Composite membrane with integral rim
Routkevitch, Dmitri; Polyakov, Oleg G
2015-01-27
Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.
High throughput platforms for structural genomics of integral membrane proteins.
Mancia, Filippo; Love, James
2011-08-01
Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.
Miller, Thomas F.
2017-01-01
We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 μs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency. PMID:28328943
Challenges in the Development of Functional Assays of Membrane Proteins
Tiefenauer, Louis; Demarche, Sophie
2012-01-01
Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.
The fine art of integral membrane protein crystallisation.
Birch, James; Axford, Danny; Foadi, James; Meyer, Arne; Eckhardt, Annette; Thielmann, Yvonne; Moraes, Isabel
2018-05-18
Integral membrane proteins are among the most fascinating and important biomolecules as they play a vital role in many biological functions. Knowledge of their atomic structures is fundamental to the understanding of their biochemical function and key in many drug discovery programs. However, over the years, structure determination of integral membrane proteins has proven to be far from trivial, hence they are underrepresented in the protein data bank. Low expression levels, insolubility and instability are just a few of the many hurdles one faces when studying these proteins. X-ray crystallography has been the most used method to determine atomic structures of membrane proteins. However, the production of high quality membrane protein crystals is always very challenging, often seen more as art than a rational experiment. Here we review valuable approaches, methods and techniques to successful membrane protein crystallisation. Copyright © 2018 Diamond Light Source LTD. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jia-Yu; Kausik, Ravinath; Chen, Chi-Yuan; Han, Song-I.; Marks, Jeremy; Lee, Ka Yee
2010-03-01
Cell membrane dysfunction due to loss of structural integrity is the pathology of tissue death in trauma and common diseases. It is now established that certain biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and polyethylene glycol (PEG), are effective in sealing of injured cell membranes, and able to prevent acute necrosis. Despite these broad applications of these polymers for human health, the fundamental mechanisms by which these polymers interact with cell membranes are still under debate. Here, the effects of a group of biocompatible polymers on phospholipid membrane integrity under osmotic and oxidative stress were explored using giant unilamellar vesicles as model cell membranes. Our results suggest that the adsorption of the polymers on the membrane surface is responsible for the cell membrane resealing process due to its capability of slowing down the surface hydration dynamics.
Structure determination of an integral membrane protein at room temperature from crystals in situ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axford, Danny; Foadi, James; Imperial College London, London SW7 2AZ
2015-05-14
The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samplesmore » and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.« less
Membrane Topology and Insertion of Membrane Proteins: Search for Topogenic Signals
van Geest, Marleen; Lolkema, Juke S.
2000-01-01
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies. PMID:10704472
Materials, Structures and Manufacturing: An Integrated Approach to Develop Expandable Structures
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Zander, Martin E.; Sleight, Daid W.; Connell, John; Holloway, Nancy; Palmieri, Frank
2012-01-01
Membrane dominated space structures are lightweight and package efficiently for launch; however, they must be expanded (deployed) in-orbit to achieve the desired geometry. These expandable structural systems include solar sails, solar power arrays, antennas, and numerous other large aperture devices that are used to collect, reflect and/or transmit electromagnetic radiation. In this work, an integrated approach to development of thin-film damage tolerant membranes is explored using advanced manufacturing. Bio-inspired hierarchical structures were printed on films using additive manufacturing to achieve improved tear resistance and to facilitate membrane deployment. High precision, robust expandable structures can be realized using materials that are both space durable and processable using additive manufacturing. Test results show this initial work produced higher tear resistance than neat film of equivalent mass. Future research and development opportunities for expandable structural systems designed using an integrated approach to structural design, manufacturing, and materials selection are discussed.
Integrable structure in discrete shell membrane theory
Schief, W. K.
2014-01-01
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755
Integrable structure in discrete shell membrane theory.
Schief, W K
2014-05-08
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.
Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices.
Aran, Kiana; Sasso, Lawrence A; Kamdar, Neal; Zahn, Jeffrey D
2010-03-07
A method for integrating porous polymer membranes such as polycarbonate, polyethersulfone and polyethylene terephthalate to microfluidic devices is described. The use of 3-aminopropyltriethoxysilane as a chemical crosslinking agent was extended to integrate membranes with PDMS and glass microfluidic channels. A strong, irreversible bond between the membranes and microfluidic structure was achieved. The bonding strength in the APTES treated devices was significantly greater than in devices fabricated using either a PDMS "glue" or two-part epoxy bonding method. Evaluation of a filtering microdevice and the pore structure via SEM indicates the APTES conjugation does not significantly alter the membrane transport function and pore morphology.
Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes
Hoogerheide, David P.; Noskov, Sergei Y.; Jacobs, Daniel; Bergdoll, Lucie; Silin, Vitalii; Worcester, David L.; Abramson, Jeff; Nanda, Hirsh; Rostovtseva, Tatiana K.; Bezrukov, Sergey M.
2017-01-01
Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques—surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations—suggest that α-tubulin’s amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic “mitochondrial” membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents. PMID:28420794
HAMLET interacts with lipid membranes and perturbs their structure and integrity.
Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger
2010-02-23
Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.
Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.
Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens
2018-04-03
While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hong, Feifei; Yan, Chengcheng; Si, Yang; He, Jianxin; Yu, Jianyong; Ding, Bin
2015-09-16
Many applications proposed for magnetic silica nanofibers require their assembly into a cellular membrane structure. The feature to keep structure stable upon large deformation is crucial for a macroscopic porous material which functions reliably. However, it remains a key issue to realize robust flexibility in two-dimensional (2D) magnetic silica nanofibrous networks. Here, we report that the combination of electrospun silica nanofibers with zein dip-coating can lead to the formation of flexible, magnetic, and hierarchical porous silica nanofibrous membranes (SNM). The 290 nm diameter silica nanofibers act as templates for the uniform anchoring of nickel ferrite nanoparticles (size of 50 nm). Benefiting from the homogeneous and stable nanofiber-nanoparticle composite structure, the resulting magnetic SNM can maintain their structure integrity under repeated bending as high as 180° and can facilely recover. The unique hierarchical structure also provides this new class of silica membrane with integrated properties of ultralow density, high porosity, large surface area, good magnetic responsiveness, robust dye adsorption capacity, and effective emulsion separation performance. Significantly, the synthesis of such fascinating membranes may provide new insight for further application of silica in a self-supporting, structurally adaptive, and 2D membrane form.
Composite membranes and methods for making same
Routkevitch, Dmitri; Polyakov, Oleg G
2012-07-03
Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.
NASA Astrophysics Data System (ADS)
Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin
2016-01-01
Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.
Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter
2012-06-06
Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data. Copyright © 2012 Elsevier Ltd. All rights reserved.
The mechanism of protein export enhancement by the SecDF membrane component
Tsukazaki, Tomoya; Nureki, Osamu
2011-01-01
Protein transport across membranes is a fundamental and essential cellular activity in all organisms. In bacteria, protein export across the cytoplasmic membrane, driven by dynamic interplays between the protein-conducting SecYEG channel (Sec translocon) and the SecA ATPase, is enhanced by the proton motive force (PMF) and a membrane-integrated Sec component, SecDF. However, the structure and function of SecDF have remained unclear. We solved the first crystal structure of SecDF, consisting of a pseudo-symmetrical 12-helix transmembrane domain and two protruding periplasmic domains. Based on the structural features, we proposed that SecDF functions as a membrane-integrated chaperone, which drives protein movement without using the major energetic currency, ATP, but with remarkable cycles of conformational changes, powered by the proton gradient across the membrane. By a series of biochemical and biophysical approaches, several functionally important residues in the transmembrane region have been identified and our model of the SecDF function has been verified. PMID:27857601
Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids.
Koyanagi, Takaoki; Leriche, Geoffray; Onofrei, David; Holland, Gregory P; Mayer, Michael; Yang, Jerry
2016-01-26
Extremophile archaeal organisms overcome problems of membrane permeability by producing lipids with structural elements that putatively improve membrane integrity compared to lipids from other life forms. Herein, we describe a series of lipids that mimic some key structural features of archaeal lipids, such as: 1) single tethering of lipid tails to create fully transmembrane tetraether lipids and 2) the incorporation of small rings into these tethered segments. We found that membranes formed from pure tetraether lipids leaked small ions at a rate that was about two orders of magnitude slower than common bilayer-forming lipids. Incorporation of cyclopentane rings into the tetraether lipids did not affect membrane leakage, whereas a cyclohexane ring reduced leakage by an additional 40 %. These results show that mimicking certain structural features of natural archaeal lipids results in improved membrane integrity, which may help overcome limitations of many current lipid-based technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Defect-free ultrahigh flux asymmetric membranes
Pinnau, Ingo; Koros, William J.
