Sample records for membrane structural components

  1. Analysis of truss, beam, frame, and membrane components. [composite structures

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Robinson, E. Y.

    1975-01-01

    Truss components are considered, taking into account composite truss structures, truss analysis, column members, and truss joints. Beam components are discussed, giving attention to composite beams, laminated beams, and sandwich beams. Composite frame components and composite membrane components are examined. A description is given of examples of flat membrane components and examples of curved membrane elements. It is pointed out that composite structural design and analysis is a highly interactive, iterative procedure which does not lend itself readily to characterization by design or analysis function only.-

  2. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability.

    PubMed

    Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon

    2013-02-26

    The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.

  3. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.

    PubMed

    Nicolson, Garth L

    2014-06-01

    In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.

  4. Insight into mitochondrial structure and function from electron tomography.

    PubMed

    Frey, T G; Renken, C W; Perkins, G A

    2002-09-10

    In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.

  5. Diffusion of molecules and macromolecules in thylakoid membranes.

    PubMed

    Kirchhoff, Helmut

    2014-04-01

    The survival and fitness of photosynthetic organisms is critically dependent on the flexible response of the photosynthetic machinery, harbored in thylakoid membranes, to environmental changes. A central element of this flexibility is the lateral diffusion of membrane components along the membrane plane. As demonstrated, almost all functions of photosynthetic energy conversion are dependent on lateral diffusion. The mobility of both small molecules (plastoquinone, xanthophylls) as well as large protein supercomplexes is very sensitive to changes in structural boundary conditions. Knowledge about the design principles that govern the mobility of photosynthetic membrane components is essential to understand the dynamic response of the photosynthetic machinery. This review summarizes our knowledge about the factors that control diffusion in thylakoid membranes and bridges structural membrane alterations to changes in mobility and function. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Two-component fluid membranes near repulsive walls: Linearized hydrodynamics of equilibrium and nonequilibrium states.

    PubMed

    Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B

    2002-09-01

    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.

  7. Sentan: A Novel Specific Component of the Apical Structure of Vertebrate Motile Cilia

    PubMed Central

    Yuba-Kubo, Akiko; Tsukita, Sachiko; Tsukita, Shoichiro; Amagai, Masayuki

    2008-01-01

    Human respiratory and oviductal cilia have specific apical structures characterized by a narrowed distal portion and a ciliary crown. These structures are conserved among vertebrates that have air respiration systems; however, the molecular components of these structures have not been defined, and their functions are unknown. To identify the molecular component(s) of the cilia apical structure, we screened EST libraries to identify gene(s) that are exclusively expressed in ciliated tissues, are transcriptionally up-regulated during in vitro ciliogenesis, and are not expressed in testis (because sperm flagella have no such apical structures). One of the identified gene products, named sentan, was localized to the distal tip region of motile cilia. Using anti-sentan polyclonal antibodies and electron microscopy, sentan was shown to localize exclusively to the bridging structure between the cell membrane and peripheral singlet microtubules, which specifically exists in the narrowed distal portion of cilia. Exogenously expressed sentan showed affinity for the membrane protrusions, and a protein–lipid binding assay revealed that sentan bound to phosphatidylserine. These findings suggest that sentan is the first molecular component of the ciliary tip to bridge the cell membrane and peripheral singlet microtubules, making the distal portion of the cilia narrow and stiff to allow for better airway clearance or ovum transport. PMID:18829862

  8. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  9. Uptake of raft components into amyloid β-peptide aggregates and membrane damage.

    PubMed

    Sasahara, Kenji; Morigaki, Kenichi; Mori, Yasuko

    2015-07-15

    Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria

    PubMed Central

    Hoppins, Suzanne; Collins, Sean R.; Cassidy-Stone, Ann; Hummel, Eric; DeVay, Rachel M.; Lackner, Laura L.; Westermann, Benedikt; Schuldiner, Maya

    2011-01-01

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane–associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria. PMID:21987634

  11. The mechanism of protein export enhancement by the SecDF membrane component

    PubMed Central

    Tsukazaki, Tomoya; Nureki, Osamu

    2011-01-01

    Protein transport across membranes is a fundamental and essential cellular activity in all organisms. In bacteria, protein export across the cytoplasmic membrane, driven by dynamic interplays between the protein-conducting SecYEG channel (Sec translocon) and the SecA ATPase, is enhanced by the proton motive force (PMF) and a membrane-integrated Sec component, SecDF. However, the structure and function of SecDF have remained unclear. We solved the first crystal structure of SecDF, consisting of a pseudo-symmetrical 12-helix transmembrane domain and two protruding periplasmic domains. Based on the structural features, we proposed that SecDF functions as a membrane-integrated chaperone, which drives protein movement without using the major energetic currency, ATP, but with remarkable cycles of conformational changes, powered by the proton gradient across the membrane. By a series of biochemical and biophysical approaches, several functionally important residues in the transmembrane region have been identified and our model of the SecDF function has been verified. PMID:27857601

  12. Dehydration of an ethanol/water azeotrope by novel organic-inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane.

    PubMed

    Uragami, Tadashi; Katayama, Takuya; Miyata, Takashi; Tamura, Hiroshi; Shiraiwa, Tadashi; Higuchi, Akon

    2004-01-01

    To control swelling of quaternized chitosan (q-Chito) membranes, mixtures of q-Chito as an organic component and tetraethoxysilane (TEOS) as an inorganic component were prepared using the sol-gel reaction, and novel q-Chito/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation, the effect of TEOS content on the water/ethanol selectivity of q-Chito/TEOS hybrid membranes was investigated. Hybrid membranes containing up to 45 mol % TEOS exhibited higher water/ethanol selectivity than the q-Chito membrane. This resulted from depressed swelling of the membranes by formation of a cross-linked structure. However, introduction of excess TEOS led to greater swelling of the hybrid membranes. Therefore, the water/ethanol selectivity of the hybrid membranes containing more than 45 mol % TEOS was lower than that of the q-Chito membrane. The relationship between the structure of q-Chito/TEOS hybrid membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotrope is discussed in detail.

  13. Conceptual Inflatable Fabric Structures for Protective Crew Quarters Systems in Space Vehicles and Space Habitat Structures

    DTIC Science & Technology

    2015-11-30

    Membrane Liner FEA Model ........................................................15 Rectangular PCQS with Embedded Air Beams FEA Model...2 2 Component Air Volumes of the Rectangular PCQS Concept with Inner Membrane Liner ...GCR Galactic cosmic rays or radiation HPF High-performance fibers IML Inner membrane liner K Degree Kelvin LaRC Langley Research Center m Mass

  14. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    NASA Astrophysics Data System (ADS)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  15. The structure and function of cell membranes studied by atomic force microscopy.

    PubMed

    Shi, Yan; Cai, Mingjun; Zhou, Lulu; Wang, Hongda

    2018-01-01

    The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Membrane lipids and the origin of life

    NASA Technical Reports Server (NTRS)

    Oro, J.; Holzer, G.; Rao, M.; Tornabene, T. G.

    1981-01-01

    The current state of knowledge regarding the development of biological systems is briefly reviewed. At a crucial stage concerning the evolution of such systems, the mechanisms leading to more complex structures must have evolved within the confines of a protected microenvironment, similar to those provided by the contemporary cell membranes. The major components found normally in biomembranes are phospholipids. The structure of the biomembrane is examined, and attention is given to questions concerning the availability of the structural components which are necessary in the formation of primitive lipid membranes. Two approaches regarding the study of protomembranes are discussed. The probability of obtaining ether lipids under prebiotic conditions is considered, taking into account the formation of cyclic and acyclic isoprenoids by the irradiation of isoprene with UV.

  17. Association of Membrane Rafts and Postsynaptic Density: Proteomics, Biochemical, and Ultrastructural Analyses

    PubMed Central

    Suzuki, Tatsuo; Zhang, Jingping; Miyazawa, Shoko; Liu, Qian; Farzan, Michael R.; Yao, Wei-Dong

    2011-01-01

    Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not due to the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance. PMID:21797867

  18. Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences.

    PubMed

    Zhou, Z X; Wei, D F; Guan, Y; Zheng, A N; Zhong, J J

    2010-03-01

    The purpose of this study was to provide micrographic evidences for the damaged membrane structure and intracellular structure change of Escherichia coli strain 8099, induced by polyhexamethylene guanidine hydrochloride (PHMG). The bactericidal effect of PHMG on E. coli was investigated based on beta-galactosidase activity assay, fluorescein-5-isothiocyanate confocal laser scanning microscopy, field emission scanning electron microscopy and transmission electron microscopy. The results revealed that a low dose (13 microg ml(-1)) of PHMG slightly damaged the outer membrane structure of the treated bacteria and increased the permeability of the cytoplasmic membrane, while no significant damage was observed to the morphological structure of the cells. A high dose (23 microg ml(-1)) of PHMG collapsed the outer membrane structure, led to the formation of a local membrane pore across the membrane and badly damaged the internal structure of the cells. Subsequently, intracellular components were leaked followed by cell inactivation. Dose-dependent membrane disruption was the main bactericidal mechanism of PHMG. The formation of the local membrane pores was probable after exposure to a high dose (23 microg ml(-1)) of PHMG. Micrographic evidences were provided about the damaged membrane structure and intracellular structure change of E. coli. The presented information helps understand the bactericidal mechanism of PHMG by membrane damage.

  19. Lipopolysaccharide Membrane Building and Simulation

    PubMed Central

    Jo, Sunhwan; Wu, Emilia L.; Stuhlsatz, Danielle; Klauda, Jeffery B.; Widmalm, Göran; Im, Wonpil

    2015-01-01

    Summary While membrane simulations are widely employed to study the structure and dynamics of various lipid bilayers and membrane proteins in the bilayers, simulations of lipopolysaccharides (LPS) in membrane environments have been limited due to its structural complexity, difficulties in building LPS-membrane systems, and lack of appropriate molecular force field. In this work, as a first step to extend CHARMM-GUI Membrane Builder to incorporate LPS molecules and to explore their structures and dynamics in membrane environments using molecular dynamics simulations, we describe step-by-step procedures to build LPS bilayer systems using CHARMM and the recently developed CHARMM carbohydrate and lipid force fields. Such procedures are illustrated by building various bilayers of Escherichia coli O6 LPS and their preliminary simulation results are given in terms of per-LPS area and density distributions of various components along the membrane normal. PMID:25753722

  20. Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems*

    PubMed Central

    Durand, Eric; Zoued, Abdelrahim; Spinelli, Silvia; Watson, Paul J. H.; Aschtgen, Marie-Stéphanie; Journet, Laure; Cambillau, Christian; Cascales, Eric

    2012-01-01

    The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families. PMID:22371492

  1. A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.

    2016-10-01

    An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ~10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.

  2. Self-assembled virus-membrane complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlatedmore » arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.« less

  3. Sol-gel applications for ceramic membrane preparation

    NASA Astrophysics Data System (ADS)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  4. Specific Adhesion of Lipid Membranes Can Simultaneously Produce Two Types of Lipid and Protein Heterogeneities

    NASA Astrophysics Data System (ADS)

    Shindell, Orrin; Micah, Natalie; Ritzer, Max; Gordon, Vernita

    2015-03-01

    Living cells adhere to one another and their environment. Adhesion is associated with re-organization of the lipid and protein components of the cell membrane. The resulting heterogeneities are functional structures involved in biological processes. We use artificial lipid membranes that contain a single type of binding protein. Before adhesion, the lipid, protein, and dye components in the membrane are well-mixed and constitute a single disordered-liquid phase (Ld) . After adhesion, two distinct types of heterogeneities coexist in the adhesion zone: a central domain of ordered lipid phase that excludes both binding proteins and membrane dye, and a peripheral domain of disordered lipid phase that is densely packed with adhesion proteins and enriched in membrane dye relative to the non-adhered portion of the vesicle. Thus, we show that adhesion that is mediated by only one type of protein can organize the lipid and protein components of the membranes into heterogeneities that resemble those found in biology, for example the immune synapse.

  5. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Vincenzo A.; Shepherd, Sharon M.; English, Grant

    2011-12-01

    The high-resolution crystal structure of S. marcescens Lip reveals a new member of the transthyretin family of proteins. Lip, a core component of the type VI secretion apparatus, is localized to the outer membrane and is positioned to interact with other proteins forming this complex system. Lip is a membrane-bound lipoprotein and a core component of the type VI secretion system found in Gram-negative bacteria. The structure of a Lip construct (residues 29–176) from Serratia marcescens (SmLip) has been determined at 1.92 Å resolution. Experimental phases were derived using a single-wavelength anomalous dispersion approach on a sample cocrystallized with iodide.more » The membrane localization of the native protein was confirmed. The structure is that of the globular domain lacking only the lipoprotein signal peptide and the lipidated N-terminus of the mature protein. The protein fold is dominated by an eight-stranded β-sandwich and identifies SmLip as a new member of the transthyretin family of proteins. Transthyretin and the only other member of the family fold, 5-hydroxyisourate hydrolase, form homotetramers important for their function. The asymmetric unit of SmLip is a tetramer with 222 symmetry, but the assembly is distinct from that previously noted for the transthyretin protein family. However, structural comparisons and bacterial two-hybrid data suggest that the SmLip tetramer is not relevant to its role as a core component of the type VI secretion system, but rather reflects a propensity for SmLip to participate in protein–protein interactions. A relatively low level of sequence conservation amongst Lip homologues is noted and is restricted to parts of the structure that might be involved in interactions with physiological partners.« less

  6. Fluid Mosaic Membranes and the Light Reactions of Photosynthesis.

    ERIC Educational Resources Information Center

    Hannay, Jack

    1985-01-01

    Discusses: (1) the fluid mosaic membrane structure and light reactions of photosynthesis as exemplified by the Hill and Bendall "Z-scheme"; (2) the arrangement of light-harvesting pigments, electron transport components, and ATP synthesis on chloroplast membranes; and (3) how these topics are treated in A-level textbooks. (JN)

  7. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane

    PubMed Central

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C.; Fradin, Cécile

    2015-01-01

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol’s condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content. PMID:26529029

  8. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane.

    PubMed

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C; Fradin, Cécile

    2015-10-30

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol's condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content.

  9. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump.

    PubMed

    Hinchliffe, Philip; Greene, Nicholas P; Paterson, Neil G; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-08-25

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Rapid bonding of polydimethylsiloxane (PDMS) to various stereolithographically (STL) structurable epoxy resins using photochemically cross-linked intermediary siloxane layers

    NASA Astrophysics Data System (ADS)

    Wilhelm, Elisabeth; Neumann, Christiane; Sachsenheimer, Kai; Länge, Kerstin; Rapp, Bastian E.

    2014-03-01

    In this paper we present a fast, low cost bonding technology for combining rigid epoxy components with soft membranes made out of polydimethylsiloxane (PDMS). Both materials are commonly used for microfluidic prototyping. Epoxy resins are often applied when rigid channels are required, that will not deform if exposed to high pressure. PDMS, on the other hand, is a flexible material, which allows integration of membrane valves on the chip. However, the integration of pressure driven components, such as membrane valves and pumps, into a completely flexible device leads to pressure losses. In order to build up pressure driven components with maximum energy efficiency a combination of rigid guiding channels and flexible membranes would be advisable. Stereolithographic (STL) structuring would be an ideal fabrication technique for this purpose, because complex 3D-channels structures can easily be fabricated using this technology. Unfortunately, the STL epoxies cannot be bonded using common bonding techniques. For this reason we propose two UV-light based silanization techniques that enable plasma induced bonding of epoxy components. The entire process including silanization and corona discharge bonding can be carried out within half an hour. Average bond strengths up to 350 kPa (depending on the silane) were determined in ISO-conform tensile testing. The applicability of both techniques for microfluidic applications was proven by hydrolytic stability testing lasting more than 40 hours.

  11. Future directions of electron crystallography.

    PubMed

    Fujiyoshi, Yoshinori

    2013-01-01

    In biological science, there are still many interesting and fundamental yet difficult questions, such as those in neuroscience, remaining to be answered. Structural and functional studies of membrane proteins, which are key molecules of signal transduction in neural and other cells, are essential for understanding the molecular mechanisms of many fundamental biological processes. Technological and instrumental advancements of electron microscopy have facilitated comprehension of structural studies of biological components, such as membrane proteins. While X-ray crystallography has been the main method of structure analysis of proteins including membrane proteins, electron crystallography is now an established technique to analyze structures of membrane proteins in the lipid bilayer, which is close to their natural biological environment. By utilizing cryo-electron microscopes with helium-cooled specimen stages, structures of membrane proteins were analyzed at a resolution better than 3 Å. Such high-resolution structural analysis of membrane proteins by electron crystallography opens up the new research field of structural physiology. Considering the fact that the structures of integral membrane proteins in their native membrane environment without artifacts from crystal contacts are critical in understanding their physiological functions, electron crystallography will continue to be an important technology for structural analysis. In this chapter, I will present several examples to highlight important advantages and to suggest future directions of this technique.

  12. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring.

    PubMed

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong; Gould, Kathleen L

    2017-09-15

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.

  13. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring

    PubMed Central

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong

    2017-01-01

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function. PMID:28914606

  14. Tripartite assembly of RND multidrug efflux pumps

    NASA Astrophysics Data System (ADS)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  15. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    PubMed

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-06-14

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  16. Comparative research of effectiveness of cellulose and fiberglass porous membrane carriers for bio sampling in veterinary and food industry monitoring

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander; Vasyukova, Inna; Zakharova, Olga; Altabaeva, Yuliya; Saushkin, Nikolai; Samsonova, Jeanne; Kondakov, Sergey; Osipov, Alexander; Snegin, Eduard

    2017-11-01

    The aim of proposed research is to study the applicability of fiberglass porous membrane materials in a new strip format for dried blood storage in food industry monitoring. A comparative analysis of cellulosic and fiberglass porous membrane materials was carried out to obtain dried samples of serum or blood and the possibility of further species-specific analysis. Blood samples of Sus scrofa were used to study the comparative effectiveness of cellulose and fiberglass porous membrane carriers for long-term biomaterial storage allowing for further DNA detection by real-time polymerase chain reaction (PCR) method. Scanning electron microscopy of various membranes - native and with blood samples - indicate a fundamental difference in the form of dried samples. Membranes based on cellulosic materials sorb the components of the biological fluid on the surface of the fibers of their structure, partially penetrating the cellulose fibers, while in the case of glass fiber membranes the components of the biological fluid dry out as films in the pores of the membrane between the structural filaments. This fundamental difference in the retention mechanisms affects the rate of dissolution of the components of dry samples and contributes to an increase in the efficiency of the desorption process of the sample before subsequent analysis. Detecting of pig DNA in every analyzed sample under the performed Real-time PCR as well as good state of the biomaterial preservation on the glass fiber membranes was clearly demonstrated. Good biomaterials preservation has been revealed on the test cards for 4 days as well as for 1 hour.

  17. Membrane preparation and solubilization.

    PubMed

    Roy, Ankita

    2015-01-01

    Membrane proteins play an essential role in several biological processes like ion transport, signal transduction, and electron transfer to name a few. For structural and functional studies of integral membrane proteins, it is critically important to isolate proteins from the membrane using biological detergents. Detergents disrupt the native lipid components of the native membrane and encase the membrane protein in an unnatural environment in aqueous solution. However, a particular membrane protein is best solubilized in a specific detergent; therefore, screening for the optimal detergent is essential. Apart from keeping the membrane protein monodispered in solution, the detergent has to be compatible with downstream processes to isolate and characterize a membrane protein. Over the past several years, a number of membrane proteins have been successfully isolated for structural and functional studies that allowed an outline of general strategies for isolating a novel membrane protein of interest. © 2015 Elsevier Inc. All rights reserved.

  18. Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts

    PubMed Central

    Misra, Rajeev

    2012-01-01

    In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems—Gram-negative bacteria, mitochondria and chloroplasts—research on bacterial and mitochondrial systems has so far led the way in dissecting the β-barrel OMP assembly pathways. Many exciting discoveries have been made, including the identification of β-barrel OMP assembly machineries in bacteria and mitochondria, and potentially the core assembly component in chloroplasts. The atomic structures of all five components of the bacterial β-barrel assembly machinery (BAM) complex, except the β-barrel domain of the core BamA protein, have been solved. Structures reveal that these proteins contain domains/motifs known to facilitate protein-protein interactions, which are at the heart of the assembly pathways. While structural information has been valuable, most of our current understanding of the β-barrel OMP assembly pathways has come from genetic, molecular biology, and biochemical analyses. This paper provides a comparative account of the β-barrel OMP assembly pathways in Gram-negative bacteria, mitochondria, and chloroplasts. PMID:27335668

  19. Molecular Structure, Function, and Dynamics of Clathrin-Mediated Membrane Traffic

    PubMed Central

    Kirchhausen, Tom; Owen, David; Harrison, Stephen C.

    2014-01-01

    Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation. PMID:24789820

  20. Design of a Novel Two-Component Hybrid Dermal Scaffold for the Treatment of Pressure Sores.

    PubMed

    Sharma, Vaibhav; Kohli, Nupur; Moulding, Dale; Afolabi, Halimat; Hook, Lilian; Mason, Chris; García-Gareta, Elena

    2017-11-01

    The aim of this study is to design a novel two-component hybrid scaffold using the fibrin/alginate porous hydrogel Smart Matrix combined to a backing layer of plasma polymerized polydimethylsiloxane (Sil) membrane to make the fibrin-based dermal scaffold more robust for the treatment of the clinically challenging pressure sores. A design criteria are established, according to which the Sil membranes are punched to avoid collection of fluid underneath. Manual peel test shows that native silicone does not attach to the fibrin/alginate component while the plasma polymerized silicone membranes are firmly bound to fibrin/alginate. Structural characterization shows that the fibrin/alginate matrix is intact after the addition of the Sil membrane. By adding a Sil membrane to the original fibrin/alginate scaffold, the resulting two-component scaffolds have a significantly higher shear or storage modulus G'. In vitro cell studies show that dermal fibroblasts remain viable, proliferate, and infiltrate the two-component hybrid scaffolds during the culture period. These results show that the design of a novel two-component hybrid dermal scaffold is successful according to the proposed design criteria. To the best of the authors' knowledge, this is the first study that reports the combination of a fibrin-based scaffold with a plasma-polymerized silicone membrane. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transport Studies and Modeling in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalentmore » weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties was not achieved. We have simulated fuel cell performance, current distribution and water distribution at various values of the water uptake, membrane diffusivity, and electro-osmotic drag coefficient (EODC) and compared modeling results with segmented-cell data for both serpentine and parallel flow-fields. We have developed iterations of fuel cell flow fields to achieve specific water transport and thermal management targets. This work demonstrated the importance of membrane diffusivity on fuel cell performance, the necessity of a high membrane diffusion coefficient, and the desirability of a low EODC at low levels of relative humidity.« less

  2. Tracking variations in fluorescent-dissolved organic matter in an aerobic submerged membrane bioreactor using excitation-emission matrix spectra combined with parallel factor analysis.

    PubMed

    Hur, Jin; Shin, Jaewon; Kang, Minsun; Cho, Jinwoo

    2014-08-01

    In this study, the variations in the fluorescent components of dissolved organic matter (DOM) were tracked for an aerobic submerged membrane bioreactor (MBR) at three different operation stages (cake layer formation, condensation, and after cleaning). The fluorescent DOM was characterized using excitation-emission matrix (EEM) spectroscopy combined with parallel factor analysis (PARAFAC). Non-aromatic carbon structures appear to be actively involved in the membrane fouling for the cake layer formation stage as revealed by much higher UV-absorbing DOM per organic carbon found in the effluent versus those inside the reactor. Four fluorescent components were successfully identified from the reactor and the effluent DOMs by EEM-PARAFAC modeling. Among those in the reactor, microbial humic-like fluorescence was the most abundant component at the cake layer formation stage and tryptophan-like fluorescence at the condensation stage. In contrast to the reactor, relatively similar composition of the PARAFAC components was exhibited for the effluent at all three stages. Tryptophan-like fluorescence displayed the largest difference between the reactor and the effluent, suggesting that this component could be a good tracer for membrane fouling. It appears that the fluorescent DOM was involved in membrane fouling by cake layer formation rather than by internal pore adsorption because its difference between the reactor and the effluent was the highest among all the four components, even after the membrane cleaning. Our study provided an insight into the fate and the behavior fluorescent DOM components for an MBR system, which could be an indicator of the membrane fouling.

  3. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack.

    PubMed

    van der Goot, F G; Harder, T

    2001-04-01

    While the existence of cholesterol/sphingolipid (raft) membrane domains in the plasma membrane is now supported by strong experimental evidence, the structure of these domains, their size, their dynamics, and their molecular composition remain to be understood. Raft domains are thought to represent a specific physical state of lipid bilayers, the liquid-ordered phase. Recent observations suggest that in the mammalian plasma membrane small raft domains in ordered lipid phases are in a dynamic equilibrium with a less ordered membrane environment. Rafts may be enlarged and/or stabilized by protein-mediated cross-linking of raft-associated components. These changes of plasma membrane structure are perceived by the cells as signals, most likely an important element of immunoreceptor signalling. Pathogens abuse raft domains on the host cell plasma membrane as concentration devices, as signalling platforms and/or entry sites into the cell. Elucidation of these interactions requires a detailed understanding raft structure and dynamics. Copyright 2001 Academic Press.

  4. A Prototype Actuator Concept for Membrane Boundary Vibration Control

    NASA Technical Reports Server (NTRS)

    Solter, Micah J.

    2005-01-01

    In conjunction with the research in ultra-lightweight deployable spacecraft and membrane structures is an underlying need for shape and vibration control. For thin film membrane structures, fundamental modes of vibration for the membrane can be excited through station keeping, attitude adjustments, orbital maneuvers, or contact with space junk or micrometeorites. In order to maintain structural integrity as well as surface shape contour, which may be essential for inflatable antennas, reflective surfaces, or solar sails; vibration damping is a necessary component. This paper discusses development of an actuator attached at the membrane boundary, containing two types of piezoelectric elements, which can be used to perform active control of vibration from the boundary of a membrane. The actuator is designed to control the membrane out-of-plane displacement and in-plane tension by varying the boundary conditions. Results from an initial experimental evaluation of the concept are presented with bench tests of the actuator alone, and with the actuator connected to a large membrane.

  5. Solution Structure of Homology Region (HR) Domain of Type II Secretion System*

    PubMed Central

    Gu, Shuang; Kelly, Geoff; Wang, Xiaohui; Frenkiel, Tom; Shevchik, Vladimir E.; Pickersgill, Richard W.

    2012-01-01

    The type II secretion system of Gram-negative bacteria is important for bacterial pathogenesis and survival; it is composed of 12 mostly multimeric core proteins, which build a sophisticated secretion machine spanning both bacterial membranes. OutC is the core component of the inner membrane subcomplex thought to be involved in both recognition of substrate and interaction with the outer membrane secretin OutD. Here, we report the solution structure of the HR domain of OutC and explore its interaction with the secretin. The HR domain adopts a β-sandwich-like fold consisting of two β-sheets each composed of three anti-parallel β-strands. This structure is strikingly similar to the periplasmic region of PilP, an inner membrane lipoprotein from the type IV pilus system highlighting the common evolutionary origin of these two systems and showing that all the core components of the type II secretion system have a structural or sequence ortholog within the type IV pili system. The HR domain is shown to interact with the N0 domain of the secretin. The importance of this interaction is explored in the context of the functional secretion system. PMID:22253442

  6. Structural characterization of the voltage sensor domain and voltage-gated K+- channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

    PubMed Central

    Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.

    2012-01-01

    The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684

  7. The Role of Electron Microscopy in Studying the Continuum of Changes in Membranous Structures during Poliovirus Infection

    PubMed Central

    Rossignol, Evan D.; Yang, Jie E.; Bullitt, Esther

    2015-01-01

    Replication of the poliovirus genome is localized to cytoplasmic replication factories that are fashioned out of a mixture of viral proteins, scavenged cellular components, and new components that are synthesized within the cell due to viral manipulation/up-regulation of protein and phospholipid synthesis. These membranous replication factories are quite complex, and include markers from multiple cytoplasmic cellular organelles. This review focuses on the role of electron microscopy in advancing our understanding of poliovirus RNA replication factories. Structural data from the literature provide the basis for interpreting a wide range of biochemical studies that have been published on virus-induced lipid biosynthesis. In combination, structural and biochemical experiments elucidate the dramatic membrane remodeling that is a hallmark of poliovirus infection. Temporal and spatial membrane modifications throughout the infection cycle are discussed. Early electron microscopy studies of morphological changes following viral infection are re-considered in light of more recent data on viral manipulation of lipid and protein biosynthesis. These data suggest the existence of distinct subcellular vesicle populations, each of which serves specialized roles in poliovirus replication processes. PMID:26473912

  8. Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump-Probe Spectroscopy.

    PubMed

    Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng

    2016-03-03

    The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.

  9. Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents.

    PubMed

    Erazo-Oliveras, Alfredo; Fuentes, Natividad R; Wright, Rachel C; Chapkin, Robert S

    2018-06-02

    The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.

  10. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. © 2016 Elsevier Inc. All rights reserved.

  11. Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli.

    PubMed Central

    Laimins, L A; Rhoads, D B; Altendorf, K; Epstein, W

    1978-01-01

    The three structural proteins of the ATP-driven Kdp potassium transport system of Escherichia coli [Rhoads, D. B., Waters, F. B. & Epstein, W. (1976) J. Gen. Physiol. 67, 325-341] have been identified and found to be located in the inner membrane. The high-affinity repressible Kdp system in one of four potassium transport systems in E. coli. The Kdp proteins were identified both in growing cells as well as in heavily UV-irradiated cells infected with transducing phages carrying the kdp operon. Although all previously identified ATP-driven transport systems of Gram-negative bacteria have been shown to contain a periplasmic protein component, no evidence was found for such a component or for an outer membrane component of the Kdp system. The molecular weights of the three inner membrane proteins, KdpA, KdpB, and KdpC, were determined to be 47,000, 90,000 and 22,000, respectively. Images PMID:356049

  12. [Isoflavone genistein-8-c-glycoside prevents the oxidative damages in structure and function of rat liver microsomal membranes].

    PubMed

    Zavodnik, L B

    2003-01-01

    Bioflavonoids (polyhydroxyphenols) are ubiquitous components of plants, fruits and vegetables; these compounds are efficient scavengers of free oxygen radicals and peroxides. The aim of this study was to investigate the antioxidant and radioprotective effects of genistein-8-C-glicoside (G8CG), an isoflavone, isolated from the flowers of Lipinus luteusl L. G8CG prevents dose-dependently the destruction of the cytochrome P-450 and its conversion to an inactive form cytochrome P-420, inhibits membrane lipid peroxidation and membrane SH-group oxidation in isolated rat liver microsomal membranes under tert-butylhydroperoxide-induced oxidative stress. Single whole-body gamma-irradiation (1 Gy) of rats results in blood plasma and liver microsomal membrane lipid peroxidation, impairments of microsomal membrane structure and function. Rat treatment with G8CG (75 mg/kg) developed the clear protective effect, stabilized membrane structure and improved the parameters of the monooxygenase function. We can conclude that G8CG can be used as antioxidant and radioprotective agent.

  13. Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors.

    PubMed

    Inaba, Tomohiro; Hori, Tomoyuki; Aizawa, Hidenobu; Ogata, Atsushi; Habe, Hiroshi

    2017-01-01

    Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.

  14. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines.

    PubMed

    Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid

    2017-01-01

    Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  16. Extensive Determination of Glycan Heterogeneity Reveals an Unusual Abundance of High Mannose Glycans in Enriched Plasma Membranes of Human Embryonic Stem Cells*

    PubMed Central

    An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T.; Schaffer, David V.; Bertozzi, Carolyn R.; Lebrilla, Carlito B.

    2012-01-01

    Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine cell surface glycosylation. PMID:22147732

  17. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope

    PubMed Central

    Otsuka, Shotaro; Bui, Khanh Huy; Schorb, Martin; Hossain, M Julius; Politi, Antonio Z; Koch, Birgit; Eltsov, Mikhail; Beck, Martin; Ellenberg, Jan

    2016-01-01

    The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001 PMID:27630123

  18. Biochemical and immunochemical analyses of detergent solubilized antigens from membrane vesicles of Aspergillus fumigatus.

    PubMed

    Piechura, J E; Riefel, R S; Daft, L J

    1987-11-01

    A membrane vesicle fraction isolated from exponentially growing Aspergillus fumigatus strain Ag 507 cultures was obtained by mechanical disruption of intact Aspergillus cells under specific osmotic conditions followed by a pH fractionation technique. Electron micrographs of the membrane vesicles indicated unit membrane structures free from cell wall material. High glucose-6-phosphatase and low lactate dehydrogenase activities verified the relative purity of the membrane vesicle fraction. Allergic bronchopulmonary aspergillosis (ABPA) patient and normal human sera were incubated with the membrane vesicle fraction followed by colloidal gold tagged rabbit antiserum to human IgG or IgE. Electron micrographs indicated ABPA patient sera possessed specific IgG and IgE antibodies to membranous components. The detergent octyl-beta-D-glucopyranoside was used to extract membrane vesicle components (MC). The enzyme profile of MC compared with cell sap components (CS) showed differences in types of enzymes. Two-dimensional polyacrylamide gel electrophoretic analyses of MC and CS detected components shared as well as unique to each fraction. In crossed immunoelectrophoresis using both rabbit antisera raised to MC and ABPA patient sera, 5 peaks were detected, while analysis of CS using rabbit antisera raised to CS produced 20 major peaks. Immunoelectrophoresis and double immunodiffusion data supported the crossed immunoelectrophoretic data: MC differed from CS. Enzyme-linked immunosorbent assay indicated high specific IgG and IgE antibody levels to MC in ABPA patient sera. Crossed immuno-affinoelectrophoresis with concanavalin A partially characterized the MC, which consist of components which have glycoprotein elements (i.e., containing alpha-D-glucose or alpha-D-mannose).

  19. Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane Components

    PubMed Central

    Harder, Thomas; Scheiffele, Peter; Verkade, Paul; Simons, Kai

    1998-01-01

    Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components. PMID:9585412

  20. The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains.

    PubMed

    Villa, Riccardo; Martorana, Alessandra M; Okuda, Suguru; Gourlay, Louise J; Nardini, Marco; Sperandeo, Paola; Dehò, Gianni; Bolognesi, Martino; Kahne, Daniel; Polissi, Alessandra

    2013-03-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.

  1. The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains

    PubMed Central

    Villa, Riccardo; Martorana, Alessandra M.; Okuda, Suguru; Gourlay, Louise J.; Nardini, Marco; Sperandeo, Paola; Dehò, Gianni; Bolognesi, Martino; Kahne, Daniel

    2013-01-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components. PMID:23292770

  2. Study of ripple formation in unidirectionally-tensioned membranes

    NASA Technical Reports Server (NTRS)

    Lopez, Bernardo C.; Lih, Shyh-Shiuh; Leifer, Jack; Guzman, Gladys

    2004-01-01

    The study of membrane behavior is one of the areas of interest in the development of ultralightweight and lightweight structures for space applications. Utilization of membranes as loadcarrying components or support structure for antenna patch-arrays, collectors, sun-shades and solar-sail reflective surfaces brings about a variety of challenges that require understanding of the ripple-formation phenomenology, development of reliable test and analysis techniques, and solution methods for challenges related to the intended applications. This paper presents interim results from a study on the behavior of unidirectionally tensioned flat and singly-curved membranes. It focuses on preliminary experimental work to explore formation of ripples' and on finite element analysis (FEA) to correlate and predict their formation on thin polyimide membrane models.

  3. Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Antonyuk, L. P.; Matora, L. Yu.; Serebrennikova, O. B.; Sumaroka, M. V.; Colina, M.; Renou-Gonnord, M.-F.; Ignatov, V. V.

    1999-05-01

    Structural and compositional features of bacterial membranes and some of their isolated constituents (cell surface lipopolysaccharide, phospholipids) of the plant-growth-promoting diazotrophic rhizobacterium Azospirillum brasilense (wild-type strain Sp245) were characterized using Fourier transform infrared (FTIR) spectroscopy and some other techniques. FTIR spectra of the cell membranes were shown to comprise the main vibration modes of the relevant lipopolysaccharide and protein components which are believed to be involved in associative plant-bacterium interactions, as well as of phospholipid constituents. The role and functions of metal cations in the structural organization and physicochemical properties of bacterial cell membranes are also discussed considering their accumulation in the membranes from the culture medium.

  4. The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George A. Marchetti

    1999-12-15

    Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

  5. Fourier Transform Infrared and Resonance Raman Spectroscopic Studies of Bacteriorhodopsin.

    NASA Astrophysics Data System (ADS)

    Earnest, Thomas Nixon

    Fourier transform infrared and resonance Raman spectroscopy were used to investigate the structure and function of the light-activated, transmembrane proton pump, bacteriorhodopsin, from the purple membrane of Halobacterium halobium. Bacteriorhodopsin (bR) is a 27,000 dalton integral membrane protein consisting of 248 amino acids with a retinylidene chromophore. Absorption of a photon leads to the translocation of one or two protons from the inside of the cell to the outside. Resonance Raman spectroscopy allows for the study of the configuration of retinal in bR and its photointermediates by the selective enhancement of vibrational modes of the chromophore. This technique was used to determine that the chromophore is attached to lysine-216 in both the bR _{570} and the M _{412} intermediates. In bR with tyrosine-64 selectively nitrated or aminated, the chromophore appears to have the same configuration in that bR _{570} (all- trans) and M _{412} (13- cis) states as it does in unmodified bR. Polarized Fourier transform infrared spectroscopy (FTIR) permits the study of the direction of transition dipole moments arising from molecular vibrations of the protein and the retinal chromophore. The orientation of alpha helical and beta sheet components was determined for bR with the average helical tilt found to lie mostly parallel to the membrane normal. The beta sheet structures also exhibit an IR linear dichroism for the amide I and amide II bands which suggest that the peptide backbone is mostly perpendicular to the membrane plane although it is difficult to determine whether the bands originate from sheet or turn components. The orientation of secondary structure components of the C-1 (residues 72-248) and C-2 (residues 1-71) fragments were also investigated to determine the structure of these putative membrane protein folding intermediates. Polarized, low temperature FTIR -difference spectroscopy was then used to investigate the structure of bR as it undergoes phototransitions from the light-adapted state, bR_{570} , to the K_{630} and M_{412} intermediates. The linear dichroism of C=C and C-C stretching modes, and the hydrogen out-of-plane (HOOP) modes of the chromophore show that the long axis of the polyene is 20-25^ circ out of the membrane plane and that the polyene plane is oriented mostly perpendicular to the membrane plane. Transition dipole moments from protein components are also investigated to determine the orientation of protein groups which undergo changes during the photocycle.

  6. Prototyping Energy Storage Components for Hybrid Power Source

    DTIC Science & Technology

    2009-12-11

    from suitable nanoporous ceramic ( anodized aluminum oxide – AAO ) and polymer (polycarbonate - PC, polyethylene terephtalate - PET) membranes . Metal...of NUC technology: a) sketch of structure, b) SEM image of membrane . The alumina membranes can be easily and inexpensively fabricated via anodization ...of aluminum foil. The pores are formed by self-assembly via pitting and reprecipation of metal oxide . Motivation The work is motivated by the

  7. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface

    PubMed Central

    Cheng, Sara Y.; Chou, George; Buie, Creighton; Vaughn, Mark W.; Compton, Campbell; Cheng, Kwan H.

    2016-01-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein–lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein–protein but weaker protein–lipid interactions for a dimeric protein on membrane surfaces. PMID:26827904

  8. Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments

    PubMed Central

    Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke

    2016-01-01

    Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909

  9. Caveolae as plasma membrane sensors, protectors and organizers.

    PubMed

    Parton, Robert G; del Pozo, Miguel A

    2013-02-01

    Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.

  10. Endothelial glycocalyx: permeability barrier and mechanosensor.

    PubMed

    Curry, F E; Adamson, R H

    2012-04-01

    Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.

  11. ELECTRON MICROSCOPIC OBSERVATIONS OF AMOEBA PROTEUS IN GROWTH AND INANITION

    PubMed Central

    Cohen, Adolph I.

    1957-01-01

    Electron microscopic observations have been made on growing and dividing specimens of Amoeba proteus and also on starving animals. Structures presumably corresponding to the mitochondria, alpha particles, vacuoles, and Golgi material are described. A new entity, designated as a foamy particle, is noted. Descriptions are given of the cytoplasmic and nuclear membranes. During division the inner, thick nuclear membrane component is seen to vanish and the outer membrane persist. Measurements suggest a gradual reappearance of the inner component with growth. Starving animals show a loss of cytoplasmic granularity and an increase in the electron density of mitochondria, presumably due to lipide accumulation. PMID:13481020

  12. Electron microscopic observations of amoeba proteus in growth and inanition.

    PubMed

    COHEN, A I

    1957-11-25

    Electron microscopic observations have been made on growing and dividing specimens of Amoeba proteus and also on starving animals. Structures presumably corresponding to the mitochondria, alpha particles, vacuoles, and Golgi material are described. A new entity, designated as a foamy particle, is noted. Descriptions are given of the cytoplasmic and nuclear membranes. During division the inner, thick nuclear membrane component is seen to vanish and the outer membrane persist. Measurements suggest a gradual reappearance of the inner component with growth. Starving animals show a loss of cytoplasmic granularity and an increase in the electron density of mitochondria, presumably due to lipide accumulation.

  13. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria.

    PubMed

    Majewski, Dorothy D; Worrall, Liam J; Strynadka, Natalie Cj

    2018-03-23

    The acquisition and evolution of customized and often highly complex secretion systems allows Gram-negative bacteria to efficiently passage large macromolecules across both inner and outer membranes and, in some cases, that of the infected host. Essential to the virulence and ultimate survival of the many pathogenic species that encode them, secretion systems export a wide variety of effector proteins and DNA as well as the downstream extracellular filaments of the secretion apparatus themselves. Although these customized secretion systems differ in their cytosolic and inner membrane components, several commonly rely on the secretin family of giant pores to allow these large substrates to traverse the outer membrane. Recently, several near-atomic resolution cryo-EM secretin structures have unveiled the first insights into the unique structural motifs required for outer membrane localization, assembly, hallmark ultrastable nature, spontaneous membrane insertion, and mechanism of action-including the requisite central gating needed to prevent deleterious passage of periplasmic contents to the extracellular space. Copyright © 2018. Published by Elsevier Ltd.

  14. Mesoscale studies of ionic closed membranes with polyhedral geometries

    DTIC Science & Technology

    2016-07-25

    assembled ionic amphiphiles.4 The most commonly observed polyhedral symmetry in self-organized homogeneous structures is the icosahedron, which has the...Possible buckled structures can be obtained considering components A, B with intermediate compositions f of the B component such that the stable shape...lines aids the faceting of the shell into a polyhedral structure often with three-fold vertices. Such vertices are joined together by sharp edges

  15. Transcriptomic insights into citrus segment membrane's cell wall components relating to fruit sensory texture.

    PubMed

    Wang, Xun; Lin, Lijin; Tang, Yi; Xia, Hui; Zhang, Xiancong; Yue, Maolan; Qiu, Xia; Xu, Ke; Wang, Zhihui

    2018-04-23

    During fresh fruit consumption, sensory texture is one factor that affects the organoleptic qualities. Chemical components of plant cell walls, including pectin, cellulose, hemicellulose and lignin, play central roles in determining the textural qualities. To explore the genes and regulatory pathways involved in fresh citrus' perceived sensory texture, we performed mRNA-seq analyses of the segment membranes of two citrus cultivars, Shiranui and Kiyomi, with different organoleptic textures. Segment membranes were sampled at two developmental stages of citrus fruit, the beginning and end of the expansion period. More than 3000 differentially expressed genes were identified. The gene ontology analysis revealed that more categories were significantly enriched in 'Shiranui' than in 'Kiyomi' at both developmental stages. In total, 108 significantly enriched pathways were obtained, with most belonging to metabolism. A detailed transcriptomic analysis revealed potential critical genes involved in the metabolism of cell wall structures, for example, GAUT4 in pectin synthesis, CESA1, 3 and 6, and SUS4 in cellulose synthesis, CSLC5, XXT1 and XXT2 in hemicellulose synthesis, and CSE in lignin synthesis. Low levels, or no expression, of genes involved in cellulose and hemicellulose, such as CESA4, CESA7, CESA8, IRX9 and IRX14, confirmed that secondary cell walls were negligible or absent in citrus segment membranes. A chemical component analysis of the segment membranes from mature fruit revealed that the pectin, cellulose and lignin contents, and the segment membrane's weight (% of segment) were greater in 'Kiyomi'. Organoleptic quality of citrus is easily overlooked. It is mainly determined by sensory texture perceived in citrus segment membrane properties. We performed mRNA-seq analyses of citrus segment membranes to explore the genes and regulatory pathways involved in fresh citrus' perceived sensory texture. Transcriptomic data showed high repeatability between two independent biological replicates. The expression levels of genes involved in cell wall structure metabolism, including pectin, cellulose, hemicellulose and lignin, were investigated. Meanwhile, chemical component contents of the segment membranes from mature fruit were analyzed. This study provided detailed transcriptional regulatory profiles of different organoleptic citrus qualities and integrated insights into the mechanisms affecting citrus' sensory texture.

