied to describe certain erythrocytes shape transformations. PMID:7284547

  6. The membrane: transertion as an organizing principle in membrane heterogeneity

    PubMed Central

    Matsumoto, Kouji; Hara, Hiroshi; Fishov, Itzhak; Mileykovskaya, Eugenia; Norris, Vic

    2015-01-01

    The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid–lipid, protein–protein, and lipid–protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division. PMID:26124753

  7. X-ray - skeleton

    MedlinePlus

    ... medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this page, ... ray views may be uncomfortable. If the whole skeleton is being imaged, the test usually takes 1 ...

  8. Current approaches to studying membrane organization

    PubMed Central

    van Zanten, Thomas S.; Mayor, Satyajit

    2015-01-01

    The local structure and composition of the outer membrane of an animal cell are important factors in the control of many membrane processes and mechanisms. These include signaling, sorting, and exo- and endocytic processes that are occurring all the time in a living cell. Paradoxically, not only are the local structure and composition of the membrane matters of much debate and discussion, the mechanisms that govern its genesis remain highly controversial. Here, we discuss a swathe of new technological advances that may be applied to understand the local structure and composition of the membrane of a living cell from the molecular scale to the scale of the whole membrane. PMID:26918150

  9. [Skeleton extractions and applications].

    SciTech Connect

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.

  10. Membrane-Organized Chemical Photoredox Systems

    SciTech Connect

    Hurst, James K.

    2014-09-18

    This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. . In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem, their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens, and H2 photoproduction has been demonstrated in continuous illumination experiments. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2O; and (iii) detected and characterized by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle.

  11. Spatiotemporal Organization of Spin-Coated Supported Model Membranes

    NASA Astrophysics Data System (ADS)

    Simonsen, Adam Cohen

    All cells of living organisms are separated from their surroundings and organized internally by means of flexible lipid membranes. In fact, there is consensus that the minimal requirements for self-replicating life processes include the following three features: (1) information carriers (DNA, RNA), (2) a metabolic system, and (3) encapsulation in a container structure [1]. Therefore, encapsulation can be regarded as an essential part of life itself. In nature, membranes are highly diverse interfacial structures that compartmentalize cells [2]. While prokaryotic cells only have an outer plasma membrane and a less-well-developed internal membrane structure, eukaryotic cells have a number of internal membranes associated with the organelles and the nucleus. Many of these membrane structures, including the plasma membrane, are complex layered systems, but with the basic structure of a lipid bilayer. Biomembranes contain hundreds of different lipid species in addition to embedded or peripherally associated membrane proteins and connections to scaffolds such as the cytoskeleton. In vitro, lipid bilayers are spontaneously self-organized structures formed by a large group of amphiphilic lipid molecules in aqueous suspensions. Bilayer formation is driven by the entropic properties of the hydrogen bond network in water in combination with the amphiphilic nature of the lipids. The molecular shapes of the lipid constituents play a crucial role in bilayer formation, and only lipids with approximately cylindrical shapes are able to form extended bilayers. The bilayer structure of biomembranes was discovered by Gorter and Grendel in 1925 [3] using monolayer studies of lipid extracts from red blood cells. Later, a number of conceptual models were developed to rationalize the organization of lipids and proteins in biological membranes. One of the most celebrated is the fluid-mosaic model by Singer and Nicolson (1972) [4]. According to this model, the lipid bilayer component of

  12. Rejection of trace organic compounds by high-pressure membranes.

    PubMed

    Kim, T U; Amy, G; Drewes, J E

    2005-01-01

    High-pressure membranes, encompassing reverse osmosis (RO), nanofiltration (NF), and low-pressure RO, may provide an effective treatment barrier for trace organic compounds including disinfection by-products (DBPs), pesticides, solvents, endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs). The objective is to develop a mechanistic understanding of the rejection of trace organic compounds by high-pressure membranes, based on an integrated framework of compound properties, membrane properties, and operational conditions. Eight trace organic compounds, four DBPs and four chlorinated (halogenated) solvents, are being emphasized during an initial study, based on considerations of compound properties, occurrence, and health effects (regulations). Four polyamide FilmTec membranes; three reverse osmosis/RO (BW-400, LE-440, XLE-440) and one nanofiltration/NF (NF-90); are being characterized according to pure water permeability (PWP), molecular weight cutoff (MWCO), hydrophobicity (contact angle), and surface charge (zeta potential). It is noteworthy that rejections of compounds of intermediate hydrophobicity by the candidate membranes were observed to be less than salt rejections reported for these membranes, suggesting that transport of these solutes through these membranes is facilitated by solute-membrane interactions. We are continuing with diffusion cell measurements to describe solute-membrane interactions by estimation of diffusion coefficients through membranes pores, either hindered or facilitated.

  13. Coal gasification process wastewater reusability: separation of organics by membranes

    SciTech Connect

    Bhattacharyya, D.; Kermode, R.I.; Dickinson, R.L.

    1983-02-01

    The developing coal-gasification technologies generate gaseous process streams laden with water-soluble species such as H/sub 2/S, NH/sub 3/, HCN, phenols, cresols etc. The primary raw gas clean-up (gas quenching) results in large volumes of highly contaminated wastewaters. The development of a membrane separation process for the removal of selected organics, salts, and scale-forming compounds from stripped coal-conversion process wastewaters, will minimise surface-water pollution and decrease water consumption by permeate recycling. The recent industrial development of non-cellulosic thin-film composite membranes has provided membranes with high salt and low molecular weight organic separation characteristics and insignificant compaction problems. The low pressure membranes (used for brackish water) have definite advantages in terms of energy saving and lower capital cost. The composite membranes perform better than cellulose-acetate membranes. 24 references.

  14. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon

    NASA Astrophysics Data System (ADS)

    Erler, Dirk V.; Wang, Xingchen T.; Sigman, Daniel M.; Scheffers, Sander R.; Martínez-García, Alfredo; Haug, Gerald H.

    2016-01-01

    Ongoing human activities are known to affect nitrogen cycling on coral reefs, but the full history of anthropogenic impact is unclear due to a lack of continuous records. We have used the nitrogen isotopic composition of skeleton-bound organic matter (CS-δ15N) in a coastal Porites coral from Magnetic Island in the Great Barrier Reef as a proxy for N cycle changes over a 168 yr period (1820-1987 AD). The Magnetic Island inshore reef environment is considered to be relatively degraded by terrestrial runoff; given prior CS-δ15N studies from other regions, there was an expectation of both secular change and oscillations in CS-δ15N since European settlement of the mainland in the mid 1800s. Surprisingly, CS-δ15N varied by less than 1.5‰ despite significant land use change on the adjacent mainland over the 168-yr measurement period. After 1930, CS-δ15N may have responded to changes in local river runoff, but the effect was weak. We propose that natural buffering against riverine nitrogen load in this region between 1820 and 1987 is responsible for the observed stability in CS-δ15N. In addition to coral derived skeletal δ15N, we also report, for the first time, δ15N measurements of non-coral derived organic N occluded within the coral skeleton, which appear to record significant changes in the nature of terrestrial N inputs. In the context of previous CS-δ15N records, most of which yield CS-δ15N changes of at least 5‰, the Magnetic Island coral suggests that the inherent down-core variability of the CS-δ15N proxy is less than 2‰ for Porites.

  15. Amphiphobic Polytetrafluoroethylene Membranes for Efficient Organic Aerosol Removal.

    PubMed

    Feng, Shasha; Zhong, Zhaoxiang; Zhang, Feng; Wang, Yong; Xing, Weihong

    2016-04-06

    Polytetrafluoroethylene (PTFE) membrane is an extensively used air filter, but its oleophilicity leads to severe fouling of the membrane surface due to organic aerosol deposition. Herein, we report the fabrication of a new amphiphobic 1H,1H,2H,2H-perfluorodecyl acrylate (PFDAE)-grafted ZnO@PTFE membrane with enhanced antifouling functionality and high removal efficiency. We use atomic-layer deposition (ALD) to uniformly coat a layer of nanosized ZnO particles onto porous PTFE matrix to increase surface area and then subsequently graft PFDAE with plasma. Consequently, the membrane surface showed both superhydrophobicity and oleophobicity with a water contact angle (WCA) and an oil contact angle (OCA) of 150° and 125°, respectively. The membrane air permeation rate of 513 (m(3) m(-2) h(-1) kPa(-1)) was lower than the pristine membrane rate of 550 (m(3) m(-2) h(-1) kPa(-1)), which indicates the surface modification slightly decreased the membrane air permeation. Significantly, the filtration resistance of this amphiphobic membrane to the oil aerosol system was much lower than the initial one. Moreover, the filter exhibited exceptional organic aerosol removal efficiencies that were greater than 99.5%. These results make the amphiphobic PTFE membranes very promising for organic aerosol-laden air-filtration applications.

  16. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  17. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: A new method and proxy evaluation at Bermuda

    NASA Astrophysics Data System (ADS)

    Wang, X. T.; Sigman, D. M.; Cohen, A. L.; Sinclair, D. J.; Sherrell, R. M.; Weigand, M. A.; Erler, D. V.; Ren, H.

    2015-01-01

    The skeleton-bound organic nitrogen in reef-building symbiotic corals may be a high-resolution archive of ocean nitrogen cycle dynamics and a tool for understanding coral biogeochemistry and physiological processes. However, the existing methods for measuring the isotopic composition of coral skeleton-bound organic nitrogen (hereafter, CS-δ15N) either require too much skeleton material or have low precision, limiting the applications of this relatively new proxy. In addition, the controlling factors on CS-δ15N remain poorly understood: the δ15N of source nitrogen and the internal nitrogen cycle of the coral/zooxanthellae symbiosis may both be important. Here, we describe a new ("persulfate/denitrifier"-based) method for measuring CS-δ15N, requiring only 5 mg of skeleton material and yielding a long-term precision better than 0.2‰ (1σ). Using this new method, we investigate CS-δ15N at Bermuda. Ten modern Diploria labyrinthiformis coral cores/colonies from 4 sampling sites were measured for CS-δ15N. Nitrogen concentrations (nitrate + nitrite, ammonium, and dissolved organic nitrogen) and δ15N of plankton were also measured at these coral sites. Among the 4 sampling sites, CS-δ15N shows an increase with proximity to the island, from ∼3.8‰ to ∼6.8‰ vs. atmospheric N2, with the northern offshore site having a CS-δ15N 1-2‰ higher than the δ15N of thermocline nitrate in the surrounding Sargasso Sea. Two annually resolved CS-δ15N time series suggest that the offshore-inshore CS-δ15N gradient has persisted since at least the 1970s. Plankton δ15N among these 4 sites also has an inshore increase, but of only ∼1‰. Coral physiological change must explain the remaining (∼2‰) inshore increase in CS-δ15N, and previous work points to the coral/zooxanthellae N cycle as a control on host tissue (and thus carbonate skeletal) δ15N. The CS-δ15N gradient is hypothesized to result mainly from varying efficiency in the internal nitrogen recycling of the

  18. Organization and dynamics of SNARE proteins in the presynaptic membrane

    PubMed Central

    Milovanovic, Dragomir; Jahn, Reinhard

    2015-01-01

    Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters. PMID:25852575

  19. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  20. Separation membranes. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes.

    PubMed

    Brown, Andrew J; Brunelli, Nicholas A; Eum, Kiwon; Rashidi, Fereshteh; Johnson, J R; Koros, William J; Jones, Christopher W; Nair, Sankar

    2014-07-04

    Molecular sieving metal-organic framework (MOF) membranes have great potential for energy-efficient chemical separations, but a major hurdle is the lack of a scalable and inexpensive membrane fabrication mechanism. We describe a route for processing MOF membranes in polymeric hollow fibers, combining a two-solvent interfacial approach for positional control over membrane formation (at inner and outer surfaces, or in the bulk, of the fibers), a microfluidic approach to replenishment or recycling of reactants, and an in situ module for membrane fabrication and permeation. We fabricated continuous molecular sieving ZIF-8 membranes in single and multiple poly(amide-imide) hollow fibers, with H2/C3H8 and C3H6/C3H8 separation factors as high as 370 and 12, respectively. We also demonstrate positional control of the ZIF-8 films and characterize the contributions of membrane defects and lumen bypass.

  1. Remove volatile organic compounds (VOCs) with membrane separation techniques.

    PubMed

    Zhang, Lin; Weng, Huan-xin; Chen, Huan-lin; Gao, Cong-jie

    2002-04-01

    Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy-saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.

  2. Asymmetric hydrogel membranes for biohybrid artificial organs and bioseparations

    NASA Astrophysics Data System (ADS)

    Dai, Weihua Sonya

    1999-11-01

    Homogeneous hydrogel membranes were prepared by crosslinking poly(vinyl alcohol) (PVA) with glutaraldehyde. These membranes were then modified to create asymmetry by establishing a glutaraldehyde concentration gradient across the hydrogel thickness. Creatinine (MW: 113), goat Fab (MW: 50 kD) and human IgG (MW: 150 kD) were used to simulate the molecular size of nutrients, therapeutic proteins, and immunological molecules, respectively, involved in cell encapsulation. Permeation experiments were performed in a stirred diffusion cell through homogeneous and asymmetric PVA hydrogels. At a given value of IgG rejection, the asymmetric membranes had higher creatinine and Fab permeabilities than the corresponding homogeneous membranes, indicating that creating mesh size asymmetry in a hydrogel can result in a high-flux, high-selectivity membrane for bioartificial organs and bioseparations. The hydrogel membranes with mesh size asymmetry were characterized with laser scanning confocal fluorescence microscopy. A fluorescent label, DTAF (5-{[4,6-dichlorotriazin-2-yl] amino}-fluorescein) was attached to poly(vinyl alcohol), which then was used to prepare homogeneous and asymmetric hydrogel membranes. Structural asymmetry was clearly present in the gradient-modified membranes from the intensity as a function of membrane depth. From the relationships between fluorescence intensity and water content and between solute permeability and water content for homogeneous membranes, the permeabilities of creatinine, Fab and IgG for the asymmetric membranes were predicted from a sum-of-resistances model. The predicted solute permeabilities compared well to experimental values. The hydrogel membranes were mechanically supported with flat-sheet microfiltration membranes by impregnating the pores with a PVA solution, which was crosslinked with glutaraldehyde and then modified under a glutaraldehyde gradient to produce mesh size asymmetry. The supported, PVA hydrogel membranes with mesh size

  3. The Skeletons' Halloween

    ERIC Educational Resources Information Center

    Bourque, Simone

    2010-01-01

    Mexican printer Jose Guadalupe Posada's (1851-1913) numerous prints of "calaveras" gave vast popularity to skeleton figures through his satirical and politically critical renditions of skeletons engaged in daily activities. They are oftentimes represented in festive and playful posturing. Calaveras have now become the most original trait…

  4. Investigation of membrane fouling in ultrafiltration using model organic compounds.

    PubMed

    Kweon, J H; Lawler, D F

    2005-01-01

    Natural organic matter (NOM) is known to be the worst foulant in the membrane processes, but the complexities of NOM make it difficult to determine its effects on membrane fouling. Therefore, simple organic compounds (surrogates for NOM) were used in this research to investigate the fouling mechanisms in ultrafiltration. Previous research on NOM components in membrane processes indicated that polysaccharides formed an important part of the fouling cake. Three polysaccharides (dextran, alginic acid, and polygalacturonic acid) and a smaller carbohydrate (tannic acid) were evaluated for their removal in softening (the treatment process in the City of Austin). Two polysaccharides (dextran and alginic acid) were selected and further investigated for their effects on membrane fouling. The two raw organic waters (4 mg/L C) showed quite different patterns of flux decline indicating different fouling mechanisms. Softening pretreatment was effective to reduce flux decline of both waters. The SEM images of the fouled membrane clearly showed the shapes of deposited foulants. The high resolution results of the XPS spectra showed substantially different spectra of carbon, C(1s), in the membrane fouled by two raw organic waters. The XPS was beneficial in determining the relative composition of each fouling material on the membrane surface.

  5. Hyperthin Organic Membranes for Gas Separations

    NASA Astrophysics Data System (ADS)

    Wang, Minghui

    Gas separation is practically important in many aspects, e.g., clean energy production and global warming prevention. Compared to other separation technologies like cryogenic distillation and pressure swing adsorption, membrane separation is considered to be more energy efficient. For practical purposes, the ultimate goal is to construct membranes producing high flux and high gas permeation selectivity at the same time. Based on the inverse relationship between flux and membrane thickness, it is clear that fabricating highly selective membranes as thin as possible could increase the flux through the membrane without sacrificing selectivity. But it has proven to be challenging to manufacture selective membranes in the hyperthin (< 100nm) region. [Note: 100 nm is the typical dense layer thickness of commercial membranes to separation gases.] In this dissertation, the focus is on the development of hyperthin selective membranes that were supported by poly(1-trimethylsilyl-1-propyne) (PTMSP), using Langmuir-Blodgett (LB) and Layer-by-Layer (LbL) deposition methods. A "gluing" strategy has been successfully introduced into LB films by our laboratory recently, in which LB monolayers are ionically crosslinked with polyelectrolytes. This success stimulated the pursuance of LB films with improved gas separation properties by: (i) examining calix[n]arene-based surfactants with different sizes (ii) using polymeric surfactants as LB forming materials, and (iii) optimizing the condition of the subphase containing polyelectrolytes. Both a strong polyelectrolyte poly(4-styrene sulfonate) (PSS) and a weak polyelectrolyte poly(acrylic acid) (PAA) were used to create glued LB bilayers. The gas permeation through PSS or PAA-glued LB bilayers made of calix[n]arenes was found to be dominated by solution-diffusion rather than molecular-sieving mechanism. The porous nature of calix[n]arene-based surfactants also turned out to be unnecessary for constructing LB films with high gas

  6. Morphological comparison of five species of poison dart frogs of the genus Ranitomeya (Anura: Dendrobatidae) including the skeleton, the muscle system and inner organs.

    PubMed

    Krings, Markus; Klein, Benjamin; Heneka, Markus J; Rödder, Dennis

    2017-01-01

    The morphology of larvae stages of most amphibians are often completely different than in adults. Tadpole descriptions have historically been based on external characters like morphometrics, color pattern and oral disc structure. Other papers described anatomical details by the use of dissections. The increase in micro-CT scanning technology provides an opportunity to quantify and describe in detail internal characters like skeleton, musculature and organs. To date, no such tadpole descriptions exist for the well-studied Neotropical poison dart frog genus Ranitomeya (Anura: Dendrobatidae). Here we provide descriptions of the internal skeletal, musculature and organ structures of five Ranitomeya species and then provide morphological comparisons. Contrary to previous observations, closely related species display several morphological differences. For example, we observed considerable variation in chondrocranial characters, the extent of cranial ossifications, the appearance of some cranial muscles and the arrangement of inner organs. Further studies on the tadpole morphology of more species of Ranitomeya and other dendrobatid genera are needed to enable us to understand the complete morphological variation in this group.

  7. Morphological comparison of five species of poison dart frogs of the genus Ranitomeya (Anura: Dendrobatidae) including the skeleton, the muscle system and inner organs

    PubMed Central

    Krings, Markus; Klein, Benjamin; Heneka, Markus J.

    2017-01-01

    The morphology of larvae stages of most amphibians are often completely different than in adults. Tadpole descriptions have historically been based on external characters like morphometrics, color pattern and oral disc structure. Other papers described anatomical details by the use of dissections. The increase in micro-CT scanning technology provides an opportunity to quantify and describe in detail internal characters like skeleton, musculature and organs. To date, no such tadpole descriptions exist for the well-studied Neotropical poison dart frog genus Ranitomeya (Anura: Dendrobatidae). Here we provide descriptions of the internal skeletal, musculature and organ structures of five Ranitomeya species and then provide morphological comparisons. Contrary to previous observations, closely related species display several morphological differences. For example, we observed considerable variation in chondrocranial characters, the extent of cranial ossifications, the appearance of some cranial muscles and the arrangement of inner organs. Further studies on the tadpole morphology of more species of Ranitomeya and other dendrobatid genera are needed to enable us to understand the complete morphological variation in this group. PMID:28235032

  8. Removal of organic contaminants by RO and NF membranes

    NASA Technical Reports Server (NTRS)

    Yoon, Yeomin; Lueptow, Richard M.

    2005-01-01

    Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio. c2005 Elsevier B.V. All rights reserved.

  9. Organic Fouling of Graphene Oxide Membranes and Its Implications for Membrane Fouling Control in Engineered Osmosis.

    PubMed

    Hu, Meng; Zheng, Sunxiang; Mi, Baoxia

    2016-01-19

    This study provides experimental evidence to mechanistically understand some contradicting effects of the characteristic properties of graphene oxide (GO), such as the high hydrophilicity, negative charge, strong adsorption capability, and large surface area, on the antifouling properties of GO membranes. Furthermore, this study demonstrates the effectiveness of forming a dense GO barrier layer on the back (i.e., porous) side of an asymmetric membrane for fouling control in pressure-retarded osmosis (PRO), an emerging engineered osmosis process whose advancement has been much hindered due to the severe irreversible fouling that occurs as foulants accumulate inside the porous membrane support. In the membrane fouling experiments, protein and alginate were used as model organic foulants. When operated in forward osmosis mode, the GO membrane exhibited fouling performance comparable with that of a polyamide (PA) membrane. Analysis of the membrane adsorption capacity showed that, likely due to the presence of hydrophobic regions in the GO basal plane, the GO membrane has an affinity toward organic foulants 4 to 5 times higher than the PA membrane. Such a high adsorption capacity along with a large surface area, however, did not noticeably aggravate the fouling problem. Our explanation for this phenomenon is that organic foulants are adsorbed mainly on the basal plane of GO nanosheets, and water enters the GO membrane primarily around the oxidized edges of GO, making foulant adsorption not create much hindrance to water flux. When operated in PRO mode, the GO membrane exhibited much better antifouling performance than the PA membrane. This is because unlike the PA membrane for which foulants can be easily trapped inside the porous support and hence cause severe irreversible fouling, the GO membrane allows the foulants to accumulate primarily on its surface due to the sealing effect of the GO layer assembled on the porous side of the asymmetric membrane support. Results

  10. Natural organic matter fouling behaviors on superwetting nanofiltration membranes.

    PubMed

    Shan, Linglong; Fan, Hongwei; Guo, Hongxia; Ji, Shulan; Zhang, Guojun

    2016-04-15

    Nanofiltration has been widely recognized as a promising technology for the removal of micro-molecular organic components from natural water. Natural organic matter (NOM), a very important precursor of disinfection by-products, is currently considered as the major cause of membrane fouling. It is necessary to develop a membrane with both high NOM rejection and anti-NOM fouling properties. In this study, both superhydrophilic and superhydrophobic nanofiltration membranes for NOM removal have been fabricated. The fouling behavior of NOM on superwetting nanofiltration membranes has been extensively investigated by using humic acid (HA) as the model foulant. The extended Derjaguin-Landau-Verwey-Overbeek approach and nanoindentor scratch tests suggested that the superhydrophilic membrane had the strongest repulsion force to HA due to the highest positive total interaction energy (ΔG(TOT)) value and the lowest critical load. Excitation emission matrix analyses of natural water also indicated that the superhydrophilic membrane showed resistance to fouling by hydrophobic substances and therefore high removal thereof. Conversely, the superhydrophobic membrane showed resistance to fouling by hydrophilic substances and therefore high removal capacity. Long-term operation suggested that the superhydrophilic membrane had high stability due to its anti-NOM fouling capacity. Based on the different anti-fouling properties of the studied superwetting membranes, a combination of superhydrophilic and superhydrophobic membranes was examined to further improve the removal of both hydrophobic and hydrophilic pollutants. With a combination of superhydrophilic and superhydrophobic membranes, the NOM rejection (RUV254) and DOC removal rates (RDOC) could be increased to 83.6% and 73.3%, respectively.

  11. Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration.

    PubMed

    Huang, Liang; Chen, Ji; Gao, Tiantian; Zhang, Miao; Li, Yingru; Dai, Liming; Qu, Liangti; Shi, Gaoquan

    2016-10-01

    Solvated reduced graphene oxide (S-rGO) membranes are stable in organic solvents, and strong acidic, alkaline, or oxidative media. They show high rejections to small molecules with charges the same as that of S-rGO coatings or neutral molecules larger than 3.4 nm, while retaining their high permeances to organic solvents.

  12. Organic ionic salt draw solutions for osmotic membrane bioreactors.

    PubMed

    Bowden, Katie S; Achilli, Andrea; Childress, Amy E

    2012-10-01

    This investigation evaluates the use of organic ionic salt solutions as draw solutions for specific use in osmotic membrane bioreactors. Also, this investigation presents a simple method for determining the diffusion coefficient of ionic salt solutions using only a characterized membrane. A selection of organic ionic draw solutions underwent a desktop screening process before being tested in the laboratory and evaluated for performance using specific salt flux (reverse salt flux per unit water flux), biodegradation potential, and replenishment cost. Two of the salts were found to have specific salt fluxes three to six times lower than two commonly used inorganic draw solutions, NaCl and MgCl(2). All of the salts tested have organic anions with the potential to degrade in the bioreactor as a carbon source and aid in nutrient removal. Results demonstrate the potential benefits of organic ionic salt draw solutions over currently implemented inorganics in osmotic membrane bioreactor systems.

  13. Transformation of metal-organic frameworks for molecular sieving membranes

    NASA Astrophysics Data System (ADS)

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-04-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively.

  14. Transformation of metal-organic frameworks for molecular sieving membranes

    PubMed Central

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  15. New insights into erythrocyte membrane organization and microelasticity.

    PubMed

    Discher, D E

    2000-03-01

    The erythrocyte membrane's ability to withstand the stresses of circulation has its origins in various levels of structural organization. Central to this membrane's structure-function relationships is a quasi-two-dimensional meshwork of spectrin-actin-protein 4.1 that imparts a resilence to the overlying plasma membrane. New insights into the nonlinear microelasticity of this substructure are being provided by experiments that range from elegant atomic force microscopy tests of single spectrin chains to patterned photobleaching of the micropipette-deformed network. Breakthroughs in atomic level structure determinations are further complemented by emerging biophysical studies of transgenically engineered mice lacking specific erythrocyte membrane proteins. Recent theoretical efforts (computational approaches most notably) also have begun to correlate molecular scale aspects of structure with mechanical measures. All of this recent activity in the biophysics of erythrocyte structure-function is certain to challenge and refine some of the most basic tenets in cell membrane structure-function.

  16. There Is No Simple Model of the Plasma Membrane Organization

    PubMed Central

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  17. Porous Organic Cage Thin Films and Molecular-Sieving Membranes.

    PubMed

    Song, Qilei; Jiang, Shan; Hasell, Tom; Liu, Ming; Sun, Shijing; Cheetham, Anthony K; Sivaniah, Easan; Cooper, Andrew I

    2016-04-06

    Porous organic cage molecules are fabricated into thin films and molecular-sieving membranes. Cage molecules are solution cast on various substrates to form amorphous thin films, with the structures tuned by tailoring the cage chemistry and processing conditions. For the first time, uniform and pinhole-free microporous cage thin films are formed and demonstrated as molecular-sieving membranes for selective gas separation.

  18. Production of organic nanoparticles by using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Tuz, A. A.; Şimşek, A. K.; Kazanci, M.

    2017-02-01

    In this research, organic nanoparticles are produced by using different nanoporous membranes with different diameters in different solutions. In production; two liquids, a feed solution and a receiver solution, are seperated by a nanoporous polycarbonate tracketched (PCTE) membrane. The feed solution is pumped through the membrane into the receiver solution. The feed solution contained biopolymers dissolved in HCl and the receiver solution contained NaOH. pH change is used as precipitation method. Chitosan, collagen and alginic acid sodium salt from brown algae are used as biomaterials in order to obtain nanoparticles. Different sized nanoporous membranes are used to find the ideal pore and particle sizes. Nanoparticles are illustrated by SEM and sphere-shaped nanoparticles with different diameters and needle shaped structures are observed.

  19. Metal-organic frameworks for membrane-based separations

    NASA Astrophysics Data System (ADS)

    Denny, Michael S.; Moreton, Jessica C.; Benz, Lauren; Cohen, Seth M.

    2016-12-01

    As research into metal-organic frameworks (MOFs) enters its third decade, efforts are naturally shifting from fundamental studies to applications, utilizing the unique features of these materials. Engineered forms of MOFs, such as membranes and films, are being investigated to transform laboratory-synthesized MOF powders to industrially viable products for separations, chemical sensors and catalysts. Following encouraging demonstrations of gas separations using MOF-based membranes, liquid-phase separations are now being explored in an effort to build effective membranes for these settings. In this Review, we highlight MOF applications that are in their nascent stages, specifically liquid-phase separations using MOF-based mixed-matrix membranes. We also highlight the analytical techniques that provide important insights into these materials, particularly at surfaces and interfaces, to better understand MOFs and their interactions with other materials, which will ultimately lead to their use in advanced technologies.

  20. Coalification process waste water reusability: separation of organics by membranes

    SciTech Connect

    Bhattacharyya, D.; Kermode, R.I.; Dickinson, R.L.

    1983-02-01

    The overall objective of this investigation is to provide a critical evaluation of the current information concerning coal-gasification wastewaters and to establish experimentally the extent of separation of phenolics and polynuclear aromatic hydrocarbons (from single and multi-solute synthetic systems) by low-and high-pressure composite membranes. The compounds selected for experimental investigation were: phenol, O-cresol, 2,3-dimethylphenol, catechol, resorcinol, 2-naphthol, naphthalene, and indole. The development of membrane separation processes is gaining considerable importance because of the feasibility of simultaneous removal of organics and inorganic dissolved solids. Cellulose-acetate membranes developed for desalination processes show no rejection of phenolics; however, recently developed thin-film, noncellulosic composite membranes (even at low-pressure operation) may be useful in gasification wastewater reuse schemes. 24 references, 11 figures, 5 tables.

  1. [Effect of different organic fraction on membrane flux declines].

    PubMed

    Zhou, Xian-Jiao; Dong, Bing-Zhi

    2009-02-15

    Organic matter in the tap water was isolated into strongly hydrophobic acids, weakly hydrophobic acids, charged hydrophilic and neutral hydrophilic by DAX-8, XAD-4 and IRA-958 synthetic resins. Filtration tests using polyvinylidene fluoride (PVDF), polyethersulphone (PES) and cellulose acetate (CA) membranes were conducted to investigate the contribution of different organic fractions to membrane fouling. The results show that in filtration of raw water, flux declines with PES, PVDF and CA membrane are 67%, 59% and 19% of the initial flux, indicating that the more hydrophobic membrane resulted in more severe fouling. For the effect of different fractions on flux, flux decline with neutral hydrophilic is 41%-75% of the initial flux, whereas weakly hydrophobic acids is 6%-33%, suggesting that neutral hydrophilic has a great impact on filtration flux. Among three membranes tested, CA membrane shows the lowest flux decline compared with other membranes in spite of rejection of as high as 14.69% of neutral hydrophilic, suggesting that the extent of flux decline may not be associated with the total amount of NOM removed. The mechanism of fouling was discussed and found that the neutral hydrophilic fraction with greater than 3 x 10(4) of molecular weight caused a significant flux decline, through blocking the pore for the MF or UF having greater relative molecular mass cut-off (MWCO), but resulted in a little impact on flux with the UF having lower MWCO, through forming cake layer on the surface of membrane due to not entering the inside of pore.

  2. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  3. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.

    PubMed

    Dražević, Emil; Košutić, Krešimir; Svalina, Marin; Catalano, Jacopo

    2017-03-09

    Reverse osmosis (RO) membranes are primarily designed for removal of salts i.e. for desalination of brackish and seawater, but they have also found applications in removal of organic molecules. While it is clear that steric exclusion is the dominant removal mechanism, the fundamental explanation for how and why the separation occurs remains elusive. Until recently there was no strong microscopic evidences elucidating the structure of the active polyamide layers of RO membranes, and thus they have been conceived as "black boxes"; or as an array of straight capillaries with a distribution of radii; or as polymers with a small amount of polymer free domains. The knowledge of diffusion and sorption coefficients is a prerequisite for understanding the intrinsic permeability of any organic solute in any polymer. At the same time, it is technically challenging to accurately measure these two fundamental parameters in very thin (20-300 nm) water-swollen active layers. In this work we have measured partition and diffusion coefficients and RO permeabilities of ten organic solutes in water-swollen active layers of two types of RO membranes, low (SWC4+) and high flux (XLE). We deduced from our results and recent microscopic studies that the solute flux of organic molecules in polyamide layer of RO membranes occurs in two domains, dense polymer (the key barrier layer) and the water filled domains.

  4. Selective aqueous extraction of organics coupled with trapping by membrane separation

    SciTech Connect

    van Eikeren, P.; Brose, D.J.; Ray, R.J.

    1991-08-20

    This patent describes improvement in an organic/aqueous extraction process for the extraction of an organic solute from an organic solvent or solvent mixture with an aqueous-based extractant. The improvement comprises continuously recycling the aqueous-based extractant through a membrane separation process that selectively removes the organic solute from the aqueous-based extractant, the membrane separation process being selected from at least one of reverse osmosis, nanofiltration, ultrafiltration, membrane distillation, pervaporation, membrane contactor and supported-liquid membrane.

  5. Hierarchical organization of chiral rafts in colloidal membranes

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Ward, Andrew; Gibaud, T.; Hagan, Michael F.; Dogic, Zvonimir

    2014-09-01

    Liquid-liquid phase separation is ubiquitous in suspensions of nanoparticles, proteins and colloids. It has an important role in gel formation, protein crystallization and perhaps even as an organizing principle in cellular biology. With a few notable exceptions, liquid-liquid phase separation in bulk proceeds through the continuous coalescence of droplets until the system undergoes complete phase separation. But when colloids, nanoparticles or proteins are confined to interfaces, surfaces or membranes, their interactions differ fundamentally from those mediated by isotropic solvents, and this results in significantly more complex phase behaviour. Here we show that liquid-liquid phase separation in monolayer membranes composed of two dissimilar chiral colloidal rods gives rise to thermodynamically stable rafts that constantly exchange monomeric rods with the background reservoir to maintain a self-limited size. We visualize and manipulate rafts to quantify their assembly kinetics and to show that membrane distortions arising from the rods' chirality lead to long-range repulsive raft-raft interactions. Rafts assemble into cluster crystals at high densities, but they can also form bonds to yield higher-order structures. Taken together, our observations demonstrate a robust membrane-based pathway for the assembly of monodisperse membrane clusters that is complementary to existing methods for colloid assembly in bulk suspensions. They also reveal that chiral inclusions in membranes can acquire long-range repulsive interactions, which might more generally have a role in stabilizing assemblages of finite size.

  6. Quantitative understanding of cell signaling: The importance of membrane organization

    PubMed Central

    Radhakrishnan, Krishnan; Halász, Ádám; Vlachos, Dion; Edwards, Jeremy S.

    2010-01-01

    Systems biology modeling of signal transduction pathways traditionally employs ordinary differential equations, deterministic models based on assumptions of spatial homogeneity. However, this can be a poor approximation for certain aspects of signal transduction, especially its initial steps: the cell membrane exhibits significant spatial organization, with diffusion rates approximately two orders of magnitude slower than those in the cytosol. Thus, to unravel the complexities of signaling pathways, quantitative models must consider spatial organization as an important feature of cell signaling. Furthermore, spatial separation limits the number of molecules that can physically interact, requiring stochastic simulation methods that account for individual molecules. Herein, we discuss the need for mathematical models and experiments that appreciate the importance of spatial organization in the membrane. PMID:20829029

  7. Functionalized Silicon Membranes for Selective Bio-Organisms Capture

    SciTech Connect

    Letant, S E; Hart, B R; van Buuren, A W; Terminello, L J

    2003-01-09

    Membranes with various pore size, length, morphology and density have been synthesized out of diverse materials for size exclusion-based separation. An example of application is the sterilization of intravenous lines by exclusion of bacteria and viruses using Polyvinylidene Fluoride membranes with 0.1 {micro}m diameter pores. The need for chemically specific filtration has recently been addressed, but for small molecules only. An important problem remaining to be solved is the selective capture of large bio-organisms for decontamination or analysis of air and liquids such as drinking water and body fluids. To achieve this goal, materials with controlled pore diameter, length and surface chemistry are required. In this letter, we present the first functionalized silicon membranes and demonstrate their ability to selectively capture simulated bio-organisms. These extremely versatile and rigid devices open the door on a new class of materials able to recognize the external fingerprints of bio-organisms such as size and outer membrane proteins for specific capture and detection applications.

  8. Pervaporation membranes--a novel separation technique for trace organics

    SciTech Connect

    Zhu, C.L.; Yuang, C.W.; Fried, J.R.; Greenberg, D.B.

    1983-05-01

    A viable separation of chlorinated hydrocarbons from dilute aqueous solutions can be achieved by a process known as pervaporation. It is applicable to the removal of chlorinated organics, pesticides, herbicides, etc., from industrial and municipal water supplies. The process separates trace amounts of hydrocarbons through polymer membranes by means of a liquid-vapor mass-transfer. The method involves the selective sorption of a liquid mixture, followed by diffusion, and then desorption into a vapor phase on the downstream side of the membrane. (JMT)

  9. Surface functionalization of metal organic frameworks for mixed matrix membranes

    DOEpatents

    Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.

    2017-03-21

    Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.

  10. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor.

    PubMed

    Kang, In-Joong; Yoon, Seong-Hoon; Lee, Chung-Hak

    2002-04-01

    Comparison of filtration characteristics of organic and inorganic membranes was made in terms of physicochemical properties of the membrane materials, cake layer formation, backflushing and backfeeding effects in a membrane-coupled anaerobic bioreactor. For the inorganic membrane, struvite (MgNH4PO4 x 6H2O) was found to have accumulated inside the membrane pore and plays a key role in flux decline. For the organic, however, a thick cake layer composed of biomass and struvite formed on the membrane surface, thus causing a major hydraulic resistance. In order to mitigate flux decline for both membranes, backflushing and backfeeding modes were examined. With acidic (pH 2.0) backflushing, the flux was approximately doubled for the organic membrane. However, unexpectedly a negative effect was observed for the inorganic membrane. An alkaline backflushing instead of acidic backflushing gave rise to a flux improvement by a factor of two without any negative effect, even for the inorganic membrane. The backfeeding mode gave rise to a much higher flux compared with the normal mode in both types of membrane, although the flux returned to the same level as that with the normal mode after 6 days for the inorganic membrane. The differences between the two types of membranes were explained by membrane morphology, a ligand exchange reaction as well as a surface charge effect.

  11. Investigating the Human Skeleton.

    ERIC Educational Resources Information Center

    Slesnick, Irwin L.

    1982-01-01

    Instructions are provided for assembly of a pull-out, two-sided picture puzzle of the skeleton of a seven-year-old girl. Suggestions for activities using the assembled puzzle and comments on bones and bone morphology are also provided. (Author/JN)

  12. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect

    Chan, Wai Kit; Joueet, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  13. Analysis of Membrane Lipids of Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  14. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    NASA Astrophysics Data System (ADS)

    Kit Chan, Wai; Jouët, Justine; Heng, Samuel; Lun Yeung, King; Schrotter, Jean-Christophe

    2012-05-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation.

  15. Membrane organization and regulation of cellular Cholesterol homeostasis

    PubMed Central

    Jaureguiberry, María S.; Tricerri, M. Alejandra; Sanchez, Susana A; Garda, Horacio A; Finarelli, Gabriela S.; Gonzalez, Marina C.; Rimoldi, Omar J.

    2010-01-01

    An excess of intracellular free Cholesterol (Chol) is cytotoxic, and its homeostasis is crucial for cell viability. Apolipoprotein A–I (apoA-I) is a highly efficient Chol acceptor as it activates complex cellular pathways that tend to mobilize and export Chol from cellular depots. Here we hypothesize that membrane composition and/or organization is strongly involved in Chol homeostasis. To test this hypothesis, we constructed a cell line over expressing Stearoyl CoA desaturase (SCD-cells), which modifies plasma membrane (PM) composition by the enrichment of monounsaturated fatty,acids and determined this effect on membrane properties, cell viability and cholesterol homeostasis. PM in SCD-cells has a higher phospholipids/sphingomyelin ratio and is slightly enriched in Chol. These cells showed an increase in the cholesteryl esters/free Chol ratio, they were more resistant to Chol toxicity and in addition, they exported more caveolin than Control cells. The data suggest that cell functionality is preserved by regulating membrane fluidity and Chol exportation and storage. PMID:20336284

  16. Membrane organization and regulation of cellular cholesterol homeostasis.

    PubMed

    Jaureguiberry, María S; Tricerri, M Alejandra; Sanchez, Susana A; Garda, Horacio A; Finarelli, Gabriela S; Gonzalez, Marina C; Rimoldi, Omar J

    2010-04-01

    An excess of intracellular free cholesterol (Chol) is cytotoxic, and its homeostasis is crucial for cell viability. Apolipoprotein A-I (apoA-I) is a highly efficient Chol acceptor because it activates complex cellular pathways that tend to mobilize and export Chol from cellular depots. We hypothesize that membrane composition and/or organization is strongly involved in Chol homeostasis. To test this hypothesis, we constructed a cell line overexpressing stearoyl coenzyme A (CoA) desaturase (SCD cells), which modifies plasma membrane (PM) composition by the enrichment of monounsaturated fatty acids, and determined this effect on membrane properties, cell viability, and Chol homeostasis. PM in SCD cells has a higher ratio of phospholipids to sphingomyelin and is slightly enriched in Chol. These cells showed an increase in the ratio of cholesteryl esters to free Chol; they were more resistant to Chol toxicity, and they exported more caveolin than control cells. The data suggest that cell functionality is preserved by regulating membrane fluidity and Chol exportation and storage.

  17. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes.

    PubMed

    Vega-Cabrera, Luz A; Pardo-López, Liliana

    2017-02-01

    Membrane remodeling processes in eukaryotes, such as those involved in endocytosis and intracellular trafficking, are mediated by a large number of structural, accessory and regulatory proteins. These processes occur in all cell types, enabling the exchange of signals and/or nutrients with the external medium and with neighboring cells; likewise, they are required for the intracellular trafficking of various cargo molecules between organelles, as well as the recycling of these structures. Recent studies have demonstrated that some elements of the molecular machinery involved in regulating and mediating endocytosis in eukaryotic cells are also present in some bacteria, where they participate in processes such as cell division, sporulation and signal transduction. However, the mechanism whereby this prokaryotic machinery carries out such functions has barely begun to be elucidated. This review summarizes recent information about the cytoskeletal and membrane-organizing proteins for which bacterial homologs have been identified; given their known functions, they may be considered to be part of an ancestral membrane organization system that first emerged in prokaryotes and which further evolved into the more complex regulatory networks operating in eukaryotes. © 2017 IUBMB Life, 69(2):55-62, 2017.

  18. ISTP CDF Skeleton Editor

    NASA Technical Reports Server (NTRS)

    Chimiak, Reine; Harris, Bernard; Williams, Phillip

    2013-01-01

    Basic Common Data Format (CDF) tools (e.g., cdfedit) provide no specific support for creating International Solar-Terrestrial Physics/Space Physics Data Facility (ISTP/SPDF) standard files. While it is possible for someone who is familiar with the ISTP/SPDF metadata guidelines to create compliant files using just the basic tools, the process is error-prone and unreasonable for someone without ISTP/SPDF expertise. The key problem is the lack of a tool with specific support for creating files that comply with the ISTP/SPDF guidelines. There are basic CDF tools such as cdfedit and skeletoncdf for creating CDF files, but these have no specific support for creating ISTP/ SPDF compliant files. The SPDF ISTP CDF skeleton editor is a cross-platform, Java-based GUI editor program that allows someone with only a basic understanding of the ISTP/SPDF guidelines to easily create compliant files. The editor is a simple graphical user interface (GUI) application for creating and editing ISTP/SPDF guideline-compliant skeleton CDF files. The SPDF ISTP CDF skeleton editor consists of the following components: A swing-based Java GUI program, JavaHelp-based manual/ tutorial, Image/Icon files, and HTML Web page for distribution. The editor is available as a traditional Java desktop application as well as a Java Network Launching Protocol (JNLP) application. Once started, it functions like a typical Java GUI file editor application for creating/editing application-unique files.

  19. Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation.

    PubMed

    Li, Xiong; Yu, Xufeng; Cheng, Cheng; Deng, Li; Wang, Min; Wang, Xuefen

    2015-10-07

    Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes exhibiting excellent direct contact membrane distillation (DCMD) performance were fabricated by a facile route combining the hydrophobization of silica nanoparticles (SiO2 NPs) and colloid electrospinning of the hydrophobic silica/poly(vinylidene fluoride) (PVDF) matrix. Benefiting from the utilization of SiO2 NPs with three different particle sizes, the electrospun nanofibrous membranes (ENMs) were endowed with three different delicate nanofiber morphologies and fiber diameter distribution, high porosity, and superhydrophobic property, which resulted in excellent waterproofing and breathability. Significantly, structural attributes analyses have indicated the major contributing role of fiber diameter distribution on determining the augment of permeate vapor flux through regulating mean flow pore size (MFP). Meanwhile, the extremely high liquid entry pressure of water (LEPw, 2.40 ± 0.10 bar), robust nanofiber morphology of PVDF immobilized SiO2 NPs, remarkable mechanical properties, thermal stability, and corrosion resistance endowed the as-prepared membranes with prominent desalination capability and stability for long-term MD process. The resultant choreographed PVDF/silica ENMs with optimized MFP presented an outstanding permeate vapor flux of 41.1 kg/(m(2)·h) and stable low permeate conductivity (∼2.45 μs/cm) (3.5 wt % NaCl salt feed; ΔT = 40 °C) over a DCMD test period of 24 h without membrane pores wetting detected. This result was better than those of typical commercial PVDF membranes and PVDF and modified PVDF ENMs reported so far, suggesting them as promising alternatives for MD applications.