1990-01-01
Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.
Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing
NASA Astrophysics Data System (ADS)
Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang
2015-04-01
The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.
Organic membrane photonic integrated circuits (OMPICs).
Amemiya, Tomohiro; Kanazawa, Toru; Hiratani, Takuo; Inoue, Daisuke; Gu, Zhichen; Yamasaki, Satoshi; Urakami, Tatsuhiro; Arai, Shigehisa
2017-08-07
We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.
How Membrane-Active Peptides Get into Lipid Membranes.
Sani, Marc-Antoine; Separovic, Frances
2016-06-21
The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface.
The ER in 3D: a multifunctional dynamic membrane network.
Friedman, Jonathan R; Voeltz, Gia K
2011-12-01
The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contacts with nearly every other organelle and with the plasma membrane. The 3D structure of the ER is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. In this review, we describe some of the factors that are known to regulate ER structure and discuss how this structural organization and the dynamic nature of the ER membrane network allow it to perform its many different functions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hedger, George; Sansom, Mark S. P.
2017-01-01
Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterisation of these sites is of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. PMID:26946244
Impact of oxLDL on Cholesterol-Rich Membrane Rafts
Levitan, Irena; Shentu, Tzu-Pin
2011-01-01
Numerous studies have demonstrated that cholesterol-rich membrane rafts play critical roles in multiple cellular functions. However, the impact of the lipoproteins on the structure, integrity and cholesterol composition of these domains is not well understood. This paper focuses on oxidized low-density lipoproteins (oxLDLs) that are strongly implicated in the development of the cardiovascular disease and whose impact on membrane cholesterol and on membrane rafts has been highly controversial. More specifically, we discuss three major criteria for the impact of oxLDL on membrane rafts: distribution of different membrane raft markers, changes in membrane cholesterol composition, and changes in lipid packing of different membrane domains. We also propose a model to reconcile the controversy regarding the relationship between oxLDL, membrane cholesterol, and the integrity of cholesterol-rich membrane domains. PMID:21490811
Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin
2016-01-01
Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826
Involvement of vesicle coat material in casein secretion and surface regeneration
1976-01-01
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641
NASA Astrophysics Data System (ADS)
Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo
2015-09-01
The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area.
Red cell membrane skeleton: structure-function relationships.
Palek, J; Liu, S C
1980-01-01
This papaer reviews our present understanding of ultrastructure, organization, and functional characteristics of the erythrocyte membrane cytoskeleton. This two-dimensional fibrillar network of submembrane proteins can be visualized after extraction of lipids and integral membrane proteins by Triton X-100. Current data suggest that the major structural components of the cytoskeleton are heterodimers of double-stranded spectrin that form tetramers by head-to-head associations. The tetramers may be connected into a fibrillar meshwork by oligomers of actin. The control of membrane integrity by this network is illustrated by examples of two hemolyotic anemias characterized by marked membrane instability and vesiculation: 1) hereditary spherocytic anemia of the house mouse associated with spectrin deficiency and 2) hereditary pyropoikilocytosis, a hemolytic anemia in man characterized by thermal instability of the membrane and the presence of abnormal spectrin, which exhibits an increased propensity to thermal denaturation. Stabilization of the cytoskeletal network by covalent cross-links between the nearest cytoskeletal and integral membrane proteins results in a decrease of membrane deformability and a fixation of erythrocytes in their abnormal shape. Such cross-linkings include: 1) transamidative cross-links produced by introduction of Ca2+ (>0.5 mM) into fresh erythrocytes, and 2) intermolecular disulfide couplings, which are formed after extensive oxidation of fresh erythrocytes or after mild oxidation of ATP-depleted, but not fresh, erythrocytes. The significance of these cross-links in stabilization of shape of abnormal erythrocytes such as schistocytes remains to be determined. We conclude that spectrin and actin form a fibrillar submembrane network that plays an important role in control of membrane integrity, erythrocyte deformability, and stabilization of cells in abnormal shapes.
Brennan, Timothy C. R.; Nielsen, Lars K.
2013-01-01
Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis. PMID:23542628
Chemical crosslinking and mass spectrometry to elucidate the topology of integral membrane proteins
Debelyy, Mykhaylo O.; Waridel, Patrice; Quadroni, Manfredo; Conzelmann, Andreas
2017-01-01
Here we made an attempt to obtain partial structural information on the topology of multispan integral membrane proteins of yeast by isolating organellar membranes, removing peripheral membrane proteins at pH 11.5 and introducing chemical crosslinks between vicinal amino acids either using homo- or hetero-bifunctional crosslinkers. Proteins were digested with specific proteases and the products analysed by mass spectrometry. Dedicated software tools were used together with filtering steps optimized to remove false positive crosslinks. In proteins of known structure, crosslinks were found only between loops residing on the same side of the membrane. As may be expected, crosslinks were mainly found in very abundant proteins. Our approach seems to hold to promise to yield low resolution topological information for naturally very abundant or strongly overexpressed proteins with relatively little effort. Here, we report novel XL-MS-based topology data for 17 integral membrane proteins (Akr1p, Fks1p, Gas1p, Ggc1p, Gpt2p, Ifa38p, Ist2p, Lag1p, Pet9p, Pma1p, Por1p, Sct1p, Sec61p, Slc1p, Spf1p, Vph1p, Ybt1p). PMID:29073188
2013-01-01
Praetorius, F. Guided tissue regeneration using de- gradable and nondegradable membranes in rabbit tibia. Clin Oral Implants Res 4, 172, 1993. 8. Queiroz... Regeneration of periodontal tissues : combinations of barrier membranes and grafting materials–biological foundation and preclinical evi- dence: a...structural graft provides benefits for bone tissue regeneration in terms of early interfacial integration. Introduction The treatment of large-bone defects
Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R
2014-01-01
Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490
Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.
2017-01-01
We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains. PMID:28045119
NASA Astrophysics Data System (ADS)
Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.
2017-01-01
We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.
Thermostabilisation of membrane proteins for structural studies
Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.
2017-01-01
The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713
NASA Technical Reports Server (NTRS)
Winkler, H. E.; Roebelen, G. J., Jr.
1980-01-01
A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.
Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo
2015-01-01
The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619
High yield cell-free production of integral membrane proteins without refolding or detergents.
Wuu, Jessica J; Swartz, James R
2008-05-01
Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.
Future directions of electron crystallography.
Fujiyoshi, Yoshinori
2013-01-01
In biological science, there are still many interesting and fundamental yet difficult questions, such as those in neuroscience, remaining to be answered. Structural and functional studies of membrane proteins, which are key molecules of signal transduction in neural and other cells, are essential for understanding the molecular mechanisms of many fundamental biological processes. Technological and instrumental advancements of electron microscopy have facilitated comprehension of structural studies of biological components, such as membrane proteins. While X-ray crystallography has been the main method of structure analysis of proteins including membrane proteins, electron crystallography is now an established technique to analyze structures of membrane proteins in the lipid bilayer, which is close to their natural biological environment. By utilizing cryo-electron microscopes with helium-cooled specimen stages, structures of membrane proteins were analyzed at a resolution better than 3 Å. Such high-resolution structural analysis of membrane proteins by electron crystallography opens up the new research field of structural physiology. Considering the fact that the structures of integral membrane proteins in their native membrane environment without artifacts from crystal contacts are critical in understanding their physiological functions, electron crystallography will continue to be an important technology for structural analysis. In this chapter, I will present several examples to highlight important advantages and to suggest future directions of this technique.
Insights into the structure and function of membrane-integrated processive glycosyltransferases
Bi, Yunchen; Hubbard, Caitlin; Purushotham, Pallinti; ...
2015-09-02
Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. In this paper, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin,more » alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).« less
Insights into the structure and function of membrane-integrated processive glycosyltransferases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Yunchen; Hubbard, Caitlin; Purushotham, Pallinti
Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. In this paper, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin,more » alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).« less
NASA Technical Reports Server (NTRS)
Zander, Martin; Belvin, W. K.
2012-01-01
Current space applications of membrane structures include large area solar power arrays, solar sails, antennas, and numerous other large aperture devices like the solar shades of the new James Webb Space Telescope. These expandable structural systems, deployed in-orbit to achieve the desired geometry, are used to collect, reflect and/or transmit electromagnetic radiation. This work, a feasibility study supporting a diploma thesis, describes the systematic process for developing a biologically inspired concept for a structure supported (integrated) membrane, that features a rip stop principle, makes self-deployment possible and is part of an ultra-light weight space application. Novel manufacturing of membrane prototypes and test results are presented for the rip-stop concepts. Test data showed that the new membrane concept has a higher tear resistance than neat film of equivalent mass.