  16. A role for the membrane Golgi protein Ema in autophagy.

    PubMed

    Kim, Sungsu; DiAntonio, Aaron

    2012-08-01

    Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.

  17. Mechanoprotection by skeletal muscle caveolae.

    PubMed

    Lo, Harriet P; Hall, Thomas E; Parton, Robert G

    2016-01-01

    Caveolae, small bulb-like pits, are the most abundant surface feature of many vertebrate cell types. The relationship of the structure of caveolae to their function has been a subject of considerable scientific interest in view of the association of caveolar dysfunction with human disease. In a recent study Lo et al. (1) investigated the organization and function of caveolae in skeletal muscle. Using quantitative 3D electron microscopy caveolae were shown to be predominantly organized into multilobed structures which provide a large reservoir of surface-connected membrane underlying the sarcolemma. These structures were preferentially disassembled in response to changes in membrane tension. Perturbation or loss of caveolae in mouse and zebrafish models suggested that caveolae can protect the muscle sarcolemma against damage in response to excessive membrane activity. Flattening of caveolae to release membrane into the bulk plasma membrane in response to increased membrane tension can allow cell shape changes and prevent membrane rupture. In addition, disassembly of caveolae can have widespread effects on lipid-based plasma membrane organization. These findings suggest that the ability of the caveolar membrane system to respond to mechanical forces is a crucial evolutionarily-conserved process which is compromised in disease conditions associated with mutations in key caveolar components.

  18. Mechanoprotection by skeletal muscle caveolae

    PubMed Central

    Lo, Harriet P; Hall, Thomas E; Parton, Robert G

    2016-01-01

    abstract Caveolae, small bulb-like pits, are the most abundant surface feature of many vertebrate cell types. The relationship of the structure of caveolae to their function has been a subject of considerable scientific interest in view of the association of caveolar dysfunction with human disease. In a recent study Lo et al.1 investigated the organization and function of caveolae in skeletal muscle. Using quantitative 3D electron microscopy caveolae were shown to be predominantly organized into multilobed structures which provide a large reservoir of surface-connected membrane underlying the sarcolemma. These structures were preferentially disassembled in response to changes in membrane tension. Perturbation or loss of caveolae in mouse and zebrafish models suggested that caveolae can protect the muscle sarcolemma against damage in response to excessive membrane activity. Flattening of caveolae to release membrane into the bulk plasma membrane in response to increased membrane tension can allow cell shape changes and prevent membrane rupture. In addition, disassembly of caveolae can have widespread effects on lipid-based plasma membrane organization. These findings suggest that the ability of the caveolar membrane system to respond to mechanical forces is a crucial evolutionarily-conserved process which is compromised in disease conditions associated with mutations in key caveolar components. PMID:26760312

  19. Distributed microscopic actuation analysis of paraboloidal membrane shells of different geometric parameters

    NASA Astrophysics Data System (ADS)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-03-01

    Paraboloidal membrane shells of revolution are commonly used as key components for advanced aerospace structures and aviation mechanical systems. Due to their high flexibility and low damping property, active vibration control is of significant importance for these in-orbit membrane structures. To explore the dynamic control behavior of space flexible paraboloidal membrane shells, precision distributed actuation and control effectiveness of free-floating paraboloidal membrane shells with piezoelectric actuators are investigated. Governing equations of the shell structronic system are presented first. Then, distributed control forces and control actions are formulated. A transverse mode shape function of the paraboloidal shell based on the membrane approximation theory and specified boundary condition is assumed in the modal control force analysis. The actuator induced modal control forces on the paraboloidal shell are derived. The expressions of microscopic local modal control forces are obtained by shrinking the actuator area into infinitesimal and the four control components are investigated respectively to predict the spatial microscopic actuation behavior. Geometric parameter (height-radius ratio and shell thickness) effects on the modal actuation behavior are explored when evaluating the micro-control efficiency. Four different cases are discussed and the results reveal the fact that shallow (e.g., antennas/reflectors) and deep (e.g., rocket/missile fairing) paraboloidal shells exhibit totally different modal actuation behaviors due to their curvature differences. Analytical results in this paper can serve as guidelines for optimal actuator placement for vibration control of different paraboloidal structures.

  20. Deuterated fatty acids as Raman spectroscopic probes of membrane structure.

    PubMed

    Mendelsohn, R; Sunder, S; Bernstein, H J

    1976-09-07

    Raman spectra are reported for the C-D stretching region of stearic acid-d35 bound in egg lecithin multilayers. The temperature dependence of the spectra shows that the linewidth of the C-D stretching bands is a sensitive and non-perturbative probe of membrane hydrocarbon chain conformation. The utility of this approach for studying lipid conformation in membranes containing a significant fraction of non-lipid component is discussed.

  1. Kinetic control of TolC recruitment by multidrug efflux complexes.

    PubMed

    Tikhonova, Elena B; Dastidar, Vishakha; Rybenkov, Valentin V; Zgurskaya, Helen I

    2009-09-22

    In Gram-negative pathogens, multidrug efflux pumps that provide clinically significant levels of antibiotic resistance function as three-component complexes. They are composed of the inner membrane transporters belonging to one of three superfamilies of proteins, RND, ABC, or MF; periplasmic proteins belonging to the membrane fusion protein (MFP) family; and outer membrane channels exemplified by the Escherichia coli TolC. The three-component complexes span the entire two-membrane envelope of Gram-negative bacteria and expel toxic molecules from the cytoplasmic membrane to the medium. The architecture of these complexes is expected to vary significantly because of the structural diversity of the inner membrane transporters. How the three-component pumps are assembled, their architecture, and their dynamics remain unclear. In this study, we reconstituted interactions and compared binding kinetics of the E. coli TolC with AcrA, MacA, and EmrA, the periplasmic MFPs that function in multidrug efflux with transporters from the RND, ABC, and MF superfamilies, respectively. By using surface plasmon resonance, we demonstrate that TolC interactions with MFPs are highly dynamic and sensitive to pH. The affinity of TolC to MFPs decreases in the order MacA > EmrA > AcrA. We further show that MFPs are prone to oligomerization, but differ dramatically from each other in oligomerization kinetics and stability of oligomers. The propensity of MFPs to oligomerize correlates with the stability of MFP-TolC complexes and structural features of inner membrane transporters. We propose that recruitment of TolC by various MFPs is determined not only by kinetics of MFP-TolC interactions but also by oligomerization kinetics of MFPs and pH.

  2. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane

    PubMed Central

    Richardson, Lynn G. L.; Paila, Yamuna D.; Siman, Steven R.; Chen, Yi; Smith, Matthew D.; Schnell, Danny J.

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus. PMID:24966864

  3. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    PubMed

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  4. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication ot the Curvature Elastic Energy for Lipid Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang,W.; Yang, L.; Huang, H.

    2007-01-01

    Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy formore » lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.« less

  5. Stimulated Emission Depletion Live-Cell Super-Resolution Imaging Shows Proliferative Remodeling of T-Tubule Membrane Structures After Myocardial Infarction

    PubMed Central

    Wagner, Eva; Lauterbach, Marcel A.; Kohl, Tobias; Westphal, Volker; Williams, George S.B.; Steinbrecher, Julia H.; Streich, Jan-Hendrik; Korff, Brigitte; Tuan, Hoang-Trong M.; Hagen, Brian; Luther, Stefan; Hasenfuss, Gerd; Parlitz, Ulrich; Jafri, M. Saleet; Hell, Stefan W.; Lederer, W. Jonathan; Lehnart, Stephan E.

    2014-01-01

    Rationale Transverse tubules (TTs) couple electric surface signals to remote intracellular Ca2+ release units (CRUs). Diffraction-limited imaging studies have proposed loss of TT components as disease mechanism in heart failure (HF). Objectives Objectives were to develop quantitative super-resolution strategies for live-cell imaging of TT membranes in intact cardiomyocytes and to show that TT structures are progressively remodeled during HF development, causing early CRU dysfunction. Methods and Results Using stimulated emission depletion (STED) microscopy, we characterized individual TTs with nanometric resolution as direct readout of local membrane morphology 4 and 8 weeks after myocardial infarction (4pMI and 8pMI). Both individual and network TT properties were investigated by quantitative image analysis. The mean area of TT cross sections increased progressively from 4pMI to 8pMI. Unexpectedly, intact TT networks showed differential changes. Longitudinal and oblique TTs were significantly increased at 4pMI, whereas transversal components appeared decreased. Expression of TT-associated proteins junctophilin-2 and caveolin-3 was significantly changed, correlating with network component remodeling. Computational modeling of spatial changes in HF through heterogeneous TT reorganization and RyR2 orphaning (5000 of 20 000 CRUs) uncovered a local mechanism of delayed subcellular Ca2+ release and action potential prolongation. Conclusions This study introduces STED nanoscopy for live mapping of TT membrane structures. During early HF development, the local TT morphology and associated proteins were significantly altered, leading to differential network remodeling and Ca2+ release dyssynchrony. Our data suggest that TT remodeling during HF development involves proliferative membrane changes, early excitation-contraction uncoupling, and network fracturing. PMID:22723297

  6. The structure of some cytoplasmic components of plant cells in relation to the biochemical properties of isolated particles.

    PubMed

    HODGE, A J; MARTIN, E M; MORTON, R K

    1957-01-25

    1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported.

  7. THE STRUCTURE OF SOME CYTOPLASMIC COMPONENTS OF PLANT CELLS IN RELATION TO THE BIOCHEMICAL PROPERTIES OF ISOLATED PARTICLES

    PubMed Central

    Hodge, A. J.; Martin, E. M.; Morton, R. K.

    1957-01-01

    1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported. PMID:13416311

  8. Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application.

    PubMed

    Aoki, Asami; Akaboshi, Hikaru; Ogura, Taku; Aikawa, Tatsuo; Kondo, Takeshi; Tobori, Norio; Yuasa, Makoto

    2015-01-01

    We prepared pH-sensitive anionic liposomes composed solely of anionic bilayer membrane components that were designed to promote efficient release of entrapped agents in response to acidic pH. The pH-sensitive anionic liposomes showed high dispersion stability at neutral pH, but the fluidity of the bilayer membrane was enhanced in an acidic environment. These liposomes were rather simple and were composed of dimyristoylphosphatidylcholine (DMPC), an anionic bilayer membrane component, and polyoxyethylene sorbitan monostearate (Tween 80). In particular, the present pH-sensitive anionic liposomes showed higher temporal stability than those of conventional DMPC/DPPC liposomes. We found that pHsensitive properties strongly depended on the molecular structure, pKa value, and amount of an incorporated anionic bilayer membrane component, such as sodium oleate (SO), dimyristoylphosphatidylserine (DMPS), or sodium β-sitosterol sulfate (SS). These results provide an opportunity to manipulate liposomal stability in a pH-dependent manner, which could lead to the formulation of a high performance drug delivery system (DDS).

  9. The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment

    PubMed Central

    Jacoby, Arie S.; Busch-Nentwich, Elisabeth; Bryson-Richardson, Robert J.; Hall, Thomas E.; Berger, Joachim; Berger, Silke; Sonntag, Carmen; Sachs, Caroline; Geisler, Robert; Stemple, Derek L.; Currie, Peter D.

    2009-01-01

    Summary The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin β2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss. PMID:19736328

  10. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes

    NASA Astrophysics Data System (ADS)

    Shen, Hsin-Hui; Leyton, Denisse L.; Shiota, Takuya; Belousoff, Matthew J.; Noinaj, Nicholas; Lu, Jingxiong; Holt, Stephen A.; Tan, Khershing; Selkrig, Joel; Webb, Chaille T.; Buchanan, Susan K.; Martin, Lisandra L.; Lithgow, Trevor

    2014-10-01

    In biological membranes, various protein secretion devices function as nanomachines, and measuring the internal movements of their component parts is a major technological challenge. The translocation and assembly module (TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by quartz crystal microbalance with dissipation (QCM-D) and magnetic contrast neutron reflectrometry (MCNR). The MCNR studies provided structural resolution down to 1 Å, enabling accurate measurement of protein domains projecting from the membrane layer. Here we show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  11. Studies of molecular diffusion in single-supported bilayer lipid membranes at high hydration by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Bai, M.; Miskowiec, A.; Wang, S.-K.; Taub, H.; Hansen, F. Y.; Jenkins, T.; Tyagi, M.; Neumann, D. A.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.

    2011-03-01

    Bilayer lipid membranes supported on a solid surface are attractive model systems for understanding the structure and dynamics of more complex biological membranes that form the outer boundary of living cells. We have recently obtained quasielastic neutron spectra from single-supported bilayer lipid membranes using the backscattering spectrometer BASIS at the Spallation Neutron Source. Protonated DMPC membranes were deposited onto Si O2 -coated Si(100) substrates and characterized by AFM. Analysis of their neutron spectra shows evidence of a relatively broad Lorentzian component that we associate with bulk-like water above a freezing temperature of ~ 267 K. At lower temperatures, the spectra differ qualitatively from that of bulk supercooled water, a behavior that we attribute to water bound to the membrane. We also find evidence of a narrow Lorentzian component that we tentatively identify with a slower motion (time scale ~ 1 ns) associated with conformational changes of the alkyl tails of the lipid molecules. Supported by NSF Grant No. DMR-0705974.

  12. The molecular basis of induction and formation of tunneling nanotubes.

    PubMed

    Kimura, Shunsuke; Hase, Koji; Ohno, Hiroshi

    2013-04-01

    Tunneling nanotubes (TNTs) and associated structures are recently recognized structures for intercellular communication. They are F-actin-containing thin protrusions of the plasma membrane of a cell and allow a direct physical connection to the plasma membranes of remote cells. TNTs and associated structures serve as mediators for intercellular transfer of organelles as well as membrane components and cytoplasmic molecules. Moreover, several pathogens have been shown to exploit these structures to spread among cells. Because of their contribution to normal cellular functions and importance in pathological conditions, studies on TNTs and related structures have accelerated over the past few years. These studies have revealed key molecules for their induction and/or formation; HIV Nef and M-Sec can induce the formation of TNTs in coordination with the remodeling of the actin cytoskeleton and vesicle trafficking.

  13. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex

    PubMed Central

    Brass, Volker; Berke, Jan Martin; Montserret, Roland; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2008-01-01

    Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design. PMID:18799730

  14. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  15. Impacts of sodium hydroxide and sodium hypochlorite aging on polyvinylidene fluoride membranes fabricated with different methods.

    PubMed

    Wu, Qilong; Zhang, Xihui; Cao, Guodong

    2018-05-01

    This study compared the effects of chemical aging on the polyvinylidene fluoride (PVDF) membranes fabricated with the methods of non-solvent induced phase separation (NIPS) (named NIPS-PVDF) and thermally induced phase separation (TIPS) (named TIPS-PVDF). The chemical solutions of sodium hypochlorite (NaClO) and sodium hydroxide (NaOH) were chosen at the concentration of 5000mg/L. The equivalence of 5 and 10years was respectively selected as the time of aging. The physicochemical evolutions of membrane aging are characterized on the base of morphology analysis, chemical components, permeation ability and mechanical properties. The aging of NIPS-PVDF membrane led to the elimination of surface hydrophilic additives, while NaOH focused on the dehydrofluorination process resulting in the formation of conjugated chains of polyene on the skeleton structure. The chemical components of the surface of TIPS-PVDF membrane were removed continuously during the aging processes of both NaClO and NaOH, which was caused by the saponification of surface additives and the chain scissions of skeleton structure, but without producing any obvious conjugated chains of polyene. All the aging processes led to the increase of contact angle and the decrease of mechanical properties, and the permeability was reduced first and increased later due to the enlargement of surface membrane pores and membrane block. With the influence of membrane aging, selectivity of membrane was decreased (except coliform bacteria). At the beginning of filtration, the turbidity and particle count were at relatively high levels and declined with the filtration process. Copyright © 2017. Published by Elsevier B.V.

  16. In vitro synthesis of cellulose microfibrils by a membrane protein from protoplasts of the non-vascular plant Physcomitrella patens.

    PubMed

    Cho, Sung Hyun; Du, Juan; Sines, Ian; Poosarla, Venkata Giridhar; Vepachedu, Venkata; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H; Kumar, Manish; Nixon, B Tracy

    2015-09-01

    Plant cellulose synthases (CesAs) form a family of membrane proteins that are associated with hexagonal structures in the plasma membrane called CesA complexes (CSCs). It has been difficult to purify plant CesA proteins for biochemical and structural studies. We describe CesA activity in a membrane protein preparation isolated from protoplasts of Physcomitrella patens overexpressing haemagglutinin (HA)-tagged PpCesA5. Incubating the membrane preparation with UDP-glucose predominantly produced cellulose. Negative-stain EM revealed microfibrils. Cellulase bound to and degraded these microfibrils. Vibrational sum frequency generation (SFG) spectroscopic analysis detected the presence of crystalline cellulose in the microfibrils. Putative CesA proteins were frequently observed attached to the microfibril ends. Combined cross-linking and gradient centrifugation showed bundles of cellulose microfibrils with larger particle aggregates, possibly CSCs. These results suggest that P. patens is a useful model system for biochemical and structural characterization of plant CSCs and their components. © 2015 Authors; published by Portland Press Limited.

  17. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Comparative analysis of glutamate-binding membrane proteins from the cerebral cortex of rats and humans].

    PubMed

    Dambinova, S A; Gorodinskiĭ, A I; Lekomtseva, T M; Koreshonkov, O N

    1987-10-01

    The kinetics of 3H-L-glutamate binding to human brain synaptic membranes revealed the existence of one type of binding sites with Kd and Vmax comparable with those for freshly isolated rat brain membranes. The fraction of glutamate-binding proteins (GBP) was shown to contain three components with Mr of 14, 60 and 280 kD whose stoichiometry is specific for human and rat brain. All fractions were found to bind the radiolabeled neurotransmitter and to dissociate into subunits with Mr of 14 kD after treatment with-potent detergents (with the exception of the 56-60 kD component). Study of association-dissociation of GBP protein subunits by high performance liquid chromatography confirmed the hypothesis on the oligomeric structure of glutamate receptors which are made up of low molecular weight glycoprotein-lipid subunits and which form ionic channels by way of repeated association. Despite the similarity of antigen determinants in the active center of glutamate receptors from human and rat brain, it was assumed that the stoichiometry of structural organization of receptor subunits isolated from different sources is different. The functional role of structural complexity of human brain glutamate receptors is discussed.

  18. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  19. Elastic strain relaxation in GaInAsP/InP membrane quantum wire structures

    NASA Astrophysics Data System (ADS)

    Ferdous, Fahmida; Haque, A.

    2006-12-01

    Strain distribution in GaInAsP/InP compressively strained membrane quantum wires (with low refractive index polymer cladding layers) fabricated by electron-beam lithography, reactive-ion etching and two-step epitaxial growth is theoretically calculated using finite element analysis. Results are compared with those of its conventional counterpart in which InP cladding layers are used. It is found that the etching away of the InP cladding layers in membrane structures causes a redistribution of elastic strain. The normal strain along the growth direction is the most affected component during this redistribution. We have also studied the effects of varying wire width, barrier tensile strain and other parameters on the strain relaxation. The effective bandgap in the presence of strain relaxation is also estimated. Results show that owing to the redistribution of strain, membrane structures exhibit an increase in the effective bandgap.

  20. Structural basis for host membrane remodeling induced by protein 2B of hepatitis A virus.

    PubMed

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra; Verdaguer, Núria

    2015-04-01

    The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus

    PubMed Central

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa

    2015-01-01

    ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659

  2. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease.

    PubMed

    Sullivan, E Madison; Pennington, Edward Ross; Green, William D; Beck, Melinda A; Brown, David A; Shaikh, Saame Raza

    2018-05-01

    Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.

  3. Structure of a Type-1 Secretion System ABC Transporter.

    PubMed

    Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen

    2017-03-07

    Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Membrane pore architecture of the CslF6 protein controls (1-3,1-4)-β-glucan structure.

    PubMed

    Jobling, Stephen A

    2015-06-01

    The cereal cell wall polysaccharide (1-3,1-4)-β-glucan is a linear polymer of glucose containing both β1-3 and β1-4 bonds. The structure of (1-3,1-4)-β-glucan varies between different cereals and during plant growth and development, but little is known about how this is controlled. The cellulose synthase-like CslF6 protein is an integral membrane protein and a major component of the (1-3,1-4)-β-glucan synthase. I show that a single amino acid within the predicted transmembrane pore domain of CslF6 controls (1-3,1-4)-β-glucan structure. A new mechanism for the control of the polysaccharide structure is proposed where membrane pore architecture and the translocation of the growing polysaccharide across the membrane control how the acceptor glucan is coordinated at the active site and thus the proportion of β1-3 and β1-4 bonds within the polysaccharide.

  5. Involvement of vesicle coat material in casein secretion and surface regeneration

    PubMed Central

    1976-01-01

    The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641

  6. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.

    PubMed

    Páli, Tibor; Kóta, Zoltán

    2013-01-01

    Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.

  8. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    PubMed

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on membrane surfaces. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    NASA Astrophysics Data System (ADS)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of <2 microns. Thin-film membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to <50 nm. Additionally, these membranes may be non-porous or porous (with controllable pore sizes from 200 nm to <5 nm), for sophisticated size-based separations. With previous and current support from the NIH SBIR program, we have built several unique devices, and demonstrated improved separations, cell culturing, and imaging (optical and electron microscopy) versus standard products. Being ceramic, the material is much more robust to demanding environments (e.g. high and low temperatures and organic solvents), compared to polymer-based devices. Additionally, we have applied multiple surface modification techniques, including atomic layer deposition, to manipulate properties such as electrical conductivity. This microfabrication technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  10. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model

    NASA Astrophysics Data System (ADS)

    Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben

    2011-10-01

    Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.

  11. Plastoglobules in algae: A comprehensive comparative study of the presence of major structural and functional components in complex plastids.

    PubMed

    Lohscheider, Jens N; Río Bártulos, Carolina

    2016-08-01

    Plastoglobules (PG) are lipophilic droplets attached to thylakoid membranes in higher plants and green algae and are implicated in prenyl lipid biosynthesis. They might also represent a central hub for integration of plastid signals under stress and therefore the adaptation of the thylakoid membrane under such conditions. In Arabidopsis thaliana, PG contain around 30 specific proteins of which Fibrillins (FBN) and Activity of bc1 complex kinases (ABC1K) represent the majority with respect to both number and protein mass. However, nothing is known about the presence of PG in most algal species, which are responsible for about 50% of global primary production. Therefore, we searched the genomes of publicly available algal genomes for components of PG and the associated functional network in order to predict their presence and potential evolutionary conservation of physiological functions. We could identify homologous sequences for core components of PG, like FBN and ABC1K, in most investigated algal species. Furthermore, proteins at central and interesting positions within the PG functional coexpression network were identified. Phylogenetic sequence analysis revealed diversity within FBN and ABC1K sequences among algal species with complex plastids of the red lineage and large differences compared with green lineage species. Two types of FBN were detected that differ in their isoelectric point which seems to correlate with subcellular localization. Subgroups of FBN were shared between many investigated species and modeling of their 3D-structure implied a conserved structure. FBN and ABC1K are essential structural and functional components of PG. Their occurrence in investigated algal species suggests presence of PG therein and functions in prenyl lipid metabolism and adaptation of the thylakoid membrane that are conserved during evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Vibroacoustic response of structures and perturbation Reynolds stress near structure-turbulence interface

    NASA Technical Reports Server (NTRS)

    Maekawa, S.; Lin, Y. K.

    1977-01-01

    The interaction between a turbulent flow and certain types of structures which respond to its excitation is investigated. One-dimensional models were used to develop the basic ideas applied to a second model resembling the fuselage construction of an aircraft. In the two-dimensional case a simple membrane, with a small random variation in the membrane tension, was used. A decaying turbulence was constructed by superposing infinitely many components, each of which is convected as a frozen pattern at a different velocity. Structure-turbulence interaction results are presented in terms of the spectral densities of the structural response and the perturbation Reynolds stress in the fluid at the vicinity of the interface.

  13. Higher-order assemblies of BAR domain proteins for shaping membranes.

    PubMed

    Suetsugu, Shiro

    2016-06-01

    Most cellular organelles contain lipid bilayer membranes. The earliest characterization of cellular organelles was performed by electron microscopy observation of such membranes. However, the precise mechanisms for shaping the membrane in particular subcellular organelles is poorly understood. Classically, the overall cellular shape, i.e. the shape of the plasma membrane, was thought to be governed by the reorganization of cytoskeletal components such as actin and microtubules. The plasma membrane contains various submicron structures such as clathrin-coated pits, caveolae, filopodia and lamellipodia. These subcellular structures are either invaginations or protrusions and are associated with the cytoskeleton. Therefore, it could be hypothesized that there are membrane-binding proteins that cooperates with cytoskeleton in shaping of plasma membrane organelles. Proteins with the Bin-Amphiphysin-Rvs (BAR) domain connect a variety of membrane shapes to actin filaments. The BAR domains themselves bend the membranes by their rigidity and then mold the membranes into tubules through their assembly as spiral polymers, which are thought to be involved in the various submicron structures. Membrane tubulation by polymeric assembly of the BAR domains is supposed to be regulated by binding proteins, binding lipids and the mechanical properties of the membrane. This review gives an overview of BAR protein assembly, describes the significance of the assembly and discusses how to study the assembly in the context of membrane and cellular morphology. The technical problems encountered in microscopic observation of BAR domain assembly are also discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Structural basis for catalysis at the membrane-water interface.

    PubMed

    Dufrisne, Meagan Belcher; Petrou, Vasileios I; Clarke, Oliver B; Mancia, Filippo

    2017-11-01

    The membrane-water interface forms a uniquely heterogeneous and geometrically constrained environment for enzymatic catalysis. Integral membrane enzymes sample three environments - the uniformly hydrophobic interior of the membrane, the aqueous extramembrane region, and the fuzzy, amphipathic interfacial region formed by the tightly packed headgroups of the components of the lipid bilayer. Depending on the nature of the substrates and the location of the site of chemical modification, catalysis may occur in each of these environments. The availability of structural information for alpha-helical enzyme families from each of these classes, as well as several beta-barrel enzymes from the bacterial outer membrane, has allowed us to review here the different ways in which each enzyme fold has adapted to the nature of the substrates, products, and the unique environment of the membrane. Our focus here is on enzymes that process lipidic substrates. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Membrane mimetic surface functionalization of nanoparticles: Methods and applications

    PubMed Central

    Weingart, Jacob; Vabbilisetty, Pratima; Sun, Xue-Long

    2013-01-01

    Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regards to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications. PMID:23688632

  16. High yield cell-free production of integral membrane proteins without refolding or detergents.

    PubMed

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  17. Imaging polarimetry in patients with neovascular age-related macular degeneration

    PubMed Central

    Elsner, Ann E.; Weber, Anke; Cheney, Michael C.; VanNasdale, Dean A.; Miura, Masahiro

    2007-01-01

    Imaging polarimetry was used to examine different components of neovascular membranes in age-related macular degeneration. Retinal images were acquired with a scanning laser polarimeter. An innovative pseudo-color scale, based on cardinal directions of color, displayed two types of image information: relative phases and magnitudes of birefringence. Membranes had relative phase changes that did not correspond to anatomical structures in reflectance images. Further, membrane borders in depolarized light images had significantly higher contrasts than those in reflectance images. The retinal birefringence in neovascular membranes indicates optical activity consistent with molecular changes rather than merely geometrical changes. PMID:17429494

  18. Bacterial Actins.

    PubMed

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  19. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.

    PubMed

    Adams, Mark; Wang, Eric; Zhuang, Xiaohong; Klauda, Jeffery B

    2017-11-21

    The lipid composition of bovine and human ocular lens membranes has been probed, and a variety of lipids have been found including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL) with cholesterol being present in particularly high concentrations. In this study, we use the all-atom CHARMM36 force field to simulate binary, ternary, and quaternary mixtures as models of the ocular lens. High concentration of cholesterol, in combination with different and varying diversity of phospholipids (PL) and sphingolipids (SL), affect the structure of the ocular lens lipid bilayer. The following analyses were done for each simulation: surface area per lipid, component surface area per lipid, deuterium order parameters (S CD ), electron density profiles (EDP), membrane thickness, hydrogen bonding, radial distribution functions, clustering, and sterol tilt angle distribution. The S CD show significant bilayer alignment and packing in cholesterol-rich bilayers. The EDP show the transition from liquid crystalline to liquid ordered with the addition of cholesterol. Hydrogen bonds in our systems show the tendency for intramolecular interactions between cholesterol and fully saturated lipid tails for less complex bilayers. But with an increased number of components in the bilayer, the acyl chain of the lipids becomes a less important characteristic, and the headgroup of the lipid becomes more significant. Overall, cholesterol is the driving force of membrane structure of the ocular lens membrane where interactions between cholesterol, PL, and SL determine structure and function of the biomembrane. The goal of this work is to develop a baseline for further study of more physiologically realistic ocular lens lipid membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantifying Square Membrane Wrinkle Behavior Using MITC Shell Elements

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy B.; Iwasa, Takashi; Natori, M. C.

    2004-01-01

    For future membrane based structures, quantified predictions of membrane wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made while using finite elements. Specifically, this work demonstrates that critical assumptions include: effects of gravity. supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 square meter membrane is treated as a structural material with non-negligible bending stiffness. Mixed Interpolation of Tensorial Components (MTTC) shell elements are used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density for cases with differing initial conditions are independent of assumed initial con&tions. In addition, analysis results indicate that the relationship between amplitude scale (W/t) and structural scale (L/t) is linear in the presence of a gravity field.

  1. Caveolae.

    PubMed

    Parton, Robert G; Tillu, Vikas A; Collins, Brett M

    2018-04-23

    Caveolae are one of the most abundant and striking features of the plasma membrane of many mammalian cell types. These surface pits have fascinated biologists since their discovery by the pioneers of electron microscopy in the middle of the last century, but we are only just starting to understand their multiple functions. Molecular understanding of caveolar formation is advancing rapidly and we now know that sculpting the membrane to generate the characteristic bulb-shaped caveolar pit involves the coordinated action of integral membrane proteins and peripheral membrane coat proteins in a process dependent on their multiple interactions with membrane lipids. The resulting structure is further stabilised by protein complexes at the caveolar neck. Caveolae can bud to generate an endocytic carrier but can also be disassembled in response to specific stimuli to function as a mechanoprotective device. These structures have also been linked to numerous signalling pathways. Here, we will briefly summarise the current molecular and structural understanding of caveolar formation and dynamics, discuss how the crucial structural components of caveolae work together to generate a dynamic sensing domain, and discuss the implications of recent studies on the diverse roles proposed for caveolae in different cells and tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.

    PubMed

    Worrall, L J; Hong, C; Vuckovic, M; Deng, W; Bergeron, J R C; Majewski, D D; Huang, R K; Spreter, T; Finlay, B B; Yu, Z; Strynadka, N C J

    2016-12-14

    The type III secretion (T3S) injectisome is a specialized protein nanomachine that is critical for the pathogenicity of many Gram-negative bacteria, including purveyors of plague, typhoid fever, whooping cough, sexually transmitted infections and major nosocomial infections. This syringe-shaped 3.5-MDa macromolecular assembly spans both bacterial membranes and that of the infected host cell. The internal channel formed by the injectisome allows for the direct delivery of partially unfolded virulence effectors into the host cytoplasm. The structural foundation of the injectisome is the basal body, a molecular lock-nut structure composed predominantly of three proteins that form highly oligomerized concentric rings spanning the inner and outer membranes. Here we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basal body, determined using single-particle cryo-electron microscopy, with the inner-membrane-ring and outer-membrane-ring oligomers defined at 4.3 Å and 3.6 Å resolution, respectively. This work presents the first, to our knowledge, high-resolution structural characterization of the major components of the basal body in the assembled state, including that of the widespread class of outer-membrane portals known as secretins.

  3. Conformational study of bovine lactoferricin in membrane-micking conditions by molecular dynamics simulation and circular dichroism.

    PubMed

    Daidone, Isabella; Magliano, Alessandro; Di Nola, Alfredo; Mignogna, Giuseppina; Clarkson, Matilda Manuela; Lizzi, Anna Rita; Oratore, Arduino; Mazza, Fernando

    2011-04-01

    Lactoferricins are potent antimicrobial peptides released by pepsin cleavage of Lactoferrins. Bovine Lactoferricin (LfcinB) has higher activity than the intact bovine Lactoferrin, and is the most active among the other Lactoferricins of human, murine and caprine origin. In the intact protein the fragment corresponding to LfcinB is in an helical conformation, while in water LfcinB adopts an amphipathic β-hairpin structure. However, whether any of these structural motifs is the antibacterial active conformation, i.e., the one interacting with bacterial membrane components, remains to be seen. Here we present Circular Dichroism (CD) spectra and Molecular Dynamics (MD) simulations indicating that in membrane-mimicking solvents the LfcinB adopts an amphipathic β-hairpin structure similar to that observed in water, but differing in the dynamic behavior of the side-chains of the two tryptophan residues. In the membrane-mimicking solvent these side-chains show a high propensity to point towards the hydrophobic environment, rather than being in the hydrophobic core as seen in water, while the backbone preserves the hairpin conformation as found in water. These results suggest that the tryptophans might act as anchors pulling the stable, solvent-invariant hairpin structure into the membrane.

  4. In situ structural analysis of the Yersinia enterocolitica injectisome

    PubMed Central

    Kudryashev, Mikhail; Stenta, Marco; Schmelz, Stefan; Amstutz, Marlise; Wiesand, Ulrich; Castaño-Díez, Daniel; Degiacomi, Matteo T; Münnich, Stefan; Bleck, Christopher KE; Kowal, Julia; Diepold, Andreas; Heinz, Dirk W; Dal Peraro, Matteo; Cornelis, Guy R; Stahlberg, Henning

    2013-01-01

    Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to inject effector proteins into eukaryotic host cells, a process called type III secretion. Here we present the first three-dimensional structure of Yersinia enterocolitica and Shigella flexneri injectisomes in situ and the first structural analysis of the Yersinia injectisome. Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length variations of 20%. The in situ structures of the Y. enterocolitica and S. flexneri injectisomes had similar dimensions and were significantly longer than the isolated structures of related injectisomes. The crystal structure of the inner membrane injectisome component YscD appeared elongated compared to a homologous protein, and molecular dynamics simulations documented its elongation elasticity. The ring-shaped secretin YscC at the outer membrane was stretched by 30–40% in situ, compared to its isolated liposome-embedded conformation. We suggest that elasticity is critical for some two-membrane spanning protein complexes to cope with variations in the intermembrane distance. DOI: http://dx.doi.org/10.7554/eLife.00792.001 PMID:23908767

  5. Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of Gram-negative Bacteria*

    PubMed Central

    Xu, Yongbin; Moeller, Arne; Jun, So-Young; Le, Minho; Yoon, Bo-Young; Kim, Jin-Sik; Lee, Kangseok; Ha, Nam-Chul

    2012-01-01

    Gram-negative bacteria are capable of expelling diverse xenobiotic substances from within the cell by use of three-component efflux pumps in which the energy-activated inner membrane transporter is connected to the outer membrane channel protein via the membrane fusion protein. In this work, we describe the crystal structure of the membrane fusion protein MexA from the Pseudomonas aeruginosa MexAB-OprM pump in the hexameric ring arrangement. Electron microscopy study on the chimeric complex of MexA and the outer membrane protein OprM reveals that MexA makes a tip-to-tip interaction with OprM, which suggests a docking model for MexA and OprM. This docking model agrees well with genetic results and depicts detailed interactions. Opening of the OprM channel is accompanied by the simultaneous exposure of a protein structure resembling a six-bladed cogwheel, which intermeshes with the complementary cogwheel structure in the MexA hexamer. Taken together, we suggest an assembly and channel opening model for the MexAB-OprM pump. This study provides a better understanding of multidrug resistance in Gram-negative bacteria. PMID:22308040

  6. Interaction between bending and tension forces in bilayer membranes.

    PubMed Central

    Secomb, T W

    1988-01-01

    A theoretical analysis is presented of the bending mechanics of a membrane consisting of two tightly-coupled leaflets, each of which shears and bends readily but strongly resists area changes. Structures of this type have been proposed to model biological membranes such as red blood cell membrane. It is shown that when such a membrane is bent, anisotropic components of resultant membrane tension (shear stresses) are induced, even when the tension in each leaflet is isotropic. The induced shear stresses increase as the square of the membrane curvature, and become significant for moderate curvatures (when the radius of curvature is much larger than the distance between the leaflets). This effect has implications for the analysis of shape and deformation of freely suspended and flowing red blood cells. PMID:3224154

  7. Every day I'm rufflin': Calcium sensing and actin dynamics in the growth factor-independent membrane ruffling of professional phagocytes.

    PubMed

    Schlam, Daniel; Canton, Johnathan

    2017-04-03

    Professional phagocytes continuously extend dynamic, actin-driven membrane protrusions. These protrusions, often referred to as membrane ruffles, serve a critical role in the essential phagocyte processes of macropinocytosis and phagocytosis. Small GTPases, such as RAC1/2, spatially and temporally regulate membrane ruffle formation. We have recently shown that extracellular calcium regulates the elaboration of membrane ruffles primarily through the synthesis of phosphatidic acid (PtdOH) at the plasma membrane. RAC1/2 guanine nucleotide exchange factors harbouring polybasic stretches are recruited by PtdOH to sites of ruffle formation. Here we discuss our findings and offer perspectives on how the regulation of dynamic actin structures at the plasma membrane by small GTPases is a critical component of phagocyte function.

  8. Protons and how they are transported by proton pumps.

    PubMed

    Buch-Pedersen, M J; Pedersen, B P; Veierskov, B; Nissen, P; Palmgren, M G

    2009-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK(a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires.

  9. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.

    PubMed

    Patching, Simon G

    2014-01-01

    Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Quaternary Structure of the Oxaloacetate Decarboxylase Membrane Complex and Mechanistic Relationships to Pyruvate Carboxylases*

    PubMed Central

    Balsera, Monica; Buey, Ruben M.; Li, Xiao-Dan

    2011-01-01

    The oxaloacetate decarboxylase primary Na+ pump (OAD) is an essential membrane protein complex that functions in the citrate fermentation pathway of some pathogenic bacteria under anaerobic conditions. OAD contains three different subunits: Oad-α, a biotinylated extrinsic protein that catalyzes the α-ketodecarboxylation of oxaloacetate; Oad-γ, a structural bitopic membrane protein whose cytosolic tail (named as Oad-γ′) binds tightly to Oad-α; and Oad-β, a multispan transmembrane α-helical protein that constitutes the Na+ channel. How OAD is organized structurally at the membrane and what the molecular determinants are that lead to an efficient energy coupling mechanism remain elusive. In the present work, we elucidate the stoichiometry of the native complex as well as the low resolution structure of the peripheral components of OAD (Oad-α and Oad-γ′) by small angle x-ray scattering. Our results point to a quaternary assembly similar to the pyruvate carboxylase complex organization. Herein, we propose a model in which the association in pairs of Oad-α dimers, mediated by Oad-γ, results in the acquisition of a functional oligomeric state at the bacterial membrane. New structural insights for the conformational rearrangements associated with the carboxylbiotin transfer reaction within OAD are provided. PMID:21209096

  11. Membrane Structure: Spin Labeling and Freeze Etching of Mycoplasma laidlawii*

    PubMed Central

    Tourtellotte, Mark E.; Branton, Daniel; Keith, Alec

    1970-01-01

    A spin-labeled fatty acid was incorporated in vivo into the polar lipids of Mycoplasma laidlawii membranes. The electron paramagnetic resonance signal from either intact cells or their extracted lipids reflected the fatty acid composition of the Mycoplasma membranes. Comparison of signals from intact cells, gramicidin-treated cells, heat-treated cells, and extracted lipids indicates that a major portion of the membrane lipids is in a semiviscous hydrocarbon environment. The results also show that the spin label in the intact membrane is slightly but significantly less mobile than it is in protein-free lipid extracts made from these membranes. Correlated electron microscope examinations using the freeze-etch technique reveal particulate components in the hydrophobic region of the membrane. The mobility of the lipids in the intact cell membrane may be influenced by their association with these particles. Images PMID:4316683

  12. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    PubMed

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Insights into the structure and function of membrane-integrated processive glycosyltransferases

    DOE PAGES

    Bi, Yunchen; Hubbard, Caitlin; Purushotham, Pallinti; ...

    2015-09-02

    Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. In this paper, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin,more » alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).« less

  14. Insights into the structure and function of membrane-integrated processive glycosyltransferases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Yunchen; Hubbard, Caitlin; Purushotham, Pallinti

    Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. In this paper, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin,more » alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).« less

  15. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life. © 2011 American Chemical Society

  17. Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment.

    PubMed

    Christensen, Mikkel; Skeby, Katrine K; Schiøtt, Birgit

    2017-09-12

    Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.

  18. Reliability prediction of large fuel cell stack based on structure stress analysis

    NASA Astrophysics Data System (ADS)

    Liu, L. F.; Liu, B.; Wu, C. W.

    2017-09-01

    The aim of this paper is to improve the reliability of Proton Electrolyte Membrane Fuel Cell (PEMFC) stack by designing the clamping force and the thickness difference between the membrane electrode assembly (MEA) and the gasket. The stack reliability is directly determined by the component reliability, which is affected by the material property and contact stress. The component contact stress is a random variable because it is usually affected by many uncertain factors in the production and clamping process. We have investigated the influences of parameter variation coefficient on the probability distribution of contact stress using the equivalent stiffness model and the first-order second moment method. The optimal contact stress to make the component stay in the highest level reliability is obtained by the stress-strength interference model. To obtain the optimal contact stress between the contact components, the optimal thickness of the component and the stack clamping force are optimally designed. Finally, a detailed description is given how to design the MEA and gasket dimensions to obtain the highest stack reliability. This work can provide a valuable guidance in the design of stack structure for a high reliability of fuel cell stack.

  19. Direct Visualization of the Outer Membrane of Mycobacteria and Corynebacteria in Their Native State▿ †

    PubMed Central

    Zuber, Benoît; Chami, Mohamed; Houssin, Christine; Dubochet, Jacques; Griffiths, Gareth; Daffé, Mamadou

    2008-01-01

    The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function. PMID:18567661

  20. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state.

    PubMed

    Zuber, Benoît; Chami, Mohamed; Houssin, Christine; Dubochet, Jacques; Griffiths, Gareth; Daffé, Mamadou

    2008-08-01

    The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function.