  20. Depth-Dependent Organization and Dynamics of Archaeal and Eukaryotic Membranes: Development of Membrane Anisotropy Gradient with Natural Evolution.

    PubMed

    Chakraborty, Hirak; Haldar, Sourav; Chong, Parkson Lee-Gau; Kombrabail, Mamata; Krishnamoorthy, G; Chattopadhyay, Amitabha

    2015-10-27

    The lipid composition of archaea is unique and has been correlated with increased stability under extreme environmental conditions. In this article, we have focused on the evolution of membrane organization and dynamics with natural evolution. Dynamic anisotropy along the membrane normal (i.e., gradients of mobility, polarity, and heterogeneity) is a hallmark of fluid phase diester or diether phospholipid membranes. We monitored gradients of mobility, polarity, and heterogeneity along the membrane normal in membranes made of a representative archaeal lipid using a series of membrane depth-dependent fluorescent probes, and compared them to membranes prepared from a typical diether lipid from higher organisms (eukaryotes). Our results show that the representative dynamic anisotropy gradient along the membrane normal is absent in membranes made from archaeal lipids. We hypothesize that the dynamic gradient observed in membranes of diester and diether phospholipids is a consequence of natural evolution of membrane lipids in response to the requirement of carrying out complex cellular functions by membrane proteins.

  1. Efficient synthesis of a multi-substituted diphenylmethane skeleton as a steroid mimetic.

    PubMed

    Misawa, Takashi; Tanaka, Katsuya; Demizu, Yosuke; Kurihara, Masaaki

    2017-03-24

    Steroids are important components of cell membranes and are involved in several physiological functions. A diphenylmethane (DPM) skeleton has recently been suggested to act as a mimetic of the steroid skeleton. However, difficulties are associated with efficiently introducing different substituents between two phenyl rings of the DPM skeleton, and, thus, further structural development based on the DPM skeleton has been limited. We herein developed an efficient synthetic method for introducing different substituents into two phenyl rings of the DPM skeleton. We also synthesized DPM-based estrogen receptor (ER) modulators using our synthetic method and evaluated their ER transcriptional activities.

  2. Expression of human membrane skeleton protein genes for protein 4.1 and betaIISigma2-spectrin assayed by real-time RT-PCR.

    PubMed

    Taylor-Harris, Pamela M; Felkin, Leanne E; Birks, Emma J; Franklin, Rodney C G; Yacoub, Magdi H; Baines, Anthony J; Barton, Paul J R; Pinder, Jennifer C

    2005-01-01

    The proteins, spectrin and 4.1 confer support and resilience to animal cell membranes, and promote assembly of multimeric, membrane-bound signalling complexes. Protein 4.1 also plays important roles in tumour suppression and the regulation of cell proliferation. To assess relative tissue expression of the four genes encoding human protein 4.1, we measured mRNA levels using quantitative real-time polymerase chain reaction. We compared 4.1 expression with that of a major splice variant of spectrin, betaIISigma2 that has a shortened C-terminus lacking a pleckstrin homology domain. mRNA for 4.1R is four-fold higher in bone marrow than in tissues with the next highest prevalence: cerebellum, lung, testis and thymus. 4.1G mRNA is highly expressed in brain, spinal cord and testis; 4.1N in brain, spinal cord and adrenal gland; 4.1B in testis, brain, spinal cord, and kidney. Thus, 4.1N, 4.1B and 4.1G all show high accumulation in nervous tissues. mRNA for betaIISigma2-spectrin is ubiquitous, but most abundant in cardiac and nervous tissues. Comparative transcript abundance was analysed in heart and brain. betaIISigma2-spectrin was the most abundant transcript in heart with levels 5 fold greater than 4.1G or 4.1N and at least 9 fold greater than 4.1B. In brain, 4.1N was the most abundant transcript, with levels 2.4 fold greater than 4.1B and at least 4 fold greater than 4.1G or betaIISigma2-spectrin. 4.1R abundance was very low in both tissues. Whilst we expected that 4.1 mRNAs would feature highly in muscle and nerve, we note their high abundance in testis, indicating previously unsuspected functions in reproduction.

  3. [WHAT SKELETONS TELL US].

    PubMed

    Catalano, Paola

    2015-01-01

    The recent excavations carried out by the Superintendence for the Colosseum, the Roman National Museum and the Archaeological Area of Rome allowed to uncover a large number of burial grounds of Imperial Age. In this work we present the data for 11 cemeteries scattered throughout the Suburbiumn, dating between 1st and 3rd centuries AD. A whole sample of 6061 tombs has been investigated and 5280 skeletons were anthropologically analyzed. All the field data have been scored in appropriate standardized charts in order to make easy their storage and processing in a dedicated database.

  4. The skeleton in space

    NASA Technical Reports Server (NTRS)

    Goode, A. W.; Rambaut, P. C.

    1985-01-01

    Calcium loss experience by astronauts under weightless conditions is discussed. I-125 photon absorption measurements on astronauts on the Apollo 14, 15, and 16 flights showed bone density decreases of 6.6 percent in one astronaut and 7.3 percent in another. The estimated total body calcium loss on Apollo 17 was 0.2 percent. The test results indicate that calcium losses occur mainly from the weight-bearing parts of the skeleton. Measures to counteract the losses include 'penguin' suits, maintenance of nutrient intakes at high levels, and extensive exercise on ergometer and treadmill.

  5. Path similarity skeleton graph matching.

    PubMed

    Bai, Xiang; Latecki, Longin Jan

    2008-07-01

    This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.

  6. Connexins in The Skeleton

    PubMed Central

    Stains, Joseph P.; Civitelli, Roberto

    2016-01-01

    Shaping of the skeleton (modeling) and its maintenance throughout life (remodeling) require coordinated activity among bone forming (osteoblasts) and resorbing cells (osteoclasts) and osteocytes (bone embedded cells). The gap junction protein connexin43 (Cx43) has emerged as a key modulator of skeletal growth and homeostasis. The skeletal developmental abnormalities present in oculodentodigital and craniometaphyseal dysplasias, both linked to Cx43 gene (GJA1) mutations, demonstrate that the skeleton is a major site of Cx43 action. Via direct action on osteolineage cells, including altering production of pro-osteoclastogenic factors, Cx43 contributes to peak bone mass acquisition, cortical modeling of long bones, and maintenance of bone quality. Cx43 also contributes in diverse ways to bone responsiveness to hormonal and mechanical signals. Skeletal biology research has revealed the complexity of Cx43 function; in addition to forming gap junctions and “hemichannels”, Cx43 provides a scaffold for signaling molecules. Hence, Cx43 actively participates in generation and modulation of cellular signals driving skeletal development and homeostasis. Pharmacological interference with Cx43 may in the future help remedy deterioration of bone quality occurring with aging, disuse and hormonal imbalances. PMID:26740471

  7. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  8. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    PubMed

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  9. MemO: a consensus approach to the annotation of a protein's membrane organization.

    PubMed

    Davis, Melissa J; Zhang, Fasheng; Yuan, Zheng; Teasdale, Rohan D

    2006-01-01

    Membrane organization describes the relationship of proteins to the membrane, that is, whether the protein crosses the membrane or is integral to the membrane and its orientation with respect to the membrane. Membrane organization is determined primarily by the presence of two features which target proteins to the secretory pathway: the endoplasmic reticulum signal peptide and the ?-helical transmembrane domain. In order to generate membrane organization annotation of high quality, confidence and throughput, the Membrane Organization (MemO) pipeline was developed, incorporating consensus feature prediction modules with integration and annotation rules derived from biological observations. The pipeline classifies proteins into six categories based on the presence or absence of predicted features: Soluble, intracellular proteins; Soluble, secreted proteins; Type I membrane proteins; Type II membrane proteins; Multi-span membrane proteins and Glycosylphosphatidylinositol anchored membrane proteins. The MemO pipeline represents an integrated strategy for the application of state-of-the-art bioinformatics tools to the annotation of protein membrane organization, a property which adds biological context to the large quantities of protein sequence information available.

  10. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  11. Understanding the fouling of algogenic organic matter in microfiltration using membrane-foulant interaction energy analysis: effects of organic hydrophobicity.

    PubMed

    Huang, Weiwei; Chu, Huaqiang; Dong, Bingzhi

    2014-10-01

    Fouling caused by algogenic organic matter (AOM) in membrane filtration is a critical problem in algae-rich waters, and understanding fouling mechanisms, particularly by identifying the predominant membrane foulants, could have significant effects on algal fouling prediction and pretreatment. In this work, the fouling behavior of Aphanizomenon flos-aquae (APF)- and Anabaena flos-aquae (ANF)-AOM fractions was analyzed using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The results show that the interfacial energy of membranes and foulants could be used for AOM membrane fouling analysis. The attractive energy was highest between the membrane and the neutral hydrophilic fractions (N-HPI) on clean membrane surfaces, followed by the energy associated with the hydrophobic fractions (HPO) and the transphilic fractions (TPI) in both of the AOMs; on the other hand, the negatively charged hydrophilic organics (C-HPI) in the APF-AOM suffered from repulsive interactions when nearing the membrane surface, which was consistent with their initial filtration flux. After the formation of an initial fouling layer on the membrane surface, membrane fouling was controlled mainly by the cohesion free energy between the approaching foulants and the foulants on the fouled membranes. In addition, it was observed that the interfacial energy between foulants was the dominant factor controlling membrane fouling in AOM filtration. Finally, the interfacial energies between the N-HPI fractions had the greatest effect on both APF-AOM and ANF-AOM membrane fouling.

  12. Intramembrane particles and the organization of lymphocyte membrane proteins.

    PubMed

    Kuby, J M; Wofsy, L

    1981-03-01

    An experimental system was developed in which the majority of all lymphocyte cell-surface proteins, regardless of antigenic specificity, could be cross-linked and redistributed in the membrane to determine whether this would induce a corresponding redistribution of intramembrane particles (IMP). Mouse spleen cells were treated with P-diazoniumphenyl- beta-D-lactoside (lac) to modify all exposed cell-surface proteins. Extensive azo- coupling was achieved without significantly reducing cell viability or compromising cellular function in mitogen- or antigen-stimulated cultures. When the lac-modified cell- surface proteins were capped with a sandwich of rabbit antilactoside antibody and fluorescein-goat anti-rabbit Ig, freeze-fracture preparations obtained from these cells revealed no obvious redistribution of IMP on the majority of fracture faces. However, detailed analysis showed a statistically significant 35 percent decrease (P less than 0.01) in average IMP density in the E face of the lac-capped spleen cells compared with control cells, whereas a few E-face micrographs showed intense IMP aggregation. In contrast, there was no significant alteration of P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP do not present accessible antigenic sites on the lymphocyte surface and do not associate in a stable manner with surface protein antigens. This finding suggests that IMP, as observed in freeze-fracture analysis, may not comprise a representative reflection of lymphocyte transmembrane protein molecules and complexes because other evidence establishes: (a) that at least some common lymphocyte surface antigens are indeed exposed portions of transmembrane proteins and (b) that the aggregation of molecules of any surface antigen results in altered organization of contractile proteins at the cytoplasmic face of the membrane.

  13. Intramembrane particles and the organization of lymphocyte membrane proteins

    PubMed Central

    Kuby, JM; Wofsy, L

    1981-01-01

    An experimental system was developed in which the majority of all lymphocyte cell-surface proteins, regardless of antigenic specificity, could be cross-linked and redistributed in the membrane to determine whether this would induce a corresponding redistribution of intramembrane particles (IMP). Mouse spleen cells were treated with P-diazoniumphenyl- β-D-lactoside (lac) to modify all exposed cell-surface proteins. Extensive azo- coupling was achieved without significantly reducing cell viability or compromising cellular function in mitogen- or antigen-stimulated cultures. When the lac-modified cell- surface proteins were capped with a sandwich of rabbit antilactoside antibody and fluorescein-goat anti-rabbit Ig, freeze-fracture preparations obtained from these cells revealed no obvious redistribution of IMP on the majority of fracture faces. However, detailed analysis showed a statistically significant 35 percent decrease (P less than 0.01) in average IMP density in the E face of the lac-capped spleen cells compared with control cells, whereas a few E-face micrographs showed intense IMP aggregation. In contrast, there was no significant alteration of P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP do not present accessible antigenic sites on the lymphocyte surface and do not associate in a stable manner with surface protein antigens. This finding suggests that IMP, as observed in freeze-fracture analysis, may not comprise a representative reflection of lymphocyte transmembrane protein molecules and complexes because other evidence establishes: (a) that at least some common lymphocyte surface antigens are indeed exposed portions of transmembrane proteins and (b) that the aggregation of molecules of any surface antigen results in altered organization of contractile proteins at the cytoplasmic face of the membrane

  14. Pervaporative removal of organics from water using hydrophobic membranes. Binary mixtures

    SciTech Connect

    Kujawski, W.

    2000-01-01

    Results of pervaporation experiments are presented for the separation of several polar and nonpolar organic solvents from their aqueous solutions. Three membranes were evaluated: a polydimethylsiloxane (PERVAP-1060) membrane, a PDMS ZSM-5 zeolite filled (PERVAP-1070) membrane, and a poly(ether-block-amide) (PEBAX-4033) membrane. The effect of feed composition on flux and selectivity was also investigated. Performance parameters of a given membrane depended both on the kind of the organic solvent and the feed composition. The PERVAP-1070 membrane exhibited the highest selectivity with a separation factor over 900 in contact with a water-butyl acetate mixture. Polar solvents like methanol were also preferentially separated from aqueous solutions, but the separation factors were close to those obtained from liquid-vapor equilibria data. Permeate fluxes of organics increased with increasing feed concentration. Synergetic effects between water and organics fluxes were also observed.

  15. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics.

    PubMed

    Rampelt, Heike; Zerbes, Ralf M; van der Laan, Martin; Pfanner, Nikolaus

    2017-04-01

    The elaborate membrane architecture of mitochondria is a prerequisite for efficient respiration and ATP generation. The cristae membranes, invaginations of the inner mitochondrial membrane, represent a specialized compartment that harbors the complexes of the respiratory chain and the F1Fo-ATP synthase. Crista junctions form narrow openings that connect the cristae membranes to the inner boundary membrane. The mitochondrial contact site and cristae organizing system (MICOS) is located at crista junctions where it stabilizes membrane curvature and forms contact sites between the mitochondrial inner and outer membranes. MICOS is a large machinery, consisting of two dynamic subcomplexes that are anchored in the inner membrane and expose domains to the intermembrane space. The functions of MICOS in mitochondrial membrane architecture and biogenesis are influenced by numerous interaction partners and the phospholipid environment.

  16. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  17. Selective aqueous extraction of organics coupled with trapping by membrane separation

    DOEpatents

    van Eikeren, Paul; Brose, Daniel J.; Ray, Roderick J.

    1991-01-01

    An improvement to processes for the selective extractation of organic solutes from organic solvents by water-based extractants is disclosed, the improvement comprising coupling various membrane separation processes with the organic extraction process, the membrane separation process being utilized to continuously recycle the water-based extractant and at the same time selectively remove or concentrate organic solute from the water-based extractant.

  18. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    PubMed

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes.

  19. The Milky Way Skeleton

    NASA Astrophysics Data System (ADS)

    Zucker, Catherine; Battersby, Cara; Goodman, Alyssa A.

    2015-01-01

    Recently, Goodman et al. (2014) argued that a very long, very thin infrared dark cloud 'Nessie' lies directly in the Galactic mid-plane and runs along the Scutum-Centaurus arm in position-position-velocity space as traced by low density CO and high density NH3 gas. Nessie was presented as the first 'bone' of the Milky Way, an extraordinarily long, thin, high contrast filament that can be used to map our galaxy's 'skeleton.' We present the first evidence of additional 'bones' in the Milky Way Galaxy, arguing that Nessie is not a curiosity but one of many filaments that could potentially trace galactic structure. Our ten bone candidates are all long, filamentary, mid-infrared extinction features which lie parallel to, and no more than twenty parsecs from, the physical Galactic mid-plane. We use CO, N2H+, and NH3 radial velocity data to establish the location of the candidates in position-velocity space. Of the ten filaments, three candidates have a projected aspect ratio of >50:1 and run along, or extremely close to, the Scutum-Centaurus arm in position-velocity space. Evidence suggests that these three candidates are Nessie-like features which mark the location of the spiral arms in both physical space and position-velocity space. Other candidates could be spurs, feathers, or interarm clouds associated with the Milky Way's galactic structure. As molecular spectral-line and extinction maps cover more of the sky at increasing resolution and sensitivity, we hope to find more bones in future studies, to ultimately create a global-fit to the Galaxy's spiral arms by piecing together individual skeletal features. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  20. The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis.

    PubMed

    Somerharju, Pentti; Virtanen, Jorma A; Cheng, Kwan H; Hermansson, Martin

    2009-01-01

    Most biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in membrane free energy and 2) those energy minima could provide set-points for enzymes regulating membrane lipid compositions. Furthermore, the existence of a discrete number of allowed compositions could help to maintain organelle identity in the face of rapid inter-organelle membrane traffic.

  1. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It

    PubMed Central

    Kraft, Mary L.

    2017-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with

  2. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: Characteristics and mechanisms.

    PubMed

    Wang, Jiaxuan; Wang, Lei; Miao, Rui; Lv, Yongtao; Wang, Xudong; Meng, Xiaorong; Yang, Ruosong; Zhang, Xiaoting

    2016-03-15

    To investigate how the characteristics of pregenerated organic fouling layers on nanofiltration (NF) membranes influence the subsequent gypsum scaling behavior, filtration experiments with gypsum were carried out with organic-fouled poly(piperazineamide) NF membranes. Organic fouling layer on membrane was induced by bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA), respectively. The morphology and components of the scalants, the role of Ca(2+) adsorption on the organic fouling layer during gypsum crystallization, and the interaction forces of gypsum on the membrane surface were investigated. The results indicated that SA- and HA-fouled membranes had higher surface crystallization tendency along with more severe flux decline during gypsum scaling than BSA-fouled and virgin membranes because HA and SA macromolecules acted as nuclei for crystallization. Based on the analyses of Ca(2+) adsorption onto organic adlayers and adhesion forces, it was found that the flux decline rate and extent in the gypsum scaling experiment was positively related to the Ca(2+)-binding capacity of the organic matter. Although the dominant gypsum scaling mechanism was affected by coupling physicochemical effects, the controlling factors varied among foulants. Nevertheless, the carboxyl density of organic matter played an important role in determining surface crystallization on organic-fouled membrane.

  3. The effect of organic loading on bacterial community composition of membrane biofilms in a submerged polyvinyl chloride membrane bioreactor.

    PubMed

    Xia, Siqing; Li, Jixiang; He, Shuying; Xie, Kang; Wang, Xiaojia; Zhang, Yanhao; Duan, Liang; Zhang, Zhiqiang

    2010-09-01

    The effect of organic loading on bacterial community composition of membrane biofilms was investigated using a submerged polyvinyl chloride membrane bioreactor. The low and high loadings were set at 0.33 and 0.52 gCOD/(gVSSd), respectively. The results showed that membrane fouling occurred earlier and faster under the high loading conditions. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the similarity of bacterial community in the membrane biofilms between the two loadings was 0.67, higher than that in the mixed liquors (0.52-0.55), which indicated that some specific bacteria were selected preferentially on the membranes. Clone library analysis of the membrane biofilms indicated that Betaproteobacteria and Bacteroidetes under the high loading were 54.72% and 19.81%, respectively. Microarray results further confirmed that the two bacteria were the dominant microorganisms in the high loading biofilm. The severe membrane fouling may be aroused mainly by the enrichment of the two bacteria under the high loading.

  4. Polyamino acid functionalized membranes for metal capture and nanofiltration of organics: Modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Hestekin, Jamie Allen

    2000-10-01

    addition to functionalized membranes, negatively-charged nanofiltration membranes were studied to establish the role of non-aqueous solvents (alcohols) on flux and rejection behavior of ionized organic molecules.

  5. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer

    PubMed Central

    Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R. Dyche; Rao, Madan; Mayor, Satyajit

    2016-01-01

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  6. Synthesis of PVDF ultrafiltration membranes supported on polyester fabrics for separation of organic matter from water

    NASA Astrophysics Data System (ADS)

    Mhlanga, Sabelo D.; Tshabalala, Tumelo G.; Nxumalo, Edward N.; Mamba, Bhekie B.

    2014-08-01

    Polyvinylidene flouride (PVDF) membranes supported on non-woven fabrics (NWF) of polyester are reported. The PVDF membranes were fabricated using the phase inversion method followed by modification of the active top layer of the PVDF thin film by adding polyvinylpyrolidone (PVP) into the cast solution. A PVDF resin was used with N- methyl-2-pyrrolidone (NMP) as a solvent. Sessile drop contact angle measurements and scanning electron microscopy (SEM) were used to study the physical properties of the membranes. Membrane rejection of humic acid was studied using a cross-flow membrane testing unit. The contact angle results revealed that the hydrophilicity of PVDF membranes increased as the PVP concentration was increased from 3 to 10 wt%. SEM analysis of the membranes revealed that the membrane pore sizes increased when PVP was added. AFM analysis also showed that membrane roughness changed when PVP was added. Total organic carbon (TOC) analysis of water samples spiked with humic acid was performed to test the rejection capacity of the membranes. Rejections of up to 97% were achieved for PVDF membranes supported on polyester NWF1, which had smaller thickness and higher permeability compared to polyester NWF2. The NWFs provided the high strength required for the membranes despite the modifications done on the PDVF surface and microstructure.

  7. Membrane fouling controlled by coagulation/adsorption during direct sewage membrane filtration (DSMF) for organic matter concentration.

    PubMed

    Gong, Hui; Jin, Zhengyu; Wang, Xian; Wang, Kaijun

    2015-06-01

    Unlike the role of the membrane in a membrane bioreactor, which is designed to replace a sediment tank, direct sewage membrane filtration (DSMF), with the goal of concentrating organic matters, is proposed as a pretreatment process in a novel sewage treatment concept. The concept of membrane-based pretreatment is proposed to divide raw sewage into a concentrated part retaining most organics and a filtered part with less pollutant remaining, so that energy recovery and water reuse, respectively, could be realized by post-treatment. A pilot-scale experiment was carried out to verify the feasibility of coagulant/adsorbent addition for membrane fouling control, which has been the main issue during this DSMF process. The results showed that continuous coagulant addition successfully slowed down the increase in filtration resistance, with the resistance maintained below 1.0×10(13) m(-1) in the first 70 hr before a jump occurred. Furthermore, the adsorbent addition contributed to retarding the occurrence of the filtration resistance jump, achieving simultaneous fouling control and chemical oxygen demand (COD) concentration improvement. The final concentrated COD amounted to 7500 mg/L after 6 days of operation.

  8. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols.

    PubMed

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-02-27

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.

  9. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation.

    PubMed

    Zhao, Cui; Wang, Naixin; Wang, Lin; Huang, Hongliang; Zhang, Rong; Yang, Fan; Xie, Yabo; Ji, Shulan; Li, Jian-Rong

    2014-11-21

    Hybrid membranes composed of porous metal-organic molecule nanocages as fillers embedded in a hyperbranched polymer (Boltorn W3000) were fabricated, which exhibit excellent pervaporation separation performances towards aromatic/aliphatic hydrocarbons. The unique nature of the molecule-based fillers and their good dispersion and compatibility in/with the polymer are responsible for the good membrane properties.

  10. Combined organic-inorganic fouling of forward osmosis hollow fiber membranes.

    PubMed

    Arkhangelsky, Elizabeth; Wicaksana, Filicia; Tang, Chuyang; Al-Rabiah, Abdulrahman A; Al-Zahrani, Saeed M; Wang, Rong

    2012-12-01

    This research focused on combined organic-inorganic fouling and cleaning studies of forward osmosis (FO) membranes. Various organic/inorganic model foulants such as sodium alginate, bovine serum albumin (BSA) and silica nanoparticles were applied to polyamide-polyethersulfone FO hollow fiber membranes fabricated in our laboratory. In order to understand all possible interactions, experiments were performed with a single foulant as well as combinations of foulants. Experimental results suggested that the degree of FO membrane fouling could be promoted by synergistic effect of organic foulants, the presence of divalent cations, low cross-flow velocity and high permeation drag force. The water flux of fouled FO hollow fibers could be fully restored by simple physical cleaning. It was also found that hydrodynamic regime played an important role in combined organic-inorganic fouling of FO membranes.

  11. Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization.

    PubMed

    Mukherjee, Soumi; Chattopadhyay, Amitabha

    2005-08-01

    Organization and dynamics of cellular membranes in the nervous system are crucial for the function of neuronal membrane receptors. The lipid composition of neuronal cells is unique and has been correlated with the increased complexity in the organization of the nervous system during evolution. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors such as the G-protein coupled serotonin1A receptor. In this paper, we have explored the organization and dynamics of bovine hippocampal membranes using the amphiphilic environment-sensitive fluorescent probe Laurdan. Our results show that the emission spectra of Laurdan display an additional red shifted peak as a function of increasing temperature in native as well as cholesterol-depleted membranes and liposomes made from lipid extracts of the native membrane. Interestingly, wavelength dependence of Laurdan generalized polarization (GP) in native membranes indicates the presence of an ordered gel-like phase at low temperatures, whereas characteristics of the liquid-ordered phase are observed at high temperatures. Similar experiments performed using cholesterol-depleted membranes show fluidization of the membrane with increasing cholesterol depletion. In addition, results from fluorescence polarization of DPH indicate that the hippocampal membrane is fairly ordered even at physiological temperature. The temperature dependence of Laurdan excitation GP provides a measure of the apparent thermal transition temperature and extent of cooperativity in these membranes. Analysis of time-resolved fluorescence measurements of Laurdan shows reduction in mean fluorescence lifetime with increasing temperature due to change in environmental polarity. These results constitute novel information on the dynamics of hippocampal membranes and its modulation by cholesterol depletion monitored using Laurdan fluorescence.

  12. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    PubMed Central

    Uyak, Vedat; Akdagli, Muge; Cakmakci, Mehmet; Koyuncu, Ismail

    2014-01-01

    The objective of this study was to investigate powdered activated carbon (PAC) contribution to natural organic matter (NOM) removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP) increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters. PMID:24523651

  13. Studying lipid organization in biological membranes using liposomes and EPR spin labeling

    PubMed Central

    Subczynski, Witold K.; Raguz, Marija; Widomska, Justyna

    2015-01-01

    Summary Electron paramagnetic resonance (EPR) spin-labeling methods provide a unique opportunity to determine the lateral organization of lipid bilayer membranes by discrimination of coexisting membrane domains or coexisting membrane phases. In some cases, the coexisting membrane domains can be characterized by profiles of alkyl chain order, fluidity, hydrophobicity, and oxygen diffusion-concentration product in situ, without the need for their physical separation. This chapter briefly explains how the EPR spin-labeling methods can be used to obtain the above mentioned profiles across the lipid bilayer membranes (liposomes) derived from the lipid extract of certain biological membranes. These procedures will be illustrated by EPR measurements performed for multilamellar liposomes made of the lipid extracts from cortical and nuclear fractions of the fiber cell plasma membranes of a cow eye lens. To elucidate better the major factors that determine membrane properties, the results for eye lens lipid membranes will be compared with those obtained for simple model membranes resembling basic lipid composition of biological membranes. PMID:20013402

  14. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes

    NASA Astrophysics Data System (ADS)

    Bag, Nirmalya; Ng, Xue Wen; Sankaran, Jagadish; Wohland, Thorsten

    2016-09-01

    Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7  ×  7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.

  15. The skeleton in the closet.

    PubMed

    Kaplan, Frederick S

    2013-10-01

    The origins of fibrodysplasia ossificans progressiva (FOP) in human history are unknown but the condition has been well described since Freke's account in 1740. Important contributions by physicians and scientists in the past two and a half centuries have converged on the remarkable skeleton of Harry Eastlack at The Mutter Museum of The College of Physicians in Philadelphia.

  16. THE SKELETON IN THE CLOSET

    PubMed Central

    Kaplan, Frederick S.

    2015-01-01

    The origins of fibrodysplasia ossificans progressiva (FOP) in human history are unknown but the condition has been well described since Freke’s account in 1740. Important contributions by physicians and scientists in the past two and a half centuries have converged on the remarkable skeleton of Harry Eastlack at The Mutter Museum of The College of Physicians in Philadelphia. PMID:23810943

  17. Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium

    PubMed Central

    Schneider, Johannes; Klein, Teresa; Mielich-Süss, Benjamin; Koch, Gudrun; Franke, Christian; Kuipers, Oscar P.; Kovács, Ákos T.; Sauer, Markus; Lopez, Daniel

    2015-01-01

    Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. PMID:25909364

  18. A vanished history of skeletonization in Cambrian comb jellies.

    PubMed

    Ou, Qiang; Xiao, Shuhai; Han, Jian; Sun, Ge; Zhang, Fang; Zhang, Zhifei; Shu, Degan

    2015-07-01

    Ctenophores are traditionally regarded as "lower" metazoans, sharing with cnidarians a diploblastic grade of organization. Unlike cnidarians, where skeletonization (biomineralization and sclerotization) evolved repeatedly among ecologically important taxa (for example, scleractinians and octocorals), living ctenophores are characteristically soft-bodied animals. We report six sclerotized and armored ctenophores from the early Cambrian period. They have diagnostic ctenophore features (for example, an octamerous symmetry, oral-aboral axis, aboral sense organ, and octaradially arranged ctene rows). Unlike most modern counterparts, however, they lack tentacles, have a sclerotized framework, and have eight pairs of ctene rows. They are resolved as a monophyletic group (Scleroctenophora new class) within the ctenophores. This clade reveals a cryptic history and sheds new light on the early evolution of this basal animal phylum. Skeletonization also occurs in some other Cambrian animal groups whose extant members are exclusively soft-bodied, suggesting the ecological importance of skeletonization in the Cambrian explosion.

  19. A vanished history of skeletonization in Cambrian comb jellies

    PubMed Central

    Ou, Qiang; Xiao, Shuhai; Han, Jian; Sun, Ge; Zhang, Fang; Zhang, Zhifei; Shu, Degan

    2015-01-01

    Ctenophores are traditionally regarded as “lower” metazoans, sharing with cnidarians a diploblastic grade of organization. Unlike cnidarians, where skeletonization (biomineralization and sclerotization) evolved repeatedly among ecologically important taxa (for example, scleractinians and octocorals), living ctenophores are characteristically soft-bodied animals. We report six sclerotized and armored ctenophores from the early Cambrian period. They have diagnostic ctenophore features (for example, an octamerous symmetry, oral-aboral axis, aboral sense organ, and octaradially arranged ctene rows). Unlike most modern counterparts, however, they lack tentacles, have a sclerotized framework, and have eight pairs of ctene rows. They are resolved as a monophyletic group (Scleroctenophora new class) within the ctenophores. This clade reveals a cryptic history and sheds new light on the early evolution of this basal animal phylum. Skeletonization also occurs in some other Cambrian animal groups whose extant members are exclusively soft-bodied, suggesting the ecological importance of skeletonization in the Cambrian explosion. PMID:26601209

  20. High-Flux Graphene Oxide Membranes Intercalated by Metal-Organic Framework with Highly Selective Separation of Aqueous Organic Solution.

    PubMed

    Ying, Yunpan; Liu, Dahuan; Zhang, Weixin; Ma, Jing; Huang, Hongliang; Yang, Qingyuan; Zhong, Chongli

    2017-01-18

    Graphene oxide (GO) membranes assembled by single-atom thick GO nanosheets have displayed huge potential application both in gas and liquid separation processes due to its facile and large-scale preparation resulting from various functional groups, such as hydroxyl, carboxyl, and epoxide groups. Taking advantage of these characters, GO membranes intercalated by superhydrophilic metal-organic frameworks (MOFs) as strengthening separation fillers were prepared on modified polyacrylonitrile (PAN) support by a novel pressure-assisted self-assembly (PASA) filtration technique instead of traditional vacuum filtration method for the first time. The synthesized MOF@GO membranes were characterized with several spectroscopic techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), as well as scanning electron microscopy (SEM). Compared with GO membrane, these MOF@GO membranes combine the unique properties of MOF and GO and thus have significant enhancements of pervaporation (PV) permeation flux and separation factor simultaneously for ethyl acetate/water mixtures (98/2, w/w) through the PV process, which are also superior to the reported other kinds of membranes. Especially, for MOF@GO-0.3 membrane (corresponding MOF loading: 23.08 wt %), the increments are 159% and 244%, respectively, at 303 K, and the permeate water content can reach as high as 99.5 wt % (corresponding separation factor, 9751) with a high permeation flux of 2423 g m(-2) h(-1). Moreover, the procedures of both the synthesis of MOF and membranes preparation are environmentally friendly that only water was used as solvent. Such a nanosized MOF-intercalating approach may be also extended to other laminated membranes, providing valuable insights in designing and developing of advanced membranes for effective separation of aqueous organic solution through nanostructure manipulation of the nanomaterials.

  1. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals

    NASA Astrophysics Data System (ADS)

    Bachman, Jonathan E.; Smith, Zachary P.; Li, Tao; Xu, Ting; Long, Jeffrey R.

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  2. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    PubMed

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  3. Impact of dissolved oxygen concentration on membrane filtering resistance and soluble organic matter characteristics in membrane bioreactors.

    PubMed

    Min, Kyung-Nan; Ergas, Sarina J; Mermelstein, Anna

    2008-01-01

    This study investigated the impact of dissolved oxygen (DO) concentration on membrane filtering resistance, soluble organic matter (SOM) and extracellular polymeric substance (EPS) characteristics in a membrane bioreactor (MBR). A laboratory-scale MBR was operated under DO limited (0.2 mg L(-1) DO) and fully aerobic (3.7 and 5.4 mg L(-1) DO) conditions. Membrane filtering resistance was determined for the mixed liquor suspended solids (MLSS) and for resuspended microbial biomass after removing SOM. Regardless of the DO concentration, the cake resistance (Rc) was approximately 95 percent of the total resistance (Rt). The membrane cake resistance was found to decrease significantly after removing the SOM. The total resistance caused by the resuspended biomass was 29 percent of that caused by the MLSS under DO limited conditions, while the total resistance caused by resuspended biomass was 41 to 48 percent of that caused by the MLSS under fully aerobic conditions. Under DO limited conditions, SOM in the MLSS contained a larger amount of high molecular weight compounds, leading to higher cake resistance than under fully aerobic conditions. There was significant variation in the molecular weight fractions of the EPS, with no clear relationship with DO concentration. There was also no distinct relationship between membrane filtering resistance and molecular weight fraction of the EPS.

  4. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells

    PubMed Central

    1975-01-01

    The association of actin filaments with membranes is now recognized as an important parameter in the motility of nonmuscle cells. We have investigated the organization of one of the most extensive and highly ordered actin filament-membrane complexes in nature, the brush border of intestinal epithelial cells. Through the analysis of isolated, demembranated brush borders decorated with the myosin subfragment, S1, we have determined that all the microvillar actin filaments have the same polarity. The S1 arrowhead complexes point away from the site of attachment of actin filaments at the apical tip of the microvillar membrane. In addition to the end-on attachment of actin filaments at the tip of the microvillus, these filaments are also connected to the plasma membrane all along their lengths by periodic (33 nm) cross bridges. These bridges were best observed in isolated brush borders incubated in high concentrations of Mg++. Their visibility is attributed to the induction of actin paracrystals in the filament bundles of the microvilli. Finally, we present evidence for the presence of myosinlike filaments in the terminal web region of the brush border. A model for the functional organization of actin and myosin in the brush border is presented. PMID:1202021

  5. Making an Inexpensive Skeleton for the Classroom.

    ERIC Educational Resources Information Center

    Shaw, Edward L., Jr.; Pruitt, Nancy E.

    1990-01-01

    Presented is an activity in which a skeleton is built using papier mache' and various household items. The materials; procedures for building each part of the skeleton; and directions for painting, assembling, and varnishing are included. (KR)

  6. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.

    PubMed

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2014-02-01

    This study elucidates the relationship between membrane properties and the rejection of trace organic contaminants (TrOCs) in forward osmosis (FO). An asymmetric cellulose triacetate (CTA) and a thin-film composite (TFC) polyamide FO membrane were used for this investigation. The effective average pore radius (rp), selective barrier thickness over porosity parameter (l/ε), surface charge, support layer structural parameter (S), pure water permeability coefficient (A) and salt (NaCl) permeability coefficient (B) of the two membranes were systematically characterised. Results show that measured rejection of TrOCs as a function of permeate water flux can be well described by the pore hindrance transport model. This observation represents the first successful application of this model, which was developed for pressure-driven nanofiltration, to an osmotically-driven membrane process. The rejection of charged TrOCs by the CTA and TFC membranes was high and was governed by both electrostatic repulsion and steric hindrance. The TFC membrane exhibited higher rejection of neutral TrOCs with low molecular weight than the CTA membrane, although the estimated pore size of the TFC membrane (0.42 nm) was slightly larger than that of the CTA membrane (0.37 nm). This higher rejection of neutral TrOCs by the TFC membrane is likely attributed to its active layer properties, namely a more effective active layer structure, as indicated by a larger l/ε parameter, and pore hydration induced by the negative surface charge.

  7. The study on pervaporation behaviors of dilute organic solution through PDMS/PTFE composite membrane.

    PubMed

    Zhang, Wei-dong; Sun, Wei; Yang, Jing; Ren, Zhong-qi

    2010-01-01

    As an energy-efficient alternative to distillation, pervaporation has been widely combined with fermentation to remove organic compounds from their dilute solutions in a fermentation broth. In this work, the organic permselective composite membrane is prepared by coating polydimethylsiloxane (PDMS) cross-linked with n-heptane on the substrate of polytetrafluoroethylene(PTFE) membrane. The separation behavior is studied in different dilute organic solutions, which include acetone dilute solution, butanone dilute solution, cyclohexanone dilute solution, ethanol dilute solution, isopropanol dilute solution, n-butyl alcohol dilute solution, acetic acid dilute solution, and ethyl acetate dilute solution. Most of these solutions are main reaction products or by-products from fermentation process. The effects of solubility of organics in the membrane, molecular weight, and polarity of the organics on the pervaporation performance are investigated. The effects of operating temperature and organic concentration in the feed solutions on the performance of composite membrane are studied as well. The experimental results show that molecular volume has less influence than solubility and molecular polarity for these organic solvent. The selectivity of PDMS membrane to ethyl acetate is relative high due to good solubility and diffusion of ethyl acetate molecules in polymer.

  8. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin.

    PubMed

    Rischer, Heiko; Hamm, Andreas; Bringmann, Gerhard

    2002-03-01

    Tropical pitcher plants (Nepenthes) catch animals in their specialized cup-shaped leaves, digest the prey by secreting enzymes, and actively take up the resulting compounds. The benefit of this behaviour is the ability to grow and compete in nutrient-poor habitats. Our present in vitro study shows that not only the nitrogen of alanine fed to the carnivorous organs is used by the plant but that in addition intact C2-units derived from C-2 and C-3 of stable isotope labelled L-alanine serve as building blocks, here exemplarily for the synthesis of the secondary metabolite plumbagin, a potent allelochemical. This result adds a new facet to the benefit of carnivory for plants. The availability of plumbagin by a de novo synthesis probably enhances the plants' fitness in their defence against phytophagous and pathogenic organisms. A missing specific uptake or CoA activation mechanism might be the reason that acetate fed to the pitchers was not incorporated into the naphthoquinone plumbagin. The dihydronaphthoquinone glucosides rossoliside and plumbaside A, here isolated for the first time from Nepenthes, by contrast, showed no incorporation after feeding of any of the two precursors, suggesting these compounds to be storage forms with probably very low turnover rates.

  9. Organization and Dynamics of Fas Transmembrane Domain in Raft Membranes and Modulation by Ceramide

    PubMed Central

    Castro, Bruno M.; de Almeida, Rodrigo F.M.; Goormaghtigh, Erik; Fedorov, Aleksander; Prieto, Manuel

    2011-01-01

    To comprehend the molecular processes that lead to the Fas death receptor clustering in lipid rafts, a 21-mer peptide corresponding to its single transmembrane domain (TMD) was reconstituted into mammalian raft model membranes composed of an unsaturated glycerophospholipid, sphingomyelin, and cholesterol. The peptide membrane lateral organization and dynamics, and its influence on membrane properties, were studied by steady-state and time-resolved fluorescence techniques and by attenuated total reflection Fourier transformed infrared spectroscopy. Our results show that Fas TMD is preferentially localized in liquid-disordered membrane regions and undergoes a strong reorganization as the membrane composition is changed toward the liquid-ordered phase. This results from the strong hydrophobic mismatch between the length of the peptide hydrophobic stretch and the hydrophobic thickness of liquid-ordered membranes. The stability of nonclustered Fas TMD in liquid-disordered domains suggests that its sequence may have a protective function against nonligand-induced Fas clustering in lipid rafts. It has been reported that ceramide induces Fas oligomerization in lipid rafts. Here, it is shown that neither Fas TMD membrane organization nor its conformation is affected by ceramide. These results are discussed within the framework of Fas membrane signaling events. PMID:21961589

  10. Design and properties of functional hybrid organic-inorganic membranes for fuel cells.

    PubMed

    Laberty-Robert, C; Vallé, K; Pereira, F; Sanchez, C

    2011-02-01

    This critical review presents a discussion on the major advances in the field of organic-inorganic hybrid membranes for fuel cells application. The hybrid organic-inorganic approach, when the organic part is not conductive, reproduces to some extent the behavior of Nafion where discrete hydrophilic and hydrophilic domains are homogeneously distributed. A large variety of proton conducting or non conducting polymers can be combined with various functionalized, inorganic mesostructured particles or an inorganic network in order to achieve high proton conductivity, and good mechanical and chemical properties. The tuning of the interface between these two components and the control over chemical and processing conditions are the key parameters in fabricating these hybrid organic-inorganic membranes with a high degree of reproducibility. This dynamic coupling between chemistry and processing requires the extensive use and development of complementary ex situ measurements with in situ characterization techniques, following in real time the molecular precursor solutions to the formation of the final hybrid organic-inorganic membranes. These membranes combine the intrinsic physical and chemical properties of both the inorganic and organic components. The development of the sol-gel chemistry allows a fine tuning of the inorganic network, which exhibits acid-based functionalized pores (-SO(3)H, -PO(3)H(2), -COOH), tunable pore size and connectivity, high surface area and accessibility. As such, these hybrid membranes containing inorganic materials are a promising family for controlling conductivity, mechanical and chemical properties (349 references).

  11. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes.

    PubMed

    Yamamura, Hiroshi; Okimoto, Kenji; Kimura, Katsuki; Watanabe, Yoshimasa

    2014-05-01

    Although membrane filtration is a promising technology in the field of drinking water treatment, persistent membrane fouling remains a major disadvantage. For more efficient operation, causative agents of membrane fouling need to be identified. Membrane fouling can be classified into physically reversible and irreversible fouling on basis of the removability of the foulants by physical cleaning. Four types of natural organic matter (NOM) in river water used as a source of drinking water were fractionated into hydrophobic and hydrophilic fractions, and their potential to develop irreversible membrane fouling was evaluated by a bench-scale filtration experiment together with spectroscopic and chromatographic analyses. In this study, only dissolved NOM was investigated without consideration of interactions of NOM fractions with particulate matter. Results demonstrated that despite identical total organic carbon (TOC), fouling development trends were significantly different between hydrophilic and hydrophobic fractions. The hydrophobic fractions did not increase membrane resistance, while the hydrophilic fractions caused severe loss of membrane permeability. These results were identical with the case when the calcium was added to hydrophobic and hydrophilic fractions. The largest difference in NOM characteristics between hydrophobic and hydrophilic fractions was the presence or absence of macromolecules; the primary constituent causing irreversible fouling was inferred to be "biopolymers", including carbohydrates and proteins. In addition, the results demonstrated that the extent of irreversible fouling was considerably different depending on the combination of membrane materials and NOM characteristics. Despite identical nominal pore size (0.1 μm), a polyvinylidene fluoride (PVDF) membrane was found to be more rapidly fouled than a PE membrane. This is probably explained by the generation of strong hydrogen bonding between hydroxyl groups of biopolymers and fluorine

  12. Wavelet-based approach to character skeleton.

    PubMed

    You, Xinge; Tang, Yuan Yan

    2007-05-01

    Character skeleton plays a significant role in character recognition. The strokes of a character may consist of two regions, i.e., singular and regular regions. The intersections and junctions of the strokes belong to singular region, while the straight and smooth parts of the strokes are categorized to regular region. Therefore, a skeletonization method requires two different processes to treat the skeletons in theses two different regions. All traditional skeletonization algorithms are based on the symmetry analysis technique. The major problems of these methods are as follows. 1) The computation of the primary skeleton in the regular region is indirect, so that its implementation is sophisticated and costly. 2) The extracted skeleton cannot be exactly located on the central line of the stroke. 3) The captured skeleton in the singular region may be distorted by artifacts and branches. To overcome these problems, a novel scheme of extracting the skeleton of character based on wavelet transform is presented in this paper. This scheme consists of two main steps, namely: a) extraction of primary skeleton in the regular region and b) amendment processing of the primary skeletons and connection of them in the singular region. A direct technique is used in the first step, where a new wavelet-based symmetry analysis is developed for finding the central line of the stroke directly. A novel method called smooth interpolation is designed in the second step, where a smooth operation is applied to the primary skeleton, and, thereafter, the interpolation compensation technique is proposed to link the primary skeleton, so that the skeleton in the singular region can be produced. Experiments are conducted and positive results are achieved, which show that the proposed skeletonization scheme is applicable to not only binary image but also gray-level image, and the skeleton is robust against noise and affine transform.

  13. Fouling of microfiltration membranes by organic polymer coagulants and flocculants: controlling factors and mechanisms.