Effects of PEO-PPO-PEO Triblock Copolymers on Phospholipid Membrane Integrity under Osmotic Stress
Wang, Jia-Yu; Chin, Jaemin; Marks, Jeremy D.; Lee, Ka Yee C.
2010-01-01
The effects of PEO-PPO-PEO triblock copolymers, mainly Poloxamer 188, on phospholipid membrane integrity under osmotic gradients were explored using giant unilamellar vesicles (GUVs). Fluorescence leakage assays showed two opposing effects of P188 on the structural integrity of GUVs depending on the duration of their incubation time. A two-state transition mechanism of interaction between the triblock copolymers and the phospholipid membrane is proposed: an adsorption (I) and an insertion (II) state. While the triblock copolymer in state I acts to moderately retard the leakage, their insertion in state II perturbs the lipid packing, thus increasing the membrane permeability. Our results suggest that the biomedical application of PEO-PPO-PEO triblock copolymers, either as cell membrane resealing agents or as accelerators for drug delivery, is directed by the delicate balance between these two states. PMID:20666423
Membrane preparation and solubilization.
Roy, Ankita
2015-01-01
Membrane proteins play an essential role in several biological processes like ion transport, signal transduction, and electron transfer to name a few. For structural and functional studies of integral membrane proteins, it is critically important to isolate proteins from the membrane using biological detergents. Detergents disrupt the native lipid components of the native membrane and encase the membrane protein in an unnatural environment in aqueous solution. However, a particular membrane protein is best solubilized in a specific detergent; therefore, screening for the optimal detergent is essential. Apart from keeping the membrane protein monodispered in solution, the detergent has to be compatible with downstream processes to isolate and characterize a membrane protein. Over the past several years, a number of membrane proteins have been successfully isolated for structural and functional studies that allowed an outline of general strategies for isolating a novel membrane protein of interest. © 2015 Elsevier Inc. All rights reserved.
de Jong, Arjan S; Wessels, Els; Dijkman, Henri B P M; Galama, Jochem M D; Melchers, Willem J G; Willems, Peter H G M; van Kuppeveld, Frank J M
2003-01-10
The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.
Integrity of erythrocytes of hypercholesterolemic rats during spices treatment.
Kempaiah, R K; Srinivasan, K
2002-07-01
In rats rendered hypercholesterolemic by maintaining them on a cholesterol-enriched diet (0.5%) for 8 weeks, inclusion of spice principles--curcumin (0.2%) or capsaicin (0.015%) or the spice--garlic powder (2.0%) in the diet, produced the expected hypolipidemic effect. Plasma cholesterol which was more than 200% that of basal control in hypercholesterolemic rats, was decreased by these dietary spice principles and garlic by 25-39%. Erythrocyte membranes of hypercholesterolemic rats were relatively enriched in cholesterol, which was about 120% of basal control, while membrane phospholipid was unaffected. This resulted in a significant alteration in cholesterol to phospholipid ratio of RBC membranes. Dietary curcumin, capsaicin and garlic were observed to counter this altered lipid profile of erythrocyte membranes in hypercholesterolemic situation by producing a significant 10-14% decrease in membrane cholesterol content. As a result of alteration in membrane structural lipids, the structural integrity of RBCs was also affected. An examination of the osmotic fragility of erythrocytes in various groups, indicated that RBCs of hypercholesterolemic rats were relatively fragile compared to normal controls. Dietary curcumin, capsaicin and garlic appeared to correct this increased fragility of erythrocytes.
Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon
2013-02-26
The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.
The cubicon method for concentrating membrane proteins in the cubic mesophase.
Ma, Pikyee; Weichert, Dietmar; Aleksandrov, Luba A; Jensen, Timothy J; Riordan, John R; Liu, Xiangyu; Kobilka, Brian K; Caffrey, Martin
2017-09-01
The lipid cubic phase (in meso) method is an important approach for generating crystals and high-resolution X-ray structures of integral membrane proteins. However, as a consequence of instability, it can be impossible-using traditional methods-to concentrate certain membrane proteins and complexes to values suitable for in meso crystallization and structure determination. The cubicon method described here exploits the amphiphilic nature of membrane proteins and their natural tendency to partition preferentially into lipid bilayers from aqueous solution. Using several rounds of reconstitution, the protein concentration in the bilayer of the cubic mesophase can be ramped up stepwise from less than a milligram per milliliter to tens of milligrams per milliliter for crystallogenesis. The general applicability of the method is demonstrated with five integral membrane proteins: the β 2 -adrenergic G protein-coupled receptor (β 2 AR), the peptide transporter (PepT St ), diacylglycerol kinase (DgkA), the alginate transporter (AlgE) and the cystic fibrosis transmembrane conductance regulator (CFTR). In the cases of β 2 AR, PepT St , DgkA and AlgE, an effective 20- to 45-fold concentration was realized, resulting in a protein-laden mesophase that allowed the formation of crystals using the in meso method and structure determination to resolutions ranging from 2.4 Å to 3.2 Å. In addition to opening up in meso crystallization to a broader range of integral membrane protein targets, the cubicon method should find application in situations that require membrane protein reconstitution in a lipid bilayer at high concentrations. These applications include functional and biophysical characterization studies for ligand screening, drug delivery, antibody production and protein complex formation. A typical cubicon experiment can be completed in 3-5 h.
Small cationic antimicrobial peptides delocalize peripheral membrane proteins
Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H. Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K.; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth
2014-01-01
Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions. PMID:24706874
Simulations of a Membrane-Anchored Peptide: Structure, Dynamics, and Influence on Bilayer Properties
Jensen, Morten Ø.; Mouritsen, Ole G.; Peters, Günther H.
2004-01-01
A three-dimensional structure of a model decapeptide is obtained by performing molecular dynamics simulations of the peptide in explicit water. Interactions between an N-myristoylated form of the folded peptide anchored to dipalmitoylphosphatidylcholine fluid phase lipid membranes are studied at different applied surface tensions by molecular dynamics simulations. The lipid membrane environment influences the conformational space explored by the peptide. The overall secondary structure of the anchored peptide is found to deviate at times from its structure in aqueous solution through reversible conformational transitions. The peptide is, despite the anchor, highly mobile at the membrane surface with the peptide motion along the bilayer normal being integrated into the collective modes of the membrane. Peptide anchoring moderately alters the lateral compressibility of the bilayer by changing the equilibrium area of the membrane. Although membrane anchoring moderately affects the elastic properties of the bilayer, the model peptide studied here exhibits conformational flexibility and our results therefore suggest that peptide acylation is a feasible way to reinforce peptide-membrane interactions whereby, e.g., the lifetime of receptor-ligand interactions can be prolonged. PMID:15189854
Thylakoid membrane landscape in the sixties: a tribute to Andrew Benson.
Anderson, Jan M
2007-05-01
Prior to the 1960s, the model for the molecular structure of cell membranes consisted of a lipid bilayer held in place by a thin film of electrostatically-associated protein stretched over the bilayer surface: (the Danielli-Davson-Robertson "unit membrane" model). Andrew Benson, an expert in the lipids of chloroplast thylakoid membranes, questioned the relevance of the unit membrane model for biological membranes, especially for thylakoid membranes, instead of emphasizing evidence in favour of hydrophobic interactions of membrane lipids within complementary hydrophobic regions of membrane-spanning proteins. With Elliot Weier, Benson postulated a remarkable subunit lipoprotein monolayer model for thylakoids. Following the advent of freeze fracture microscopy and the fluid lipid-protein mosaic model by Singer and Nicolson, the subunits, membrane-spanning integral proteins, span a dynamic lipid bilayer. Now that high resolution X-ray structures of photosystems I and II are being revealed, the seminal contribution of Andrew Benson can be appreciated.
Rebrov, I G; Kalinina, M V
2013-01-01
Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.
Öjemalm, Karin; Halling, Katrin K.; Nilsson, IngMarie; von Heijne, Gunnar
2013-01-01
Summary α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α-helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α-helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (Ncyt-Clum or Nlum-Ccyt) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the ‘missing hydrophobicity’ in polytopic membrane proteins. PMID:22281052
Nanoengineered membrane electrode assembly interface
Song, Yujiang; Shelnutt, John A
2013-08-06
A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.
Online SAXS investigations of polymeric hollow fibre membranes.