  1. Membrane Assembly during the Infection Cycle of the Giant Mimivirus

    PubMed Central

    Mutsafi, Yael; Shimoni, Eyal; Shimon, Amir; Minsky, Abraham

    2013-01-01

    Although extensively studied, the structure, cellular origin and assembly mechanism of internal membranes during viral infection remain unclear. By combining diverse imaging techniques, including the novel Scanning-Transmission Electron Microscopy tomography, we elucidate the structural stages of membrane biogenesis during the assembly of the giant DNA virus Mimivirus. We show that this elaborate multistage process occurs at a well-defined zone localized at the periphery of large viral factories that are generated in the host cytoplasm. Membrane biogenesis is initiated by fusion of multiple vesicles, ∼70 nm in diameter, that apparently derive from the host ER network and enable continuous supply of lipid components to the membrane-assembly zone. The resulting multivesicular bodies subsequently rupture to form large open single-layered membrane sheets from which viral membranes are generated. Membrane generation is accompanied by the assembly of icosahedral viral capsids in a process involving the hypothetical major capsid protein L425 that acts as a scaffolding protein. The assembly model proposed here reveals how multiple Mimivirus progeny can be continuously and efficiently generated and underscores the similarity between the infection cycles of Mimivirus and Vaccinia virus. Moreover, the membrane biogenesis process indicated by our findings provides new insights into the pathways that might mediate assembly of internal viral membranes in general. PMID:23737745

  2. RECOVERY ACT - Thylakoid Assembly and Folded Protein Transport by the Tat Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabney-Smith, Carole

    Assembly of functional photosystems complete with necessary intrinsic (membrane-bound) and extrinsic proteins requires the function of at least 3 protein transport pathways in thylakoid membranes. Our research focuses on one of those pathways, a unique and essential protein transport pathway found in the chloroplasts of plants, bacteria, and some archaebacteria, the Twin arginine translocation (Tat) system. The chloroplast Tat (cpTat) system is thought to be responsible for the proper location of ~50% of thylakoid lumen proteins, several of which are necessary for proper photosystem assembly, maintenance, and function. Specifically, cpTat systems are unique because they transport fully folded and assembledmore » proteins across ion tight membranes using only three membrane components, Tha4, Hcf106, and cpTatC, and the protonmotive force generated by photosynthesis. Despite the importance of the cpTat system in plants, the mechanism of transport of a folded precursor is not well known. Our long-term goal is to investigate the role protein transport systems have on organelle biogenesis, particularly the assembly of membrane protein complexes in thylakoids of chloroplasts. The objective of this proposal is to correlate structural changes in the membrane-bound cpTat component, Tha4, to the mechanism of translocation of folded-precursor substrates across the membrane bilayer by using a cysteine accessibility and crosslinking approach. Our central hypothesis is that the precursor passes through a proteinaceous pore of assembled Tha4 protomers that have undergone a conformational or topological change in response to transport. This research is predicated upon the observations that Tha4 exists in molar excess in the membrane relative to the other cpTat components; its regulated assembly to the precursor-bound receptor; and our data showing oligomerization of Tha4 into very large complexes in response to transport. Our rationale for these studies is that understanding cpTat system mechanism in chloroplasts will lead to a better understanding of the biogenesis of photosynthetic membranes potentially providing a means to engineer photosynthetic complexes into synthetic membranes for energy production. We are especially well prepared to undertake this project because we have developed a novel functional replacement assay, which was used to demonstrate a correlation of Tha4 oligomerization to transport. Thylakoids of plant chloroplasts provide a very robust, reliable assay to gain mechanistic detail about cpTat systems, providing most of the biochemical analyses to date. We plan to test our central hypothesis and accomplish the overall objective of this proposal by (1) Identifying the cpTat component(s) that interact with the mature domain of precursor during transport, (2) Determining the organization of the cpTat translocon, and (3) Comparing Tha4 topology in thylakoids during active transport and at rest. The proposed studies are innovative due to our ability to correlate structural changes in cpTat protein complexes during the transport of precursor. At the completion of this project, we expect to know the cpTat component(s) that interacts directly with the mature domain of the precursor, important because it is not known which components comprise the pore for passage of the mature domain. We also expect to know the arrangement of the components in the cpTat transport complex through direct interaction between Tha4 and the other CpTat components, a key point to establishing the mechanism of translocation. Lastly, we expect to correlate topological changes of Tha4 with precursor transport, key to establishing Tha4's role in the transport process. The successful completion of these studies is expected to have an important impact in understanding chloroplast biogenesis and assembly of photosynthetic complexes in plants and photosynthetic bacteria.« less

  3. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study.

    PubMed

    Inoue, S; Osmond, D G

    2001-11-01

    Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the exceptionally large quantity of CSPG may represent a reservoir of CD44 receptor for use in hemopoiesis. Copyright 2001 Wiley-Liss, Inc.

  4. Emerging Biomimetic Applications of DNA Nanotechnology.

    PubMed

    Shen, Haijing; Wang, Yingqian; Wang, Jie; Li, Zhihao; Yuan, Quan

    2018-06-25

    Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.

  5. The structure of the β-barrel assembly machinery complex

    DOE PAGES

    Bakelar, Jeremy; Buchanan, Susan K.; Noinaj, Nicholas

    2016-01-08

    β-Barrel outer membrane proteins (OMPs) are found in the outer membranes of Gram-negative bacteria and are essential for nutrient import, signaling, and adhesion. A 200-kilodalton five-component complex called the β-barrel assembly machinery (BAM) complex has been implicated in the biogenesis of OMPs. In this paper, we report the structure of the BAM complex from Escherichia coli, revealing that binding of BamCDE modulates the conformation of BamA, the central component, which may serve to regulate the BAM complex. The periplasmic domain of BamA was in a closed state that prevents access to the barrel lumen, which indicates substrate OMPs may notmore » be threaded through the barrel during biogenesis. Finally and further, conformational shifts in the barrel domain lead to opening of the exit pore and rearrangement at the lateral gate.« less

  6. The structure of the β-barrel assembly machinery complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakelar, Jeremy; Buchanan, Susan K.; Noinaj, Nicholas

    β-Barrel outer membrane proteins (OMPs) are found in the outer membranes of Gram-negative bacteria and are essential for nutrient import, signaling, and adhesion. A 200-kilodalton five-component complex called the β-barrel assembly machinery (BAM) complex has been implicated in the biogenesis of OMPs. In this paper, we report the structure of the BAM complex from Escherichia coli, revealing that binding of BamCDE modulates the conformation of BamA, the central component, which may serve to regulate the BAM complex. The periplasmic domain of BamA was in a closed state that prevents access to the barrel lumen, which indicates substrate OMPs may notmore » be threaded through the barrel during biogenesis. Finally and further, conformational shifts in the barrel domain lead to opening of the exit pore and rearrangement at the lateral gate.« less

  7. The transport along membrane nanotubes driven by the spontaneous curvature of membrane components.

    PubMed

    Kabaso, Doron; Bobrovska, Nataliya; Góźdź, Wojciech; Gongadze, Ekaterina; Kralj-Iglič, Veronika; Zorec, Robert; Iglič, Aleš

    2012-10-01

    Intercellular membrane nanotubes (ICNs) serve as a very specific transport system between neighboring cells. The underlying mechanisms responsible for the transport of membrane components and vesicular dilations along the ICNs are not clearly understood. The present study investigated the spatial distribution of anisotropic membrane components of tubular shapes and isotropic membrane components of spherical shapes. Experimental results revealed the preferential distribution of CTB (cholera toxin B)-GM1 complexes mainly on the spherical cell membrane, and cholesterol-sphingomyelin at the membrane leading edge and ICNs. In agreement with previous studies, we here propose that the spatial distribution of CTB-GM1 complexes and cholesterol-sphingomyelin rafts were due to their isotropic and anisotropic shapes, respectively. To elucidate the relationship between a membrane component shape and its spatial distribution, a two-component computational model was constructed. The minimization of the membrane bending (free) energy revealed the enrichment of the anisotropic component along the ICN and the isotropic component in the parent cell membrane, which was due to the curvature mismatch between the ICN curvature and the spontaneous curvature of the isotropic component. The equations of motion, derived from the differentiation of the membrane free energy, revealed a curvature-dependent flux of the isotropic component and a curvature-dependent force exerted on a vesicular dilation along the ICN. Finally, the effects of possible changes in the orientational ordering of the anisotropic component attendant to the transport of the vesicular dilation were discussed with connection to the propagation of electrical and chemical signals. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Synergistic interactions of lipids and myelin basic protein

    NASA Astrophysics Data System (ADS)

    Hu, Yufang; Doudevski, Ivo; Wood, Denise; Moscarello, Mario; Husted, Cynthia; Genain, Claude; Zasadzinski, Joseph A.; Israelachvili, Jacob

    2004-09-01

    This report describes force measurements and atomic force microscope imaging of lipid-protein interactions that determine the structure of a model membrane system that closely mimics the myelin sheath. Our results suggest that noncovalent, mainly electrostatic and hydrophobic, interactions are responsible for the multilamellar structure and stability of myelin. We find that myelin basic protein acts as a lipid coupler between two apposed bilayers and as a lipid "hole-filler," effectively preventing defect holes from developing. From our protein-mediated-adhesion and force-distance measurements, we develop a simple quantitative model that gives a reasonably accurate picture of the molecular mechanism and adhesion of bilayer-bridging proteins by means of noncovalent interactions. The results and model indicate that optimum myelin adhesion and stability depend on the difference between, rather than the product of, the opposite charges on the lipid bilayers and myelin basic protein, as well as on the repulsive forces associated with membrane fluidity, and that small changes in any of these parameters away from the synergistically optimum values can lead to large changes in the adhesion or even its total elimination. Our results also show that the often-asked question of which membrane species, the lipids or the proteins, are the "important ones" may be misplaced. Both components work synergistically to provide the adhesion and overall structure. A better appreciation of the mechanism of this synergy may allow for a better understanding of stacked and especially myelin membrane structures and may lead to better treatments for demyelinating diseases such as multiple sclerosis. lipid-protein interactions | myelin membrane structure | membrane adhesion | membrane regeneration/healing | demyelinating diseases

  9. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    PubMed

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dynamic hybrid materials for constitutional self-instructed membranes.

    PubMed

    Cazacu, Adinela; Legrand, Yves-Marie; Pasc, Andreea; Nasr, Gihane; Van der Lee, Arie; Mahon, Eugene; Barboiu, Mihail

    2009-05-19

    Constitutional self-instructed membranes were developed and used for mimicking the adaptive structural functionality of natural ion-channel systems. These membranes are based on dynamic hybrid materials in which the functional self-organized macrocycles are reversibly connected with the inorganic silica through hydrophobic noncovalent interactions. Supramolecular columnar ion-channel architectures can be generated by reversible confinement within scaffolding hydrophobic silica mesopores. They can be structurally determined by using X-ray diffraction and morphologically tuned by alkali-salts templating. From the conceptual point of view, these membranes express a synergistic adaptive behavior: the simultaneous binding of the fittest cation and its anion would be a case of "homotropic allosteric interactions," because in time it increases the transport efficiency of the pore-contained superstructures by a selective evolving process toward the fittest ion channel. The hybrid membranes presented here represent dynamic constitutional systems evolving over time to form the fittest ion channels from a library of molecular and supramolecular components, or selecting the fittest ion pairs from a mixture of salts demonstrating flexible adaptation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontana, Juan; Lopez-Iglesias, Carmen; Tzeng, Wen-Ping

    Viral factories are complex structures in the infected cell where viruses compartmentalize their life cycle. Rubella virus (RUBV) assembles factories by recruitment of rough endoplasmic reticulum (RER), mitochondria and Golgi around modified lysosomes known as cytopathic vacuoles or CPVs. These organelles contain active replication complexes that transfer replicated RNA to assembly sites in Golgi membranes. We have studied the structure of RUBV factory in three dimensions by electron tomography and freeze-fracture. CPVs contain stacked membranes, rigid sheets, small vesicles and large vacuoles. These membranes are interconnected and in communication with the endocytic pathway since they incorporate endocytosed BSA-gold. RER andmore » CPVs are coupled through protein bridges and closely apposed membranes. Golgi vesicles attach to the CPVs but no tight contacts with mitochondria were detected. Immunogold labelling confirmed that the mitochondrial protein p32 is an abundant component around and inside CPVs where it could play important roles in factory activities.« less

  12. Crystallographic snapshot of cellulose synthesis and membrane translocation.

    PubMed

    Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen

    2013-01-10

    Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.

  13. Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease

    PubMed Central

    Drolle, Elizabeth; Negoda, Alexander; Hammond, Keely; Pavlov, Evgeny

    2017-01-01

    Amyloid-beta peptides (Aβ), implicated in Alzheimer’s disease (AD), interact with the cellular membrane and induce amyloid toxicity. The composition of cellular membranes changes in aging and AD. We designed multi-component lipid models to mimic healthy and diseased states of the neuronal membrane. Using atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and black lipid membrane (BLM) techniques, we demonstrated that these model membranes differ in their nanoscale structure and physical properties, and interact differently with Aβ1–42. Based on our data, we propose a new hypothesis that changes in lipid membrane due to aging and AD may trigger amyloid toxicity through electrostatic mechanisms, similar to the accepted mechanism of antimicrobial peptide action. Understanding the role of the membrane changes as a key activating amyloid toxicity may aid in the development of a new avenue for the prevention and treatment of AD. PMID:28767712

  14. Drug Distribution. Part 1. Models to Predict Membrane Partitioning.

    PubMed

    Nagar, Swati; Korzekwa, Ken

    2017-03-01

    Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.

  15. Systematically Ranking the Tightness of Membrane Association for Peripheral Membrane Proteins (PMPs)*

    PubMed Central

    Gao, Liyan; Ge, Haitao; Huang, Xiahe; Liu, Kehui; Zhang, Yuanya; Xu, Wu; Wang, Yingchun

    2015-01-01

    Large-scale quantitative evaluation of the tightness of membrane association for nontransmembrane proteins is important for identifying true peripheral membrane proteins with functional significance. Herein, we simultaneously ranked more than 1000 proteins of the photosynthetic model organism Synechocystis sp. PCC 6803 for their relative tightness of membrane association using a proteomic approach. Using multiple precisely ranked and experimentally verified peripheral subunits of photosynthetic protein complexes as the landmarks, we found that proteins involved in two-component signal transduction systems and transporters are overall tightly associated with the membranes, whereas the associations of ribosomal proteins are much weaker. Moreover, we found that hypothetical proteins containing the same domains generally have similar tightness. This work provided a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli. PMID:25505158

  16. Characterization of membrane association of Rinderpest virus matrix protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhashri, R.; Shaila, M.S.

    2007-04-20

    Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M proteinmore » gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein.« less

  17. Phospholipid component volumes: determination and application to bilayer structure calculations.

    PubMed

    Armen, R S; Uitto, O D; Feller, S E

    1998-08-01

    We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments.

  18. Phospholipid component volumes: determination and application to bilayer structure calculations.

    PubMed Central

    Armen, R S; Uitto, O D; Feller, S E

    1998-01-01

    We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments. PMID:9675175

  19. Advanced imaging as a novel approach to the characterization of membranes for microfiltration applications

    NASA Astrophysics Data System (ADS)

    Marroquin, Milagro

    The primary objectives of my dissertation were to design, develop and implement novel confocal microscopy imaging protocols for the characterization of membranes and highlight opportunities to obtain reliable and cutting-edge information of microfiltration membrane morphology and fouling processes. After a comprehensive introduction and review of confocal microscopy in membrane applications (Chapter 1), the first part of this dissertation (Chapter 2) details my work on membrane morphology characterization by confocal laser scanning microscopy (CLSM) and the implementation of my newly developed CLSM cross-sectional imaging protocol. Depth-of-penetration limits were identified to be approximately 24 microns and 7-8 microns for mixed cellulose ester and polyethersulfone membranes, respectively, making it impossible to image about 70% of the membrane bulk. The development and implementation of my cross-sectional CLSM method enabled the imaging of the entire membrane cross-section. Porosities of symmetric and asymmetric membranes with nominal pore sizes in the range 0.65-8.0 microns were quantified at different depths and yielded porosity values in the 50-60% range. It is my hope and expectation that the characterization strategy developed in this part of the work will enable future studies of different membrane materials and applications by confocal microscopy. After demonstrating how cross-sectional CLSM could be used to fully characterize membrane morphologies and porosities, I applied it to the characterization of fouling occurring in polyethersulfone microfiltration membranes during the processing of solutions containing proteins and polysaccharides (Chapter 3). Through CLSM imaging, it was determined where proteins and polysaccharides deposit throughout polymeric microfiltration membranes when a fluid containing these materials is filtered. CLSM enabled evaluation of the location and extent of fouling by individual components (protein: casein and polysaccharide: dextran) within wet, asymmetric polyethersulfone microfiltration membranes. Information from filtration flux profiles and cross-sectional CLSM images of the membranes that processed single-component solutions and mixtures agreed with each other. Concentration profiles versus depth for each individual component present in the feed solution were developed from the analysis of the CLSM images at different levels of fouling for single-component solutions and mixtures. CLSM provided visual information that helped elucidate the role of each component on membrane fouling and provided a better understanding of how component interactions impact the fouling profiles. Finally, Chapter 4 extends the application of my cross-sectional CLSM imaging protocol to study the fouling of asymmetric polyethersulfone membranes during the microfiltration of protein, polyphenol, and polysaccharide mixtures to better understand the solute-solute and solute-membrane interactions leading to fouling in beverage clarification processes. Again, cross-sectional CLSM imaging provided information on the location and extent of fouling throughout the entire thickness of the PES membrane. Quantitative analysis of the cross-sectional CLSM images provided a measurement of the masses of foulants deposited throughout the membrane. Moreover, flux decline data collected for different mixtures of casein, tannic acid and beta-cyclodextrin were analyzed with standard fouling models to determine the fouling mechanisms at play when processing different combinations of foulants. Results from model analysis of flux data were compared with the quantitative visual analysis of the correspondent CLSM images. This approach, which couples visual and performance measurements, is expected to provide a better understanding of the causes of fouling that, in turn, is expected to aid in the design of new membranes with tailored structure or surface chemistry that prevents the deposition of the foulants in "prone to foul" regions. (Abstract shortened by UMI.)

  20. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruskamo, Salla; University of Oulu, Oulu; Yadav, Ravi P.

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structuralmore » analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.« less

  1. Cavin family proteins and the assembly of caveolae

    PubMed Central

    Kovtun, Oleksiy; Tillu, Vikas A.; Ariotti, Nicholas; Parton, Robert G.; Collins, Brett M.

    2015-01-01

    ABSTRACT Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein–protein and protein–lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins. PMID:25829513

  2. Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    He, Daping; Tang, Haolin; Kou, Zongkui; Pan, Mu; Sun, Xueliang; Zhang, Jiujun; Mu, Shichun

    2017-05-01

    Engineered graphene materials (EGMs) with unique structures and properties have been incorporated into various components of polymer electrolyte membrane fuel cells (PEMFCs) such as electrode, membrane, and bipolar plates to achieve enhanced performances in terms of electrical conductivity, mechanical durability, corrosion resistance, and electrochemical surface area. This research news article provides an overview of the recent development in EGMs and EGM-based PEMFCs with a focus on the effects of EGMs on PEMFC performance when they are incorporated into different components of PEMFCs. The challenges of EGMs for practical PEMFC applications in terms of production scale, stability, conductivity, and coupling capability with other materials are also discussed and the corresponding measures and future research trends to overcome such challenges are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  4. Sequential Vapor Infiltration Treatment Enhances the Ionic Current Rectification Performance of Composite Membranes Based on Mesoporous Silica Confined in Anodic Alumina.

    PubMed

    Liang, Yanyan; Liu, Zhengping

    2016-12-20

    Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.

  5. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    PubMed

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  6. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II.

    PubMed

    Voxeur, Aline; Fry, Stephen C

    2014-07-01

    Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC-B-RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC-B-RG-II complex gives the first molecular explanation of the wall-membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process. © 2014 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  7. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II

    PubMed Central

    Voxeur, Aline; Fry, Stephen C

    2014-01-01

    Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs’ extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC–B–RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC–B–RG-II complex gives the first molecular explanation of the wall–membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process. PMID:24804932

  8. Controlling Cargo Trafficking in Multicomponent Membranes.

    PubMed

    Curk, Tine; Wirnsberger, Peter; Dobnikar, Jure; Frenkel, Daan; Šarić, Anđela

    2018-04-27

    Biological membranes typically contain a large number of different components dispersed in small concentrations in the main membrane phase, including proteins, sugars, and lipids of varying geometrical properties. Most of these components do not bind the cargo. Here, we show that such "inert" components can be crucial for the precise control of cross-membrane trafficking. Using a statistical mechanics model and molecular dynamics simulations, we demonstrate that the presence of inert membrane components of small isotropic curvatures dramatically influences cargo endocytosis, even if the total spontaneous curvature of such a membrane remains unchanged. Curved lipids, such as cholesterol, as well as asymmetrically included proteins and tethered sugars can, therefore, actively participate in the control of the membrane trafficking of nanoscopic cargo. We find that even a low-level expression of curved inert membrane components can determine the membrane selectivity toward the cargo size and can be used to selectively target membranes of certain compositions. Our results suggest a robust and general method of controlling cargo trafficking by adjusting the membrane composition without needing to alter the concentration of receptors or the average membrane curvature. This study indicates that cells can prepare for any trafficking event by incorporating curved inert components in either of the membrane leaflets.

  9. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Chun; Palek, Jiri

    1980-06-01

    The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1-4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1-4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5-8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer-tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.

  10. When Protein Crystallography Won't Show You the Membranes (446th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lin

    High fever, stomach ache, coughing, sneezing, and fatigue -- these are all painful signs that you may have caught the flu virus. But how does your body actually 'catch' a virus? Somewhere along the way, the virus infected your body by penetrating the membranes, or surfaces, of some of your body's cells. And then it spreads. Cell membranes are permeable surfaces made of proteins and lipids that allow vital materials to enter and exit cells. Many proteins and cell structures are studied at Brookhaven's National Synchrotron Light Source (NSLS) using a procedure called protein crystallography. But they sometimes have uniquemore » characteristics that do not allow them to be easily studied using this widely adopted method. These characteristics make it difficult to understand the cell membrane structure and its ability to both welcome and refuse certain materials and viruses, such as the flu, on behalf of the cell's internal components. Yang will explain the protein crystallography procedure, the simple structure of the cell membrane, and the unusual characteristics of its proteins and lipids. He will also discuss a new, unique method being developed at the NSLS to study proteins and lipids within their native environment as they form the essential permeable surface of a cell membrane.« less

  11. Robust membrane detection based on tensor voting for electron tomography.

    PubMed

    Martinez-Sanchez, Antonio; Garcia, Inmaculada; Asano, Shoh; Lucic, Vladan; Fernandez, Jose-Jesus

    2014-04-01

    Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular architecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images (tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need for new and improved computational methods to facilitate this challenging task. In this work, we present a new method for membrane segmentation that is based on anisotropic propagation of the local structural information using the tensor voting algorithm. The local structure at each voxel is then refined according to the information received from other voxels. Because voxels belonging to the same membrane have coherent structural information, the underlying global structure is strengthened. In this way, local information is easily integrated at a global scale to yield segmented structures. This method performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method is demonstrated by applications to tomograms of different biological samples and by quantitative comparison with standard template matching procedure. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Mechanics of Lipid Bilayer Membranes

    NASA Astrophysics Data System (ADS)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  13. 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments

    PubMed Central

    Dodonova, Svetlana O; Aderhold, Patrick; Kopp, Juergen; Ganeva, Iva; Röhling, Simone; Hagen, Wim J H; Sinning, Irmgard; Wieland, Felix; Briggs, John A G

    2017-01-01

    COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly. DOI: http://dx.doi.org/10.7554/eLife.26691.001 PMID:28621666

  14. Microdomains in the membrane landscape shape antigen-presenting cell function.

    PubMed

    Zuidscherwoude, Malou; de Winde, Charlotte M; Cambi, Alessandra; van Spriel, Annemiek B

    2014-02-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.

  15. Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity

    PubMed Central

    2016-01-01

    Self-assembling amphiphilic designer peptides have been successfully applied as nanomaterials in biomedical applications. Understanding molecular interactions at the peptide–membrane interface is crucial, since interactions at this site often determine (in)compatibility. The present study aims to elucidate how model membrane systems of different complexity (in particular single-component phospholipid bilayers and lipoproteins) respond to the presence of amphiphilic designer peptides. We focused on two short anionic peptides, V4WD2 and A6YD, which are structurally similar but showed a different self-assembly behavior. A6YD self-assembled into high aspect ratio nanofibers at low peptide concentrations, as evidenced by synchrotron small-angle X-ray scattering and electron microscopy. These supramolecular assemblies coexisted with membranes without remarkable interference. In contrast, V4WD2 formed only loosely associated assemblies over a large concentration regime, and the peptide promoted concentration-dependent disorder on the membrane arrangement. Perturbation effects were observed on both membrane systems although most likely induced by different modes of action. These results suggest that membrane activity critically depends on the peptide’s inherent ability to form highly cohesive supramolecular structures. PMID:27741400

  16. Phystosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health promoting uses

    USDA-ARS?s Scientific Manuscript database

    Phytosterols (plant sterols) occur in the cells of all plants. They are important structural components that stabilize the biological membranes of plants. Sterols can occur in the “free” unbound form or they can be covalently bound via an ester or glycosidic bond. Since our previous 2002 review o...

  17. Pyrene-Labeled Amphiphiles: Dynamic And Structural Probes Of Membranes And Lipoproteins

    NASA Astrophysics Data System (ADS)

    Pownall, Henry J.; Homan, Reynold; Massey, John B.

    1987-01-01

    Lipids and proteins are important functional and structural components of living organisms. Although proteins are frequently found as soluble components of plasma or the cell cytoplasm, many lipids are much less soluble and separate into complex assemblies that usually contain proteins. Cell membranes and plasma lipoproteins' are two important macro-molecular assemblies that contain both lipids and proteins. Cell membranes are composed of a variety of lipids and proteins that form an insoluble bilayer array that has relatively little curvature over distances of several nm. Plasma lipoproteins are different in that they are much smaller, water-soluble, and have highly curved surfaces. A model of a high density lipoprotein (HDL) is shown in Figure 1. This model (d - 10 nm) contains a surface of polar lipids and proteins that surrounds a small core of insoluble lipids, mostly triglycerides and cholesteryl esters. The low density (LDL) (d - 25 nm) and very low density (VLDL) (d 90 nm) lipoproteins have similar architectures, except the former has a cholesteryl ester core and the latter a core that is almost exclusively triglyceride (Figure 1). The surface proteins of HDL are amphiphilic and water soluble; the single protein of LDL is insoluble, whereas VLDL contains both soluble and insoluble proteins. The primary structures of all of these proteins are known.

  18. Cag3 Is a Novel Essential Component of the Helicobacter pylori Cag Type IV Secretion System Outer Membrane Subcomplex ▿ †

    PubMed Central

    Pinto-Santini, Delia M.; Salama, Nina R.

    2009-01-01

    Helicobacter pylori strains harboring the cag pathogenicity island (PAI) have been associated with more severe gastric disease in infected humans. The cag PAI encodes a type IV secretion (T4S) system required for CagA translocation into host cells as well as induction of proinflammatory cytokines, such as interleukin-8 (IL-8). cag PAI genes sharing sequence similarity with T4S components from other bacteria are essential for Cag T4S function. Other cag PAI-encoded genes are also essential for Cag T4S, but lack of sequence-based or structural similarity with genes in existing databases has precluded a functional assignment for the encoded proteins. We have studied the role of one such protein, Cag3 (HP0522), in Cag T4S and determined Cag3 subcellular localization and protein interactions. Cag3 is membrane associated and copurifies with predicted inner and outer membrane Cag T4S components that are essential for Cag T4S as well as putative accessory factors. Coimmunoprecipitation and cross-linking experiments revealed specific interactions with HpVirB7 and CagM, suggesting Cag3 is a new component of the Cag T4S outer membrane subcomplex. Finally, lack of Cag3 lowers HpVirB7 steady-state levels, further indicating Cag3 makes a subcomplex with this protein. PMID:19801411

  19. Infrared nanospectroscopy reveals the chemical nature of pit membranes in water-conducting cells of the plant xylem.

    PubMed

    Pereira, Luciano; Flores-Borges, Denisele; Bittencourt, Paulo; Mayer, Juliana; Kiyota, Eduardo; Araújo, Pedro; Jansen, Steven; Freitas, Raul; Oliveira, Rafael; Mazzafera, Paulo

    2018-06-05

    In the xylem of angiosperm plants, microscopic pits through the secondary cell walls connect the water-conducting vessels. Cellulosic meshes originated from primary walls and middle lamella between adjacent vessels, called pit membrane, separates one conduit from another. The intricate structure of the nano-sized pores in pit membranes enables the passage of water under negative pressure without hydraulic failure due to obstruction by gas bubbles (i.e., embolism) under normal conditions or mild drought stress. Since the chemical composition of pit membranes affects embolism formation and bubble behavior, we directly measured pit membrane composition in Populus nigra wood. Here, we characterized the chemical composition of cell wall structures by synchrotron infrared nanospectroscopy and atomic force microscopy-infrared nanospectroscopy with high spatial resolution. Characteristic peaks of cellulose, phenolic compounds, and proteins were found in the intervessel pit membrane of P. nigra wood. In addition, vessel to parenchyma pit membranes and developing cell walls of the vascular cambium showed clear signals of cellulose, proteins, and pectin. We did not find a distinct peak of lignin and other compounds in these structures. Our investigation of the complex chemical composition of intervessel pit membranes furthers our understanding of the flow of water and bubbles between neighboring conduits. The advances presented here pave the way for further label-free studies related to the nano-chemistry of plant cell components. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  20. Structural insights into a StART-like domain in Lam4 and its interaction with sterol ligands.

    PubMed

    Gatta, Alberto T; Sauerwein, Andrea C; Zhuravleva, Anastasia; Levine, Tim P; Matthews, Stephen

    2018-01-15

    Sterols are essential components of cellular membranes and shape their biophysical properties. The recently discovered family of Lipid transfer proteins Anchored at Membrane contact sites (LAMs) has been suggested to carry out intracellular sterol traffic using StART-like domains. Here, we studied the second StART-like domain of Lam4p from S. cerevisiae by NMR. We show that NMR data are consistent with the StART-like domain structure, and that several functionally important regions within the domain exhibit significant conformational dynamics. NMR titration experiments confirm sterol binding to the canonical sterol-binding site and suggest a role of membrane interactions on the thermodynamics and kinetics of sterol binding. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Direct membrane binding by bacterial actin MreB.

    PubMed

    Salje, Jeanne; van den Ent, Fusinita; de Boer, Piet; Löwe, Jan

    2011-08-05

    Bacterial actin MreB is one of the key components of the bacterial cytoskeleton. It assembles into short filaments that lie just underneath the membrane and organize the cell wall synthesis machinery. Here we show that MreB from both T. maritima and E. coli binds directly to cell membranes. This function is essential for cell shape determination in E. coli and is proposed to be a general property of many, if not all, MreBs. We demonstrate that membrane binding is mediated by a membrane insertion loop in TmMreB and by an N-terminal amphipathic helix in EcMreB and show that purified TmMreB assembles into double filaments on a membrane surface that can induce curvature. This, the first example of a membrane-binding actin filament, prompts a fundamental rethink of the structure and dynamics of MreB filaments within cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Genetics Home Reference: multicentric osteolysis, nodulosis, and arthropathy

    MedlinePlus

    ... to cut (cleave) a protein called type IV collagen. Type IV collagen is a major structural component of basement membranes, ... enzyme, preventing the normal cleavage of type IV collagen. It is unclear how a loss of enzyme ...

  3. [The change in lipoid spectrum in blood serum in girls of different somatotypes after meals].

    PubMed

    Fefelova, Iu A

    2010-01-01

    State Educational Institution for Professional Education - Prof. Voyno-Yasenetzkiy's High School of Krasnoyarsk State Medical Academy of Russian Public Health Ministry. We carried out the analysis of the changes in the spectrum of neutral lipoids and phospholipoids in blood serum as a response to meals in girls of different somatotypes. We revealed statistically true lowering of lipid acids content in representatives of all examined somatotypes after meals. Statistically true increase of simply oxidized fractions of phospholipoids in girls of sub-athletic and athletic somatotypes testifies on the change in the ratio of dynamics components of lipoid spectrum of lipoproteids. Balanced fractions of phospholipoids as well as free cholesterol are the main structural components in lipoproteid membranes and they didn't change in any of the studied somatotypes as a response to meals. This proves the stability of membrane structure of lipoproteid complexes as a response to the given physiological stimulus.

  4. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion.

    PubMed Central

    Siegel, D P

    1986-01-01

    Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems. PMID:3719075

  5. Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes

    PubMed Central

    Gibaud, Thomas; Kaplan, C. Nadir; Sharma, Prerna; Zakhary, Mark J.; Ward, Andrew; Oldenbourg, Rudolf; Meyer, Robert B.; Kamien, Randall D.; Powers, Thomas R.; Dogic, Zvonimir

    2017-01-01

    In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes. PMID:28411214

  6. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.

    PubMed

    Schubert, Thomas; Römer, Winfried

    2015-11-01

    Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria

    PubMed Central

    2012-01-01

    Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814

  8. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

    NASA Astrophysics Data System (ADS)

    Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément

    2006-02-01

    The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

  9. Cholesterol inhibits entotic cell-in-cell formation and actomyosin contraction.

    PubMed

    Ruan, Banzhan; Zhang, Bo; Chen, Ang; Yuan, Long; Liang, Jianqing; Wang, Manna; Zhang, Zhengrong; Fan, Jie; Yu, Xiaochen; Zhang, Xin; Niu, Zubiao; Zheng, You; Gu, Songzhi; Liu, Xiaoqing; Du, Hongli; Wang, Jufang; Hu, Xianwen; Gao, Lihua; Chen, Zhaolie; Huang, Hongyan; Wang, Xiaoning; Sun, Qiang

    2018-01-01

    Cell-in-cell structure is prevalent in human cancer, and associated with several specific pathophysiological phenomena. Although cell membrane adhesion molecules were found critical for cell-in-cell formation, the roles of other membrane components, such as lipids, remain to be explored. In this study, we attempted to investigate the effects of cholesterol and phospholipids on the formation of cell-in-cell structures by utilizing liposome as a vector. We found that Lipofectamine-2000, the reagent commonly used for routine transfection, could significantly reduce entotic cell-in-cell formation in a cell-specific manner, which is correlated with suppressed actomyosin contraction as indicated by reduced β-actin expression and myosin light chain phosphorylation. The influence on cell-in-cell formation was likely dictated by specific liposome components as some liposomes affected cell-in-cell formation while some others didn't. Screening on a limited number of lipids, the major components of liposome, identified phosphatidylethanolamine (PE), stearamide (SA), lysophosphatidic acid (LPA) and cholesterol (CHOL) as the inhibitors of cell-in-cell formation. Importantly, cholesterol treatment significantly inhibited myosin light chain phosphorylation, which resembles the effect of Lipofectamine-2000, suggesting cholesterol might be partially responsible for liposomes' effects on cell-in-cell formation. Together, our findings supporting a role of membrane lipids and cholesterol in cell-in-cell formation probably via regulating actomyosin contraction. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Exploring the interactions between peptides and lipid bilayers using coherent anti-Stokes Raman scattering and two-photon fluorescence

    NASA Astrophysics Data System (ADS)

    Mari, M.; Mouras, R.; Downes, A.; Elfick, A.

    2011-06-01

    We have used a versatile and powerful microscope[1] for multi-modal biomedical imaging on which we combine Coherent Anti-Stokes Raman Scattering (CARS) with Two Photon Excitation Fluorescence (TPEF) using a Nd: YVO4 pump laser. We acquired 2PEF, CARS, and phase contrast images of Multilamellar Vesicles (MLVs) and Giant Unilamellar Vesicles (GUVs), as well as Raman spectra of the constituent lipids. A wide range of peptides are harmful to cells by altering the structure of the biological membranes. This effect depends on the composition of the membrane and the chemical structure of the peptide. The peptide we studied is the beta amyloid Aβ which is a major component of the amyloid plaques deposited on neuronal membranes of Alzheimer's disease (AD) patients. AD is neurodegenerative disorder in which the hallmark symptoms include cognitive decline and dementia[2] and is characterized by the formation of extracellular amyloid fibrils on the neuronal membranes of the brain. Many questions still remain unanswered concerning the destabilization of cellular ionic homeostasis due to pores formed during the interactions of lipid membranes with peptides. In this project, biomimics of cell membranes are used. The structures that best mimic the plasma membranes are MLVs or GUVs. These vesicles are formed using the gentle hydration technique[3] or the electroformation technique[4] respectively and are composed of phospholipids such as DOPC, DPPC, D62PPC and their binary mixtures. The MLVs and GUVs imaging by CARS and TPEF microscopy not only permits the direct imaging of the leakage phenomenon caused by the toxic peptide (Aβ) on the lipid bilayer, but also records simultaneously the lateral structure of the bilayer and peptide distribution in the plane across the membrane.

  11. Refined views of multi-protein complexes in the erythrocyte membrane

    PubMed Central

    Mankelow, TJ; Satchwell, TJ; Burton, NM

    2015-01-01

    The erythrocyte membrane has been extensively studied, both as a model membrane system and to investigate its role in gas exchange and transport. Much is now known about the protein components of the membrane, how they are organised into large multi-protein complexes and how they interact with each other within these complexes. Many links between the membrane and the cytoskeleton have also been delineated and have been demonstrated to be crucial for maintaining the deformability and integrity of the erythrocyte. In this study we have refined previous, highly speculative molecular models of these complexes by including the available data pertaining to known protein-protein interactions. While the refined models remain highly speculative, they provide an evolving framework for visualisation of these important cellular structures at the atomic level. PMID:22465511

  12. Barriers to the free diffusion of proteins and lipids in the plasma membrane

    PubMed Central

    Trimble, William S.

    2015-01-01

    Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization. PMID:25646084

  13. Barriers to the free diffusion of proteins and lipids in the plasma membrane.

    PubMed

    Trimble, William S; Grinstein, Sergio

    2015-02-02

    Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization. © 2015 Trimble and Grinstein.

  14. Computational Insight Into the Structural Organization of Full-Length Toll-Like Receptor 4 Dimer in a Model Phospholipid Bilayer

    PubMed Central

    Patra, Mahesh Chandra; Kwon, Hyuk-Kwon; Batool, Maria; Choi, Sangdun

    2018-01-01

    Toll-like receptors (TLRs) are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM), and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structural model of TLR4—a widely studied member of the interleukin-1 receptor/TLR superfamily—using homology modeling, protein–protein docking, and molecular dynamics simulations to understand the differential domain organization of TLR4 in a membrane-aqueous environment. Results showed that each functional domain of the membrane-bound TLR4 displayed several structural transitions that are biophysically essential for plasma membrane integration. Specifically, the extracellular and cytoplasmic domains were partially immersed in the upper and lower leaflets of the membrane bilayer. Meanwhile, TM domains tilted considerably to overcome the hydrophobic mismatch with the bilayer core. Our analysis indicates an alternate dimerization or a potential oligomerization interface of TLR4-TM. Moreover, the helical properties of an isolated TM dimer partly agree with that of the full-length receptor. Furthermore, membrane-absorbed or solvent-exposed surfaces of the toll/interleukin-1 receptor domain are consistent with previous X-ray crystallography and biochemical studies. Collectively, we provided a complete structural model of membrane-bound TLR4 that strengthens our current understanding of the complex mechanism of receptor activation and adaptor recruitment in the innate immune signaling pathway. PMID:29593733

  15. Structure and dynamics of thylakoids in land plants.

    PubMed

    Pribil, Mathias; Labs, Mathias; Leister, Dario

    2014-05-01

    Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.

  16. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function.

    PubMed

    Choat, Brendan; Cobb, Alexander R; Jansen, Steven

    2008-01-01

    Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.

  17. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    DOE PAGES

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; ...

    2015-09-21

    In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach producesmore » robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).« less

  18. Organic fluid permeation through fluoropolymer membranes

    DOEpatents

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  19. Influences of acid-base property of membrane on interfacial interactions related with membrane fouling in a membrane bioreactor based on thermodynamic assessment.

    PubMed

    Zhao, Leihong; Qu, Xiaolu; Zhang, Meijia; Lin, Hongjun; Zhou, Xiaoling; Liao, Bao-Qiang; Mei, Rongwu; Hong, Huachang

    2016-08-01

    Failure of membrane hydrophobicity in predicting membrane fouling requires a more reliable indicator. In this study, influences of membrane acid base (AB) property on interfacial interactions in two different interaction scenarios in a submerged membrane bioreactor (MBR) were studied according to thermodynamic approaches. It was found that both the polyvinylidene fluoride (PVDF) membrane and foulant samples in the MBR had relatively high electron donor (γ(-)) component and low electron acceptor (γ(+)) component. For both of interaction scenarios, AB interaction was the major component of the total interaction. The results showed that, the total interaction monotonically decreased with membrane γ(-), while was marginally affected by membrane γ(+), suggesting that γ(-) could act as a reliable indicator for membrane fouling prediction. This study suggested that membrane modification for fouling mitigation should orient to improving membrane surface γ(-) component rather than hydrophilicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Protein assembly and heat stability in developing thylakoid membranes during greening

    PubMed Central

    Kóta, Zoltán; Horváth, László I.; Droppa, Magdolna; Horváth, Gábor; Farkas, Tibor; Páli, Tibor

    2002-01-01

    The development of the thylakoid membrane was studied during illumination of dark-grown barley seedlings by using biochemical methods, and Fourier transform infrared and spin label electron paramagnetic resonance spectroscopic techniques. Correlated, gross changes in the secondary structure of membrane proteins, conformation, composition, and dynamics of lipid acyl chains, SDS/PAGE pattern, and thermally induced structural alterations show that greening is accompanied with the reorganization of membrane protein assemblies and the protein–lipid interface. Changes in overall membrane fluidity and noncovalent protein–lipid interactions are not monotonic, despite the monotonic accumulation of chlorophyll, LHCII [light-harvesting chlorophyll a/b-binding (polypeptides) associated with photosystem II] apoproteins, and 18:3 fatty acids that follow a similar time course with highest rates between 12–24 h of greening. The 18:3 fatty acid content increases 2.8-fold during greening. This appears to both compensate for lipid immobilization by membrane proteins and facilitate packing of larger protein assemblies. The increase in the amount of protein-solvating immobile lipids, which reaches a maximum at 12 h, is caused by 40% decrease in the membranous mean diameter of protein assemblies at constant protein/lipid mass ratio. Alterations in the SDS/PAGE pattern are most significant between 6–24 h. The size of membrane protein assemblies increases ≈4.5-fold over the 12–48-h period, likely caused by the 2-fold gain in LHCII apoproteins. The thermal stability of thylakoid membrane proteins increases monotonically, as detected by an increasing temperature of partial protein unfolding during greening. Our data suggest that a structural coupling between major protein and lipid components develops during greening. This protein–lipid interaction is required for the development and protection of thylakoid membrane protein assemblies. PMID:12213965

  1. Fatigue Analysis of Proton Exchange Membrane Fuel Cell Stacks Based on Structural Stress Distribution

    NASA Astrophysics Data System (ADS)

    Wu, C. W.; Liu, B.; Wei, M. Y.; Liu, L. F.

    2017-05-01

    Proton exchange membrane fuel cell (PEMFC) stack usually undergoes various vibrations during packing, transportation and serving time, in particular for those used in the automobiles and portable equipment. Based on the Miner fatigue damage theory, the fatigue lives of the fuel cell components are first assessed. Then the component fatigue life contours of the stack are obtained under four working conditions, i.e. the three single-axial (in X-, Y- and Z-axis separately) and multi-axial random vibrations. Accordingly, the component damage under various vibrations is evaluated. The stress distribution on the gasket and PEM will greatly affect their fatigue lives. Finally, we compare the fatigue lives of 4-bolt- and 6-bolt-clamping stacks under the same total clamping force, and find that increasing the bolt number could improve the bolt fatigue lives.