    PubMed

    Wang, Sen; Liu, Charles; Li, Qilin

    2011-01-01

    Organic polymers are commonly used as coagulants or flocculants in pretreatment for microfiltration (MF). These high molecular weight compounds are potential membrane foulants when carried over to the MF filters. This study examined fouling of three MF membranes of different materials by three commonly used water treatment polymers: poly(diallyldimethylammonium) chloride (pDADMAC), polyacrylamide (PAM), and poly(acrylic acid-co-acrylamide (PACA) with a wide range of molecular weights. The effects of polymer molecular characteristics, membrane surface properties, solution condition and polymer concentration on membrane fouling were investigated. Results showed severe fouling of microfiltration membranes at very low polymer concentrations, suggesting that residual polymers carried over from the coagulation/flocculation basin can contribute significantly to membrane fouling. The interactions between polymers and membranes depended strongly on the molecular size and charge of the polymer. High molecular weight, positively charged polymers caused the greatest fouling. Blockage of membrane pore openings was identified as the main fouling mechanism with no detectable internal fouling in spite of the small molecular size of the polymers relative to the membrane pore size. Solution conditions (e.g., pH and calcium concentration) that led to larger polymer molecular or aggregate sizes resulted in greater fouling.

  14. The spatial organization of Descemet's membrane-associated type IV collagen in the avian cornea

    PubMed Central

    1990-01-01

    The organization of type IV collagen in the unconventional basement membrane of the corneal endothelium (Descemet's membrane) was investigated in developing chicken embryos using anti-collagen mAbs. Both immunofluorescence histochemistry and immunoelectron microscopy were performed. In mature embryos (greater than 15 d of development), the type IV collagen of Descemet's membrane was present as an array of discrete aggregates of amorphous material at the interface between Descemet's membrane and the posterior corneal stroma. Immunoreactivity for type IV collagen was also observed in the posterior corneal stroma as irregular plaques of material with a morphology similar to that of the Descemet's membrane-associated aggregates. This arrangement of Descemet's membrane-associated type IV collagen developed from a subendothelial mat of type IV collagen-containing material. This mat, in which type IV collagen-specific immunoreactivity was always discontinuous, first appeared at the time a confluent endothelium was established, well before the onset of Descemet's membrane formation. Immunoelectron microscopy of mature corneas revealed that the characteristic nodal matrix of Descemet's membrane itself was unreactive for type IV collagen, but was penetrated at intervals by projections of type IV collagen-containing material. These projections frequently appeared to contact cell processes from the underlying corneal endothelium. This spatial arrangement of type IV collagen suggests that it serves to suture the corneal endothelium/Descemet's membrane to the dense interfacial matrix of the posterior stroma. PMID:2182654

  15. Emerging Insights into the Roles of Membrane Tethers from Analysis of Whole Organisms: The Tip of an Iceberg?

    PubMed Central

    Toh, Wei Hong; Gleeson, Paul A.

    2016-01-01

    Membrane tethers have been identified throughout different compartments of the endomembrane system. It is now well established that a number of membrane tethers mediate docking of membrane carriers in anterograde and retrograde transport and in regulating the organization of membrane compartments. Much of our information on membrane tethers have been obtained from the analysis of individual membrane tethers in cultured cells. In the future it will be important to better appreciate the network of interactions mediated by tethers and the potential co-ordination of their collective functions in vivo. There are now a number of studies which have analyzed membrane tethers in tissues and organisms which are providing new insights into the role of this class of membrane protein at the physiological level. Here we review recent advances in the understanding of the function of membrane tethers from knock outs (or knock downs) in whole organisms and from mutations in tethers associated with disease. PMID:26973835

  16. Amiodarone effects on membrane organization evaluated by fluorescence polarization.

    PubMed

    Antunes-Madeira, M C; Videira, R A; Klüppel, M L; Madeira, V V

    1995-03-03

    The effects of amiodarone (0-100 microM) on the physical state of synthetic and native membranes were investigated by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), probing the bilayer core, and of its anionic propionic acid derivative (DPH-PA), probing the outer regions of the bilayer. In the gel phase of dimyristoylphosphatidylcholine (DMPC) bilayers, amiodarone broadens the transition profile and shifts the phase transition midpoint to lower temperature values, as evaluated by both probes. On the other hand, the drug orders the fluid phase of the lipid either in hydrophobic core or in the outer regions of the bilayer, as detected by DPH and DPH-PA, respectively. The effects of amiodarone on the thermotropic behaviour of DPPC confirm and extend data in DMPC. Cholesterol concentration modulates to a great extent the effects of amiodarone in the fluid phase of DMPC. Thus, both probes, DPH and DPH-PA, detect either ordering effects of amiodarone for low cholesterol concentrations (< or = 20 mol%) or disordering amiodarone effects at higher cholesterol levels (> 20 mol%). In agreement with the results in models of synthetic lipids, the ordering effects of amiodarone in fluid native membranes of mitochondria and brain microsomes are depressed with the increase in intrinsic cholesterol. The ordering effects in mitochondria may induce bioenergetic dysfunctions and consequently disturbances in the electromechanic functioning of myocardium.

  17. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment.

    PubMed

    Rosenberger, S; Laabs, C; Lesjean, B; Gnirss, R; Amy, G; Jekel, M; Schrotter, J-C

    2006-02-01

    Two parallel membrane bioreactors (2 m3 each) were operated over a period of 2 years. Both pilots were optimised for nitrification, denitrification, and enhanced biological phosphorous elimination, treating identical municipal wastewater under comparable operating conditions. The only constructional difference between the pilots was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite identical modules and conditions, the two MBRs showed different permeabilities and fouling rates. The differences were not related to the denitrification scheme. In order to find an explanation for the different membrane performances, a one-year investigation was initiated and the membrane performance as well as the operating regime and characteristics of the activated sludge were closely studied. MLSS concentrations, solid retention time, loading rates, and filtration flux were found not to be responsible for the different performance of the submerged modules. These parameters were kept identical in the two pilot plants. Instead, the non-settable fraction of the sludges (soluble and colloidal material, i.e. polysaccharides, proteins and organic colloids) was found to impact fouling and to cause the difference in membrane performance between the two MBR. This fraction was analysed by spectrophotometric and size exclusion chromatography (SEC) methods. In a second step, the origin of these substances was investigated. The results point to microbiologically produced substances such as extracellular polymeric substances (EPS) or soluble microbial products (SMP).

  18. Separations of hazardous organics from gas and liquid feedstreams using phosphazene polymer membranes

    SciTech Connect

    Peterson, E.S.; Stone, M.L.; Cummings, D.G.; McCaffrey, R.R.

    1993-01-01

    The liquid-liquid and gas separation properties for the separation of hazardous organic feed streams using pervaporation and gas separation methods with poly[bis(phenoxy)phosphazene] based membranes are reported. Liquid transport behavior was determined using pervaporation techniques. The preliminary gas separations were studied using a mixed gas separation method which the authors have described previously. Using the membrane pervaporation technique, separation factors of 10,000 have been routinely achieved for the separation of methylene chloride from water. Other tests have shown similar results for the removal of hydrocarbon vapors from air. Membranes were prepared using solution casting techniques. Solvent evaporation rates during the casting and subsequent curing processes were controlled to provide a consistent membrane microstructure. These results suggest that polyphosphazene membrane technology could effectively be used in cleaning up air and ground water that has been contaminated with chlorinated hydrocarbons.

  19. Anodized Aluminum Oxide Templated Synthesis of Metal-Organic Frameworks Used as Membrane Reactors.

    PubMed

    Yu, Yifu; Wu, Xue-Jun; Zhao, Meiting; Ma, Qinglang; Chen, Junze; Chen, Bo; Sindoro, Melinda; Yang, Jian; Han, Shikui; Lu, Qipeng; Zhang, Hua

    2017-01-09

    The incorporation of metal-organic frameworks (MOFs) into membrane-shaped architectures is of great importance for practical applications. The currently synthesized MOF-based membranes show many disadvantages, such as poor compatibility, low dispersity, and instability, which severely limit their utility. Herein, we present a general, facile, and robust approach for the synthesis of MOF-based composite membranes through the in situ growth of MOF plates in the channels of anodized aluminum oxide (AAO) membranes. After being used as catalysis reactors, they exhibit high catalytic performance and stability in the Knoevenagel condensation reaction. The high catalytic performance might be attributed to the intrinsic structure of MOF-based composite membranes, which can remove the products from the reaction zone quickly, and prevent the aggregation and loss of catalysts during reaction and recycling process.

  20. Quantifying the deformation of the red blood cell skeleton in shear flow

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Zhu, Qiang

    2012-02-01

    To quantitatively predict the response of red blood cell (RBC) membrane in shear flow, we carried out multiphysics simulations by coupling a three-level multiscale approach of RBC membranes with a Boundary Element Method (BEM) for surrounding flows. Our multiscale approach includes a model of spectrins with the domain unfolding feature, a molecular-based model of the junctional complex with detailed protein connectivity and a whole cell Finite Element Method (FEM) model with the bilayer-skeleton friction derived from measured transmembrane protein diffusivity based on the Einstein-Stokes relation. Applying this approach, we investigated the bilayer-skeleton slip and skeleton deformation of healthy RBCs and RBCs with hereditary spherocytosis anemia during tank-treading motion. Compared with healthy cells, cells with hereditary spherocytosis anemia sustain much larger skeleton-bilayer slip and area deformation of the skeleton due to deficiency of transmembrane proteins. This leads to extremely low skeleton density and large bilayer-skeleton interaction force, both of which may cause bilayer loss. This finding suggests a possible mechanism of the development of hereditary spherocytosis anemia.

  1. Membrane air stripping: A process for removal of organics from aqueous solutions

    SciTech Connect

    Mahmud, H.; Kumar, A.; Narbaitz, R.M.; Matsuura, T.

    1998-10-01

    The membrane air-stripping (MAS) process using microporous polypropylene hollow fiber membranes has shown potential for the removal of volatile organics from aqueous streams over conventional treatment processes, particularly in reducing the size of the equipment. This paper reviews the theoretical aspects and experimental investigations on the performance of these membranes in terms of overall mass transfer capabilities in the removal of organics from aqueous solutions. The reported findings of the effect of pH, ozone, chlorine, influence of packing density and possible fouling on the performance of these hollow fibers membranes are presented. The fate of the stripped air is discussed. Other possible applications as well as the future research needs are highlighted, along with critical assessment of the reported work.

  2. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms.

    PubMed

    Li, Qilin; Elimelech, Menachem

    2004-09-01

    Fouling and subsequent chemical cleaning of nanofiltration (NF) membranes used in water quality control applications are often inevitable. To unravel the mechanisms of organic fouling and chemical cleaning, it is critical to understand the foulant-membrane, foulant-foulant, and foulant-cleaning agent interactions at the molecular level. In this study, the adhesion forces between the foulant and the membrane surface and between the bulk foulant and the fouling layer were determined by atomic force microscopy (AFM). A carboxylate modified AFM colloid probe was used as a surrogate for humic acid, the major organic foulant in natural waters. The interfacial force data were combined with the NF membrane water flux measurements to elucidate the mechanisms of organic fouling and chemical cleaning. A remarkable correlation was obtained between the measured adhesion forces and the fouling and cleaning behavior of the membrane under various solution chemistries. The AFM measurements further confirmed that divalent calcium ions greatly enhance natural organic matter fouling by complexation and subsequent formation of intermolecular bridges among organic foulant molecules. Efficient chemical cleaning was achieved only when the calcium ion bridging was eliminated as a result of the interaction between the chemical cleaning agent and the fouling layer. The cleaning efficiency was highly dependent on solution pH and the concentration of the chemical cleaning agent.

  3. Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter.

    PubMed

    Schäfer, A I; Fane, A G; Waite, T D

    2001-04-01

    This paper compares the membrane processes available for water treatment. Membranes have the advantage of currently decreasing capital cost, a relatively small footprint compared to conventional treatment, generally a reduction in chemicals usage and comparably low maintenance requirements. Three membrane processes applicable to water treatment, micro- (MF), ultra- (UF), and nanofiltration (NF), are compared in terms of intrinsic rejection, variation of rejection due to membrane fouling and increase in rejection by ferric chloride pretreatment. Twelve different membranes are compared on the basis of their membrane pore size which was calculated from their molecular weight cut-off. A pore size of < 6 nm is required to achieve substantial (> 50%) organics removal. For a fouled membrane this pore size is about 11 nm. UV rejection is higher than DOC rejection. Coagulation pretreatment allows a higher rejection of organics by MF and UF and the cut-off criterion due to initial membrane pore size is no longer valid. A water quality parameter (WQP) is introduced which describes the product water quality achieved as a function of colloid, DOC and cation rejection. The relationship between log (pore size) and WQP is linear. Estimation of membrane costs as a function of WQP suggests that open UF is superior to MF (similar cost at higher WQP) and NF is superior to tight UF. Chemical pretreatment could compensate for the difference between MF and UF. However, when considering chemicals and energy costs, it appears that a process operated at a higher energy is cheaper at a guaranteed product quality (less dependent on organic type). This argument is further supported by environmental issues of chemicals usage, as energy may be provided from renewable sources.

  4. Acetylcholine Receptor Organization in Membrane Domains in Muscle Cells

    PubMed Central

    Piguet, Joachim; Schreiter, Christoph; Segura, Jean-Manuel; Vogel, Horst; Hovius, Ruud

    2011-01-01

    Nicotinic acetylcholine receptors (nAChR) in muscle fibers are densely packed in the postsynaptic region at the neuromuscular junction. Rapsyn plays a central role in directing and clustering nAChR during cellular differentiation and neuromuscular junction formation; however, it has not been demonstrated whether rapsyn is the only cause of receptor immobilization. Here, we used single-molecule tracking methods to investigate nAChR mobility in plasma membranes of myoblast cells during their differentiation to myotubes in the presence and absence of rapsyn. We found that in myoblasts the majority of nAChR were immobile and that ∼20% of the receptors showed restricted diffusion in small domains of ∼50 nm. In myoblasts devoid of rapsyn, the fraction of mobile nAChR was considerably increased, accompanied by a 3-fold decrease in the immobile population of nAChR with respect to rapsyn-expressing cells. Half of the mobile receptors were confined to domains of ∼120 nm. Measurements performed in heterologously transfected HEK cells confirmed the direct immobilization of nAChR by rapsyn. However, irrespective of the presence of rapsyn, about one-third of nAChR were confined in 300-nm domains. Our results show (i) that rapsyn efficiently immobilizes nAChR independently of other postsynaptic scaffold components; (ii) nAChR is constrained in confined membrane domains independently of rapsyn; and (iii) in the presence of rapsyn, the size of these domains is strongly reduced. PMID:20978122

  5. Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes.

    PubMed

    Kandambeth, Sharath; Biswal, Bishnu P; Chaudhari, Harshal D; Rout, Kanhu Charan; Kunjattu H, Shebeeb; Mitra, Shouvik; Karak, Suvendu; Das, Anuja; Mukherjee, Rabibrata; Kharul, Ulhas K; Banerjee, Rahul

    2017-01-01

    Self-standing, flexible, continuous, and crack-free covalent-organic-framework membranes (COMs) are fabricated via a simple, scalable, and highly cost-effective methodology. The COMs show long-term durability, recyclability, and retain their structural integrity in water, organic solvents, and mineral acids. COMs are successfully used in challenging separation applications and recovery of valuable active pharmaceutical ingredients from organic solvents.

  6. The Effect of Freezing on Thylakoid Membranes in the Presence of Organic Acids

    PubMed Central

    Santarius, Kurt A.

    1971-01-01

    The effect of salts of organic acids on washed and non-washed chloroplast membranes during freezing was investigated. Thylakoids were isolated from spinach leaves (Spinacia oleracea L.) and, prior to freezing, salts of various organic acids or inorganic salts or both were added. Freezing occurred for 3 to 4 hours at −25 C. After thawing membrane integrity was investigated by measuring the activity of cyclic photophosphorylation. At very low NaCl levels (1 to 3 mm, washed thylakoids) salts of organic acids either could not prevent membrane inactivation in the course of freezing (succinate) or were effective only at relatively high concentrations (0.1 m or more of acetate, pyruvate, malate, tartrate, citrate). If NaCl was present at higher concentrations (e.g., 0.1 m) some organic acids, e.g. succinate, malate, tartrate, and citrate, were able to protect frost-sensitive thylakoids at surprisingly low concentrations (10 to 20 mm). Other inorganic salts such as KCl, MgCl2, NaNO3 could also induce protection by organic acids which otherwise were ineffective or poorly effective. For effective protection, a more or less constant ratio between inorganic salt and organic acid or between two or more organic acids had to be maintained. Departure to either side from the optimal ratio led to progressive inactivation. The unspecificity of the protective effect of organic acids suggests that these compounds protect colligatively. There are also indications that, in addition, more specific interaction with the membranes contributes to protection. At temperatures above the freezing point, the presence of salts of organic acids decreased the rate of membrane inactivation by high electrolyte concentrations. PMID:16657754

  7. Chemical cleaning/disinfection and ageing of organic UF membranes: a review.

    PubMed

    Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P

    2014-06-01

    Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions

  8. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Koh, Dong-Yeun; McCool, Benjamin A.; Deckman, Harry W.; Lively, Ryan P.

    2016-08-01

    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

  9. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes.

    PubMed

    Koh, Dong-Yeun; McCool, Benjamin A; Deckman, Harry W; Lively, Ryan P

    2016-08-19

    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

  10. DEVELOPMENTAL PALEOBIOLOGY OF THE VERTEBRATE SKELETON

    PubMed Central

    RÜCKLIN, MARTIN; DONOGHUE, PHILIP C. J.; CUNNINGHAM, JOHN A.; MARONE, FEDERICA; STAMPANONI, MARCO

    2015-01-01

    Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties. PMID:26306050

  11. THE EFFECT OF ORGANIC IONS ON THE MEMBRANE POTENTIAL OF NERVES

    PubMed Central

    Wilbrandt, W.

    1937-01-01

    1. The effect of osmotic pressure on the nerve resting potential of frog sciatic nerve is in accordance with the assumption of a membrane potential; increased osmotic pressure raises, decreased osmotic pressure lowers the potential. 2. The potential of crab nerves is affected by organic and inorganic cations in the approximate series: Rb > K = diamylamine > dibutylamine > guanidine > tetraethylamine > diethylamine = dimethylamine > dipropylamine > tetramethylamine = choline = Na = Li. 3. The response of the potential to the series of dialkylamines (first decrease, then increase of response ascending in the series) is best understood by the assumption that the nerve membrane is a porous structure. 4. With respect to these salts as well as to other organic cations the dried collodion membrane as a model of a porous membrane shows a striking parallelism to the nerve membrane. 5. Both inorganic and organic anions (NO3, SCN, acetate, propionate, butyrate, lactate, pyruvate) have a definite, if slight, effect in raising the potential of crab nerves. This effect of anions indicates that the nerve membrane is not completely anion impermeable. 6. The effect of organic ions is, with certain restrictions, reversible. Its possible relation to the resting potential and to the after potentials of the electrical disturbance is discussed. 7. The response of the myelinated sciatic nerve of the frog and of the non-myelinated nerve of the spider crab show considerable agreement. There are some definite differences which are, however, not necessarily due to differences of the cell membranes involved, but may be ascribed to the difference of ionic conditions in Ringer and sea water. PMID:19873008

  12. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    PubMed

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level.

  13. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    PubMed

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed.

  14. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes

    DOE PAGES

    Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.

    2015-07-29

    Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled.more » Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.« less

  15. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes

    SciTech Connect

    Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.

    2015-07-29

    Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled. Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.

  16. Membrane bioreactor process of organic wastewater from brassylic acid manufacturing plant.

    PubMed

    Wu, Z C; Zeng, P; Wang, S F; Gao, T Y

    2001-04-01

    The wastewater treatment from brassylic acid manufacturing plant using membrane bioreactor (MBR) was studied. The membrane bioreactor consisted of batch-operation biological aeration tank and ultrafiltration evaluation tank. The content of test included the affection of variation operation conditions on ultrafiltration separation, the general characteristics of MBR process, and the difference comparing with the conventional biological treatment. The results are as follows: (1) among the test membrane material, polyether sulphone (PES) membrane is more suitable for the wastewater treatment; (2) when the cutoff molecular weight is among 10,000-50,000, the higher the cutoff molecular weight, the bigger the water flux is in the test; (3) under the operation pressure, water flux increases accompanying with the increasing of operation pressure; (4) the paper filtered COD concentration has more affection on the water flux than the suspended solid concentration; (5) as the volume loading of MBR increases, the accumulation of high molecule organic substance and colloid increases, the membrane permeate COD concentration and paper filtered COD concentration increase too, meanwhile the water flux reduces; (6) when the sludge retention time of activated sludge of MBR increases, the accumulation of high molecule organic substance and colloid reduces, the membrane permeate COD concentration and paper filtered COD concentration reduce too, and the water flux increases; (7) comparing with the conventional biological process, the microbial activity is higher, but the microbial species is less.

  17. Modification of plasma membrane organization in tobacco cells elicited by cryptogein.

    PubMed

    Gerbeau-Pissot, Patricia; Der, Christophe; Thomas, Dominique; Anca, Iulia-Andra; Grosjean, Kevin; Roche, Yann; Perrier-Cornet, Jean-Marie; Mongrand, Sébastien; Simon-Plas, Françoise

    2014-01-01

    Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe. This allowed the in vivo characterization of the global level of order of this membrane, by which we could demonstrate that an increase in its proportion of ordered phases transiently occurred in the early steps of the signaling triggered by cryptogein and flagellin, two elicitors of plant defense reactions. The use of fluorescence recovery after photobleaching revealed an increase in plasma membrane fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of liquid-ordered phases on the membrane of living plant cells and monitored their variations induced by cryptogein elicitation. We analyze these results in the context of plant defense signaling, discuss their meaning within the framework of the "membrane raft" hypothesis, and propose a new mechanism of signaling platform formation in response to elicitor treatment.

  18. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    PubMed

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  19. Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling.

    PubMed

    Diagne, Fatou; Malaisamy, Ramamoorthy; Boddie, Vic; Holbrook, R David; Eribo, Broderick; Jones, Kimberly L

    2012-04-03

    Membrane fouling remains one of the most problematic issues surrounding membrane use in water and wastewater treatment applications. Organic and biological fouling contribute to irreversible fouling and flux decline in these processes. The aim of this study was to reduce both organic and biological fouling by modifying the surface of commercially available poly(ether sulfone) (PES) membranes using the polyelectrolyte multilayer modification method with poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium chloride) (PDADMAC), and silver nanoparticles (nanoAg) integrated onto the surface as stable, thin (15 nm) films. PSS increases the hydrophilicity of the membrane and increases the negative surface charge, while integration of nanoAg into the top PSS layer imparts biocidal characteristics to the modified surface. Fouling was simulated by filtering aqueous solutions of humic acid (5 and 20 mg L(-1)), a suspension of Escherichia coli (10(6) colony-forming units (CFU) mL(-1)), and a mixture of both foulants through unmodified and modified PES membranes under batch conditions. Filtration and cleaning studies confirmed that the modification significantly reduced organic and biological fouling.

  20. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy.

    PubMed

    Lewis, Ruthven N A H; McElhaney, Ronald N

    2013-10-01

    Fourier transform infrared (FTIR) spectroscopy is a powerful yet relatively inexpensive and convenient technique for studying the structure and organization of membrane lipids in their various polymorphic phases. This spectroscopic technique yields information about the conformation and dynamics of all regions of the lipid molecule simultaneously without the necessity of introducing extrinsic probes. In this review, we summarize some relatively recent FTIR spectroscopic studies of the structure and organization primarily of fully hydrated phospholipids in their biologically relevant lamellar crystalline, gel and liquid-crystalline phases, and show that interconversions between these bilayer phases can be accurately monitored by this technique. We also briefly discuss how the structure and organization of potentially biologically relevant nonlamellar micellar or reversed hexagonal lipid phases can be studied and how phase transitions between lamellar and nonlamellar phases, or between various nonlamellar phases, can be followed as well. In addition, we discuss the potential for FTIR spectroscopy to yield fairly high resolution structural information about phospholipid packing in lamellar crystalline or gel phases. Finally, we show that many, but not all of these FTIR approaches can also yield valuable information about lipid-protein interactions in membrane protein- or peptide-containing lipid membrane bilayer model or even in biological membranes. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.

  1. Membrane pretreatment: A method for reducing fouling by natural organic matter

    SciTech Connect

    Maartens, A.; Swart, P.; Jacobs, E.P.

    2000-01-15

    The prevention of fouling of polysulfone ultrafiltration membranes, used for the purification of natural brown water, was investigated by pretreating the membranes prior to filtration. Polysulfone membranes were pretreated by commercial nonionic surfactants Triton X-100 and Pluronic F108. Specific characterization techniques, developed by Maartens et al. (1998) and Jucker and Clarke, (1994), were used to determine and compare the effects induced by the adsorption of natural organic matter on the permeability of untreated as well as surfactant treated capillary ultrafiltration membranes. The extent of foulant adsorption and the quality of the resultant permeate solutions were determined by ultraviolet visible-light spectroscopy. The findings of this investigation provides information of importance for the operation of future natural brown water ultrafiltration plants.

  2. Hamilton-Jacobi skeleton on cortical surfaces.

    PubMed

    Shi, Y; Thompson, P M; Dinov, I; Toga, A W

    2008-05-01

    In this paper, we propose a new method to construct graphical representations of cortical folding patterns by computing skeletons on triangulated cortical surfaces. In our approach, a cortical surface is first partitioned into sulcal and gyral regions via the solution of a variational problem using graph cuts, which can guarantee global optimality. After that, we extend the method of Hamilton-Jacobi skeleton [1] to subsets of triangulated surfaces, together with a geometrically intuitive pruning process that can trade off between skeleton complexity and the completeness of representing folding patterns. Compared with previous work that uses skeletons of 3-D volumes to represent sulcal patterns, the skeletons on cortical surfaces can be easily decomposed into branches and provide a simpler way to construct graphical representations of cortical morphometry. In our experiments, we demonstrate our method on two different cortical surface models, its ability of capturing major sulcal patterns and its application to compute skeletons of gyral regions.

  3. The Plasma Membrane Potential and the Organization of the Actin Cytoskeleton of Epithelial Cells

    PubMed Central

    Chifflet, Silvia; Hernández, Julio A.

    2012-01-01

    The establishment and maintenance of the polarized epithelial phenotype require a characteristic organization of the cytoskeletal components. There are many cellular effectors involved in the regulation of the cytoskeleton of epithelial cells. Recently, modifications in the plasma membrane potential (PMP) have been suggested to participate in the modulation of the cytoskeletal organization of epithelia. Here, we review evidence showing that changes in the PMP of diverse epithelial cells promote characteristic modifications in the cytoskeletal organization, with a focus on the actin cytoskeleton. The molecular paths mediating these effects may include voltage-sensitive integral membrane proteins and/or peripheral proteins sensitive to surface potentials. The voltage dependence of the cytoskeletal organization seems to have implications in several physiological processes, including epithelial wound healing and apoptosis. PMID:22315611

  4. Self-organizing actin patterns shape membrane architecture but not cell mechanics

    PubMed Central

    Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.

    2017-01-01

    Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties. PMID:28194011

  5. Basic technology for 6Li enrichment using an ionic-liquid impregnated organic membrane

    NASA Astrophysics Data System (ADS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the 6Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the 6Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  6. PSF decomposition of nanoscopy images via Bayesian analysis unravels distinct molecular organization of the cell membrane

    PubMed Central

    Manzo, Carlo; van Zanten, Thomas S.; Saha, Suvrajit; Torreno-Pina, Juan A.; Mayor, Satyajit; Garcia-Parajo, Maria F.

    2014-01-01

    The spatial organization of membrane receptors at the nanoscale has major implications in cellular function and signaling. The advent of super-resolution techniques has greatly contributed to our understanding of the cellular membrane. Yet, despite the increased resolution, unbiased quantification of highly dense features, such as molecular aggregates, remains challenging. Here we describe an algorithm based on Bayesian inference of the marker intensity distribution that improves the determination of molecular positions inside dense nanometer-scale molecular aggregates. We tested the performance of the method on synthetic images representing a broad range of experimental conditions, demonstrating its wide applicability. We further applied this approach to STED images of GPI-anchored and model transmembrane proteins expressed in mammalian cells. The analysis revealed subtle differences in the organization of these receptors, emphasizing the role of cortical actin in the compartmentalization of the cell membrane. PMID:24619088

  7. Self-organizing actin patterns shape membrane architecture but not cell mechanics

    NASA Astrophysics Data System (ADS)

    Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.

    2017-02-01

    Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.

  8. Removal of organics from offshore produced waters using nanofiltration membrane technology

    SciTech Connect

    Dyke, C.A.; Bartels, C.R. )

    1990-08-01

    The separation of oil and produced water mixtures from oil and gas producing wells has traditionally been accomplished by gravity settlers (e.g., multi-phase separators, skimmers, and flotation cells). However, current EPA regulations on the organic content of discharged produced water have reached the limits of these separation techniques. The industry is in need of new technologies to treat these waters. One such technology that the authors have found promising is organics/water separation by nanofiltration membranes.

  9. DETERMINATION OF POLAR VOLATILE ORGANIC COMPOUNDS IN WATER BY MEMBRANE PERMEATE AND TRAP GC-MS

    EPA Science Inventory

    A novel approach is presented combining semipermeable membranes with the accepted purge and trap gas chromatography-mass spectrometry (GC-MS) technology to produce a method of selectively extracting polar, volatile organic compounds from water, particularly those compounds not am...

  10. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY MEMBRANE AND GAC PROCESSES

    EPA Science Inventory

    Bench-scale treatment data for membrane and granular activated carbon technologies are presented for the organic contaminants on the U.S. Environmental Protection Agency's Contaminant Candidate List (CCL). For granular activated carbon (GAC), isotherm results are presented and q...

  11. PSII-LHCII supercomplex organizations in photosynthetic membrane by coarse-grained simulation.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei; Smit, Berend

    2015-03-12

    Green plant photosystem II (PSII) and light-harvesting complex II (LHCII) in the stacked grana regions of thylakoid membranes can self-organize into various PSII-LHCII supercomplexes with crystalline or fluid-like supramolecular structures to adjust themselves with external stimuli such as high/low light and temperatures, rendering tunable solar light absorption spectrum and photosynthesis efficiencies. However, the mechanisms controlling the PSII-LHCII supercomplex organizations remain elusive. In this work, we constructed a coarse-grained (CG) model of the thylakoid membrane including lipid molecules and a PSII-LHCII supercomplex considering association/dissociation of moderately bound-LHCIIs. The CG interaction between CG beads were constructed based on electron microscope (EM) experimental results, and we were able to simulate the PSII-LHCII supramolecular organization of a 500 × 500 nm(2) thylakoid membrane, which is compatible with experiments. Our CGMD simulations can successfully reproduce order structures of PSII-LHCII supercomplexes under various protein packing fractions, free-LHCII:PSII ratios, and temperatures, thereby providing insights into mechanisms leading to PSII-LHCII supercomplex organizations in photosynthetic membranes.

  12. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE REVERSE OSMOSIS MEMBRANES - PHASE II FINAL REPORT

    EPA Science Inventory

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and...

  13. Membrane-Mediated Extraction and Biodegradation of Volatile Organic Compounds From Air

    DTIC Science & Technology

    2005-01-01

    mixtures through PTMSP.” Makromol. Chem. Rapid Commun. 7: 43. Ji, W., S.K. Sikdar , and S.–T. Hwang (1994a). “Modeling of multicomponent...pervaporation for removal of volatile organic compounds from water.” J. Membrane Sci. 93: 1. Ji, W., A. Hilaly, S.K. Sikdar , and S.–T. Hwang (1994b

  14. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    EPA Science Inventory

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  15. Spatial and temporal evolution of organic foulant layers on reverse osmosis membranes in wastewater reuse applications.

    PubMed

    Farias, Elizabeth L; Howe, Kerry J; Thomson, Bruce M

    2014-07-01

    Advanced treatment to remove trace constituents and emerging contaminants is an important consideration for wastewater treatment for potable reuse, and reverse osmosis (RO) can be a suitable technology to provide the necessary level of treatment. However, membrane fouling by biological and organic matter is a concern. This research examined the development of the RO membrane fouling layer using a bench-scale membrane bioreactor operating at different solids retention times (SRTs), followed by a custom-designed RO test cell. The RO test cell contained stacked plates that sandwich five sheets of RO membrane material, which can be extracted for autopsy at separate times over the course of an experiment without disturbing the remaining membranes. The MBR-RO system was run continuously for 2 weeks at each SRT. The RO membranes were stained for live and dead cells, protein, and carbohydrate-like materials, and visualized using confocal laser scanning microscopy. Images of the stained foulant layers were obtained at different depths within the foulant layer at each time point for all SRT conditions. As the RO foulant layer developed, changes occurred in the distribution and morphology of the live cells and carbohydrates, but not the proteins. These trends were similar for all three SRT conditions tested. RO membrane fouling increased with increased MBR SRT, and the highest SRT had the highest ratios of live to dead cells and carbohydrate-like material to dead cells. The autopsied membranes were also analyzed for protein and carbohydrate content, and it was found that the carbohydrate concentration on the membranes after 14 days increased as the SRT increased.

  16. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification

    PubMed Central

    Tambutté, E.; Venn, A. A.; Holcomb, M.; Segonds, N.; Techer, N.; Zoccola, D.; Allemand, D.; Tambutté, S.

    2015-01-01

    Ocean acidification causes corals to calcify at reduced rates, but current understanding of the underlying processes is limited. Here, we conduct a mechanistic study into how seawater acidification alters skeletal growth of the coral Stylophora pistillata. Reductions in colony calcification rates are manifested as increases in skeletal porosity at lower pH, while linear extension of skeletons remains unchanged. Inspection of the microstructure of skeletons and measurements of pH at the site of calcification indicate that dissolution is not responsible for changes in skeletal porosity. Instead, changes occur by enlargement of corallite-calyxes and thinning of associated skeletal elements, constituting a modification in skeleton architecture. We also detect increases in the organic matrix protein content of skeletons formed under lower pH. Overall, our study reveals that seawater acidification not only causes decreases in calcification, but can also cause morphological change of the coral skeleton to a more porous and potentially fragile phenotype. PMID:26067341

  17. Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models.

    PubMed

    Keskin, Seda; Sholl, David S

    2009-10-06

    Metal organic frameworks (MOFs) define a diverse class of nanoporous materials having potential applications in adsorption-based and membrane-based gas separations. We have previously used atomically detailed models to predict the performance of MOFs for membrane-based separations of gases, but these calculations require considerable computational resources and time. Here, we introduce an efficient approximate method for screening MOFs based on atomistic models that will accelerate the modeling of membrane applications. The validity of this approximate method is examined by comparison with detailed calculations for CH4/H2, CO2/CH4, and CO2/H2 mixtures at room temperature permeating through IRMOF-1 and CuBTC membranes. These results allow us to hypothesize a connection between two computationally efficient correlations predicting mixture adsorption and mixture self-diffusion properties and the validity of our approximate screening method. We then apply our model to six additional MOFs, IRMOF-8, -9, -10, and -14, Zn(bdc)(ted)0.5, and COF-102, to examine the effect of chemical diversity and interpenetration on the performance of metal organic framework membranes for light gas separations.

  18. Peptide environment specifies conformation. Helicity of hydrophobic segments compared in aqueous, organic, and membrane environments.

    PubMed

    Li, S C; Deber, C M

    1993-11-05

    Transmembrane segments in integral membrane proteins exist characteristically as helices in lipid bilayers, yet are often rich in residues considered helix-destabilizing (Val, Ile, Gly) in soluble proteins. We propose that helicity of a transmembrane segment is likely to be affected by factors other than the "intrinsic" helical propensities of its component amino acids. This hypothesis is tested by comparing the conformation(s) in aqueous, organic, membrane-mimetic (micellar), and membrane (bilayer) environments of designed model peptides with systematically altered helical propensity and/or segmental hydrophobicity. Peptides of prototypic sequence NH2-(Ser-Lys)2-Ala5-Leu6-Ala7-Ala8-Leu9-Ala10-++ +Trp11-Ala12-Leu13-Ala14- (Lys-Ser)3-OH were synthesized, which incorporate a hydrophobic core "guest" segment (residues 5-14) into a water-soluble hydrophilic host matrix. Related peptides featured substitution of Leu6,9,13-->Gly, Leu6,9,13-->Ala, and Ala7,10,14-->Gly. Circular dichroism spectra revealed that algorithms for soluble proteins correctly predicted peptide helical proclivities in aqueous solutions, but peptide helicity in organic (trifluoroethanol) solvents, membrane-mimetic SDS micelles, and negatively charged lipid bilayer vesicles, was found to be governed almost exclusively by the segmental hydrophobicity of the peptide mid-hydrophobic core segment. In related Trp fluorescence studies, peptide-membrane association was similarly correlated with extent of hydrophobic interaction.

  19. Bifunctionalized organic-inorganic charged nanocomposite membrane for pervaporation dehydration of ethanol.

    PubMed

    Tripathi, Bijay P; Kumar, Mahendra; Saxena, Arunima; Shahi, Vinod K

    2010-06-01

    Chitosan was modified into N-p-carboxy benzyl chitosan (NCBC) by introducing an aromatic ring grafted with acidic -COOH group and highly stable and cross-linked nanostructured NCBC-silica composite membranes were prepared for pervaporation dehydration of water-ethanol mixture. These membranes were tailored to comprise three regions namely: hydrophobic region, highly charged region and selective region, in which weak acidic group (-COOH) was grafted at organic segment while strong acidic group (-SO(3)H) was grafted at inorganic segment to achieve high stability and less swelling in water-ethanol mixture. Cross-linking density and NCBC-silica content in membrane matrix has been systematically optimized to control the nanostructure of the developed polymer matrix for studying the effects of molecular structure on the swelling, and PV performance. Among prepared membranes, nanocomposite membrane with 3h cross-linking time and 90% (w/w) of NCBC-silica content (PCS-3-3) exhibited 1.66×10(-4)cm(3)(STP) cm/cm(2) s cmHg water permeability (P(W)), while 1.35×10(-7) cm(3)(STP) cm/cm(2) s cmHg ethanol permeability (P(EtOH)) of developed membrane and 1231 PV selectivity factor at 30 °C for separating water from 90% (w/w) ethanol mixture.

  20. Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans

    PubMed Central

    Wang, Hong X.; Douglas, Lois M.; Veselá, Petra; Rachel, Reinhard; Malinsky, Jan; Konopka, James B.

    2016-01-01

    The plasma membrane of the fungal pathogen Candida albicans forms a protective barrier that also mediates many processes needed for virulence, including cell wall synthesis, invasive hyphal morphogenesis, and nutrient uptake. Because compartmentalization of the plasma membrane is believed to coordinate these diverse activities, we examined plasma membrane microdomains termed eisosomes or membrane compartment of Can1 (MCC), which correspond to ∼200-nm-long furrows in the plasma membrane. A pil1∆ lsp1∆ mutant failed to form eisosomes and displayed strong defects in plasma membrane organization and morphogenesis, including extensive cell wall invaginations. Mutation of eisosome proteins Slm2, Pkh2, and Pkh3 did not cause similar cell wall defects, although pkh2∆ cells formed chains of furrows and pkh3∆ cells formed wider furrows, identifying novel roles for the Pkh protein kinases in regulating furrows. In contrast, the sur7∆ mutant formed cell wall invaginations similar to those for the pil1∆ lsp1∆ mutant even though it could form eisosomes and furrows. A PH-domain probe revealed that the regulatory lipid phosphatidylinositol 4,5-bisphosphate was enriched at sites of cell wall invaginations in both the sur7∆ and pil1∆ lsp1∆ cells, indicating that this contributes to the defects. The sur7∆ and pil1∆ lsp1∆ mutants displayed differential susceptibility to various types of stress, indicating that they affect overlapping but distinct functions. In support of this, many mutant phenotypes of the pil1∆ lsp1∆ cells were rescued by overexpressing SUR7. These results demonstrate that C. albicans eisosomes promote the ability of Sur7 to regulate plasma membrane organization. PMID:27009204

  1. Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity.

    PubMed

    He, Junyong; Li, Yulian; Cai, Xingguo; Chen, Kai; Zheng, Hejing; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-05-01

    A biocompatible and uniquely defined hydroxyapatite (HAP) adsorption membrane with a sandwich structure was developed for the removal of organic micropollutants for the first time. Both the adsorption and membrane technique were used for the removal of organic micropollutants. The hydrophilicity and hydrophobicity of the HAP adsorbent and membrane were tunable by controlling the surface structure of HAP. The adsorption of organic micropollutants on the HAP adsorbent was studied in batch experiments. The adsorption process was fit with the Freundlich model, while the adsorption kinetics followed the pseudo-second-order model. The HAP membrane could remove organic micropollutants effectively by dynamic adsorption in both aqueous and ethanol solutions. The removal efficiencies of organic micropollutants depended on the solution composition, membrane thickness and hydrophilicity, flow rate, and the initial concentration of organic micropollutants. The adsorption capacities of the HAP membrane with a sandwich structure (membrane thickness was 0.3 mm) were 6700, 6510, 6310, 5960, 5490, 5230, 4980 and 4360 L m(-2) for 1-naphthyl amine, 2-naphthol, bisphenol S, propranolol hydrochloride, metolachlor, ethinyl oestradiol, 2,4-dichlorophenol and bisphenol A, respectively, when the initial concentration was 3.0 mg L(-1). The biocompatible HAP adsorption membrane can be easily regenerated by methanol and was thus demonstrated to be a novel concept for the removal of organic micropollutants from both aqueous and organic solutions.

  2. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment.

    PubMed

    Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N

    2016-09-15

    Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP.

  3. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water.

    PubMed

    Pastrana-Martínez, Luisa M; Morales-Torres, Sergio; Figueiredo, José L; Faria, Joaquim L; Silva, Adrián M T

    2015-06-15

    Flat sheet ultrafiltration (UF) membranes with photocatalytic properties were prepared with lab-made TiO2 and graphene oxide-TiO2 (GOT), and also with a reference TiO2 photocatalyst from Evonik (P25). These membranes were tested in continuous operation mode for the degradation and mineralization of a pharmaceutical compound, diphenhydramine (DP), and an organic dye, methyl orange (MO), under both near-UV/Vis and visible light irradiation. The effect of NaCl was investigated considering simulated brackish water (NaCl 0.5 g L(-1)) and simulated seawater (NaCl 35 g L(-1)). The results indicated that the membranes prepared with the GOT composite (M-GOT) exhibited the highest photocatalytic activity, outperforming those prepared with bare TiO2 (M-TiO2) and P25 (M-P25), both inactive under visible light illumination. The best performance of M-GOT may be due to the lower band-gap energy (2.9 eV) of GOT. In general, the permeate flux was also higher for M-GOT probably due to a combined effect of its highest photocatalytic activity, highest hydrophilicity (contact angles of 11°, 17° and 18° for M-GOT, M-TiO2 and M-P25, respectively) and higher porosity (71%). The presence of NaCl had a detrimental effect on the efficiency of the membranes, since chloride anions can act as hole and hydroxyl radical scavengers, but it did not affect the catalytic stability of these membranes. A hierarchically ordered membrane was also prepared by intercalating a freestanding GO membrane in the structure of the M-GOT membrane (M-GO/GOT). The results showed considerably higher pollutant removal in darkness and good photocatalytic activity under near-UV/Vis and visible light irradiation in continuous mode experiments.

  4. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation.

    PubMed

    Biswal, Bishnu P; Chaudhari, Harshal D; Banerjee, Rahul; Kharul, Ulhas K

    2016-03-24

    Highly flexible, TpPa-1@PBI-BuI and TpBD@PBI-BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced.

  5. Weighted straight skeletons in the plane.

    PubMed

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-02-01

    We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.

  6. Bayesian estimation of the shape skeleton.

    PubMed

    Feldman, Jacob; Singh, Manish

    2006-11-21

    Skeletal representations of shape have attracted enormous interest ever since their introduction by Blum [Blum H (1973) J Theor Biol 38:205-287], because of their potential to provide a compact, but meaningful, shape representation, suitable for both neural modeling and computational applications. But effective computation of the shape skeleton remains a notorious unsolved problem; existing approaches are extremely sensitive to noise and give counterintuitive results with simple shapes. In conventional approaches, the skeleton is defined by a geometric construction and computed by a deterministic procedure. We introduce a Bayesian probabilistic approach, in which a shape is assumed to have "grown" from a skeleton by a stochastic generative process. Bayesian estimation is used to identify the skeleton most likely to have produced the shape, i.e., that best "explains" it, called the maximum a posteriori skeleton. Even with natural shapes with substantial contour noise, this approach provides a robust skeletal representation whose branches correspond to the natural parts of the shape.

  7. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    NASA Astrophysics Data System (ADS)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  8. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    PubMed Central

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-01-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets. PMID:28205528

  9. Membrane organization of virus and target cell plays a role in HIV entry.

    PubMed

    Dumas, Fabrice; Preira, Pascal; Salomé, Laurence

    2014-12-01

    The initial steps of the Human Immunodeficiency Virus (HIV) replication cycle play a crucial role that arbitrates viral tropism and infection efficiency. Before the release of its genome into the host cell cytoplasm, viruses operate a complex sequence of events that take place at the plasma membrane of the target cell. The first step is the binding of the HIV protein envelope (Env) to the cellular receptor CD4. This triggers conformational changes of the gp120 viral protein that allow its interaction with a co-receptor that can be either CCR5 or CXCR4, defining the tropism of the virus entering the cell. This sequential interaction finally drives the fusion of the viral and host cell membrane or to the endocytosis of the viruses. Here, we discuss how the membrane composition and organization of both the virus and the target cell can affect these steps and thus influence the capability of the viruses to infect cells.