Pranzas, P Klaus; Knöchel, Arndt; Kneifel, Klemens; Kamusewitz, Helmut; Weigel, Thomas; Gehrke, Rainer; Funari, Sérgio S; Willumeit, Regine
2003-07-01
Polymeric membranes are used in industrial and analytical separation techniques. In this study small-angle X-ray scattering (SAXS) with synchrotron radiation has been applied for in-situ characterisation during formation of polymeric membranes. The spinning of a polyetherimide (PEI) hollow fibre membrane was chosen for investigation of dynamic aggregation processes during membrane formation, because it allows the measurement of the dynamic equilibrium at different distances from the spinning nozzle. With this system it is possible to resolve structural changes in the nm-size range which occur during membrane formation on the time-scale of milliseconds. Integral structural parameters, like radius of gyration and pair-distance distribution, were determined. Depending on the chosen spinning parameters, e.g. the flow ratio between polymer solution and coagulant water, significant changes in the scattering curves have been observed. The data are correlated with the distance from the spinning nozzle in order to get information about the kinetics of membrane formation which has fundamental influence on structure and properties of the membrane.
A Prototype Actuator Concept for Membrane Boundary Vibration Control
NASA Technical Reports Server (NTRS)
Solter, Micah J.
2005-01-01
In conjunction with the research in ultra-lightweight deployable spacecraft and membrane structures is an underlying need for shape and vibration control. For thin film membrane structures, fundamental modes of vibration for the membrane can be excited through station keeping, attitude adjustments, orbital maneuvers, or contact with space junk or micrometeorites. In order to maintain structural integrity as well as surface shape contour, which may be essential for inflatable antennas, reflective surfaces, or solar sails; vibration damping is a necessary component. This paper discusses development of an actuator attached at the membrane boundary, containing two types of piezoelectric elements, which can be used to perform active control of vibration from the boundary of a membrane. The actuator is designed to control the membrane out-of-plane displacement and in-plane tension by varying the boundary conditions. Results from an initial experimental evaluation of the concept are presented with bench tests of the actuator alone, and with the actuator connected to a large membrane.
Liu, Weilin; Wei, Fuqiang; Ye, Aiqian; Tian, Mengmeng; Han, Jianzhong
2017-09-01
The effects of cholesterol and lactoferrin on the kinetic stability and membrane structural integrity of negatively charged liposomes under in vitro infant intestinal digestion conditions were elucidated using dynamic light scattering, pH-stat titration, Fourier transform infrared spectroscopy, and pyrene steady state fluorescence probes. The liposomes had a smaller particle diameter, a wider size distribution, and a greater negative charge after digestion. The incorporation of cholesterol into the phospholipid bilayers resulted in a more ordered conformation in the aliphatic tail region and reduced micropolarity, indicating that cholesterol can improve the structural stability of liposomal membranes against intestinal environmental stress. Lactoferrin coverage facilitated the release of free fatty acids and increased the microfluidity of the bilayers, reducing the structural integrity of the liposomes. This study provides useful information on the design of liposomes and other microcapsules with improved and controlled release properties during digestion for particular groups of people. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular Structure, Function, and Dynamics of Clathrin-Mediated Membrane Traffic
Kirchhausen, Tom; Owen, David; Harrison, Stephen C.
2014-01-01
Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation. PMID:24789820
Chemical microreactor and method thereof
Morse, Jeffrey D.; Jankowski, Alan
2005-11-01
A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.
Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins.
Sanders, C R; Oxenoid, K
2000-11-23
Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.
2010-01-01
Background We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates. Methods We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Baclight LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity. Results Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates. Conclusions These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells. PMID:20846374
Nonlinear Shell Modeling of Thin Membranes with Emphasis on Structural Wrinkling
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Sleight, David W.; Wang, John T.
2003-01-01
Thin solar sail membranes of very large span are being envisioned for near-term space missions. One major design issue that is inherent to these very flexible structures is the formation of wrinkling patterns. Structural wrinkles may deteriorate a solar sail's performance and, in certain cases, structural integrity. In this paper, a geometrically nonlinear, updated Lagrangian shell formulation is employed using the ABAQUS finite element code to simulate the formation of wrinkled deformations in thin-film membranes. The restrictive assumptions of true membranes, i.e. Tension Field theory (TF), are not invoked. Two effective modeling strategies are introduced to facilitate convergent solutions of wrinkled equilibrium states. Several numerical studies are carried out, and the results are compared with recent experimental data. Good agreement is observed between the numerical simulations and experimental data.
NASA Astrophysics Data System (ADS)
Wang, Yukun; Chen, Charles H.; Hu, Dan; Ulmschneider, Martin B.; Ulmschneider, Jakob P.
2016-11-01
Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures--formed by a single sequence--may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.
Functional dynamics of cell surface membrane proteins
NASA Astrophysics Data System (ADS)
Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio
2014-04-01
Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.
Functional dynamics of cell surface membrane proteins.
Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio
2014-04-01
Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.
A Review of Membrane-Based Biosensors for Pathogen Detection
van den Hurk, Remko; Evoy, Stephane
2015-01-01
Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized. PMID:26083229
Sánchez-Alcázar, José A; Rodríguez-Hernández, Angeles; Cordero, Mario D; Fernández-Ayala, Daniel J M; Brea-Calvo, Gloria; Garcia, Katherina; Navas, Plácido
2007-07-01
It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional gamma-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular "cocoon". Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis.
The Origin and Early Evolution of Membrane Proteins
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.
2005-01-01
Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.
Nicolson, Garth L
2014-06-01
In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.
Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H. J.
2013-01-01
Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system. PMID:23457558
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)
2005-01-01
An electrostrictive polymer actuator comprises an electrostrictive polymer with a tailorable Poisson's ratio. The electrostrictive polymer is electroded on its upper and lower surfaces and bonded to an upper material layer. The assembly is rolled tightly and capped at its ends. In a membrane structure having a membrane, a supporting frame and a plurality of threads connecting the membrane to the frame, an actuator can be integrated into one or more of the plurality of threads. The electrostrictive polymer actuator displaces along its longitudinal axis, thereby affecting movement of the membrane surface.
Transmembrane voltage: Potential to induce lateral microdomains.
Malinsky, Jan; Tanner, Widmar; Opekarova, Miroslava
2016-08-01
Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia
Biorefineries convert biomass into many useful intermediates. For bio-based products to be used for fuel, energy, chemical, and many other applications, water needs to be removed from these aqueous products. Membrane separation technologies can significantly reduce separation energy consumption compared with conventional separation processes such as distillation. Nanoporous inorganic membranes have superior pervaporation performance with excellent organic fouling resistance. However, their commercial applications are limited due to high membrane costs and poor production reproducibility. A novel cost-effective inorganic membrane fabrication technology has been developed with low cost materials and using an advanced membrane fabrication technology. Low cost precursor material formulationmore » was successfully developed with desired material properties for membrane fabrication. An advanced membrane fabrication process was developed using the novel membrane materials to enable the fabrication of separation membranes of various geometries. The structural robustness and separation performance of the low cost inorganic membranes were evaluated. The novel inorganic membranes demonstrated high structural integrity and were effective in pervaporation removal of water.« less
Schlebach, Jonathan P; Barrett, Paul J; Day, Charles A; Kim, Ji Hun; Kenworthy, Anne K; Sanders, Charles R
2016-02-23
The integration of membrane proteins into "lipid raft" membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains.
Mixing and Matching Detergents for Membrane Protein NMR Structure Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani
2009-10-21
One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based onmore » these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.« less
Method for forming a chemical microreactor
Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA
2009-05-19
Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.
Electron transport and light-harvesting switches in cyanobacteria
Mullineaux, Conrad W.
2014-01-01
Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales. PMID:24478787
An Integrated Framework Advancing Membrane Protein Modeling and Design
Weitzner, Brian D.; Duran, Amanda M.; Tilley, Drew C.; Elazar, Assaf; Gray, Jeffrey J.
2015-01-01
Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167
2015-01-01
Gamma (γ)-glutamyl carboxylase (GGCX) is an integral membrane protein responsible for the post-translational catalytic conversion of select glutamic acid (Glu) residues to γ-carboxy glutamic acid (Gla) in vitamin K-dependent (VKD) proteins. Understanding the mechanism of carboxylation and the role of GGCX in the vitamin K cycle is of biological interest in the development of therapeutics for blood coagulation disorders. Historically, biophysical investigations and structural characterizations of GGCX have been limited due to complexities involving the availability of an appropriate model membrane system. In previous work, a hydrogen exchange mass spectrometry (HX MS) platform was developed to study the structural configuration of GGCX in a near-native nanodisc phospholipid environment. Here we have applied the nanodisc–HX MS approach to characterize specific domains of GGCX that exhibit structural rearrangements upon binding the high-affinity consensus propeptide (pCon; AVFLSREQANQVLQRRRR). pCon binding was shown to be specific for monomeric GGCX-nanodiscs and promoted enhanced structural stability to the nanodisc-integrated complex while maintaining catalytic activity in the presence of carboxylation co-substrates. Noteworthy modifications in HX of GGCX were prominently observed in GGCX peptides 491–507 and 395–401 upon pCon association, consistent with regions previously identified as sites for propeptide and glutamate binding. Several additional protein regions exhibited minor gains in solvent protection upon propeptide incorporation, providing evidence for a structural reorientation of the GGCX complex in association with VKD carboxylation. The results herein demonstrate that nanodisc–HX MS can be utilized to study molecular interactions of membrane-bound enzymes in the absence of a complete three-dimensional structure and to map dynamic rearrangements induced upon ligand binding. PMID:24512177
X-ray Diffraction from Membrane Protein Nanocrystals
Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.