  2. ADP-ribosylation of membrane components by pertussis and cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its ..cap alpha../sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its ..cap alpha..; subunit. By using (/sup 32/P)NAD/sup +/ and determining the transfer of its (/sup 32/P)ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/submore » s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin.« less

  3. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

    PubMed Central

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando

    2016-01-01

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  4. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

    PubMed

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando

    2016-01-19

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.

  5. Large effect of membrane tension on the fluid-solid phase transitions of two-component phosphatidylcholine vesicles.

    PubMed

    Chen, Dong; Santore, Maria M

    2014-01-07

    Model phospholipid membranes and vesicles have long provided insight into the nature of confined materials and membranes while also providing a platform for drug delivery. The rich thermodynamic behavior and interesting domain shapes in these membranes have previously been mapped in extensive studies that vary temperature and composition; however, the thermodynamic impact of tension on bilayers has been restricted to recent reports of subtly reduced fluid-fluid transition temperatures. In two-component phosphatidylcholine unilamellar vesicles [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)], we report a dramatic influence of tension on the fluid-solid transition and resulting phases: At fixed composition, systematic variations in tension produce differently shaped solid domains (striped or irregular hexagons), shift fluid-solid transition temperatures, and produce a triple-point-like intersection of coexistence curves at elevated tensions, about 3 mN/m for 30% DOPC/70% DPPC. Tension therefore represents a potential switch of microstructure in responsive engineered materials; it is an important morphology-determining variable in confined systems, and, in biological membranes, it may provide a means to regulate dynamic structure.

  6. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons.

  7. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components

    PubMed Central

    Pirbadian, Sahand; Barchinger, Sarah E.; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A.; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad A.; Shi, Liang; Gorby, Yuri A.; Golbeck, John H.; El-Naggar, Mohamed Y.

    2014-01-01

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic–abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution. PMID:25143589

  8. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.

    PubMed

    Pirbadian, Sahand; Barchinger, Sarah E; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A; Reed, Samantha B; Romine, Margaret F; Saffarini, Daad A; Shi, Liang; Gorby, Yuri A; Golbeck, John H; El-Naggar, Mohamed Y

    2014-09-02

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  9. High-Resolution Scanning Electron Microscopy and Immuno-Gold Labeling of the Nuclear Lamina and Nuclear Pore Complex.

    PubMed

    Goldberg, Martin W

    2016-01-01

    Scanning electron microscopy (SEM) is a technique used to image surfaces. Field emission SEMs (feSEMs) can resolve structures that are ~0.5-1.5 nm apart. FeSEM, therefore is a useful technique for imaging molecular structures that exist at surfaces such as membranes. The nuclear envelope consists of four membrane surfaces, all of which may be accessible for imaging. Imaging of the cytoplasmic face of the outer membrane gives information about ribosomes and cytoskeletal attachments, as well as details of the cytoplasmic peripheral components of the nuclear pore complex, and is the most easily accessed surface. The nucleoplasmic face of the inner membrane is easily accessible in some cells, such as amphibian oocytes, giving valuable details about the organization of the nuclear lamina and how it interacts with the nuclear pore complexes. The luminal faces of both membranes are difficult to access, but may be exposed by various fracturing techniques. Protocols are presented here for the preparation, labeling, and feSEM imaging of Xenopus laevis oocyte nuclear envelopes.

  10. Dynamic hybrid materials for constitutional self-instructed membranes

    PubMed Central

    Cazacu, Adinela; Legrand, Yves-Marie; Pasc, Andreea; Nasr, Gihane; Van der Lee, Arie; Mahon, Eugene; Barboiu, Mihail

    2009-01-01

    Constitutional self-instructed membranes were developed and used for mimicking the adaptive structural functionality of natural ion-channel systems. These membranes are based on dynamic hybrid materials in which the functional self-organized macrocycles are reversibly connected with the inorganic silica through hydrophobic noncovalent interactions. Supramolecular columnar ion-channel architectures can be generated by reversible confinement within scaffolding hydrophobic silica mesopores. They can be structurally determined by using X-ray diffraction and morphologically tuned by alkali-salts templating. From the conceptual point of view, these membranes express a synergistic adaptive behavior: the simultaneous binding of the fittest cation and its anion would be a case of “homotropic allosteric interactions,” because in time it increases the transport efficiency of the pore-contained superstructures by a selective evolving process toward the fittest ion channel. The hybrid membranes presented here represent dynamic constitutional systems evolving over time to form the fittest ion channels from a library of molecular and supramolecular components, or selecting the fittest ion pairs from a mixture of salts demonstrating flexible adaptation. PMID:19416909

  11. Linking Findings in Microfluidics to Membrane Emulsification Process Design: The Importance of Wettability and Component Interactions with Interfaces

    PubMed Central

    Schroën, Karin; Ferrando, Montse; de Lamo-Castellví, Silvia; Sahin, Sami; Güell, Carme

    2016-01-01

    In microfluidics and other microstructured devices, wettability changes, as a result of component interactions with the solid wall, can have dramatic effects. In emulsion separation and emulsification applications, the desired behavior can even be completely lost. Wettability changes also occur in one phase systems, but the effect is much more far-reaching when using two-phase systems. For microfluidic emulsification devices, this can be elegantly demonstrated and quantified for EDGE (Edge-base Droplet GEneration) devices that have a specific behavior that allows us to distinguish between surfactant and liquid interactions with the solid surface. Based on these findings, design rules can be defined for emulsification with any micro-structured emulsification device, such as direct and premix membrane emulsification. In general, it can be concluded that mostly surface interactions increase the contact angle toward 90°, either through the surfactant, or the oil that is used. This leads to poor process stability, and very limited pressure ranges at which small droplets can be made in microfluidic systems, and cross-flow membrane emulsification. In a limited number of cases, surface interactions can also lead to lower contact angles, thereby increasing the operational stability. This paper concludes with a guideline that can be used to come to the appropriate combination of membrane construction material (or any micro-structured device), surfactants and liquids, in combination with process conditions. PMID:27187484

  12. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability.

    PubMed

    Beebe, Stephen J; Chen, Yeong-Jer; Sain, Nova M; Schoenbach, Karl H; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.

  13. Radiographic contrast media alterate the localization of actin/band4.9 in the membrane cytoskeleton of human erythrocytes.

    PubMed

    Franke, R P; Scharnweber, T; Fuhrmann, R; Mrowietz, C; Wenzel, F; Krüger, A; Jung, F

    2014-01-01

    Different radiographic contrast media (RCM) were shown to induce morphological changes of blood cells (e.g. erythrocytes or thrombocytes) and endothelial cells. The echinocytic shape change of erythrocytes, particularly, affords alterations of the membrane cytoskeleton. The cytoskeleton plays a crucial role for the shape and deformability of the red blood cell. Disruption of the interaction between components of the red blood cell membrane cytoskeleton may cause a loss of structural and functional integrity of the membrane. In this study band4.9 and actin as components of the cytoskeletal junctional complex were examined in human erythrocytes after suspension in autologous plasma or in plasma RCM mixtures (30% v/v Iodixanol-320 or Iopromide-370) followed by a successive double staining with TRITC-/FITC-coupled monoclonal antibodies. After adding Iopromide-370 to the plasma in practically none of the cells the rounded conformation of the membrane cytoskeleton - as it appeared in cells suspended in autologous plasma - was found. In addition, Iopromide-370 induced thin lines and coarse knob-like structures of band4.9 at the cell periphery while most cell centers were devoid of band4.9, and a box-like arrangement of bands of band4.9. A dissociation between colours red (actin) and green (band4.9) occurred as well. In contrast, erythrocytes suspended in a plasma/Iodixanol-320 mixture showed a membrane cytoskeleton comparable to cells suspended in autologous plasma, Similar results were found with respect to the distribution of actin. This study revealed for the first time RCM-dependent differences in band4.9 activities as possible pathophysiological mechanism for the chemotoxicity of radiographic contrast media.

  14. The influence of mesoscopic confinement on the dynamics of imidazolium-based room temperature ionic liquids in polyether sulfone membranes.

    PubMed

    Thomaz, Joseph E; Bailey, Heather E; Fayer, Michael D

    2017-11-21

    The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C n mimNTf 2 , n = 2, 4, 6, 10: ethyl-Emim; butyl-Bmim; hexyl-Hmim; decyl-Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ∼350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ∼4, for EmimNTf 2 , with the effect decreasing as the chain length increases. By DmimNTf 2 , the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.

  15. The influence of mesoscopic confinement on the dynamics of imidazolium-based room temperature ionic liquids in polyether sulfone membranes

    NASA Astrophysics Data System (ADS)

    Thomaz, Joseph E.; Bailey, Heather E.; Fayer, Michael D.

    2017-11-01

    The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (CnmimNTf2, n = 2, 4, 6, 10: ethyl—Emim; butyl—Bmim; hexyl—Hmim; decyl—Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ˜350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ˜4, for EmimNTf2, with the effect decreasing as the chain length increases. By DmimNTf2, the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.

  16. Engineering lipid structure for recognition of the liquid ordered membrane phase

    DOE PAGES

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; ...

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, wemore » found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.« less

  17. Watching individual molecules flex within lipid membranes using SERS

    NASA Astrophysics Data System (ADS)

    Taylor, Richard W.; Benz, Felix; Sigle, Daniel O.; Bowman, Richard W.; Bao, Peng; Roth, Johannes S.; Heath, George R.; Evans, Stephen D.; Baumberg, Jeremy J.

    2014-08-01

    Interrogating individual molecules within bio-membranes is key to deepening our understanding of biological processes essential for life. Using Raman spectroscopy to map molecular vibrations is ideal to non-destructively `fingerprint' biomolecules for dynamic information on their molecular structure, composition and conformation. Such tag-free tracking of molecules within lipid bio-membranes can directly connect structure and function. In this paper, stable co-assembly with gold nano-components in a `nanoparticle-on-mirror' geometry strongly enhances the local optical field and reduces the volume probed to a few nm3, enabling repeated measurements for many tens of minutes on the same molecules. The intense gap plasmons are assembled around model bio-membranes providing molecular identification of the diffusing lipids. Our experiments clearly evidence measurement of individual lipids flexing through telltale rapid correlated vibrational shifts and intensity fluctuations in the Raman spectrum. These track molecules that undergo bending and conformational changes within the probe volume, through their interactions with the environment. This technique allows for in situ high-speed single-molecule investigations of the molecules embedded within lipid bio-membranes. It thus offers a new way to investigate the hidden dynamics of cell membranes important to a myriad of life processes.

  18. Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase.

    PubMed

    Bordovsky, Stefan S; Wong, Christopher S; Bachand, George D; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2016-11-29

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o ) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d ). The PEG spacer can serve as a buffer to mute headgroup-membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.

  19. Alteration in lipid composition of plasma membranes of sensitive and resistant Guerin carcinoma cells due to the action of free and liposomal form of cisplatin.

    PubMed

    Naleskina, L A; Todor, I N; Nosko, M M; Lukianova, N Y; Pivnyuk, V M; Chekhun, V F

    2013-09-01

    To study in vivo changes of lipid composition of plasma membranes of sensitive and resistant to cisplatin Guerin carcinoma cells under influence of free and liposomal cisplatin forms. The isolation of plasma membranes from parental (sensitive) and resistant to cisplatin Guerin carcinoma cells was by differential ultracentrifugation in sucrose density gradient. Lipids were detected by method of thin-layer chromatography. It was determined that more effective action of cisplatin liposomal form on resistant cells is associated with essential abnormalities of conformation of plasma membrane due to change of lipid components and architectonics of rafts. It results in the increase of membrane fluidity. Reconstructions in lipid composition of plasma membranes of cisplatin-resistant Guerin carcinoma cells provide more intensive delivery of drug into the cells, increase of its concentration and more effective interaction with cellular structural elements.

  20. Reprogramming cellular functions with engineered membrane proteins.

    PubMed

    Arber, Caroline; Young, Melvin; Barth, Patrick

    2017-10-01

    Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Three Big Hands-On Noncomputer Models for the Biology Classroom.

    ERIC Educational Resources Information Center

    Miller, James E.

    1998-01-01

    Proposes models for the lichen symbiosis, genomic, and plasmid DNA and fluid mosaic membrane structure. The models operate at the classroom level with the classroom becoming the cell in a DNA exercise with students as interactive components. (DDR)

  2. Functionalized Vesicles by Microfluidic Device.

    PubMed

    Vallejo, Derek; Lee, Shih-Hui; Lee, Abraham

    2017-01-01

    In recent years, lipid vesicles have become popular vehicles for the creation of biosensors. Vesicles can hold reaction components within a selective permeable membrane that provides an ideal environment for membrane protein biosensing elements. The lipid bilayer allows a protein to retain its native structure and function, and the membrane fluidity can allow for conformational changes and physiological interactions with target analytes. Here, we present two methods for the production of giant unilamellar vesicles (GUVs) within a microfluidic device that can be used as the basis for a biosensor. The vesicles are produced from water-in-oil-in-water (W/O/W) double emulsion templates using a nonvolatile oil phase. To create the GUVs, the oil can be removed via extraction with ethanol, or by altering the interfacial tension between the oil and carrier solution causing the oil to retract into a cap on one side of the structure, leaving behind an exposed lipid bilayer. Methods to integrate sensing elements and membrane protein pores onto the vesicles are also introduced in this work.

  3. Spatially distributed modal signals of free shallow membrane shell structronic system

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    2008-11-01

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last 20 years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of shallow paraboloidal membrane shells are not clearly understood. In this paper, modeling of free flexible paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  4. Identification of detergent-resistant plasma membrane microdomains in dictyostelium: enrichment of signal transduction proteins.

    PubMed Central

    Xiao, Z; Devreotes, P N

    1997-01-01

    Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures. Images PMID:9168471

  5. Identification of detergent-resistant plasma membrane microdomains in dictyostelium: enrichment of signal transduction proteins.

    PubMed

    Xiao, Z; Devreotes, P N

    1997-05-01

    Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures.

  6. Lipid bilayers suspended on microfabricated supports

    NASA Astrophysics Data System (ADS)

    Ogier, Simon D.; Bushby, Richard J.; Cheng, Yaling; Cox, Tim I.; Evans, Stephen D.; Knowles, Peter F.; Miles, Robert E.; Pattison, Ian

    2001-03-01

    The plasma membrane, that exists as part of many animal and plant cells, is a regulator for the transport of ions and small molecules across cell boundaries. Two main components involved are the phospholipid bilayer and the transport proteins. This paper details the construction of a micromachined support for bilayers (MSB) as a first step towards the development of highly selective and highly sensitive ion-channel based biosensors. The device consists of a ~100 micrometer hole in a polymeric support above a cavity that can hold ~25 nL of electrolyte. Electrodes attached to the structure allow the resistance of the membranes to be measured using d.c. conductivity. The MSB is made in two halves, using SU8 ultra-thick resist, which are subsequently bonded together to make the final structure. A layer of gold, surrounding the aperture, enables self-assembled monolayers of alkanethiols to be used to make the polymeric structure biocompatible. Lipid membranes have been formed over these holes with resistances comparable with those of natural membranes >10 MOhmcm^2. The ion-channel gramicidin has successfully been incorporated into the bilayer and its activity monitored. It is proposed that this type of device could be used not only for studying membrane transport phenomena but also as part of an ion-channel based biosensor.

  7. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided.more » The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Also discussed are opportunities and outstanding challenges in the field, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.« less

  8. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies

    DOE PAGES

    Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.; ...

    2018-01-08

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided.more » The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Also discussed are opportunities and outstanding challenges in the field, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.« less

  9. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    PubMed

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  10. Connectingthe puzzle pieces between cytoskeleton andsecretory pathway

    PubMed Central

    Gurel, Pinar S.; Hatch, Anna L.; Higgs, Henry N.

    2014-01-01

    A tendency in cell biology is to divide and conquer. For example, decades of painstaking work have led to an understanding of endoplasmic reticulum (ER) and Golgi structure, dynamics, and transport. In parallel, cytoskeletal researchers have revealed a fantastic diversity of structure and cellular function in both actin and microtubules. Increasingly, these areas overlap, necessitating an understanding of both organelle and cytoskeletal biology. This review addressesconnections between the actin/microtubule cytoskeletons and organelles in animal cells, focusing on threetopics: ER structure/function, ER-to-Golgi transport; and Golgi structure/function. Making these connections has been challenging, due to 1) the small sizes and dynamic characteristics of some components, 2) the fact that organelle-specific cytoskeleton can easily be obscured by more abundant cytoskeletal structures, and 3) the difficulties in imaging membranes and cytoskeleton simultaneously, especially at the ultra-structural level. One major concept is that the cytoskeleton is frequently used to generate force for membrane movement, with two potential consequences: translocation of the organelle, or deformation of the organelle membrane. While initially discussing issues common to metazoan cells in general, we subsequently highlight specific features of neurons, since these highly polarized cells present unique challenges for organellar distribution and dynamics. PMID:25050967

  11. There Is No Simple Model of the Plasma Membrane Organization

    PubMed Central

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  12. There Is No Simple Model of the Plasma Membrane Organization.

    PubMed

    Bernardino de la Serna, Jorge; Schütz, Gerhard J; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.

  13. Regulation of T-cell receptor signalling by membrane microdomains

    PubMed Central

    Razzaq, Tahir M; Ozegbe, Patricia; Jury, Elizabeth C; Sembi, Phupinder; Blackwell, Nathan M; Kabouridis, Panagiotis S

    2004-01-01

    There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms. PMID:15554919

  14. Mechanical membrane for the separation of a paramagnetic constituent from a fluid

    DOEpatents

    Maurice, David

    2017-05-02

    The disclosure provides an apparatus and method for the separation of a paramagnetic component from a mixture using a mechanical membrane apparatus. The mechanical membrane comprises a supporting material having a plurality of pores where each pore is surrounded by a plurality of magnetic regions. The magnetic regions augment a magnetic field on one side of the supporting material while mitigating the field to near zero on the opposite side. In operation, a flow of fluid such as air comprising a paramagnetic component such as O.sub.2 is directed toward the mechanical membrane, and the paramagnetic component is typically attracted toward a magnetic field surrounding a pore while dimagnetic components such as N.sub.2 are generally repelled. As some portion of the fluid passes through the plurality of magnetic apertures to the opposite side of the mechanical membrane, the mechanical membrane generates a fluid enriched in the paramagnetic component. Alternately, the magnetic field may act to repel the paramagnetic component while diamagnetic components such as N.sub.2 are generally unaffected and pass to the opposite side of the mechanical membrane.

  15. Neutron scattering shows a droplet of oleic acid at the center of the BAMLET complex.

    PubMed

    Rath, Emma M; Duff, Anthony P; Gilbert, Elliot P; Doherty, Greg; Knott, Robert B; Church, W Bret

    2017-07-01

    The anti-cancer complex, Bovine Alpha-lactalbumin Made LEthal to Tumors (BAMLET), has intriguing broad-spectrum anti-cancer activity. Although aspects of BAMLET's anti-cancer mechanism are still not known, it is understood that it involves the oleic acid or oleate component of BAMLET being preferentially released into cancer cell membranes leading to increased membrane permeability and lysis. The structure of the protein component of BAMLET has previously been elucidated by small angle X-ray scattering (SAXS) to be partially unfolded and dramatically enlarged. However, the structure of the oleic acid component of BAMLET and its disposition with respect to the protein component was not revealed as oleic acid has the same X-ray scattering length density (SLD) as water. Employing the difference in the neutron SLDs of hydrogen and deuterium, we carried out solvent contrast variation small angle neutron scattering (SANS) experiments of hydrogenated BAMLET in deuterated water buffers, to reveal the size, shape, and disposition of the oleic acid component of BAMLET. Our resulting analysis and models generated from SANS and SAXS data indicate that oleic acid forms a spherical droplet of oil incompletely encapsulated by the partially unfolded protein component. This model provides insight into the anti-cancer mechanism of this cache of lipid. The model also reveals a protein component "tail" not associated with the oleic acid component that is able to interact with the tail of other BAMLET molecules, providing a plausible explanation of how BAMLET readily forms aggregates. Proteins 2017; 85:1371-1378. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Compositional analysis and structural elucidation of glycosaminoglycans in chicken eggs

    PubMed Central

    Liu, Zhangguo; Zhang, Fuming; Li, Lingyun; Li, Guoyun; He, Wenqing; Linhardt, Robert J.

    2014-01-01

    Glycosaminoglycans (GAGs) have numerous applications in the fields of pharmaceuticals, cosmetics, nutraceuticals, and foods. GAGs are also critically important in the developmental biology of all multicellular animals. GAGs were isolated from chicken egg components including yolk, thick egg white, thin egg white, membrane, calcified shell matrix supernatant, and shell matrix deposit. Disaccharide compositional analysis was performed using ultra high-performance liquid chromatography-mass spectrometry. The results of these analyses showed that all four families of GAGs were detected in all egg components. Keratan sulfate was found in egg whites (thick and thin) and shell matrix (calcified shell matrix supernatant and deposit) with high level. Chondroitin sulfates were much more plentiful in both shell matrix components and membrane. Hyaluronan was plentiful in both shell matrix components and membrane, but were only present in a trace of quantities in the yolk. Heparan sulfate was plentiful in the shell matrix deposit but was present in a trace of quantities in the egg content components (yolk, thick and thin egg whites). Most of the chondroitin and heparan sulfate disaccharides were present in the GAGs found in chicken eggs with the exception of chondroitin and heparan sulfate 2,6-disulfated disaccharides. Both CS and HS in the shell matrix deposit contained the most diverse chondroitin and heparan sulfate disaccharide compositions. Eggs might provide a potential new source of GAGs. PMID:25218438

  17. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins.

    PubMed

    Heuck, Alexander; Schleiffer, Alexander; Clausen, Tim

    2011-03-11

    β-Barrel proteins are frequently found in the outer membrane of mitochondria, chloroplasts and Gram-negative bacteria. In Escherichia coli, these proteins are inserted in the outer membrane by the Bam (β-barrel assembly machinery) complex, a multiprotein machinery formed by the β-barrel protein BamA and the four peripheral membrane proteins BamB, BamC, BamD and BamE. The periplasmic part of BamA binds prefolded β-barrel proteins by a β-augmentation mechanism, thereby stabilizing the precursors prior to their membrane insertion. However, the role of the associated proteins within the Bam complex remains unknown. Here, we describe the crystal structure of BamB, a nonessential component of the Bam complex. The structure shows a typical eight-bladed β-propeller fold. Two sequence stretches of BamB were previously identified to be important for interaction with BamA. In our structure, both motifs are located in close proximity to each other and contribute to a conserved region forming a narrow groove on the top of the propeller. Moreover, crystal contacts reveal two interaction modes of how BamB might bind unfolded β-barrel proteins. In the crystal lattice, BamB binds to exposed β-strands by β-augmentation, whereas peptide stretches rich in aromatic residues can be accommodated in hydrophobic pockets located at the bottom of the propeller. Thus, BamB could simultaneously bind to BamA and prefolded β-barrel proteins, thereby enhancing the folding and membrane insertion capability of the Bam complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The amphiphilic alkyl ester derivatives of l-ascorbic acid induce reorganization of phospholipid vesicles.

    PubMed

    Giudice, Francesca; Ambroggio, Ernesto E; Mottola, Milagro; Fanani, Maria Laura

    2016-09-01

    l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons.

    PubMed

    Tsui, H C; Ris, H; Klein, W L

    1983-09-01

    We have examined growth cones and neurites of cultured central nervous system neurons by high-voltage electron microscopy. Embryonic chicken retina cells were cultured on polylysine-treated and Formvar-coated gold grids for 2-6 days, fixed, and critical point dried. Growth cones and neurites were examined as unembedded whole mounts. Three-dimensional images from stereo-pair electron micrographs of these regions showed a high degree of ultrastructural articulation, with distinct, non-tapering filaments (5-9 nm in diameter) joining both cytoskeletal and membranous components. In the central regions of growth cones, interconnected structures included microtubules, large membranous sacs (up to 400 nm), and irregular vesicles (25-75 nm). A denser filamentous network was prevalent at the edges of growth cones. This network, which frequently adjoined the surface membrane, linked vesicles of uniform size (35-40 nm). Such vesicles often were seen densely packed in growth cone protrusions that were about the size of small synaptic boutons. Prevalent structural interconnections within growth cones conceivably could play a logistic role in specific membrane assembly, intracellular transport, endocytosis, and secretion. Because such processes are not unique to growth cones, the extensive linkages we have observed may have implications for cytoplasmic structure in general.

  20. Method for determining the three-dimensional structure of a protein

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2004-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes/cm.sup.2 at the interface. By placing the microcapsules in a high osmotic dewatering solution, the protein solution is gradually made saturated and then supersaturated, and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged, protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D structure of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  1. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.

    2016-01-01

    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes containmore » a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.« less

  2. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study.

    PubMed

    Blaskó, Ágnes; Gazdag, Zoltán; Gróf, Pál; Máté, Gábor; Sárosi, Szilvia; Krisch, Judit; Vágvölgyi, Csaba; Makszin, Lilla; Pesti, Miklós

    2017-02-01

    The effects of clary sage (Salvia sclarea L.) oil (CS-oil), and its two main components, linalool (Lol) and linalyl acetate (LA), on cells of the eukaryotic human pathogen yeast Candida albicans were studied. Dynamic and thermodynamic properties of the plasma membrane were investigated by electron paramagnetic resonance (EPR) spectroscopy, with 5-doxylstearic acid (5-SASL) and 16-SASL as spin labels. The monitoring of the head group regions with 5-SASL revealed break-point frequency decrease in a temperature dependent manner of the plasma membrane between 9.55 and 13.15 °C in untreated, in CS-oil-, Lol- and LA-treated membranes. The results suggest a significant increase in fluidity of the treated plasma membranes close to the head groups. Comparison of the results observed with the two spin labels demonstrated that CS-oil and LA induced an increased level of fluidization at both depths of the plasma membrane. Whereas Lol treatment induced a less (1 %) ordered bilayer organization in the superficial regions and an increased (10 %) order of the membrane leaflet in deeper layers. Acute toxicity tests and EPR results indicated that both the apoptotic and the effects exerted on the plasma membrane fluidity depended on the composition and chemical structure of the examined materials. In comparison with the control, treatment with CS-oil, Lol or LA induced 13.0, 12.3 and 26.4 % loss respectively, of the metabolites absorbing at 260 nm, as a biological consequence of the plasma membrane fluidizing effects. Our results confirmed that clary sage oil causes plasma membrane perturbations which leads to cell apoptosis process.

  3. Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs

    NASA Technical Reports Server (NTRS)

    Footdale, Joseph N.; Murphey, Thomas W.

    2014-01-01

    The detailed mechanical design of a novel deployable support structure that positions and tensions a membrane optic for space imagining applications is presented. This is a complex three-dimensional deployment using freely deploying rollable composite tape spring booms that become load bearing structural members at full deployment. The deployment tests successfully demonstrate a new architecture based on rolled and freely deployed composite tape spring members that achieve simultaneous deployment without mechanical synchronization. Proper design of the flexible component mounting interface and constraint systems, which were critical in achieving a functioning unit, are described. These flexible composite components have much potential for advancing the state of the art in deployable structures, but have yet to be widely adopted. This paper demonstrates the feasibility and advantages of implementing flexible composite components, including the design details on how to integrate with required traditional mechanisms.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.; Hendrickson, W

    Histidine kinase receptors respond to diverse signals and mediate signal transduction across the plasma membrane in all prokaryotes and certain eukaryotes. Each receptor is part of a two-component system that regulates a particular cellular process. Organisms that use trimethylamine-N-oxide (TMAO) as a terminal electron acceptor typically control their anaerobic respiration through the TMAO reductase (Tor) pathway, which the TorS histidine kinase activates when sensing TMAO in the environment. We have determined crystal structures for the periplasmic sensor domains of TorS receptors from Escherichia coli and Vibrio parahaemolyticus. TorS sensor domains have a novel fold consisting of a membrane-proximal right-handed four-helicalmore » bundle and a membrane-distal left-handed four-helical bundle, but conformational dispositions differ significantly in the two structures. Isolated TorS sensor domains dimerize in solution; and from comparisons with dimeric NarX and Tar sensors, we postulate that signaling through TorS dimers involves a piston-type displacement between helices.« less

  5. Programmable assembly of pressure sensors using pattern-forming bacteria.

    PubMed

    Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong

    2017-11-01

    Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to assemble patterned materials. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height, and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration.

  6. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution

    PubMed Central

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-01-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 Å structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a–lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching. PMID:15719016

  7. 3D reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout

    PubMed Central

    Hodgkinson, Julie L.; Horsley, Ashley; Stabat, David; Simon, Martha; Johnson, Steven; da Fonseca, Paula C. A.; Morris, Edward P.; Wall, Joseph S.; Lea, Susan M.; Blocker, Ariel J.

    2009-01-01

    Type III secretion systems (T3SSs) mediate bacterial protein translocation into eukaryotic cells, a process essential for virulence of many Gram-negative pathogens. They are composed of a cytoplasmic secretion machinery and a base bridging both bacterial membranes into which a hollow, external needle is embedded. When isolated, the latter two parts are termed ‘needle complex’ (NC). Incomplete understanding of NC structure hampers studies of T3SS function. To estimate the stoichiometry of its components, the mass f its sub-domains was measured by scanning transmission electron microscopy (STEM). Subunit symmetries were determined by analysis of top and side views within negatively stained samples in low dose transmission electron microscopy (TEM). Application of 12-fold symmetry allowed generation of a 21-25Å resolution three-dimensional (3D) reconstruction of the NC base, revealing many new features and permitting tentative docking of the crystal structure of EscJ, an inner membrane component. PMID:19396171

  8. The Structure of a Conserved Domain of TamB Reveals a Hydrophobic β Taco Fold.

    PubMed

    Josts, Inokentijs; Stubenrauch, Christopher James; Vadlamani, Grishma; Mosbahi, Khedidja; Walker, Daniel; Lithgow, Trevor; Grinter, Rhys

    2017-12-05

    The translocation and assembly module (TAM) plays a role in the transport and insertion of proteins into the bacterial outer membrane. TamB, a component of this system spans the periplasmic space to engage with its partner protein TamA. Despite efforts to characterize the TAM, the structure and mechanism of action of TamB remained enigmatic. Here we present the crystal structure of TamB amino acids 963-1,138. This region represents half of the conserved DUF490 domain, the defining feature of TamB. TamB 963-1138 consists of a concave, taco-shaped β sheet with a hydrophobic interior. This β taco structure is of dimensions capable of accommodating and shielding the hydrophobic side of an amphipathic β strand, potentially allowing TamB to chaperone nascent membrane proteins from the aqueous environment. In addition, sequence analysis suggests that the structure of TamB 963-1138 is shared by a large portion of TamB. This architecture could allow TamB to act as a conduit for membrane proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Sequence- and structure-based computational analyses of Gram-negative tripartite efflux pumps in the context of bacterial membranes

    DOE PAGES

    Travers, Timothy; Wang, Katherine J.; Lopez, Cesar A.; ...

    2018-02-09

    Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this paper, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.

  10. Sequence- and structure-based computational analyses of Gram-negative tripartite efflux pumps in the context of bacterial membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travers, Timothy; Wang, Katherine J.; Lopez, Cesar A.

    Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this paper, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.

  11. S-layer fusion proteins — construction principles and applications

    PubMed Central

    Ilk, Nicola; Egelseer, Eva M; Sleytr, Uwe B

    2011-01-01

    Crystalline bacterial cell surface layers (S-layers) are the outermost cell envelope component of many bacteria and archaea. S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. The wealth of information available on the structure, chemistry, genetics and assembly of S-layers revealed a broad spectrum of applications in nanobiotechnology and biomimetics. By genetic engineering techniques, specific functional domains can be incorporated in S-layer proteins while maintaining the self-assembly capability. These techniques have led to new types of affinity structures, microcarriers, enzyme membranes, diagnostic devices, biosensors, vaccines, as well as targeting, delivery and encapsulation systems. PMID:21696943

  12. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    PubMed

    Gorasia, Dhana G; Veith, Paul D; Hanssen, Eric G; Glew, Michelle D; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C

    2016-08-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  13. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System

    PubMed Central

    Gorasia, Dhana G.; Veith, Paul D.; Hanssen, Eric G.; Glew, Michelle D.; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C.

    2016-01-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32–36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component. PMID:27509186

  14. Inhibition of the k-stimulated ATPase of the plasmalemma of pinto bean leaves by ozone.

    PubMed

    Dominy, P J; Heath, R L

    1985-01-01

    Three varieties of Phaseolus vulgaris which differ in their sensitivity to ozone were examined for changes in some physiological and structural plasma membrane characteristics. Plasma membrane vesicles were prepared from control and ozone-treated (0.2 to 0.5 microliters per liter ozone for 5 hours) leaf tissue, and the (K(+) + Mg(2+))-ATPase activity determined and compared. No major changes were observed in the resistant varieties. The sensitive variety showed a severe inhibition of ATPase activity which was largely due to a decrease in the K(+)-stimulated component. This inhibition was completely reversed by the addition of sulfhydryl compounds.Ozone-induced plasma membrane permeability changes may be effected by damage to membrane proteins, perhaps by oxidation of amino acid sulfhydryl groups to disulfide and sulfenic moieties.

  15. Interaction of miltefosine with the lipid and protein components of the erythrocyte membrane.

    PubMed

    Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Hansen, Daiane; Alonso, Antonio

    2013-05-01

    Miltefosine (MT) is an alkylphospholipid that has been approved for the treatment of breast cancer metastasis and visceral leishmaniasis, although its mechanism of action remains poorly understood. Electron paramagnetic resonance spectroscopy of a spin-labeled lipid and a thiol-specific spin label showed that MT causes an increase in the molecular dynamics of erythrocyte ghost membranes and detergent-resistant membranes (DRMs) prepared from erythrocyte ghosts. In the vesicles of lipid raft constituents, it was shown that 20 mol % sphingomyelin could be replaced by 20 mol % MT with no change in the molecular dynamics. The effect of MT in DRMs was more pronounced than in erythrocyte ghosts, supporting the hypothesis that MT is a lipid raft modulator. At the reported MT-plasma concentrations found during the treatment of leishmaniasis (31-90 µg/mL), our measurements in the blood plasma indicated a hemolytic level of 2%-5%. The experiments indicated that MT acts predominantly on the protein component of the membrane. MT aggregates may wrap around the hydrophobic polypeptide chains, forming micelle-like structures that stabilize protein conformations more exposed to the solvent. Proteins with higher hydrophobicity may induce the penetration of the hydrophilic groups of MT into the membrane and cause it to rupture. Copyright © 2013 Wiley Periodicals, Inc.

  16. [Quantitative changes of main components of erythrocyte membranes which define architectonics of cells under pttg gene knockout].

    PubMed

    Kaniuka, O P; Filiak, Ie Z; Kulachkovs'kyĭ, O R; Osyp, Iu L; Sybirna, N O

    2014-01-01

    A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein--beta-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of erythrocyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed underpttg gene knockout.

  17. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea.

    PubMed

    Mulligan, Christopher; Fischer, Marcus; Thomas, Gavin H

    2011-01-01

    The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. ( sup 3 H)opipramol labels a novel binding site and sigma receptors in rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.

    1991-02-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. ({sup 3}H)Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). ({sup 3}H)Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-({sup 3}H)3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to anymore » known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects.« less

  19. Application of honeymoon cold-set adhesive systems for structural end joints in North America

    Treesearch

    Roland E. Kreibich; Richard W. Hemingway; William T. Nearn

    1993-01-01

    High quality, structural end joints can be cold-set at mill speed using a two-component honeymoon adhesive system composed of southern pine bark or pecan shell membrane tannin and a modified, commercially available. phenol-resorcinol-formaldehyde resin. Adhesive costs of a fully waterproof glueline are approximately $0.60/lb. of applied adhesive mix compared to $0.80/...

  20. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  1. The Septate Junction Protein Caspr is Required for Structural Support and Retention of KCNQ4 at Calyceal Synapses of Vestibular Hair Cells

    PubMed Central

    Sousa, Aurea D.; Andrade, Leonardo R.; Salles, Felipe T.; Pillai, Anilkumar M.; Buttermore, Elizabeth; Bhat, Manzoor A.; Kachar, Bechara

    2009-01-01

    The afferent innervation contacting the type I hair cells of the vestibular sensory epithelia form distinct calyceal synapses. The apposed pre- and post-synaptic membranes at this large area of synaptic contact are kept at a remarkably regular distance. Here, we show by freeze-fracture electron microscopy that a patterned alignment of proteins at the calyceal membrane resembles a type of intercellular junction that is rare in vertebrates, the septate junction (SJ). We found that a core molecular component of SJs, Caspr, colocalizes with the K+ channel KCNQ4 at the post-synaptic membranes of these calyceal synapses. Immunolabeling and ultrastructural analyses of Caspr knockout mice reveal that, in the absence of Caspr, the separation between the membranes of the hair cells and the afferent neurons is conspicuously irregular and often increased by an order of magnitude. In these mutants, KCNQ4 fails to cluster at the post-synaptic membrane and appears diffused along the entire calyceal membrane. Our results indicate that a septate-like junction provides structural support to calyceal synaptic contact with the vestibular hair cell, and that Caspr is required for the recruitment or retention of KCNQ4 at these synapses. PMID:19279247

  2. Structure of palmitoylated BET3: insights into TRAPP complex assembly and membrane localization

    PubMed Central

    Turnbull, Andrew P; Kümmel, Daniel; Prinz, Bianka; Holz, Caterina; Schultchen, Jeffrey; Lang, Christine; Niesen, Frank H; Hofmann, Klaus-Peter; Delbrück, Heinrich; Behlke, Joachim; Müller, Eva-Christina; Jarosch, Ernst; Sommer, Thomas; Heinemann, Udo

    2005-01-01

    BET3 is a component of TRAPP, a complex involved in the tethering of transport vesicles to the cis-Golgi membrane. The crystal structure of human BET3 has been determined to 1.55-Å resolution. BET3 adopts an α/β-plait fold and forms dimers in the crystal and in solution, which predetermines the architecture of TRAPP where subunits are present in equimolar stoichiometry. A hydrophobic pocket within BET3 buries a palmitate bound through a thioester linkage to cysteine 68. BET3 and yeast Bet3p are palmitoylated in recombinant yeast cells, the mutant proteins BET3 C68S and Bet3p C80S remain unmodified. Both BET3 and BET3 C68S are found in membrane and cytosolic fractions of these cells; in membrane extractions, they behave like tightly membrane-associated proteins. In a deletion strain, both Bet3p and Bet3p C80S rescue cell viability. Thus, palmitoylation is neither required for viability nor sufficient for membrane association of BET3, which may depend on protein–protein contacts within TRAPP or additional, yet unidentified modifications of BET3. A conformational change may facilitate palmitoyl extrusion from BET3 and allow the fatty acid chain to engage in intermolecular hydrophobic interactions. PMID:15692564

  3. [The mass-spectrometry studies of the interaction of polyhexamethyleneguanidine with lipids].

    PubMed

    Lysytsia, A V; Rebriiev, A V

    2014-01-01

    In this work the integral components of the cytoplasmic membrane, lecithin and cholesterol were used for mass spectrometry analysis carried out on polyhexamethyleneguanidine (PHMG) mixtures with lipids. The study was performed by mass-spectrometry methods of the MALDI-TOF MS. Our results showed that despite the common use of PHGM polymer derivatives as disinfectants the persistent intermolecular complexes of PHMG oligomers with lipids were not formed. The binding of polycation PHMG with the membrane has been explained by the model proposed. According to this model PHGM can adhere to negatively charged plasma membrane of bacterial cell due to electrostatic interaction and the formation of loop-like structures. Similar stereochemistry mechanism makes the adsorption of the investigated polycation to membrane robust. The mechanism described together with additional destructive factors provides a reasonable explanation for the PHMG induced damage of bacterial cell plasma membrane and the biocide action of disinfectants prepared on the basis of the PHMG salts.

  4. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria.

    PubMed

    Muñoz-Espín, Daniel; Daniel, Richard; Kawai, Yoshikazu; Carballido-López, Rut; Castilla-Llorente, Virginia; Errington, Jeff; Meijer, Wilfried J J; Salas, Margarita

    2009-08-11

    Little is known about the organization or proteins involved in membrane-associated replication of prokaryotic genomes. Here we show that the actin-like MreB cytoskeleton of the distantly related bacteria Escherichia coli and Bacillus subtilis is required for efficient viral DNA replication. Detailed analyses of B. subtilis phage ϕ29 showed that the MreB cytoskeleton plays a crucial role in organizing phage DNA replication at the membrane. Thus, phage double-stranded DNA and components of the ϕ29 replication machinery localize in peripheral helix-like structures in a cytoskeleton-dependent way. Importantly, we show that MreB interacts directly with the ϕ29 membrane-protein p16.7, responsible for attaching viral DNA at the cell membrane. Altogether, the results reveal another function for the MreB cytoskeleton and describe a mechanism by which viral DNA replication is organized at the bacterial membrane.

  5. PalC, One of Two Bro1 Domain Proteins in the Fungal pH Signalling Pathway, Localizes to Cortical Structures and Binds Vps32

    PubMed Central

    Galindo, Antonio; Hervás-Aguilar, América; Rodríguez-Galán, Olga; Vincent, Olivier; Arst, Herbert N; Tilburn, Joan; Peñalva, Miguel A

    2007-01-01

    PalC, distantly related to Saccharomyces cerevisiaeperipheral endosomal sorting complexes required for transport III (ESCRT-III) component Bro1p and one of six Aspergillus nidulanspH signalling proteins, contains a Bro1 domain. Green fluorescent protein (GFP)-tagged PalC is recruited to plasma membrane-associated punctate structures upon alkalinization, when pH signalling is active. PalC recruitment to these structures is dependent on the seven transmembrane domain (7-TMD) receptor and likely pH sensor PalH. PalC is a two-hybrid interactor of the ESCRT-III Vps20/Vps32 subcomplex and binds Vps32 directly. This binding is largely impaired by Pro439Phe, Arg442Ala and Arg442His substitutions in a conserved region mediating interaction of Bro1p with Vps32p, but these substitutions do not prevent cortical punctate localization, indicating Vps32 independence. In contrast, Arg442Δ impairs Vps32 binding and prevents PalC-GFP recruitment to cortical structures. pH signalling involves a plasma membrane complex including the 7-TMD receptor PalH and the arrestin-like PalF and an endosomal membrane complex involving the PalB protease, the transcription factor PacC and the Vps32 binding, Bro1-domain-containing protein PalA. PalC, which localizes to cortical structures and can additionally bind a component of ESCRT-III, has the features required to bridge these two entities. A likely S. cerevisiaeorthologue of PalC has been identified, providing the basis for a unifying hypothesis of gene regulation by ambient pH in ascomycetes. PMID:17696968

  6. The periplasmic domain of Escherichia coli outer membrane protein A can undergo a localized temperature dependent structural transition.

    PubMed

    Ishida, Hiroaki; Garcia-Herrero, Alicia; Vogel, Hans J

    2014-12-01

    Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1-171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180-325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA(180-325)). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA(180-325) with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA(1-325)) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the periplasmic domain of OmpA above physiological temperatures, which may induce dimerization and play a role in triggering the previously reported larger pore formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cholesterol effectively blocks entry of flavivirus.

    PubMed

    Lee, Chyan-Jang; Lin, Hui-Ru; Liao, Ching-Len; Lin, Yi-Ling

    2008-07-01

    Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2) are enveloped flaviviruses that enter cells through receptor-mediated endocytosis and low pH-triggered membrane fusion and then replicate in intracellular membrane structures. Lipid rafts, cholesterol-enriched lipid-ordered membrane domains, are platforms for a variety of cellular functions. In this study, we found that disruption of lipid raft formation by cholesterol depletion with methyl-beta-cyclodextrin or cholesterol chelation with filipin III reduces JEV and DEN-2 infection, mainly at the intracellular replication steps and, to a lesser extent, at viral entry. Using a membrane flotation assay, we found that several flaviviral nonstructural proteins are associated with detergent-resistant membrane structures, indicating that the replication complex of JEV and DEN-2 localizes to the membranes that possess the lipid raft property. Interestingly, we also found that addition of cholesterol readily blocks flaviviral infection, a result that contrasts with previous reports of other viruses, such as Sindbis virus, whose infectivity is enhanced by cholesterol. Cholesterol mainly affected the early step of the flavivirus life cycle, because the presence of cholesterol during viral adsorption greatly blocked JEV and DEN-2 infectivity. Flavirial entry, probably at fusion and RNA uncoating steps, was hindered by cholesterol. Our results thus suggest a stringent requirement for membrane components, especially with respect to the amount of cholesterol, in various steps of the flavivirus life cycle.