  10. Interactive Thermal Effects on Metal-Organic Framework Polymer Composite Membranes.

    PubMed

    Cacho-Bailo, Fernando; Téllez, Carlos; Coronas, Joaquín

    2016-07-04

    Polymeric membranes are important tools for intensifying separation processes in chemical industries, concerning strategic tasks such as CO2 sequestration, H2 production, and water supply and disposal. Mixed-matrix and supported membranes have been widely developed; recently many of them have been based on metal-organic frameworks (MOFs). However, most of the impacts MOFs have within the polymer matrix have yet to be determined. The effects related to thermal behavior arising from the combination of MOF ZIF-8 and polysulfone have now been quantified. The catalyzed oxidation of the polymer is strongly affected by the MOF crystal size and distribution inside the membrane. A 16 wt % 140 nm-sized ZIF-8 loading causes a 40 % decrease in the observed activation energy of the polysulfone oxidation that takes place at a temperature (545 °C) 80 °C lower than in the raw polymer (625 °C).

  11. Golgi sorting regulates organization and activity of GPI-proteins at apical membranes

    PubMed Central

    Tivodar, Simona; Formiggini, Fabio; Ossato, Giulia; Gratton, Enrico; Tramier, Marc; Coppey-Moisan, Maïté; Zurzolo, Chiara

    2014-01-01

    Here, we combined classical biochemistry with novel biophysical approaches to study with high spatial and temporal resolution the organization of GPI-anchored proteins (GPI-APs) at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, following sorting in the Golgi, each GPI-AP reaches the apical surface in homo-clusters. Golgi-derived homo-clusters are required for their subsequent plasma membrane organization into cholesterol-dependent hetero-clusters. By contrast, in non-polarized MDCK cells GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form hetero-clusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, different from fibroblasts, in polarized epithelial cells a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and the function of GPI-APs at the apical surface. PMID:24681536

  12. Characterization of organic matter and disinfection by-products in membrane backwash water from drinking water treatment.

    PubMed

    Zhang, Lingling; Gu, Ping; Zhong, Zijie; Yang, Dong; He, Wenjie; Han, Hongda

    2009-09-15

    Two pilot-scale membrane plants were set up to produce drinking water, and membrane backwash water was discharged during the production process. This work studied the characteristics of dissolved organic matter (DOM) in membrane backwash water from submerged microfiltration (MBWS) and pressurized ultrafiltration (MBWP) both of which are coupled with the pre-coagulation process. The results showed that the two waters had similar molecular weight (MW) distributions. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) in MBWS and MBWP were both mainly distributed in MW>30 kDa and MW<1 kDa, and UV(254) was mainly in MW<1 kDa. For Luan River water (LRW, the raw water for the two pilot-scale membrane plants in this study), organic matter enriched in membrane backwash water was mainly in sizes of MW>30 kDa. In addition, organic matter with MW>10 kDa was higher in MBWP than in MBWS. The quality of membrane backwash water was influenced by the changes in LRW quality during different periods. The quality of membrane backwash water was worse in alga-laden period than in normal period and organic matter concentrations in MW<1 kDa increased significantly in this period. The small size DOM in membrane backwash water was more reactive to form trihalomethanes (THMs) in the disinfection process. The variability of specific UV absorbance and THMFP/DOC was consistent in membrane backwash water.

  13. Basement membrane procollagen is not converted to collagen in organ cultures of parietal yolk sac endoderm.

    PubMed

    Minor, R R; Clark, C C; Strause, E L; Koszalka, T R; Brent, R L; Kefalides, N A

    1976-03-25

    Basement membrane procollagen biosynthesis was studied in organ cultures of embryonic rat parietal yolk sac endoderm by following [14C]proline incorporation into nondialyzable proteins. After reduction with 2-mercaptoethanol the 14C-proteins synthesized were characterized by agarose gel filtration and disc electrophoresis in the presence of sodium dodecyl sulfate. The labeled procollagen was identified by its content of hydroxy[14C]proline, its sensitivity to digestion with bacterial collagenase, and its resistance to digestion with pepsin. In cultures which were continuously labeled for periods from 6 hours to 4 days, the pro-alpha chains consistently eluted as a single peak with an apparent molecular weight of 160,000. After pepsin digestion the resultant alpha chains had an apparent molecular weight between 125,000 and 140,000. This suggests that basement membrane procollagen either contains non-triple helical pepsin-resistant regions or a triple helical region which is larger than the corresponding region of interstitial procollagen. Two experiments were performed to determine whether the chains of newly synthesized basement membrane procollagen were cleaved to a smaller molecular species. In the first, the hydroxylation and secretion of procollagen were blocked with alpha, alpha'-dipyridyl, and the resulting intracellular chains of basement membrane protocollagen were found to co-elute with fully hydroxylated and secreted pro-alpha chains. In the second, cultures were labeled for 1 day and chased for 3 days with unlabeled medium. Autoradiography had shown that most of the label was chased into new basement membrane. Agarose chromotography showed that after 3-day chase the pro-alpha chains still eluted with an apparent molecular weight of 160,000. Thus, the data indicated that basement membrane procollagen was deposited in new basement membrane without undergoing a time-dependent extracellular conversion.

  14. Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides.

    PubMed

    Hunter, C N; Pennoyer, J D; Niederman, R A

    1982-01-01

    The B875 and B800-850 light-harvesting pigment-protein complexes of Rhodopseudomonas sphaeroides are characterized further by lithium dodecyl sulfate/polyacrylamide gel electrophoresis at 4 degrees C. Bacteriochlorophyll a was shown in reconstruction studies to remain complexed with its respective binding proteins during this procedure. From distributions in these gels, a quantitative description for the arrangement of the complexes is proposed. Assembly of the complexes was examined in delta-aminolevulinate-requiring mutant H-5 after a shift from high- to low-light intensity. After 10 h of delta-[3H]aminolevulinate labeling, the specific radioactivity of bacteriochlorophyll in a fraction containing putative membrane invaginations reached the maximal level, while that of the mature photosynthetic membrane was at only one-third this level. This suggests that membrane invaginations are sites of preferential bacteriochlorophyll synthesis in which completed pigment-proteins exist transiently. Analysis of the 3H distribution after electrophoretic separation further suggests that photosynthetic membranes grow mainly by addition of B800-850 to preformed membrane consisting largely of B875 and photochemical reaction centers. These results corroborate the above model for the structural organization of the light-harvesting system and indicate that the structurally and functionally discrete B800-850 pool is not completely assembled until all B875 sites for B800-850 interactions are occupied.

  15. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.

    PubMed

    Kim, Tae-Uk; Drewes, Jörg E; Scott Summers, R; Amy, Gary L

    2007-09-01

    Rejection of trace organic compounds, including disinfection by-products (DBPs) and pharmaceutical active compounds (PhACs), by high-pressure membranes has become a focus of public interest internationally in both drinking water treatment and wastewater reclamation/reuse. The ability to simulate, or even predict, the rejection of these compounds by high-pressure membranes, encompassing nanofiltration (NF) and reverse osmosis (RO), will improve process economics and expand membrane applications. The objective of this research is to develop a membrane transport model to account for diffusive and convective contributions to solute transport and rejection. After completion of cross-flow tests and diffusion cell tests with target compounds, modeling efforts were performed in accordance with a non-equilibrium thermodynamic transport equation. Comparing the percentages of convection and diffusion contributions to transport, convection is dominant for most compounds, but diffusion is important for more hydrophobic non-polar compounds. Convection is also more dominant for looser membranes (i.e., NF). In addition, higher initial compound concentrations and greater J(0)/k ratios contribute to solute fluxes more dominated by convection. Given the treatment objective of compound rejection, compound transport and rejection trends are inversely related.

  16. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Li, Zhen; Yang, Xin; Cao, Li; Wang, Chongbin; Zhang, Bei; Wu, Hong; Jiang, Zhongyi

    2016-11-01

    Design and fabrication of efficient proton transport channels within solid electrolytes is crucial and challenging to new energy-relevant devices such as proton exchange membrane fuel cells (PEMFCs). In this study, the phosphoric acid (H3PO4) molecules are impregnated into SNW-1-type covalent organic frameworks (COFs) via vacuum assisted method. High loading of H3PO4 in SNW-1 and low guest leaching rate are achieved due to the similar diameter between H3PO4 and micropores in SNW-1. Then the COF-based composite membranes are fabricated for the first time with impregnated COFs (H3PO4@SNW-1) and Nafion matrix. For the composite membranes, the acid-base pairs formed between H3PO4@SNW-1 networks and Nafion optimize the interfacial interactions and hydrophilic domains. The acidic -PO3H2 groups in pores of H3PO4@SNW-1 provide abundant proton transfer sites. As a result, the continuous proton transfer channels with low energy barrier are created. At the filler content of 15 wt%, the composite membrane exhibits a superior proton conductivity of 0.0604 S cm-1 at 51% relative humidity and 80 °C. At the same time, the maximum power density of single fuel cell is 60.3% higher than that of the recast Nafion membrane.

  17. Distribution and deposition of organic fouling on the microfiltration membrane evaluated by high-frequency ultrasound

    PubMed Central

    Lin, Yi-Hsun; Tung, Kuo-Lun; Wang, Shyh-Hau; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    A 50 MHz high-frequency ultrasound and analysis method were developed to further improve the in situ assessment of deposition and distribution of organic fouling on the polyvinylidene fluoride (PVDF) membranes. Measurements of fouling depositions were performed from PVDF membranes filtrated with aqueous humic acid solutions (HAS) of 2 and 4 ppm concentrations in a flat-sheet module. Ultrasound signals reflected from the PVDF membranes, following filtrations at various durations including 0, 5, 15, 30, 60, and 100 min, were acquired. The thickness and distribution of fouling estimated and assessed by peak-to-peak echo voltage (Vpp) and C-mode images were found to be non-homogeneously deposited on the membranes. Following the filtrations with 2 and 4 ppm HAS for 100 min, the corresponding thickness of fouling deposition increased from 1.81±9 to 2.4571.57 mm, respectively; those average Vpp decreased from 2.05±07 to 1.13±16 V and from 2.11±08 to 0.94±15 V. These results demonstrated that the deposition and distribution of organic fouling could be sensitively and rapidly evaluated by high-frequency ultrasound image incorporated with the analysis method. PMID:25309028

  18. Distribution and deposition of organic fouling on the microfiltration membrane evaluated by high-frequency ultrasound.

    PubMed

    Lin, Yi-Hsun; Tung, Kuo-Lun; Wang, Shyh-Hau; Zhou, Qifa; Shung, K Kirk

    2013-04-15

    A 50 MHz high-frequency ultrasound and analysis method were developed to further improve the in situ assessment of deposition and distribution of organic fouling on the polyvinylidene fluoride (PVDF) membranes. Measurements of fouling depositions were performed from PVDF membranes filtrated with aqueous humic acid solutions (HAS) of 2 and 4 ppm concentrations in a flat-sheet module. Ultrasound signals reflected from the PVDF membranes, following filtrations at various durations including 0, 5, 15, 30, 60, and 100 min, were acquired. The thickness and distribution of fouling estimated and assessed by peak-to-peak echo voltage (Vpp) and C-mode images were found to be non-homogeneously deposited on the membranes. Following the filtrations with 2 and 4 ppm HAS for 100 min, the corresponding thickness of fouling deposition increased from 1.81±9 to 2.4571.57 mm, respectively; those average Vpp decreased from 2.05±07 to 1.13±16 V and from 2.11±08 to 0.94±15 V. These results demonstrated that the deposition and distribution of organic fouling could be sensitively and rapidly evaluated by high-frequency ultrasound image incorporated with the analysis method.

  19. Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria.

    PubMed

    Peters, J; Giudici-Orticoni, M T; Zaccai, G; Guiral, M

    2013-07-01

    Various models on membrane structure and organization of proteins and complexes in natural membranes emerged during the last years. However, the lack of systematic dynamical studies to complement structural investigations hindered the establishment of a more complete picture of these systems. Elastic incoherent neutron scattering gives access to the dynamics on a molecular level and was applied to natural membranes extracted from the hyperthermophile Aquifex aeolicus and the mesophile Wolinella succinogenes bacteria. The results permitted to extract a hierarchy of dynamic flexibility and atomic resilience within the samples, which correlated with the organization of proteins in bioenergetics complexes and the functionality of the membranes.

  20. Detection of persistent organic pollutants in the Mississippi Delta using semipermeable membrane devices

    USGS Publications Warehouse

    Zimmerman, L.R.; Thurman, E.M.; Bastian, K.C.

    2000-01-01

    From semipermeable membrane devices (SPMDs) placed in five Mississippi Delta streams in 1996 and 1997, the persistent organic pollutants (POPs) aldrin, chlordane, DCPA, DDT, dieldrin, endrin, heptachlor, mirex, nonachlor, and toxaphene were detected. In addition, the insecticides chlorpyriphos, endosulfan, and hexachlorocyclohexanes were detected. Two low-solubility herbicides not detected commonly in surface water, pendimethalin and trifluralin, were also detected. Copyright (C) 2000 Elsevier Science B.V.

  1. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.

    PubMed

    McKeown, Neil B; Budd, Peter M

    2006-08-01

    This tutorial review describes recent research directed towards the synthesis of polymer-based organic microporous materials termed Polymers of Intrinsic Microporosity (PIMs). PIMs can be prepared either as insoluble networks or soluble polymers with both types giving solids that exhibit analogous behaviour to that of conventional microporous materials such as activated carbons. Soluble PIMs may be processed into thin films for use as highly selective gas separation membranes. Preliminary results also demonstrate the potential of PIMs for heterogeneous catalysis and hydrogen storage.

  2. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis.

    PubMed

    Burr, Christian A; Leslie, Michelle E; Orlowski, Sara K; Chen, Iris; Wright, Catherine E; Daniels, Mark J; Liljegren, Sarah J

    2011-08-01

    Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.

  3. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    SciTech Connect

    J.G. Wijmans

    2003-11-17

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  4. Thermodynamic factors in partitioning and rejection of organic compounds by polyamide composite membranes.

    PubMed

    Ben-David, Adi; Oren, Yoram; Freger, Viatcheslav

    2006-11-15

    The paper analyzes the mechanism of partitioning and rejection of organic solutes by polyamide membranes for reverse osmosis and nanofiltration. The partitioning of homologous series of alcohols and polyols, in which polarity changes with size in opposite ways, was measured using attenuated total reflection IR spectroscopy. The results show that the partitioning of polyols monotonously decreases with size, whereas for alcohols it is not monotonous and slightly decreases for small C1-C3 alcohols followed by a sharp increase for larger alcohols. These results may be explained by assuming a heterogeneous structure of polyamide comprising a hydrophobic polyamide matrix and a polar internal aqueous phase. The partitioning data could consistently explain the results of rejection in standard filtration experiments. They clearly demonstrate that high/low partitioning may play a significant role in achieving a low/high rejection of organics. In particular, this points to the need to account for the partitioning effect while using molecular probes such as polyols or sugars for estimating the effective "pore" size or molecular weight cutoff of a membrane and for choosing/developing organic-rejecting membranes.

  5. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance.

    PubMed

    Lu, Xinglin; Romero-Vargas Castrillón, Santiago; Shaffer, Devin L; Ma, Jun; Elimelech, Menachem

    2013-01-01

    Forward osmosis (FO) is an emerging membrane-based water separation process with potential applications in a host of environmental and industrial processes. Nevertheless, membrane fouling remains a technical obstacle affecting this technology, increasing operating costs and decreasing membrane life. This work presents the first fabrication of an antifouling thin-film composite (TFC) FO membrane by an in situ technique without postfabrication treatment. The membrane was fabricated and modified in situ, grafting Jeffamine, an amine-terminated poly(ethylene glycol) derivative, to dangling acyl chloride surface groups on the nascent polyamide active layer. Surface characterization by contact angle, Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), zeta potential, atomic force microscopy (AFM), and fluorescence microscopy, confirms the presence of Jeffamine on the membrane surface. We demonstrate the improved fouling resistance of the in situ modified membranes through accelerated dynamic fouling FO experiments using a synthetic wastewater feed solution at high concentration (250 mg/L) of alginate, a model macromolecule for the hydrophilic fraction of wastewater effluent organic matter. Our results show a significantly lower flux decline for the in situ modified membranes compared to pristine polyamide (14.3 ± 2.7% vs 2.8 ± 1.4%, respectively). AFM adhesion force measurements between the membrane and a carboxylate-modified latex particle, a surrogate for the organic (alginate) foulant, show weaker foulant-membrane interactions, further confirming the enhanced fouling resistance of the in situ modified membranes.

  6. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    1997-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  7. TiO2 membranes for concurrent photocatalytic organic degradation and corrosion protection

    NASA Astrophysics Data System (ADS)

    Liang, Robert; Hatat-Fraile, Melisa; He, Horatio; Arlos, Maricor; Servos, Mark R.; Zhou, Y. Norman

    2015-10-01

    Organic contaminants and corrosion in water treatment effluents are a current global problem and the development of effective methods to facilitate the removal of organic contaminants and corrosion control strategies are required to mitigate this problem. TiO2 nanomaterials that are exposed to UV light can generate electron-hole pairs, which undergo redox reactions to produce hydroxyl radicals from adsorbed molecular oxygen. They hydroxyl radicals are able to oxidize organic contaminants in water. This same process can be used in conjunction to protect metals from corrosion via cathodic polarization. In this work, TiO2 nanomaterials were synthesized and electrophoretically deposited on conductive substrates to serve as films or membranes. An illuminated TiO2 film on a conductive surface served as the photoanode and assisted in the cathodic protection of stainless steel (SS304) and the degradation of organic pollutants, in this case glucose. This proof-of-concept relied on photoelectrochemical experiments conducted using a potentiostat and a xenon lamp illumination source. The open-circuit potential changes that determine whether a metal is protected from corrosion under illumination was observed; and the electrical characteristics of the TiO2 film or membrane under dark and arc lamp illumination conditions were also analyzed. Furthermore, the effect of organic contaminants on the photocathodic protection mechanism and the oxidation of glucose during this process were explored.

  8. Communication Between the Cell Membrane and the Nucleus: Role of Protein Compartmentalization

    SciTech Connect

    Lelievre, Sophie A; Bissell, Mina J

    1998-10-21

    Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments.

  9. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling.

    PubMed

    Her, Namguk; Amy, Gary; Park, Hyoung-Ryun; Song, Myoungsuk

    2004-03-01

    Occasional algal blooms, comprised of blue-green algae and/or green algae, cause significant challenges in drinking water treatment due to the release of algogenic organic matter (AOM) into water extracellularly and, upon cell lysis, intracellularly. AOM has been extracted from blue-green algae (cyanobacteria) by various means and analyzed by UV absorbance scanning, HPSEC-UV-fluorescence-DOC, UV absorbance ratio index (URI), FTIR, and fluorescence excitation emission matrix (EEM). AOM extracted in water as a solvent exhibited a high hydrophilic fraction (57.3%) with a low SUVA (1.0 L/m-mg). The molecular weight (MW) distribution showed a significant heterogeneity (high value of polydispersivity) and high protein content (as indicated by specific fluorescence). Significant amounts of proteinaceous components such as mycosporine-like amino acids (MAAs, UV-screening components) and phycobilins (light-harvesting pigment) were detected by UV/visible absorption. The presence of proteins was confirmed by FTIR (at 1661 and 1552 cm(-1)), EEM spectra (EX:278-282 nm and EM:304-353 nm), and high URI values (3.1-6.0). A bench-scale cross-flow unit, employing a flat-sheet membrane specimen, was used to examine nanofiltration (NF) membrane fouling and removal of natural organic matter (NOM) derived from different blends of Suwannee River humic acid (SRHA) and AOM: SRHA 10 mgC/L, AOM 3mg C/L + SRHA 7 mgC/L, AOM 7 mgC/L + SRHA 3 mgC/L, and AOM 10 mgC/L. The study focused mainly on the effects of two different sources of organic matter on NF (NF 200) membrane fouling under otherwise similar conditions. Flux decline and organic matter rejection as a function of delivered DOC (cumulative mass of feed DOC per unit area) showed significantly different results depending on the organic matter composition of samples even though the test conditions were the same (organic matter concentration, pH, temperature, inorganic salt composition and concentration, and recovery). A higher flux decline

  10. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    PubMed

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  11. Effect of organic fouling on micro-pollutant rejection in membrane bioreactor treating municipal solid waste landfill leachate.

    PubMed

    Sanguanpak, Samunya; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2015-01-01

    Effect of membrane fouling on the removal of micro-pollutants from municipal solid waste landfill leachate, i.e. 4-methyl-2,6-di-tert-butylphenol (BHT), bisphenol A (BPA), and bis(2-ethylhexyl)phthalate (DEHP), in membrane bioreactor (MBR) was investigated. Modifications of membrane surface properties were analyzed to determine their relationship with their removals. Membrane fouling was simulated with foulants of different particle sizes on cellulose acetate (CA) microfiltration membrane to investigate the effect of foulant characteristics on BHT, BPA, and DEHP retention in the filtration experiment. The rejection efficiencies of the organic micro-pollutants in the MBR were 82-97% by fouled membrane, and 70-90% by cleaned membrane. The fouled membrane provided higher rejection of micro-pollutants from about 5% for BPA and BHT to 19% for DEHP. These improvements were due to the modification of membrane surface characteristics in terms of surface morphology, and contact angle after membrane fouling. The degree of rejection was found to be dependent upon the characteristics of foulant deposited on CA membrane surface. Increasing foulant particle size and its density shifted the mechanism of micro-pollutant rejection from membrane pore narrowing to pore blocking and cake formation while increasing pollutant adsorption capacity onto the foulant layer.

  12. Separation of organic pollutants by reverse osmosis and nanofiltration membranes: Mathematical models and experimental verification

    SciTech Connect

    Williams, M.E.; Hestekin, J.A.; Smothers, C.N.; Bhattacharyya, D.

    1999-10-01

    Predictive reverse osmosis (RO) models have been well-developed for many systems. However, the applications to dilute organic-water systems require the modification of transport models and the understanding of solute-polymer interactions. Studies with various substituted, nonionized phenolic compounds showed that these could cause substantial membrane water flux drop, even in dilute solutions with negligible osmotic pressure. Further, the organics could significantly adsorb on the cross-linked aromatic polyamide active layer. In some cases, even concentrations as low as 0.2 mM, 2,4-dinitrophenol (solution in particle-free, double-distilled water) can cause as much as a 70% flux drop with an aromatic polyamide membrane. Two models are presented in this paper: a modified steady-state solution diffusion model and an unsteady-state diffusion adsorption model which are able to predict flux and permeate concentrations from a single RO experiment. Further, the development of these models allows for the understanding of the mechanisms of organic-membrane interactions. For instance, it has been proposed that increased adsorption inherently leads to an increase in flux drop. However, the authors have found, on one hand, that due to specific interactions with membrane water transport groups, chloro-, and nitro-substituted phenols cause significant flux drops. On the other hand, benzene had a high physical adsorption but caused negligible flux drop. The results were further extended to nanofiltration experiments with an aromatic pollutant containing two types of charge groups. The adsorption and separation results are explained according to an ionization model.

  13. Oriented Nano-Microstructure-Assisted Controllable Fabrication of Metal-Organic Framework Membranes on Nickel Foam.

    PubMed

    Sun, Yuxiu; Yang, Fan; Wei, Qi; Wang, Naixin; Qin, Xi; Zhang, Shaokang; Wang, Bin; Nie, Zuoren; Ji, Shulan; Yan, Hui; Li, Jian-Rong

    2016-03-23

    Oriented nano-microstructure-assisted controllable fabrication, a facile and versatile preparation strategy, is developed to fabricate metal-organic framework (MOF) membranes. With this method, several MOF membranes with tailored structures are prepared, including HKUST-1 (with 3D pores) and M3 (HCOO)6 (with 1D pores; M = Co, Mn, and Mg) membranes, which demonstrate good performances in gas separations.

  14. Wetting and capillary condensation as means of protein organization in membranes.

    PubMed Central

    Gil, T; Sabra, M C; Ipsen, J H; Mouritsen, O G

    1997-01-01

    Wetting and capillary condensation are thermodynamic phenomena in which the special affinity of interfaces to a thermodynamic phase, relative to the stable bulk phase, leads to the stabilization of a wetting phase at the interfaces. Wetting and capillary condensation are here proposed as mechanisms that in membranes may serve to induce special lipid phases in between integral membrane proteins leading to long-range lipid-mediated joining forces acting between the proteins and hence providing a means of protein organization. The consequences of wetting in terms of protein aggregation and protein clustering are derived both within a simple phenomenological theory as well as within a concrete calculation on a microscopic model of lipid-protein interactions that accounts for the lipid bilayer phase equilibria and direct lipid-protein interactions governed by hydrophobic matching between the lipid bilayer hydrophobic thickness and the length of the hydrophobic membrane domain. The theoretical results are expected to be relevant for optimizing the experimental conditions required for forming protein aggregates and regular protein arrays in membranes. Images FIGURE 2 FIGURE 4 FIGURE 6 PMID:9336169

  15. A new conceptual model of the formation of coral skeleton

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, A.

    2006-12-01

    Scleractinian corals constitute one of the major groups of calcifying animals. During a long time their skeleton has been considered as purely mineral and all the features not consistent with this concept were called " vital effects ". However, biology plays a key role in the skeleton genesis. Recent technological advances provided enough evidences to propose a new conceptual model of coral skeleton growth. Ion microprobe carried out both trace element and isotope analyses, which stressed the high variability of these geochemical tracers. It indicates that all measurements obtained at millimeter-length scale, especially data used for paleoclimatic purpose, are bulk data. The analyses performed on individual microstructures previously identified by SEMS observation revealed that the two different microstructures highlighted in coral skeleton present a specific geochemical signature. We have thus to explain how two specific microstructures could derive from a unique calcifying fluid. On the other hand, several methods converged to show that a thin organic matrix surrounds growth units at micro/nanometer size scale. The presence of organic compounds could alter the equilibrium thermodynamics of the mineral growth surface by modifying energy landscape. Knowing that chemical environment of each microstructure could be different according the nature of the growth units we assume that it induces different mechanism of deposition. By combining results from different approaches we deduce that kinetics is not restricted to isotopic fractionation. We conclude that coral aragonite deposit is dominated by a kinetic chemical disequilibrium and governed by supersaturation law. We demonstrate that this conceptual model is consistent with the observations and measurements earlier performed and coral remains the most relevant archive of the tropical ocean than ever.

  16. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    PubMed

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes.

  17. Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift.

    PubMed

    Haldar, Sourav; Chaudhuri, Arunima; Chattopadhyay, Amitabha

    2011-05-19

    Dynamics of confined water has interesting implications in the organization and function of molecular assemblies such as membranes. A direct consequence of this type of organization is the restriction imposed on the mobility of the constituent structural units. Interestingly, this restriction (confinement) of mobility couples the motion of solvent (water) molecules with the slow moving molecules in the assembly. It is in this context that the red edge excitation shift (REES) represents a sensitive approach to monitor the environment and dynamics around a fluorophore in such organized assemblies. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of the absorption band, is termed REES. REES relies on slow solvent reorientation in the excited state of a fluorophore that can be used to monitor the environment and dynamics around a fluorophore in a host assembly. In this article, we focus on the application of REES to monitor organization and dynamics of membrane probes and proteins.

  18. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations.

    PubMed

    Jansen, J; De Napoli, I E; Fedecostante, M; Schophuizen, C M S; Chevtchik, N V; Wilmer, M J; van Asbeck, A H; Croes, H J; Pertijs, J C; Wetzels, J F M; Hilbrands, L B; van den Heuvel, L P; Hoenderop, J G; Stamatialis, D; Masereeuw, R

    2015-11-16

    The bioartificial kidney (BAK) aims at improving dialysis by developing 'living membranes' for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP(+)) as a fluorescent substrate. Initial ASP(+) uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a 'living membrane' of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering.

  19. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.

    PubMed

    Koga, Hiroyuki; Fujitani, Haruka; Morino, Yoshiaki; Miyamoto, Norio; Tsuchimoto, Jun; Shibata, Tomoko F; Nozawa, Masafumi; Shigenobu, Shuji; Ogura, Atsushi; Tachibana, Kazunori; Kiyomoto, Masato; Amemiya, Shonan; Wada, Hiroshi

    2016-01-01

    Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.

  20. Reduction of absorbed doses in radiography of the facial skeleton

    SciTech Connect

    Julin, P.; Kraepelien, T.

    1984-11-01

    Radiation absorbed doses from radiography of the paranasal sinuses and the facial skeleton were measured with thermoluminescent dosimeters (TLD) on a phantom head using high-sensitivity screens in an Orbix stand. The entrance doses to the skin of the head ranged from 0.31 to 2.9 mGy per exposure. The absorbed dose from a full series of sinus exposures averaged 0.33 mGy for the oral mucous membrane, 0.33 mGy for the maxillary sinus mucous membrane, 0.11 mGy for the parotid gland, 0.15 mGy for the submandibular gland, 0.61 mGy for the eye lens, and 0.75 mGy for the thyroid gland region. A leaded soft collar adapted to the thyroid region reduced the thyroid doses by more than one order of magnitude, but also reduced the image field. The mean energy imparted from a full series of paranasal sinus projections was 4.8 mJ and from a total series of the facial skeleton, 7.9 mJ.

  1. Reduction of absorbed doses in radiography of the facial skeleton

    SciTech Connect

    Julin, P.; Kraepelien, T.

    1984-11-01

    Radiation absorbed doses from radiography of the paranasal sinuses and the facial skeleton were measured with thermoluminescent dosimeters (TLD) on a phantom head using high-sensitivity screens in an Orbix stand. The entrance doses to the skin of the head ranged from 0.31 to 2.9 mGy per exposure. The absorbed dose from a full series of sinus exposures averaged 0.33 mGy for the oral mucous membrane, 0.33 mGy for the maxillary sinus mucous membrane, 0.11 MgY for the parotid gland, 0.15 MgY for the submandibular gland, 0.61 mGy for the eye lens, and 0.75 mGy for the thyroid gland region. A leaded soft collar adapted to the thyroid region reduced the thyroid doses by more than one order of magnitude, but also reduced the image field.

  2. Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization.

    PubMed

    Ciccoli, Lucia; De Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Cortelazzo, Alessio; Zollo, Gloria; Pecorelli, Alessandra; Rossi, Marcello; Hayek, Joussef

    2015-11-01

    In this review, we summarize the current evidence on the erythrocyte as a previously unrecognized target cell in Rett syndrome, a rare (1:10 000 females) and devastating neurodevelopmental disorder caused by loss-of-function mutations in a single gene (i.e. MeCP2, CDKL5, or rarely FOXG1). In particular, we focus on morphological changes, membrane oxidative damage, altered membrane fatty acid profile, and aberrant skeletal organization in erythrocytes from patients with typical Rett syndrome and MeCP2 gene mutations. The beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) are also summarized for this condition to be considered as a 'model' condition for autism spectrum disorders.

  3. Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste.

    PubMed

    Lee, Yunhee; Nirmalakhandan, Nagamany

    2011-05-01

    Two different MFC configurations designed for handling solid wastes as a feedstock were evaluated in batch mode: a single compartment combined membrane-electrodes (SCME) design; and a twin-compartment brush-type anode electrodes (TBE) design (reversed T-shape MFC with two-air cathode) without a proton exchange membrane (PEM). Cattle manure was tested as a model livestock organic solid waste feedstock. Under steady conditions, voltage of 0.38 V was recorded with an external resistance of 470Ω. When digested anaerobic sludge was used as the seed in the SCME design, a maximum power density of 36.6 mW/m(2) was recorded. When hydrogen-generating bacteria (HGB) were used as the seed used in the TBE design, a higher power density of 67 mW/m(2) was recorded.

  4. Fate of organic pollutants in a pilot-scale membrane bioreactor-nanofiltration membrane system at high water yield in antibiotic wastewater treatment.

    PubMed

    Wang, Jianxing; Wei, Yuansong; Li, Kun; Cheng, Yutao; Li, Mingyue; Xu, Jianguo

    2014-01-01

    A double membrane system combining a membrane bioreactor (MBR) with a nanofiltration (NF) membrane at the pilot scale was tested to treat real antibiotic wastewater at a pharmaceutical company in Wuxi (China). The water yield of the pilot system reached over 92 ± 5.6% through recycling the NF concentrate to the MBR tank. Results showed that the pilot scale system operated in good conditions throughout the entire experiment period and obtained excellent water quality in which the concentrations of chemical oxygen demand and total organic carbon were stable at 35 and 5.7 mg/L, respectively. The antibiotic removal rates of both spiramycin (SPM) and new spiramycin in wastewater were over 95%. Organics analysis results showed that the main organics in the biological effluent were proteins, soluble microbial by-product-like, fulvic acid-like and humic-like substances. These organics could be perfectly rejected by the NF membrane. Most of the organics could be removed through recycling NF concentrate to the MBR tank and only a small part was discharged with NF concentrate and permeate.

  5. Rejection of trace organic compounds by forward osmosis membranes: a literature review.

    PubMed

    Coday, Bryan D; Yaffe, Bethany G M; Xu, Pei; Cath, Tzahi Y

    2014-04-01

    To meet surging water demands, water reuse is being sought as an alternative to traditional water resources. However, contamination of water resources by trace organic compounds (TOrCs), including pharmaceuticals, personal care products, disinfection byproducts, and industrial chemicals is of increasing concern. These compounds are not readily removed by conventional water treatment processes and require new treatment technologies to enable potable water reuse. Forward osmosis (FO) has been recognized in recent years as a robust process suitable for the treatment of highly impaired streams and a good barrier to TOrCs. To date, at least 14 studies have been published that investigated the rejection of various TOrCs by FO membranes under a variety of experimental conditions. In this paper, TOrC rejection by FO has been critically reviewed, evaluating the effects of membrane characteristics and orientation, experimental scale and duration, membrane fouling, feed solution chemistry, draw solution composition and concentration, and transmembrane temperature on process performance. Although it is important to continue to investigate the removal of diverse TOrCs by FO, and especially with new FO membranes, it is critically important to adhere to standard testing conditions to enable comparison of results between studies. Likewise, feed concentration of TOrCs during FO testing must be environmentally relevant (most commonly 10-100 ng/L range for most wastewaters) and not excessively high, and in addition to testing TOrC rejection in clean feedwater, the effects of real water matrix and membrane fouling on TOrC rejection must be evaluated.

  6. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton

    PubMed Central

    Marquart, Chloe L.

    2015-01-01

    ABSTRACT Living vertebrates are divided into those that possess a fully formed and fully mineralised skeleton (gnathostomes) versus those that possess only unmineralised cartilaginous rudiments (cyclostomes). As such, extinct phylogenetic intermediates of these living lineages afford unique insights into the evolutionary assembly of the vertebrate mineralised skeleton and its canonical tissue types. Extinct jawless and jawed fishes assigned to the gnathostome stem evidence the piecemeal assembly of skeletal systems, revealing that the dermal skeleton is the earliest manifestation of a homologous mineralised skeleton. Yet the nature of the primitive dermal skeleton, itself, is poorly understood. This is principally because previous histological studies of early vertebrates lacked a phylogenetic framework required to derive evolutionary hypotheses. Nowhere is this more apparent than within Heterostraci, a diverse clade of primitive jawless vertebrates. To this end, we surveyed the dermal skeletal histology of heterostracans, inferred the plesiomorphic heterostracan skeleton and, through histological comparison to other skeletonising vertebrate clades, deduced the ancestral nature of the vertebrate dermal skeleton. Heterostracans primitively possess a four‐layered skeleton, comprising a superficial layer of odontodes composed of dentine and enameloid; a compact layer of acellular parallel‐fibred bone containing a network of vascular canals that supply the pulp canals (L1); a trabecular layer consisting of intersecting radial walls composed of acellular parallel‐fibred bone, showing osteon‐like development (L2); and a basal layer of isopedin (L3). A three layered skeleton, equivalent to the superficial layer L2 and L3 and composed of enameloid, dentine and acellular bone, is possessed by the ancestor of heterostracans + jawed vertebrates. We conclude that an osteogenic component is plesiomorphic with respect to the vertebrate dermal skeleton. Consequently, we

  7. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralised skeleton.

    PubMed

    Keating, Joseph N; Marquart, Chloe L; Donoghue, Philip C J

    2015-06-01

    Living vertebrates are divided into those that possess a fully formed and fully mineralised skeleton (gnathostomes) versus those that possess only unmineralised cartilaginous rudiments (cyclostomes). As such, extinct phylogenetic intermediates of these living lineages afford unique insights into the evolutionary assembly of the vertebrate mineralised skeleton and its canonical tissue types. Extinct jawless and jawed fishes assigned to the gnathostome stem evidence the piecemeal assembly of skeletal systems, revealing that the dermal skeleton is the earliest manifestation of a homologous mineralised skeleton. Yet the nature of the primitive dermal skeleton, itself, is poorly understood. This is principally because previous histological studies of early vertebrates lacked a phylogenetic framework required to derive evolutionary hypotheses. Nowhere is this more apparent than within Heterostraci, a diverse clade of primitive jawless vertebrates. To this end, we surveyed the dermal skeletal histology of heterostracans, inferred the plesiomorphic heterostracan skeleton and, through histological comparison to other skeletonising vertebrate clades, deduced the ancestral nature of the vertebrate dermal skeleton. Heterostracans primitively possess a four-layered skeleton, comprising a superficial layer of odontodes composed of dentine and enameloid; a compact layer of acellular parallel-fibred bone containing a network of vascular canals that supply the pulp canals (L1); a trabecular layer consisting of intersecting radial walls composed of acellular parallel-fibred bone, showing osteon-like development (L2); and a basal layer of isopedin (L3). A three layered skeleton, equivalent to the superficial layer L2 and L3 and composed of enameloid, dentine and acellular bone, is possessed by the ancestor of heterostracans + jawed vertebrates. We conclude that an osteogenic component is plesiomorphic with respect to the vertebrate dermal skeleton. Consequently, we interpret the

  8. Real-time skeleton tracking for embedded systems

    NASA Astrophysics Data System (ADS)

    Coleca, Foti; Klement, Sascha; Martinetz, Thomas; Barth, Erhardt

    2013-03-01

    Touch-free gesture technology is beginning to become more popular with consumers and may have a significant future impact on interfaces for digital photography. However, almost every commercial software framework for gesture and pose detection is aimed at either desktop PCs or high-powered GPUs, making mobile implementations for gesture recognition an attractive area for research and development. In this paper we present an algorithm for hand skeleton tracking and gesture recognition that runs on an ARM-based platform (Pandaboard ES, OMAP 4460 architecture). The algorithm uses self-organizing maps to fit a given topology (skeleton) into a 3D point cloud. This is a novel way of approaching the problem of pose recognition as it does not employ complex optimization techniques or data-based learning. After an initial background segmentation step, the algorithm is ran in parallel with heuristics, which detect and correct artifacts arising from insufficient or erroneous input data. We then optimize the algorithm for the ARM platform using fixed-point computation and the NEON SIMD architecture the OMAP4460 provides. We tested the algorithm with two different depth-sensing devices (Microsoft Kinect, PMD Camboard). For both input devices we were able to accurately track the skeleton at the native framerate of the cameras.

  9. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes.

    PubMed

    Zhang, Rong; Ji, Shulan; Wang, Naixin; Wang, Lin; Zhang, Guojun; Li, Jian-Rong

    2014-09-08

    Metal-organic frameworks (MOFs) have emerged as porous solids of a superior type for the fabrication of membranes. However, it is still challenging to prepare a uniformly dispersed robust MOF hybrid membrane. Herein, we propose a simple and powerful strategy, namely, coordination-driven in situ self-assembly, for the fabrication of MOF hybrid membranes. On the basis of the coordination interactions between metal ions and ligands and/or the functional groups of the organic polymer, this method was confirmed to be feasible for the production of a stable membrane with greatly improved MOF-particle dispersion in and compatibility with the polymer, thus providing outstanding separation ability. As an experimental proof of concept, a high-quality ZIF-8/PSS membrane was fabricated that showed excellent performance in the nanofiltration and separation of dyes from water.

  10. Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ

    PubMed Central

    1981-01-01

    After fixation with glutaraldehyde and impregnation with tannic acid, the membrane that underlies the nerve terminals in Torpedo marmorata electroplaque presents a typical asymmetric triple-layered structure with an unusual thickness; in addition, it is coated with electron- dense material on its inner, cytoplasmic face. Filamentous structures are frequently found attached to these "subsynaptic densities." The organization of the subsynaptic membrane is partly preserved after homogenization of the electric organ and purification of acetylcholine- receptor (AchR)-rich membrane fragments. In vitro treatment at pH 11 and 4 degrees C of these AchR-rich membranes releases an extrinsic protein of 43,000 mol wt and at the same time causes the complete disappearance of the cytoplasmic condensations. Freeze-etching of native membrane fragments discloses remnants of the ribbonlike organization of the AchR rosettes. This organization disappears ater alkaline treatment and is replaced by a network which is not observed after rapid freezing and, therefore, most likely results from the lateral redistribution of the AchR rosettes during condition of slow freezing. A dispersion of the AchR rosettes in the plane of the membrane also occurs after fusion of the pH 11-treated fragments with phospholipid vesicles. These results are interpreted in terms of a structural stabilization and immobilization of the AchR by the 43,000- Mr protein binding to the inner face of the subsynaptic membrane. PMID:7287814

  11. Bridged polysilsesquioxanes: Hybrid organic-inorganic materials as fuel cell polyelectrolyte membranes and functional nanoparticles

    NASA Astrophysics Data System (ADS)

    Khiterer, Mariya

    2007-05-01

    This dissertation describes the design, fabrication, and characterization of organic-inorganic hybrid materials. Several classes of bridged polysilsesquioxanes are presented. The first class is a membrane material suitable for fuel cell technology as a proton conducting polyelectrolyte. The second class includes hybrid nanoparticles for display device applications and chromatographic media. Chapter 1 is an introduction to hybrid organic-inorganic materials. Sol-gel chemistry is discussed, followed by a survey of prominent examples of silica hybrids. Examples of physical organic-silica blends and covalent organo-silicas, including ORMOCERSRTM, polyhedral oligomeric silsesquioxanes, and bridged polysilsesquioxanes are discussed. Bridged polysilsesquioxanes are described in great detail. Monomer synthesis, sol-gel chemistry, processing, characterization, and physical properties are included. Chapter 2 describes the design of polyelectrolyte bridged polysilsesquioxane membranes. The materials contain covalently bound sulfonic acid groups originating from the corresponding disulfides. These organic-inorganic hybrid materials integrate a network supporting component which is systematically changed to fine-tune their physical properties. The membranes are characterized as PEM fuel cell electrolytes, where proton conductivities of 4-6 mS cm-1 were measured. In Chapter 3 techniques for the preparation of bridged polysilsesquioxane nanoparticles are described. An inverse water-in-oil microemulsion polymerization method is developed to prepare cationic nanoparticles, including viologen-bridged materials with applications in electrochromic display devices. An aqueous ammonia system is used to prepare neutral nanoparticles containing hydrocarbon bridging groups, which have potential applications as chromatographic media. Chapter 4 describes electrochromic devices developed in collaboration with the Heflin group of Virginia Tech, which incorporate viologen bridged nanoparticles

  12. Poly(imide)/Organically-Modified Montmorillonite Nanocomposite as a Potential Membrane for Alkaline Fuel Cells

    PubMed Central

    Battirola, Liliane C.; Gasparotto, Luiz H. S.; Rodrigues-Filho, Ubirajara P.; Tremiliosi-Filho, Germano

    2012-01-01

    In this work we evaluated the potentiality of a poly(imide) (PI)/organically-modified montmorillonite (O-MMT) nanocomposite membrane for the use in alkaline fuel cells. Both X-ray diffraction and scanning electron microscopy revealed a good dispersion of O-MMT into the PI matrix and preservation of the O-MMT layered structure. When compared to the pure PI, the addition of O-MMT improved thermal stability and markedly increased the capability of absorbing electrolyte and ionic conductivity of the composite. The results show that the PI/O-MMT nanocomposite is a promising candidate for alkaline fuel cell applications. PMID:24958290

  13. The human erythrocyte plasma membrane: a Rosetta Stone for decoding membrane-cytoskeleton structure.

    PubMed

    Fowler, Velia M

    2013-01-01

    The mammalian erythrocyte, or red blood cell (RBC), is a unique experiment of nature: a cell with no intracellular organelles, nucleus or transcellular cytoskeleton, and a plasma membrane with uniform structure across its entire surface. By virtue of these specialized properties, the RBC membrane has provided a template for discovery of the fundamental actin filament network machine of the membrane skeleton, now known to confer mechanical resilience, anchor membrane proteins, and organize membrane domains in all cells. This chapter provides a historical perspective and critical analysis of the biochemistry, structure, and physiological functions of this actin filament network in RBCs. The core units of this network are nodes of ~35-37 nm-long actin filaments, interconnected by long strands of (α1β1)₂-spectrin tetramers, forming a 2D isotropic lattice with quasi-hexagonal symmetry. Actin filament length and stability is critical for network formation, relying upon filament capping at both ends: tropomodulin-1 at pointed ends and αβ-adducin at barbed ends. Tropomodulin-1 capping is essential for precise filament lengths, and is enhanced by tropomyosin, which binds along the short actin filaments. αβ-adducin capping recruits spectrins to sites near barbed ends, promoting network formation. Accessory proteins, 4.1R and dematin, also promote spectrin binding to actin and, with αβ-adducin, link to membrane proteins, targeting actin nodes to the membrane. Dissection of the molecular organization within the RBC membrane skeleton is one of the paramount achievements of cell biological research in the past century. Future studies will reveal the structure and dynamics of actin filament capping, mechanisms of precise length regulation, and spectrin-actin lattice symmetry.

  14. Distraction Osteogenesis of the Craniofacial Skeleton.

    PubMed

    Yu, Jack C.; Fearon, Jeffrey; Havlik, Robert J.; Buchman, Steve R.; Polley, John W.