2011-01-01
Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672
Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian
2011-01-01
Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782
Souda, Puneet; Ryan, Christopher M; Cramer, William A; Whitelegge, Julian
2011-12-01
Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein's native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electron-capture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. Copyright © 2011 Elsevier Inc. All rights reserved.
The new approaches to preservation of graft cell integrity in preservation for transplantation.
Gewartowska, Magdalena; Olszewski, Waldemar L
2005-01-01
Restoration of cell plasma membrane integrity after injury is essential for the survival of animal cells. In case of graft preservation or during chemotherapy in cancer, cell membrane integrity and the process of its repair are disrupted. Cytoprotective substances are important in such cases, as well as in other diseases, for example in myocardial infarction, acute insults and in chronic neurodegenerative diseases. Hyperosmolarity is a condition in which cell membrane stability may be damaged in vivo but preserved in the in vitro conditions. Hypertonicity causes water leaving from cells by osmosis, decreasing cell volume and increasing of intracellular ionic strength. High intracellular ionic strength perturbs cellular function by decreasing the rates of biochemical reaction. We review the new experimentally studied cytoprotective substances and their application in cell membrane protection. Moreover, we present our data on the effects of hyperosmolarity and its protective effect on cell internal structure.
Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi
2011-11-01
Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011
Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins
Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian
2015-01-01
Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669
Ternary structure reveals mechanism of a membrane diacylglycerol kinase
Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin
2015-01-01
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution. PMID:26673816
Ternary structure reveals mechanism of a membrane diacylglycerol kinase
NASA Astrophysics Data System (ADS)
Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin
2015-12-01
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
Dhanda, Aaron S; Lulic, Katarina T; Vogl, A Wayne; Mc Gee, Margaret M; Chiu, Robert H; Guttman, Julian A
2018-05-04
Listeria generate actin-rich tubular protrusions at the plasma membrane that propel the bacteria into neighbouring cells. The precise molecular mechanisms governing the formation of these protrusions remain poorly defined. Here we demonstrate that the PPIase Cyclophilin A (CypA) is hijacked by Listeria at membrane protrusions used for cell-to-cell spreading. CypA localizes within the F-actin of these structures and is crucial for their proper formation, as in cells depleted of CypA, these extended actin-rich structures are mis-shaped and collapsed due to changes within the F-actin network. The lack of structural integrity within the Listeria membrane protrusions hampers the microbes from spreading from CypA null cells. Our results demonstrate a crucial role for CypA during Listeria infections.
integrating Solid State NMR and Computations in Membrane Protein Science
NASA Astrophysics Data System (ADS)
Cross, Timothy
2015-03-01
Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.
Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices
Shen, Caiwei; Wang, Xiaohong; Zhang, Wenfeng; Kang, Feiyu
2013-01-01
Prototyping of nanoporous carbon membranes with three-dimensional microscale patterns is significant for integration of such multifunctional materials into various miniaturized systems. Incorporating nano material synthesis into microelectronics technology, we present a novel approach to direct prototyping of carbon membranes with highly nanoporous structures inside. Membranes with significant thicknesses (1 ~ 40 μm) are rapidly prototyped at wafer level by combining nano templating method with readily available microfabrication techniques, which include photolithography, high-temperature annealing and etching. In particular, the high-surface-area membranes are specified as three-dimensional electrodes for micro supercapacitors and show high performance compared to reported ones. Improvements in scalability, compatibility and cost make the general strategy promising for batch fabrication of operational on-chip devices or full integration of three-dimensional nanoporous membranes with existing micro systems. PMID:23887486
Vergis, James M.; Purdy, Michael D.; Wiener, Michael C.
2015-01-01
Structural studies on integral membrane proteins are routinely performed on protein–detergent complexes (PDCs) consisting of purified protein solubilized in a particular detergent. Of all the membrane protein crystal structures solved to date, a subset of only four detergents has been used in more than half of these structures. Unfortunately, many membrane proteins are not well behaved in these four detergents and/or fail to yield well-diffracting crystals. Identification of detergents that maintain the solubility and stability of a membrane protein is a critical step and can be a lengthy and “protein-expensive” process. We have developed an assay that characterizes the stability and size of membrane proteins exchanged into a panel of 94 commercially available and chemically diverse detergents. This differential filtration assay (DFA), using a set of filtered microplates, requires sub-milligram quantities of purified protein and small quantities of detergents and other reagents and is performed in its entirety in several hours. PMID:20667442
Li, Xiaoxi; Cheng, Ruoyu; Sun, Zhiyong; Su, Wei; Pan, Guoqing; Zhao, Song; Zhao, Jinzhong; Cui, Wenguo
2017-10-01
Enthesis is a specialized tissue interface between the tendon and bone. Enthesis structure is very complex because of gradient changes in its composition and structure. There is currently no strategy to create a suitable environment and to regenerate the gradual-changing enthesis because of the modular complexities between two tissue types. Herein, a dual-layer organic/inorganic flexible bipolar fibrous membrane (BFM) was successfully fabricated by electrospinning to generate biomimetic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. The growth of the in situ apatite nanoparticle layer was induced on the nano hydroxyapatite-poly-l-lactic acid (nHA-PLLA) fibrous layer in simulated body solution, and the poly-l-lactic acid (PLLA) fibrous layer retained its original properties to induce tendon regeneration. The in vivo results showed that BFM significantly increased the area of glycosaminoglycan staining at the tendon-bone interface and improved collagen organization when compared to the simplex fibrous membrane (SFM) of PLLA. Implanting the bipolar membrane also induced bone formation and fibrillogenesis as assessed by micro-CT and histological analysis. Biomechanical testing showed that the BFM group had a greater ultimate load-to-failure and stiffness than the SFM group at 12weeks after surgery. Therefore, this flexible bipolar nanofibrous membrane improves the healing and regeneration process of the enthesis in rotator cuff repair. In this study, we generated a biomimetic dual-layer organic/inorganic flexible bipolar fibrous membrane by sequential electrospinning and in situ biomineralization, producing integrated bipolar fibrous membranes of PLLA fibrous membrane as the upper layer and nHA-PLLA fibrous membrane as the lower layer to mimic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. Flexible bipolar nanofibrous membranes could be easily fabricated with gradient microstructure for enthesis regeneration in rotator cuff tears. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shin, Chaeyoung; Baer, Zachary; Chen, X. Chelsea; Ozcam, A. Evren; Clark, Douglas; Balsara, Nitash
2015-03-01
Polystyrene- b-polydimethylsiloxane- b-polystyrene (SDS) membranes have been studied in butanol-water binary pervaporation experiments and pervaporation experiments integrated with viable fermentation broths. Polydimethylsiloxane has been widely known to be a suitable material for separating organic chemicals from aqueous solutions, and it thus provides a continuous matrix phase in SDS membranes for permeation of small molecules. The polystyrene block provides mechanical stability to maintain the membrane structure in the pervaporation membranes. We take advantage of these features to fabricate a thin and butanol-selective SDS membrane for in situ product removal in fermentation.
NASA Astrophysics Data System (ADS)
Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won
2012-07-01
The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.
Sahu, Indra D; Craig, Andrew F; Dunagum, Megan M; McCarrick, Robert M; Lorigan, Gary A
2017-10-05
Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a distance of 17 Å. This study demonstrates the utility of investigating the structural and dynamic properties of membrane proteins in physiologically relevant membrane mimetics using BSLs.
Structural study of the membrane protein MscL using cell-free expression and solid-state NMR
NASA Astrophysics Data System (ADS)
Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.
2010-05-01
High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.
Antimonide-based membranes synthesis integration and strain engineering
Anwar, Farhana; Klein, Brianna A.; Rasoulof, Amin; Dawson, Noel M.; Schuler-Sandy, Ted; Deneke, Christoph F.; Ferreira, Sukarno O.; Cavallo, Francesca; Krishna, Sanjay
2017-01-01
Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5 μm and lateral sizes from 24×24μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range. PMID:27986953
Paniagua-Chavez, C. G.; Jenkins, J.; Segovia, M.; Tiersch, T.R.