  8. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos G.

    1997-05-20

    A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

  9. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, I.; Toy, L.G.; Casillas, C.G.

    1997-05-20

    A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

  10. Membrane Interactions of Phytochemicals as Their Molecular Mechanism Applicable to the Discovery of Drug Leads from Plants.

    PubMed

    Tsuchiya, Hironori

    2015-10-16

    In addition to interacting with functional proteins such as receptors, ion channels, and enzymes, a variety of drugs mechanistically act on membrane lipids to change the physicochemical properties of biomembranes as reported for anesthetic, adrenergic, cholinergic, non-steroidal anti-inflammatory, analgesic, antitumor, antiplatelet, antimicrobial, and antioxidant drugs. As well as these membrane-acting drugs, bioactive plant components, phytochemicals, with amphiphilic or hydrophobic structures, are presumed to interact with biological membranes and biomimetic membranes prepared with phospholipids and cholesterol, resulting in the modification of membrane fluidity, microviscosity, order, elasticity, and permeability with the potencies being consistent with their pharmacological effects. A novel mechanistic point of view of phytochemicals would lead to a better understanding of their bioactivities, an insight into their medicinal benefits, and a strategic implication for discovering drug leads from plants. This article reviews the membrane interactions of different classes of phytochemicals by highlighting their induced changes in membrane property. The phytochemicals to be reviewed include membrane-interactive flavonoids, terpenoids, stilbenoids, capsaicinoids, phloroglucinols, naphthodianthrones, organosulfur compounds, alkaloids, anthraquinonoids, ginsenosides, pentacyclic triterpene acids, and curcuminoids. The membrane interaction's applicability to the discovery of phytochemical drug leads is also discussed while referring to previous screening and isolating studies.

  11. The Lipopolysaccharide of Brucella abortus BvrS/BvrR Mutants Contains Lipid A Modifications and Has Higher Affinity for Bactericidal Cationic Peptides

    PubMed Central

    Manterola, Lorea; Moriyón, Ignacio; Moreno, Edgardo; Sola-Landa, Alberto; Weiss, David S.; Koch, Michel H. J.; Howe, Jörg; Brandenburg, Klaus; López-Goñi, Ignacio

    2005-01-01

    The two-component BvrS/BvrR system is essential for Brucella abortus virulence. It was shown previously that its dysfunction abrogates expression of some major outer membrane proteins and increases bactericidal peptide sensitivity. Here, we report that BvrS/BvrR mutants have increased surface hydrophobicity and susceptibility to killing by nonimmune serum. The bvrS and bvrR mutant lipopolysaccharides (LPSs) bound more polymyxin B, chimeras constructed with bvrS mutant cells and parental LPS showed augmented polymyxin B resistance, and, conversely, parental cells and bvrS mutant LPS chimeras were more sensitive and displayed polymyxin B-characteristic outer membrane lesions, implicating LPS as being responsible for the phenotype of the BvrS/BvrR mutants. No qualitative or quantitative changes were detected in other envelope and outer membrane components examined: periplasmic β(1-2) glucans, native hapten polysaccharide, and phospholipids. The LPS of the mutants was similar to parental LPS in O-polysaccharide polymerization and fine structure but showed both increased underacylated lipid A species and higher acyl-chain fluidity that correlated with polymyxin B binding. These lipid A changes did not alter LPS cytokine induction, showing that in contrast to other gram-negative pathogens, recognition by innate immune receptors is not decreased by these changes in LPS structure. Transcription of Brucella genes required for incorporating long acyl chains into lipid A (acpXL and lpxXL) or implicated in lipid A acylation control (bacA) was not affected. We propose that in Brucella the outer membrane homeostasis depends on the functioning of BvrS/BvrR. Accordingly, disruption of BvrS/BvrR damages the outer membrane, thus contributing to the severe attenuation manifested by bvrS and bvrR mutants. PMID:16077108

  12. Taming the Sphinx: Mechanisms of Cellular Sphingolipid Homeostasis

    PubMed Central

    Olson, D. K.; Fröhlich, F.; Farese, R; Walther, T. C.

    2016-01-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. PMID:26747648

  13. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter.

    PubMed

    Weyand, Simone; Shimamura, Tatsuro; Yajima, Shunsuke; Suzuki, Shun'ichi; Mirza, Osman; Krusong, Kuakarun; Carpenter, Elisabeth P; Rutherford, Nicholas G; Hadden, Jonathan M; O'Reilly, John; Ma, Pikyee; Saidijam, Massoud; Patching, Simon G; Hope, Ryan J; Norbertczak, Halina T; Roach, Peter C J; Iwata, So; Henderson, Peter J F; Cameron, Alexander D

    2008-10-31

    The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuT(Aa) and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.

  14. The FapF amyloid secretion transporter possesses an atypical asymmetric coiled coil.

    PubMed

    Rouse, Sarah L; Stylianou, Fisentzos; Grace Wu, H Y; Berry, Jamie-Lee; Sewell, Lee; Morgan, R Marc L; Sauerwein, Andrea C; Matthews, Steve

    2018-06-07

    Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits, the fibres of which are key components of their biofilm matrix. The secretion of bacterial functional amyloid requires a specialised outer-membrane protein channel through which unfolded amyloid substrates are translocated. We previously reported the crystal structure of the membrane-spanning domain of the amyloid subunit transporter FapF from Pseudomonas. However, the structure of the periplasmic domain, which is essential for amyloid transport, is yet to be determined. Here, we present the crystal structure of the N-terminal periplasmic domain at 1.8 Å resolution. This domain forms a novel asymmetric trimeric coiled-coil that possesses a single buried tyrosine residue as well as a extensive hydrogen-bonding network within a glutamine layer. This new structural insight allows us to understand this newly described functional amyloid secretion system in greater detail. Copyright © 2018. Published by Elsevier Ltd.

  15. Entropy and biological systems: experimentally-investigated entropy-driven stacking of plant photosynthetic membranes.

    PubMed

    Jia, Husen; Liggins, John R; Chow, Wah Soon

    2014-02-24

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg(2+)-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl₂ with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components.

  16. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    PubMed Central

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-01-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components. PMID:24561561

  17. A Novel Function for the nm23-Hl Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S

    1994-01-01

    We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasismore » suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene expression and morphological-biosynthetic-growth aspects of breast differentiation in this model system. While the basement membrane microenvironment is capable of directing the differentiation of normal human breast cells, neoplastic transformation abrogates this relationship, suggesting that intrinsic cellular events are also critical to this process. The data identify nm23-H1 gene expression as one of these events, suggesting an important role in the modulation of cellular responsiveness to the microenvironment. The data also identify previously unknown growth inhibitory effects of nm23-H1 gene overexpression.« less

  18. Structural basis for spectrin recognition by ankyrin.

    PubMed

    Ipsaro, Jonathan J; Mondragón, Alfonso

    2010-05-20

    Maintenance of membrane integrity and organization in the metazoan cell is accomplished through intracellular tethering of membrane proteins to an extensive, flexible protein network. Spectrin, the principal component of this network, is anchored to membrane proteins through the adaptor protein ankyrin. To elucidate the atomic basis for this interaction, we determined a crystal structure of human betaI-spectrin repeats 13 to 15 in complex with the ZU5-ANK domain of human ankyrin R. The structure reveals the role of repeats 14 to 15 in binding, the electrostatic and hydrophobic contributions along the interface, and the necessity for a particular orientation of the spectrin repeats. Using structural and biochemical data as a guide, we characterized the individual proteins and their interactions by binding and thermal stability analyses. In addition to validating the structural model, these data provide insight into the nature of some mutations associated with cell morphology defects, including those found in human diseases such as hereditary spherocytosis and elliptocytosis. Finally, analysis of the ZU5 domain suggests it is a versatile protein-protein interaction module with distinct interaction surfaces. The structure represents not only the first of a spectrin fragment in complex with its binding partner, but also that of an intermolecular complex involving a ZU5 domain.

  19. RomA, A Periplasmic Protein Involved in the Synthesis of the Lipopolysaccharide, Tunes Down the Inflammatory Response Triggered by Brucella.

    PubMed

    Valguarnera, Ezequiel; Spera, Juan M; Czibener, Cecilia; Fulgenzi, Fabiana R; Casabuono, Adriana C; Altabe, Silvia G; Pasquevich, Karina A; Guaimas, Francisco; Cassataro, Juliana; Couto, Alicia S; Ugalde, Juan E

    2018-03-28

    Brucellaceae are stealthy pathogens with the ability to survive and replicate in the host in the context of a strong immune response. This capacity relies on several virulence factors that are able to modulate the immune system and in their structural components that have low proinflammatory activities. Lipopolysaccharide (LPS), the main component of the outer membrane, is a central virulence factor of Brucella, and it has been well established that it induces a low inflammatory response. We describe here the identification and characterization of a novel periplasmic protein (RomA) conserved in alpha-proteobacteria, which is involved in the homeostasis of the outer membrane. A mutant in this gene showed several phenotypes, such as membrane defects, altered LPS composition, reduced adhesion, and increased virulence and inflammation. We show that RomA is involved in the synthesis of LPS, probably coordinating part of the biosynthetic complex in the periplasm. Its absence alters the normal synthesis of this macromolecule and affects the homeostasis of the outer membrane, resulting in a strain with a hyperinflammatory phenotype. Our results suggest that the proper synthesis of LPS is central to maximize virulence and minimize inflammation.

  20. A hypothesis for the minimal overall structure of the mammalian plasma membrane redox system.

    PubMed

    de Grey, Aubrey D N J

    2003-05-01

    After a long period of frustration, many components of the mammalian plasma membrane redox system are now being identified at the molecular level. Some are apparently ubiquitous but are necessary only for a subset of electron donors or acceptors; some are present only in certain cell types; some appear to be associated with proton extrusion; some appear to be capable of superoxide production. The volume and variety of data now available have begun to allow the formulation of tentative models for the overall network of interactions of enzymes and substrates that together make up the plasma membrane redox system. Such a model is presented here. The structure discussed here is of the mammalian system, though parts of it may apply more or less accurately to fungal and plant cells too. Judging from the history of mitochondrial oxidative phosphorylation, it may be hoped that the development of models of the whole system - even if they undergo substantial revision thereafter - will markedly accelerate the pace of research in plasma membrane redox, by providing a coherent basis for the design of future experiments.

  1. Immunological properties of Micrococcus lysodeikticus membranes.

    PubMed

    Fukui, Y; Nachbar, M S; Salton, M R

    1971-01-01

    Membranes of Micrococcus lysodeikticus possess antigens which are distinct from other cellular components such as cytoplasm, ribosomes, and cell walls. Only a few (two to three) components are found when dissociated membranes are examined by immunodiffusion and immunoelectrophoresis techniques. Membranes treated with 0.3% sodium dodecyl sulfate, 0.3% Triton X-100, trypsin, phospholipase A or C, or by sonic oscillation at pH 9.0, all showed the same pattern (three major bands) when examined against membrane antisera by immunoelectrophoresis. Immunological analysis of fractions isolated by sucrose gradient centrifugation or by polyacrylamide gel electrophoresis suggests that individual components cross-react. Antibodies to adenosine triphosphatase (EC 3.6.1.3) and fast-moving component are not removed by absorption with protoplasts. Removal of antibody to one of the membrane antigens by protoplast absorption indicated a surface location. Glutaraldehyde fixation of protoplasts resulted in the loss of membrane antigens detectable by immunodiffusion.

  2. Molecular target of synthetic antimicrobial oligomer in bacterial membranes

    NASA Astrophysics Data System (ADS)

    Yang, Lihua; Gordon, Vernita; Som, Abhigyan; Cronan, John; Tew, Gregory; Wong, Gerard

    2008-03-01

    Antimicrobial peptides comprises a key component of innate immunity for a wide range of multicellular organisms. It has been shown that natural antimicrobial peptides and their synthetic analogs have demonstrated broad-spectrum antimicrobial activity via permeating bacterial membranes selectively. Synthetic antimicrobials with tunable structure and toxicological profiles are ideal for investigations of selectivity mechanisms. We investigate interactions and self-assembly using a prototypical family of antimicrobials based on phenylene ethynylene. Results from synchrotron small angle x-ray scattering (SAXS) results and in vitro microbicidal assays on genetically modified `knock-out' bacteria will be presented.

  3. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denninger, Andrew R.; Demé, Bruno; Cristiglio, Viviana

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures andmore » the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.« less

  4. Programmable assembly of pressure sensors using pattern-forming bacteria

    PubMed Central

    Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D.; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong

    2017-01-01

    Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to mimic such natural processes to assemble patterned materials.. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration. PMID:28991268

  5. Red cell membrane skeleton: structure-function relationships.

    PubMed

    Palek, J; Liu, S C

    1980-01-01

    This papaer reviews our present understanding of ultrastructure, organization, and functional characteristics of the erythrocyte membrane cytoskeleton. This two-dimensional fibrillar network of submembrane proteins can be visualized after extraction of lipids and integral membrane proteins by Triton X-100. Current data suggest that the major structural components of the cytoskeleton are heterodimers of double-stranded spectrin that form tetramers by head-to-head associations. The tetramers may be connected into a fibrillar meshwork by oligomers of actin. The control of membrane integrity by this network is illustrated by examples of two hemolyotic anemias characterized by marked membrane instability and vesiculation: 1) hereditary spherocytic anemia of the house mouse associated with spectrin deficiency and 2) hereditary pyropoikilocytosis, a hemolytic anemia in man characterized by thermal instability of the membrane and the presence of abnormal spectrin, which exhibits an increased propensity to thermal denaturation. Stabilization of the cytoskeletal network by covalent cross-links between the nearest cytoskeletal and integral membrane proteins results in a decrease of membrane deformability and a fixation of erythrocytes in their abnormal shape. Such cross-linkings include: 1) transamidative cross-links produced by introduction of Ca2+ (>0.5 mM) into fresh erythrocytes, and 2) intermolecular disulfide couplings, which are formed after extensive oxidation of fresh erythrocytes or after mild oxidation of ATP-depleted, but not fresh, erythrocytes. The significance of these cross-links in stabilization of shape of abnormal erythrocytes such as schistocytes remains to be determined. We conclude that spectrin and actin form a fibrillar submembrane network that plays an important role in control of membrane integrity, erythrocyte deformability, and stabilization of cells in abnormal shapes.

  6. Structural correlates of imbibitional injury in Typha pollen

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Leopold, A. C.; Hoekstra, F. A.

    1988-01-01

    The ultrastructure of Typha latifolia pollen was examined as a function of pollen moisture content and incubation temperature, in order to identify possible lesions induced by imbibitional chilling. A syndrome of structural traits was found which characterizes damaged grains. Compared to viable grains, the protoplast of damaged pollen has a higher proportion of its volume occupied by vesicles, and less volume occupied by cytoplasm. Damaged grains also tend to have dilated cisternae of endoplasmic reticulum, larger starch grains and lipid bodies, poorly preserved mitochondria and membranes, and, sometimes, numerous electron-dense globules associated with membranes. The percentage of grains exhibiting this damage syndrome correlates closely with the number of ungerminated grains in most samples, regardless of moisture content or incubation temperature. Injury due to rapid imbibition from the dry state or to imbibitional chilling appear to be similar structurally, regardless of whether the stresses are imposed singly or together. The injury is not confined to one cell component (e.g., mitochondria), but may involve a generalized disruption of membranes. These results suggest that similar stress responses are elicited by imbibition from the dry state and by imbibitional chilling.

  7. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    PubMed

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols detection the developed sensor system is characterized by simplicity of operation, compactness, and low cost. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane.

    PubMed

    Corcelli, Angela; Lattanzio, Veronica M T; Mascolo, Giuseppe; Papadia, Paride; Fanizzi, Francesco

    2002-01-01

    The lipid/protein stoichiometries of a naturally crystalline biological membrane, the purple membrane (PM) of Halobacterium salinarum, have been obtained by a combination of (31)P- and (1)H-NMR analyses of the lipid extract. In total, 10 lipid molecules per retinal were found to be present in the PM lipid extract: 2-3 molecules of phosphatidylglycerophosphate methyl ester (PGP-Me), 3 of glycolipid sulfate, 1 of phosphatidylglycerol, 1 of archaeal glycocardiolipin (GlyC), 2 of squalene plus minor amounts of phosphatidylglycerosulfate (PGS) and bisphosphatidylglycerol (archaeal cardiolipin) (BPG) and a negligible amount of vitamin MK8. The novel data of the present study are necessary to identify the lipids in the electron density map, and to shed light on the structural relationships of the lipid and protein components of the PM.

  9. Protein-Phospholipid Interactions in Nonclassical Protein Secretion: Problem and Methods of Study

    PubMed Central

    Prudovsky, Igor; Kumar, Thallapuranam Krishnaswamy Suresh; Sterling, Sarah; Neivandt, David

    2013-01-01

    Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release. PMID:23396106

  10. Anatomical influences on internally coupled ears in reptiles.

    PubMed

    Young, Bruce A

    2016-10-01

    Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

  11. Mammalian autophagy and the plasma membrane.

    PubMed

    Pavel, Mariana; Rubinsztein, David C

    2017-03-01

    Autophagy (literally 'self-eating') is an evolutionarily conserved degradation process where cytoplasmic components are engulfed by vesicles called autophagosomes, which are then delivered to lysosomes, where their contents are degraded. Under stress conditions, such as starvation or oxidative stress, autophagy is upregulated in order to degrade macromolecules and restore the nutrient balance. The source of membranes that participate in the initial formation of phagophores is still incompletely understood and many intracellular structures have been shown to act as lipid donors, including the endoplasmic reticulum, Golgi, nucleus, mitochondria and the plasma membrane. Here, we focus on the contributions of the plasma membrane to autophagosome biogenesis governed by ATG16L1 and ATG9A trafficking, and summarize the physiological and pathological implications of this macroautophagy route, from development and stem cell fate to neurodegeneration and cancer. © 2016 Federation of European Biochemical Societies.

  12. Membrane Remodeling by the Double-Barrel Scaffolding Protein of Poxvirus

    PubMed Central

    Hijnen, Marcel; Schult, Philipp; Pettikiriarachchi, Anne; Mitra, Alok K.; Coulibaly, Fasséli

    2011-01-01

    In contrast to most enveloped viruses, poxviruses produce infectious particles that do not acquire their internal lipid membrane by budding through cellular compartments. Instead, poxvirus immature particles are generated from atypical crescent-shaped precursors whose architecture and composition remain contentious. Here we describe the 2.6 Å crystal structure of vaccinia virus D13, a key structural component of the outer scaffold of viral crescents. D13 folds into two jellyrolls decorated by a head domain of novel fold. It assembles into trimers that are homologous to the double-barrel capsid proteins of adenovirus and lipid-containing icosahedral viruses. We show that, when tethered onto artificial membranes, D13 forms a honeycomb lattice and assembly products structurally similar to the viral crescents and immature particles. The architecture of the D13 honeycomb lattice and the lipid-remodeling abilities of D13 support a model of assembly that exhibits similarities with the giant mimivirus. Overall, these findings establish that the first committed step of poxvirus morphogenesis utilizes an ancestral lipid-remodeling strategy common to icosahedral DNA viruses infecting all kingdoms of life. Furthermore, D13 is the target of rifampicin and its structure will aid the development of poxvirus assembly inhibitors. PMID:21931553

  13. VP08R from Infectious Spleen and Kidney Necrosis Virus Is a Novel Component of the Virus-Mock Basement Membrane

    PubMed Central

    Xu, Xiaopeng; Yan, Muting; Wang, Rui; Lin, Ting; Tang, Junliang; Li, Chaozheng; Weng, Shaoping

    2014-01-01

    ABSTRACT Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytivirus, family Iridoviridae, brings great harm to fish farming. In infected tissues, ISKNV infection is characterized by a unique phenomenon, in that the infected cells are attached by lymphatic endothelial cells (LECs), which are speculated to wall off the infected cells from host immune attack. A viral membrane protein, VP23R, binds and recruits the host nidogen-1 protein to construct a basement membrane (BM)-like structure, termed virus-mock basement membrane (VMBM), on the surface of infected cells to provide attaching sites for LECs. VMBMs do not contain collagen IV protein, which is essential for maintenance of BM integrity and functions. In this study, we identified the VP08R protein encoded by ISKNV. VP08R was predicted to be a secreted protein with a signal peptide but without a transmembrane domain. However, immunofluorescence assays demonstrated that VP08R is located on the plasma membrane of infected cells and shows an expression profile similar to that of VP23R. Coimmunoprecipitation showed that VP08R interacts with both VP23R and nidogen-1, indicating that VP08R is a component of VMBM and is present on the cell membrane by binding to VP23R. Through formation of intermolecular disulfide bonds, VP08R molecules self-organized into a multimer, which may play a role in the maintenance of VMBM integrity and stability. Moreover, the VP08R multimer was easily degraded when the ISKNV-infected cells were lysed, which may be a mechanism for VMBM disassembly when necessary to free LECs and release the mature virions. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV; genus Megalocytivirus, family Iridovirus) is most harmful to cultured fishes. In tissues, the ISKNV-infected cells are attached by lymphatic endothelial cells (LECs), which are speculated to segregate the host immune system. A viral membrane protein, VP23R, binds and recruits the host nidogen-1 protein to construct virus-mock basement membranes (VMBMs) on the surface of infected cells to provide attaching sites for LECs. Although VMBMs lack the collagen IV network, which is an essential structural part of true BMs, VMBMs still show an intact structure. An ISKNV-encoded VP08R protein can self-assemble into a multimer and bind both VP23R and nidogen-1 to maintain the integrity and stability of VMBMs. On the basis of these facts, we redrew the putative schematic illustration of the VMBM structure. Our study suggests that the virus adopts a strategy to remodel the cellular matrix and may provide an important reference to elucidate BM functions and the mechanisms of lymphangiogenesis. PMID:24599992

  14. Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding.

    PubMed

    Stewart, Sarah E; Bird, Catherina H; Tabor, Rico F; D'Angelo, Michael E; Piantavigna, Stefania; Whisstock, James C; Trapani, Joseph A; Martin, Lisandra L; Bird, Phillip I

    2015-12-25

    Perforin is an essential component in the cytotoxic lymphocyte-mediated cell death pathway. The traditional view holds that perforin monomers assemble into pores in the target cell membrane via a calcium-dependent process and facilitate translocation of cytotoxic proteases into the cytoplasm to induce apoptosis. Although many studies have examined the structure and role of perforin, the mechanics of pore assembly and granzyme delivery remain unclear. Here we have employed quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate binding and assembly of perforin on lipid membranes, and show that perforin monomers bind to the membrane in a cooperative manner. We also found that cholesterol influences perforin binding and activity on intact cells and model membranes. Finally, contrary to current thinking, perforin efficiently binds membranes in the absence of calcium. When calcium is added to perforin already on the membrane, the QCM-D response changes significantly, indicating that perforin becomes membranolytic only after calcium binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Plasma membrane signaling in HIV-1 infection.

    PubMed

    Abbas, Wasim; Herbein, Georges

    2014-04-01

    Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. SILVER IMPREGNATION OF ULTRATHIN SECTIONS FOR ELECTRON MICROSCOPY

    PubMed Central

    Marinozzi, Vittorio

    1961-01-01

    A new procedure is described for silver impregnation of thin sections for electron microscopy. Sections of various tissues, fixed in OsO4 and embedded in methacrylate, were treated with an ammoniacal silver solution, directly or after oxidation with periodic acid or hydrogen peroxide. After OsO4 fixation all cellular membranous systems exhibit a primary argentaffinity probably due to the reduction of ammoniacal silver solution by the reduced osmium bound to unsaturated lipids. Bleaching the sections with hydrogen peroxide removes the argentaffinity of protoplasmic structures. Treatment of the sections with periodic acid results in decreased argentaffinity of protoplasmic components while the argentaffinity of metaplasmic structures is greatly enhanced. The latter procedure appears particularly useful for enhancing the contrast of basement membranes. PMID:13766855

  17. Restoring effect of selenium on the molecular content, structure and fluidity of diabetic rat kidney brush border cell membrane.

    PubMed

    Gurbanov, Rafig; Bilgin, Mehmet; Severcan, Feride

    2016-04-01

    Diabetic kidney disease (DKD) is a dominant factor standing for kidney impairments during diabetes. In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to disclose the diabetes-induced structural changes in the kidney and evaluate the effects of selenium on diabetes. The increase in the area of the olefinic band indicated increased amount of lipid peroxidation end products in diabetic kidney brush border cell membrane. Moreover, saturated lipid content of this cell membrane considerably diminished. DKD was found to disrupt lipid order and cause a decrease in membrane dynamics. However, the administration of selenium at low and medium doses was shown to improve these conditions by changing the lipid contents toward control values, restoring the ordered structure of the lipids and membrane dynamics. Curve-fitting and artificial neural network (ANN) analyses of secondary structures of proteins demonstrated a relative increase in α-helix and reduction in the β-sheet during diabetes in comparison to the control group, which were ameliorated following selenium treatment at low and medium doses. These findings were further confirmed by applying hierarchical cluster analysis (HCA) and principal component analysis (PCA). A clear separation of the experimental groups was obtained with high heterogeneity in the lipid and protein regions. These chemometric analyses showed that the low and medium doses of selenium-treated diabetic groups are successfully segregated from the diabetic group and clustered closer to the control. The study suggests that medium and, more predominantly, low-dose selenium treatment can be efficient in eliminating diabetes-induced structural alterations. Copyright © 2016 Elsevier B.V. All rights reserved

  18. Physiological and Transcriptional Responses of Saccharomyces cerevisiae to d-Limonene Show Changes to the Cell Wall but Not to the Plasma Membrane

    PubMed Central

    Brennan, Timothy C. R.; Nielsen, Lars K.

    2013-01-01

    Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis. PMID:23542628

  19. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes.

    PubMed

    Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kopeina, G S; Shulepko, M A; Paramonov, A S; Mineev, K S; Tikhonov, R V; Shingarova, L N; Petrovskaya, L E; Dolgikh, D A; Arseniev, A S; Kirpichnikov, M P

    2012-03-01

    Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Structure/property relationships in polymer membranes for water purification and energy applications

    NASA Astrophysics Data System (ADS)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  1. Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons.

    PubMed Central

    Tsui, H C; Ris, H; Klein, W L

    1983-01-01

    We have examined growth cones and neurites of cultured central nervous system neurons by high-voltage electron microscopy. Embryonic chicken retina cells were cultured on polylysine-treated and Formvar-coated gold grids for 2-6 days, fixed, and critical point dried. Growth cones and neurites were examined as unembedded whole mounts. Three-dimensional images from stereo-pair electron micrographs of these regions showed a high degree of ultrastructural articulation, with distinct, non-tapering filaments (5-9 nm in diameter) joining both cytoskeletal and membranous components. In the central regions of growth cones, interconnected structures included microtubules, large membranous sacs (up to 400 nm), and irregular vesicles (25-75 nm). A denser filamentous network was prevalent at the edges of growth cones. This network, which frequently adjoined the surface membrane, linked vesicles of uniform size (35-40 nm). Such vesicles often were seen densely packed in growth cone protrusions that were about the size of small synaptic boutons. Prevalent structural interconnections within growth cones conceivably could play a logistic role in specific membrane assembly, intracellular transport, endocytosis, and secretion. Because such processes are not unique to growth cones, the extensive linkages we have observed may have implications for cytoplasmic structure in general. Images PMID:6577454

  2. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  3. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE PAGES

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    2017-10-20

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  4. ELECTRON MICROSCOPE STUDY OF MYCOBACTERIUM LEPRAE AND ITS ENVIRONMENT IN A VESICULAR LEPROUS LESION

    PubMed Central

    Imaeda, Tamotsu; Convit, Jacinto

    1962-01-01

    Imaeda, Tamotsu (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela) and Jacinto Convit. Electron microscope study of Mycobacterium leprae and its environment in a vesicular leprous lesion. J. Bacteriol. 83:43–52. 1962.—Biopsied specimens of a borderline leprosy lesion were observed with the electron microscope. In this lesion, the majority of Mycobacterium leprae were laden with cytoplasmic components. The bacilli were separated from the cytoplasm of host cells by an enclosing membrane, thus differing from the environment of well-developed lepra cells in lepromatous lesions. The cell wall is composed of a moderately dense layer. A diffuse layer is discernible outside the cell wall, separated from it by a low density space. It is suggested that the cell wall is further coated by a low density layer, although the nature of the outermost diffuse layer has not yet been determined. The plasma membrane consists of a double layer, i.e., dense inner and outer layers separated by a low density space. The outer layer is closely adjacent to the cell wall. In the region where the outer layer of the plasma membrane enters the cytoplasm and is transformed into a complex membranous structure, the inner layer encloses this membranous configuration. Together they form the intracytoplasmic membrane system. In the bacterial cytoplasm, moderately dense, presumably polyphosphate bodies are apparent. As neither these bodies nor the intracytoplasmic membrane system are visible in the degenerating bacilli, it seems probable that these two components represent indicators of the state of bacillary activity. Images PMID:16561926

  5. Isolation and Characterization of Methanophenazine and Function of Phenazines in Membrane-Bound Electron Transport of Methanosarcina mazei Gö1

    PubMed Central

    Abken, Hans-Jörg; Tietze, Mario; Brodersen, Jens; Bäumer, Sebastian; Beifuss, Uwe; Deppenmeier, Uwe

    1998-01-01

    A hydrophobic, redox-active component with a molecular mass of 538 Da was isolated from lyophilized membranes of Methanosarcina mazei Gö1 by extraction with isooctane. After purification on a high-performance liquid chromatography column, the chemical structure was analyzed by mass spectroscopy and nuclear magnetic resonance studies. The component was called methanophenazine and represents a 2-hydroxyphenazine derivative which is connected via an ether bridge to a polyisoprenoid side chain. Since methanophenazine was almost insoluble in aqueous buffers, water-soluble phenazine derivatives were tested for their ability to interact with membrane-bound enzymes involved in electron transport and energy conservation. The purified F420H2 dehydrogenase from M. mazei Gö1 showed highest activity with 2-hydroxyphenazine and 2-bromophenazine as electron acceptors when F420H2 was added. Phenazine-1-carboxylic acid and phenazine proved to be less effective. The Km values for 2-hydroxyphenazine and phenazine were 35 and 250 μM, respectively. 2-Hydroxyphenazine was also reduced by molecular hydrogen catalyzed by an F420-nonreactive hydrogenase which is present in washed membrane preparations. Furthermore, the membrane-bound heterodisulfide reductase was able to use reduced 2-hydroxyphenazine as an electron donor for the reduction of CoB-S-S-CoM. Considering all these results, it is reasonable to assume that methanophenazine plays an important role in vivo in membrane-bound electron transport of M. mazei Gö1. PMID:9555882

  6. Method and apparatus for sustaining viability of biological cells on a substrate

    DOEpatents

    McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2013-01-01

    A method for the transient transformation of a living biological cell having an intact cell membrane defining an intracellular domain, and an apparatus for the transient transformation of biological cells. The method and apparatus include introducing a compartmentalized extracellular component fixedly attached to a cellular penetrant structure to the intracellular domain of the cell, wherein the cell is fixed in a predetermined location and wherein the component is expressed within in the cell while being retained within the compartment and wherein the compartment restricts the mobility and interactions of the component within the cell and prevents transference of the component to the cell.

  7. Method and apparatus for sustaining viability of biological cells on a substrate

    DOEpatents

    McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN

    2011-12-13

    A method for the transient transformation of a living biological cell having an intact cell membrane defining an intracellular domain, and an apparatus for the transient transformation of biological cells. The method and apparatus include introducing a compartmentalized extracellular component fixedly attached to a cellular penetrant structure to the intracellular domain of the cell, wherein the cell is fixed in a predetermined location and wherein the component is expressed within in the cell while being retained within the compartment and wherein the compartment restricts the mobility and interactions of the component within the cell and prevents transference of the component to the cell.

  8. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    PubMed Central

    Jones, Frances E.; Bailey, Matthew A.; Murray, Lydia S.; Lu, Yinhui; McNeilly, Sarah; Schlötzer-Schrehardt, Ursula; Lennon, Rachel; Sado, Yoshikazu; Brownstein, David G.; Mullins, John J.; Kadler, Karl E.; Van Agtmael, Tom

    2016-01-01

    ABSTRACT Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies. PMID:26839400

  9. Structural insight into lipopolysaccharide transport from the Gram-negative bacterial inner membrane to the outer membrane.

    PubMed

    Dong, Haohao; Tang, Xiaodi; Zhang, Zhengyu; Dong, Changjiang

    2017-11-01

    Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans‑envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB 2 FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans‑periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Interaction of murine macrophage-membrane proteins with components of the pathogenic fungus Histoplasma capsulatum

    PubMed Central

    Taylor, M L; Duarte-Escalante, E; Reyes-Montes, M R; Elizondo, N; Maldonado, G; Zenteno, E

    1998-01-01

    The interaction of macrophage-membrane proteins and histoplasmin, a crude antigen of the pathogenic fungus Histoplasma capsulatum, was studied using murine peritoneal macrophages. Membrane proteins were purified via membrane attachment to polycationic beads and solubilized in Tris–HCl/SDS/DTT/glycerol for protein extraction; afterwards they were adsorbed or not with H. capsulatum yeast or lectin binding-enriched by affinity chromatography. Membrane proteins and histoplasmin interactions were detected by ELISA and immunoblotting assays using anti-H. capsulatum human or mouse serum and biotinylated goat anti-human or anti-mouse IgG/streptavidin-peroxidase system to reveal the interaction. Results indicate that macrophage-membrane proteins and histoplasmin components interact in a dose-dependent reaction, and adsorption of macrophage-membrane proteins by yeast cells induces a critical decrease in the interaction. Macrophage-membrane glycoproteins with terminal d-galactosyl residues, purified by chromatography with Abrus precatorius lectin, bound to histoplasmin; and two bands of 68 kD and 180 kD of transferred membrane protein samples interacted with histoplasmin components, as revealed by immunoblot assays. Specificity for β-galactoside residues on the macrophage-membrane was confirmed by galactose inhibition of the interaction between macrophage-membrane proteins and histoplasmin components, in competitive ELISA using sugars, as well as by enzymatic cleavage of the galactoside residues. PMID:9737672

  11. New insights into comparison between synthetic and practical municipal wastewater in cake layer characteristic analysis of membrane bioreactor.

    PubMed

    Zhou, Lijie; Zhuang, Wei-Qin; Wang, Xin; Yu, Ke; Yang, Shufang; Xia, Siqing

    2017-11-01

    In previous studies, cake layer analysis in membrane bioreactor (MBR) was both carried out with synthetic and practical municipal wastewater (SMW and PMW), leading to different results. This study aimed to identify the comparison between SMW and PMW in cake layer characteristic analysis of MBR. Two laboratory-scale anoxic/oxic MBRs were operated for over 90days with SMW and PMW, respectively. Results showed that PMW led to rough cake layer surface with particles, and the aggravation of cake layer formation with thinner and denser cake layer. Additionally, inorganic components, especially Si and Al, in PMW accumulated into cake layer and strengthened the cake layer structure, inducing severer biofouling. However, SMW promoted bacterial metabolism during cake layer formation, thus aggravated the accumulation of organic components into cake layer. Therefore, SMW highlighted the organic components in cake layer, but weakened the inorganic functions in practical MBR operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses.

    PubMed

    Kessels, Michael M; Qualmann, Britta

    2015-09-01

    A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions. © 2015. Published by The Company of Biologists Ltd.

  13. The identification of a naturally occurring cell surface growth inhibitor related to a previously described bovine sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Fattaey, H. K.; Enebo, D. J.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A 66-kDa sialoglycoprotein has been identified as the parental membrane molecule of an earlier described sialoglycopeptide (SGP), an 18-kDa molecule released by protease treatment of intact bovine cerebral cortex cells that was shown to be a potent inhibitor of cellular proliferation. The 66-kDa parental sialoglycoprotein (p-SGP) was purified approximately 2,400-fold, to apparent homogeneity, from bovine cerebral cortex cell membranes by its release during incubation with 3 M NaCl, preparative isoelectric focusing and lectin affinity chromatography. Although a membrane-associated molecule, the p-SGP appeared to be tightly bound to the cell membrane, since it was not released during incubations in the absence of 3 M NaCl. Incubation of the membrane preparations with 3 M urea proved to be too harsh, and the antigenicity required to follow the purification of the p-SGP was abolished. Analyses by SDS-PAGE, under reducing and nonreducing conditions, suggested that the p-SGP membrane component was a single polypeptide without subunit structure. The p-SGP was shown to be structurally related to the SGP fragment by immunoblots with IgG raised to the SGP inhibitor, and functionally related to the SGP by its ability to inhibit Swiss 3T3 proliferation at concentrations strikingly similar to that previous measured with the SGP fragment.

  14. Tympanal travelling waves in migratory locusts.

    PubMed

    Windmill, James F C; Göpfert, Martin C; Robert, Daniel

    2005-01-01

    Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.

  15. Controlled ionic condensation at the surface of a native extremophile membrane

    NASA Astrophysics Data System (ADS)

    Contera, Sonia Antoranz; Voïtchovsky, Kislon; Ryan, John F.

    2010-02-01

    At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces.At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces. Electronic supplementary information (ESI) available: Figs. S1 and S2: amplitude- and phase-extension curves used to derive the data presented in Figs. 2 and 4. See DOI: 10.1039/b9nr00248k

  16. Prokaryotic 2-component systems and the OmpR/PhoB superfamily.

    PubMed

    Nguyen, Minh-Phuong; Yoon, Joo-Mi; Cho, Man-Ho; Lee, Sang-Won

    2015-11-01

    In bacteria, 2-component regulatory systems (TCSs) are the critical information-processing pathways that link stimuli to specific adaptive responses. Signals perceived by membrane sensors, which are generally histidine kinases, are transmitted by response regulators (RRs) to allow cells to cope rapidly and effectively with environmental challenges. Over the past few decades, genes encoding components of TCSs and their responsive proteins have been identified, crystal structures have been described, and signaling mechanisms have been elucidated. Here, we review recent findings and interesting breakthroughs in bacterial TCS research. Furthermore, we discuss structural features, mechanisms of activation and regulation, and cross-regulation of RRs, with a focus on the largest RR family, OmpR/PhoB, to provide a comprehensive overview of these critically important signaling molecules.

  17. Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.

    PubMed

    Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B

    2015-01-01

    Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The eisosome core is composed of BAR domain proteins

    PubMed Central

    Olivera-Couto, Agustina; Graña, Martin; Harispe, Laura; Aguilar, Pablo S.

    2011-01-01

    Eisosomes define sites of plasma membrane organization. In Saccharomyces cerevisiae, eisosomes delimit furrow-like plasma membrane invaginations that concentrate sterols, transporters, and signaling molecules. Eisosomes are static macromolecular assemblies composed of cytoplasmic proteins, most of which have no known function. In this study, we used a bioinformatics approach to analyze a set of 20 eisosome proteins. We found that the core components of eisosomes, paralogue proteins Pil1 and Lsp1, are distant homologues of membrane-sculpting Bin/amphiphysin/Rvs (BAR) proteins. Consistent with this finding, purified recombinant Pil1 and Lsp1 tubulated liposomes and formed tubules when the proteins were overexpressed in mammalian cells. Structural homology modeling and site-directed mutagenesis indicate that Pil1 positively charged surface patches are needed for membrane binding and liposome tubulation. Pil1 BAR domain mutants were defective in both eisosome assembly and plasma membrane domain organization. In addition, we found that eisosome-associated proteins Slm1 and Slm2 have F-BAR domains and that these domains are needed for targeting to furrow-like plasma membrane invaginations. Our results support a model in which BAR domain protein–mediated membrane bending leads to clustering of lipids and proteins within the plasma membrane. PMID:21593205

  19. The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites

    PubMed Central

    Neufeldt, Christopher J.; Joyce, Michael A.; Van Buuren, Nicholas; Levin, Aviad; Kirkegaard, Karla; Gale Jr., Michael; Tyrrell, D. Lorne J.; Wozniak, Richard W.

    2016-01-01

    Hepatitis C virus (HCV) is a positive-strand RNA virus of the Flaviviridae family and a major cause of liver disease worldwide. HCV replicates in the cytoplasm, and the synthesis of viral proteins induces extensive rearrangements of host cell membranes producing structures, collectively termed the membranous web (MW). The MW contains the sites of viral replication and assembly, and we have identified distinct membrane fractions derived from HCV-infected cells that contain replication and assembly complexes enriched for viral RNA and infectious virus, respectively. The complex membrane structure of the MW is thought to protect the viral genome limiting its interactions with cytoplasmic pattern recognition receptors (PRRs) and thereby preventing activation of cellular innate immune responses. Here we show that PRRs, including RIG-I and MDA5, and ribosomes are excluded from viral replication and assembly centers within the MW. Furthermore, we present evidence that components of the nuclear transport machinery regulate access of proteins to MW compartments. We show that the restricted assess of RIG-I to the MW can be overcome by the addition of a nuclear localization signal sequence, and that expression of a NLS-RIG-I construct leads to increased immune activation and the inhibition of viral replication. PMID:26863439

  20. The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis.

    PubMed

    Sánchez-Alcázar, José A; Rodríguez-Hernández, Angeles; Cordero, Mario D; Fernández-Ayala, Daniel J M; Brea-Calvo, Gloria; Garcia, Katherina; Navas, Plácido

    2007-07-01

    It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional gamma-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular "cocoon". Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis.

  1. Purification, crystallization and characterization of the Pseudomonas outer membrane protein FapF, a functional amyloid transporter.

    PubMed

    Rouse, Sarah L; Hawthorne, Wlliam J; Lambert, Sebastian; Morgan, Marc L; Hare, Stephen A; Matthews, Stephen

    2016-12-01

    Bacteria often produce extracellular amyloid fibres via a multi-component secretion system. Aggregation-prone, unstructured subunits cross the periplasm and are secreted through the outer membrane, after which they self-assemble. Here, significant progress is presented towards solving the high-resolution crystal structure of the novel amyloid transporter FapF from Pseudomonas, which facilitates the secretion of the amyloid-forming polypeptide FapC across the bacterial outer membrane. This represents the first step towards obtaining structural insight into the products of the Pseudomonas fap operon. Initial attempts at crystallizing full-length and N-terminally truncated constructs by refolding techniques were not successful; however, after preparing FapF 106-430 from the membrane fraction, reproducible crystals were obtained using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.5 Å resolution. These crystals belonged to the monoclinic space group C121, with unit-cell parameters a = 143.4, b = 124.6, c = 80.4 Å, α = γ = 90, β = 96.32° and three monomers in the asymmetric unit. It was found that the switch to complete detergent exchange into C8E4 was crucial for forming well diffracting crystals, and it is suggested that this combined with limited proteolysis is a potentially useful protocol for membrane β-barrel protein crystallography. The three-dimensional structure of FapF will provide invaluable information on the mechanistic differences of biogenesis between the curli and Fap functional amyloid systems.

  2. Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin

    PubMed Central

    Lukoyanova, Natalya; Kondos, Stephanie C.; Farabella, Irene; Law, Ruby H. P.; Reboul, Cyril F.; Caradoc-Davies, Tom T.; Spicer, Bradley A.; Kleifeld, Oded; Traore, Daouda A. K.; Ekkel, Susan M.; Voskoboinik, Ilia; Trapani, Joseph A.; Hatfaludi, Tamas; Oliver, Katherine; Hotze, Eileen M.; Tweten, Rodney K.; Whisstock, James C.; Topf, Maya; Saibil, Helen R.; Dunstone, Michelle A.