    2004-07-01

    LEARNING OBJECTIVES:: After studying this article, the participant should be able to: 1. Review the biomechanical principles and pertinent cellular and molecular biology of distraction osteogenesis of the craniofacial skeleton. 2. Describe the clinical indications and applications of distraction osteogenesis of the craniofacial skeleton. 3. Describe maxillary, mandibular, midface, and calvarial procedures in distraction osteogenesis. 4. Discuss the clinical outcomes and complications of distraction osteogenesis of the craniofacial skeleton.The year 2002 marked the end of the first decade in clinical distraction osteogenesis of the craniofacial skeleton. In this short period, its application has increased exponentially. More than 3000 cases have been performed according to a recent survey, and more than 700 articles have been written on this subject in the MEDLINE database since 1996. It is a powerful surgical tool and enables surgeons to achieve results not previously attainable. Despite all this, distraction osteogenesis is practiced by only a small number of plastic surgeons. This article reviews the biomechanical principles; the pertinent cellular and molecular biology; and the clinical indications, applications, controversies, and complications of distraction osteogenesis of the craniofacial skeleton.

  15. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment.

  16. Impact of natural organic matter on floc size and structure effects in membrane filtration.

    PubMed

    Lee, Sangyun A; Fane, Anthony G; Waite, T David

    2005-09-01

    Hematite (10 mg of Fe/L) floc-humic acid assemblages have been formed at pH 4 either by first aggregating hematite particles with salt (100 mM KCl) and then adding humic acid (salt-particle-organic or SPO assemblages) or by suspending the hematite particles in humic acid solutions and then adding salt to induce aggregation (organic-particle-salt or OPS assemblages). The behavior of these assemblages upon deposition on microfiltration (MF) membranes has then been investigated. In the OPS case, the fractal dimension (dF) of the assemblages formed varied dramatically depending upon the extent of charge neutralization by added fulvic acid with dF values typical of diffusion-limited cluster aggregates at low (0.1-0.2 mg/L) humic acid concentrations and dF values typical of reaction-limited cluster aggregates either in the absence of humic acid or concentrations greater than 0.4-0.6 mg/L. In the SPO case, dF values on the order of 2.1 were initially observed and were found to decrease to around 1.8-1.9 for humic acid concentrations greater than 0.6-0.8 mg/L. OPS assemblages with low fractal dimensions were found to be highly compressible once deposited on MF membranes with significantly higher specific cake resistances than was the case for SPO assemblages at transmembrane pressures of 50 kPa and above. These results highlight the importance of both the choice of coagulant (e.g., preformed vs formed in situ) and the transmembrane pressure to which a membrane filtration process might be allowed to rise prior to removal of the fouling layer.

  17. Design of pervaporation membrane for organic-liquid separation based on solubility control by plasma-graft filling polymerization technique

    SciTech Connect

    Yamaguchi, Takeo; Nakao, Shinichi; Kimura, Shoji )

    1993-05-01

    Pervaporation performance through the membranes showed the same tendency as solubility results. The authors have prepared the filling-polymerized membrane for pervaporation of organic-liquid mixtures by the plasma-graft polymerization technique. The membrane is composed of two different polymers: a porous substrate which can suppress membrane swelling and a grafted polymer which forms in the pores of the substrate and exhibits selectivity due to its solubility. The objectives of the present study are to design a suitable membrane for an organic-mixture system by the control of the filling-polymer solubility. Specifically, a porous high-density polyethylene membrane and poly(methylacrylate/acrylamide) copolymer were employed as the porous substrate and grafted polymer, respectively, and grafted copolymer solubility was predicted by Hansen solubility parameters (HSP). The grafted polymer composition and its solubility behavior could be controlled by varying the monomer composition, and the solubility change was in accordance with the prediction by HSP. Pervaporation performance through the membranes showed the same tendency as solubility results. The authors concluded that an optimum pervaporation membrane can be designed on the basis of solubility control through use of these techniques for polymerization and prediction.

  18. Interactions of Organics within Hydrated Selective Layer of Reverse Osmosis Desalination Membrane: A Combined Experimental and Computational Study.

    PubMed

    Ghoufi, Aziz; Dražević, Emil; Szymczyk, Anthony

    2017-03-07

    In this work we have examined a computational approach in predicting the interactions between uncharged organic solutes and polyamide membranes. We used three model organic molecules with identical molecular weights (100.1 g/mol), 4-aminopiperidine, 3,3-dimethyl-2-butanone (pinacolone) and methylisobutyl ketone for which we obtained experimental data on partitioning, diffusion and separation on a typical seawater reverse osmosis (RO) membrane. The interaction energy between the solutes and the membrane phase (fully aromatic polyamide) was computed from molecular dynamics (MD) simulations and the resulting sequence was found to correlate well with the experimental rejections and sorption data. Sorption of the different organic solutes within the membrane skin layer determined from attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) nicely agreed with interaction energies computed from molecular simulations. Qualitative information about solute diffusivity inside the membrane was also extracted from MD simulations while ATR-FTIR experiments indicated strongly hindered diffusion with diffusion coefficients in the membrane about 10(-15) m(2)/s. The computational approach presented here could be a first step toward predicting rejections trends of, for example, hormones and pharmaceuticals by RO dense membranes.

  19. Non-rigid registration of small animal skeletons from micro-CT using 3D shape context

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Bourgeat, Pierrick; Fripp, Jurgen; Acosta Tamayo, Oscar; Gregoire, Marie Claude; Salvado, Olivier

    2009-02-01

    Small animal registration is an important step for molecular image analysis. Skeleton registration from whole-body or only partial micro Computerized Tomography (CT) image is often performed to match individual rats to atlases and templates, for example to identify organs in positron emission tomography (PET). In this paper, we extend the shape context matching technique for 3D surface registration and apply it for rat hind limb skeleton registration from CT images. Using the proposed method, after standard affine iterative closest point (ICP) registration, correspondences between the 3D points from sour and target objects were robustly found and used to deform the limb skeleton surface with thin-plate-spline (TPS). Experiments are described using phantoms and actual rat hind limb skeletons. On animals, mean square errors were decreased by the proposed registration compared to that of its initial alignment. Visually, skeletons were successfully registered even in cases of very different animal poses.

  20. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.

    PubMed

    Bucs, Sz S; Valladares Linares, R; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  1. Hybrid biofilm-membrane bioreactor (Bf-MBR) for minimization of bulk liquid-phase organic substances and its positive effect on membrane permeability.

    PubMed

    Sun, F Y; Li, P; Li, J; Li, H J; Ou, Q M; Sun, T T; Dong, Z J

    2015-12-01

    Four biofilm membrane bioreactors (Bf-MBRs) with various fixed carrier volumes (C:M) were operated in parallel to investigate the effect of attached-growth mode biomass involvement to the change of liquid-phase organics characteristics and membrane permeability, by comparing with conventional MBR. The experiments displayed that C:M and co-existence of biofilm with suspended solids in Bf-MBRs resulted in slight difference in pollutants removal effectiveness, and in rather distinct biomass properties and bacterial activities. The membrane permeability and specific resistance of bulk suspension of Bf-MBRs related closely with the liquid-phase organic substance, including soluble microbial products (SMP) and biopolymer cluster (BPC). Compared with conventional MBR, Bf-MBR with proper C:M had a low total biomass content and food-chain, where biofilm formation and its dominance affected liquid-phase organics, especially through reducing their content and minimizing strongly and weakly hydrophobic components with small molecular weight, and thus to mitigate membrane fouling significantly.

  2. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  3. Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation.

    PubMed

    Mao, Hongchao; Zhang, Suobo

    2017-03-15

    There has been much recent interest in the use of porous materials derived from self-assembling, shape-persistent organic cages due to their solubility and easy post-synthetic modification. Herein we report the preparation of novel mixed-matrix membranes (MMMs) employing the porous organic cage Noria and its derivatives Noria-Boc and Noria-CO(t)Bu as the fillers, and a fluorine containing polyimide, 6FDA-DAM, as the polymeric matrix. The physical structures and properties of Noria and its derivatives were measured and investigated. Noria with substituents of Boc (cleaved by thermal treatment during the process of membrane fabrication) and CO(t)Bu groups tend to show much better compatibility with polyimide than Noria itself, resulting in homogeneous dispersion of nanoaggregates and fine adhesion between the two phases in the derived Noria/6FDA-DAM and Noria-CO(t)Bu/6FDA-DAM MMMs. Gas permeation tests revealed that Noria and Noria-CO(t)Bu nanoparticles have different effect on gas separation performance of MMMs. The introduction of Noria into 6FDA-DAM tends to enhance CO2/CH4 selectivity and thus improve its gas separation properties, though a decrease in the observed permeability could be observed. In contrast, the introduction of Noria-CO(t)Bu with higher surface area and larger pores tends to increase the free volume and gas permeability of MMMs. These results show that both the morphology and the gas separation properties of MMMs could be tuned by tailoring the structures of porous organic cages.

  4. Identification of a Novel Membrane Transporter Mediating Resistance to Organic Arsenic in Campylobacter jejuni

    PubMed Central

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we report the identification of a novel membrane transporter (named ArsP) that contributes to organic arsenic resistance in Campylobacter. ArsP is predicted to be a membrane permease containing eight transmembrane helices, distinct from other known arsenic transporters. Analysis of multiple C. jejuni isolates from various animal species revealed that the presence of an intact arsP gene is associated with elevated resistance to roxarsone. In addition, inactivation of arsP in C. jejuni resulted in 4- and 8-fold reductions in the MICs of roxarsone and nitarsone, respectively, compared to that for the wild-type strain. Furthermore, cloning of arsP into a C. jejuni strain lacking a functional arsP gene led to 16- and 64-fold increases in the MICs of roxarsone and nitarsone, respectively. Neither mutation nor overexpression of arsP affected the MICs of inorganic arsenic, including arsenite and arsenate, in Campylobacter. Moreover, acquisition of arsP in NCTC 11168 led to accumulation of less roxarsone than the wild-type strain lacking arsP. Together, these results indicate that ArsP functions as an efflux transporter specific for extrusion of organic arsenic and contributes to the resistance to these compounds in C. jejuni. PMID:24419344

  5. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    PubMed Central

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  6. Microbial adhesion and biofilm formation on microfiltration membranes: a detailed characterization using model organisms with increasing complexity.

    PubMed

    Vanysacker, L; Denis, C; Declerck, P; Piasecka, A; Vankelecom, I F J

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  7. Effect of a glucose-triazole-hydrogenated cardanol conjugate on lipid bilayer membrane organization and thermotropic phase transition

    NASA Astrophysics Data System (ADS)

    Swain, Jitendriya; Kamalraj, M.; Surya Prakash Rao, H.; Mishra, Ashok K.

    2015-02-01

    This work focuses on the membrane perturbation, solubilisation and thermotropic phase transition process of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) MLVs induced by a glucose-triazole-hydrogenated cardanol conjugate (GTHCC). GTHCC is a recently introduced non toxic sugar derivative. Differential scanning calorimetry (DSC) and fluorescence molecular probe based techniques have been used to understand the concentration dependent membrane perturbation, solubilisation and thermotropic phase transition process of DPPC MLVs. The phase transition temperature of DPPC MLVs decreases with increase in mol% of GTHCC. At higher concentration above 10 mol%, GTHCC was significantly perturbed the membrane organization. The intrinsic fluorescence of GTHCC is also found to be sensitive towards phase behaviour and changes in membrane organization of DPPC MLVs.

  8. Fouling and cleaning characteristics of ultrafiltration of hydrophobic dissolved organic matter by a polyvinyl chloride hollow fiber membrane.

    PubMed

    Guo, Xiaoyan; Gao, Wei; Li, Jihui; Hu, Wanli

    2009-06-01

    Ultrafiltration membrane fouling is a significant problem in drinking water treatment. Many researchers believe that hydrophobic natural organic matter is the main foulant. In this research, fulvic acid, tannin, and aniline were used to represent hydrophobic acid, neutral, and base, respectively, to investigate modified polyvinyl chloride ultrafiltration membrane fouling characteristics. Four kinds of cleaning methods were used in this study: flushing, backwashing, flushing and backwashing, and chemical cleaning with 0.5% sodium hydroxide. Each was performed on the three hydrophobic dissolved organic matters (acid, neutral, and base) to identify the fouling mechanisms of polyvinyl chloride ultrafiltration membrane. Results showed that hydrophobic base fouled membranes the most and hydrophobic acid the least based on cleaning difficulty.

  9. Controllable Preparation of Ultrathin Sandwich-Like Membrane with Porous Organic Framework and Graphene Oxide for Molecular Filtration

    PubMed Central

    Zhu, Yuanzhi; Xu, Danyun; Zhao, Qingshan; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-01-01

    Porous organic frameworks (POFs) based membranes have potential applications in molecular filtration, despite the lack of a corresponding study. This study reports an interesting strategy to get processable POFs dispersion and a novel ultrathin sandwich-like membrane design. It was accidentally found that the hydrophobic N-rich Schiff based POFs agglomerates could react with lithium-ethylamine and formed stable dispersion in water. By successively filtrating the obtained POFs dispersion and graphene oxide (GO), we successfully prepared ultrathin sandwich-like hybrid membranes with layered structure, which showed significantly improved separation efficiency in molecular filtration of organic dyes. This study may provide a universal way to the preparation of processable POFs and their hybrid membranes with GO. PMID:26455497

  10. LDRD final report on imaging self-organization of proteins in membranes by photocatalytic nano-tagging.

    SciTech Connect

    Zavadil, Kevin Robert; Shelnutt, John Allen; Sasaki, Darryl Yoshio; Song, Yujiang; Medforth, Craig J.

    2005-11-01

    We have developed a new nanotagging technology for detecting and imaging the self-organization of proteins and other components of membranes at nanometer resolution for the purpose of investigating cell signaling and other membrane-mediated biological processes. We used protein-, lipid-, or drug-bound porphyrin photocatalysts to grow in-situ nanometer-sized metal particles, which reveal the location of the porphyrin-labeled molecules by electron microscopy. We initially used photocatalytic nanotagging to image assembled multi-component proteins and to monitor the distribution of lipids and porphyrin labels in liposomes. For example, by exchanging the heme molecules in hemoproteins with a photocatalytic tin porphyrin, a nanoparticle was grown at each heme site of the protein. The result obtained from electron microscopy for a tagged multi-subunit protein such as hemoglobin is a symmetric constellation of a specific number of nanoparticle tags, four in the case of the hemoglobin tetramer. Methods for covalently linking photocatalytic porphyrin labels to lipids and proteins were also developed to detect and image the self-organization of lipids, protein-protein supercomplexes, and membrane-protein complexes. Procedures for making photocatalytic porphyrin-drug, porphyrin-lipid, and porphyrin-protein hybrids for non-porphyrin-binding proteins and membrane components were pursued and the first porphyrin-labeled lipids was investigated in liposomal membrane models. Our photocatalytic nanotagging technique may ultimately allow membrane self-organization and cell signaling processes to be imaged in living cells. Fluorescence and plasmonic spectra of the tagged proteins might also provide additional information about protein association and membrane organization. In addition, a porphyrin-aspirin or other NSAID hybrid may be used to grow metal nanotags for the pharmacologically important COX enzymes in membranes so that the distribution of the protein can be imaged at the

  11. Fabrication of Porous Matrix Membrane (PMM) Using Metal-Organic Framework as Green Template for Water Treatment

    PubMed Central

    Lee, Jian-Yuan; Tang, Chuyang Y.; Huo, Fengwei

    2014-01-01

    Pressure-driven membranes with high porosity can potentially be fabricated by removing template, such as low water stability metal-organic frameworks (MOFs) or other nanoparticles, in polymeric matrix. We report on the use of benign MOFs as green template to enhance porosity and interconnectivity of the water treatment membranes. Significantly enhanced separation performance was observed which might be attributed to the mass transfer coefficient of the substrate layer increased in ultrafiltration (UF) application. PMID:24435326

  12. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization.

    PubMed Central

    Laulagnier, Karine; Motta, Claude; Hamdi, Safouane; Roy, Sébastien; Fauvelle, Florence; Pageaux, Jean-François; Kobayashi, Toshihide; Salles, Jean-Pierre; Perret, Bertrand; Bonnerot, Christian; Record, Michel

    2004-01-01

    Exosomes are small vesicles secreted from multivesicular bodies, which are able to stimulate the immune system leading to tumour cell eradication. We have analysed lipids of exosomes secreted either upon stimulation from rat mast cells (RBL-2H3 cells), or constitutively from human dendritic cells. As compared with parent cells, exosomes displayed an enrichment in sphingomyelin, but not in cholesterol. Phosphatidylcholine content was decreased, but an enrichment was noted in disaturated molecular species as in phosphatidylethanolamines. Lyso(bis)phosphatidic acid was not enriched in exosomes as compared with cells. Fluorescence anisotropy demonstrated an increase in exosome-membrane rigidity from pH 5 to 7, suggesting their membrane reorganization between the acidic multivesicular body compartment and the neutral outer cell medium. NMR analysis established a bilayer organization of exosome membrane, and ESR studies using 16-doxyl stearic acid demonstrated a higher flip-flop of lipids between the two leaflets as compared with plasma membrane. In addition, the exosome membrane exhibited no asymmetrical distribution of phosphatidylethanolamines. Therefore exosome membrane displays a similar content of the major phospholipids and cholesterol, and is organized as a lipid bilayer with a random distribution of phosphatidylethanolamines. In addition, we observed tight lipid packing at neutral pH and a rapid flip-flop between the two leaflets of exosome membranes. These parameters could be used as a hallmark of exosomes. PMID:14965343

  13. Membrane Organization and Ionization Behavior of the Minor but Crucial Lipid Ceramide-1-Phosphate

    SciTech Connect

    Kooijman, Edgar E.; Sot, Jesus; Montes, L.-Ruth; Alonso, Alicia; Gericke, Arne; de Kruijff, Ben; Kumar, Satyendra; Goni, Felix M.

    2008-08-06

    Ceramide-1-phosphate (Cer-1-P), one of the simplest of all sphingophospholipids, occurs in minor amounts in biological membranes. Yet recent evidence suggests important roles of this lipid as a novel second messenger with crucial tasks in cell survival and inflammatory responses. We present a detailed description of the physical chemistry of this hitherto little explored membrane lipid. At full hydration Cer-1-P forms a highly organized subgel (crystalline) bilayer phase (L{sub c}) at low temperature, which transforms into a regular gel phase (L{sub {beta}}) at {approx}45 C, with the gel to fluid phase transition (L{sub {beta}}-L{sub {alpha}}) occurring at {approx}65 C. When incorporated at 5mol % in a phosphatidylcholine bilayer, the pK{sub a2} of Cer-1-P, 7.39{+-}0.03, lies within the physiological pH range. Inclusion of phosphatidylethanolamine in the phosphatidylcholine bilayer, at equimolar ratio, dramatically reduces the pK{sub a2} to 6.64{+-}0.03. We explain these results in light of the novel electrostatic/hydrogen bond switch model described recently for phosphatidic acid. In mixtures with dielaidoylphosphatidylethanolamine, small concentrations of Cer-1-P cause a large reduction of the lamellar-to-inverted hexagonal phase transition temperature, suggesting that Cer-1-P induces, like phosphatidic acid, negative membrane curvature in these types of lipid mixtures. These properties place Cer-1-P in a class more akin to certain glycerophospholipids (phosphatidylethanolamine, phosphatidic acid) than to any other sphingolipid. In particular, the similarities and differences between ceramide and Cer-1-P may be relevant in explaining some of their physiological roles.

  14. Organization of lipids in the artificial outer membrane of bull spermatozoa reconstructed at the air-water interface.

    PubMed

    Le Guillou, J; Ropers, M-H; Gaillard, C; David-Briand, E; Desherces, S; Schmitt, E; Bencharif, D; Amirat-Briand, L; Tainturier, D; Anton, M

    2013-08-01

    Cryopreservation is widely used to preserve the quality of bull spermatozoa over time. Sequestration of seminal plasma proteins by low density lipoproteins and formation of a protective film around the spermatozoa membrane by low density lipoproteins were the main mechanisms proposed. However, the organization of lipids in the outer leaflet of the spermatozoa membrane has been never considered as a possible parameter. This study evaluated whether a change in the organization of the outer leaflet of the spermotozoa membrane could occur during cooling down. The organization of the main components of the spermatozoa membrane's outer layer at the liquid-gas interface was analysed. Cryopreservative media (at 8° and 34°C) were used to study the miscibility of the spermatozoa membrane lipids using epifluorescence imaging and by tensiometry on Langmuir films. The results show that the four lipids: sphingomyelin, cholesterol, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PC) and plasmalogen 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (P-PC) were not fully miscible and their organization was controlled by temperature. Cholesterol and sphingomyelin form condensed domains surrounded by a mixture of PC and P-PC at 34°C while these condensed domains are surrounded by separated domains of pure PC and pure P-PC at 8°C. The organization of the outer membrane lipids, in particular the separation of PC and P-PC lipids during cooling down, must be considered to fully understand preservation of membrane integrity during cryopreservation.

  15. 3-D vascular skeleton extraction and decomposition.

    PubMed

    Chowriappa, Ashirwad; Seo, Yong; Salunke, Sarthak; Mokin, Maxim; Kan, Peter; Scott, Peter

    2014-01-01

    We introduce a novel vascular skeleton extraction and decomposition technique for computer-assisted diagnosis and analysis. We start by addressing the problem of vascular decomposition as a cluster optimization problem and present a methodology for weighted convex approximations. Decomposed vessel structures are then grouped using the vessel skeleton, extracted using a Laplace-based operator. The method is validated using presegmented sections of vasculature archived for 98 aneurysms in 112 patients. We test first for vascular decomposition and next for vessel skeleton extraction. The proposed method produced promising results with an estimated 80.5% of the vessel sections correctly decomposed and 92.9% of the vessel sections having the correct number of skeletal branches, identified by a clinical radiological expert. Next, the method was validated on longitudinal study data from n = 4 subjects, where vascular skeleton extraction and decomposition was performed. Volumetric and surface area comparisons were made between expert segmented sections and the proposed approach on sections containing aneurysms. Results suggest that the method is able to detect changes in aneurysm volumes and surface areas close to that segmented by an expert.

  16. Advances in evaluating the fetal skeleton

    PubMed Central

    Noel, Ann-Edwidge; Brown, Richard N

    2014-01-01

    In this review, we discuss aspects of the prenatal diagnosis of fetal skeletal malformations, concentrating on the advantages offered by different imaging techniques and the approaches that are of value in evaluating a suspected skeletal dysplasia. We also briefly address the findings in some of the commoner malformations of the fetal skeleton that may be encountered. PMID:24868173

  17. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  18. Novel skeleton sesquiterpenoids isolated from guava leaves.

    PubMed

    Ouyang, Wen; Zhu, Xiao-ai; Wang, Wei; Chen, Xue-Xiang; Chen, Yun-Jiao; Cao, Yong

    2016-01-01

    A chemical investigation of the plant Psidium guajava L., collected in Guangdong province, afforded two novel skeleton sesquiterpenoids 1 and 2. Compound 2 also known as isocaryolan-9-one was a new natural product. The structure of the novel compound 1 was determined as guavacid A by various spectroscopic methods. A possible biosynthetic pathway for 1 and 2 was proposed.

  19. Trace organics removal using three membrane bioreactor configurations: MBR, IFAS-MBR and MBMBR.

    PubMed

    de la Torre, T; Alonso, E; Santos, J L; Rodríguez, C; Gómez, M A; Malfeito, J J

    2015-01-01

    Seventeen pharmaceutically active compounds and 22 other trace organic pollutants were analysed regularly in the influent and permeate from a semi-real plant treating municipal wastewater. The plant was operated during 29 months with different configurations which basically differed in the type of biomass present in the system. These processes were the integrated fixed-film activated sludge membrane bioreactor (IFAS-MBR), which combined suspended and attached biomass, the moving bed membrane bioreactor (MBMBR) (only attached biomass) and the MBR (only suspended biomass). Moreover, removal rates were compared to those of the wastewater treatment plant (WWTP) operating nearby with conventional activated sludge treatment. Reverse osmosis (RO) was used after the pilot plant to improve removal rates. The highest elimination was found for the IFAS-MBR, especially for hormones (100% removal); this was attributed to the presence of biofilm, which may lead to different conditions (aerobic-anoxic-anaerobic) along its profile, which increases the degradation possibilities, and also to a higher sludge age of the biofilm, which allows complete acclimation to the contaminants. Operating conditions played an important role, high mixed liquor suspended solids (MLSS) and sludge retention time (SRT) being necessary to achieve these high removal rates. Although pharmaceuticals and linear alkylbenzene sulfonates showed high removal rates (65-100%), nonylphenols and phthalate could only be removed to 10-30%. RO significantly increased removal rates to 88% mean removal rate.

  20. Combined air stripper/membrane vapor separation systems. [Volatile organic compounds

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  1. DipM links peptidoglycan remodeling to outer membrane organization in Caulobacter

    PubMed Central

    Goley, Erin D.; Comolli, Luis R.; Fero, Katherine E.; Downing, Kenneth H.; Shapiro, Lucy

    2010-01-01

    Summary Cell division in Gram-negative organisms requires coordinated invagination of the multi-layered cell envelope such that each daughter receives an intact inner membrane (IM), peptidoglycan (PG) layer, and outer membrane (OM). Here, we identify DipM, a putative LytM endopeptidase in Caulobacter crescentus, and show that it plays a critical role in maintaining cell envelope architecture during growth and division. DipM localized to the division site in an FtsZ-dependent manner via its peptidoglycan binding LysM domains. Although not essential for viability, ΔdipM cells exhibited gross morphological defects, including cell widening and filamentation, indicating a role in cell shape maintenance and division that we show requires its LytM domain. Strikingly, cells lacking DipM also showed OM blebbing at the division site, at cell poles, and along the cell body. Cryo electron tomography of sacculi isolated from cells depleted of DipM revealed marked thickening of the peptidoglycan as compared to wild type, which we hypothesize leads to loss of trans-envelope contacts between components of the Tol-Pal complex. We conclude that DipM is required for normal envelope invagination during division and to maintain a sacculus of constant thickness that allows for maintenance of OM connections throughout the cell envelope. PMID:20497504

  2. Effects of phloretin on lipid organization in the erythrocyte membrane as measured by EPR

    NASA Astrophysics Data System (ADS)

    Abumrad, Nada A.; Perkins, Ray C.; Dalton, Larry R.; Park, Charles R.; Park, Jane H.

    Phloretin is a lipophilic compound which has been widely studied as a broad spectrum effector of metabolite transport in red blood cells (RBC). Phloretin effects on the organization of lipids in the RBC membrane are investigated using the spin-labeled fatty acids, 5 and 16-nitroxyl stearate (5-NS and 16-NS, respectively). Phloretin at different concentrations produced biphasic effects on the lineshape of the EPR response from 16-NS-labeled RBC. The dependence of these changes on the flat cell orientation with respect to the magnetic field suggested that phloretin promoted lipid order at low concentrations (5 to 40 μ M) and disorder at high concentrations (40 to 250 μ M). The biphasic effects of phloretin occurred at concentrations which parallel its dual actions on metabolite transfer. Phloretin generally inhibits transport (protein-mediated) and stimulates diffusion (lipid-mediated) processes. The spectroscopic effects were best characterized through second-harmonic, in-phase detection. The possible contribution of other factors to the spectroscopic changes is discussed. When RBC were spin labeled with 5-NS, higher concentrations of the probe were required for adequate detection and only monophasic effects of phoretin were observed. The results suggest that membrane lipids are important in phloretin effects on transport and diffusion processes.

  3. Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Tan, Chaoqun; Zhu, Mingqiu

    2014-02-01

    Fouling is a major obstacle to maintain the efficiency of ultrafiltration-based drinking water treatment process. Algal extracellular organic matters (EOMs) are currently considered as one of the major sources of membrane fouling. The objective of this study was to investigate the influence of different hydrophobic/hydrophilic fractions of EOM extracted from Microcystis aeruginosa on ultrafiltration membrane fouling at lab scale. The experimental data indicated that EOM exhibited similar flux decline trends on polyethersulfone (PES) and regenerated cellulose (RC) membranes but caused greater irreversible fouling on PES membrane than RC membrane due to its hydrophobic property. It was also observed that charged hydrophilic (CHPI) and neutral hydrophilic (NHPI) fractions caused greater flux decline over hydrophobic (HPO) and transphilic (TPI) fractions. For PES membrane, the order of the irreversible fouling potentials for the four fractions was HPO>TPI>CHPI>NHPI, while the irreversible fouling potentials of RC membrane were tiny and could be ignored. Fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared (FTIR) spectra suggested that protein-like, polysaccharide-like and humic-like substances were the major components responsible for membrane fouling. The results also indicated that the irreversible fouling increased as the pH decreased. The addition of calcium to feed solutions led to more severe flux decline and irreversible fouling.

  4. Conditioning of sewage sludge by Fenton's reagent combined with skeleton builders.

    PubMed

    Liu, Huan; Yang, Jiakuan; Shi, Yafei; Li, Ye; He, Shu; Yang, Changzhu; Yao, Hong

    2012-06-01

    Physical conditioners, often known as skeleton builders, are commonly used to improve the dewaterability of sewage sludge. This study evaluated a novel joint usage of Fenton's reagent and skeleton builders, referred to as the F-S inorganic composite conditioner, focusing on their efficacies and the optimization of the major operational parameters. The results demonstrate that the F-S composite conditioner for conditioning sewage sludge is a viable alternative to conventional organic polymers, especially when ordinary Portland cement (OPC) and lime are used as the skeleton builders. Experimental investigations confirmed that Fenton reaction required sufficient time (80 min in this study) to degrade organics in the sludge. The optimal condition of this process was at pH=5, Fe(2+)=40 mg g(-1) (dry solids), H(2)O(2)=32 mg g(-1), OPC=300 mg g(-1) and lime=400 mg g(-1), in which the specific resistance to filtration reduction efficiency of 95% was achieved.

  5. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    PubMed

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  6. Microbial adaptation to biodegrade toxic organic micro-pollutants in membrane bioreactor using different sludge sources.

    PubMed

    Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2014-08-01

    Biodegradation of toxic organic micro-pollutants in municipal solid waste (MSW) leachate by membrane bioreactor (MBR) was investigated. The MBR systems were seeded with different sludge sources, one was from a pilot-scale MBR system treating MSW leachate and the other was from an activated sludge sewage treatment plant. The biodegradation of BPA, 2,6-DTBP, BHT, DEP, DBP and DEHP, DCP and BBzP, by sludge from both reactors were found improved with time. However, enhanced biodegradation of micro-pollutants was observed in MBR operated under long sludge age condition. Bacterial population analyses determined by PCR-DGGE revealed the development of phenol and phthalate degrading bacteria consortium in MBR sludge during its operation.

  7. Skeleton pruning by contour partitioning with discrete curve evolution.

    PubMed

    Bai, Xiang; Latecki, Longin Jan; Liu, Wen-Yu

    2007-03-01

    In this paper, we introduce a new skeleton pruning method based on contour partitioning. Any contour partition can be used, but the partitions obtained by Discrete Curve Evolution (DCE) yield excellent results. The theoretical properties and the experiments presented demonstrate that obtained skeletons are in accord with human visual perception and stable, even in the presence of significant noise and shape variations, and have the same topology as the original skeletons. In particular, we have proven that the proposed approach never produces spurious branches, which are common when using the known skeleton pruning methods. Moreover, the proposed pruning method does not displace the skeleton points. Consequently, all skeleton points are centers of maximal disks. Again, many existing methods displace skeleton points in order to produces pruned skeletons.

  8. Preparation and Characterization of a Hydrophobic Metal-Organic Framework Membrane Supported on Thin Porous Metal Sheet

    SciTech Connect

    Liu, Jian; Canfield, Nathan L.; Liu, Wei

    2016-02-29

    A hydrophobic metal-organic framework (MOF) UiO-66-CH3 is prepared and its solvothermal stability is investigated in comparison to UiO-66. It is confirmed that the MOF stability is enhanced by introduction of the two methyl groups, while the water adsorption is reduced. Given its hydrophobicity and stability, UiO-66-CH3 is proposed as an attractive membrane material for gas separation under moisture conditions. The UiO-66-CH3 membrane is prepared on a 50µm-thin porous Ni support sheet for the first time by use of a secondary growth method. It is found that uniform seed coating on the support is necessary to form a continuous membrane. In addition to growth time and temperature, presence of a modulator in the growth solution is found to be useful for controlling hydrothermal membrane growth on the seeded support. A dense, inter-grown membrane layer is formed by 24-h growth over a temperature range from 120 oC to 160 oC. The membrane surface comprises 500 nm octahedral crystals, which are supposed to grow out of the original 100 nm spherical seeding crystals. The separation characteristics of resulting membranes are tested with pure CO2, air, CO2/air mixture, and humid CO2/air mixture. CO2 permeance as high as 1.9E-06 mol/m2/s/Pa at 31oC is obtained. Unlike the hydrophilic zeolite membranes, CO2 permeation through this membrane is not blocked by the presence of water vapor in the feed gas. The results suggest that this MOF framework is a promising membrane material worth to be further investigated for separation of CO2 and other small molecules from humid gas mixtures.

  9. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane.

    PubMed

    Heuser, J E; Salpeter, S R

    1979-07-01

    The receptor-rich postsynaptic membrane of the elasmobranch electric organ was fixed by quick-freezing and then viewed by freeze-fracture, deep-etching and rotary-replication. Traditional freeze-fracture revealed a distinct, geometrical pattern of shallow 8.5-nm bumps on the E fracture-face, similar to the lattice which has been seen before in chemically fixed material, but seen less clearly than after quick-freezing. Fracture plus deep-etching brought into view on the true outside of this membrane a similar geometrical pattern of 8.5-nm projections rising out of the membrane surface. The individual projections looked like structures that have been seen in negatively stained or deep-etched membrane fragments and have been identified as individual acetylcholine receptor molecules. The surface protrusions were twice as abundant as the large intramembrane particles that characterize the fracture faces of this membrane, which have also been considered to be receptor molecules. Particle counts have always been too low to match the estimates of postsynaptic receptor density derived from physiological and biochemical studies; counts of surface projections, however, more closely matched these estimates. Rotary-replication of quick-frozen, etched postsynaptic membranes enhanced the visibility of these surface protuberances and illustrated that they often occur in dimers, tetramers, and ordered rows. The variations in these surface patterns suggested that in vivo, receptors in the postsynaptic membrane may tend to pack into "liquid crystals" which constantly appear, flow, and disappear in the fluid environment of the membrane. Additionally, deep-etching revealed a distinct web of cytoplasmic filaments beneath the postsynaptic membrane, and revealed the basal lamina above it; and delineated possible points of contact between these structures and the membrane proper.

  10. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane

    PubMed Central

    1979-01-01

    The receptor-rich postsynaptic membrane of the elasmobranch electric organ was fixed by quick-freezing and then viewed by freeze-fracture, deep-etching and rotary-replication. Traditional freeze-fracture revealed a distinct, geometrical pattern of shallow 8.5-nm bumps on the E fracture-face, similar to the lattice which has been seen before in chemically fixed material, but seen less clearly than after quick- freezing. Fracture plus deep-etching brought into view on the true outside of this membrane a similar geometrical pattern of 8.5-nm projections rising out of the membrane surface. The individual projections looked like structures that have been seen in negatively stained or deep-etched membrane fragments and have been identified as individual acetylcholine receptor molecules. The surface protrusions were twice as abundant as the large intramembrane particles that characterize the fracture faces of this membrane, which have also been considered to be receptor molecules. Particle counts have always been too low to match the estimates of postsynaptic receptor density derived from physiological and biochemical studies; counts of surface projections, however, more closely matched these estimates. Rotary- replication of quick-frozen, etched postsynaptic membranes enhanced the visibility of these surface protuberances and illustrated that they often occur in dimers, tetramers, and ordered rows. The variations in these surface patterns suggested that in vivo, receptors in the postsynaptic membrane may tend to pack into "liquid crystals" which constantly appear, flow, and disappear in the fluid environment of the membrane. Additionally, deep-etching revealed a distinct web of cytoplasmic filaments beneath the postsynaptic membrane, and revealed the basal lamina above it; and delineated possible points of contact between these structures and the membrane proper. PMID:479296

  11. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.

    PubMed

    Kusumi, Akihiro; Shirai, Yuki M; Koyama-Honda, Ikuko; Suzuki, Kenichi G N; Fujiwara, Takahiro K

    2010-05-03

    Single-molecule tracking and fluorescence correlation spectroscopy (FCS) applied to the plasma membrane in living cells have allowed a number of unprecedented observations, thus fostering a new basic understanding of molecular diffusion, interaction, and signal transduction in the plasma membrane. It is becoming clear that the plasma membrane is a heterogeneous entity, containing diverse structures on nano-meso-scales (2-200 nm) with a variety of lifetimes, where certain membrane molecules stay together for limited durations. Molecular interactions occur in the time-dependent inhomogeneous two-dimensional liquid of the plasma membrane, which might be a key for plasma membrane functions.

  12. Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane

    PubMed Central

    Erhardt, Heiko; Dempwolff, Felix; Pfreundschuh, Moritz; Riehle, Marc; Schäfer, Caspar; Pohl, Thomas; Graumann, Peter; Friedrich, Thorsten

    2014-01-01

    The Escherichia coli cytoplasmic membrane contains the enzyme complexes of oxidative phosphorylation (OXPHOS). Not much is known about their supramolecular organization and their dynamics within the membrane in this model organism. In mitochondria and other bacteria, it was demonstrated by nondenaturing electrophoretic methods and electron microscopy that the OXPHOS complexes are organized in so-called supercomplexes, stable assemblies with a defined number of the individual enzyme complexes. To investigate the organization of the E. coli enzyme complexes of aerobic OXPHOS in vivo, we established fluorescent protein fusions of the NADH:ubiquinone oxidoreductase, the succinate:ubiquinone oxidoreductase, the cytochrome bd-I, and the cytochrome bo3 terminal oxidases, and the FoF1 ATP-synthase. The fusions were integrated in the chromosome to prevent artifacts caused by protein overproduction. Biochemical analysis revealed that all modified complexes were fully assembled, active, and stable. The distribution of the OXPHOS complexes in living cells was determined using total internal reflection fluorescence microscopy. The dynamics within the membrane were detected by fluorescence recovery after photobleaching. All aerobic OXPHOS complexes showed an uneven distribution in large mobile patches within the E. coli cytoplasmic membrane. It is discussed whether the individual OXPHOS complexes are organized as clustered individual complexes, here called “segrazones.” PMID:24729508

  13. Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders.

    PubMed

    Bogdanov, Mikhail; Mileykovskaya, Eugenia; Dowhan, William

    2008-01-01

    Lipids play important roles in cellular dysfunction leading to disease. Although a major role for phospholipids is in defining the membrane permeability barrier, phospholipids play a central role in a diverse range of cellular processes and therefore are important factors in cellular dysfunction and disease. This review is focused on the role of phospholipids in normal assembly and organization of the membrane proteins, multimeric protein complexes, and higher order supercomplexes. Since lipids have no catalytic activity, it is difficult to determine their function at the molecular level. Lipid function has generally been defined by affects on protein function or cellular processes. Molecular details derived from genetic, biochemical, and structural approaches are presented for involvement of phosphatidylethanolamine and cardiolipin in protein organization. Experimental evidence is presented that changes in phosphatidylethanolamine levels results in misfolding and topological misorientation of membrane proteins leading to dysfunctional proteins. Examples are presented for diseases in which proper protein folding or topological organization is not attained due to either demonstrated or proposed involvement of a lipid. Similar changes in cardiolipin levels affects the structure and function of individual components of the mitochondrial electron transport chain and their organization into supercomplexes resulting in reduced mitochondrial oxidative phosphorylation efficiency and apoptosis. Diseases in which mitochondrial dysfunction has been linked to reduced cardiolipin levels are described. Therefore, understanding the principles governing lipid-dependent assembly and organization of membrane proteins and protein complexes will be useful in developing novel therapeutic approaches for disorders in which lipids play an important role.

  14. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

    PubMed

    Hoppins, Suzanne; Collins, Sean R; Cassidy-Stone, Ann; Hummel, Eric; Devay, Rachel M; Lackner, Laura L; Westermann, Benedikt; Schuldiner, Maya; Weissman, Jonathan S; Nunnari, Jodi

    2011-10-17

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane-associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria.

  15. Preparation, characterization and performance of poly(m-phenylene isophthalamide)/organically modified montmorillonite nanocomposite membranes in removal of perfluorooctane sulfonate.

    PubMed

    Luo, Qin; Liu, Yanxia; Liu, Guixia; Zhao, Changwei

    2016-08-01

    Nanocomposite membranes containing poly(m-phenylene isophthalamide) (PMIA) and organically modified montmorillonite (OMMT) were prepared by a combination of solution dispersion and wet-phase inversion methods, and the effects of OMMT addition on the properties and performance of fabricated nanofiltration membranes were investigated. The membranes were characterized by contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis, and zeta potential. The performance of the membranes was elucidated by the removal of perfluorooctane sulfonate (PFOS) at neutral pH. Increasing OMMT concentration improved the thermal stability and hydrophilicity of the membranes. The permeation and rejection of PFOS were significantly improved. The performance of fabricated nanofiltration membranes in removal of PFOS varied depending on the solute and membrane properties as well as solution conditions. Finally, a comparison between fabricated membranes and a commercial NF membrane (ESNA1-K1, Hydecanme) proved that the OMMT addition is a convenient procedure for producing nanocomposite membranes with superior properties and performance.

  16. The integumentary skeleton of tetrapods: origin, evolution, and development

    PubMed Central

    Vickaryous, Matthew K; Sire, Jean-Yves

    2009-01-01

    proposed that this tissue layer is also odontogenic in origin, but clearly further study is necessary. Although not homologous as organs, all elements of the integumentary skeleton share a basic and essential relationship with the integument, connecting them with the ancestral rhombic scale. PMID:19422424

  17. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells.

    PubMed

    Sampathkumar, Arun; Gutierrez, Ryan; McFarlane, Heather E; Bringmann, Martin; Lindeboom, Jelmer; Emons, Anne-Mie; Samuels, Lacey; Ketelaar, Tijs; Ehrhardt, David W; Persson, Staffan

    2013-06-01

    The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.

  18. Self-organizing phenomena at membrane level and low-level laser therapy of rhinitis

    NASA Astrophysics Data System (ADS)

    Ailioaie, Laura; Ailioaie, C.; Topoliceanu, Fl.

    2000-06-01

    Allergic rhinitis is the most common allergic disease affecting many people worldwide. Low level laser therapy (LLLT) was applied as monotherapy to 32 children, under placebo controlled conditions. There have been used two GaAlAs diode lasers. The density of energy and the frequency 2 sessions daily - were applied under a special experimental protocol of treatment, including endonasal regions treated with an optical fiber and the extrameridian acupuncture points for rhinitis, 10 days monthly, three months consecutively. The initial investigations with fiberoptic rhinoscope revealed a swollen, pale and edematous mucosa, with increased nasal sections, which may be watery to mucoid. At the end of LLLT, the symptoms of rhinitis like sneezing, nasal congestion, stuffy nose, mouth breathing, snoring - have disappeared and the aspect of nasal mucosa was normal. The results could be explained in the new scenario of self-organizing phenomena at membrane level. The physiological beneficial effects may be correlated and possibly explained by self-organizing paradigms. Our result warrant that LLL is a very good therapy modality for children suffering from allergic rhinitis.

  19. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations

    PubMed Central

    Jansen, J.; De Napoli, I. E; Fedecostante, M.; Schophuizen, C. M. S.; Chevtchik, N. V.; Wilmer, M. J.; van Asbeck, A. H.; Croes, H. J.; Pertijs, J. C.; Wetzels, J. F. M.; Hilbrands, L. B.; van den Heuvel, L. P.; Hoenderop, J. G.; Stamatialis, D.; Masereeuw, R.

    2015-01-01

    The bioartificial kidney (BAK) aims at improving dialysis by developing ‘living membranes’ for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as a fluorescent substrate. Initial ASP+ uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a ‘living membrane’ of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering. PMID:26567716

  20. Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations

    PubMed Central

    Lagny, Thibaut J.; Bassereau, Patricia

    2015-01-01

    Being at the periphery of each cell compartment and enclosing the entire cell while interacting with a large part of cell components, cell membranes participate in most of the cell's vital functions. Biologists have worked for a long time on deciphering how membranes are organized, how they contribute to trafficking, motility, cytokinesis, cell–cell communication, information transport, etc., using top-down approaches and always more advanced techniques. In contrast, physicists have developed bottom-up approaches and minimal model membrane systems of growing complexity in order to build up general models that explain how cell membranes work and how they interact with proteins, e.g. the cytoskeleton. We review the different model membrane systems that are currently available, and how they can help deciphering cell functioning, but also list their limitations. Model membrane systems are also used in synthetic biology and can have potential applications beyond basic research. We discuss the possible synergy between the development of complex in vitro membrane systems in a biological context and for technological applications. Questions that could also be discussed are: what can we still do with synthetic systems, where do we stop building up and which are the alternative solutions? PMID:26464792

  1. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules.

    PubMed

    Gu, Yangshuo; Wang, Yi-Ning; Wei, Jing; Tang, Chuyang Y

    2013-04-01

    Fouling of cellulose triacetate (CTA) and thin-film composite (TFC) forward osmosis (FO) membranes by organic macromolecules were studied using oppositely charged lysozyme (LYS) and alginate (ALG) as model foulants. Flux performance and foulant deposition on membranes were systematically investigated for a submerged membrane system. When an initial flux of 25 L/m(2)h was applied, both flux reduction and foulant mass deposition were severe for feed water containing the mixture of LYS and ALG (e.g., 50% LYS and 50% ALG at a total foulant concentration of 100 mg/L). In comparison, fouling was much milder for feed water containing either LYS or ALG alone. Compared to the CTA FO membrane, the TFC FO membrane showed greater fouling propensity under mild FO fouling conditions due to its much rougher surface. Nevertheless, under severe FO fouling conditions, fouling was dominated by foulant-deposited-foulant interaction and membrane surface properties played a less important role. Furthermore, when the feed water contained both LYS and ALG in sufficient amount, the deposited cake layer foulant composition (i.e., the LYS/ALG mass ratio) was not strongly affected by membrane types (CTA versus TFC) nor testing modes (pressure-driven NF mode versus osmosis-driven FO mode). In contrast, solution chemistry such as pH and calcium concentration had remarkable effect on the cake layer composition due to their effects on foulant-foulant interaction.