2006-01-01
Evaluation of sperm motility is the single most widely used parameter to determine semen quality in mammals and aquatic species. While a good indicator for fresh sperm viability, post-thaw motility is not always effective at predicting fertilizing ability. Techniques using fluorescent dyes can assess functionality of mammalian sperm, but have not been widely applied in aquatic organisms. The eastern oyster Crassostrea virginica is an important mollusk in the United States, and cryopreservation protocols have been developed to preserve sperm and larvae to assist research and hatchery production. In this study, protocols were developed to assess sperm cell membrane integrity and mitochondrial function by flow cytometry and to assess viability of eggs by fluorescence microscopy. The fluorescent dyes SYBR 14 and propidium iodide (PI) (to assess membrane integrity) and rhodamine 123 (R123) (to assess mitochondrial membrane potential) were used to evaluate the quality of thawed oyster sperm previously cryopreserved with different cryoprotectant and thawing treatments. Membrane integrity results were correlated with motility of thawed sperm and mitochondrial membrane potential with fertilizing ability. Fluorescein diacetate (FDA) was used to assess cytotoxicity of cryoprotectant solutions and post-thaw damage to oyster eggs. The results indicated that membrane integrity (P = 0.004) and thawing treatments (P = 0.04), and mitochondrial membrane potential (P = 0.0015) were correlated with motility. Fertilizing ability was correlated with cryoprotectant treatments (P = 0.0258) and with mitochondrial membrane potential (P = 0.001). The dye FDA was useful in indicating structural integrity of fresh and thawed eggs. Exposure of eggs, without freezing, to dimethyl sulfoxide yielded higher percentages of stained eggs and fertilization rate than did exposure to propylene glycol (P = 0.002). Thawed eggs were not stained with FDA (<1%) and larvae were not produced. ?? 2006 Elsevier Inc. All rights reserved.
Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H
2010-12-01
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.
Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers.
Fusco, Giuliana; Chen, Serene W; Williamson, Philip T F; Cascella, Roberta; Perni, Michele; Jarvis, James A; Cecchi, Cristina; Vendruscolo, Michele; Chiti, Fabrizio; Cremades, Nunilo; Ying, Liming; Dobson, Christopher M; De Simone, Alfonso
2017-12-15
Oligomeric species populated during the aggregation process of α-synuclein have been linked to neuronal impairment in Parkinson's disease and related neurodegenerative disorders. By using solution and solid-state nuclear magnetic resonance techniques in conjunction with other structural methods, we identified the fundamental characteristics that enable toxic α-synuclein oligomers to perturb biological membranes and disrupt cellular function; these include a highly lipophilic element that promotes strong membrane interactions and a structured region that inserts into lipid bilayers and disrupts their integrity. In support of these conclusions, mutations that target the region that promotes strong membrane interactions by α-synuclein oligomers suppressed their toxicity in neuroblastoma cells and primary cortical neurons. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
A Circular Dichroism Reference Database for Membrane Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace,B.; Wien, F.; Stone, T.
2006-01-01
Membrane proteins are a major product of most genomes and the target of a large number of current pharmaceuticals, yet little information exists on their structures because of the difficulty of crystallising them; hence for the most part they have been excluded from structural genomics programme targets. Furthermore, even methods such as circular dichroism (CD) spectroscopy which seek to define secondary structure have not been fully exploited because of technical limitations to their interpretation for membrane embedded proteins. Empirical analyses of circular dichroism (CD) spectra are valuable for providing information on secondary structures of proteins. However, the accuracy of themore » results depends on the appropriateness of the reference databases used in the analyses. Membrane proteins have different spectral characteristics than do soluble proteins as a result of the low dielectric constants of membrane bilayers relative to those of aqueous solutions (Chen & Wallace (1997) Biophys. Chem. 65:65-74). To date, no CD reference database exists exclusively for the analysis of membrane proteins, and hence empirical analyses based on current reference databases derived from soluble proteins are not adequate for accurate analyses of membrane protein secondary structures (Wallace et al (2003) Prot. Sci. 12:875-884). We have therefore created a new reference database of CD spectra of integral membrane proteins whose crystal structures have been determined. To date it contains more than 20 proteins, and spans the range of secondary structures from mostly helical to mostly sheet proteins. This reference database should enable more accurate secondary structure determinations of membrane embedded proteins and will become one of the reference database options in the CD calculation server DICHROWEB (Whitmore & Wallace (2004) NAR 32:W668-673).« less
Nanoscale patterning controls inorganic-membrane interface structure
NASA Astrophysics Data System (ADS)
Almquist, Benjamin D.; Verma, Piyush; Cai, Wei; Melosh, Nicholas A.
2011-02-01
The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces.The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces. Electronic supplementary information (ESI) available: Breakthrough rate as a function of force plots for 5 nm, 10 nm and ∞-probes.. See DOI: 10.1039/c0nr00486c
Li, Yi; Zhu, Hong; Zhang, Huajun; Chen, Zhangran; Tian, Yun; Xu, Hong; Zheng, Tianling; Zheng, Wei
2014-08-15
Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on Alexandrium tamarense were measured through studying the algicidal procedure, nuclear damage and transcription of related genes. Medium components were optimized to improve algicidal activity, and characteristics of algicidal extracts were determined. Transmission electron microscope analysis revealed that the cell structure was broken. Cell membrane integrity destruction and nuclear structure degradation were monitored using confocal laser scanning microscope, and the rbcS, hsp and proliferating cell nuclear antigen (PCNA) gene expressions were studied. Results showed that 1.0% tryptone, 0.4% glucose and 0.8% MgCl2 were the optimal nutrient sources. The algicidal extracts were heat and pH stable, non-protein and less than 1kD. Cell membrane and nuclear structure integrity were lost, and the transcription of the rbcS and PCNA genes were significantly inhibited and there was up-regulation of hsp gene expression during the exposure procedure. The algicidal extracts destroyed the cell membrane and nuclear structure integrity, inhibited related gene expression and, eventually, lead to the inhibition of algal growth. All the results may elaborate firstly the cell death process and nuclear damage in A. tamarense which was induced by algicidal extracts, and the algicidal extracts could be potentially used as bacterial control of HABs in future. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy
2014-08-19
The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133 55–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one constructmore » of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.« less
Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej
2014-01-01
The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911
Structure and Function Study of HIV and Influenza Fusion Proteins
NASA Astrophysics Data System (ADS)
Liang, Shuang
Human immunodeficiency virus (HIV) and influenza virus are membrane-enveloped viruses causing acquired immunodeficiency syndrome (AIDS) and flu. The initial step of HIV and influenza virus infection is fusion between viral and host cell membrane catalyzed by the viral fusion protein gp41 and hemagglutinin (HA) respectively. However, the structure of gp41 and HA as well as the infection mechanism are still not fully understood. This work addresses (1) full length gp41 ectodomain and TM domain structure and function and (2) IFP membrane location and IFP-membrane interaction. My studies of gp41 protein and IFP can provide better understanding of the membrane fusion mechanism and may aid development of anti-viral therapeutics and vaccine. The full length ectodomain and transmembrane domain of gp41 and shorter constructs were expressed, purified and solubilized at physiology conditions. The constructs adopt overall alpha helical structure in SDS and DPC detergents, and showed hyperthermostability with Tm > 90 °C. The oligomeric states of these proteins vary in different detergent buffer: predominant trimer for all constructs and some hexamer fraction for HM and HM_TM protein in SDS at pH 7.4; and mixtures of monomer, trimer, and higher-order oligomer protein in DPC at pH 4.0 and 7.4. Substantial protein-induced vesicle fusion was observed, including fusion of neutral vesicles at neutral pH, which are the conditions similar HIV/cell fusion. Vesicle fusion by a gp41 ectodomain construct has rarely been observed under these conditions, and is aided by inclusion of both the FP and TM, and by protein which is predominantly trimer rather than monomer. Current data was integrated with existing data, and a structural model was proposed. Secondary structure and conformation of IFP is a helix-turn-helix structure in membrane. However, there has been arguments about the IFP membrane location. 13C-2H REDOR solid-state NMR is used to solve this problem. The IFP adopts major alpha helical, minor beta strand secondary structure in PC/PG membrane. The alpha helical IFP's with respectively 13CO labeled Leu-2, Ala-7 and Gly-16 all show close contacts with the lipid acyl chain tail, suggesting IFP has strong interaction with the membrane. By screening the current IFP topology models, it either has a membrane-spanning confirmation, or it promotes lipid trail protrusion. IFP bounded lipid membrane structure was studied by paramagnetic relaxation enhancement (PRE) solid-state NMR to provide more information about the detailed IFP membrane location model. The T2 relaxation time and rate were measured for membrane with or without IFP and with or without Mn2+ . Based on the results, it is concluded that IFP does not promote lipid protrusion at both gel phase and liquid phase, which is evidenced by that the R2 difference with and without Mn2+ is smaller for IFP free membrane than IFP bounded membrane, meaning IFP does not induce a smaller average distance between lipid acyl chain and aqueous layer. By integrating these results, a IFP membrane spanning model was proposed, in which IFP N-terminal helix adopts a 45° angle with respect to membrane normal.