    2015-01-01

    Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function. PMID:25654333

  3. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane.

    PubMed

    Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri

    2007-06-29

    Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.

  4. Role of Gag and lipids during HIV-1 assembly in CD4+ T cells and macrophages

    PubMed Central

    Mariani, Charlotte; Desdouits, Marion; Favard, Cyril; Benaroch, Philippe; Muriaux, Delphine M.

    2014-01-01

    HIV-1 is an RNA enveloped virus that preferentially infects CD4+ T lymphocytes and also macrophages. In CD4+ T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4+ T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1 assembly in CD4+ T cells and macrophages. PMID:25009540

  5. Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  6. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    PubMed

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  7. Supramolecular Based Membrane Sensors

    PubMed Central

    Ganjali, Mohammad Reza; Norouzi, Parviz; Rezapour, Morteza; Faridbod, Farnoush; Pourjavid, Mohammad Reza

    2006-01-01

    Supramolecular chemistry can be defined as a field of chemistry, which studies the complex multi-molecular species formed from molecular components that have relatively simpler structures. This field has been subject to extensive research over the past four decades. This review discusses classification of supramolecules and their application in design and construction of ion selective sensors.

  8. Accumulation of sphingoid bases and sphingoid base 1-phosphates: A possible mechanism for Fusarium verticillioides corn-seedling disease

    USDA-ARS?s Scientific Manuscript database

    Sphingolipids are important structural components of membranes involved in signaling pathways that regulate cell growth and death. Fumonisins (FB) are water soluble mycotoxins produced by F. verticillioides, which is parasitic to corn. FBs are inhibitors of ceramide synthase (CS), a key enzyme in sp...

  9. AN ELECTRON MICROSCOPE STUDY OF SPERMATID DIFFERENTIATION IN THE TOAD, BUFO ARENARUM HENSEL

    PubMed Central

    Burgos, Mario H.; Fawcett, Don W.

    1956-01-01

    The differentiation of the spermatids of Bufo arenarum has been described from a study of electron micrographs of thin sections of testis. The development of the acrosome from the Golgi complex takes place in much the same manner as in mammalian spermatogenesis but no acrosome granule is formed. A perforatorium is described for the first time in this species. It is formed by a convergence of dense filaments that arise between the nuclear membrane and the head cap. During maturation of the spermatid the chromatin undergoes striking physicochemical alterations. Fine chromatin granules uniformly dispersed in the karyoplasm are replaced by larger and larger aggregates and these ultimately coalesce to form a very dense sperm head. Two centrioles of cylindrical form are situated very near the base of the sperm head. The longitudinal fibrils of the tail flagellum take origin from one, and the dense fibrous substance of the undulating membrane is closely related to the other. Phase contrast cinematographic observations on the swimming movements of living toad sperm, when considered in relation to the fine structural components of the tail, suggest that there is a contractile component in the undulating membrane as well as in the axial fibrils. The differences in the structure of mammalian and amphibian sperm tails are discussed in relation to differences in the character of their movements. PMID:13331956

  10. Atomic elucidation of the cyclodextrin effects on DDT solubility and biodegradation.

    PubMed

    Ren, Baiping; Zhang, Mingzhen; Gao, Huipeng; Zheng, Jie; Jia, Lingyun

    2016-07-14

    DDT (1,1,1-trichloro-2.2-bis(p-chlorophenyl)ethane), one of the most abused insecticides, is a highly hazardous component for both human health and environmental applications. The biodegradation of DDT into non-toxic, environmentally benign components is strongly limited by the poor bioavailability of DDT. In this work, we combined experiments and molecular simulations to examine the effect of three cyclodextrins (α-, β-, and γ-CD) on their structure-specific interactions with DDT, specifically in relation to DDT solubility and biodegradability. It was found that all three CDs were able to bind to DDT with their inner hydrophobic cavity and different binding affinities and orientations, demonstrating their ability to improve DDT solubility. Different from the strong binding between DDT and β-/γ-CDs via a fully DDT bury mode, α-CD had a relatively weak binding with DDT via a partial DDT bury mode, which allowed DDT to be readily disassociated from α-CD at the lipid membrane interface, followed by DDT permeation into and across the cell membrane. The different binding modes between DDT and CDs explain why only α-CD can promote the bioavailability and biodegradation of DDT by simultaneously increasing its aqueous solubility and membrane interaction. This work provides structural-based binding information for the further modification and optimization of these three CDs to enhance their solubility and biodegradability of DDT.

  11. Hepatitis C Virus-Induced Cytoplasmic Organelles Use the Nuclear Transport Machinery to Establish an Environment Conducive to Virus Replication

    PubMed Central

    Neufeldt, Christopher J.; Joyce, Michael A.; Levin, Aviad; Steenbergen, Rineke H.; Pang, Daniel; Shields, Justin; Tyrrell, D. Lorne J.; Wozniak, Richard W.

    2013-01-01

    Hepatitis C virus (HCV) infection induces formation of a membranous web structure in the host cell cytoplasm where the viral genome replicates and virions assemble. The membranous web is thought to concentrate viral components and hide viral RNA from pattern recognition receptors. We have uncovered a role for nuclear pore complex proteins (Nups) and nuclear transport factors (NTFs) in the membranous web. We show that HCV infection leads to increased levels of cytoplasmic Nups that accumulate at sites enriched for HCV proteins. Moreover, we detected interactions between specific HCV proteins and both Nups and NTFs. We hypothesize that cytoplasmically positioned Nups facilitate formation of the membranous web and contribute to the compartmentalization of viral replication. Accordingly, we show that transport cargo proteins normally targeted to the nucleus are capable of entering regions of the membranous web, and that depletion of specific Nups or Kaps inhibits HCV replication and assembly. PMID:24204278

  12. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump

    DOE PAGES

    Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.; ...

    2016-10-21

    Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less

  13. Biosynthesis of plant cell wall polysaccharides.

    PubMed

    Gibeaut, D M; Carpita, N C

    1994-09-01

    The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.

  14. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.

    Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less

  15. [Structure and function of the bacterial flagellar type III protein export system in Salmonella
].

    PubMed

    Minamino, Tohru

    2015-01-01

    The bacterial flagellum is a filamentous organelle that propels the bacterial cell body in liquid media. For construction of the bacterial flagellum beyond the cytoplasmic membrane, flagellar component proteins are transported by its specific protein export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane export gate complex and a cytoplasmic ATPase ring complex. Flagellar substrate-specific chaperones bind to their cognate substrates in the cytoplasm and escort the substrates to the docking platform of the export gate. The export apparatus utilizes ATP and proton motive force across the cytoplasmic membrane as the energy sources to drive protein export and coordinates protein export with assembly by ordered export of substrates to parallel with their order of assembly. In this review, we summarize our current understanding of the structure and function of the flagellar protein export system in Salmonella enterica serovar Typhimurium.

  16. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  17. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    PubMed Central

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033

  18. Stabilization of apoptotic cells: generation of zombie cells.

    PubMed

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-08-14

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn(2+) (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.

  19. Stabilization of apoptotic cells: generation of zombie cells

    PubMed Central

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-01-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy. PMID:25118929

  20. Ultrastructural Complexity of Nuclear Components During Early Apoptotic Phases in Breast Cancer Cells

    PubMed Central

    Castelli, Christian; Losa, Gabriele A.

    2001-01-01

    Fractal morphometry was used to investigate the ultrastructural features of the plasma membrane, perinuclear membrane and nuclear chromatin in SK‐BR‐3 human breast cancer cells undergoing apoptosis. Cells were incubated with 1 μM calcimycin (A23187) for 24 h. Cells in the early stage of apoptosis had fractal dimension (FD) values indicating that their plasma membranes were less rough (lower FD) than those of control cells, while their perinuclear membranes were unaffected. Changes of the chromatin texture within the entire nucleus and in selected nuclear domains were more pronounced in treated cells. This confirms that the morphological reorganization imputable to a loss of structural complexity (reduced FD) occurs in the early stage of apoptosis, is accompanied by the inhibition of distinct enzymatic events and precedes the onset of conventional cellular markers, which can only be detected during the active phases of the apoptotic process. PMID:11790854

  1. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    NASA Astrophysics Data System (ADS)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  2. Voltage and frequency dependence of prestin-associated charge transfer

    PubMed Central

    Sun, Sean X.; Farrell, Brenda; Chana, Matthew S.; Oster, George; Brownell, William E.; Spector, Alexander A.

    2009-01-01

    Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage-and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degree as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein. PMID:19490917

  3. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells.

    PubMed

    Kronhardt, Angelika; Beitzinger, Christoph; Barth, Holger; Benz, Roland

    2016-08-10

    C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells' receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa.

  4. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells

    PubMed Central

    Kronhardt, Angelika; Beitzinger, Christoph; Barth, Holger; Benz, Roland

    2016-01-01

    C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells’ receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa. PMID:27517960

  5. Application of Novel Anion-Exchange Blend Membranes (AEBMs) to Vanadium Redox Flow Batteries.

    PubMed

    Cho, Hyeongrae; Krieg, Henning M; Kerres, Jochen A

    2018-06-19

    Both cation-exchange membranes and anion-exchange membranes are used as ion conducting membranes in vanadium redox flow batteries (VRFBs). Anion-exchange membranes (AEMs) are applied in vanadium redox flow batteries due to the high blocking property of vanadium ions via the Donnan exclusion effect. In this study, novel anion-exchange blend membranes (AEBMs) were prepared, characterized, and applied in VRFBs. Bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide), poly[(1-(4,4′-diphenylether)-5-oxybenzimidazole)-benzimidazole] (PBI-OO) and sulfonated polyether sulfone polymer were combined to prepare 3-component AEBMs with 1,2,4,5-tetramethylimidazole (TMIm) for quaternization. 3-component AEBMs showed significantly enhanced chemical and mechanical properties compared with those of 2-component AEBMs, resulting in an improved performance in VRFBs. The compositions of the anion-exchange polymers in 3-component AEBMs were systematically varied to optimize the AEBMs for the redox-flow battery application. While the 3-component AEBMs showed comparable efficiencies with Nafion ® 212 membranes, they displayed improved vanadium ions cross-over as was confirmed by open circuit voltage tests and capacity fade tests conducted in VRFBs. In addition, one of the synthesized 3-component AEBM had a superior coulombic efficiency and capacity retention in a charging⁻discharging test over 300 cycles at a current density of 40 mA/cm². It can thus be concluded that 3-component AEBMs are promising candidates for long-term operation in VRFBs.

  6. S-layer and cytoplasmic membrane - exceptions from the typical archaeal cell wall with a focus on double membranes.

    PubMed

    Klingl, Andreas

    2014-01-01

    The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline proteinaceous surface layer (S-layer), situated upon the cytoplasmic membrane. This is true for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often represents the only cell wall component, but there are various exceptions from this wall architecture. Beside (glycosylated) S-layers in (hyper)thermophilic cren- and euryarchaea as well as halophilic archaea, one can find a great variety of other cell wall structures like proteoglycan-like S-layers (Halobacteria), glutaminylglycan (Natronococci), methanochondroitin (Methanosarcina) or double layered cell walls with pseudomurein (Methanothermus and Methanopyrus). The presence of an outermost cellular membrane in the crenarchaeal species Ignicoccus hospitalis already gave indications for an outer membrane similar to Gram-negative bacteria. Although there is just limited data concerning their biochemistry and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further examples for this exceptional cell envelope type consisting of two membranes.

  7. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics.

    PubMed

    Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos

    2016-12-22

    Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress-with an excess of radical and oxidative processes-cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.

  8. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics

    PubMed Central

    Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos

    2016-01-01

    Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects. PMID:28025506

  9. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles. © 2015. Published by The Company of Biologists Ltd.

  10. Archaeal Haloarcula californiae Icosahedral Virus 1 Highlights Conserved Elements in Icosahedral Membrane-Containing DNA Viruses from Extreme Environments.

    PubMed

    Demina, Tatiana A; Pietilä, Maija K; Svirskaitė, Julija; Ravantti, Janne J; Atanasova, Nina S; Bamford, Dennis H; Oksanen, Hanna M

    2016-07-19

    Despite their high genomic diversity, all known viruses are structurally constrained to a limited number of virion morphotypes. One morphotype of viruses infecting bacteria, archaea, and eukaryotes is the tailless icosahedral morphotype with an internal membrane. Although it is considered an abundant morphotype in extreme environments, only seven such archaeal viruses are known. Here, we introduce Haloarcula californiae icosahedral virus 1 (HCIV-1), a halophilic euryarchaeal virus originating from salt crystals. HCIV-1 also retains its infectivity under low-salinity conditions, showing that it is able to adapt to environmental changes. The release of progeny virions resulting from cell lysis was evidenced by reduced cellular oxygen consumption, leakage of intracellular ATP, and binding of an indicator ion to ruptured cell membranes. The virion contains at least 12 different protein species, lipids selectively acquired from the host cell membrane, and a 31,314-bp-long linear double-stranded DNA (dsDNA). The overall genome organization and sequence show high similarity to the genomes of archaeal viruses in the Sphaerolipoviridae family. Phylogenetic analysis based on the major conserved components needed for virion assembly-the major capsid proteins and the packaging ATPase-placed HCIV-1 along with the alphasphaerolipoviruses in a distinct, well-supported clade. On the basis of its virion morphology and sequence similarities, most notably, those of its core virion components, we propose that HCIV-1 is a member of the PRD1-adenovirus structure-based lineage together with other sphaerolipoviruses. This addition to the lineage reinforces the notion of the ancient evolutionary links observed between the viruses and further highlights the limits of the choices found in nature for formation of a virion. Under conditions of extreme salinity, the majority of the organisms present are archaea, which encounter substantial selective pressure, being constantly attacked by viruses. Regardless of the enormous viral sequence diversity, all known viruses can be clustered into a few structure-based viral lineages based on their core virion components. Our description of a new halophilic virus-host system adds significant insights into the largely unstudied field of archaeal viruses and, in general, of life under extreme conditions. Comprehensive molecular characterization of HCIV-1 shows that this icosahedral internal membrane-containing virus exhibits conserved elements responsible for virion organization. This places the virus neatly in the PRD1-adenovirus structure-based lineage. HCIV-1 further highlights the limited diversity of virus morphotypes despite the astronomical number of viruses in the biosphere. The observed high conservation in the core virion elements should be considered in addressing such fundamental issues as the origin and evolution of viruses and their interplay with their hosts. Copyright © 2016 Demina et al.

  11. Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1.

    PubMed

    Kim, Dong-Hun; Kanaly, Robert A; Hur, Hor-Gil

    2012-12-01

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, reduced tellurite (Te(IV), TeO(3)(2-)) to elemental tellurium under anaerobic conditions resulting in the intracellular accumulation of needle shaped crystalline Te(0) nanorods. Fatty acid analyses showed that toxic Te(IV) increased the unsaturated fatty acid composition of the lipid components of the cell membrane, implying a deconstruction of the integrity of the cellular membrane structure. The current results suggest that dissimilatory metal reducing bacteria such as S. oneidensis MR-1 may play an important role in recycling toxic tellurium elements, and may be applied as a novel selective biological filter via the accumulation of industry-applicable rare materials, Te(0) nanorods, in the cell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  13. Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion.

    PubMed

    Breen, Michael R; Camps, Marta; Carvalho-Simoes, Francisco; Zorzano, Antonio; Pilch, Paul F

    2012-01-01

    Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity.

  14. Cholesterol Depletion in Adipocytes Causes Caveolae Collapse Concomitant with Proteosomal Degradation of Cavin-2 in a Switch-Like Fashion

    PubMed Central

    Breen, Michael R.; Camps, Marta; Carvalho-Simoes, Francisco; Zorzano, Antonio; Pilch, Paul F.

    2012-01-01

    Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity. PMID:22493697

  15. Active constrained layer damping treatments for shell structures: a deep-shell theory, some intuitive results, and an energy analysis

    NASA Astrophysics Data System (ADS)

    Shen, I. Y.

    1997-02-01

    This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.

  16. Crystallographic studies of the anthrax lethal toxin. Final report, 1 July 1994-31 December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, C.A.

    1997-01-01

    Protective Antigen (PA) is the central component of the three-part protein toxin secreted by Bacillus anthraces, the organism responsible for anthrax. Following proteolytic activation on the host cell surface, PA forms a membrane-inserting heptamer that translocates the toxic enzymes into the cytosol. We have solved the crystal structure of monomeric PA at 2.1 A resolution and the water-soluble heptamer at 4.5 A resolution. The monomer is organized mainly into antiparallel b-sheets and has four domains: an N-terminal domain containing two calcium ions; a heptamerization domain containing a large flexible loop implicated in membrane insertion; a small domain of unknown function;more » and a C-terminal receptor-binding domain. Removal of a 20 kDa fragment from the N-terminal domain permits assembly of the heptamer, a ring-shaped structure with a negatively charged lumen, and exposes a large hydrophobic surface for binding the toxic enzymes. We present a model of pH-dependent membrane insertion involving formation of a porin-like membrane-spanning b barrel. These studies greatly enhance current understanding of the mechanism of anthrax intoxication, and will be useful in the design of recombinant anthrax vaccines.« less

  17. Improved purification of native meningococcal porin PorB and studies on its structure/function.

    PubMed

    Massari, Paola; King, Carol A; MacLeod, Heather; Wetzler, Lee M

    2005-12-01

    The outer membrane protein PorB of Neisseria meningitidis is a pore-forming protein which has various effects on eukaryotic cells. It has been shown to (1) up-regulate the surface expression of the co-stimulatory molecule CD86 and of MHC class II (which are TLR2/MyD88 dependent and related to the porin's immune-potentiating ability), (2) be involved in prevention of apoptosis by modulating the mitochondrial membrane potential, and (3) form pores in eukaryotic cells. As an outer membrane protein, its native trimeric form isolation is complicated by its insoluble nature, requiring the presence of detergent throughout the whole procedure, and by its tight association with other outer membrane components, such as neisserial LOS or lipoproteins. In this study, an improved chromatographic purification method to obtain an homogeneous product free of endotoxin and lipoprotein is described, without loss of any of the above-mentioned properties of the porin. Furthermore, we have investigated the requirement of the native trimeric structure for the porin's activity. Inactivation of functional PorB trimers into non-functional monomers was achieved by incubation on ice. Thus, routine long- and medium-term storage at low temperature may be a cause of porin inactivation.

  18. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis

    PubMed Central

    Levental, Kandice R.; Surma, Michal A.; Skinkle, Allison D.; Lorent, Joseph H.; Zhou, Yong; Klose, Christian; Chang, Jeffrey T.; Hancock, John F.; Levental, Ilya

    2017-01-01

    Mammalian cells produce hundreds of dynamically regulated lipid species that are actively turned over and trafficked to produce functional membranes. These lipid repertoires are susceptible to perturbations from dietary sources, with potentially profound physiological consequences. However, neither the lipid repertoires of various cellular membranes, their modulation by dietary fats, nor their effects on cellular phenotypes have been widely explored. We report that differentiation of human mesenchymal stem cells (MSCs) into osteoblasts or adipocytes results in extensive remodeling of the plasma membrane (PM), producing cell-specific membrane compositions and biophysical properties. The distinct features of osteoblast PMs enabled rational engineering of membrane phenotypes to modulate differentiation in MSCs. Specifically, supplementation with docosahexaenoic acid (DHA), a lipid component characteristic of osteoblast membranes, induced broad lipidomic remodeling in MSCs that reproduced compositional and structural aspects of the osteoblastic PM phenotype. The PM changes induced by DHA supplementation potentiated osteogenic differentiation of MSCs concurrent with enhanced Akt activation at the PM. These observations prompt a model wherein the DHA-induced lipidome leads to more stable membrane microdomains, which serve to increase Akt activity and thereby enhance osteogenic differentiation. More broadly, our investigations suggest a general mechanism by which dietary fats affect cellular physiology through remodeling of membrane lipidomes, biophysical properties, and signaling. PMID:29134198

  19. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes

    PubMed Central

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D.

    2016-01-01

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors. PMID:27005662

  20. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.

    PubMed

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D

    2016-03-08

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.

  1. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, Kaaeid

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  2. LDRD final report on light-powered nanovehicles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelnutt, John Allen; van Swol, Frank B.; Miller, James Edward

    2003-11-01

    We have investigated the possibility of constructing nanoscale metallic vehicles powered by biological motors or flagella that are activated and powered by visible light. The vehicle's body is to be composed of the surfactant bilayer of a liposome coated with metallic nanoparticles or nanosheets grown together into a porous single crystal. The diameter of the rigid metal vesicles is from about 50 nm to microns. Illumination with visible light activates a photosynthetic system in the bilayer that can generate a pH gradient across the liposomal membrane. The proton gradient can fuel a molecular motor that is incorporated into the membrane.more » Some molecular motors require ATP to fuel active transport. The protein ATP synthase, when embedded in the membrane, will use the pH gradient across the membrane to produce ATP from ADP and inorganic phosphate. The nanoscale vehicle is thus composed of both natural biological components (ATPase, flagellum; actin-myosin, kinesin-microtubules) and biomimetic components (metal vehicle casing, photosynthetic membrane) as functional units. Only light and storable ADP, phosphate, water, and weak electron donor are required fuel components. These nano-vehicles are being constructed by self-assembly and photocatalytic and autocatalytic reactions. The nano-vehicles can potentially respond to chemical gradients and other factors such as light intensity and field gradients, in a manner similar to the way that magnetic bacteria navigate. The delivery package might include decision-making and guidance components, drugs or other biological and chemical agents, explosives, catalytic reactors, and structural materials. We expected in one year to be able only to assess the problems and major issues at each stage of construction of the vehicle and the likely success of fabricating viable nanovehicles with our biomimetic photocatalytic approach. Surprisingly, we have been able to demonstrate that metallized photosynthetic liposomes can indeed be made. We have completed the synthesis of metallized liposomes with photosynthetic function included and studied these structures by electron microscopy. Both platinum and palladium nanosheeting have been used to coat the micelles. The stability of the vehicles to mechanical stress and the solution environment is enhanced by the single-crystalline platinum or palladium coating on the vesicle. With analogous platinized micelles, it is possible to dry the vehicles and re-suspend them with full functionality. However, with the liposomes drying on a TEM grid may cause the platinized liposomes to collapse, although probably stay viable in solution. It remains to be shown whether a proton motive force across the metallized bilayer membrane can be generated and whether we will also be able to incorporate various functional capabilities including ATP synthesis and functional molecular motors. Future tasks to complete the nanovehicles would be the incorporation of ATP synthase into metallized liposomes and the incorporation of a molecular motor into metallized liposomes.« less

  3. The Effects of Polyunsaturated Lipid Components on bilayer Structure

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Kiss, A.; Nguyen, Lam T.; Yuan, J.; Hirst, Linda S.

    2007-03-01

    Polyunsaturated fatty acids (PUFAs), such as DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) have been the focus of much research attention in recent years, due to their apparent health benefits and effects on cell physiology. They are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, particularly in the retinal rod cells and the central nervous system. In this work lipid bilayer structure has been investigated in lipid mixtures, incorporating polyunsaturated fatty acid moieties. The structural effects of increasing concentrations of both symmetric and asymmetric PUFA materials on the bilayer structure are investigated via synchrotron x-ray diffraction on solution samples. We observe bilayer spacings to increase with the percentage of unsaturated fatty acid lipid in the membrane, whilst the degree of ordering significantly decreases. In fact above 20% of fatty acid, well defined bilayers are no longer observed to form. Evidence of phase separation can be clearly seen from these x-ray results and in combination with AFM measurements.

  4. Structure determination of a sugar-binding protein from the phytopathogenic bacterium Xanthomonas citri

    PubMed Central

    Medrano, Francisco Javier; de Souza, Cristiane Santos; Romero, Antonio; Balan, Andrea

    2014-01-01

    The uptake of maltose and related sugars in Gram-negative bacteria is mediated by an ABC transporter encompassing a periplasmic component (the maltose-binding protein or MalE), a pore-forming membrane protein (MalF and MalG) and a membrane-associated ATPase (MalK). In the present study, the structure determination of the apo form of the putative maltose/trehalose-binding protein (Xac-MalE) from the citrus pathogen Xanthomonas citri in space group P6522 is described. The crystals contained two protein molecules in the asymmetric unit and diffracted to 2.8 Å resolution. Xac-MalE conserves the structural and functional features of sugar-binding proteins and a ligand-binding pocket with similar characteristics to eight different orthologues, including the residues for maltose and trehalose interaction. This is the first structure of a sugar-binding protein from a phytopathogenic bacterium, which is highly conserved in all species from the Xanthomonas genus. PMID:24817711

  5. Solid-state membrane module

    DOEpatents

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  6. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display

    PubMed Central

    Desvaux, Mickaël; Candela, Thomas; Serror, Pascale

    2018-01-01

    The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed. PMID:29491848

  7. Initiation of the TLR4 signal transduction network : deeper understanding for better therapeutics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branda, Steven S.; Hayden, Carl C.; Sherman, Michael Y.

    2010-09-01

    The innate immune system represents our first line of defense against microbial pathogens, and in many cases is activated by recognition of pathogen cellular components (dsRNA, flagella, LPS, etc.) by cell surface membrane proteins known as toll-like receptors (TLRs). As the initial trigger for innate immune response activation, TLRs also represent a means by which we can effectively control or modulate inflammatory responses. This proposal focused on TLR4, which is the cell-surface receptor primarily responsible for initiating the innate immune response to lipopolysaccharide (LPS), a major component of the outer membrane envelope of gram-negative bacteria. The goal was to bettermore » understand TLR4 activation and associated membrane proximal events, in order to enhance the design of small molecule therapeutics to modulate immune activation. Our approach was to reconstitute the receptor in biomimetic systems in-vitro to allow study of the structure and dynamics with biophysical methods. Structural studies were initiated in the first year but were halted after the crystal structure of the dimerized receptor was published early in the second year of the program. Methods were developed to determine the association constant for oligomerization of the soluble receptor. LPS-induced oligomerization was observed to be a strong function of buffer conditions. In 20 mM Tris pH 8.0 with 200 mM NaCl, the onset of receptor oligomerization occurred at 0.2 uM TLR4/MD2 with E coli LPS Ra mutant in excess. However, in the presence of 0.5 uM CD14 and 0.5 uM LBP, the onset of receptor oligomerization was observed to be less than 10 nM TLR4/MD2. Several methods were pursued to study LPS-induced oligomerization of the membrane-bound receptor, including CryoEM, FRET, colocalization and codiffusion followed by TIRF, and fluorescence correlation spectroscopy. However, there approaches met with only limited success.« less

  8. Biophysics and Structure of the Patch and the Gigaseal

    PubMed Central

    Suchyna, Thomas M.; Markin, Vladislav S.; Sachs, Frederick

    2009-01-01

    Abstract Interpreting channel behavior in patches requires an understanding of patch structure and dynamics, especially in studies of mechanosensitive channels. High resolution optical studies show that patch formation occurs via blebbing that disrupts normal membrane structure and redistributes in situ components including ion channels. There is a 1–2 μm region of the seal below the patch where proteins are excluded and this may consist of extracted lipids that form the gigaseal. Patch domes often have complex geometries with inhomogeneous stresses due to the membrane-glass adhesion energy (Ea), cytoskeletal forces, and possible lipid subdomains. The resting tension in the patch dome ranges from 1–4 mN/m, a significant fraction of the lytic tension of a bilayer (∼10 mN/m). Thus, all patch experiments are conducted under substantial, and uneven, resting tension that may alter the kinetics of many channels. Ea seems dominated by van der Waals attraction overlaid with a normally repulsive Coulombic force. High ionic strength pipette saline increased Ea and, surprisingly, increased cytoskeletal rigidity in cell-attached patches. Low pH pipette saline also increased Ea and reduced the seal selectivity for cations, presumably by neutralizing the membrane surface charge. The seal is a negatively charged, cation selective, space with a resistance of ∼7 gigohm/μm in 100 mM KCl, and the high resistivity of the space may result from the presence of high viscosity glycoproteins. Patches creep up the pipette over time with voltage independent and voltage dependent components. Voltage-independent creep is expected from the capillary attraction of Ea and the flow of fresh lipids from the cell. Voltage-dependent creep seems to arise from electroosmosis in the seal. Neutralization of negative charges on the seal membrane with low pH decreased the creep rate and reversed the direction of creep at positive pipette potentials. PMID:19651032

  9. Early Stages of Oxidative Stress-Induced Membrane Permeabilization: A Neutron Reflectometry Study

    PubMed Central

    Smith, Hillary L.; Howland, Michael C.; Szmodis, Alan W.; Li, Qijuan; Daemen, Luke L.; Parikh, Atul N.; Majewski, Jaroslaw

    2009-01-01

    Neutron reflectometry was used to probe in situ the structure of supported lipid bilayers at the solid–liquid interface during the early stages of UV-induced oxidative degradation. Single-component supported lipid bilayers composed of gel phase, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and fluid phase, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), phospholipids were exposed to low-dose oxidative stress generated by UV light and their structures were examined by neutron reflectometry. An interrupted illumination mode, involving exposures in 15 min increments with 2 h intervals between subsequent exposures, and a continuous mode involving a single 60 (or 90) min exposure period were employed. In both cases, pronounced differences in the structure of the lipid bilayer after exposure were observed. Interrupted exposure led to a substantial decrease in membrane coverage but preserved its total thickness at reduced scattering length densities. These results indicate that the initial phase during UV-induced membrane degradation involves the formation of hydrophilic channels within the membrane. This is consistent with the loss of some lipid molecules we observe and attendant reorganization of residual lipids forming hemimicellar edges of the hydrophilic channels. In contrast, continuous illumination produced a graded interface of continuously varied scattering length density (and hence hydrocarbon density) extending 100–150 Å into the liquid phase. Exposure of a DPPC bilayer to UV light in the presence of a reservoir of unfused vesicles showed low net membrane disintegration during oxidative stress, presumably because of surface back-filling from the bulk reservoir. Chemical evidence for membrane degradation was obtained by mass spectrometry and Fourier transform infrared spectroscopy. Further evidence for the formation of hydrophilic channels was furnished by fluorescence microscopy and imaging ellipsometry data. PMID:19275260

  10. A Finite Element Framework for Studying the Mechanical Response of Macromolecules: Application to the Gating of the Mechanosensitive Channel MscL

    PubMed Central

    Tang, Yuye; Cao, Guoxin; Chen, Xi; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang

    2006-01-01

    The gating pathways of mechanosensitive channels of large conductance (MscL) in two bacteria (Mycobacterium tuberculosis and Escherichia coli) are studied using the finite element method. The phenomenological model treats transmembrane helices as elastic rods and the lipid membrane as an elastic sheet of finite thickness; the model is inspired by the crystal structure of MscL. The interactions between various continuum components are derived from molecular-mechanics energy calculations using the CHARMM all-atom force field. Both bacterial MscLs open fully upon in-plane tension in the membrane and the variation of pore diameter with membrane tension is found to be essentially linear. The estimated gating tension is close to the experimental value. The structural variations along the gating pathway are consistent with previous analyses based on structural models with experimental constraints and biased atomistic molecular-dynamics simulations. Upon membrane bending, neither MscL opens substantially, although there is notable and nonmonotonic variation in the pore radius. This emphasizes that the gating behavior of MscL depends critically on the form of the mechanical perturbation and reinforces the idea that the crucial gating parameter is lateral tension in the membrane rather than the curvature of the membrane. Compared to popular all-atom-based techniques such as targeted or steered molecular-dynamics simulations, the finite element method-based continuum-mechanics framework offers a unique alternative to bridge detailed intermolecular interactions and biological processes occurring at large spatial scales and long timescales. It is envisioned that such a hierarchical multiscale framework will find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and mechanotransduction. PMID:16731564

  11. Degradation of phagocytosed lysosomes by Kupffer cell lysosomes.

    PubMed

    Henell, F; Ericsson, J L; Glaumann, H

    1983-05-01

    Lysosomal membranes are apparently resistant to hydrolytic attack from their own enzymes. Alternatively, degradation occurs but is compensated for by continuous insertion of new membrane components. It may be hypothesized that a mechanism operating exclusively on the luminal side of the lysosomal membrane serves to protect the membrane from being degraded. To evaluate this notion the cytoplasmic side of the lysosomal membrane has been exposed to lysosomal enzymes in vivo. Lysosomes were isolated and subsequently injected into the portal vein of a series of rats. The uptake of the injected organelles by Kupffer cells and their subsequent degradation in lysosomes were monitored by means of electron microscopy. Four minutes after injection lysosomes were seen attached to the surface of the Kupffer cells. After 30 minutes the injected material was present in Kupffer cell phagolysosomes, and signs of degradation of the phagocytosed lysosomes were seen. By 2 hours only a few distinct membranes were left, and by 12 hours the injected lysosomes were no longer recognizable. Instead, the phagolysosomes of Kupffer cells were laden with lipid-like droplets and irregular membranous structures. Acid phosphatase histochemistry and labeling of preexisting Kupffer cell lysosomes with marker particles indicated that the phagosomes engulfing the injected lysosomes acquired hydrolytic enzymes within 30 minutes after their formation. The degradation rate of injected lysosomes was estimated by measuring the decay of radioactivity from a rat liver mitochondrial lysosomal fraction after administration of lysosomes isotopically prelabeled with 14C-leucine and 14C-glycerol. The half-life of the lysosomal membrane proteins varied between 1.5 and 2.0 hours, whereas that of the lipid component was in the range of 2.0 to 3.5 hours. These findings demonstrate that lysosomal membranes are degraded if their outer surface is exposed to lysosomal enzymes. Both the ultrastructural analysis and the isotopic studies indicate that proteins are degraded faster than lipids. Apparently, the cytoplasmic surface of the lysosomes is susceptible to lysosomal hydrolytic attack.

  12. Desipramine induces disorder in cholesterol-rich membranes: implications for viral trafficking

    NASA Astrophysics Data System (ADS)

    Pakkanen, Kirsi; Salonen, Emppu; Mäkelä, Anna R.; Oker-Blom, Christian; Vattulainen, Ilpo; Vuento, Matti

    2009-12-01

    In this study, the effect of desipramine (DMI) on phospholipid bilayers and parvoviral entry was elucidated. In atomistic molecular dynamics simulations, DMI was found to introduce disorder in cholesterol-rich phospholipid bilayers. This was manifested by a decrease in the deuterium order parameter SCD as well as an increase in the membrane area. Disordering of the membrane suggested DMI to destabilize cholesterol-rich membrane domains (rafts) in cellular conditions. To relate the raft disrupting ability of DMI with novel biological relevance, we studied the intracellular effect of DMI using canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect on the viral traffic. As recycling endosomes and the internal vesicles of multivesicular bodies are known to contain raft components, the effect of desipramine beyond the plasma membrane step could be caused by raft disruption leading to impaired endosomal function and possibly have direct influence on the penetration of the virus through an endosomal membrane.

  13. Reinforcing the membrane-mediated mechanism of action of the anti-tuberculosis candidate drug thioridazine with molecular simulations

    NASA Astrophysics Data System (ADS)

    Kopec, Wojciech; Khandelia, Himanshu

    2014-02-01

    Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various proposed mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations of thioridazine with zwitterionic and negatively charged model lipid membranes. Thioridazine partitions into the interfacial region of membranes and modifies their structural and dynamic properties, however dissimilarly so at the highest membrane-occurring concentration, that appears to be obtainable only for the negatively charged bilayer. We show that the origin of such changes is the drug induced decrease of the interfacial tension, which ultimately leads to the significant membrane expansion. Our findings support the hypothesis that the phenothiazines therapeutic activity may arise from the drug-membrane interactions, and reinforce the wider, emerging view of action of many small, bioactive compounds.

  14. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans.

    PubMed

    Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali

    2013-04-01

    The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.

  15. Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation.

    PubMed

    Casado-Coterillo, Clara; Del Mar López-Guerrero, María; Irabien, Angel

    2014-06-19

    Mixed matrix membranes (MMMs) were prepared by incorporating organic surfactant-free hydrothermally synthesised ETS-10 and 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) to chitosan (CS) polymer matrix. The membrane material characteristics and permselectivity performance of the two-component membranes were compared with the three-component membrane and the pure CS membrane. The addition of IL increased CO2 solubility of the polymer, and, thus, the CO2 affinity was maintained for the MMMs, which can be correlated with the crystallinity, measured by FT-IR, and void fraction calculations from differences between theoretical and experimental densities. The mechanical resistance was enhanced by the ETS-10 nanoparticles, and flexibility decreased in the two-component ETS-10/CS MMMs, but the flexibility imparted by the IL remained in three-component ETS-10/IL/CS MMMs. The results of this work provide insight into another way of facing the adhesion challenge in MMMs and obtain CO2 selective MMMs from renewable or green chemistry materials.

  16. Light energy transduction by the purple membrane of halophilic bacteria; Proceedings of the Symposium, San Francisco, Calif., June 6, 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Several aspects of bacteriorhodopsin, the retinal protein component of the purple membranes of Halobacterium halobium, are discussed. Structural studies are presented. Photochemical properties of the protein complex and of its chromophore are described. Proton translocation of bacteriorhodopsin is compared to that of a protein from a thermophilic bacterium. Ionophore activity of bacteriorhodopsin is considered with attention to conformational changes, light dependency, and electrical potential. Amino acid transport is also examined and the light-energy budget is investigated. Bacteriorhodopsin is of interest because of its similarity to rhodopsin, which plays a major role in mammalian vision, and also because its attainability and distinctive characteristics will facilitate studies of certain bacterial physiological functions, such as ion transport and membrane organization.

  17. Effects of short-term tocopherol (T) feeding on structure-localized protein tyrosine nitration (pTN) patterns of mitochondrial ATPase following endotoxin (LPS) challenge in beef calves.

    USDA-ARS?s Scientific Manuscript database

    Mitochondrial ATPase/Complex-V (MCV) is an electron transport chain (ETC) component needed for ATP synthesis. The ETC, exquisitely sensitive to proinflammatory mediators (PIM), generates oxynitrogen reactants leading to pTN formation as mitochondrial membrane leakage occurs. Immunohistochemical loca...

  18. Challenges in structural approaches to cell modeling

    PubMed Central

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A.

    2016-01-01

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863

  19. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  20. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers.

    PubMed

    Veith, Paul D; Glew, Michelle D; Gorasia, Dhana G; Reynolds, Eric C

    2017-10-01

    The Type IX secretion system (T9SS) is present in over 1000 sequenced species/strains of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum. Proteins secreted by the T9SS have an N-terminal signal peptide for translocation across the inner membrane via the SEC translocon and a C-terminal signal for secretion across the outer membrane via the T9SS. Nineteen protein components of the T9SS have been identified including three, SigP, PorX and PorY that are involved in regulation. The inner membrane proteins PorL and PorM and the outer membrane proteins PorK and PorN interact and a complex comprising PorK and PorN forms a large ring structure of 50 nm in diameter. PorU, PorV, PorQ and PorZ form an attachment complex on the cell surface of the oral pathogen, Porphyromonas gingivalis. P. gingivalis T9SS substrates bind to PorV suggesting that after translocation PorV functions as a shuttle protein to deliver T9SS substrates to the attachment complex. The PorU component of the attachment complex is a novel Gram negative sortase which catalyses the cleavage of the C-terminal signal and conjugation of the protein substrates to lipopolysaccharide, anchoring them to the cell surface. This review presents an overview of the T9SS focusing on the function of T9SS substrates and machinery components. © 2017 John Wiley & Sons Ltd.

  1. Membrane and Chaperone Recognition by the Major Translocator Protein PopB of the Type III Secretion System of Pseudomonas aeruginosa*

    PubMed Central

    Discola, Karen F.; Förster, Andreas; Boulay, François; Simorre, Jean-Pierre; Attree, Ina; Dessen, Andréa; Job, Viviana

    2014-01-01

    The type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH. In this work we characterize PopB, the major translocator, in both membrane-associated and PcrH-bound forms. By combining sucrose gradient centrifugation experiments, limited proteolysis, one-dimensional NMR, and β-lactamase reporter assays on eukaryotic cells, we show that PopB is stably inserted into bilayers with its flexible N-terminal domain and C-terminal tail exposed to the outside. In addition, we also report the crystal structure of the complex between PcrH and an N-terminal region of PopB (residues 51–59), which reveals that PopB lies within the concave face of PcrH, employing mostly backbone residues for contact. PcrH is thus the first chaperone whose structure has been solved in complex with both type III secretion systems translocators, revealing that both molecules employ the same surface for binding and excluding the possibility of formation of a ternary complex. The characterization of the major type III secretion system translocon component in both membrane-bound and chaperone-bound forms is a key step for the eventual development of antibacterials that block translocon assembly. PMID:24297169

  2. Influences of Mn(II) and V(IV) on Bacterial Surface Chemistry and Metal Reactivity

    NASA Astrophysics Data System (ADS)

    French, S.; Fakra, S.; Glasauer, S.

    2009-05-01

    Microorganisms in terrestrial and marine environments are typically bathed in solutions that contain a range of metal ions, toxic and beneficial. Bacteria such as Shewanella putrefaciens CN32 are metabolically versatile in their respiration, and the reductive dissolution of widely dispersed metals such as Fe(III), Mn(IV), or V(V) can present unique challenges if nearby bodies of water are used for irrigation or drinking. In redox transition zones, dissimilatory metal reduction (DMR) by bacteria can lead to generation of high concentrations of soluble metals. It has been shown that metals will associate with negatively charged bacterial membranes, and the mechanisms of metal reduction are well defined for many species of bacteria. The interaction of metals with the cell wall during DMR is, however, not well documented; very little is known about the interaction of respired transition metals with membrane lipids. Furthermore, bacterial surfaces tend to change in response to their immediate environments. Variations in conditions such as oxygen or metal presence may affect surface component composition, including availability of metal reactive sites. Our research seeks to characterize the biochemical nature of metal-membrane interactions, as well as identify the unique changes at the cell surface that arise as a result of metal presence in their environments. We have utilized scanning transmission X-ray microscopy (STXM) to examine the dynamics of soluble Mn(II) and V(IV) interactions with purified bacterial membranes rather than whole cells. This prevents intracellular interferences, and allows for near edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses of cell surface and surface-associated components. NEXAFS spectra for carbon, nitrogen, and oxygen edges indicate that Mn(II) and V(IV) induce biological modifications of the cell membrane in both aerobic and anaerobic conditions. These changes depend not only on the metal, but also on the presence of oxygen. Results from NEXAFS spectroscopy revealed that oxygen presence had a strong impact on metal sorption, especially in the case of V(IV) association with membranes when oxygen is present. Bacterial membranes are necessarily dynamic, the membrane components are in a state of constant fluidity. Metal sorption to the cell surface, especially soluble metals which can fully engulf the cell, would limit the mobility of membrane components. Supporting this notion, CN32 cell membranes were observed via spectrofluorometry to become significantly stabilized when exposed to Mn(II) and V(IV) metals under anoxia. Despite stabilizing effects, cells are not adversely affected by metal presence in their growth environments, which is also supported by observations of metal coated cells by transmission electron microscopy (TEM). This supports STXM observations that cells counteract the metal effects on their surfaces by altering their membrane composition, and is enhanced by significant differences in cell membrane protein composition and quantity after SDS-PAGE separation. Our studies reveal several clear patterns in how cells interact with soluble metals in their environments, as well as the often overlooked subsequent effects that those metals, as well as oxygen, have on bacterial membranes.

  3. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    PubMed

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S; Mortimer, Jenny C; Brown, Steven P; Persson, Staffan; Dupree, Paul

    2016-06-09

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.

  4. Review of Large Spacecraft Deployable Membrane Antenna Structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  5. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions.