  2. Ion exchange membranes as novel passive sampling material for organic ions: application for the determination of freely dissolved concentrations.

    PubMed

    Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2014-11-28

    Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner.

  3. Covalent-organic framework as a template to assemble carbon nanotubes into a high-density membrane: computational demonstration.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen

    2014-01-21

    Carbon nanotube (CNT) membranes have a wide range of important technological applications; however, the fabrication of high-density CNT membranes is challenging. Using molecular simulation, we demonstrate that a covalent-organic framework (COF-8) can act as a template promoting (9, 9) CNTs to assemble into a homogeneous high-density membrane. Surprisingly, the templated assembly is unique for (9, 9) CNTs and not observed for smaller or larger CNTs. The microscopic analysis based on the potential of mean force reveals that the highly selective assembly of (9, 9) CNTs into COF-8 is thermodynamically favorable, in contrast to other CNTs. This proof-of-concept computational study proposes a bottom-up strategy to produce high-density CNT membranes, and has a significant implication in CNT applications.

  4. Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons

    NASA Astrophysics Data System (ADS)

    Wood, Rachel; Zhuravlev, Andrey Yu.

    2012-12-01

    Assembly of the necessary biochemical machinery for biomineralisation long-predated the appearance and rapid diversification of metazoan skeletons in the late Ediacaran to Middle Cambrian (~ 550-520 million years ago (Ma)), and the independent acquisition of skeletons of differing mineralogies suggests a trigger that conferred selective advantage to possession of a skeleton even though this involved physiological cost. The cost-benefit ratio of biomineralisation has changed over geological time, varying not only with the availability of precursor ions in seawater, but also with evolutionary innovations, as the energy required to produce a skeleton will change as a function of community ecology, particularly with increases in predation pressure. Here, we demonstrate that during the Cambrian Radiation the choice of biomineral was controlled by an interaction between changing seawater chemistry and evolving ecology. The record also reveals the successive skeletonisation of groups with increasing levels of activity from the Ediacaran to Middle Cambrian. The oldest (~ 550-540 Ma) biomineralised organisms were sessile, and preferentially formed low-cost, simple, skeletons of either high-Mg calcite coincident with high mMg:Ca and/or low pCO2 (aragonite seas), or phosphate during with a well-documented phosphogenic event. More elaborate, but tough and protective, aragonitic skeletons appeared from ~ 540 Ma, dominantly in motile benthos (mostly stem- and crown-group Lophotrochozoa). The first low-Mg calcite skeletons of novel organic-rich composite materials (e.g. trilobites) did not appear until the late early Cambrian (~ 526 Ma), coincident with the first onset of low mMg:Ca and/or high pCO2 (calcite seas). Active, bentho-pelagic predatory groups (vertebrates, chaetognaths, some arthropods) appearing mainly in the late early Cambrian preferentially possessed phosphatic skeletons, which were more stable at the low pH ranges of extracellular fluids associated with intense

  5. Covalent-organic framework as a template to assemble carbon nanotubes into a high-density membrane: computational demonstration

    NASA Astrophysics Data System (ADS)

    Hu, Zhongqiao; Jiang, Jianwen

    2013-12-01

    Carbon nanotube (CNT) membranes have a wide range of important technological applications; however, the fabrication of high-density CNT membranes is challenging. Using molecular simulation, we demonstrate that a covalent-organic framework (COF-8) can act as a template promoting (9, 9) CNTs to assemble into a homogeneous high-density membrane. Surprisingly, the templated assembly is unique for (9, 9) CNTs and not observed for smaller or larger CNTs. The microscopic analysis based on the potential of mean force reveals that the highly selective assembly of (9, 9) CNTs into COF-8 is thermodynamically favorable, in contrast to other CNTs. This proof-of-concept computational study proposes a bottom-up strategy to produce high-density CNT membranes, and has a significant implication in CNT applications.Carbon nanotube (CNT) membranes have a wide range of important technological applications; however, the fabrication of high-density CNT membranes is challenging. Using molecular simulation, we demonstrate that a covalent-organic framework (COF-8) can act as a template promoting (9, 9) CNTs to assemble into a homogeneous high-density membrane. Surprisingly, the templated assembly is unique for (9, 9) CNTs and not observed for smaller or larger CNTs. The microscopic analysis based on the potential of mean force reveals that the highly selective assembly of (9, 9) CNTs into COF-8 is thermodynamically favorable, in contrast to other CNTs. This proof-of-concept computational study proposes a bottom-up strategy to produce high-density CNT membranes, and has a significant implication in CNT applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03964a

  6. Selective interfacial synthesis of metal-organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation

    NASA Astrophysics Data System (ADS)

    Biswal, Bishnu P.; Bhaskar, Anand; Banerjee, Rahul; Kharul, Ulhas K.

    2015-04-01

    Metal-organic frameworks (MOFs) have gained immense attention as new age materials due to their tuneable properties and diverse applicability. However, efforts on developing promising materials for membrane based gas separation, and control over the crystal growth positions on polymeric hollow fiber membranes still remain key challenges. In this investigation, a new, convenient and scalable room temperature interfacial method for growing MOFs (ZIF-8 and CuBTC) on either the outer or inner side of a polybenzimidazole based hollow fiber (PBI-BuI-HF) membrane surface has been achieved in a controlled manner. This was made possible by the appropriate selection of an immiscible solvent pair and the synthetic conditions. The growth of MOFs on the PBI-BuI-HF membrane by the interfacial method was continuous and showed an appreciable gas separation performance, conveying promise for their applicability.Metal-organic frameworks (MOFs) have gained immense attention as new age materials due to their tuneable properties and diverse applicability. However, efforts on developing promising materials for membrane based gas separation, and control over the crystal growth positions on polymeric hollow fiber membranes still remain key challenges. In this investigation, a new, convenient and scalable room temperature interfacial method for growing MOFs (ZIF-8 and CuBTC) on either the outer or inner side of a polybenzimidazole based hollow fiber (PBI-BuI-HF) membrane surface has been achieved in a controlled manner. This was made possible by the appropriate selection of an immiscible solvent pair and the synthetic conditions. The growth of MOFs on the PBI-BuI-HF membrane by the interfacial method was continuous and showed an appreciable gas separation performance, conveying promise for their applicability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00299k

  7. Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets.

    PubMed

    Li, Gang; Zhang, Kai; Tsuru, Toshinori

    2017-03-15

    Exceptionally homogeneous and ultrathin COF membranes were successfully fabricated using exfoliated COF nanosheets with uniform perforations as membrane building blocks. The COF membranes showed highly permeable performance due to the ultrafast molecular diffusion through the perforations of the COF nanosheets and the excellent thermal stability due to the robust covalent bonds in the framework.

  8. Extraction and applications of skeletons in finite element mesh generation.

    SciTech Connect

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.

  9. Calcaneal spurs among San and Khoi skeletons.

    PubMed

    Caroline, Cermak; Kirchengast, Sylvia

    2015-01-01

    Only few studies considered the prevalence of calcaneal enthesophytes commonly called heel spurs among historic skeleton samples. In the present study the frequency of plantar calcaneal spurs among 54 19(th) century Khoisan skeletons was analyzed. Five individuals (9.6 %) had a plantar calcaneal spur at the right side or left side. Calcaneal spurs were more likely to occur in older individuals. More than 20 % of the individuals aged between 40 and 60 years (mature) showed plantar spurs, while 6.2 % of the individuals aged between 20 and 40 years had plantar spurs; however this difference was not significant. No sex differences were present in the prevalence of calcaneal spurs. Male and female individuals did not differ in the metric dimensions of the calcanceal spurs significantly.

  10. Abstract Morphemes and Lexical Representation: The CV-Skeleton in Arabic

    ERIC Educational Resources Information Center

    Boudelaa, Sami; Marslen-Wilson, Willian D.

    2004-01-01

    Overlaps in form and meaning between morphologically related words have led to ambiguities in interpreting priming effects in studies of lexical organization. In Semitic languages like Arabic, however, linguistic analysis proposes that one of the three component morphemes of a surface word is the CV-Skeleton, an abstract prosodic unit coding the…

  11. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM AQUEOUS SOLUTIONS BY PERVAPORATION USING S-B-S BLOCK COPOLYMER MEMBRANES.

    EPA Science Inventory

    Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE, and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroe...

  12. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM AQUEOUS SOLUTIONS BY PERVAPORATION USING S-B-S BLOCK COPOLYMER MEMBRANES

    EPA Science Inventory

    Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroe...

  13. An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues.

    PubMed

    Bennett, Vann; Lorenzo, Damaris N

    2016-01-01

    Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that

  14. The facial skeleton: Armor to the brain?

    PubMed Central

    Patil, Satishkumar G.; Patil, Bindu S.; Joshi, Udupikrishna; Allurkar, Soumya; Japatti, Sharanabasappa; Munnangi, Ashwini

    2016-01-01

    Background: With the development of urban setting worldwide, the major issue of concern is the increase in the mortality rate in the population due to road traffic accidents. The face, being the most exposed region is susceptible to injuries and maybe associated with injuries to the adjacent neuro-cranium. The literature has conflicting views on the relationship between facial fractures and head injuries with some authors opining that the facial skeleton cushions the brain while some other authors claim that the facial fractures act as indicators for head injuries. Objectives: To analyze the correlation between the facial fractures and head injuries and to assess if the facial skeleton acts to protect the brain from injury. Patients and Methods: A prospective study that included patients who reported to the emergency department of Basaveswar Teaching and General Hospital, Gulbarga, during 2 years, between August 2013 and July 2015 was conducted. A total of 100 patients with facial fractures were enrolled in the study. Results: Head injuries were sustained by 51 patients in the study. Maximum number of patients was in the age group of 20–29 with a male to female ratio of 10.1:1. The mandible was the most frequently fractured bone in the facial skeleton followed by the zygomatico-maxillary complex. A majority (96%) of patients with head injuries had fractures of either the upper third or the middle third of the face. Contusions and pneumocephalus were the most common head injury encountered. The Glasgow Coma Scale score was significantly lower in patients with associated head injuries as compared to those patients with facial trauma alone. The mortality rate in the study was 2% with both the victims having sustained middle third and upper third fractures respectively with associated head injuries. Conclusion: The facial skeleton does not act to cushion the brain from injury but, in fact, the facial trauma victims should be considered potential head injury patients

  15. Performance Measurements for the Microsoft Kinect Skeleton

    DTIC Science & Technology

    2012-03-01

    MAR 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Performance Measurements for the Microsoft Kinect ...8-98) Prescribed by ANSI Std Z39-18 Performance Measurements for the Microsoft Kinect Skeleton Mark A. Livingston∗ Jay Sebastian† Zhuming Ai...Information Inter- faces and Presentation]: User Interfaces—Input devices and strate- gies; 1 INTRODUCTION The Microsoft Kinect for Xbox 360 (“ Kinect

  16. Method of separating organic contaminants from fluid feedstreams with polyphosphazene membranes

    DOEpatents

    McCaffrey, Robert R.; Cummings, Daniel G.

    1991-01-01

    A method is provided for separating halogenated hydrocarbons from a fluid feedstream. The fluid feedstream is flowed across a first surface of a polyphosphazene semipermeable membrane. At least one halogenated hydrocarbon from the fluid feedstream permeates through the polyphosphazene semipermeable membrane to a second opposed surface of the semipermeable membrane. Then the permeated polar hydrocarbon is removed from the second opposed surface of the polyphosphazene semipermeable membrane. Outstanding and unexpected separation selectivities on the order of 10,000 were obtained for methylene chloride when a methylene chloride in water feedstream was flowed across the polyphosphazene semipermeable membrane in the invented method.

  17. Method of separating organic contaminants from fluid feedstreams with polyphosphazene membranes

    SciTech Connect

    McCaffrey, R.R.; Cummings, D.G.

    1990-12-31

    A method is provided for separating polar hydrocarbons from a fluid feedstream. The fluid feedstream is flowed across a first surface of a polyphosphazene semipermeable membrane. At least one polar hydrocarbon from the fluid feedstream permeates through the polyphosphazene semipermeable membrane to a second opposed surface of the semipermeable membrane. Then the permeated polar hydrocarbon is removed from the second opposed surface of the polyphosphazene semipermeable membrane. Outstanding and unexpected separation selectivities on the order of 10,000 were obtained for methylene chloride when a methylene chloride in water feedstream was flowed across the polyphosphazene semipermeable membrane in the invented method.

  18. Temporal synthesis of band 3 oligomers during terminal maturation of mouse erythroblasts. Dimers and tetramers exist in the membrane as preformed stable species.

    PubMed

    Hanspal, M; Golan, D E; Smockova, Y; Yi, S J; Cho, M R; Liu, S C; Palek, J

    1998-07-01

    -ankyrin complexes are unattached to the membrane skeleton in early erythroblasts and that the membrane skeleton has yet to become tightly organized in late erythroblasts. We postulate that in early erythroblasts, band 3 tetramers are transported through microsomes and stably incorporated into the plasma membrane. However, when ankyrin synthesis is downregulated in late erythroblasts, it appears that B3D are rapidly transported to the plasma membrane but then recycled between the plasma membrane and microsomal compartments. These observations may suggest novel roles for membrane skeletal proteins in stabilizing integral membrane protein oligomers at the plasma membrane and in regulating the endocytosis of such proteins.

  19. Naked Stony Corals: Skeleton Loss in Scleractinia

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Takaoka, Tori L.; Kuehl,Jennifer; Boore, Jeffrey L.

    2005-12-01

    Hexacorallia includes the Scleractinia, or stony corals, characterized by having an external calcareous skeleton made of aragonite, and the Corallimorpharia, or mushroom corals, that lack such a skeleton. Although each group has traditionally been considered monophyletic, some molecular phylogenetic analyses have challenged this, suggesting that skeletal features are evolutionarily plastic, and reviving notions that the scleractinian skeleton may be ephemeral and that the group itself may be polyphyletic. Nevertheless, the most comprehensive phylogenetic study of Hexacorallia supported scleractinian monophyly (REF), and so this remains controversial. In order to resolve this contentious issue, we sequenced the complete mitochondrial genome sequences of nine scleractinians and four corallimorpharians and performed phylogenetic analysis that also included three outgroups (an octocoral and two sea anemones). Our data provide the first strong evidence that Scleractinia is paraphyletic and that the Corallimorpharia is derived from within the group, from which we conclude that skeletal loss has occurred in the latter group secondarily. It is possible that a driving force in such skeletal loss could be the high levels of CO{sub 2} in the ocean during the mid-Cretaceous, which would have impacted aragonite solubility. We estimate from molecular divergence measures that the Corallimorpharia arose in the mid-Cretaceous, approximately 87 million years ago (Ma), supporting this view. These data also permit us to date the origin of Scleractinia to 265 Ma, narrowing the gap between the group's phylogenetic origin and its earliest fossil record.

  20. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders.

    PubMed

    Da Costa, Lydie; Galimand, Julie; Fenneteau, Odile; Mohandas, Narla

    2013-07-01

    Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.

  1. Minimum convex hull mass estimations of complete mounted skeletons.

    PubMed

    Sellers, W I; Hepworth-Bell, J; Falkingham, P L; Bates, K T; Brassey, C A; Egerton, V M; Manning, P L

    2012-10-23

    Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg.

  2. Minimum convex hull mass estimations of complete mounted skeletons

    PubMed Central

    Sellers, W. I.; Hepworth-Bell, J.; Falkingham, P. L.; Bates, K. T.; Brassey, C. A.; Egerton, V. M.; Manning, P. L.

    2012-01-01

    Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg. PMID:22675141

  3. A skeleton family generator via physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2009-01-01

    This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

  4. Assessment of bone repair associated to the use of organic bovine bone and membrane irradiated with 830nm

    NASA Astrophysics Data System (ADS)

    Marquez de Martinez Gerbi, Marleny E.; Barbosa Pinheiro, Antonio L.; de Assis Limeira, Francisco, Jr.; Marzola, Clovis; Pedreira Ramalho, Luciana M.; Arruda Carneiro Ponzi, Elizabeth; Olveira Soares, Andre; Bandeira de Carvalho, Livia C.; Vieira Lima, Helena C.; Oliveira Goncalves, Thais; Silva Meireles, Gyselle C.

    2003-06-01

    The aim of the present investigation was to assess histologically the effect of LLLT (λ830nm, Thera Lase, DMC, Sao Carlos, SP, Brazil, 40mW, CW, spot size 0.60mm, 16J/cm2 per session) on the repair of surgical defects created in the femur of the Wistar Albinus rat. The defects were filled to lyophilized organic bovine bone associated or not to GTR (decalcified cortical osseous membrane). Surgical bone defects were created in 42 animals divided into five groups: Group I (control - 6 animals); Group II (organic bovine bone - 9 animals); Group III (organic bovine bone + LLLT - 9 animals); Group IV (organic bovine bone + decalcified cortical osseous membrane - 9 animals); Group V (organic bovine bone + decalcified cortical osseous membrane + Laser - 9 animals). The animals on the irradiated groups received 16J/cm2 per session divided into four points around the defect (4J/cm2) being the first irradiation immediately after surgery and repeated seven times at every 48h. The animals were humanely killed after 15, 21 and 30 days. The results of the present investigation showed histological evidence of improved amount of collagen fibers at early stages of the bone healing (15 days) and increased amount of well organized bone trabeculae at the end of the experimental period (30 days) on irradiated animals compared to non irradiated ones. It is concluded that a positive biomodulative effect on the healing process of one defect associated or not to the use of organic lyophilized bone and biological bovine membrane on the femur of the rat.

  5. Low-temperature bonding process for the fabrication of hybrid glass-membrane organ-on-a-chip devices

    NASA Astrophysics Data System (ADS)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2016-10-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organs-on-a-chip," which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass-based devices have long been utilized in the field of microfluidics but the integration of alternative functional elements within multilayered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimized on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650°C) and quartz/fused silica bonding (1050°C) processes, this method maintains the integrity and functionality of the membrane (Tg 150°C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 h, indicating sufficient bond strength for long-term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  6. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-01-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  7. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Rong-Qiang; Woo, Jung-Je; Seo, Seok-Jun; Lee, Jae-Suk; Moon, Seung-Hyeon

    2008-05-01

    A series of new covalent organic/inorganic hybrid proton-conductive membranes, each with a semi-interpenetrating polymer network (semi-IPN), for direct methanol fuel cell (DMFC) applications is prepared through the following sequence: (i) copolymerization of impregnated styrene (St), p-vinylbenzyl chloride (VBC) and divinylbenzene (DVB) within a supporting polyvinyl chloride (PVC) film; (ii) reaction of the chloromethyl group with 3-(methylamine)propyl-trimethoxysilane (MAPTMS); (ii) a sol-gel process under acidic conditions; (iv) a sulfonation reaction. The developed membranes are characterized in terms of Fourier transform infrared/attenuated total reflectance (FTIR/ATR), scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDXA), elemental analysis (EA) and thermogravimetric analysis (TGA), which confirm the formation of the target membranes. The developed copolymer chains are interpenetrating with the PVC matrix to form the semi-IPN structure, and the inorganic silica is covalently bound to the copolymers. These features provide the membranes with high mechanical strength. The effect of silica content is investigated. As the silica content increases, proton conductivity and water content decrease, whereas oxidative stability is improved. In particular, methanol permeability and methanol uptake are reduced largely by the silica. The ratio of proton conductivity to methanol permeability for the hybrid membranes is higher than that of Nafion 117. All these properties make the hybrid membranes a potential candidate for DMFC applications.

  8. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane.

    PubMed

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-12-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  9. Organization of dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli.

    PubMed Central

    Sambasivarao, D; Scraba, D G; Trieber, C; Weiner, J H

    1990-01-01

    Dimethyl sulfoxide reductase is a trimeric, membrane-bound, iron-sulfur molybdoenzyme induced in Escherichia coli under anaerobic growth conditions. The enzyme catalyzes the reduction of dimethyl sulfoxide, trimethylamine N-oxide, and a variety of S- and N-oxide compounds. The topology of dimethyl sulfoxide reductase subunits was probed by a combination of techniques. Immunoblot analysis of the periplasmic proteins from the osmotic shock and chloroform wash fluids indicated that the subunits were not free in the periplasm. The reductase was susceptible to proteases in everted membrane vesicles, but the enzyme in outer membrane-permeabilized cells became protease sensitive only after detergent solubilization of the E. coli plasma membrane. Lactoperoxidase catalyzed the iodination of each of the three subunits in an everted membrane vesicle preparation. Antibodies to dimethyl sulfoxide reductase and fumarate reductase specifically agglutinated the everted membrane vesicles. No TnphoA fusions could be found in the dmsA or -B genes, indicating that these subunits were not translocated to the periplasm. Immunogold electron microscopy of everted membrane vesicles and thin sections by using antibodies to the DmsABC, DmsA, DmsB subunits resulted in specific labeling of the cytoplasmic surface of the inner membrane. These results show that the DmsA (catalytic subunit) and DmsB (electron transfer subunit) are membrane-extrinsic subunits facing the cytoplasmic side of the plasma membrane. Images PMID:2170332

  10. An organizing function of basement membranes in the developing nervous system.

    PubMed

    Halfter, Willi; Yip, Joseph

    2014-08-01

    The basement membranes (BMs) of the nervous system include (a) the pial BM that surrounds the entire CNS, (b) the BMs that outline the vascular system of the CNS and PNS and (c) the BMs that are associated with Schwann cells. We previously found that isolated BMs are bi-functionally organized, whereby the two surfaces have different compositional, biomechanical and cell adhesion properties. To find out whether the bi-functional nature of BMs has an instructive function in organizing the tissue architecture of the developing nervous system, segments of human BMs were inserted into (a) the parasomitic mesoderm of chick embryos, intersecting with the pathways of axons and neural crest cells, or (b) into the midline of the embryonic chick spinal cord. The implanted BMs integrated into the embryonic tissues within 24h and were impenetrable to growing axons and migrating neural crests cells. Host axons and neural crest cells contacted the epithelial side but avoided the stromal side of the implanted BM. When the BMs were inserted into the spinal cord, neurons, glia cells and axons assembled at the epithelial side of the implanted BMs, while a connective tissue layer formed at the stromal side, resembling the tissue architecture of the spinal cord at the pial surface. Since the spinal cord is a-vascular at the time of BM implantation, we propose that the bi-functional nature of BMs has the function of segregating epithelial and connective cells into two adjacent compartments and participates in establishing the tissue architecture at the pial surface of the CNS.

  11. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects.

    PubMed

    Ponnappan, Nisha; Budagavi, Deepthi Poornima; Yadav, Bhoopesh Kumar; Chugh, Archana

    2015-03-01

    Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.

  12. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Andoh, Masayoshi; Nakajima, Chihiro; Wada, Hiroshi

    2005-09-01

    Although the auditory transduction process is dependent on neural excitation of the auditory nerve in relation to motion of the basilar membrane (BM) in the organ of Corti (OC), specifics of this process are unclear. In this study, therefore, an attempt was made to estimate the phase of the neural excitation relative to the BM motion using a finite-element model of the OC at the basal turn of the gerbil, including the fluid-structure interaction with the lymph fluid. It was found that neural excitation occurs when the BM exhibits a maximum velocity toward the scala vestibuli at 10 Hz and shows a phase delay relative to the BM motion with increasing frequency up to 800 Hz. It then shows a phase advance until the frequency reaches 2 kHz. From 2 kHz, neural excitation again shows a phase delay with increasing frequency. From 800 Hz up to 2 kHz, the phase advances because the dominant force exerted on the hair bundle shifts from a velocity-dependent Couette flow-induced force to a displacement-dependent force induced by the pressure difference. The phase delay that occurs from 2 kHz is caused by the resonance process of the hair bundle of the IHC.

  13. Monitoring lipid anchor organization in cell membranes by PIE-FCCS.

    PubMed

    Triffo, Sara B; Huang, Hector H; Smith, Adam W; Chou, Eldon T; Groves, Jay T

    2012-07-04

    This study examines the dynamic co-localization of lipid-anchored fluorescent proteins in living cells using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) and fluorescence lifetime analysis. Specifically, we look at the pairwise co-localization of anchors from lymphocyte cell kinase (LCK: myristoyl, palmitoyl, palmitoyl), RhoA (geranylgeranyl), and K-Ras (farnesyl) proteins in different cell types. In Jurkat cells, a density-dependent increase in cross-correlation among RhoA anchors is observed, while LCK anchors exhibit a more moderate increase and broader distribution. No correlation was detected among K-Ras anchors or between any of the different anchor types studied. Fluorescence lifetime data reveal no significant Förster resonance energy transfer in any of the data. In COS 7 cells, minimal correlation was detected among LCK or RhoA anchors. Taken together, these observations suggest that some lipid anchors take part in anchor-specific co-clustering with other existing clusters of native proteins and lipids in the membrane. Importantly, these observations do not support a simple interpretation of lipid anchor-mediated organization driven by partitioning based on binary lipid phase separation.

  14. Study on enhanced denitrification using particulate organic matter in membrane bioreactor by mechanism modeling.

    PubMed

    Zheng, Min; Liu, Yan-Chen; Wang, Cheng-Wen; Xu, Kang-Ning

    2013-11-01

    Particulate organic matter (POM) in wastewater is a potential denitrification carbon source, while the optimal operational mode using denitrification mechanism with POM is still unclear in wastewater treatment plants. In this work, we investigated the denitrification rates (DNRs) in a full-scale membrane bioreactor (MBR) coupled with two-stage pre-anoxic (pre-AN), and then evaluated the POM denitrification efficiency using mechanism modeling. The results indicate that POM related fraction accounted for the majority of the obtained specific DNR of 1.39±0.46mgNg(-1) MLVSS h(-1) in the second pre-AN without available soluble carbon source. The modeling approaches with calibration and validation procedures estimated a high residual POM concentration of 0.17g COD g(-1) MLVSS in the activated sludge, which provided specific DNR of 1.14mgNg(-1) MLVSS h(-1). High POM retention time in the reactor was the result of high solid retention time used in the MBR. In particular, post-AN of high biomass concentration could provide the highest POM denitrification efficiency in MBR. The MBR process combined with additional sludge reduction technology could further enhance denitrification by POM.

  15. Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, K.A.; Gale, R.W.

    2001-01-01

    Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.

  16. Organic Anion Transporter 4-Mediated Transport of Olmesartan at Basal Plasma Membrane of Human Placental Barrier.

    PubMed

    Noguchi, Saki; Nishimura, Tomohiro; Fujibayashi, Ayasa; Maruyama, Tetsuo; Tomi, Masatoshi; Nakashima, Emi

    2015-09-01

    Mechanisms regulating fetal transfer of olmesartan, an angiotensin-II receptor type 1 antagonist, are important as potential determinants of life-threatening adverse fetal effects. The purpose of this study was to examine the olmesartan transport mechanism through the basal plasma membrane (BM) of human syncytiotrophoblasts forming the placental barrier. Uptake of olmesartan by human placental BM vesicles was potently inhibited by dehydroepiandrosterone sulfate (DHEAS), estrone 3-sulfate, and bromosulfophthalein, which are all typical substrates of organic anion transporter (OAT) 4 localized at the BM of syncytiotrophoblasts, and was increased in the absence of chloride. In tetracycline-inducible OAT4-expressing cells, [(3) H]olmesartan uptake was increased by tetracycline treatment. Olmesartan uptake via OAT4 was concentration dependent with a Km of 20 μM, and was increased in the absence of chloride. [(3) H]Olmesartan efflux via OAT4 was also observed and was trans-stimulated by extracellular chloride and DHEAS. Thus, OAT4 mediates bidirectional transport of olmesartan and appears to regulate fetal transfer of olmesartan at the BM of syncytiotrophoblasts. Efflux transport of olmesartan via OAT4 from syncytiotrophoblasts to the fetal circulation might be facilitated in the presence of an inwardly directed physiological chloride gradient and extracellular DHEAS.

  17. Solubilization of trace organics in block copolymer micelles for environmental separation using membrane extraction principles

    SciTech Connect

    Hatton, T.A.

    1992-12-01

    The solubilization of a range of polycyclic aromatic hydrocarbons in block copolymer micelles has been studied as a function of polymer composition, architecture, and temperature. Micelle formation is favored at high temperatures, leading to significant enhancements in solubilization capacity. At low temperatures, however, micelles do not form and the solubilization capacity of the block copolymer solution for the organics is low; this provides a convenient method for the regeneration of micellar solutions used as solvents'' in the treatment of contaminated feed streams using membrane extraction principles. It has also been shown (in collaboration with K.P. Johnston of University of Texas, Austin) that supercritical CO[sub 2] can be used effectively for micelle regeneration. Theoretical calculations of the structure of block copolymer micelles in the presence and absence of solutes using self-consistent mean-field lattice theories have successfully captured the trends observed with changing polymer composition and architecture, often quantitatively. The temperature and composition dependence of the micellar properties were determined by allowing the individual polymer segments to assume both polar and non-polar conformations.

  18. Performance of skeleton-reinforced biomembranes in locomotion

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Shoele, Kourosh

    2008-11-01

    Skeleton-reinforced biomembranes are ubiquitous in nature and play critical roles in many biological functions. Representative examples include insect wings, cell membranes, and mollusk nacres. In this study we focus on the ray fins of fish and investigate the effects of anisotropic flexibility on their performance. Employing a fluid-structure interaction algorithm by coupling a boundary-element model with a nonlinear structural model, we examined the dynamics of a membrane that is geometrically and structurally similar to a caudal fin. Several locomotion modes that closely resemble caudal fin kinematics reported in the literature are applied. Our results show that the flexibility of the fin significantly increases its capacity of thrust generation, manifested as increased efficiency, reduced transverse force, and reduced sensitivity to kinematic parameters. This design also makes the fin more controllable and deployable. Despite simplifications made in this model in terms of fin geometry, internal structure, and kinematics, detailed features of the simulated flow field are consistent with observations and speculations based upon Particle Image Velocimetry (PIV) measurements of flow around live fish.

  19. Self-organized two-state membrane potential transitions in a network of realistically modeled cortical neurons.

    PubMed

    Kang, Siu; Kitano, Katsunori; Fukai, Tomoki

    2004-04-01

    Recent studies have revealed that in vivo cortical neurons show spontaneous transitions between two subthreshold levels of the membrane potentials, 'up' and 'down' states. The neural mechanism of generating those spontaneous states transitions, however, remains unclear. Recent electrophysiological studies have suggested that those state transitions may occur through activation of a hyperpolarization-activated cation current (H-current), possibly by inhibitory synaptic inputs. Here, we demonstrate that two-state membrane potential fluctuations similar to those exhibited by in vivo neurons can be generated through a spike-timing-dependent self-organizing process in a network of inhibitory neurons and excitatory neurons expressing the H-current.

  20. [Effects and mechanism on removing organics and reduction of membrane fouling using granular macro-porous anion exchange resin in drinking water treatment].

    PubMed

    He, Huan; Dong, Bing-Zhi; Xu, Guang-Hong; Yan, Zhao-Hui

    2014-05-01

    A granular macro-porous anion exchange resin combined with coagulation was used as pretreatment of microfiltration membrane, and their effects and mechanism on removing organics and reduction of membrane fouling were evaluated. The results showed that resin could be effective in removing organics with medium and small molecular weight ( Mr) but ineffective in removing organics with large Mr, while couagulation could significantly remove organics with large Mr, with a limited removal for organics with medium and small Mr. Using resin alone as pretreatment could be effective in removal of organics but limited in reduction of membrane fouling. With combination of coagulation and resin as pretreatment of microfiltration, not only organics could be removed effectively, but also membrane fouling could be reduced.

  1. Toward a novel membrane process for organic carbon removal-fate of slowly biodegradable substrate in super fast membrane bioreactor.

    PubMed

    Sözen, S; Teksoy Başaran, S; Akarsubaşı, A; Ergal, I; Insel, G; Karaca, C; Orhon, D

    2016-08-01

    The study tested the performance of super fast membrane bioreactor (SFMBR) using starch as a slowly biodegradable substrate, exploring the fate of starch, and the response of the microbial community. SFMBR was operated at extremely low sludge ages of 0.5-2.0 days, with a hydraulic retention time of 1.0 h. Average values for permeate chemical oxygen demand (COD) always remained in the narrow range between 14 and 18 mg/L, regardless of the selected mode of MBR operation at different sludge ages. Soluble COD levels in the reactor were consistently higher than the corresponding permeate COD. Parameters defining process kinetics, determined by model calibration of oxygen uptake rate (OUR) profiles, varied as a function of sludge age. Model simulation of SFMBR performance indicated total removal of hydrolysis products so that permeate COD consisted of residual microbial products. PCR-DGGE experiments revealed significant shifts in the composition of the microbial community imposed by variations in the sludge age, reflecting on corresponding process kinetics.

  2. The lateral organization of influenza virus proteins in the budozone region of the plasma membrane.

    PubMed

    Leser, George P; Lamb, Robert A

    2017-02-15

    Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some, like HA, NA, and M2 are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with the viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immuno-gold staining. The distribution of these proteins was examined individually and pair-wise using the Ripley K function, a type of nearest neighbor analysis. Individually HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly co-clustered in the plasma membrane; however, in the case of NA and M2 clustering depends upon the expression system used. Despite both being raft-resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly co-cluster but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the co-expression of other viral proteins. Similarly, M2 and NP occupy separate compartments but an association can be bridged by co-expression of M1.Importance The complement of influenza proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft like domains whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships between viral proteins in the plasma

  3. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional

  4. Cross-linked smart poly(dimethylsiloxane) membranes for removal of volatile organic compounds in water

    NASA Astrophysics Data System (ADS)

    Ohshima, Tadahiro; Miyata, Takashi; Uragami, Tadashi; Berghmens, Hugo

    2005-04-01

    This paper focuses on the effects of fluorine cross-linker of the cross-linked poly(dimethylsiloxane) membranes from polydimethylsiloxane dimethylmethacrylate macromonomer (PDMSDMMA) and divinyl perfluoro- n-hexane (DVF) on the pervaporation characteristics of the removal of benzene from an aqueous solution of dilute benzene. When an aqueous solution of 0.05 wt% benzene was permeated through the cross-linked PDMSDMMA (PDMSDMMA-DVF) membranes, they showed a high benzene permselectivity and permeability of these membranes was enhanced with increasing DVF content significantly. The best normalized permeation rate, separation factor for benzene permselectivity, and pervaporation separation index (PSI) of a PDMSDMMA-DVF membrane were 1.72×10 -5 kg m/m 2 h, 4316, and 7423, respectively. The best normalized permeation rate of a PDMSDMMA-DVF membrane was approximately same as the PDMSDMMA membranes cross-linked with other divinyl compounds, but the separation factor and PSI of the former membrane were greater than those of the latter ones. These pervaporation characteristics are discussed from the viewpoint of chemical and physical structure of the cross-linked PDMSDMMA-DVF membranes in detail.

  5. Regulation of energy metabolism by the skeleton: osteocalcin and beyond.

    PubMed

    Ferron, Mathieu; Lacombe, Julie

    2014-11-01

    The skeleton has recently emerged as an endocrine organ implicated in the regulation of glucose and energy metabolism. This function of bone is mediated, at least in part, by osteocalcin, an osteoblast-derived protein acting as a hormone stimulating insulin sensitivity, insulin secretion and energy expenditure. Osteocalcin secretion and bioactivity is in turn regulated by several hormonal cues including insulin, leptin, the sympathetic nervous system and glucocorticoids. Recent findings support the notion that osteocalcin functions and regulations are conserved between mice and humans. Moreover, studies in mice suggest that osteocalcin could represent a viable therapeutic approach for the treatment of obesity and insulin resistance. In this review, we summarize the current knowledge on osteocalcin functions, its various modes of action and the mechanisms implicated in the control of this hormone.

  6. Mineralized cartilage in the skeleton of chondrichthyan fishes.

    PubMed

    Dean, Mason N; Summers, Adam P

    2006-01-01

    The cartilaginous endoskeleton of chondrichthyan fishes (sharks, rays, and chimaeras) exhibits complex arrangements and morphologies of calcified tissues that vary with age, species, feeding behavior, and location in the body. Understanding of the development, evolutionary history and function of these tissue types has been hampered by the lack of a unifying terminology. In order to facilitate reciprocal illumination between disparate fields with convergent interests, we present levels of organization in which crystal orientation/size delimits three calcification types (areolar, globular, and prismatic) that interact in two distinct skeletal types, vertebral and tessellated cartilage. The tessellated skeleton is composed of small blocks (tesserae) of calcified cartilage (both prismatic and globular) overlying a core of unmineralized cartilage, while vertebral cartilage usually contains all three types of calcification.

  7. Switching skeletons: hydrostatic support in molting crabs

    NASA Technical Reports Server (NTRS)

    Taylor, Jennifer R A.; Kier, William M.; Walker, I. D. (Principal Investigator)

    2003-01-01

    Skeletal support systems are essential for support, movement, muscular antagonism, and locomotion. Crustaceans shed their rigid exoskeleton at each molt yet are still capable of forceful movement. We hypothesize that the soft water-inflated body of newly molted crabs may rely on a hydrostatic skeleton, similar to that of worms and polyps. We measured internal hydrostatic pressure and the force exerted during claw adduction and observed a strong correlation between force and hydrostatic pressure, consistent with hydrostatic skeletal support. This alternation between the two basic skeletal types may be widespread among arthropods.

  8. The Chaperone-Mediated Autophagy Receptor Organizes in Dynamic Protein Complexes at the Lysosomal Membrane ▿ †

    PubMed Central

    Bandyopadhyay, Urmi; Kaushik, Susmita; Varticovski, Lyuba; Cuervo, Ana Maria

    2008-01-01

    Chaperone-mediated autophagy (CMA) is a selective type of autophagy by which specific cytosolic proteins are sent to lysosomes for degradation. Substrate proteins bind to the lysosomal membrane through the lysosome-associated membrane protein type 2A (LAMP-2A), one of the three splice variants of the lamp2 gene, and this binding is limiting for their degradation via CMA. However, the mechanisms of substrate binding and uptake remain unknown. We report here that LAMP-2A organizes at the lysosomal membrane into protein complexes of different sizes. The assembly and disassembly of these complexes are a very dynamic process directly related to CMA activity. Substrate proteins only bind to monomeric LAMP-2A, while the efficient translocation of substrates requires the formation of a particular high-molecular-weight LAMP-2A complex. The two major chaperones related to CMA, hsc70 and hsp90, play critical roles in the functional dynamics of the LAMP-2A complexes at the lysosomal membrane. Thus, we have identified a novel function for hsc70 in the disassembly of LAMP-2A from these complexes, whereas the presence of lysosome-associated hsp90 is essential to preserve the stability of LAMP-2A at the lysosomal membrane. PMID:18644871

  9. Low-temperature bonded glass-membrane microfluidic device for in vitro organ-on-a-chip cell culture models

    NASA Astrophysics Data System (ADS)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2015-12-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organson- a-chip", which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass based devices have long been utilised in the field of microfluidics but the integration of alternative functional elements within multi-layered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimised on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650 °C) and quartz/fused silica bonding (1050 °C) processes, this method maintains the integrity and functionality of the membrane (Tg 150 °C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 hours, indicating sufficient bond strength for long term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  10. The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans

    PubMed Central

    Alvarez, Francisco J.; Douglas, Lois M.; Rosebrock, Adam

    2008-01-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains. PMID:18799621

  11. MICOS and phospholipid transfer by Ups2–Mdm35 organize membrane lipid synthesis in mitochondria

    PubMed Central

    Aaltonen, Mari J.; Friedman, Jonathan R.; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi

    2016-01-01

    Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2–Mdm35 complexes (SLMO2–TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2–Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2–Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. PMID:27241913

  12. Highly Cross-Linked Epoxy Nanofiltration Membranes for the Separation of Organic Chemicals and Fish Oil Ethyl Esters.

    PubMed

    Gilmer, Chad M; Bowden, Ned B

    2016-09-14

    Membrane separations are highly desired for the chemical industry because they are inexpensive, avoid the use of heat, can be applied to the purification of a wide range of chemicals, and can be scaled to industrial levels. Separating chemicals with molecular weights between 100 and 300 g mol(-1) remains a significant challenge in the field of organic solvent nanofiltration (OSN) due to their similar sizes and rotational flexibility. In this work, we report the fabrication of poly(epoxy) membranes that show excellent selectivity of over 100:1 for chemicals in this range. The membranes are easily tuned to obtain different flux and selectivity by using interchangeable amine and epoxide monomers. These membranes were used to separate the important nutritional omega-3 fatty acid ethyl esters eicosapentaenoic ethyl ester (EPA-EE) and docosahexaenoic acid ethyl ester (DHA-EE) from each other, despite a small difference in molecular weight (26 g mol(-1)). This is the first example of a separation of EPA-EE and DHA-EE using a membrane process.

  13. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization.

    PubMed

    Dillard, Pierre; Pi, Fuwei; Lellouch, Annemarie C; Limozin, Laurent; Sengupta, Kheya

    2016-03-14

    We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.

  14. Studying the role of common membrane surface functionalities on adsorption and cleaning of organic foulants using QCM-D.

    PubMed

    Contreras, Alison E; Steiner, Zvi; Miao, Jing; Kasher, Roni; Li, Qilin

    2011-08-01

    Adsorption of organic foulants on nanofiltration (NF) and reverse osmosis (RO) membrane surfaces strongly affects subsequent fouling behavior by modifying the membrane surface. In this study, impact on organic foulant adsorption of specific chemistries including those in commercial thin-film composite membranes was investigated using self-assembled monolayers with seven different ending chemical functionalities (-CH(3), -O-phenyl, -NH(2), ethylene-glycol, -COOH, -CONH(2), and -OH). Adsorption and cleaning of protein (bovine serum albumin) and polysaccharide (sodium alginate) model foulants in two solution conditions were measured using quartz crystal microbalance with dissipation monitoring, and were found to strongly depend on surface functionality. Alginate adsorption correlated with surface hydrophobicity as measured by water contact angle in air; however, adsorption of BSA on hydrophilic -COOH, -NH(2), and -CONH(2) surfaces was high and dominated by hydrogen bond formation and electrostatic attraction. Adsorption of both BSA and alginate was the fastest on -COOH, and adsorption on -NH(2) and -CONH(2) was difficult to remove by surfactant cleaning. BSA adsorption kinetics was shown to be markedly faster than that of alginate, suggesting its importance in the formation of the conditioning layer. Surface modification to render -OH or ethylene-glycol functionalities are expected to reduce membrane fouling.

  15. [Wooden models of human skeleton made in Edo era, Japan, with special reference to Hoshino wooden skeleton].

    PubMed

    Kataoka, Katsuko; Suzaki, Etsuko; Ajima, Noriaki

    2006-03-01

    The wooden model of the human skeleton, called wooden skeleton, is a distinguished original craft object in Edo era (1600-1867), Japan, when medical doctors were unable to keep the human skeleton for their study and teaching purpose. There are three kinds of wooden skeletons, i. e. Hoshino, Kagami and Okuda wooden skeletons made in 1792, 1810 and 1820, respectively. The former two are of adult male and the latter of female. They were made in surprising accuracy as compared with figures appeared in medical books available in Japan at that time, which suggests scientific readiness of the doctors and skills of the craftsmen. A complete set of the skeleton, except for the hyoid bone, has been preserved for Hoshino and Okuda wooden skeletons, while several bones have been missing in Kagami wooden skeleton. Each bone of Hoshino and Kagami wooden skeletons was made separately and connected by a tenon and a corresponding mortise at the articular surface. So it is hardly considered that all wooden bones were assembled into the whole body skeleton on use. Okuda wooden skeleton, on the other hand, was made for being shown in sitting position. The skull of Hoshino wooden skeleton is of special interest: the skull cap is not open, yet the internal structures of the skull, such as the sella turcica, foramina for nerves and vessels, and sulci for venous sinuses were made in considerable accuracy. Moreover, the proper connection of most foramina was proved between the inside and outside of the skull. The skull caps of Kagami and Okuda wooden skeletons are open as those used in the modern medical education.

  16. Organ culture storage of pre-prepared corneal donor material for Descemet's membrane endothelial keratoplasty

    PubMed Central

    Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D

    2016-01-01

    Purpose To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. Methods 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. Results 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Conclusion Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. PMID:27543290

  17. Near field fluid coupling between internal motion of the organ of Corti and the basilar membrane

    SciTech Connect

    Elliott, Stephen J.; Ni, Guangjian

    2015-12-31

    The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motion will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.

  18. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3.

    PubMed

    Duan, Haichuan; Wang, Joanne

    2010-12-01

    The plasma membrane monoamine transporter (PMAT) and organic cation transporter 3 (OCT3) are the two most prominent low-affinity, high-capacity (i.e., uptake(2)) transporters for endogenous biogenic amines. Using the Flp-in system, we expressed human PMAT (hPMAT) and human OCT3 (hOCT3) at similar levels in human embryonic kidney 293 cells. Parallel and detailed kinetics analysis revealed distinct and seemingly complementary patterns for the two transporters in transporting monoamine neurotransmitters. hPMAT is highly selective toward serotonin (5-HT) and dopamine, with the rank order of transport efficiency (V(max)/K(m)) being: dopamine, 5-HT ≫ histamine, norepinephrine, epinephrine. The substrate preference of hPMAT toward these amines is substantially driven by large (up to 15-fold) distinctions in its apparent binding affinities (K(m)). In contrast, hOCT3 is less selective than hPMAT toward the monoamines, and the V(max)/K(m) rank order for hOCT3 is: histamine > norepinephrine, epinephrine > dopamine >5-HT. It is noteworthy that hOCT3 demonstrated comparable (≤2-fold difference) K(m) toward all amines, and distinctions in V(max) played an important role in determining its differential transport efficiency toward the monoamines. Real-time reverse transcription-polymerase chain reaction revealed that hPMAT is expressed at much higher levels than hOCT3 in most human brain areas, whereas hOCT3 is selectively and highly expressed in adrenal gland and skeletal muscle. Our results suggest that hOCT3 represents a major uptake(2) transporter for histamine, epinephrine, and norepinephrine. hPMAT, on the other hand, is a major uptake(2) transporter for 5-HT and dopamine and may play a more important role in transporting these two neurotransmitters in the central nervous system.