Wang, Ping; Xu, Shujun; Zhao, Kai; Xiao, Bingxiu; Guo, Junming
2009-11-01
This study investigates the role of dysregulated cytosolic free calcium ([Ca(2+)]c) homeostasis on microtubule (MT) ring structure in apoptotic cervical cancer (HeLa) cells induced by trichosanthin (TCS), a type I ribosome inactivating protein (RIP). The TCS-induced decrease in cell viability was significantly enhanced in combination with the specific calcium chelator, EGTA-AM. Sequestration of [Ca(2+)]c markedly disrupted the special MT ring structure. Furthermore, TCS tended to increase LDH release, whereas no significant differences were observed until 48 h of the treatment. In contrast, combined addition of EGTA-AM or colchicine (an inhibitor of tubulin polymerization) significantly reinforced LDH release. The data suggest that TCS-elevated [Ca(2+)]c maintains plasma membrane integrity via the formation of the MT ring structure in apoptotic HeLa cells.
Klammt, Christian; Schwarz, Daniel; Fendler, Klaus; Haase, Winfried; Dötsch, Volker; Bernhard, Frank
2005-12-01
Cell-free expression has become a highly promising tool for the fast and efficient production of integral membrane proteins. The proteins can be produced as precipitates that solubilize in mild detergents usually without any prior denaturation steps. Alternatively, membrane proteins can be synthesized in a soluble form by adding detergents to the cell-free system. However, the effects of a representative variety of detergents on the production, solubility and activity of a wider range of membrane proteins upon cell-free expression are currently unknown. We therefore analyzed the cell-free expression of three structurally very different membrane proteins, namely the bacterial alpha-helical multidrug transporter, EmrE, the beta-barrel nucleoside transporter, Tsx, and the porcine vasopressin receptor of the eukaryotic superfamily of G-protein coupled receptors. All three membrane proteins could be produced in amounts of several mg per one ml of reaction mixture. In general, the detergent 1-myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] was found to be most effective for the resolubilization of membrane protein precipitates, while long chain polyoxyethylene-alkyl-ethers proved to be most suitable for the soluble expression of all three types of membrane proteins. The yield of soluble expressed membrane protein remained relatively stable above a certain threshold concentration of the detergents. We report, for the first time, the high-level cell-free expression of a beta-barrel type membrane protein in a functional form. Structural and functional variations of the analyzed membrane proteins are evident that correspond with the mode of expression and that depend on the supplied detergent.
Black Lipid Membranes at Bifaces
Ti Tien, H.
1968-01-01
Black lipid membranes (BLM) less than 90 A thick have been shown to be the most realistic approach to biological membrane models. This paper describes the formation characteristics, optical properties, and thermodynamics of BLM at water/oil/water bifaces. In particular, the nature of the Plateau-Gibbs border which supports the black membrane is analyzed in some detail. The formation of BLM at the biface involves a spontaneous reduction of the free energy of the system. As long as the integrity of the membrane is maintained, the limiting structure of the BLM represents the lowest free energy configuration. PMID:19873618
High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli
Bruni, Renato
2014-01-01
Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647
Ternary structure reveals mechanism of a membrane diacylglycerol kinase
Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; ...
2015-12-17
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternarymore » structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. As a result, the active site architecture shows clear evidence of having arisen by convergent evolution.« less
Maslennikov, Innokentiy; Choe, Senyon; Riek, Roland
2013-01-01
Because membrane proteins need to be extracted from their natural environment and reconstituted in artificial milieus for the 3D structure determination by X-ray crystallography or NMR, the search for membrane mimetic that conserve the native structure and functional activities remains challenging. We demonstrate here a detergent/nanodisc screening study by NMR of the bacterial α-helical membrane protein YgaP containing a cytoplasmic rhodanese domain. The analysis of 2D [15N,1H]-TROSY spectra shows that only a careful usage of low amounts of mixed detergents did not perturb the cytoplasmic domain while solubilizing in parallel the transmembrane segments with good spectral quality. In contrast, the incorporation of YgaP into nanodiscs appeared to be straightforward and yielded a surprisingly high quality [15N,1H]-TROSY spectrum opening an avenue for the structural studies of a helical membrane protein in a bilayer system by solution state NMR. PMID:23349867
A nanoporous gold membrane for sensing applications
Oo, Swe Zin; Silva, Gloria; Carpignano, Francesca; Noual, Adnane; Pechstedt, Katrin; Mateos, Luis; Grant-Jacob, James A.; Brocklesby, Bill; Horak, Peter; Charlton, Martin; Boden, Stuart A.; Melvin, Tracy
2016-01-01
Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering) at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. PMID:26973809
Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kopeina, G S; Shulepko, M A; Paramonov, A S; Mineev, K S; Tikhonov, R V; Shingarova, L N; Petrovskaya, L E; Dolgikh, D A; Arseniev, A S; Kirpichnikov, M P
2012-03-01
Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Design and Synthesis of Archaea-Inspired Tetraether Lipids
NASA Astrophysics Data System (ADS)
Koyanagi, Takaoki
Maintaining the correct ion homeostasis across membranes is a major challenge in both nature and artificial systems. Archaea, have evolved to solve membrane permeability problems to survive in extreme environments by incorporating unique structural features found in their lipid. Specifically, inclusion of phytanyl side chains, ether glycerol linkages, tethering of lipids, cycloalkanes, and different polar lipid headgroups into their lipid membrane are believed to contribute to membrane stability. We sought to gain a better understanding of the functional benefits attributed to these structural features to membrane stability to design a new class of synthetic Archaea inspired lipid membranes that can be used to overcome limitations (i.e. unstable in serum environment, high background leakage, and prone to hydrolysis) found in current lipid based technologies. Leakage experiments revealed liposomes made from GMGTPC (glycerol monoalkyl glycerol tetraether lipid with phosphatidylcholine headgroup) demonstrated a two order magnitude reduction in membrane leakage to small ions when compared with liposomes made from EggPC. Additionally, liposomes composed of GMGTPC-CH (cyclohexane integrated) lipid displayed an additional 40% decrease in membrane leakage to small ions when compared with liposomes made from GMGTPC lipids. Furthermore, leakage experiments revealed a higher degree of tolerance to headgroup modifications to membrane leakage for liposomes made from GMGT lipid analogs when compared with liposomes made from POPC. After designing an optimal tetraether lipid scaffold that incorporates key Archaeal structural features for membrane leakage, we explored to integrate strategies employed by eukaryotes to improve membrane properties (i.e. addition of cholesterol). Liposomes made from the hybrid lipid, GcGTPC-CH, displayed a five-fold decrease in membrane leakage when compared with liposomes made from GMGTPC-CH, while maintaining functional membrane properties similar to membranes made from diacyl lipids. Lastly, we engineered a thiol responsive hybrid lipid, GcGT(S-S)PC-CH, that demonstrated similar membrane stability in serum as GcGTPC-CH. Gratifyingly, doxorubicin loaded liposomes composed of GcGT(S-S)PC-CH liposomes displayed a 4 or 20-fold increase in toxicity to HeLa cells when compared with liposomes made from GcGTPC-CH or Doxil, respectively. This work represents a first step towards development of stimuli-responsive tetraether lipids that may offer advantages in membrane properties to be used in cancer therapy.
Conceptual design and analysis of a large antenna utilizing electrostatic membrane management
NASA Technical Reports Server (NTRS)
Brooks, A. L.; Coyner, J. V.; Gardner, W. J.; Mihora, D. J.
1982-01-01
Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed.