    PubMed

    Björklund, Sebastian; Engblom, Johan; Thuresson, Krister; Sparr, Emma

    2013-12-18

    The natural moisturizing factor (NMF) is a group of hygroscopic molecules that is naturally present in skin and protects from severe drying. Glycerol and urea are two examples of NMF components that are also used in skin care applications. In the present study, we investigate the influence of glycerol and urea on the permeability of a model drug (metronidazole, Mz) across excised pig skin membranes at different hydrating conditions. The degree of skin hydration is regulated by the gradient in water activity across the membrane, which in turn depends on the water activity of the formulation in contact with the skin membrane. Here, we determine the water activity of all formulations employed using an isothermal calorimetric method. Thus, the gradient in water activity is controlled by a novel experimental set-up with well-defined boundary conditions on both sides of the skin membrane. The results demonstrate that glycerol and urea can retain high steady state flux of Mz across skin membranes at dehydrating conditions, which otherwise would decrease the permeability due to dehydration. X-ray diffraction measurements are performed to give insight into the effects of glycerol and urea on SC molecular organization. The novel steady state flux results can be related to the observation that water, glycerol, and urea all affect the structural features of the SC molecular components in a similar manner. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.

    PubMed

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-11-13

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.

  7. The structural requirements of organophosphorus insecticides (OPI) for reducing chicken embryo NAD(+) content in OPI-induced teratogenesis in chickens.

    PubMed

    Seifert, Josef

    2016-05-01

    The objective of this study was to determine the structural requirements of organophosphorus insecticides (OPI) for reducing chicken embryo nicotinamide adenine dinucleotide (NAD(+)) content in OPI-induced teratogenesis and compare them with those needed for OPI inhibition of yolk sac membrane kynurenine formamidase (KFase), the proposed primary target for OPI teratogens in chicken embryos. The comparative molecular field analysis (COMFA) of three-dimensional quantitative structure-activity relationship (3D QSAR) revealed the electrostatic and steric fields as good predictors of OPI structural requirements to reduce NAD(+) content in chicken embryos. The dominant electrostatic interactions were localized at nitrogen-1, nitrogen-3, nitrogen of 2-amino substituent of the pyrimidinyl of pyrimidinyl phosphorothioates, and at the oxygen of crotonamide carbonyl in crotonamide phosphates. Bulkiness of the substituents at carbon-6 of the pyrimidinyls and/or N-substituents of crotonamides was the steric structural component that contributed to superiority of those OPI for reducing embryonic NAD(+) levels. Both electrostatic and steric requirements are similar to those defined in our previous study for OPI inhibition of chicken embryo yolk sac membrane KFase. The findings of this study provide another piece of evidence for the cause-and-effect relationship between yolk sac membrane KFase inhibition and reduced embryo NAD(+) content in NAD-associated OPI-induced teratogenesis in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mechanisms of sterol uptake and transport in yeast.

    PubMed

    Jacquier, Nicolas; Schneiter, Roger

    2012-03-01

    Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in understanding how sterols are transported between different membranes. Baker's yeast is a particularly attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of the fungal ergosterol can be provided by structurally related sterols, including the mammalian cholesterol. Foreign sterols, however, are subject to a lipid quality control cycle in which the sterol is reversibly acetylated. Because acetylated sterols are efficiently excreted from cells, the substrate specificity of the deacetylating enzymes determines which sterols are retained. Membrane-bound acetylated sterols are excreted by the secretory pathway, more soluble acetylated sterol derivatives such as the steroid precursor pregnenolone, on the other hand, are excreted by a pathway that is independent of vesicle formation and fusion. Further analysis of this lipid quality control cycle is likely to reveal novel insight into the mechanisms that ensure sterol homeostasis in eukaryotic cells. Article from a special issue on Steroids and Microorganisms. Copyright © 2010. Published by Elsevier Ltd.

  9. Isotropic Versus Bipolar Functionalized Biomimetic Artificial Basement Membranes and Their Evaluation in Long-Term Human Cell Co-Culture.

    PubMed

    Rossi, Angela; Wistlich, Laura; Heffels, Karl-Heinz; Walles, Heike; Groll, Jürgen

    2016-08-01

    In addition to dividing tissues into compartments, basement membranes are crucial as cell substrates and to regulate cellular behavior. The development of artificial basement membranes is indispensable for the ultimate formation of functional engineered tissues; however, pose a challenge due to their complex structure. Herein, biodegradable electrospun polyester meshes are presented, exhibiting isotropic or bipolar bioactivation as a biomimetic and biofunctional model of the natural basement membrane. In a one-step preparation process, reactive star-shaped prepolymer additives, which generate a hydrophilic fiber surface, are electrospun with cell-adhesion-mediating peptides, derived from major components of the basement membrane. Human skin cells adhere to the functionalized meshes, and long-term co-culture experiments confirm that the artificial basement membranes recapitulate and preserve tissue specific functions. Several layers of immortalized human keratinocytes grow on the membranes, differentiating toward the surface and expressing typical epithelial markers. Fibroblasts migrate into the reticular lamina mimicking part of the mesh. Both cells types begin to produce extracellular matrix proteins and to remodel the initial membrane. It is shown at the example of skin that the artificial basement membrane design provokes biomimetic responses of different cell types and can thus be used as basis for the future development of basement membrane containing tissues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi.

    PubMed

    Al-Adham, Ibrahim S I; Ashour, Hana; Al-Kaissi, Elham; Khalil, Enam; Kierans, Martin; Collier, Phillip J

    2013-09-15

    Microemulsions are physically stable oil/water clear dispersions, spontaneously formed and thermodynamically stable. They are composed in most cases of water, oil, surfactant and cosurfactant. Microemulsions are stable, self-preserving antimicrobial agents in their own right. The observed levels of antimicrobial activity associated with microemulsions may be due to the direct effect of the microemulsions themselves on the bacterial cytoplasmic membrane. The aim of this work is to study the growth behaviour of different microbes in presence of certain prepared physically stable microemulsion formulae over extended periods of time. An experiment was designed to study the kinetics of killing of a microemulsion preparation (17.3% Tween-80, 8.5% n-pentanol, 5% isopropyl myristate and 69.2% sterile distilled water) against selected test microorganisms (Candida albicans, Aspergillus niger, Schizosaccharomyces pombe and Rhodotorula spp.). Secondly, an experiment was designed to study the effects of the microemulsion preparation on the cytoplasmic membrane structure and function of selected fungal species by observation of 260 nm component leakage. Finally, the effects of the microemulsion on the fungal membrane structure and function using S. pombe were studied using transmission electron microscopy. The results showed that the prepared microemulsions are stable, effective antimicrobial systems with effective killing rates against C. albicans, A. niger, S. pombe and Rhodotorula spp. The results indicate a proposed mechanism of action of significant anti-membrane activity, resulting in the gross disturbance and dysfunction of the cytoplasmic membrane structure which is followed by cell wall modifications, cytoplasmic coagulation, disruption of intracellular metabolism and cell death. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host† †Electronic supplementary information (ESI) available. CCDC 1504685–1504693. See DOI: 10.1039/c6sc04343g Click here for additional data file. Click here for additional data file.

    PubMed Central

    Morris, Christopher G.; Jacques, Nicholas M.; Godfrey, Harry G. W.; Mitra, Tamoghna; Fritsch, Detlev; Lu, Zhenzhong; Murray, Claire A.; Potter, Jonathan; Cobb, Tom M.; Yuan, Fajin

    2017-01-01

    The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties (e.g., adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(VIII) under (i) five different CO2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO2/N2. The study has successfully captured the structural dynamics underpinning CO2 uptake as a function of surface coverage. Moreover, MFM-300(VIII) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO2/N2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO2/N2 separation based on the ideal selectivity. PMID:28507700

  12. Antimicrobial Peptides Targeting Gram-Positive Bacteria

    PubMed Central

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  13. MPP1 directly interacts with flotillins in erythrocyte membrane - Possible mechanism of raft domain formation.

    PubMed

    Biernatowska, Agnieszka; Augoff, Katarzyna; Podkalicka, Joanna; Tabaczar, Sabina; Gajdzik-Nowak, Weronika; Czogalla, Aleksander; Sikorski, Aleksander F

    2017-11-01

    Flotillins are prominent, oligomeric protein components of erythrocyte (RBC) membrane raft domains and are considered to play an important structural role in lateral organization of the plasma membrane. In our previous work on erythroid membranes and giant plasma membrane vesicles (GPMVs) derived from them we have shown that formation of functional domains (resting state rafts) depends on the presence of membrane palmitoylated protein 1 (MPP1/p55), pointing to its new physiological role. Exploration of the molecular mechanism of MPP1 function in organizing membrane domains described here, through searching for its molecular partners in RBC membrane by using different methods, led to the identification of the raft-marker proteins, flotillin 1 and flotillin 2, as hitherto unreported direct MPP1 binding-partners in the RBC membrane. These proteins are found in high molecular-weight complexes in native RBC membrane and, significantly, their presence was shown to be separate from the well-known protein 4.1-dependent interactions of MPP1 with membrane proteins. Furthermore, FLIM analysis revealed that loss of the endogenous MPP1-flotillins interactions resulted in significant changes in RBC membrane-fluidity, emphasizing the physiological importance of such interactions in vivo. Therefore, our data establish a new perspective on the role of MPP1 in erythroid cells and suggests that direct MPP1-flotillins interactions could be the major driving-force behind the formation of raft domains in RBC. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Elucidating the structure and function of S100 proteins in membranes

    NASA Astrophysics Data System (ADS)

    Valenzuela, Stella M.; Berkahn, Mark; Martin, Donald K.; Huynh, Thuan; Yang, Zheng; Geczy, Carolyn L.

    2006-01-01

    S100 proteins are important Ca 2+-binding proteins involved in vital cellular functions including the modulation of cell growth, migration and differentiation, regulation of intracellular signal transduction/phosphorylation pathways, energy metabolism, cytoskeletal interactions and modulation of ion channels. Furthermore, they are implicated in oncogenesis and numerous other disease states. Three S100 proteins: S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and monocytes. At low levels of intracellular Ca 2+, S100A8 and S100A9 are located predominantly in the cytosol but when Ca 2+ concentrations are elevated as a consequence of activation, they translocate to membranes and complex with cytoskeletal components such as vimentin. The functions of S100A8 and S100A9 at the plasma membrane remain unclear. A possible role may be the regulation of ion channel proteins. The current study uses the techniques of Atomic Force Microscopy and production of artificial lipid membranes in the form of liposomes to investigate possible mechanisms for the insertion of these proteins into membranes in order to elucidate their structure and stoichiometry in the transmembrane state. We have successfully imaged the liposomes as a lipid bilayer, the S100A8/A9 protein complex in solution and the S100A8/A9 complex associating with lipid, using tapping-mode atomic force microscopy, in buffer.

  15. Reliability-Based Design Optimization of a Composite Airframe Component

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Coroneos, Rula; Patnaik, Surya N.

    2011-01-01

    A stochastic optimization methodology (SDO) has been developed to design airframe structural components made of metallic and composite materials. The design method accommodates uncertainties in load, strength, and material properties that are defined by distribution functions with mean values and standard deviations. A response parameter, like a failure mode, has become a function of reliability. The primitive variables like thermomechanical loads, material properties, and failure theories, as well as variables like depth of beam or thickness of a membrane, are considered random parameters with specified distribution functions defined by mean values and standard deviations.

  16. The catalyst layer and its dimensionality - A look into its ingredients and how to characterize their effects

    NASA Astrophysics Data System (ADS)

    Zamel, Nada

    2016-03-01

    Development of polymer electrolyte membrane (PEM) fuel cells throughout the years is established through its component optimization. This is especially true of its catalyst layer, where structuring of the layer has led to many breakthroughs. The catalyst layer acts as the heart of the cell, where it controls the half-cell reactions and their products. The complex nature of various transport phenomena simultaneously taking place in the layer requires the layer to be heterogeneous in structure. Hence, a delicate balance of the layer's ingredients, coupled with the understanding of the ingredients' interaction, is required. State-of-the-art catalyst layers are composed of a catalyst, its support, a solvent and a binder. Changes in the morphology, structure or material of any of these components ultimately affects the layer's activity and durability. In this review paper, we provide an overview of the various works tailored to understand how each component in the catalyst's ink affects the stability and life-time of the layer.

  17. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water.

    PubMed

    Yamamura, Hiroshi; Kimura, Katsuki; Higuchi, Kumiko; Watanabe, Yoshimasa; Ding, Qing; Hafuka, Akira

    2015-12-15

    While low-pressure membrane filtration processes (i.e., microfiltration and ultrafiltration) can offer precise filtration than sand filtration, they pose the problem of reduced efficiency due to membrane fouling. Although many studies have examined membrane fouling by organic substances, there is still not enough data available concerning membrane fouling by inorganic substances. The present research investigated changes in the amounts of inorganic components deposited on the surface of membrane filters over time using membrane specimens sampled thirteen times at arbitrary time intervals during pilot testing in order to determine the mechanism by which irreversible fouling by inorganic substances progresses. The experiments showed that the inorganic components that primarily contribute to irreversible fouling vary as filtration continues. It was discovered that, in the initial stage of operation, the main membrane-fouling substance was iron, whereas the primary membrane-fouling substances when operation finished were manganese, calcium, and silica. The amount of iron accumulated on the membrane increased up to the thirtieth day of operation, after which it reached a steady state. After the accumulation of iron became static, subsequent accumulation of manganese was observed. The fact that the removal rates of these inorganic components also increased gradually shows that the size of the exclusion pores of the membrane filter narrows as operation continues. Studying particle size distributions of inorganic components contained in source water revealed that while many iron particles are approximately the same size as membrane pores, the fraction of manganese particles slightly smaller than the pores in diameter was large. From these results, it is surmised that iron particles approximately the same size as the pores block them soon after the start of operation, and as the membrane pores narrow with the development of fouling, they become further blocked by manganese particles approximately the same size as the narrowed pores. Calcium and silica are assumed to accumulate on the membrane due to their cross-linking action and/or complex formation with organic substances such as humic compounds. The present research is the first to clearly show that the inorganic components that contribute to membrane fouling differ according to the stage of membrane fouling progression; the information obtained by this research should enable chemical cleaning or operational control in accordance with the stage of membrane fouling progression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Structure of the alternative complex III in a supercomplex with cytochrome oxidase.

    PubMed

    Sun, Chang; Benlekbir, Samir; Venkatakrishnan, Padmaja; Wang, Yuhang; Hong, Sangjin; Hosler, Jonathan; Tajkhorshid, Emad; Rubinstein, John L; Gennis, Robert B

    2018-05-01

    Alternative complex III (ACIII) is a key component of the respiratory and/or photosynthetic electron transport chains of many bacteria 1-3 . Like complex III (also known as the bc 1 complex), ACIII catalyses the oxidation of membrane-bound quinol and the reduction of cytochrome c or an equivalent electron carrier. However, the two complexes have no structural similarity 4-7 . Although ACIII has eluded structural characterization, several of its subunits are known to be homologous to members of the complex iron-sulfur molybdoenzyme (CISM) superfamily 8 , including the proton pump polysulfide reductase 9,10 . We isolated the ACIII from Flavobacterium johnsoniae with native lipids using styrene maleic acid copolymer 11-14 , both as an independent enzyme and as a functional 1:1 supercomplex with an aa 3 -type cytochrome c oxidase (cyt aa 3 ). We determined the structure of ACIII to 3.4 Å resolution by cryo-electron microscopy and constructed an atomic model for its six subunits. The structure, which contains a [3Fe-4S] cluster, a [4Fe-4S] cluster and six haem c units, shows that ACIII uses known elements from other electron transport complexes arranged in a previously unknown manner. Modelling of the cyt aa 3 component of the supercomplex revealed that it is structurally modified to facilitate association with ACIII, illustrating the importance of the supercomplex in this electron transport chain. The structure also resolves two of the subunits of ACIII that are anchored to the lipid bilayer with N-terminal triacylated cysteine residues, an important post-translational modification found in numerous prokaryotic membrane proteins that has not previously been observed structurally in a lipid bilayer.

  19. Near-ambient solid polymer fuel cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as replacement for batteries.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shier, W.T.

    Normally a freeze-thaw cycle is a very efficient method of killing mammalian cells. However, this report describes conditions that prevent killing of cultured mammalian cells by nucleated freezing at -24 degrees C. Optimal protection from cell killing at -24 degrees C was obtained in isotonic solutions containing an organic cryoprotectant such as dimethyl sulfoxide (DMSO; 10%, v/v), a saccharide such as sucrose over a broad concentration range from 50 to 150 mM, and glucose. Glycerol was also an effective cryoprotectant but other organic solvents were ineffective, although in some cases they appeared to protect cell membranes, while not protecting othermore » vital components. A wide variety of saccharide structures were effective at protecting cells from freeze-thaw killing, with trehalose being particularly effective. The degree of resistance to killing by a freeze-thaw cycle under these conditions varied widely among different cell lines. If toxicity of DMSO was responsible for this variability of cryoprotection, it must have been due to short-term, not longer term, toxicity of DMSO. Studies on the mechanism by which cells are protected from killing under these conditions indicated that neither vitrification of the medium nor the concentrating of components during freezing were involved. One model not eliminated by the mechanistic studies proposes that the organic solvent cryoprotectant component acts by fluidizing membranes under the thawing conditions, so that any holes produced by ice crystals propagating through membranes can reseal during the thawing process. In this model one of the mechanisms by which the saccharide component could act is by entering the cells and stabilizing vital intracellular components. Consistent with this, a freeze-thaw cycle promoted the uptake of labeled sucrose into cultured cells.« less

  1. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterialmore » and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.« less

  2. Screening anti-allergic components of Astragali Radix using LAD2 cell membrane chromatography coupled online with UHPLC-ESI-MS/MS method.

    PubMed

    Lv, Yanni; Sun, Yueming; Fu, Jia; Kong, Liyun; Han, Shengli

    2017-02-01

    Huangqi (Astragali Radix), a traditional Chinese herb, is widely used in clinical therapy in China. In addition, an anti-allergic effect of constituents in Huangqi has been reported in the scientific literature. In the present study, cell membrane chromatography coupled online with UHPLC-ESI-MS/MS method was developed to screen, analyze and identify the anti-allergic components of Huangqi. The Laboratory of Allergic Disease 2 (LAD2) cell was used to establish cell membrane chromatography, which was combined with UHPLC-ESI-MS/MS. The coupled system was then used to screen anti-allergic components from Huangqi. Effects of active components were verified by histamine release assay. A component retained on the LAD2 cell membrane chromatography was identified as formononetin. Bioactivity of formononetin was investigated by histamine release assay in LAD2 cells, and it was found that formononetin could inhibit histamine release in a dose-dependent manner from 1 to 100 μm. The LAD2 cell membrane chromatography online with UHPLC-ESI-MS/MS method is an effective technique for screening the anti-allergic components of Huangqi. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Deuterium Labeling Together with Contrast Variation Small-angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins

    PubMed Central

    Zaccai, Nathan R.; Sandlin, Clifford W.; Hoopes, James T.; Curtis, Joseph E.; Fleming, Patrick J.; Fleming, Karen G.; Krueger, Susan

    2016-01-01

    In gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archeal prefoldins and the mitochondrial Tim chaperones, that is α-helical ‘tentacles’ extend from a β-strand ‘body’ to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis and structure modeling. PMID:26791979

  4. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins.

    PubMed

    Zaccai, Nathan R; Sandlin, Clifford W; Hoopes, James T; Curtis, Joseph E; Fleming, Patrick J; Fleming, Karen G; Krueger, Susan

    2016-01-01

    In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling. © 2016 Elsevier Inc. All rights reserved.

  5. Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation

    PubMed Central

    Casado-Coterillo, Clara; López-Guerrero, María del Mar; Irabien, Ángel

    2014-01-01

    Mixed matrix membranes (MMMs) were prepared by incorporating organic surfactant-free hydrothermally synthesised ETS-10 and 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) to chitosan (CS) polymer matrix. The membrane material characteristics and permselectivity performance of the two-component membranes were compared with the three-component membrane and the pure CS membrane. The addition of IL increased CO2 solubility of the polymer, and, thus, the CO2 affinity was maintained for the MMMs, which can be correlated with the crystallinity, measured by FT-IR, and void fraction calculations from differences between theoretical and experimental densities. The mechanical resistance was enhanced by the ETS-10 nanoparticles, and flexibility decreased in the two-component ETS-10/CS MMMs, but the flexibility imparted by the IL remained in three-component ETS-10/IL/CS MMMs. The results of this work provide insight into another way of facing the adhesion challenge in MMMs and obtain CO2 selective MMMs from renewable or green chemistry materials. PMID:24957178

  6. The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors.

    PubMed

    Luo, Jinxue; Zhang, Jinsong; Tan, Xiaohui; McDougald, Diane; Zhuang, Guoqiang; Fane, Anthony G; Kjelleberg, Staffan; Cohen, Yehuda; Rice, Scott A

    2014-10-01

    Biofouling, the combined effect of microorganism and biopolymer accumulation, significantly reduces the process efficiency of membrane bioreactors (MBRs). Here, four biofilm components, alpha-polysaccharides, beta-polysaccharides, proteins and microorganisms, were quantified in MBRs. The biomass of each component was positively correlated with the transmembrane pressure increase in MBRs. Proteins were the most abundant biopolymer in biofilms and showed the fastest rate of increase. The spatial distribution and co-localization analysis of the biofouling components indicated at least 60% of the extracellular polysaccharide (EPS) components were associated with the microbial cells when the transmembrane pressure (TMP) entered the jump phase, suggesting that the EPS components were either secreted by the biofilm cells or that the deposition of these components facilitated biofilm formation. It is suggested that biofilm formation and the accumulation of EPS are intrinsically coupled, resulting in biofouling and loss of system performance. Therefore, strategies that control biofilm formation on membranes may result in a significant improvement of MBR performance.

  7. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins.

    PubMed

    Gallier, Sophie; Gragson, Derek; Jiménez-Flores, Rafael; Everett, David

    2010-04-14

    The bovine milk fat globule membrane (MFGM) is an important, biologically relevant membrane due to its functional and health properties. Its composition has been thoroughly studied, but its structure, especially the lateral organization of its components, still remains unclear. We have used confocal laser scanning microscopy (CLSM) to investigate the surface structure of the MFGM in globules with different degrees of processing using two types of fluorescently labeled phospholipid probes and a protein dye. Using this technique, we have observed heterogeneities in the distribution of MFGM lipids and proteins relating to the processing and size of the globules. The effect of pretreating the milk (centrifugation, pasteurization-homogenization and churning) was studied by double-staining the surface of the milk fat globules, followed by observation using CLSM, and by determining the phospholipid profile of raw milk, raw cream, processed milk and buttermilk powder. Our findings agree with other techniques by showing that the composition of the MFGM changes with processing through the loss of phospholipids and the adsorption of caseins and whey proteins onto the surface.

  8. Structure-function analysis of myomaker domains required for myoblast fusion.

    PubMed

    Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N

    2016-02-23

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.

  9. A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance

    PubMed Central

    Pol, Albert; Luetterforst, Robert; Lindsay, Margaret; Heino, Sanna; Ikonen, Elina; Parton, Robert G.

    2001-01-01

    Recent studies have indicated a role for caveolin in regulating cholesterol-dependent signaling events. In the present study we have analyzed the role of caveolins in intracellular cholesterol cycling using a dominant negative caveolin mutant. The mutant caveolin protein, cav-3DGV, specifically associates with the membrane surrounding large lipid droplets. These structures contain neutral lipids, and are accessed by caveolin 1–3 upon overexpression. Fluorescence, electron, and video microscopy observations are consistent with formation of the membrane-enclosed lipid rich structures by maturation of subdomains of the ER. The caveolin mutant causes the intracellular accumulation of free cholesterol (FC) in late endosomes, a decrease in surface cholesterol and a decrease in cholesterol efflux and synthesis. The amphiphile U18666A acts synergistically with cavDGV to increase intracellular accumulation of FC. Incubation of cells with oleic acid induces a significant accumulation of full-length caveolins in the enlarged lipid droplets. We conclude that caveolin can associate with the membrane surrounding lipid droplets and is a key component involved in intracellular cholesterol balance and lipid transport in fibroblasts. PMID:11238460

  10. Detection of superlattice domain formation in ternary lipid mixtures using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Mutlu, Burcin; Lopez, Stephanie; Vaughn, Mark; Huang, Juyang; Cheng, K.

    2011-10-01

    Multicomponent lipid bilayers represent an important model system for studying the structures and functions of cell membranes. At present, the lateral organization of lipid components, particularly the formation of regular distribution, in lipid membranes containing charged lipid, e.g., phosphatidylserine, is not clear. Using a ternary phosphatidylcholine/phosphatidylserine/cholesterol lipid bilayer system, the presence of ordered domain formation was examined by measuring the fluorescence anisotropy of the embedded fluorescent probe, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol- 4-yl)amino)-23,24-bisnor-5-cholen-3β- ol (NBD-CHOL), with structure similar to that of a cholesterol, as a function of phospatidylserine composition. The plot of the anisotropy vs. phosphatidylserine revealed abrupt changes at certain critical compositions of phosphatidylserine. Some of these critical compositions agree favorably with those predicted by the headgroup superlattice model suggesting that the charged phosphatidylserine lipid molecules adopt a superlattice-like distribution in the lipid bilayer at some predicted compositions. The ordered distribution of charged lipids may play an important role in the regulation of the composition of the biological membranes.

  11. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  12. Carbon nanotube filters.

    PubMed

    Srivastava, A; Srivastava, O N; Talapatra, S; Vajtai, R; Ajayan, P M

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus ( approximately 25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  13. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil.

    PubMed

    Terés, S; Barceló-Coblijn, G; Benet, M; Alvarez, R; Bressani, R; Halver, J E; Escribá, P V

    2008-09-16

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as alpha-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (approximately 70-80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (H(II) phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA.

  14. A New Polysulfone Membrane Dialyzer, NV, with Low-Fouling and Antithrombotic Properties.

    PubMed

    Oshihara, Wataru; Ueno, Yoshiyuki; Fujieda, Hiroaki

    2017-01-01

    The biggest problem in routine hemodialysis therapy is possibly the blood pressure fall experienced by patients during dialysis. In contrast, in medium- and long-term hemodialysis therapy, the main problem might be deterioration of arteriosclerosis because of medial calcification associated with dialysis vintage. Both problems are caused by an autonomic imbalance or structural change in the blood vessels. Inflammation due to extracorporeal blood circulation is another possible cause. This inflammation is considered to cause platelets activated by contact and adherence with the membrane surface to aggregate with white blood cells and attack the endothelium of the blood vessels. Therefore, we tried to develop a new membrane with no adsorption and no platelet activation. Polysulfone (PS) membranes with polyvinylpyrrolidone (PVP) as a hydrophilic agent are widely used in dialysis, but blood components adhere to the membrane surface. We developed a new dialyzer, NV, by localizing a new hydrophilic polymer onto the inner surface of a hollow-fiber membrane composed of PS and PVP. The number of platelets that adhered to the NV membrane surface drastically decreased to 0.9% of that with the conventional PS dialysis membrane. We also confirmed the mechanism by which NV realizes clinical improvements in blood pressure drops and inflammation during dialysis, and verified its clinical appeal. Key Messages: The new membrane NV, which inhibits platelet adhesion and is compatible with blood vessels, is clinically beneficial. © 2017 S. Karger AG, Basel.

  15. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.

    PubMed

    Boo, Chanhee; Wang, Yunkun; Zucker, Ines; Choo, Youngwoo; Osuji, Chinedum O; Elimelech, Menachem

    2018-05-31

    We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a polyethersulfone support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ~1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ~0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (~90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.

  16. Membrane Curvature Sensing by Amphipathic Helices

    PubMed Central

    Jensen, Martin Borch; Bhatia, Vikram Kjøller; Jao, Christine C.; Rasmussen, Jakob Ewald; Pedersen, Søren L.; Jensen, Knud J.; Langen, Ralf; Stamou, Dimitrios

    2011-01-01

    Preferential binding of proteins on curved membranes (membrane curvature sensing) is increasingly emerging as a general mechanism whereby cells may effect protein localization and trafficking. Here we use a novel single liposome fluorescence microscopy assay to examine a common sensing motif, the amphipathic helix (AH), and provide quantitative measures describing and distinguishing membrane binding and sensing behavior. By studying two AH-containing proteins, α-synuclein and annexin B12, as well as a range of AH peptide mutants, we reveal that both the hydrophobic and hydrophilic faces of the helix greatly influence binding and sensing. Although increased hydrophobic and electrostatic interactions with the membrane both lead to greater densities of bound protein, the former yields membrane curvature-sensitive binding, whereas the latter is not curvature-dependent. However, the relative contributions of both components determine the sensing of AHs. In contrast, charge density in the lipid membrane seems important primarily in attracting AHs to the membrane but does not significantly influence sensing. These observations were made possible by the ability of our assay to distinguish within our samples liposomes with and without bound protein as well as the density of bound protein. Our findings suggest that the description of membrane curvature-sensing requires consideration of several factors such as short and long range electrostatic interactions, hydrogen bonding, and the volume and structure of inserted hydrophobic residues. PMID:21953452

  17. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  18. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.

    PubMed

    Olson, D K; Fröhlich, F; Farese, R V; Walther, T C

    2016-08-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.

  19. Presenilins and γ-Secretase: Structure, Function, and Role in Alzheimer Disease

    PubMed Central

    De Strooper, Bart; Iwatsubo, Takeshi; Wolfe, Michael S.

    2012-01-01

    Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline. PMID:22315713

  20. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.

    PubMed

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Clare L; Marquardt, Drew; Dies, Hannah

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the exoplasmic leaflet of the plasma membrane, and are thought to be essential for many cellular processes. Using neutron diffraction and computer modelling, we present evidence for the existence of highly ordered lipid domains in the cholesterol-rich (32.5 mol%) liquid-ordered (lo) phase of dipalmitoylphosphatidylcholine membranes. The liquid ordered phase in one-component lipid membranes has previously been thought to be a homogeneous phase. The presence of highly ordered lipid domains embedded in a disordered lipid matrix implies non-uniform distribution of cholesterol between the two phases. The experimental results are inmore » excellent agreement with recent computer simulations of DPPC/cholesterol complexes [Meinhardt, Vink and Schmid (2013). Proc Natl Acad Sci USA 110(12): 4476 4481], which reported the existence of nanometer size lo domains in a liquid disordered lipid environment.« less

  2. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  3. Microvillar Ca++ signaling: a new view of an old problem.

    PubMed

    Lange, K

    1999-07-01

    Proceeding from the recent finding that the main components of the Ca++ signal pathway are located in small membrane protrusions on the surface of differentiated cells, called microvilli, a novel concept of cellular Ca++ signaling was developed. The main features of this concept can be summarized as follows: Microvilli are formed on the cell surface of differentiating or resting cells from exocytic membrane domains, growing out from the cell surface by elongation of an internal bundle of actin filaments. The microvillar tip membranes contain all functional important proteins synthesized such as ion channels and transporters for energy-providing substrates and structural components, which are, in rapidly growing undifferentiated cells, distributed over the whole cell surface by lateral diffusion. The microvillar shaft structure, a bundle of actin filaments, forms a dense cytoskeletal matrix tightly covered by the microvillar lipid membrane and represents an effective diffusion barrier separating the microvillar tip compartment (entrance compartment) from the cytoplasm. This diffusion barrier prevents the passage of low molecular components such as Ca++ glucose and other relevant substrates from the entrance compartment into the cytoplasm. The effectiveness of the actin-based diffusion barrier is modulated by various signal pathways and effectors, most importantly, by the actin-depolymerizing/reorganizing activity of the phospholipase C (PLC)-coupled Ca++ signaling. Moreover, the microvillar bundle of actin filaments plays a dual role in Ca++ signaling. It combines the function of a diffusion barrier, preventing Ca++ influx into the resting cell, with that of a high-affinity, ATP-dependent, and IP3-sensitive Ca++ store. Activation of Ca++ signaling via PLC-coupled receptors simultaneously empties Ca++ stores and activates the influx of external Ca++. The presented concept of Ca++ signaling is compatible with all established data on Ca++ signaling. Properties of Ca++ signaling, that could not be reconciled with the basic principles of the current hypothesis, are intrinsic properties of the new concept. Quantal Ca++ release, Ca(++)-induced Ca++ release (CICR), the coupling phenomen between the filling state of the Ca++ store and the activity of the Ca++ influx pathway, as well as the various yet unexplained complex kinetics of Ca++ uptake and release can be explained on a common mechanistic basis.

  4. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes.

    PubMed

    Terasawa, Kazue; Tomabechi, Yuri; Ikeda, Mariko; Ehara, Haruhiko; Kukimoto-Niino, Mutsuko; Wakiyama, Motoaki; Podyma-Inoue, Katarzyna A; Rajapakshe, Anupama R; Watabe, Tetsuro; Shirouzu, Mikako; Hara-Yokoyama, Miki

    2016-10-21

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) have a large, heavily glycosylated luminal domain composed of two subdomains, and are the most abundant protein components in lysosome membranes. LAMP-1 and LAMP-2 have distinct functions, and the presence of both proteins together is required for the essential regulation of autophagy to avoid embryonic lethality. However, the structural aspects of LAMP-1 and LAMP-2 have not been elucidated. In the present study, we demonstrated that the subdomains of LAMP-1 and LAMP-2 adopt the unique β-prism fold, similar to the domain structure of the dendritic cell-specific-LAMP (DC-LAMP, LAMP-3), confirming the conserved aspect of this family of lysosome-associated membrane proteins. Furthermore, we evaluated the effects of the N-domain truncation of LAMP-1 or LAMP-2 on the assembly of LAMPs, based on immunoprecipitation experiments. We found that the N-domain of LAMP-1 is necessary, whereas that of LAMP-2 is repressive, for the organization of a multimeric assembly of LAMPs. Accordingly, the present study suggests for the first time that the assembly modes of LAMP-1 and LAMP-2 are different, which may underlie their distinct functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Aptamer-recognized carbohydrates on the cell membrane revealed by super-resolution microscopy.

    PubMed

    Jing, Yingying; Cai, Mingjun; Xu, Haijiao; Zhou, Lulu; Yan, Qiuyan; Gao, Jing; Wang, Hongda

    2018-04-26

    Carbohydrates are one of the most important components on the cell membrane, which participate in various physiological activities, and their aberrant expression is a consequence of pathological changes. In previous studies, carbohydrate analysis basically relied on lectins. However, discrimination between lectins still exists due to their multivalent character. Furthermore, the structures obtained by carbohydrate-lectin crosslinking confuse our direct observation to some extent. Fortunately, the emergence of aptamers, which are smaller and more flexible, has provided us an unprecedented choice. Herein, an aptamer recognition method with high precise localization was developed for imaging membrane-bound N-acetylgalactosamine (GalNAc). By using direct stochastic optical reconstruction microscopy (dSTORM), we compared this aptamer recognition method with the lectin recognition method for visualizing the detailed structure of GalNAc at the nanometer scale. The results indicated that GalNAc forms irregular clusters on the cell membrane with a resolution of 23 ± 7 nm by aptamer recognition. Additionally, when treated with N-acetylgalactosidase, the aptamer-recognized GalNAc shows a more significant decrease in cluster size and localization density, thus verifying better specificity of aptamers than lectins. Collectively, our study suggests that aptamers can act as perfect substitutes for lectins in carbohydrate labeling, which will be of great potential value in the field of super-resolution fluorescence imaging.

  6. Diamond drumhead crystals for X-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Tomasz; Vodnala, Preeti; Terentyev, Sergey

    2016-07-14

    Thin (<50 µm) and flawless diamond single crystals are essential for the realization of numerous advanced X-ray optical devices at synchrotron radiation and free-electron laser facilities. The fabrication and handling of such ultra-thin components without introducing crystal damage and strain is a challenge. Drumhead crystals, monolithic crystal structures composed of a thin membrane furnished with a surrounding solid collar, are a solution ensuring mechanically stable strain-free mounting of the membranes with efficient thermal transport. Diamond, being one of the hardest and most chemically inert materials, poses significant difficulties in fabrication. Reported here is the successful manufacture of diamond drumhead crystalsmore » in the [100] orientation using picosecond laser milling. Subsequent high-temperature treatment appears to be crucial for the membranes to become defect free and unstrained, as revealed by X-ray topography on examples of drumhead crystals with a 26 µm thick (1 mm in diameter) and a 47 µm thick (1.5 × 2.5 mm) membrane.« less

  7. Autoantibodies against the inner aspect of erythrocyte membranes in NZB mice.

    PubMed Central

    Linder, E

    1977-01-01

    Erythrocyte autoantibodies in NZB mice react by hemagglutination methods with exposed and hidden red cell antigens. The hidden antigens can be exposed by treatment with proteolytic enzymes. By indirect immunofluorescence one antibody population can be shown to react with modified red cells. In the present study the location of the corresponding autoantigen within the membrane was studied. Mechanical or hypotonic lysis of the red cells exposed the antigen. Proteolytic digestion known to expose other erythrocyte autoantigens had no effect. The autoantigen was exposed on 'inside out' erythrocyte membrane vesicles, but not on 'right-side out' vesicles, prepared from isolated erythrocyte ghosts. Frezzing and thawing as well as mechanical disintergration of red cells liberated antigenically active material as saline-insuluble fibrillar material. The observations indicate that the autoantigen studied is located at the inner aspect of the erythrocyte membrane and suggest that it is associated with fibril-forming structural components. The observed reactivity distinguishes the described antibodies from previously identified erythrocyte autoantibodies. PMID:862240

  8. Incorporation of transmembrane hydroxide transport into the chemiosmotic theory.

    PubMed

    de Grey, A D

    1999-10-01

    A cornerstone of textbook bioenergetics is that oxidative ATP synthesis in mitochondria requires, in normal conditions of internal and external pH, a potential difference (delta psi) of well over 100 mV between the aqueous compartments that the energy-transducing membrane separates. Measurements of delta psi inferred from diffusion of membrane-permeant ions confirm this, but those using microelectrodes consistently find no such delta psi--a result ostensibly irreconcilable with the chemiosmotic theory. Transmembrane hydroxide transport necessarily accompanies mitochondrial ATP synthesis, due to the action of several carrier proteins; this nullifies some of the proton transport by the respiratory chain. Here, it is proposed that these carriers' structure causes the path of this "lost" proton flow to include a component perpendicular to the membrane but within the aqueous phases, so maintaining a steady-state proton-motive force between the water at each membrane surface and in the adjacent bulk medium. The conflicting measurements of delta psi are shown to be consistent with the response of this system to its chemical environment.

  9. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport

    PubMed Central

    Makiuchi, Takashi; Mi-ichi, Fumika; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2013-01-01

    Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment. PMID:23350036

  10. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport.

    PubMed

    Makiuchi, Takashi; Mi-ichi, Fumika; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2013-01-01

    Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment.

  11. Design of a homogeneous multifunctional supported lipid membrane on layer-by-layer coated microcarriers.

    PubMed

    Göse, Martin; Pescador, Paula; Reibetanz, Uta

    2015-03-09

    Key challenges in the development of drug delivery systems are the prevention of serum compartment interaction and the targeted delivery of the cargo. Layer-by-Layer microcarriers offer many advantages due to various options in drug assembly and multifunctional design. Surface modification with a supported lipid membrane enhances biocompatibility, drug protection ability, and specific functionality. However, the integration of functionalized lipids strongly influences the membrane formation and is often accompanied by submicrometer irregularities: The accessibility of underlying polymers to serum components may change the carrier's properties and enhances the susceptibility to opsonization. Therefore, the formation of a tightly assembled multifunctional lipid membrane has been emphasized. A phosphatidylserine/phosphatidylcholine (POPS/POPC) bilayer equipped with phosphatidylethanolamine-polyethylene glycol-biotin (PE-PEG-Biotin) was used to facilitate a biotin/streptavidin binding site for a variable attachment of an additional function, such as antibodies for specific targeting. Thus, a prefunctionalized carrier where only the outer functionality needs to be replaced without disturbing the underlying structure could be created.

  12. Toward structural elucidation of the gamma-secretase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Wolfe, M. S.; Selkoe, D. J.

    2009-03-11

    {gamma}-Secretase is an intramembrane protease complex that mediates the Notch signaling pathway and the production of amyloid {beta}-proteins. As such, this enzyme has emerged as an important target for development of novel therapeutics for Alzheimer disease and cancer. Great progress has been made in the identification and characterization of the membrane complex and its biological functions. One major challenge now is to illuminate the structure of this fascinating and important protease at atomic resolution. Here, we review recent progress on biochemical and biophysical probing of the structure of the four-component complex and discuss obstacles and potential pathways toward elucidating itsmore » detailed structure.« less

  13. Structures and mechanisms of vesicle coat components and multisubunit tethering complexes

    PubMed Central

    Jackson, Lauren P; Kümmel, Daniel; Reinisch, Karin M; Owen, David J

    2012-01-01

    Eukaryotic cells face a logistical challenge in ensuring prompt and precise delivery of vesicular cargo to specific organelles within the cell. Coat protein complexes select cargo and initiate vesicle formation, while multisubunit tethering complexes participate in the delivery of vesicles to target membranes. Understanding these macromolecular assemblies has greatly benefited from their structural characterization. Recent structural data highlight principles in coat recruitment and uncoating in both the endocytic and retrograde pathways, and studies on the architecture of tethering complexes provide a framework for how they might link vesicles to the respective acceptor compartments and the fusion machinery. PMID:22728063

  14. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Cao; X Jin; E Levin

    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which ismore » occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.« less

  15. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  16. Prokaryotic cells: structural organisation of the cytoskeleton and organelles.

    PubMed

    Souza, Wanderley de

    2012-05-01

    For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i) tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii) actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii) intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.

  17. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligandmore » positioned in an adjacent pocket. With the geometry of the RPE65–substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. Finally, these data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.« less

  18. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision

    DOE PAGES

    Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen; ...

    2015-04-20

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligandmore » positioned in an adjacent pocket. With the geometry of the RPE65–substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. Finally, these data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.« less

  19. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision

    PubMed Central

    Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen; Li, Qingjiang; Shi, Wuxian; Sui, Xuewu; Golczak, Marcin; Tochtrop, Gregory P.; Palczewski, Krzysztof

    2015-01-01

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase, RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive due to uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65-substrate complex clarified we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. These data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules. PMID:25894083

  20. Impact of membrane curvature on amyloid aggregation.

    PubMed

    Terakawa, Mayu S; Lin, Yuxi; Kinoshita, Misaki; Kanemura, Shingo; Itoh, Dai; Sugiki, Toshihiko; Okumura, Masaki; Ramamoorthy, Ayyalusamy; Lee, Young-Ho

    2018-04-28

    The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Cytoarchitecture of Caudiverbera caudiverbera stage VI oocytes: a light and electron microscope study.

    PubMed

    Dabiké, M; Preller, A

    1999-06-01

    The general characteristics and salient features of the full-grown stage VI Caudiverbera caudiverbera oocyte at the light and electron microscopy level are described. The oocyte is a huge cell with radial symmetry and distinct polarity. A black animal hemisphere, rich in pigment granules and containing the nucleus, is clearly distinguished from the unpigmented white-yellowish vegetal hemisphere. The cell is surrounded by a highly invaginated plasma membrane, with numerous microvilli. The cortex underlying the plasma membrane contains cortical and pigment granules, mitochondria, rough endoplasmic reticulum and coated vesicles. Cytoskeletal components, such as actin filaments and microtubules, are also found in this region. The predominant structures, distributed throughout the cell, are the yolk platelets, which show a gradient in size with small platelets in the animal half and very large ones in the vegetal zone. Mitochondria are also very abundant in both hemispheres and clouds of these organelles are found in the perinuclear region, frequently associated with microtubules. Developed Golgi complexes are present in the cytoplasm and occasionally, annulate lamellae appear towards the inner zones. The nucleus is a large structure containing numerous nucleoli. The nuclear envelope is highly invaginated, especially at the side facing the vegetal pole. It is regularly perforated by large nuclear pores. Our results show that the structural organization of Caudiverbera oocytes, although similar to that of other amphibian oocytes, differs from them especially concerning the spatial distribution of several structural components.

  2. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents.