  19. Near field fluid coupling between internal motion of the organ of Corti and the basilar membrane

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Ni, Guangjian

    2015-12-01

    The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motion will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a "coupling mass" effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.

  20. Lateral organization and domain formation in a two-component lipid membrane system.

    PubMed Central

    Leidy, C; Wolkers, W F; Jørgensen, K; Mouritsen, O G; Crowe, J H

    2001-01-01

    The thermodynamic phase behavior and lateral lipid membrane organization of unilamellar vesicles made from mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) were investigated by fluorescence resonance energy transfer (FRET) as a function of temperature and composition. This was done by incorporating a headgroup-labeled lipid donor (NBD-DPPE) and acceptor (N-Rh-DPPE) in low concentrations into the binary mixtures. Two instances of increased energy transfer efficiency were observed close to the phase lines in the DMPC/DSPC phase diagram. The increase in energy transfer efficiency was attributed to a differential preference of the probes for dynamic and fluctuating gel/fluid coexisting phases. This differential preference causes the probes to segregate (S. Pedersen, K. Jørgensen, T. R. Baekmark, and O. G. Mouritsen, 1996, Biophys. J. 71:554-560). The observed increases in energy transfer match with the boundaries of the DMPC/DSPC phase diagram, as measured by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). We propose that the two instances of probe segregation are due to the presence of DMPC-rich and DSPC-rich domains, which form a dynamic structure of gel/fluid coexisting phases at two different temperatures. Monitoring the melting profile of each lipid component independently by FTIR shows that the domain structure is formed by DMPC-rich and DSPC-rich domains rather than by pure DMPC and DSPC domains. PMID:11259295

  1. Lab-on-a-brane: nanofibrous polymer membranes to recreate organ-capillary interfaces

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim I.; Thomas, Vinoy; Sethu, Palaniappan

    2016-03-01

    Drug discovery is a complex and time consuming process involving significant basic research and preclinical evaluation prior to testing in patients. Preclinical studies rely extensively on animal models which often fail in human trials. Biomimetic microphysiological systems (MPS) using human cells can be a promising alternative to animal models; where critical interactions between different organ systems are recreated to provide physiologically relevant in vitro human models. Central here are blood-vessel networks, the interface controlling transport of cellular and biomolecular components between the circulating fluid and underlying tissue. Here we present a novel lab-on-a-brane (or lab-on-a-membrane) nanofluidics MPS that combines the elegance of lab-on-a-chip with the more realistic morphology of 3D fibrous tissue-engineering constructs. Our blood-vessel lab-on-a-brane effectively simulates in vivo vessel-tissue interface for evaluating transendothelial transport in various pharmacokinetic and nanomedicine applications. Attributes of our platform include (a) nanoporous barrier interface enabling transmembrane molecular transport, (b) transformation of substrate into nanofibrous 3D tissue matrix, (c) invertible-sandwich architecture, and (d) simple co-culture mechanism for endothelial and smooth muscle layers to accurately mimic arterial anatomy. Structural, mechanical, and transport characterization using scanning electron microscopy, stress/strain analysis, infrared spectroscopy, immunofluorescence, and FITC-Dextran hydraulic permeability confirm viability of this in vitro system. Thus, our lab-on-a-brane provides an effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in preclinical testing, costs from false starts, and time-to-market. Furthermore, it can be configured in multiple simultaneous arrays for personalized and precision medicine applications and for

  2. Application of membrane filtration for removal of diminutive bioburden organisms in pharmaceutical products and processes.

    PubMed

    Sundaram, S; Auriemma, M; Howard, G; Brandwein, H; Leo, F

    1999-01-01

    .2/0.22 micron filters was observed, 0.1 micron rated membrane filters qualified with both B. diminuta and Acholeplasma laidlawii mycoplasma consistently provided sterile effluent. Bacterial penetration of 0.2 (or 0.22) micron sterilizing grade filters was not observed under identical test conditions with either R. pickettii in a standardized solution (saline lactose broth) routinely used in challenge testing filters, or with the standard test organism, B. diminuta, in the drug solution. This study thus supports the renewed emphasis on both product- and process specific validation as well as routine bioburden monitoring expressed by regulatory agencies, and the use of enhanced bacterial removal efficiency 0.1 micron rated filters to provide enhanced sterility assurance in pharmaceutical processes.

  3. Single Molecule Lateral Mobility and Membrane Organization in DMPC/Cholesterol Mixtures at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Shaikh, Saame; Stillwell, William; Naumann, Christoph

    2002-03-01

    To better understand the lipid heterogeneity of biological membranes, we have studied the lateral mobility and membrane organization of DMPC and cholesterol (Chol) mixtures at the air-water interface using single molecule fluorescence imaging and epifluorescence microscopy. The single molecule imaging technique was used to track the lateral diffusion of single molecules of TRITC-DPPE or cholesteryl Bodipy. In the absence of Chol, mean square displacement histograms obtained from single molecule tracking of TRITC-DPPE show unobstructed diffusion. Including Chol at low levels of Chol (<10 moldiffusion at intermediate levels ( 30 molof Chol (>40 molmacroscopic phase separations. Data obtained from tracking experiments of cholesteryl-Bodipy also show complementary changes in diffusion. Our results indicate that our techniques provide insight into the micro and macro organization of lipid domains at the air-water interface.

  4. Separation of volatile organic compounds from aqueous solutions by pervaporation using S-B-S block copolymer membranes

    SciTech Connect

    Dutta, B.K.; Sikdar, S.K.

    1999-05-15

    Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroethylene, and toluene were the VOCs selected for testing the efficacy of these membranes. An analysis of the pervaporation data showed that the liquid film boundary layer offered the main mass transfer resistance to permeation. The separation factor for the VOCs was as high as 5000 at near-ambient temperatures but decreased substantially at higher temperatures. The water flux was practically independent of the solute concentration. But it increased more rapidly with an increase in temperature as compared to the organic flux, thereby reducing the separation factor. Also, the separation of a multicomponent mixture from the aqueous feed could be predicted well from single-component data.

  5. Positioning lipid membrane domains in giant vesicles by micro-organization of aqueous cytoplasm mimic.

    PubMed

    Cans, Ann-Sofie; Andes-Koback, Meghan; Keating, Christine D

    2008-06-11

    We report localization of lipid membrane microdomains to specific "poles" of asymmetric giant vesicles (GVs) in response to local internal composition. Interior aqueous microdomains were generated in a simple model cytoplasm composed of a poly(ethyleneglycol) (PEG)/dextran aqueous two-phase system (ATPS) encapsulated in the vesicles. The GV membrane composition used here was a modification of a DOPC/DPPC/cholesterol mixture known to form micrometer-scale liquid ordered and liquid disordered domains; we added lipids with PEG 2000 Da-modified headgroups. Osmotically induced budding of the ATPS-containing GVs led to structures where the PEG-rich and dextran-rich interior aqueous phases were in contact with different regions of the vesicle membrane. Liquid ordered (L o) membrane domains rich in PEG-terminated lipids preferentially coated the PEG-rich aqueous phase vesicle "body", while coexisting liquid disordered (L d) membrane domains coated the dextran-rich aqueous phase "bud". Membrane domain positioning resulted from interactions between lipid headgroups and the interior aqueous polymer solutions, e.g., PEGylated headgroups with PEG and dextran polymers. Heating resulted first in patchy membranes where L o and L d domains no longer showed any preference for coating the PEG-rich vs dextran-rich interior aqueous volumes, and eventually complete lipid mixing. Upon cooling lipid domains again coated their preferred interior aqueous microvolume. This work shows that nonspecific interactions between interior aqueous contents and the membrane that encapsulates them can drive local chemical heterogeneity, and offers a primitive experimental model for membrane and cytoplasmic polarity in biological cells.

  6. Azine-Linked Covalent Organic Framework (COF)-Based Mixed-Matrix Membranes for CO2 /CH4 Separation.

    PubMed

    Shan, Meixia; Seoane, Beatriz; Rozhko, Elena; Dikhtiarenko, Alla; Clet, Guillaume; Kapteijn, Freek; Gascon, Jorge

    2016-10-04

    Mixed-matrix membranes (MMMs) comprising Matrimid and a microporous azine-linked covalent organic frameworks (ACOF-1) were prepared and tested in the separation of CO2 from an equimolar CO2 /CH4 mixture. The COF-based MMMs show a more than doubling of the CO2 permeability upon 16 wt % ACOF-1 loading together with a slight increase in selectivity compared to the bare polymer. These results show the potential of COFs in the preparation of MMMs.

  7. Skeleton-Based Abnormal Gait Detection.

    PubMed

    Nguyen, Trong-Nguyen; Huynh, Huu-Hung; Meunier, Jean

    2016-10-26

    Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton) in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  8. Skeleton-Based Abnormal Gait Detection

    PubMed Central

    Nguyen, Trong-Nguyen; Huynh, Huu-Hung; Meunier, Jean

    2016-01-01

    Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton) in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%. PMID:27792181

  9. Aniosotropically organized LDH on PVDF: a geometrically templated electrospun substrate for advanced anion conducting membranes.

    PubMed

    Sailaja, G S; Zhang, Peilin; Anilkumar, Gopinathan M; Yamaguchi, Takeo

    2015-04-01

    A bioinspired geometric templating of an electrospun PVDF substrate with hexagonal platelets of Mg-Al layered double hydroxide (LDH), an intrinsic anion conductor, is presented. The distinctive morphology restructures the internal pore geometry and modulates the dynamic wetting profile of PVDF, transforming it into a highly functional substrate for SAFC anion conducting membranes. The membrane fabricated with PVDF-LDH substrate exhibited exceptionally high durability (>140 °C), high anionic conductivity, ion exchange capacity (IEC), restricted swelling, and improved tensile strength, overcoming critical challenges associated with PVDF electrospun substrates and validating its immense potential as a high-temperature-stable and durable substrate for advanced fuel cell membrane applications.

  10. An Effective Design of Electrically Conducting Thin-Film Composite (TFC) Membranes for Bio and Organic Fouling Control in Forward Osmosis (FO).

    PubMed

    Liu, Qing; Qiu, Guanglei; Zhou, Zhengzhong; Li, Jingguo; Amy, Gary Lee; Xie, Jianping; Lee, Jim Yang

    2016-10-04

    The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation-limited membrane conductivity that results in an added energy cost. This study presents a facile method for the embedment of a continuous electrode in thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, a conducting porous carbon paper is used as the understructure for the formation of a membrane substrate by the classical phase inversion process. The carbon paper and the membrane substrate polymer form an interpenetrating structure with good stability and low electrical resistance (only about 1Ω/□). The membrane-electrode assembly was deployed as the cathode of an electrochemical cell, and showed good resistance to organic and microbial fouling with the imposition of a 2.0 V DC voltage. The carbon paper-based FO TFC membranes also possess good mechanical stability for practical use.

  11. [Okuda wooden human skeleton made in Edo era, Japan].

    PubMed

    Baba, Hisao

    2006-03-01

    Probably in 1820 (late Edo era), a human skeleton for medical education was carved from cypress wood, based on a criminal's skeleton under the supervision of a medical doctor, Banri Okuda in Osaka City. The skeleton is called "Okuda wooden skeleton" and is now housed in the National Science Museum, Tokyo. The bones can be assembled into a skeleton by metal pivots or bamboo sticks. The thorax and pelvis were made of several pieces of wood and combined together, respectively. By and large, the wooden skeleton shows morphological characteristics usually seen in early middle-aged females of the Edo era. But the claviculae, distal ends of the femora, and the patellae are exceptionally larger than those of a female, implying that these bones of the original skeleton had already been lost or were deformed before the wooden skeleton was made. Actually the wooden skeleton might not have been used for medical education but rather for the promotion of European medicine, which was gradually developing in the Edo era.

  12. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  13. Spatial organization and stoichiometry of N-terminal domain-mediated glycosyltransferase complexes in Golgi membranes determined by fret microscopy.

    PubMed

    Ferrari, Mariana L; Gomez, Guillermo A; Maccioni, Hugo J F

    2012-06-01

    The functional link between glycolipid glycosyltransferases (GT) relies on the ability of these proteins to form organized molecular complexes. The organization, stoichiometry and composition of these complexes may impact their sorting properties, sub-Golgi localization, and may determine relative efficiency of GT in different glycolipid biosynthetic pathways. In this work, by using Förster resonance energy transfer microscopy in live CHO-K1 cells, we investigated homo- and hetero-complex formation by different GT as well as their spatial organization and molecular stoichiometry on Golgi membranes. We find that GalNAcT and GalT2 Ntd are able to form hetero-complexes in a 1:2 molar ratio at the trans-Golgi network and that GalT2 but not GalNAcT forms homo-complexes. Also, GalNAcT/GalT2 complexes exhibit a stable behavior reflected by its clustered lateral organization. These results reveals that particular topological organization of GTs may have functional implications in determining the composition of glycolipids in cellular membranes.

  14. Organic-inorganic hybrid anion exchange hollow fiber membranes: a novel device for drug delivery.

    PubMed

    Wang, Na; Wu, Cuiming; Cheng, Yiyun; Xu, Tongwen

    2011-04-15

    The clinical use of nonsteroidal anti-inflammatory drugs (NSAIDs) (such as sodium salicylate (NaSA)) for the treatment of chronic arthritis is limited due to the adverse effects and patient non-compliance. In order to solve these problems, anion exchange hollow fiber membranes (AEHFMs) are proposed for the first time here as potential drug carriers. Brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) is used as the starting membrane material. In-situ sol-gel process of γ-methacryloxypropyl trimethoxysilane (γ-MPS) in BPPO matrix is operated so as to enhance the membranes' thermal and dimensional stability. The performances of the membranes in controlled release of the drug (NaSA as the model drug) are improved accordingly. Loading and release experiments illustrate that the hybrid AEHFM can bind salicylate (SA⁻) at a high loading efficiency (28.4%), and the retention of the drug on the membrane matrix is significantly prolonged (drug released in 7 days under physiological condition: 51.9%, neglecting the drug bound by protein). Meanwhile, the membrane is biocompatible and can support the adherence, growth, and survival of human cells. Overall, the prepared AEHFM is a promising scaffolding material for drug delivery and tissue engineering.

  15. Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes.

    PubMed

    Siegrist, H; Joss, A

    2012-01-01

    A brief review of the fate of micropollutants in membrane-based wastewater treatment due to sorption, stripping, biological degradation/transformation and membrane separation is discussed, to give an overview of these technologies due to the growing importance for water reuse purposes. Compared with conventional activated sludge treatment (CAS) micropollutant removal in membrane bioreactor (MBR) is slightly improved due to complete suspended solids removal and increased sludge age. For discharge to sensitive receiving waters advanced treatment, such as post-ozonation or activated carbon adsorption, is recommended. In water reuse plants nanofiltration (NF) and reverse osmosis (RO) efficiently reject micropollutants due to size exclusions as well as electrostatic and hydrophobic effects reaching potable quality. To remove micropollutants fully, additionally post-ozone or the addition of powdered activated carbon (PAC) have to be applied, which in parallel also reduce NDMA precursors. The concentrate has to be treated if disposed to sensitive receiving waters due to its high micropollutant concentration and ecotoxicity potential. The present review summarizes principles and capabilities for the most important membrane-based applications for wastewater treatment, i.e. porous membranes in MBRs (micro- or ultrafiltration) and dense membrane applications (NF and RO) for water reuse.

  16. The Hoshino wooden skeleton, the first wooden model of a human skeleton, made during the Edo era in Japan.

    PubMed

    Kataoka, Katsuko; Suzaki, Etsuko; Ajima, Noriaki

    2007-03-01

    The wooden model of the human skeleton, called the wooden skeleton, is a distinguished original craft object from the Edo era, in Japan, when medical doctors were unable to keep a human skeleton for study and teaching purposes. There are three types of wooden skeletons: (i) Hoshino made in 1792; (ii) Kagami made by 1810; and (iii) Okuda made around 1820. The former two are of adult males and the latter is of a female. The wooden skeletons were made with surprising accuracy compared with figures that appeared in the medical books available in Japan at that time, which suggests a scientific readiness of the doctors and the skill of the craftsmen. In the cases of the Hoshino and Kagami wooden skeletons, it is hard to consider that all wooden bones were assembled to show the entire body. Conversely, the Okuda wooden skeletons were made for showing in the sitting position. The skull of the Hoshino wooden skeleton is of special interest: the skull cap was not cut, yet the internal structures of the skull, such as the sella turcica, foramina for nerves and vessels, and the sulci for venous sinuses, were made with considerable accuracy. The skull caps of the Kagami and Okuda wooden skeletons were cut, as those used in modern medical education.

  17. The three cortical membranes of the gregarines. I. Ultrastructural organization of Gregarina blaberae.

    PubMed

    Schrével, J; Caigneaux, E; Gros, D; Philippe, M

    1983-05-01

    Gregarines, parasitic protozoa of invertebrates, possess a highly differentiated cell surface, with three cortical membranes and associated structures. Transmission electron microscopy and freeze-fracture reveal the presence of two cytomembranes lying uniformly under the plasma membrane. The density and the distribution of the intramembraneous particles (IMPs) in the plasma membrane of Gregarina blaberae are similar to those reported for other eukaryotic cells. The IMP density is lower in the cytomembranes than in the plasma membrane. The distribution of IMPs in the different fracture faces of the two cytomembranes suggests that they are in topological continuity, forming either side of a flattened vesicle or cisterna. The sizes of the cytomembrane IMPs show a high variability. The nature of the IMPs, both for the plasma membrane and the cytomembrane, is discussed with regard to the integral proteins and glycoproteins of the ghost. The cell surface of G. blaberae exhibits numerous longitudinal folds with three types of cortical membrane-associated structures: 12 nm filaments, an internal lamina, and homogeneous structures described as 'rippled dense structures'. The 12 nm filaments, running under the cytomembranes along the longitudinal axis of each fold, exhibit the properties of intermediate filaments. Their distribution in mature cells and during the growth process suggests a participation in cell surface morphogenesis. The internal lamina, also localized under the cytomembranes, would stabilize each fold and assure a scaffolding function between the numerous folds. The rippled dense structures, settled on the external cytomembrane, show a regular distribution at the top of each fold. The membrane-associated structures are discussed with regard to the gliding movement mechanism.

  18. Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis.

    PubMed

    Cavalier-Smith, T

    2001-01-01

    I attempt to sketch a unified picture of the origin of living organisms in their genetic, bioenergetic, and structural aspects. Only selection at a higher level than for individual selfish genes could power the cooperative macromolecular coevolution required for evolving the genetic code. The protein synthesis machinery is too complex to have evolved before membranes. Therefore a symbiosis of membranes, replicators, and catalysts probably mediated the origin of the code and the transition from a nucleic acid world of independent molecular replicators to a nucleic acid/protein/lipid world of reproducing organisms. Membranes initially functioned as supramolecular structures to which different replicators attached and were selected as a higher-level reproductive unit: the proto-organism. I discuss the roles of stereochemistry, gene divergence, codon capture, and selection in the code's origin. I argue that proteins were primarily structural not enzymatic and that the first biological membranes consisted of amphipathic peptidyl-tRNAs and prebiotic mixed lipids. The peptidyl-tRNAs functioned as genetically-specified lipid analogues with hydrophobic tails (ancestral signal peptides) and hydrophilic polynucleotide heads. Protoribosomes arose from two cooperating RNAs: peptidyl transferase (large subunit) and mRNA-binder (small subunit). Early proteins had a second key role: coupling energy flow to the phosphorylation of gene and peptide precursors, probably by lithophosphorylation by membrane-anchored kinases scavenging geothermal polyphosphate stocks. These key evolutionary steps probably occurred on the outer surface of an 'inside out-cell' or obcell, which evolved an unambiguous hydrophobic code with four prebiotic amino acids and proline, and initiation by isoleucine anticodon CAU; early proteins and nucleozymes were all membrane-attached. To improve replication, translation, and lithophosphorylation, hydrophilic substrate-binding and catalytic domains were later

  19. Effect of "bridge" on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550

    NASA Astrophysics Data System (ADS)

    Han, Hailan; Li, Hai Qiang; Liu, Meiyu; Xu, Lishuang; Xu, Jingmei; Wang, Shuang; Ni, Hongzhe; Wang, Zhe

    2017-02-01

    A series of novel organic-inorganic crosslinked hybrid proton exchange membranes were prepared using sulfonated poly(arylene ether ketone sulfone) polymers containing carboxyl groups (C-SPAEKS), (3-aminopropyl)-triethoxysilane (KH550), and tetraethoxysilane (TEOS). KH550 acted as a "bridge" after reacting with carboxyl and sulfonic groups of C-SPAEKS to form covalent and ionic crosslinked structure between the C-SPAEKS and SiO2 phase. The crosslinked hybrid membranes (C-SPAEKS/K-SiO2) were characterized by FT-IR spectroscopy, TGA, and electrochemistry, etc. The thermal stability, mechanical properties and proton conductivity of the crosslinked hybrid membranes were improved by the presence of both crosslinked structure and inorganic phase. The proton conductivity of C-SPAEKS/K-SiO2-8 was recorded as 0.110 S cm-1, higher than that of Nafion® (0.028 S cm-1) at 120 °C. Moreover, the methanol permeability of the C-SPAEKS/K-SiO2-8 was measured as 3.86 × 10-7 cm2 s-1, much lower than that of Nafion® 117 membranes (29.4 × 10-7 cm2 s-1) at 25 °C.

  20. Anterior Cruciate Ligament Injuries in Growing Skeleton

    PubMed Central

    AlHarby, Saleh W.

    2010-01-01

    Anterior cruciate ligament (ACL) injuries in the adult patients are thoroughly studied and published in orthopedic literature. Until recently, little was known about similar injuries in skeletally growing patients. The more frequent involvement of this age group in various athletic activities and the improved diagnostic modalities have increased the awareness and interest of ACL injuries in skeletally immature patients. ACL reconstruction in growing skeleton is controversial and carries some risks to the tibial and femoral growth plate. A guarded approach to ACL reconstruction is recommended in skeletally immature patients. Modification of activity of ACL injured young patient, proper rehabilitation and prudent planning of adolescent age ACL reconstruction carries the least risks of growth plate violation. PMID:21475528

  1. Structural insights into the organization of the cavin membrane coat complex.

    PubMed

    Kovtun, Oleksiy; Tillu, Vikas A; Jung, WooRam; Leneva, Natalya; Ariotti, Nicholas; Chaudhary, Natasha; Mandyam, Ramya A; Ferguson, Charles; Morgan, Garry P; Johnston, Wayne A; Harrop, Stephen J; Alexandrov, Kirill; Parton, Robert G; Collins, Brett M

    2014-11-24

    Caveolae are cell-surface membrane invaginations that play critical roles in cellular processes including signaling and membrane homeostasis. The cavin proteins, in cooperation with caveolins, are essential for caveola formation. Here we show that a minimal N-terminal domain of the cavins, termed HR1, is required and sufficient for their homo- and hetero-oligomerization. Crystal structures of the mouse cavin1 and zebrafish cavin4a HR1 domains reveal highly conserved trimeric coiled-coil architectures, with intersubunit interactions that determine the specificity of cavin-cavin interactions. The HR1 domain contains a basic surface patch that interacts with polyphosphoinositides and coordinates with additional membrane-binding sites within the cavin C terminus to facilitate membrane association and remodeling. Electron microscopy of purified cavins reveals the existence of large assemblies, composed of a repeating rod-like structural element, and we propose that these structures polymerize through membrane-coupled interactions to form the unique striations observed on the surface of caveolae in vivo.

  2. Biomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study.

    PubMed

    Willems, Nathalie; Urtizberea, Ainhoa; Verre, Andrea F; Iliut, Maria; Lelimousin, Mickael; Hirtz, Michael; Vijayaraghavan, Aravind; Sansom, Mark S P

    2017-02-28

    Supported phospholipid membrane patches stabilized on graphene surfaces have shown potential in sensor device functionalization, including biosensors and biocatalysis. Lipid dip-pen nanolithography (L-DPN) is a method useful in generating supported membrane structures that maintain lipid functionality, such as exhibiting specific interactions with protein molecules. Here, we have integrated L-DPN, atomic force microscopy, and coarse-grained molecular dynamics simulation methods to characterize the molecular properties of supported lipid membranes (SLMs) on graphene and graphene oxide supports. We observed substantial differences in the topologies of the stabilized lipid structures depending on the nature of the surface (polar graphene oxide vs nonpolar graphene). Furthermore, the addition of water to SLM systems resulted in large-scale reorganization of the lipid structures, with measurable effects on lipid lateral mobility within the supported membranes. We also observed reduced lipid ordering within the supported structures relative to free-standing lipid bilayers, attributed to the strong hydrophobic interactions between the lipids and support. Together, our results provide insight into the molecular effects of graphene and graphene oxide surfaces on lipid bilayer membranes. This will be important in the design of these surfaces for applications such as biosensor devices.

  3. [Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers].

    PubMed

    Efimova, S S; Ostroumova, O S; Malev, V V; Shchagina, L V

    2011-01-01

    The effect of the membrane dipole potential (Phid) on a conductance and a steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate and chloride was shown. The magnitude of Phid was varied with the introduction to membrane bathing solutions of phloretin, which reduces the Phid, and RH 421, increasing the Phid. It was established that in all studied systems the increase in the membrane dipole potential cause a decrease in the steady-state number of open channels. In the systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are in an order of magnitude smaller than in systems containing sodium chloride. At the same time, the conductance (g) of single SRE-channels on the membranes bathed in NaCI solution increases with the increase in Phid, and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the Phid. The latter is due to the lack of cation/anion selectivity of the SRE-channels in these systems. The different channel-forming activity of SRE in the experimental systems is defined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.

  4. [Annexins--proteins involved in organization and function of biological membranes--from Arabidopsis thaliana to Homo sapiens].

    PubMed

    Bandorowicz-Pikuła, Joanna

    2007-01-01

    The mini-review series presented in this issue of Postepy Biochemii is focussed on some aspects of biology of calcium- and membrane-binding proteins, annexins, ubiquitous in all eucaryotic organisms (excluding yeasts), from Arabidopsis thaliana to Homo sapiens. Annexins are encoded by twelve genes in verterbrates and by eight in higher plants. Their physiological significance is underlined by two facts: the numer of the annexin genes seems to grow during evolution and in some cell types they comprise up to 2% of total protein. In the present review the hypothesis is discussed suggesting that multiplication of annexin genes in evolution represents mechanism of organism adaptation to changes in environment. In addition, the experimental data are presented suggestive of annexins playing a crucial role in functioning of plasma membrane, such as signal transduction, ion and vesicular transport and membrane repair. The review is then followed by articlesdealing in details with participation of annexins in plant response to abiotic stress (Arabidopsis thaliana), in tissue mineralization (Gallus gallus), in exocytosis of catecholamines by PC12 cells (mammals) and in Niemann-Pick type C disease related to abnormal transport and intracellular storage of cholesterol (Homo sapiens).

  5. The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization.

    PubMed

    Ramos-Silva, Paula; Kaandorp, Jaap; Herbst, Frédéric; Plasseraud, Laurent; Alcaraz, Gérard; Stern, Christine; Corneillat, Marion; Guichard, Nathalie; Durlet, Christophe; Luquet, Gilles; Marin, Frédéric

    2014-01-01

    The scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from molecular and structural

  6. The Skeleton of the Staghorn Coral Acropora millepora: Molecular and Structural Characterization

    PubMed Central

    Ramos-Silva, Paula; Kaandorp, Jaap; Herbst, Frédéric; Plasseraud, Laurent; Alcaraz, Gérard; Stern, Christine; Corneillat, Marion; Guichard, Nathalie; Durlet, Christophe; Luquet, Gilles; Marin, Frédéric

    2014-01-01

    The scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from molecular and structural

  7. Influence of membrane structure on the operating current densities of non-aqueous redox flow batteries: Organic-inorganic composite membranes based on a semi-interpenetrating polymer network

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Hee; Kim, Yekyung; Yun, Sung-Hyun; Maurya, Sandip; Moon, Seung-Hyeon

    2015-11-01

    We develop three types of organic-inorganic composite membranes based on a semi-interpenetrating polymer network (SIPN) to explore the effects of membrane structure on the possible operating current densities of a non-aqueous redox flow battery (RFB) system. Poly(vinylidene fluoride) (PVdF) is selected as a supporting polymer matrix for improving the chemical and thermal stability of the organic-inorganic composite membranes. We also introduce silica nanoparticles (5 wt% of PVdF) into the membranes to ensure the low crossover of active species. The fabrication of SIPN through the addition of glycidyl methacrylate, 4-vinylpyridine, or N-vinylcarbazole enables control of the membrane structure. Depending on monomer type, the membrane structure is determined to be either aliphatic or aromatic in terms of chemical properties and either dense or porous in terms of physical properties. These chemical and physical structures affect the electrochemical properties that correspond to charge/discharge performance and to the range of possible operating current densities. An important requirement is to examine charge/discharge performance at the possible range of operating current densities by using various membrane structures. This requirement is discussed in relation to a proposed design strategy for non-aqueous RFB membranes.

  8. New home-made assembly for hollow-fibre membrane extraction of persistent organic pollutants from real world samples.

    PubMed

    Manso, J; García-Barrera, T; Gómez-Ariza, J L

    2011-11-04

    Nowadays, hollow fibre membrane extraction techniques are widely used but they are usually applied to water or very simple matrices such as water. In this paper, we propose a new assembly that allows the extraction of forty persistent organic pollutants in real world samples, namely orange juice, porcine plasma and tomatoes. The limits of detection obtained are very low even in the analysis of real samples (9-182 ng L(-1)). The relative standard deviations vary from 1 to 18% and the averaged recoveries in the spike experiments are very high (65-120%) in the different types of samples studied. The new assembly allows a very good precision overcoming in one of the most important shortcomings of membrane extraction techniques. A central composite design has been performed to get optimal extraction conditions for the analytes and also the combined response of all the analytes has been obtained to attain the simultaneous optimum.

  9. Characterization of photochemical filtration membranes in organic solvents by using sub-10nm fluorescent Cd-based QDs

    NASA Astrophysics Data System (ADS)

    Liu, Suwen; Zhang, Haizheng

    2013-04-01

    Semiconductor nanocrystals, also called quantum dots (QDs), have been proven as powerful fluorescent probes. This paper presents a new method to evaluate the retention efficiency of nanofiltration membranes using sub-10 nm fluorescent QDs in organic solvents. Two different Cd-based QDs with uniformed sizes (nominal 8 nm and 4 nm) were used as challenge particles in this study. Fluorescence spectrophotometer was used as a detector to measure the QDs concentration before and after filtration. High resolution transmission electron microscope (HRTEM) and dynamic light scattering (DLS) were employed for measuring particle size and size distribution, which revealed the QDs used in this study were with a narrow size distribution. Three different types of Entegris UPE membranes were tested by using this method. The filters were rated at 3 nm, 5 nm and 10 nm using bubble-point extrapolative methods were further confirmed by the QDs retention tests in solvents.

  10. Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D

    2012-06-01

    The removal of trace organics by a membrane bioreactor-granular activated carbon (MBR-GAC) integrated system were investigated. The results confirmed that MBR treatment can be effective for the removal of hydrophobic (log D>3.2) and readily biodegradable trace organics. The data also highlighted the limitation of MBR in removing hydrophilic and persistent compounds (e.g. carbamazepine, diclofenac, and fenoprop) and that GAC could complement MBR very well as a post-treatment process. The MBR-GAC system showed high removal of all selected trace organics including those that are hydrophilic and persistent to biological degradation at up to 406 bed volumes (BV). However, over an extended period, breakthrough of diclofenac was observed after 7320 BV. This suggests that strict monitoring should be applied over the lifetime of the GAC column to detect the breakthrough of hydrophilic and persistent compounds which have low removal by MBR treatment.

  11. Comparison of premortem and postmortem estimates of plutonium deposited in the skeleton and liver of six individuals

    SciTech Connect

    Sula, M.J.; Bihl, D.E.; Carbaugh, E.H.; Kathren, R.L.

    1988-04-01

    Assessment of organ burdens after internal exposures to radionuclides is often necessary to evaluate the health and regulatory implications of the exposure. The assessment of plutonium activity in skeleton and liver is usually estimated from measurements of plutonium excreted via urine. As part of the overall evaluation of internal dose assessment techniques, it is useful to compare the results of organ burden estimates made from evaluation of urinary excretion data with those made at death from tissue samples collected posthumously from the individual. Estimates of plutonium in the skeleton and liver, based on postmortem analysis of tissue samples for six individuals, were obtained from the US Transuranium Registry (USTR). Bioassay data and other radiation exposure information obtained from the individuals' files were used to estimate their skeleton and liver burdens at the times of their deaths, and these estimates were compared to those obtained through tissue analysis. 6 refs., 2 tabs.

  12. Identification of the chemical form of sulfur compounds in the Japanese pink coral (Corallium elatius) skeleton using μ-XRF/XAS speciation mapping.

    PubMed

    Tamenori, Yusuke; Yoshimura, Toshihiro; Luan, Nguyen Trong; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka; Iwasaki, Nozomu

    2014-05-01

    The distributions and chemical forms of sulfur compounds in the skeleton of Japanese pink coral (Corallium elatius) were investigated using X-ray spectroscopic techniques combined with micro-focused soft X-ray radiation. Microscopic X-ray fluorescence/soft X-ray photoabsorption (μ-XRF/XAS) speciation mapping clarified that sulfate is the primary species in the coral skeleton, with minor amounts of organic sulfur, whereas both sulfate and organic sulfur coexist in coenenchyme. Analysis of the post-edge region of the XAS spectra confirmed that sulfate ions in the coral skeleton are mainly in the form of gypsum-like inorganic sulfate substituting for the carbonate ions in the calcite skeleton. The sulfate concentration was negatively correlated with the magnesium concentration and positively correlated with that of phosphorus. Speciation mapping of sulfate in the coral skeleton showed clear fluctuations with sulfate concentrations being higher at dark bands, whereas the small amount of organic sulfur had unclear dark/bright bands. These results suggest that the little organic sulfur that is present is contained in the organic matter embedded in the biocrystal of coral skeleton.

  13. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    PubMed

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  14. Pervaporation Separation of Water-Ethanol Mixtures Using Organic-Inorganic Nanocomposite Membranes

    EPA Science Inventory

    Preyssler type heteropolyacid viz., H14[NaP5W30O110] incorporated chitosan nanocomposite membranes (NCMs) were prepared by solution casting, characterized using a variety of techniques and employed in the pervaporation separation of water-ethanol mixtures as a function of feed wa...

  15. Energy saving membrane treatment of high organic load industrial effluents: from lab to pilot scale.

    PubMed

    Lopes, Mafalda Pessoa; Xin, Gang; Crespo, João G

    2013-12-15

    In this study, a nanofiltration unit was implemented at an industrial site, for the treatment of industrial wastewater generated during rubber tubing extrusion. The aim was to reduce the energy input required, while assuring a final effluent quality that meets the requirements of environmental legislation. In a first stage, two membrane process treatments, ultrafiltration and nanofiltration, were evaluated at laboratory scale in order to assess the rejection of pollutants and maximise permeate throughput. Permeate generated from nanofiltration using either an NF90 or an NF270 membrane were shown to meet the effluent discharge requirements (<2000 mg COD/l). The less restrictive membrane, NF270, was chosen for study in a pilot plant at the industrial site, due to its higher membrane permeability. The pilot nanofiltration unit was integrated into the treatment plant operation aiming at optimising the process in terms of the efficiency of pollutant removal with minimal energy input. A feasibility study was performed for this case-study and it was concluded that the energy expenditure of the new process represents only 62% of the current energy consumption of the treatment plant. The proposed solution in this work may be retrofitted to full scale wastewater treatment processes, and may be applicable to industries that employ similar manufacturing processes, and face similar difficulties.

  16. Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome.

    PubMed

    Park, Marcelo; Costa, Eduardo Leite Vieira; Maciel, Alexandre Toledo; Silva, Débora Prudêncio E; Friedrich, Natalia; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Schettino, Guilherme; Azevedo, Luciano Cesar Pontes

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) has gained renewed interest in the treatment of respiratory failure since the advent of the modern polymethylpentene membranes. Limited information exists, however, on the performance of these membranes in terms of gas transfers during multiple organ failure (MOF). We investigated determinants of oxygen and carbon dioxide transfer as well as biochemical alterations after the circulation of blood through the circuit in a pig model under ECMO support before and after induction of MOF. A predefined sequence of blood and sweep flows was tested before and after the induction of MOF with fecal peritonitis and saline lavage lung injury. In the multivariate analysis, oxygen transfer had a positive association with blood flow (slope = 66, P<0.001) and a negative association with pre-membrane PaCO(2) (slope = -0.96, P = 0.001) and SatO(2) (slope = -1.7, P<0.001). Carbon dioxide transfer had a positive association with blood flow (slope = 17, P<0.001), gas flow (slope = 33, P<0.001), pre-membrane PaCO(2) (slope = 1.2, P<0.001) and a negative association with the hemoglobin (slope = -3.478, P = 0.042). We found an increase in pH in the baseline from 7.50[7.46,7.54] to 7.60[7.55,7.65] (P<0.001), and during the MOF from 7.19[6.92,7.32] to 7.41[7.13,7.5] (P<0.001). Likewise, the PCO(2) fell in the baseline from 35 [32,39] to 25 [22,27] mmHg (P<0.001), and during the MOF from 59 [47,91] to 34 [28,45] mmHg (P<0.001). In conclusion, both oxygen and carbon dioxide transfers were significantly determined by blood flow. Oxygen transfer was modulated by the pre-membrane SatO(2) and CO(2), while carbon dioxide transfer was affected by the gas flow, pre-membrane CO(2) and hemoglobin.

  17. Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms.

    PubMed

    Qu, Fangshu; Liang, Heng; Wang, Zhaozhi; Wang, Hui; Yu, Huarong; Li, Guibai

    2012-04-01

    This paper focused on the membrane fouling caused by extracellular organic matters (EOM) which was extracted from lab-cultured Microcystis aeruginosa in stationary phase. The characteristics of EOM such as molecular weight distribution, hydrophobicity and fluorescence were measured. It was found that high molecular weight (MW) and hydrophilic organics accounted for the major parts of algal EOM which was comprised of protein-like, polysaccharide-like and humic-like substances. Ultrafiltration (UF) experiments were carried out in a stirring cell and hydrophobic polyethersulfone (PES) membranes which carried negative charge were used. Prefiltration, calcium addition and XAD fractionation were employed to change the interfacial characteristics of EOM. Then the effects of these interfacial characteristics on flux decline, reversibility and mass balance of organics were compared. Algal EOM proved to cause serious membrane fouling during UF. The fraction of algal EOM between 0.45 μm and 100 kDa contributed a significant portion of the fouling. Hydrophobic organics in EOM tended to adhere to membrane surface causing irreversible fouling, while the cake layer formed by hydrophilic organics caused greater resistance to water flow due to hydrophilic interaction such as hydrogen bond and led to faster flux decline during UF. The results also indicated that the algal EOM was negatively charged and the electrostatic repulsion could prevent organics from adhering to membrane surface. In term of fouling mechanisms, cake layer formation, hydrophobic adhesion and pore plugging were the main mechanisms for membrane fouling caused by algal EOM.

  18. Branching out: origins of the sea urchin larval skeleton in development and evolution.

    PubMed

    McIntyre, Daniel C; Lyons, Deirdre C; Martik, Megan; McClay, David R

    2014-03-01

    It is a challenge to understand how the information encoded in DNA is used to build a three-dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here, we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, fibroblast growth factor, vascular endothelial growth factor, and Wnt5. Each is necessary for explicit tasks in skeleton production.

  19. Two-Step Membrane Binding of NDPK-B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation.

    PubMed

    Francois-Moutal, Liberty; Ouberai, Myriam M; Maniti, Ofelia; Welland, Mark E; Strzelecka-Kiliszek, Agnieszka; Wos, Marcin; Pikula, Slawomir; Bandorowicz-Pikula, Joanna; Marcillat, Olivier; Granjon, Thierry

    2016-12-06

    Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein-protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane.

  20. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  1. Enamel organic matrix: potential structural role in enamel and relationship to residual basement membrane constituents at the dentin enamel junction

    PubMed Central

    McGuire, Jacob D.; Walker, Mary P.; Dusevich, Vladimir; Wang, Yong; Gorski, Jeff P.

    2015-01-01

    Although mature enamel is predominantly composed of mineral, a previously uncharacterized organic matrix layer remains in the post-eruptive tissue that begins at the dentin enamel junction and extends 200–300 µm towards the outer tooth surface. Identification of the composition of this layer has been hampered by its insolubility; however, we have developed a single step method to isolate the organic enamel matrix relatively intact. After dissociative dissolution of the matrix with SDS and urea, initial characterization by Western blotting and gel zymography indicates the presence of type IV and type VII basement membrane collagens and active matrix metalloproteinase-20. When combined with data from transgenic knockout mice and from human mutations, these data suggest that the enamel organic matrix (EOM) and dentin enamel junction may have a structural and functional relationship with basement membranes, e.g. skin. To clarify this relationship, we hypothesize a “foundation” model which proposes that components of the EOM form a support structure that stabilizes the crystalline enamel layer, and bonds it to the underlying dentin along the dentin enamel junction. Since we have also co-localized an active matrix metalloproteinase to this layer, our hypothesis suggests that, under pathologic conditions, MMP-mediated degradation of the EOM could destabilize the enamel–dentin interface. PMID:25158177

  2. Overexpression of a new putative membrane protein gene AtMRB1 results in organ size enlargement in Arabidopsis.

    PubMed

    Guan, Hua; Kang, Dingming; Fan, Min; Chen, Zhangliang; Qu, Li-Jia

    2009-02-01

    Arabidopsis AtMRB1 is predicted to encode a novel protein of 432 amino acid residues in length, with four putative trans-membrane domains. In the present study, characterization of AtMRB1 is conducted. Green fluorescent protein (GFP) fusion protein assay showed that AtMRB1 was located in the plasma membrane. Transgenic lines overexpressing AtMRB1 driven by a CaMV 35S promoter were generated. Statistic analysis showed that, during the seedling stage, the organ sizes of the transgenic lines including hypocotyl length, root length and root weight were significantly larger than those of the wild type plants under both light and dark conditions. In the adult plant stage, the AtMRB1 overexpressor plants were found to have larger organ sizes in terms of leaf length and width, and increased number of cauline leaves and branches when bolting. Further observation indicated that the larger leaf size phenotype was due to a larger number of mesophyll cells, the size of which was not altered. Quantitative real-time polymerase chain reaction analysis showed that the transcription of ANT, ROT3 and GRF5 were upregulated in the AtMRB1-overexpressor plants. These data suggest that AtMRB1 is possibly a positive regulator of organ size development in Arabidopsis, mainly through cell number control.

  3. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane.

    PubMed

    Hardman, P; Klement, B J; Spooner, B S

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  4. Deriving Paleotemperatures From Coral Skeleton Using a Rayleigh Fractionation Model for Coral Biomineralization

    NASA Astrophysics Data System (ADS)

    Gaetani, G. A.; Cohen, A. L.; Wang, Z.

    2007-12-01

    Paleotemperature proxy records are typically derived from coral skeleton using empirical relationships between elemental ratios and water temperature calibrated using the skeletons of living organisms grown under known conditions. While this approach has produced significant advances in our understanding of Earth's climate system, its accuracy is limited by the influence of physiological processes ("vital effects") on compositional variability within the skeleton. "Vital effects" are evident as differences in the composition of carbonates precipitated experimentally and accreted by organisms at the same conditions, as well as differences in composition amongst skeletons of the same group of organisms, or even the same species, accreted under identical environmental conditions. Several recent studies have identified the importance of Rayleigh fractionation in producing "vital effects" in coral skeleton [1-3]. On the basis of this advance in our understanding of coral biomineralization, we have developed a new approach to deriving paleotemperature estimates from coral skeletons through knowledge of their combined Mg/Ca, Sr/Ca and Ba/Ca ratios. Using experimentally determined partition coefficients for Mg, Ca, Sr, and Ba between abiogenic aragonite and seawater [1] combined with a Rayleigh fractionation model for the precipitation of aragonite from a calcifying fluid, the temperature at which the aragonite was precipitated can be accurately determined. To test the accuracy and precision of this approach, which relies only on experimentally determined partition coefficients for abiogenic aragonite and the Rayleigh equation (i.e. contrary to conventional paleothermometer calibrations, no prior knowledge of water temperature is required), aragonite skeletons from 2 different coral species were analyzed for Mg/Ca, Sr/Ca and Ba/Ca ratios using the Cameca 3f ion microprobe at WHOI: (1) tropical coral Diploria labyrinthiformis collected from Bermuda and (2) deep water coral

  5. Role of the plasma membrane H(+)-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency.

    PubMed

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H(+)-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H(+)-ATPase in organic acid exudation under Al toxicity and P deficiency conditions.