    PubMed

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Varela, Lourdes M; Ortega-Gomez, Almudena; Abia, Rocio; Muriana, Francisco J G

    2014-06-01

    The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Distributed microscopic actuation analysis of deformable plate membrane mirrors

    NASA Astrophysics Data System (ADS)

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2018-02-01

    To further reduce the areal density of optical mirrors used in space telescopes and other space-borne optical structures, the concept of flexible membrane deformable mirror has been proposed. Because of their high flexibility, poor stiffness and low damping properties, environmental excitations such as orbital maneuver, path changing, and non-uniform heating may induce unexpected vibrations and thus reduce working performance. Therefore, active vibration control is essential for these membrane mirrors. In this paper, two different mirror models, i.e., the plate membrane model and pure membrane model, are studied respectively. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as actuators. Dynamic equations of the mirror laminated with piezoelectric actuators are presented first. Then, the actuator induced modal control force is defined. When the actuator area shrinks to infinitesimal, the expressions of microscopic local modal control force and its two components are obtained to predict the spatial microscopic actuation behavior of the mirror. Different membrane pretension forces are also applied to reveal the tension effects on the actuation of the mirror. Analyses indicate that the spatial distribution of modal micro-control forces is exactly the same with the sensing signals distribution of the mirror, which provides crucial guidelines for optimal actuator placement of membrane deformable mirrors.

  4. Molecular devices: Caroviologens as an approach to molecular wires—synthesis and incorporation into vesicle membranes

    PubMed Central

    Arrhenius, Thomas S.; Blanchard-Desce, Mireille; Dvolaitzky, Maya; Lehn, Jean-Marie; Malthete, Jacques

    1986-01-01

    Molecular wires, which would allow electron flow to take place between different components, are important elements in the design of molecular devices. An approach to such species would be molecules possessing an electron-conducting conjugated chain, terminal electroactive polar groups, and a length sufficient to span a lipid membrane. To this end, bispyridinium polyenes of different lengths have been synthesized and their incorporation into the bilayer membrane of sodium dihexadecyl phosphate vesicles has been studied. Since they combine the features of carotenoids and of viologens, they may be termed caroviologens. Vesicles containing the caroviologen whose length approximately corresponds to the thickness of the sodium dihexadecyl phosphate bilayer display temperature-dependent changes of its absorption spectrum reflecting the gel → liquid-crystal phase transition of the membrane. The data agree with a structural model in which the caroviologens of sufficient length span the bilayer membrane, the pyridinium sites being close to the negatively charged outer and inner surfaces of the sodium dihexadecyl phosphate vesicles and the polyene chain crossing the lipidic interior of the membrane. These membranes may now be tested in processes in which the caroviologen would function as a continuous, transmembrane electron channel—i.e., as a molecular wire. Various further developments may be envisaged along these lines. PMID:16593731

  5. Dlg5 maintains apical polarity by promoting membrane localization of Crumbs during Drosophila oogenesis

    PubMed Central

    Luo, Jun; Wang, Heng; Kang, Di; Guo, Xuan; Wan, Ping; Wang, Dou; Chen, Jiong

    2016-01-01

    Apical-basal polarity plays critical roles in the functions of epithelial tissues. However, the mechanisms of epithelial polarity establishment and maintenance remain to be fully elucidated. Here we show that the membrane-associated guanylate kinase (MAGUK) family protein Dlg5 is required for the maintenance of apical polarity of follicle epithelium during Drosophila oogenesis. Dlg5 localizes at the apical membrane and adherens junction (AJ) of follicle epithelium in early stage egg chambers. Specifically, we demonstrate that the major function of Dlg5 is to promote apical membrane localization of Crumbs, since overexpression of Crumbs but not other major apical or AJ components could rescue epithelial polarity defects resulted from loss of Dlg5. Furthermore, we performed a structure-function analysis of Dlg5 and found that the C-terminal PDZ3 and PDZ4 domains are required for all Dlg5’s functions as well as its ability to localize to apical membrane. The N-terminal coiled-coil motif could be individually targeted to the apical membrane, while the central linker region could be targeted to AJ. Lastly, the MAGUK core domains of PDZ4-SH3-GUK could be individually targeted to apical, AJ and basolateral membranes. PMID:27211898

  6. Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates.

    PubMed

    Zhang, Lili; Zhang, Zesheng; Jasa, John; Li, Dongli; Cleveland, Robin O; Negahban, Mehrdad; Jérusalem, Antoine

    2017-08-16

    The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.

  7. Challenges in structural approaches to cell modeling.

    PubMed

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A

    2016-07-31

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Crystal structures of the components of the Staphylococcus aureus leukotoxin ED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocadello, S.; Minasov, G.; Shuvalova, L.

    Staphylococcal leukotoxins are a family of β-barrel, bicomponent, pore-forming toxins with membrane-damaging functions. These bacterial exotoxins share sequence and structural homology and target several host-cell types. Leukotoxin ED (LukED) is one of these bicomponent pore-forming toxins thatStaphylococcus aureusproduces in order to suppress the ability of the host to contain the infection. The recent delineation of the important role that LukED plays inS. aureuspathogenesis and the identification of its protein receptors, combined with its presence inS. aureusmethicillin-resistant epidemic strains, establish this leukocidin as a possible target for the development of novel therapeutics. Here, the crystal structures of the water-soluble LukE andmore » LukD components of LukED have been determined. Lastly, the two structures illustrate the tertiary-structural variability with respect to the other leukotoxins while retaining the conservation of the residues involved in the interaction of the protomers in the bipartite leukotoxin in the pore complex.« less

  9. Crystal structures of the components of the Staphylococcus aureus leukotoxin ED

    DOE PAGES

    Nocadello, S.; Minasov, G.; Shuvalova, L.; ...

    2016-01-01

    Staphylococcal leukotoxins are a family of β-barrel, bicomponent, pore-forming toxins with membrane-damaging functions. These bacterial exotoxins share sequence and structural homology and target several host-cell types. Leukotoxin ED (LukED) is one of these bicomponent pore-forming toxins thatStaphylococcus aureusproduces in order to suppress the ability of the host to contain the infection. The recent delineation of the important role that LukED plays inS. aureuspathogenesis and the identification of its protein receptors, combined with its presence inS. aureusmethicillin-resistant epidemic strains, establish this leukocidin as a possible target for the development of novel therapeutics. Here, the crystal structures of the water-soluble LukE andmore » LukD components of LukED have been determined. Lastly, the two structures illustrate the tertiary-structural variability with respect to the other leukotoxins while retaining the conservation of the residues involved in the interaction of the protomers in the bipartite leukotoxin in the pore complex.« less

  10. Cytochrome bc1-cy Fusion Complexes Reveal the Distance Constraints for Functional Electron Transfer Between Photosynthesis Components*

    PubMed Central

    Lee, Dong-Woo; Öztürk, Yavuz; Osyczka, Artur; Cooley, Jason W.; Daldal, Fevzi

    2008-01-01

    Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt cy) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-cy fusion complex that supported Ps growth solely relying on membrane-confined ET (Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta1757 ,346 -35216781662). In this work, we further characterized this cyt bc1-cy fusion complex, and used its derivatives with shorter cyt cy linkers as “molecular rulers” to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-cy fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt cy linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt cy linker decreased drastically this electronic coupling between the cyt bc1-cy fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt cy linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-cy fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are “hardwired” for cyclic ET. PMID:18343816

  11. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    NASA Astrophysics Data System (ADS)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and oxygen permeability of the SrCoO3-delta membrane. Among all the disk-shaped SSCx (x = 0-0.7) membranes with a thickness of 0.91 mm, both SSC0.05 and SSC0.1 exhibit the highest oxygen permeation rate of about 3.2 mL.cm-2.min-1 (STP) at 900 °C, SSC0.1 also shows excellent cathode performance for a solid oxide fuel cell. Therefore SSC0.1 is of special interest, and thus investigated regarding the performance as a membrane reactor for methane combustion. The performance was evaluated based on the results of methane conversion rates and CO 2 selectivity. Inspired by the above findings, a series of mixed-conducting perovskite oxides SrCo0.95M0.05O3-delta (SCM, M = Bi5+, Zr4+, Ce4+, Sc3+ , La3+, Y3+, Al3+, Zn 2+) were prepared to study the effects of different dopants M on the performance of SrCo0.95M0.05O3-delta. It was found that the M cations significantly affect the crystal phase structure, grain growth, membrane porosity, electrical conductivity, and the oxygen permeability of the SCM membranes. Specifically, it is postulated in this study that the formation of the cubic perovskite structure is dependent on the electron configuration in the outer orbits of M cations, which may provide theoretical guidance for future development of high oxygen permeation ceramic membranes based on the perovskite materials. To study the significant effects of grain sizes on the oxygen permeation behaviors of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and SrSc0.1Co0.9O 3-delta (SSC0.1) membranes, the LSCF and SSC0.1 membranes were sintered at various temperatures to form different microstructures. Properties of these membranes with varied grain sizes were compared. Results showed that the oxygen permeation rate of the LSCF membrane increases with increasing the grain size, however, it is interesting that the oxygen permeation rate of the SSC0.1 membrane decreases with increasing the grain size. This implies that oxygen transport occurs more, however, less rapidly along grain boundaries than through the bulks in the LSCF and SSC0.1 membranes, respectively. A LSCF hollow fiber membrane and a SSC0.1 planar membrane were applied as membrane reactors for methane combustion. To improve their performances, LSCF powder and SSC0.1 powder were dip-coated and spray-coated on the permeation sides of LSCF hollow fiber membranes and SSC0.1 planar membranes, respectively. The exhaust gas components were analyzed by Gas Chromatography (GC). The performance was evaluated based on the results of methane conversion rates and CO 2 selectivity. The highest CO2 selectivity of the LSCF hollow fiber membrane and the SSC0.1 planar membrane is about 88 and 85 %, respectively. This indicates that the application of an oxygen permeation membrane as methane combustion reactor is feasible.

  12. Recycling of used perfluorosulfonic acid membranes

    DOEpatents

    Grot, Stephen [Middletown, DE; Grot, Walther [Chadds Ford, PA

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  13. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It

    PubMed Central

    Kraft, Mary L.

    2017-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed. PMID:28119913

  14. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It.

    PubMed

    Kraft, Mary L

    2016-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed.

  15. Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on a HAB causing Alexandrium tamarense.

    PubMed

    Li, Yi; Zhu, Hong; Zhang, Huajun; Chen, Zhangran; Tian, Yun; Xu, Hong; Zheng, Tianling; Zheng, Wei

    2014-08-15

    Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on Alexandrium tamarense were measured through studying the algicidal procedure, nuclear damage and transcription of related genes. Medium components were optimized to improve algicidal activity, and characteristics of algicidal extracts were determined. Transmission electron microscope analysis revealed that the cell structure was broken. Cell membrane integrity destruction and nuclear structure degradation were monitored using confocal laser scanning microscope, and the rbcS, hsp and proliferating cell nuclear antigen (PCNA) gene expressions were studied. Results showed that 1.0% tryptone, 0.4% glucose and 0.8% MgCl2 were the optimal nutrient sources. The algicidal extracts were heat and pH stable, non-protein and less than 1kD. Cell membrane and nuclear structure integrity were lost, and the transcription of the rbcS and PCNA genes were significantly inhibited and there was up-regulation of hsp gene expression during the exposure procedure. The algicidal extracts destroyed the cell membrane and nuclear structure integrity, inhibited related gene expression and, eventually, lead to the inhibition of algal growth. All the results may elaborate firstly the cell death process and nuclear damage in A. tamarense which was induced by algicidal extracts, and the algicidal extracts could be potentially used as bacterial control of HABs in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Auditory mechanics and sensitivity in the tropical butterfly Morpho peleides (Papilionoidea, Nymphalidae).

    PubMed

    Lucas, Kathleen M; Windmill, James F C; Robert, Daniel; Yack, Jayne E

    2009-11-01

    The ears of insects exhibit a broad functional diversity with the ability to detect sounds across a wide range of frequencies and intensities. In tympanal ears, the membrane is a crucial step in the transduction of the acoustic stimulus into a neural signal. The tropical butterfly Morpho peleides has an oval-shaped membrane at the base of the forewing with an unusual dome in the middle of the structure. We are testing the hypothesis that this unconventional anatomical arrangement determines the mechanical tuning properties of this butterfly ear. Using microscanning laser Doppler vibrometry to measure the vibrational characteristics of this novel tympanum, the membrane was found to vibrate in two distinct modes, depending on the frequency range: at lower frequencies (1-5 kHz) the vibration was focused at the proximal half of the posterior side of the outer membrane, while at higher frequencies (5-20 kHz) the entire membrane contributed to the vibration. The maximum deflection points of the two vibrational modes correspond to the locations of the associated chordotonal organs, suggesting that M. peleides has the capacity for frequency partitioning because of the different vibrational properties of the two membrane components. Extracellular nerve recordings confirm that the innervating chordotonal organs respond to the same frequency range of 1-20 kHz, and are most sensitive between 2 and 4 kHz, although distinct frequency discrimination was not observed. We suggest that this remarkable variation in structure is associated with function that provides a selective advantage, particularly in predator detection.

  17. Lytic agents, cell permeability, and monolayer penetrability.

    PubMed

    Salton, M R

    1968-07-01

    Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20-30 % lipid and 50-75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2-3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.

  18. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris

    PubMed Central

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-01-01

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens. PMID:28198457

  19. Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study [Atomic-level structure of carbon nanotube porins in lipid bilayers: an in-situ small-angle x-ray scattering (SAXS) study

    DOE PAGES

    Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon; ...

    2016-06-20

    Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. Furthermore, in order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers.more » These results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.« less

  20. Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy

    2014-08-19

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133 55–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one constructmore » of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.« less

  1. Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex*

    PubMed Central

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej

    2014-01-01

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911

  2. Evolution of the Translocation and Assembly Module (TAM)

    PubMed Central

    Heinz, Eva; Selkrig, Joel; Belousoff, Matthew J.; Lithgow, Trevor

    2015-01-01

    Bacterial outer membrane proteins require the beta-barrel assembly machinery (BAM) for their correct folding and function. The central component of this machinery is BamA, an Omp85 protein that is essential and found in all Gram-negative bacteria. An additional feature of the BAM is the translocation and assembly module (TAM), comprised TamA (an Omp85 family protein) and TamB. We report that TamA and a closely related protein TamL are confined almost exclusively to Proteobacteria and Bacteroidetes/Chlorobi respectively, whereas TamB is widely distributed across the majority of Gram-negative bacterial lineages. A comprehensive phylogenetic and secondary structure analysis of the TamB protein family revealed that TamB was present very early in the evolution of bacteria. Several sequence characteristics were discovered to define the TamB protein family: A signal-anchor linkage to the inner membrane, beta-helical structure, conserved domain architecture and a C-terminal region that mimics outer membrane protein beta-strands. Taken together, the structural and phylogenetic analyses suggest that the TAM likely evolved from an original combination of BamA and TamB, with a later gene duplication event of BamA, giving rise to an additional Omp85 sequence that evolved to be TamA in Proteobacteria and TamL in Bacteroidetes/Chlorobi. PMID:25994932

  3. Structural Investigation of the Oligosaccharide Portion Isolated from the Lipooligosaccharide of the Permafrost Psychrophile Psychrobacter arcticus 273-4.

    PubMed

    Casillo, Angela; Parrilli, Ermenegilda; Filomena, Sannino; Lindner, Buko; Lanzetta, Rosa; Parrilli, Michelangelo; Tutino, Maria Luisa; Corsaro, Maria Michela

    2015-07-22

    Psychrophilic microorganisms have successfully colonized all permanently cold environments from the deep sea to mountain and polar regions. The ability of an organism to survive and grow in cryoenviroments depends on a number of adaptive strategies aimed at maintaining vital cellular functions at subzero temperatures, which include the structural modifications of the membrane. To understand the role of the membrane in the adaptation, it is necessary to characterize the cell-wall components, such as the lipopolysaccharides, that represent the major constituent of the outer membrane. The aim of this study was to investigate the structure of the carbohydrate backbone of the lipooligosaccharide (LOS) isolated from the cold-adapted Psychrobacter arcticus 273-4. The strain, isolated from a 20,000-to-30,000-year-old continuously frozen permafrost in Siberia, was cultivated at 4 °C. The LOS was isolated from dry cells and analyzed by means of chemical methods. In particular, it was degraded either by mild acid hydrolysis or by hydrazinolysis and investigated in detail by (1)H and (13)C NMR spectroscopy and by ESI FT-ICR mass spectrometry. The oligosaccharide was characterized by the substitution of the heptose residue, usually linked to Kdo in the inner core, with a glucose, and for the unusual presence of N-acetylmuramic acid.

  4. Depot effect of bioactive components in experimental membrane filtrations

    NASA Astrophysics Data System (ADS)

    Mitev, D.; Peshev, D.; Peev, G.; Peeva, L.

    2017-01-01

    Depot effects were found to be accompanying phenomena of membrane separation processes. Accumulation of target species in the membrane matrix during feasibility tests can hamper proper conclusions or compromise the filtration results. Therefore, we investigated the effects of delayed membrane release of chlorogenic acid and caffeine, considered as key compounds of interest in spent coffee products’ recovery treatment. Permeate fluxes and key components release were studied in course of 24 hours via nanofiltration of pure solvent, both immediately after the mock solution filtration and after idle stay. Conclusions are drawn and recommendations advised for proper analysis of experimental data on membrane screening.

  5. Dynamics of the Glycophorin A Dimer in Membranes of Native-Like Composition Uncovered by Coarse-Grained Molecular Dynamics Simulations.

    PubMed

    Flinner, Nadine; Schleiff, Enrico

    2015-01-01

    Membranes are central for cells as borders to the environment or intracellular organelle definition. They are composed of and harbor different molecules like various lipid species and sterols, and they are generally crowded with proteins. The membrane system is very dynamic and components show lateral, rotational and translational diffusion. The consequence of the latter is that phase separation can occur in membranes in vivo and in vitro. It was documented that molecular dynamics simulations of an idealized plasma membrane model result in formation of membrane areas where either saturated lipids and cholesterol (liquid-ordered character, Lo) or unsaturated lipids (liquid-disordered character, Ld) were enriched. Furthermore, current discussions favor the idea that proteins are sorted into the liquid-disordered phase of model membranes, but experimental support for the behavior of isolated proteins in native membranes is sparse. To gain insight into the protein behavior we built a model of the red blood cell membrane with integrated glycophorin A dimer. The sorting and the dynamics of the dimer were subsequently explored by coarse-grained molecular dynamics simulations. In addition, we inspected the impact of lipid head groups and the presence of cholesterol within the membrane on the dynamics of the dimer within the membrane. We observed that cholesterol is important for the formation of membrane areas with Lo and Ld character. Moreover, it is an important factor for the reproduction of the dynamic behavior of the protein found in its native environment. The protein dimer was exclusively sorted into the domain of Ld character in the model red blood cell plasma membrane. Therefore, we present structural information on the glycophorin A dimer distribution in the plasma membrane in the absence of other factors like e.g. lipid anchors in a coarse grain resolution.

  6. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    DOEpatents

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  7. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion.

    PubMed

    Zick, Michael; Stroupe, Christopher; Orr, Amy; Douville, Deborah; Wickner, William T

    2014-01-01

    Like other intracellular fusion events, the homotypic fusion of yeast vacuoles requires a Rab GTPase, a large Rab effector complex, SNARE proteins which can form a 4-helical bundle, and the SNARE disassembly chaperones Sec17p and Sec18p. In addition to these proteins, specific vacuole lipids are required for efficient fusion in vivo and with the purified organelle. Reconstitution of vacuole fusion with all purified components reveals that high SNARE levels can mask the requirement for a complex mixture of vacuole lipids. At lower, more physiological SNARE levels, neutral lipids with small headgroups that tend to form non-bilayer structures (phosphatidylethanolamine, diacylglycerol, and ergosterol) are essential. Membranes without these three lipids can dock and complete trans-SNARE pairing but cannot rearrange their lipids for fusion. DOI: http://dx.doi.org/10.7554/eLife.01879.001.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon

    Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. Furthermore, in order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers.more » These results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.« less

  9. High-Melting Lipid Mixtures and the Origin of Detergent-Resistant Membranes Studied with Temperature-Solubilization Diagrams

    PubMed Central

    Sot, Jesús; Manni, Marco M.; Viguera, Ana R.; Castañeda, Verónica; Cano, Ainara; Alonso, Cristina; Gil, David; Valle, Mikel; Alonso, Alicia; Goñi, Félix M.

    2014-01-01

    The origin of resistance to detergent solubilization in certain membranes, or membrane components, is not clearly understood. We have studied the solubilization by Triton X-100 of binary mixtures composed of egg sphingomyelin (SM) and either ceramide, diacylglycerol, or cholesterol. Solubilization has been assayed in the 4–50°C range, and the results are summarized in a novel, to our knowledge, form of plots, that we have called temperature-solubilization diagrams. Despite using a large detergent excess (lipid/detergent 1:20 mol ratio) and extended solubilization times (24–48 h) certain mixtures were not amenable to Triton X-100 solubilization at one or more temperatures. DSC of all the lipid mixtures, and of all the lipid + detergent mixtures revealed that detergent resistance was associated with the presence of gel domains at the assay temperature. Once the system melted down, solubilization could occur. In general adding high-melting lipids limited the solubilization, whereas the addition of low-melting lipids promoted it. Lipidomic analysis of Madin-Darby canine kidney cell membranes and of the corresponding detergent-resistant fraction indicated a large enrichment of the nonsolubilized components in saturated diacylglycerol and ceramide. SM-cholesterol mixtures were special in that detergent solubilization was accompanied, for certain temperatures and compositions, by an independent phenomenon of reassembly of the partially solubilized lipid bilayers. The temperature at which lysis and reassembly prevailed was ∼25°C, thus for some SM-cholesterol mixtures solubilization occurred both above and below 25°C, but not at that temperature. These observations can be at the origin of the detergent resistance effects observed with cell membranes, and they also mean that cholesterol-containing detergent-resistant membrane remnants cannot correspond to structures existing in the native membrane before detergent addition. PMID:25517149

  10. Pore-forming activity of clostridial binary toxins.

    PubMed

    Knapp, O; Benz, R; Popoff, M R

    2016-03-01

    Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Release of outer membrane vesicles from Bordetella pertussis.

    PubMed

    Hozbor, D; Rodriguez, M E; Fernández, J; Lagares, A; Guiso, N; Yantorno, O

    1999-05-01

    The aim of the study reported here was to investigate the production of Bordetella pertussis outer membrane vesicles (OMVs). Numerous vesicles released from cells grown in Stainer-Scholte liquid medium were observed. The formation of similar vesicle-like structures could also be artificially induced by sonication of concentrated bacterial suspensions. Immunoblot analysis showed that OMVs contain adenylate cyclase-hemolysin (AC-Hly), among other polypeptides, as well as the lipopolysaccharide (LPS). Experiments carried out employing purified AC-Hly and OMVs isolated from B. pertussis AC-Hly- showed that AC-Hly is an integral component of the vesicles. OMVs reported here contain several protective immunogens and might be considered a possible basic material for the development of acellular pertussis vaccines.

  12. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs.

    PubMed

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-19

    Lactophoricin (LPcin), a component of proteose peptone (113-135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing (1)H-(15)N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting (15)N 1D and 2D (1)H-(15)N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built (1)H-(15)N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55-75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Structural Insights into Clostridium perfringens Delta Toxin Pore Formation

    PubMed Central

    Huyet, Jessica; Naylor, Claire E.; Savva, Christos G.; Gibert, Maryse; Popoff, Michel R.; Basak, Ajit K.

    2013-01-01

    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins. PMID:23805259

  14. Nanoporous gold membranes: From morphological control to fuel cell catalysis

    NASA Astrophysics Data System (ADS)

    Ding, Yi

    Porous noble metals are particularly attractive for scientific research and industrial applications such as catalysis, sensing, and filtration. In this thesis, I will discuss the fabrication, characterization, and application of a new class of porous metals, called nanoporous metals (NPM). NPM is made during selective dissolution (also called dealloying) of reactive components (e.g., silver) from multi-component alloys (e.g., Ag/Au alloy). Commercially available white gold leaf (Ag65Au35) can, for example, be etched into nanoporous gold (NPG) membrane by simply floating the leaf on concentrated nitric acid for periods of a few minutes. NPG leaf adopts a single crystal porous structure within individual grains. The microstructure of NPG, such as the pore size, is tunable between a few nanometers to sub-micron length scale by either thermal annealing or post-treatment in nitric acid for extended period of time. A new gas-liquid-solid interface electroless plating technique is developed to uniformly cover the NPG surface with other metals, such as silver and platinum. This technique allows new opportunities of making functionalized nanostructures. We show that a combination of silver plating and dealloying can be used to make multimodal porous metals, which are expected to have application in sensing field. Electroless platinum plating onto NPG shows very usual growth mode. TEM observation indicates that the platinum layer on NPG surface takes a novel form of layer-islanding growth (Stranski-Krastanov growth). Annealing the Pt/NPG composite smoothens the Pt islands and forms a 1 nm coherent Pt layer on the NPG backbone, possibly with dislocation formation at the Pt/Au interface. Furthermore, it was found that we could dissolve the gold away in aqueous gold etchant, leaving behind the 1 nm-thick Pt shell, a structure we call nanotubular mesoporous platinum (NMP). Pt plated NPG has a series of unique structural properties, such as high active surface area, thermally stable, low Pt usage, and better tolerance to CO poisoning. We incorporated it as a membrane electrode into a working proton exchange membrane fuel cells (PEMFC). Preliminary results show that Pt/NPG has very good fuel cell performance at a very low platinum loading.

  15. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    PubMed

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  16. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c

    PubMed Central

    Mootha, Vamsi K.; Wei, Michael C.; Buttle, Karolyn F.; Scorrano, Luca; Panoutsakopoulou, Vily; Mannella, Carmen A.; Korsmeyer, Stanley J.

    2001-01-01

    Multiple apoptotic pathways release cytochrome c from the mitochondrial intermembrane space, resulting in the activation of downstream caspases. In vivo activation of Fas (CD95) resulted in increased permeability of the mitochondrial outer membrane and depletion of cytochrome c stores. Serial measurements of oxygen consumption, NADH redox state and membrane potential revealed a loss of respiratory state transitions. This tBID-induced respiratory failure did not require any caspase activity. At early time points, re-addition of exogenous cytochrome c markedly restored respiratory functions. Over time, however, mitochondria showed increasing irreversible respiratory dysfunction as well as diminished calcium buffering. Electron microscopy and tomographic reconstruction revealed asymmetric mitochondria with blebs of herniated matrix, distended inner membrane and partial loss of cristae structure. Thus, apoptogenic redistribution of cytochrome c is responsible for a distinct program of mitochondrial respiratory dysfunction, in addition to the activation of downstream caspases. PMID:11179211

  17. Myosin motor function: the ins and outs of actin-based membrane protrusions

    PubMed Central

    Nambiar, Rajalakshmi; McConnell, Russell E.

    2011-01-01

    Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion. PMID:20107861

  18. Isolation of plasmodesmata from Arabidopsis suspension culture cells.

    PubMed

    Grison, Magali S; Fernandez-Calvino, Lourdes; Mongrand, Sébastien; Bayer, Emmanuelle M F

    2015-01-01

    Due to their position firmly anchored within the plant cell wall, plasmodesmata (PD) are notoriously difficult to isolate from plant tissue. Yet, getting access to isolated PD represents the most straightforward strategy for the identification of their molecular components. Proteomic and lipidomic analyses of such PD fractions have provided and will continue to provide critical information on the functional and structural elements that define these membranous nano-pores. Here, we describe a two-step simple purification procedure that allows isolation of pure PD-derived membranes from Arabidopsis suspension cells. The first step of this procedure consists in isolating cell wall fragments containing intact PD while free of contamination from other cellular compartments. The second step relies on an enzymatic degradation of the wall matrix and the subsequent release of "free" PD. Isolated PD membranes provide a suitable starting material for the analysis of PD-associated proteins and lipids.

  19. Mercaptoheterocyclic ligands grafted on a poly(ethylene vinyl alcohol) membrane for the purification of immunoglobulin G in a salt independent thiophilic chromatography.

    PubMed

    Coffinier, Yannick; Vijayalakshmi, Mookambeswaran A

    2004-08-25

    In this study, we attempted a limited combinatorial approach for designing affinity ligands based on mercaptoheterocyclic components. The template, divinyl sulfone structure (DVS), which was grafted on poly(ethylene vinyl alcohol) (PEVA) hollow fiber membrane, has served for the tethering of different heterocyclic compounds as pyridine, imidazole, purine and pyrimidine rings. Their ability to adsorb specifically IgG in a salt independent manner out of pure IgG solution, mixture of IgG/albumin and human plasma was demonstrated. Mercapto methyl imidazole (MMI) has shown the best adsorption of IgG in terms of binding capacity. No subclass discrimination was observed on all tested ligands except for mercapto methyl pyrimidine where the major IgG subclass adsorbed was IgG3. MMI gave an IgG binding capacity of 100 microg/cm2 of hollow fiber membrane surface area.

  20. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    PubMed Central

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160

  1. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    NASA Astrophysics Data System (ADS)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  2. Lipid composition affects the rate of photosensitized dissipation of cross-membrane diffusion potential on liposomes

    PubMed Central

    Ytzhak, Shany; Wuskell, Joseph P.; Loew, Leslie M.; Ehrenberg, Benjamin

    2010-01-01

    Hydrophobic or amphiphilic tetrapyrrole sensitizers are taken up by cells and are usually located in cellular lipid membranes. Singlet oxygen is photogenerated by the sensitizer and it diffuses in the membrane and causes oxidative damage to membrane components. This damage can occur to membrane lipids and to membrane-localized proteins. Depolarization of the Nernst electric potential on cells’ membranes has been observed in cellular photosensitization, but it was not established whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells’ membranes and to their death. In this work we studied the effect of liposomes’ lipid composition on the kinetics of hematoporphyrin-photosensitized dissipation of K+-diffusion electric potential that was generated across the membranes. We employed an electrochromic voltage-sensitive spectroscopic probe that possesses a high fluorescence signal response to the potential. We found a correlation between the structure and unsaturation of lipids and the leakage of the membrane, following photosensitization. As the extent of non-conjugated unsaturation of the lipids is increased from 1 to 6 double bonds, the kinetics of depolarization become faster. We also found that the kinetics of depolarization is affected by the percentage of the unsaturated lipids in the liposome: as the fraction of the unsaturated lipids increases the leakage trough the membrane is enhanced. When liposomes are composed of a lipid mixture similar to that of natural membranes and photosensitization is being carried out under usual photodynamic therapy (PDT) conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which would have been a mechanism that leads to cell death. PMID:20536150

  3. Biological Activity of Japanese Quince Extract and Its Interactions with Lipids, Erythrocyte Membrane, and Human Albumin.

    PubMed

    Strugała, Paulina; Cyboran-Mikołajczyk, Sylwia; Dudra, Anna; Mizgier, Paulina; Kucharska, Alicja Z; Olejniczak, Teresa; Gabrielska, Janina

    2016-06-01

    The aim of the study was to determine in vitro biological activity of fruit ethanol extract from Chaenomeles speciosa (Sweet) Nakai (Japanese quince, JQ) and its important constituents (-)-epicatechin (EC) and chlorogenic acid (CA). The study also investigated the structural changes in phosphatidylcholine (PC) liposomes, dipalmitoylphosphatidylcholine liposomes, and erythrocyte membranes (RBC) induced by the extract. It was found that the extract effectively inhibits oxidation of RBC, induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), and PC liposomes, induced by UVB radiation and AAPH. Furthermore, JQ extract to a significant degree inhibited the activity of the enzymes COX-1 and COX-2, involved in inflammatory reactions. The extract has more than 2 times greater activity in relation to COX-2 than COX-1 (selectivity ratio 0.48). JQ extract stimulated growth of the beneficial intestinal bacteria Lactobacillus casei and Lactobacillus plantarum. In the fluorimetric method by means of the probes Laurdan, DPH and TMA-DPH, and (1)H-NMR, we examined the structural changes induced by JQ and its EC and CA components. The results show that JQ and its components induce a considerable increase of the packing order of the polar heads of lipids with a slight decrease in mobility of the acyl chains. Lipid membrane rigidification could hinder the diffusion of free radicals, resulting in inhibition of oxidative damage induced by physicochemical agents. JQ extract has the ability to quench the intrinsic fluorescence of human serum albumin through static quenching. This report thus could be of huge significance in the food industry, pharmacology, and clinical medicine.

  4. THE CONTRIBUTIONS OF NORMAL AND ANOMALOUS OSMOSIS TO THE OSMOTIC EFFECTS ARISING ACROSS CHARGED MEMBRANES WITH SOLUTIONS OF ELECTROLYTES

    PubMed Central

    Grim, Eugene; Sollner, Karl

    1957-01-01

    The osmotic effect arising across a porous membrane separating the solution of an electrolyte from water (or a more dilute solution) is ordinarily due to both normal osmosis, as it occurs also with non-electrolytes, and to "anomalous" osmosis. It is shown that the normal osmotic component cannot be measured quantitatively by the conventional comparison with a non-electrolytic reference solute. Anomalous osmosis does not occur with electroneutral membranes. Accordingly, with membranes which can be charged and discharged reversibly (without changes in geometrical structure), such as many proteinized membranes, the osmotic effects caused by an electrolyte can be measured both when only normal osmosis arises (with the membrane in the electroneutral state) and when normal as well as anomalous osmosis occurs (with the membrane in a charged state). The difference between these two effects is the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, with solutions of a variety of electrolytes using a concentration ratio of 2:1 over a wide range of concentrations. The rates of the movement of liquid across the membrane against an inconsequentially small hydrostatic head are recorded instead of, as conventional, the physiologically less significant pressure rises after a standard time. PMID:13439166

  5. Chemical Imaging of the Cell Membrane by NanoSIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P K; Kraft, M L; Frisz, J F

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid raftsmore » in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a Cameca NanoSIMS 50 to probe membrane organization and test microdomain hypotheses. The NanoSIMS is an imaging secondary ion mass spectrometer with an unprecedented combination of spatial resolution, sensitivity and mass specificity. It has 50 nm lateral resolution and is capable of detecting 1 in 20 nitrogen atoms while excluding near-neighbor isobaric interferences. The tightly focused cesium ion beam is rastered across the sample to produce simultaneous, quantitative digital images of up to five different masses. By labeling each specific components of a membrane with a unique rare stable isotope or element and mapping the location of the labels with the NanoSIMS, the location of the each labeled component can be determined and quantified. This new approach to membrane composition analysis allows molecular interactions of biological membranes to be probed at length-scales relevant to lipid rafts (10s to 100s of nm) that were not previously possible. Results from our most recent experiments analyzing whole cells will be presented.« less

  6. Simulation and in situ measurement of stress distribution in a polymer electrolyte membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    de la Cruz, Javier; Cano, Ulises; Romero, Tatiana

    2016-10-01

    A critical parameter for PEM fuel cell's electric contact is the nominal clamping pressure. Predicting the mechanical behavior of all components in a fuel cell stack is a very complex task due to the diversity of materials properties. Prior to the integration of a 3 kW PEMFC power plant, a numerical simulation was performed in order to obtain the mechanical stress distribution for two of the most pressure sensitive components of the stack: the membrane, and the graphite plates. The stress distribution of the above mentioned components was numerically simulated by finite element analysis and the stress magnitude for the membrane was confirmed using pressure films. Stress values were found within the elastic zone which guarantees mechanical integrity of fuel cell components. These low stress levels particularly for the membrane will allow prolonging the life and integrity of the fuel cell stack according to its design specifications.

  7. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis

    PubMed Central

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E.; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S.; Mortimer, Jenny C.; Brown, Steven P.; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  8. Recent Developments of Graphene Oxide-Based Membranes: A Review

    PubMed Central

    Ma, Jinxia; Ping, Dan; Dong, Xinfa

    2017-01-01

    Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications. PMID:28895877

  9. Recent Developments of Graphene Oxide-Based Membranes: A Review.

    PubMed

    Ma, Jinxia; Ping, Dan; Dong, Xinfa

    2017-09-12

    Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications.

  10. Hydrolase treatments help unravel the function of intervessel pits in xylem hydraulics.

    PubMed

    Dusotoit-Coucaud, Anaïs; Brunel, Nicole; Tixier, Aude; Cochard, Hervé; Herbette, Stéphane

    2014-03-01

    Intervessel pits are structures that play a key role in the efficiency and safety functions of xylem hydraulics. However, little is known about the components of the pit membrane (PM) and their role in hydraulic functions, especially in resistance to cavitation. We tested the effect of commercial chemicals including a cellulase, a hemicellulase, a pectolyase, a proteinase and DTT on xylem hydraulic properties: vulnerability to cavitation (VC) and conductance. The effects were tested on branch segments from Fagus sylvatica (where the effects on pit structure were analyzed using TEM) and Populus tremula. Cellulose hydrolysis resulted in a sharp increase in VC and a significant increase in conductance, related to complete breakdown of the PM. Pectin hydrolysis also induced a sharp increase in VC but with no effect on conductance or pit structure observable by TEM. The other treatments with hemicellulase, proteinase or DTT showed no effect. This study brings evidence that cellulose and pectins are critical components underpinning VC, and that PM components may play distinct roles in the xylem hydraulic safety and efficiency. © 2013 Scandinavian Plant Physiology Society.

  11. Comparative study on histological structures of the vitelline membrane of hen and duck egg observed by cryo-scanning electron microscopy.

    PubMed

    Chung, Wen-Hsin; Lai, Kung-Ming; Hsu, Kuo-chiang

    2010-02-10

    The histological structures of the vitelline membranes (VM) of hen and duck eggs were observed by cryo-scanning electron microscopy (cryo-SEM), and the chemical characteristics were also compared. The outer layer surface (OLS) of duck egg VM showed networks constructed by fibrils and sheets (0.1-5.2 microm in width), and that of hen egg presented networks formed only by sheets (2-6 microm in width). Thicker fibrils (0.5-1.5 microm in width) with different arrangement were observed on the inner layer surface (ILS) of duck egg VM as compared to those (0.3-0.7 microm in width) of hen egg VM. Upon separation, the outer surface of the outer layer (OSOL) and the inner surface of the inner layer (ISIL) of hen and duck egg VMs were quite similar to fresh VM except that the OSOL of duck egg VM showed networks constructed only by sheets. Thin fibrils interlaced above a bumpy or flat structure were observed at the exposed surface of the outer layer (ESOL) of hen and duck egg VMs. The exposed surfaces of inner layers (ESIL) of hen and duck egg VMs showed similar structures of fibrils, which joined, branched, and ran in straight lines for long distances up to 30 microm; however, the widths of the fibrils shown in ESOL and ESIL of duck egg VM were 0.1 and 0.7-1.4 microm, respectively, and were greater than those (<0.1 and 0.5-0.8 microm) of hen egg VM. The continuous membranes of both hen and duck egg VMs were still attached to the outer layers when separated. The content of protein, the major component of VM, was higher in duck egg VM (88.6%) than in hen egg VM (81.6%). Four and six major SDS-soluble protein patterns with distinct localization were observed in hen and duck egg VMs, respectively. Overall, the different histological structures of hen and duck egg VMs were suggested to be majorly attributable to the diverse protein components.

  12. A mathematical model for predicting the life of polymer electrolyte fuel cell membranes subjected to hydration cycling

    NASA Astrophysics Data System (ADS)

    Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.

    2012-10-01

    Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.

  13. Preparation and Characterization of Graphene Oxide Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dikin,D.; Stankovich, S.; Zimney, E.

    2007-01-01

    Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range,more » and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.« less

  14. Preparation and characterization of graphene oxide paper.

    PubMed

    Dikin, Dmitriy A; Stankovich, Sasha; Zimney, Eric J; Piner, Richard D; Dommett, Geoffrey H B; Evmenenko, Guennadi; Nguyen, SonBinh T; Ruoff, Rodney S

    2007-07-26

    Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.

  15. A transmission and scanning electron microscopic study of the saccule in five species of catfishes.

    PubMed

    Jenkins, D B

    1979-01-01

    The sacculi of five species of catfishes were studied by transmission and scanning electron microscopy. In four species, the sagitta exhibited a multifluted anterior part and a tapered posterior part; in Corydoras aeneus, however, the fluted part was absent, and a vertical component extended dorsally to terminate near the opening of the transverse canal. In all species, the otoliths had a laminar structure. An otolithic membrane was present, and hair cell bundles projected into cavities on the macular surface of the membrane. Attachments of the otolithic membrane to the neuroepithelium included short extensions of the membrane to the tallest components of the hair cell bundles of the peripheral cells and more delicate connections to the kinocilium and taller stereocilia of central cells; in addition, attachments to the microvilli of supporting cells were present. In both hair cells and supporting cells single microtubules and bundles of microtubules were present; the bundles had an orderly arrangement and were associated with cytoplasmic densities surrounding the desmosomes. The hair cells were innervated by both afferent and efferent nerve endings. Studies of the polarization of the hair cells in all species (except C. aeneus) showed that there was a single longitudinal axis that divided dorsally polarized cells from those oriented ventrally. In Doras spinosissimus and Bunocephalus bicolor, an additional line of polarization was evident in a small area in the anterior part of the macula; therefore, in these forms there was a double bipolar orientation.

  16. Complex Dynamic Development of Poliovirus Membranous Replication Complexes

    PubMed Central

    Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie

    2012-01-01

    Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780

  17. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  18. Proteomic Investigations into Hemodialysis Therapy

    PubMed Central

    Bonomini, Mario; Sirolli, Vittorio; Pieroni, Luisa; Felaco, Paolo; Amoroso, Luigi; Urbani, Andrea

    2015-01-01

    The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane’s performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane’s bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research. PMID:26690416

  19. Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology.

    PubMed

    Pasini, Erica M; Lutz, Hans U; Mann, Matthias; Thomas, Alan W

    2010-01-03

    Membrane proteomics is concerned with accurately and sensitively identifying molecules involved in cell compartmentalisation, including those controlling the interface between the cell and the outside world. The high lipid content of the environment in which these proteins are found often causes a particular set of problems that must be overcome when isolating the required material before effective HPLC-MS approaches can be performed. The membrane is an unusually dynamic cellular structure since it interacts with an ever changing environment. A full understanding of this critical cell component will ultimately require, in addition to proteomics, lipidomics, glycomics, interactomics and study of post-translational modifications. Devoid of nucleus and organelles in mammalian species other than camelids, and constantly in motion in the blood stream, red blood cells (RBCs) are the sole mammalian oxygen transporter. The fact that mature mammalian RBCs have no internal membrane-bound organelles, somewhat simplifies proteomics analysis of the plasma membrane and the fact that it has no nucleus disqualifies microarray based methods. Proteomics has the potential to provide a better understanding of this critical interface, and thereby assist in identifying new approaches to diseases. (c) 2009 Elsevier B.V. All rights reserved.

  20. Binding of phosphatidic acid by NsD7 mediates the formation of helical defensin-lipid oligomeric assemblies and membrane permeabilization.

    PubMed

    Kvansakul, Marc; Lay, Fung T; Adda, Christopher G; Veneer, Prem K; Baxter, Amy A; Phan, Thanh Kha; Poon, Ivan K H; Hulett, Mark D

    2016-10-04

    Defensins are cationic antimicrobial peptides that serve as important components of host innate immune defenses, often by targeting cell membranes of pathogens. Oligomerization of defensins has been linked to their antimicrobial activity; however, the molecular basis underpinning this process remains largely unclear. Here we show that the plant defensin NsD7 targets the phospholipid phosphatidic acid (PA) to form oligomeric complexes that permeabilize PA-containing membranes. The crystal structure of the NsD7-PA complex reveals a striking double helix of two right-handed coiled oligomeric defensin fibrils, the assembly of which is dependent upon the interaction with PA at the interface between NsD7 dimers. Using site-directed mutagenesis, we demonstrate that key residues in this PA-binding site are required for PA-mediated NsD7 oligomerization and coil formation, as well as permeabilization of PA-containing liposomes. These data suggest that multiple lipids can be targeted to induce oligomerization of defensins during membrane permeabilization and demonstrate the existence of a "phospholipid code" that identifies target membranes for defensin-mediated attack as part of a first line of defense across multiple species.

Top