  6. Dynamic Transport and Cementation of Skeletal Elements Build Up the Pole-and-Beam Structured Skeleton of Sponges.

    PubMed

    Nakayama, Sohei; Arima, Kazushi; Kawai, Kotoe; Mohri, Kurato; Inui, Chihiro; Sugano, Wakana; Koba, Hibiki; Tamada, Kentaro; Nakata, Yudai J; Kishimoto, Kouji; Arai-Shindo, Miyuki; Kojima, Chiaki; Matsumoto, Takeo; Fujimori, Toshihiko; Agata, Kiyokazu; Funayama, Noriko

    2015-10-05

    Animal bodies are shaped by skeletons, which are built inside the body by biomineralization of condensed mesenchymal cells in vertebrates [1, 2] and echinoderms [3, 4], or outside the body by apical secretion of extracellular matrices by epidermal cell layers in arthropods [5]. In each case, the skeletons' shapes are a direct reflection of the pattern of skeleton-producing cells [6]. Here we report a newly discovered mode of skeleton formation: assembly of sponges' mineralized skeletal elements (spicules) in locations distant from where they were produced. Although it was known that internal skeletons of sponges consist of spicules assembled into large pole-and-beam structures with a variety of morphologies [7-10], the spicule assembly process (i.e., how spicules become held up and connected basically in staggered tandem) and what types of cells act in this process remained unexplored. Here we found that mature spicules are dynamically transported from where they were produced and then pierce through outer epithelia, and their basal ends become fixed to substrate or connected with such fixed spicules. Newly discovered "transport cells" mediate spicule movement and the "pierce" step, and collagen-secreting basal-epithelial cells fix spicules to the substratum, suggesting that the processes of spiculous skeleton construction are mediated separately by specialized cells. Division of labor by manufacturer, transporter, and cementer cells, and iteration of the sequential mechanical reactions of "transport," "pierce," "raise up," and "cementation," allows construction of the spiculous skeleton spicule by spicule as a self-organized biological structure, with the great plasticity in size and shape required for indeterminate growth, and generating the great morphological diversity of individual sponges.

  7. Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers

    DOEpatents

    Pinnau, Ingo; Lokhandwala, Kaaeid; Nguyen, Phuong; Segelke, Scott

    1997-11-18

    A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

  8. Anaerobic digestion of the organic fraction of municipal solid waste in a two-stage membrane process.

    PubMed

    Trzcinski, A P; Stuckey, D C

    2009-01-01

    A batch of the Organic Fraction of Municipal Solid Waste (OFMSW) was treated in a two-step process with effluent recirculation comprising a novel hydrolytic reactor (HR) followed by a Submerged Anaerobic Membrane Bioreactor (SAMBR) operating at a stable permeate flux of 5.6 L/m(2) hr (LMH). A soluble COD removal higher than 95% was obtained from the SAMBR. The soluble COD as well as the Total Suspended Solids (TSS) did not build up due to efficient hydrolysis inside the SAMBR, and no VFA accumulation occurred due to the complete retention of methanogens by the membrane as well as the formation of syntrophic associations. Because of the microfiltration membrane in the second reactor a stabilized leachate was obtained from the very first days of the treatment and the highly stable process enabled shorter treatment periods compared to traditional leach bed processes. This experiment showed that the recycle of the stabilised leachate does not lead to a build up of SCOD. Size exclusion chromatography analysis confirmed that high molecular weight compounds were completely degraded and did not appear in the SAMBR permeate, and that low molecular weight fulvic-like and medium MW material were present in the permeate of the SAMBR but their concentration remained stable with time.

  9. Characterization of inclusion complexes of organic ions with hydrophilic hosts by ion transfer voltammetry with solvent polymeric membranes.

    PubMed

    Olmos, José Manuel; Laborda, Eduardo; Ortuño, Joaquín Ángel; Molina, Ángela

    2017-03-01

    The quantitative characterization of inclusion complexes formed in aqueous phase between organic ions and hydrophilic hosts by ion-transfer voltammetry with solvent polymeric membrane ion sensors is studied, both in a theoretical and experimental way. Simple analytical solutions are presented for the determination of the binding constant of the complex from the variation with the host concentration of the electrochemical signal. These solutions are valid for any voltammetric technique and for solvent polymeric membrane ion sensors comprising one polarisable interface (1PI) and also, for the first time, two polarisable interfaces (2PIs). Suitable experimental conditions and data analysis procedures are discussed and applied to the study of the interactions of a common ionic liquid cation (1-octyl-3-metyl-imidazolium) and an ionisable drug (clomipramine) with two hydrophilic cyclodextrins: α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. The experimental study is performed via square wave voltammetry with 2PIs and 1PI solvent polymeric membranes and in both cases the electrochemical experiments enable the detection of inclusion complexes and the determination of the corresponding binding constant.

  10. The exopolysaccharide Psl–eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa

    PubMed Central

    Wang, Shiwei; Liu, Xi; Liu, Hongsheng; Zhang, Li; Guo, Yuan; Yu, Shan; Wozniak, Daniel J.; Ma, Luyan Z.

    2015-01-01

    Summary A hallmark of bacterial biofilms is a self-produced extracellular matrix of exopolysaccharide, extracellular DNA (eDNA) and proteins that hold bacterial cells together in the community. However, interactions among matrix components and how the interactions contribute to the formation of matrix remain unclear. Here, we show the physical interaction between exopolysaccharide Psl and eDNA, the two key biofilm matrix components of the opportunistic pathogen Pseudomonas aeruginosa. The interaction allows the two components to combine to form a web of eDNA–Psl fibres, which resembles a biofilm skeleton in the centre of pellicles to give bacteria structural support and capability against agents targeted on one matrix component. The web of eDNA–Psl fibres was also found in flow-cell biofilms at microcolonies initiation stage. The colocalization of eDNA or Psl fibres with bacterial cell membrane stain suggests that fibre-like eDNA is likely derived from the lysis of dead bacteria in biofilms. Psl can interact with DNA from diverse sources, suggesting that P. aeruginosa has the ability to use DNA of other organisms (such as human neutrophils and other bacterial species) to form its own communities, which might increase the survival of P. aeruginosa in multispecies biofilms or within a human host. PMID:25472701

  11. Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes.

    PubMed

    Suárez-Germà, C; Morros, A; Montero, M T; Hernández-Borrell, J; Domènech, Ò

    2014-10-01

    In this work we studied a binary lipid matrix of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), a composition that mimics the inner membrane of Escherichia coli. More specifically, liposomes with varying fractions of POPG were analysed by differential scanning calorimetry (DSC) and a binary phase diagram of the system was created. Additionally, we performed atomic force microscopy (AFM) imaging of supported lipid bilayers (SLBs) of similar compositions at different temperatures, in order to create a pseudo-binary phase diagram specific to this membrane model. AFM study of SLBs is of particular interest, as it is conceived as the most adequate technique not only for studying lipid bilayer systems but also for imaging and even nanomanipulating inserted membrane proteins. The construction of the above-mentioned phase diagram enabled us to grasp better the thermodynamics of the thermal lipid transition from a gel-like POPE:POPG phase system to a more fluid phase system. Finally, AFM force spectroscopy (FS) was used to determine the nanomechanics of these two lipid phases at 27°C and at different POPG fractions. The resulting data correlated with the specific composition of each phase was calculated from the AFM phase diagram obtained. All the experiments were done in the presence of 10 mM of Ca(2+), as this ion is commonly used when performing AFM with negatively charged phospholipids.

  12. A novel organic/inorganic polymer membrane based on poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid/3-glycidyloxypropyl trimethoxysilane polymer electrolyte membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lue, Shingjiang Jessie; Shih, Jeng-Ywan

    2011-05-01

    Poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS)/3-glycidyloxypropyl)trimethoxysilane (PVA/PAMPS/GPTMS) organic/inorganic proton-conducting polymer membranes are prepared by a solution casting method. PAMPS is a polymeric acid commonly used as a primary proton donor, while 3-(glycidyloxypropyl)trimethoxysilane (GPTMS) is an inorganic precursor forming a semi-interpenetrating network (SIPN). Varying amounts of sulfosuccinic acid (SSA) are used as the cross-linker and secondary proton source. The characteristic properties of PVA/PAMPS/GPTMS composite membranes are investigated by thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), micro-Raman spectroscopy and the AC impedance method. Direct methanol fuel cells (DMFCs) made of PVA/PAMPS/GPTMS composite membranes are assembled and examined. Experimental results indicate that DMFCs employing an inexpensive, non-perfluorinated, organic/inorganic SIPN membrane achieve good electrochemical performance. The highest peak power density of a DMFC using PVA/PAMPS/GPTMS composite membrane with 2 M CH3OH solution fuel at ambient temperature is 23.63 mW cm-2. The proposed organic/inorganic proton-conducting membrane based on PVA/PAMPS/GPTMS appears to be a viable candidate for future DMFC applications.

  13. The study of organic removal efficiency and halophilic bacterial mixed liquor characteristics in a membrane bioreactor treating hypersaline produced water at varying organic loading rates.

    PubMed

    Sharghi, Elham Abdollahzadeh; Bonakdarpour, Babak

    2013-12-01

    In this study the organic pollutant removal performance and the mixed liquor characteristics of a membrane bioreactor (MBR), employing a halophilic bacterial consortium, for the treatment of hypersaline synthetic produced water - at varying organic loading rates (OLR) from 0.3 to 2.6 kg CODm(-3)d(-1) - were considered. The oil and grease (O&G) and COD removal efficiency were 95-99% and 83-93%, respectively with only transient O&G (mainly polycyclic aromatic hydrocarbons) and soluble microbial products accumulation being observed. With increasing OLR, in the range 0.9-2.6 kg COD m(-3)d(-1), as a result of change in both extracellular polymeric substances (EPS) and zeta potential, bioflocculating ability improved but the compressibility of the flocs decreased resulting in the occurrence of EPS bulking at the highest OLR studied. The latter resulted in a change in the rheology of the mixed liquor from Newtonian to non-Newtonian and the occurrence of significant membrane fouling.

  14. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor.

    PubMed

    Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M

    2011-01-01

    The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.

  15. Acid-Base and the Skeleton

    NASA Astrophysics Data System (ADS)

    Bushinsky, David A.

    2008-09-01

    Chronic metabolic acidosis increases urine calcium (Ca) excretion in the absence of a concomitant increase in intestinal Ca absorption resulting in a net loss of total body. The source of this additional urine Ca is almost certainly the skeleton, the primary reservoir of body Ca. In vitro metabolic acidosis, modeled as a primary reduction in medium bicarbonate concentration, acutely (<24 h) stimulates Ca efflux primarily through physicochemical mineral dissolution while at later time periods (>24 h) cell-mediated mechanisms predominate. In cultured neonatal mouse calvariae, acidosis-induced, cell-mediated Ca efflux is mediated by effects on both osteoblasts and osteoclasts. Metabolic acidosis inhibits extracellular matrix production by osteoblasts, as determined by measurement of collagen levels and levels for the non-collagenous matrix proteins osteopontin and matrix gla protein. Metabolic acidosis upregulates osteoblastic expression of RANKL (Receptor Activator of NFκB Ligand), an important osteoclastogenic and osteoclast-activating factor. Acidosis also increases osteoclastic activity as measured by release of β-glucuronidase, an enzyme whose secretion correlates with osteoclast-mediated bone resorption.

  16. Giant cell tumors of the axial skeleton.

    PubMed

    Balke, Maurice; Henrichs, Marcel P; Gosheger, Georg; Ahrens, Helmut; Streitbuerger, Arne; Koehler, Michael; Bullmann, Viola; Hardes, Jendrik

    2012-01-01

    Background. We report on 19 cases of giant cell tumor of bone (GCT) affecting the spine or sacrum and evaluate the outcome of different treatment modalities. Methods. Nineteen patients with GCT of the spine (n = 6) or sacrum (n = 13) have been included in this study. The mean followup was 51.6 months. Ten sacral GCT were treated by intralesional procedures of which 4 also received embolization, and 3 with irradiation only. All spinal GCT were surgically treated. Results. Two (15.4%) patients with sacral and 4 (66.7%) with spinal tumors had a local recurrence, two of the letter developed pulmonary metastases. One local recurrence of the spine was successfully treated by serial arterial embolization, a procedure previously described only for sacral tumors. At last followup, 9 patients had no evidence of disease, 8 had stable disease, 1 had progressive disease, 1 died due to disease. Six patients had neurological deficits. Conclusions. GCT of the axial skeleton have a high local recurrence rate. Neurological deficits are common. En-bloc spondylectomy combined with embolization is the treatment of choice. In case of inoperability, serial arterial embolization seems to be an alternative not only for sacral but also for spinal tumors.

  17. Giant Cell Tumors of the Axial Skeleton

    PubMed Central

    Balke, Maurice; Henrichs, Marcel P.; Gosheger, Georg; Ahrens, Helmut; Streitbuerger, Arne; Koehler, Michael; Bullmann, Viola; Hardes, Jendrik

    2012-01-01

    Background. We report on 19 cases of giant cell tumor of bone (GCT) affecting the spine or sacrum and evaluate the outcome of different treatment modalities. Methods. Nineteen patients with GCT of the spine (n = 6) or sacrum (n = 13) have been included in this study. The mean followup was 51.6 months. Ten sacral GCT were treated by intralesional procedures of which 4 also received embolization, and 3 with irradiation only. All spinal GCT were surgically treated. Results. Two (15.4%) patients with sacral and 4 (66.7%) with spinal tumors had a local recurrence, two of the letter developed pulmonary metastases. One local recurrence of the spine was successfully treated by serial arterial embolization, a procedure previously described only for sacral tumors. At last followup, 9 patients had no evidence of disease, 8 had stable disease, 1 had progressive disease, 1 died due to disease. Six patients had neurological deficits. Conclusions. GCT of the axial skeleton have a high local recurrence rate. Neurological deficits are common. En-bloc spondylectomy combined with embolization is the treatment of choice. In case of inoperability, serial arterial embolization seems to be an alternative not only for sacral but also for spinal tumors. PMID:22448122

  18. Building Up the Milky Way's Skeleton

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A team of scientistshas now uncovered half of theentire skeleton of the Milky Way, using an automated method to identify large filaments of gas and dust hiding between stars in the galactic plane.Galactic distribution of 54 newly discovered filaments, plotted along with colored lines indicating six relevant spiral arms in our galaxy. The upper two plots show the consistency of the filaments motion with the spiral arms, while the lower shows their location within the galactic plane. [Wang et al. 2016]The Search for Nessie and FriendsThe Milky Ways interstellar medium is structured hierarchically into filaments. These structures are difficult to observe since they largely lie in the galactic plane, but if we can discover the distribution and properties of these filaments, we can better understand how our galaxy formed, and how the filaments affect star formation in our galaxy today.Some of the largest of the Milky Ways filaments are hundreds of light-years long like the infrared dark cloud nicknamed Nessie, declared in 2013 to be one of the bones of the Milky Way because of its position along the center of the Scutum-Centaurus spiral arm.Follow-up studies since the discovery of Nessie (like this one, or this) have found a number of additional large-scale filaments, but these studies all use different search methods and selection criteria, and the searches all start with visual inspection by humans to identify candidates.What if we could instead automate the detection process and build a homogeneous sample of the large filaments making up the skeleton of the Milky Way?Automated DetectionThis is exactly what a team of astronomers led by Ke Wang (European Southern Observatory) has done. The group used a customization of an algorithm called a minimum spanning tree the technique used to optimize the cost of internet networks, road networks, and electrical grids in our communities to perform an automated search of data from the Bolocam Galactic Plane Survey. The search was

  19. Harmonic skeleton guided evaluation of stenoses in human coronary arteries.

    PubMed

    Yang, Yan; Zhu, Lei; Haker, Steven; Tannenbaum, Allen R; Giddens, Don P

    2005-01-01

    This paper presents a novel approach that three-dimensionally visualizes and evaluates stenoses in human coronary arteries by using harmonic skeletons. A harmonic skeleton is the center line of a multi-branched tubular surface extracted based on a harmonic function, which is the solution of the Laplace equation. This skeletonization method guarantees smoothness and connectivity and provides a fast and straightforward way to calculate local cross-sectional areas of the arteries, and thus provides the possibility to localize and evaluate coronary artery stenosis, which is a commonly seen pathology in coronary artery disease.

  20. Skeleton-based shape analysis of protein models.

    PubMed

    Li, Zhong; Qin, Shengwei; Yu, Zeyun; Jin, Yao

    2014-09-01

    In order to compare the similarity between two protein models, a shape analysis algorithm based on skeleton extraction is presented in this paper. It firstly extracts the skeleton of a given protein surface by an improved Multi-resolution Reeb Graph (MRG) method. A number of points on the model surface are then collected to compute the local diameter (LD) according to the skeleton. Finally the LD frequency is calculated to build up the line chart, which is employed to analyze the shape similarity between protein models. Experimental results show that the similarity comparison using the proposed shape descriptor is more accurate especially for protein models with large deformations.

  1. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers.

    PubMed

    Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris

    2007-01-01

    Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).

  2. A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-Free Metal-Organic Framework Composite Membrane.

    PubMed

    Barankova, Eva; Tan, Xiaoyu; Villalobos, Luis Francisco; Litwiller, Eric; Peinemann, Klaus-Viktor

    2017-03-06

    Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly-thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.

  3. The roles of the skeleton and phosphorus in the CKD mineral bone disorder.

    PubMed

    Hruska, Keith A; Mathew, Suresh

    2011-03-01

    The CKD mineral bone disorder is a new term coined to describe the multiorgan system failure that is a major component of the excess cardiovascular mortality and morbidity complicating decreased kidney function. This syndrome embodies new discoveries of organ-to-organ communication including the skeletal hormone fibroblast growth factor-23 (FGF-23), which signals the status of skeletal mineral deposition to the kidney. The CKD mineral bone disorder begins with mild decreases in kidney function (stage 2 CKD) affecting the skeleton, as marked by increased FGF-23 secretion. At this stage, the stimulation of cardiovascular risk has begun and the increases in FGF-23 levels are strongly predictive of cardiovascular events. Later in CKD, hyperphosphatemia ensues when FGF-23 and hyperparathyroidism are no longer sufficient to maintain phosphate excretion. Hyperphosphatemia has been shown to be a direct stimulus to several cell types including vascular smooth muscle cells migrating to the neointima of atherosclerotic plaques. Phosphorus stimulates FGF-23 secretion by osteocytes and expression of the osteoblastic transcriptome, thereby increasing extracellular matrix mineralization in atherosclerotic plaques, hypertrophic cartilage, and skeletal osteoblast surfaces. In CKD, the skeleton positively contributes to hyperphosphatemia through excess bone resorption and inhibition of matrix mineralization. Thus, through the action of phosphorus, FGF-23, and other newly discovered skeletal hormones, such as osteocalcin, the skeleton plays an important role in the occurrence of cardiovascular morbidity in CKD.

  4. In vivo imaging of coral tissue and skeleton with optical coherence tomography.

    PubMed

    Wangpraseurt, Daniel; Wentzel, Camilla; Jacques, Steven L; Wagner, Michael; Kühl, Michael

    2017-03-01

    Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology.

  5. Metal-organic framework supported ionic liquid membranes for CO2 capture: anion effects.

    PubMed

    Gupta, Krishna M; Chen, Yifei; Hu, Zhongqiao; Jiang, Jianwen

    2012-04-28

    IRMOF-1 supported ionic liquid (IL) membranes are investigated for CO(2) capture by atomistic simulation. The ILs consist of identical cation 1-n-butyl-3-methylimidazolium [BMIM](+), but four different anions, namely hexafluorophosphate [PF(6)](-), tetrafluoroborate [BF(4)](-), bis(trifluoromethylsulfonyl)imide [Tf(2)N](-), and thiocyanate [SCN](-). As compared with the cation, the anion has a stronger interaction with IRMOF-1 and a more ordered structure in IRMOF-1. The small anions [PF(6)](-), [BF(4)](-), and [SCN](-) prefer to locate near to the metal-cluster, particularly the quasi-spherical [PF(6)](-) and [BF(4)](-). In contrast, the bulky and chain-like [BMIM](+) and [Tf(2)N](-) reside near the phenyl ring. Among the four anions, [Tf(2)N](-) has the weakest interaction with IRMOF-1 and thus the strongest interaction with [BMIM](+). With increasing the weight ratio of IL to IRMOF-1 (W(IL/IRMOF-1)), the selectivity of CO(2)/N(2) at infinite dilution is enhanced. At a given W(IL/IRMOF-1), the selectivity increases as [Tf(2)N](-) < [PF(6)](-) < [BF(4)](-) < [SCN](-). This hierarchy is predicted by the COSMO-RS method, and largely follows the order of binding energy between CO(2) and anion estimated by ab initio calculation. In the [BMIM][SCN]/IRMOF-1 membrane with W(IL/IRMOF-1) = 1, [SCN](-) is identified to be the most favorable site for CO(2) adsorption. [BMIM][SCN]/IRMOF-1 outperforms polymer membranes and polymer-supported ILs in CO(2) permeability, and its performance surpasses Robeson's upper bound. This simulation study reveals that the anion has strong effects on the microscopic properties of ILs and suggests that MOF-supported ILs are potentially intriguing for CO(2) capture.

  6. Analysis of the effects of inter-individual variation in the distribution of plutonium in skeleton and liver.

    PubMed

    Klein, W; Breustedt, B

    2014-01-01

    One important parameter for biokinetic plutonium modelling is the ratio between the contents of plutonium in liver and skeleton. Autopsy data show a vast inter-individual variation in the partitioning between these organs. The capacity of recent biokinetic models for plutonium to reproduce these variations was studied. Autopsy data for plutonium amounts in liver and skeleton for both (238)Pu and (239)Pu isotopes can be merged into a single data set following several statistical tests. Simulations with different parameter values generate a mapping between the autopsy values and the model parameters. The observed partitioning distribution can be transformed into a distribution of transfer rates, which would result in the observed data. Besides, the variation in the partitioning between liver and skeleton leads via biliary pathway to a variation in the excretion ratio. This can be used to estimate an individual partitioning factor, which can be used in individual case assessments.

  7. Structure and properties of polybenzimidazole/silica nanocomposite electrolyte membrane: influence of organic/inorganic interface.

    PubMed

    Singha, Shuvra; Jana, Tushar

    2014-12-10

    Although increased number of reports in recent years on proton exchange membrane (PEM) developed from nanocomposites of polybenzimidazole (PBI) with inorganic fillers brought hope to end the saga of contradiction between proton conductivity and variety of stabilities, such as mechanical, thermal,chemical, etc.; it still remains a prime challenge to develop a highly conducting PEM with superior aforementioned stabilities. In fact the very limited understanding of the interactions especially interfacial interaction between PBI and inorganic filler leads to confusion over the choice of inorganic filler type and their surface functionalities. Taking clue from our earlier study based on poly(4,4'-diphenylether-5,5'-bibenzimidazole) (OPBI)/silica nanocomposites, where silica nanoparticles modified with short chain amine showed interfacial interaction-dependent properties, in this work we explored the possibility of enhanced interfacial interaction and control over the interface by optimizing the chemistry of the silica surface. We functionalized the surface of silica nanoparticles with a longer aliphatic chain having multiple amine groups (named as long chain amine modified silica and abbreviated as LAMS). FTIR and (13)C solid-state NMR provided proof of hydrogen bonding interactions between the amine groups of modifier and those of OPBI. LAMS nanoparticles yielded a more distinguished self-assembly extending all over the OPBI matrix with increasing concentrations. The crystalline nature of these self-assembled clusters was probed by wide-angle X-ray diffraction (WAXD) studies and the morphological features were captured by transmission electron microscope (TEM). We demonstrated the changes in storage modulus and glass transition temperature (Tg) of the membranes, the fundamental parameters that are more sensitive to interfacial structure using temperature dependent dynamic mechanical analysis (DMA). All the nanocomposite membranes displayed enhanced mechanical, thermal

  8. Skeleton extraction based on the topology and Snakes model

    NASA Astrophysics Data System (ADS)

    Cai, Yuanxue; Ming, Chengguo; Qin, Yueting

    A new skeleton line extraction method based on topology and flux is proposed by analyzing the distribution characteristics of the gradient vector field in the Snakes model. The distribution characteristics of the skeleton line are accurately obtained by calculating the eigenvalues of the critical points and the flux of the gradient vector field. Then the skeleton lines can be effectively extracted. The results also show that there is no need for the pretreatment or binarization of the target image. The skeleton lines of complex gray images such as optical interference patterns can be effectively extracted by using this method. Compared to traditional methods, this method has many advantages, such as high extraction accuracy and fast processing speed.

  9. 41. Ground level photograph of two floors of skeleton complete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Ground level photograph of two floors of skeleton complete with 3rd and 4th floors being started,upper floors of county bldg visible - Chicago City Hall, 121 North LaSalle Street, Chicago, Cook County, IL

  10. Penetrating trauma to the facial skeleton by pickaxe - case report.

    PubMed

    Neskoromna-Jędrzejczak, Aneta; Bogusiak, Katarzyna; Przygoński, Aleksander; Timler, Dariusz

    2016-01-01

    Number of deaths related with injuries suffered as a result of experienced traumas is increasing. Penetrating traumas of the facial skeleton occur relatively rarely and much more often concern rather children than adults. Epidemiology relating this kind of trauma differs depending on the region of the world. In Poland, gunshot injuries as well as traumas caused by explosions of firecrackers or fireworks amount only to a slight percentage among all facial skeleton traumas, and the most common reason for penetrating traumas lies in accidents or assault with the use of sharp, narrow and long objects that easily enter bones of the facial skeleton. The present study reported the case of 50-year-old man who suffered from trauma of the facial skeleton, which resulted from foreign body (pickaxe) penetration into the subtemporal area, zygomatic arch and the right orbital cavity. The surgical treatment method and final outcome was presented and discussed.

  11. A method for finding three-dimensional magnetic skeletons

    SciTech Connect

    Haynes, A. L.; Parnell, C. E.

    2010-09-15

    Magnetic fields are an essential component of a plasma. In many astrophysical, solar, magnetospheric, and laboratory situations the magnetic field in the plasma can be very dynamic and form highly complex structures. One approach to unraveling these structures is to determine the magnetic skeleton of the field, a set of topological features that divide the magnetic field into topologically distinct domains. In general, the features of the magnetic skeleton are difficult to locate, in particular those given by numerical experiments. In this paper, we propose a new set of tools to find the skeleton of general magnetic fields including null points, spines, separatrix surfaces, and separators. This set of tools is found to be considerably better at finding the skeleton than the currently favored methods used in magnetohydrodynamics.

  12. Automatic and hierarchical segmentation of the human skeleton in CT images.

    PubMed

    Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan

    2017-04-07

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic

  13. Automatic and hierarchical segmentation of the human skeleton in CT images

    NASA Astrophysics Data System (ADS)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic

  14. Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system.

    PubMed

    Chung, Jinwook; Fleege, Daniel; Ong, Say Kee; Lee, Yong-Woo

    2014-01-01

    Electronic wastewater from a semiconductor plant was treated with a pilot-scale four-stage Bardenpho process with membrane system. The system was operated over a 14-month period with an overall hydraulic retention time (HRT) ranging from 9.5 to 30 h. With a few exceptions, the pilot plant consistently treated the electronic wastewater with an average removal efficiency of chemical oxygen demand (COD) and total nitrogen of 97% and 93%, respectively, and achieving effluent quality of COD<15 mg/L, turbidity<1, and silt density index<1. Based on removal efficiencies of the pilot plant, it is possible to lower the HRT to less than 9.5 h to achieve comparable removal efficiencies. An energy-saving configuration where an internal recycle line was omitted and the biomass recycle was rerouted to the pre-anoxic tank, can reduce energy consumption by 8.6% and gave removal efficiencies that were similar to the Bardenpho process. The system achieved pre-anoxic and post-anoxic specific denitrification rate values with a 95% confidence interval of 0.091 ± 0.011 g NO₃-N/g MLVSS d and 0.087 ± 0.016 g NO₃-N/g MLVSS d, respectively. The effluent from the four-stage Bardenpho with membrane system can be paired with a reverse osmosis system to provide further treatment for reuse purposes.

  15. MRI of enthesitis of the appendicular skeleton in spondyloarthritis

    PubMed Central

    Eshed, Iris; Bollow, Matthias; McGonagle, Dennis G; Tan, Ai Lyn; Althoff, Christian E; Asbach, Patrick; Hermann, Kay‐Geert A

    2007-01-01

    Entheses are sites where tendons, ligaments, joint capsules or fascia attach to bone. Inflammation of the entheses (enthesitis) is a well‐known hallmark of spondyloarthritis (SpA). As entheses are associated with adjacent, functionally related structures, the concepts of an enthesis organ and functional entheses have been proposed. This is important in interpreting imaging findings in entheseal‐related diseases. Conventional radiographs and CT are able to depict the chronic changes associated with enthesitis but are of very limited use in early disease. In contrast, MRI is sensitive for detecting early signs of enthesitis and can evaluate both soft‐tissue changes and intraosseous abnormalities of active enthesitis. It is therefore useful for the early diagnosis of enthesitis‐related arthropathies and monitoring therapy. Current knowledge and typical MRI features of the most commonly involved entheses of the appendicular skeleton in patients with SpA are reviewed. The MRI appearances of inflammatory and degenerative enthesopathy are described. New options for imaging enthesitis, including whole‐body MRI and high‐resolution microscopy MRI, are briefly discussed. PMID:17526551

  16. Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes - A solution to bio-fouling in membrane separation processes

    NASA Astrophysics Data System (ADS)

    Prince, J. A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K. V. K.; Singh, G.

    2014-10-01

    Bio-fouling is a serious problem in many membrane-based separation processes for water and wastewater treatment. Current state of the art methods to overcome this are to modify the membranes with either hydrophilic additives or with an antibacterial compound. In this study, we propose and practise a novel concept to prevent bio-fouling by developing a killing and self-cleaning membrane surface incorporating antibacterial silver nanoparticles and highly hydrophilic negatively charged carboxylic and amine functional groups. The innovative surface chemistry helps to reduce the contact angle of the novel membrane by at least a 48% and increase the pure water flux by 39.4% compared to the control membrane. The flux drop for the novel membrane is also lower (16.3% of the initial flux) than the control membrane (55.3% of the initial flux) during the long term experiments with protein solution. Moreover, the novel membrane continues to exhibit inhibition to microbes even after 1320 min of protein filtration. Synthesis of self-cleaning ultrafiltration membrane with long lasting properties opens up a viable solution for bio-fouling in ultrafiltration application for wastewater purification.

  17. Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes - A solution to bio-fouling in membrane separation processes

    PubMed Central

    Prince, J. A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K. V. K.; Singh, G.

    2014-01-01

    Bio-fouling is a serious problem in many membrane-based separation processes for water and wastewater treatment. Current state of the art methods to overcome this are to modify the membranes with either hydrophilic additives or with an antibacterial compound. In this study, we propose and practise a novel concept to prevent bio-fouling by developing a killing and self-cleaning membrane surface incorporating antibacterial silver nanoparticles and highly hydrophilic negatively charged carboxylic and amine functional groups. The innovative surface chemistry helps to reduce the contact angle of the novel membrane by at least a 48% and increase the pure water flux by 39.4% compared to the control membrane. The flux drop for the novel membrane is also lower (16.3% of the initial flux) than the control membrane (55.3% of the initial flux) during the long term experiments with protein solution. Moreover, the novel membrane continues to exhibit inhibition to microbes even after 1320 min of protein filtration. Synthesis of self-cleaning ultrafiltration membrane with long lasting properties opens up a viable solution for bio-fouling in ultrafiltration application for wastewater purification. PMID:25296745

  18. Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes--a solution to bio-fouling in membrane separation processes.

    PubMed

    Prince, J A; Bhuvana, S; Anbharasi, V; Ayyanar, N; Boodhoo, K V K; Singh, G

    2014-10-09

    Bio-fouling is a serious problem in many membrane-based separation processes for water and wastewater treatment. Current state of the art methods to overcome this are to modify the membranes with either hydrophilic additives or with an antibacterial compound. In this study, we propose and practise a novel concept to prevent bio-fouling by developing a killing and self-cleaning membrane surface incorporating antibacterial silver nanoparticles and highly hydrophilic negatively charged carboxylic and amine functional groups. The innovative surface chemistry helps to reduce the contact angle of the novel membrane by at least a 48% and increase the pure water flux by 39.4% compared to the control membrane. The flux drop for the novel membrane is also lower (16.3% of the initial flux) than the control membrane (55.3% of the initial flux) during the long term experiments with protein solution. Moreover, the novel membrane continues to exhibit inhibition to microbes even after 1320 min of protein filtration. Synthesis of self-cleaning ultrafiltration membrane with long lasting properties opens up a viable solution for bio-fouling in ultrafiltration application for wastewater purification.

  19. The Skeleton of the Milky Way

    NASA Astrophysics Data System (ADS)

    Zucker, Catherine; Battersby, Cara; Goodman, Alyssa

    2015-12-01

    Recently, Goodman et al. argued that the very long, very thin infrared dark cloud “Nessie” lies directly in the Galactic midplane and runs along the Scutum-Centaurus Arm in position-position-velocity (p-p-v) space as traced by lower-density {{CO}} and higher-density {{NH}}3 gas. Nessie was presented as the first “bone” of the Milky Way, an extraordinarily long, thin, high-contrast filament that can be used to map our Galaxy’s “skeleton.” Here we present evidence for additional bones in the Milky Way, arguing that Nessie is not a curiosity but one of several filaments that could potentially trace Galactic structure. Our 10 bone candidates are all long, filamentary, mid-infrared extinction features that lie parallel to, and no more than 20 pc from, the physical Galactic mid-plane. We use {{CO}}, {{{N}}}2{{{H}}}+, {{{HCO}}}+, and {{NH}}3 radial velocity data to establish the three-dimensional location of the candidates in p-p-v space. Of the 10 candidates, 6 also have a projected aspect ratio of ≥50:1 run along, or extremely close to, the Scutum-Centaurus Arm in p-p-v space; and exhibit no abrupt shifts in velocity. The evidence presented here suggests that these candidates mark the locations of significant spiral features, with the bone called filament 5 (“BC_18.88-0.09”) being a close analog to Nessie in the northern sky. As molecular spectral-line and extinction maps cover more of the sky at increasing resolution and sensitivity, it should be possible to find more bones in future studies.

  20. Fracture occurrence from radionuclides in the skeleton

    SciTech Connect

    Lloyd, R.D.; Taylor, G.N.; Miller, S.C.

    2000-06-01

    Because skeletal fractures were an important finding among persons contaminated with {sup 226}Ra, experience with fractures among dogs in the colony was summarized to determine the projected significance for persons contaminated with bone-seeking radionuclides. Comparison by Fisher's Exact Test of lifetime fracture occurrence in the skeletons of beagles injected as young adults suggested that for animals given {sup 226}Ra, {sup 228}Ra, {sup 228}Th, or {sup 239}Pu citrate, there was probably an excess over controls in fractures of the ribs, leg bones, spinous processes, and pelvis (os coxae) plus the mandible for dogs given {sup 226}Ra and the scapulae for dogs given {sup 228}Ra or 228 Th. Regression analysis indicated that significantly elevated fracture occurrence was especially notable at the higher radiation doses, at about 50 Gy average skeletal dose for {sup 239}Pu, 140 Gy for {sup 226}Ra, about 40 Gy for {sup 228}Ra, and more than 15 Gy for {sup 228}Th. The average number of fractures per dog was significantly elevated over that noted in controls for the highest radiation doses of {sup 239}Pu and {sup 226}Ra and for the higher doses of {sup 228}Ra and {sup 228}Th. For those dogs given {sup 90}Sr citrate, there was virtually no important difference from control beagles not given radionuclides, even at group mean cumulative skeletal radiation doses up to 101 Gy. Because of a large proportion of dogs with fractures that died with bone malignancy (even at dosage levels lower than those exhibiting an excess average number of fractures per dog), they conclude that fracture would not be an important endpoint at lower levels of plutonium contamination in humans such as would be expected to occur from occupational or environmental exposure.

  1. Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman; Khan, Mujibur R.; Harp, Spencer; Neumann, Jeffrey; Sultana, Quazi Nahida

    2016-04-01

    The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm-1 which

  2. [Vesicular intracellular transport in the digestive organs. Membrane vesicle--the universal mechanism of the functional transport].

    PubMed

    Morozov, I A

    2014-01-01

    On the basis of long-term research of the morpho-functional characteristics of the cells of the stomach, small intestine and gallbladder the mechanism and function of membrane vesicles in the implementation of the main functions of these organs sets out in this article: the secretion of hydrochloric acid by parietal cells, the absorption of nutrients in the small intestine and the fluid at a concentration of bile epitheliocytes of gallbladder. Proofs of the intracellular formation of hydrochloric acid in tubulovesicles of the parietal cells and turnover of its secretory membranes in the process of secretory cycle, that has ensured the re-use and explained the extraordinary life of these unique cells are presented. The credible mechanism of HCl output oppression by H(+)-K(+)-ATPase activity blockers has set out on this basis. The article provides detailed endocytosis mechanism of the ions and nutrients absorption by enterocytes. The mechanism of participation of the apical contractile complex of brush border of epithelial cells in the initiation of endocytosis and cytoplasmic microtubules in transport of membrane vesicles in the cytoplasm was analyzed. Based on our research and numerous of the world scientific proceedings the conclusion was done about the existence of two energy dependent types of transport in the absorptive epithelium of the digestive--transmembrane (ionic and nutritive) homeostatic type which is realized by the ATP-system of the basal plasmalemma, and vesicular (endocytosis) type which is impltmented by apical contractile complex of brush border and cytoplasmic microtubules. Both types of transport are interrelated and are under constant cellular control. This observation is relevant to the majority of cells, including those involved in the secretion of various substances: hydrochloric acid by parietal cells, enzymes by main cells of the gastric glands and exocrinocytes of the pancreas, hormone by endocrine cells of the APUD system and, finally

  3. Reproductive Organ and Vascular Specific Promoter of the Rice Plasma Membrane Ca2+ATPase Mediates Environmental Stress Responses in Plants

    PubMed Central

    Huda, Kazi Md. Kamrul; Banu, Mst. Sufara Akhter; Pathi, Krishna Mohan; Tuteja, Narendra

    2013-01-01

    Background Plasma membrane Ca2+ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca2+) from the cell, hence regulating Ca2+ level within cells. Though plant Ca2+ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. Results The 1478 bp promoter sequence of rice plasma membrane Ca2+ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca2+ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The −1478 to −886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for −1210 and −886 bp flanking region. The −1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The −1210 and −886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the −886 bp and −519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. Conclusions The rice plasma membrane Ca2+ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue

  4. A Novel Di-Leucine Motif at the N-Terminus of Human Organic Solute Transporter Beta Is Essential for Protein Association and Membrane Localization

    PubMed Central

    Xu, Shuhua; Soroka, Carol J.; Sun, An-Qiang; Backos, Donald S.; Mennone, Albert; Suchy, Frederick J.; Boyer, James L.

    2016-01-01

    The heteromeric membrane protein Organic Solute Transporter alpha/beta is the major bile acid efflux transporter in the intestine. Physical association of its alpha and beta subunits is essential for their polarized basolateral membrane localization and function in the transport of bile acids and other organic solutes. We identified a highly conserved acidic dileucine motif (-EL20L21EE) at the extracellular amino-tail of organic solute transporter beta from multiple species. To characterize the role of this protein interacting domain in the association of the human beta and alpha subunits and in membrane localization of the transporter, Leu20 and Leu21 on the amino-tail of human organic solute transporter beta were replaced with alanines by site-directed mutagenesis. Co-immunoprecipitation study in HEK293 cells demonstrated that substitution of the leucine residues with alanines prevented the interaction of the human beta mutant with the alpha subunit. Membrane biotinylation demonstrated that the LL/AA mutant eliminated membrane expression of both subunits. Computational-based modelling of human organic solute transporter beta suggested that the LL/AA mutation substantially alters both the structure and lipophilicity of the surface, thereby not only affecting the interaction with the alpha subunit but also possibly impacting the capacity of the beta subunit to traffick through the cell and interact with the membrane. In summary, our findings indicate that the dileucine motif in the extracellular N-terminal region of human organic solute transporter beta subunit plays a critical role in the association with the alpha subunit and in its polarized plasma membrane localization. PMID:27351185

  5. Membrane boenergetics of salt tolerant organisms. Progress report, June 1993--June 1995

    SciTech Connect

    Lanyi, J.K.

    1996-06-01

    Substantial progress was made on describing the pathway of the transported proton in bacteriorhodopsin, and the thermodynamics of the proton transfers. The underlying principle of the transport was identified as the alternating access of the retinal Schiff base toward the two membrane surfaces, regulated by electrostatic interaction between the retinylidene nitrogen and its counterion. Consistent with a shared transport mechanism for both retinal proteins, bacteriorhodopsin was converted into a balorhodopsin-like chloride pump by replacing asp-85 with threonine. This region is thereby identified as the active site that determines ion specificity. Description of the metal ion-dependent kinetics of the ATP hydrolysis provided clues to the structure of active site in the halobacterial ATPase.

  6. Recovery of intestinal membrane binding sites for K88 E. coli from pig mucosal organ cultures.

    PubMed

    Wilson, I B; Staley, T E; Bush, L J; Gilliland, S E

    1984-04-01

    Putative receptors for K88 + E. coli from piglet intestinal epithelium were released into the organ culture medium and were demonstrated by direct binding with K88 + E. coli through the utilization of an in vitro binding procedure or by immunoprecipitation with K88 antigen. Incorporation of 14C-glucosamine by newborn to day old and 3-week to 6-week old piglet jejunal and ileal mucosa, in organ culture, occurred throughout the 24 hr culture period. Uptake in both age groups and both areas of the intestine was similar with a somewhat greater incorporation by the older age group. Secretion of 14C-glucosamine-labeled components into the culture medium was demonstrated by gel filtration of the concentrated medium. Some large molecular weight components eluted in the void volume in excess of 2 X 10(6) daltons. A second peak of activity was spread from approximately 690K to 25K daltons. All eluted fractions demonstrated binding to K88 + E. coli. Antibodies to purified brush borders from susceptible pigs produced prominent precipitation bands following double diffusion with concentrated organ culture media which confirmed that the organ culture media contained labeled proteins of brush border origin. Immunoprecipitation of the intestinal mucosal organ culture media with K88 + pili and pilus antisera, followed by electrophoresis with SDS and reduced conditions, demonstrated a subunit of approximately 35K daltons.

  7. Organization into Higher Ordered Ring Structures Counteracts Membrane Binding of IM30, a Protein Associated with Inner Membranes in Chloroplasts and Cyanobacteria.

    PubMed

    Heidrich, Jennifer; Wulf, Verena; Hennig, Raoul; Saur, Michael; Markl, Jürgen; Sönnichsen, Carsten; Schneider, Dirk

    2016-07-15

    The IM30 (inner membrane-associated protein of 30 kDa), also known as the Vipp1 (vesicle-inducing protein in plastids 1), has a crucial role in thylakoid membrane biogenesis and maintenance. Recent results suggest that the protein binds peripherally to membranes containing negatively charged lipids. However, although IM30 monomers interact and assemble into large oligomeric ring complexes with different numbers of monomers, it is still an open question whether ring formation is crucial for membrane interaction. Here we show that binding of IM30 rings to negatively charged phosphatidylglycerol membrane surfaces results in a higher ordered membrane state, both in the head group and in the inner core region of the lipid bilayer. Furthermore, by using gold nanorods covered with phosphatidylglycerol layers and single particle spectroscopy, we show that not only IM30 rings but also lower oligomeric IM30 structures interact with membranes, although with higher affinity. Thus, ring formation is not crucial for, and even counteracts, membrane interaction of IM30.

  8. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    PubMed

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  9. Surface Decoration of Amino-Functionalized Metal-Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal.

    PubMed

    Rao, Zhuang; Feng, Kai; Tang, Beibei; Wu, Peiyi

    2017-01-25

    A new metal-organic framework/graphene oxide composite (IRMOF-3/GO) with high adsorption capacity of copper(II) (maximal adsorption amount = 254.14 mg/g at pH 5.0 and 25 °C) was prepared. Novel and highly efficient nanofiltration (NF) membrane can be facilely fabricated via surface decoration of IRMOF-3/GO onto polydopamine (PDA)-coated polysulfone (PSF) substrate. After decoration of IRMOF-3/GO, membrane surface potential increased from 6.7 to 13.1 mV at pH 5.0 and 25 °C. Due to the adsorption effect of IRMOF-3/GO and the enhancement of membrane surface potential, the prepared NF membrane (the loading amount of IRMOF-3/GO is ca. 13.6 g/m(2)) exhibits a highly efficient rejection of copper(II). The copper(II) rejection reaches up to ∼90%, while maintaining a relatively high flux of ∼31 L/m(2)/h at the pressure of 0.7 MPa and pH 5.0. Moreover, the membrane also presents an outstanding stability throughout the 2000 min NF testing period. Thus, the newly developed NF membrane shows a promising potential for water cleaning. This work provides a worthy reference for designing highly efficient NF membranes modified by metal-organic framework (MOF) relevant materials.

  10. TEA-sensitive currents contribute to membrane potential of organ surface primo-node cells in rats.

    PubMed

    Choi, Jae-Hong; Lim, Chae Jeong; Han, Tae Hee; Lee, Seul Ki; Lee, So Yeong; Ryu, Pan Dong

    2011-02-01

    The primo-vascular (Bonghan) tissue has been identified in most tissues in the body, but its structure and functions are not yet well understood. We characterized electrophysiological properties of the cells of the primo-nodes (PN) on the surface of abdominal organs using a slice patch clamp technique. The most abundant were small round cells (~10 μm) without processes. These PN cells exhibited low resting membrane potential (-36 mV) and did not fire action potentials. On the basis of the current-voltage (I-V) relationships and kinetics of outward currents, the PN cells can be grouped into four types. Among these, type I cells were the majority (69%); they showed strong outward rectification in I-V relations. The outward current was activated rapidly and sustained without decay. Tetraethylammonium (TEA) dose-dependently blocked both outward and inward current (IC(50), 4.3 mM at ± 60 mV). In current clamp conditions, TEA dose-dependently depolarized the membrane potential (18.5 mV at 30 mM) with increase in input resistance. The tail current following a depolarizing voltage step was reversed at -27 mV, and transient outward current like A-type K(+) current was not expressed at holding potential of -80 mV. Taken together, the results demonstrate for the first time that the small round PN cells are heterogenous, and that, in type I cells, TEA-sensitive current with limited selectivity to K(+) contributed to resting membrane potential of these cells.

  11. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    PubMed

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transp