Membrane protein structure determination — The next generation☆☆☆
Moraes, Isabel; Evans, Gwyndaf; Sanchez-Weatherby, Juan; Newstead, Simon; Stewart, Patrick D. Shaw
2014-01-01
The field of Membrane Protein Structural Biology has grown significantly since its first landmark in 1985 with the first three-dimensional atomic resolution structure of a membrane protein. Nearly twenty-six years later, the crystal structure of the beta2 adrenergic receptor in complex with G protein has contributed to another landmark in the field leading to the 2012 Nobel Prize in Chemistry. At present, more than 350 unique membrane protein structures solved by X-ray crystallography (http://blanco.biomol.uci.edu/mpstruc/exp/list, Stephen White Lab at UC Irvine) are available in the Protein Data Bank. The advent of genomics and proteomics initiatives combined with high-throughput technologies, such as automation, miniaturization, integration and third-generation synchrotrons, has enhanced membrane protein structure determination rate. X-ray crystallography is still the only method capable of providing detailed information on how ligands, cofactors, and ions interact with proteins, and is therefore a powerful tool in biochemistry and drug discovery. Yet the growth of membrane protein crystals suitable for X-ray diffraction studies amazingly remains a fine art and a major bottleneck in the field. It is often necessary to apply as many innovative approaches as possible. In this review we draw attention to the latest methods and strategies for the production of suitable crystals for membrane protein structure determination. In addition we also highlight the impact that third-generation synchrotron radiation has made in the field, summarizing the latest strategies used at synchrotron beamlines for screening and data collection from such demanding crystals. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. PMID:23860256
Chae, Pil Seok; Rasmussen, Søren G. F.; Rana, Rohini; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A.; Kruse, Andrew C.; Nurva, Shailika; Loland, Claus J.; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G.; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H.
2011-01-01
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces displayed by native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each of which is built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family display favorable behavior relative to conventional detergents, as tested on multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied. PMID:21037590
Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins.
Nissen-Meyer, Jon; Oppegård, Camilla; Rogne, Per; Haugen, Helen Sophie; Kristiansen, Per Eugen
2010-03-01
This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15-30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure-function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix-helix structure involving helix-helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix-helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death.
Integrated light and scanning electron microscopy of GFP-expressing cells.
Peddie, Christopher J; Liv, Nalan; Hoogenboom, Jacob P; Collinson, Lucy M
2014-01-01
Integration of light and electron microscopes provides imaging tools in which fluorescent proteins can be localized to cellular structures with a high level of precision. However, until recently, there were few methods that could deliver specimens with sufficient fluorescent signal and electron contrast for dual imaging without intermediate staining steps. Here, we report protocols that preserve green fluorescent protein (GFP) in whole cells and in ultrathin sections of resin-embedded cells, with membrane contrast for integrated imaging. Critically, GFP is maintained in a stable and active state within the vacuum of an integrated light and scanning electron microscope. For light microscopists, additional structural information gives context to fluorescent protein expression in whole cells, illustrated here by analysis of filopodia and focal adhesions in Madin Darby canine kidney cells expressing GFP-Paxillin. For electron microscopists, GFP highlights the proteins of interest within the architectural space of the cell, illustrated here by localization of the conical lipid diacylglycerol to cellular membranes. © 2014 Elsevier Inc. All rights reserved.
Membrane pore architecture of the CslF6 protein controls (1-3,1-4)-β-glucan structure.
Jobling, Stephen A
2015-06-01
The cereal cell wall polysaccharide (1-3,1-4)-β-glucan is a linear polymer of glucose containing both β1-3 and β1-4 bonds. The structure of (1-3,1-4)-β-glucan varies between different cereals and during plant growth and development, but little is known about how this is controlled. The cellulose synthase-like CslF6 protein is an integral membrane protein and a major component of the (1-3,1-4)-β-glucan synthase. I show that a single amino acid within the predicted transmembrane pore domain of CslF6 controls (1-3,1-4)-β-glucan structure. A new mechanism for the control of the polysaccharide structure is proposed where membrane pore architecture and the translocation of the growing polysaccharide across the membrane control how the acceptor glucan is coordinated at the active site and thus the proportion of β1-3 and β1-4 bonds within the polysaccharide.
Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.
Bui, Nhu-Ngoc; McCutcheon, Jeffrey R
2013-02-05
Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.
Suzuki, Tatsuo; Zhang, Jingping; Miyazawa, Shoko; Liu, Qian; Farzan, Michael R.; Yao, Wei-Dong
2011-01-01
Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not due to the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance. PMID:21797867
Regulation of the basement membrane by epithelia generated forces
NASA Astrophysics Data System (ADS)
Tanner, Kandice
2012-12-01
Tumor metastasis involves a progressive loss of tissue architecture and dissolution of structural boundaries between the epithelium and connective tissue. The basement membrane (BM), a specialized network of extracellular matrix proteins forms a barrier that physically restricts pre-invasive lesions such that they remain as local insults. The BM is not a static structure, but one that is constantly regenerated and remodeled in the adult organism. Matrix organization also regulates cell function. Thus alterations in the balance of synthesis, remodeling and proteolytic degradation of the extracellular matrix proteins may contribute to a loss of structural integrity. However, the de novo assembly and maintenance of the complex structural properties of in vivo basement membranes remain elusive. Here, this paper highlights the current understanding on the structural properties and the establishment of the BM, and discusses the potential role of self-generated forces in adult tissue remodeling and the maintenance of the BM as a malignancy suppressor.
NASA Astrophysics Data System (ADS)
Biset, S.; Nieto Deglioumini, L.; Basualdo, M.; Garcia, V. M.; Serra, M.
The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process.
DNA Nanotubes for NMR Structure Determination of Membrane Proteins
Bellot, Gaëtan; McClintock, Mark A.; Chou, James J; Shih, William M.
2013-01-01
Structure determination of integral membrane proteins by solution NMR represents one of the most important challenges of structural biology. A Residual-Dipolar-Coupling-based refinement approach can be used to solve the structure of membrane proteins up to 40 kDa in size, however, a weak-alignment medium that is detergent-resistant is required. Previously, availability of media suitable for weak alignment of membrane proteins was severely limited. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400nm-long six-helix bundles each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, towards collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes via counter ions and small DNA binding molecules. This detergent-resistant liquid-crystal media offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility, and structural programmability. Production of sufficient nanotubes for 4–5 NMR experiments can be completed in one week by a single individual. PMID:23518667
Bedbrook, Claire N; Yang, Kevin K; Rice, Austin J; Gradinaru, Viviana; Arnold, Frances H
2017-10-01
There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well.
Rice, Austin J.; Gradinaru, Viviana; Arnold, Frances H.
2017-01-01
There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well. PMID:29059183
Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.
Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B
2015-01-01
Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions. Copyright © 2015 Elsevier Inc. All rights reserved.
Crescentini, Marco; Thei, Frederico; Bennati, Marco; Saha, Shimul; de Planque, Maurits R R; Morgan, Hywel; Tartagni, Marco
2015-06-01
Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.
A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study.
Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok
2016-03-01
Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science.
A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study
Sadaf, Aiman; Mortensen, Jonas S.; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette
2015-01-01
Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science. PMID:27110345
The nanoscale organization of the B lymphocyte membrane☆
Maity, Palash Chandra; Yang, Jianying; Klaesener, Kathrin; Reth, Michael
2015-01-01
The fluid mosaic model of Singer and Nicolson correctly predicted that the plasma membrane (PM) forms a lipid bi-layer containing many integral trans-membrane proteins. This model also suggested that most of these proteins were randomly dispersed and freely diffusing moieties. Initially, this view of a dynamic and rather unorganized membrane was supported by early observations of the cell surfaces using the light microscope. However, recent studies on the PM below the diffraction limit of visible light (~ 250 nm) revealed that, at nanoscale dimensions, membranes are highly organized and compartmentalized structures. Lymphocytes are particularly useful to study this nanoscale membrane organization because they grow as single cells and are not permanently engaged in cell:cell contacts within a tissue that can influence membrane organization. In this review, we describe the methods that can be used to better study the protein:protein interaction and nanoscale organization of lymphocyte membrane proteins, with a focus on the B cell antigen receptor (BCR). Furthermore, we discuss the factors that may generate and maintain these membrane structures. PMID:25450974
Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins
Shimada, Issei S.; Loriot, Evan
2017-01-01
The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160
[Optimization of Energy Saving Measures with ABR-MBR Integrated Process].
Wu, Peng; Lu, Shuang-jun; Xu, Yue-zhong; Liu, Jie; Shen, Yao-liang
2015-08-01
High energy consumption and membrane fouling are important factors that limit the wide use of membrane bioreactor (MBR). In order to reduce energy consumption and delay the process of membrane fouling, the process of anaerobic baffled reactor (ABR)-MBR was used to treat domestic sewage. The structure of the process and conditions of nitrogen and phosphorus removal were optimized in this study. The results showed that energy consumption was reduced by 43% through optimizing the structure of ABR-MBR process. Meanwhile, the process achieved a high level of COD, NH: -N, TN and TP removal, with the average removal efficiencies of 91%, 85%, 76% and 86%, respectively. In addition, the added particulate media could effectively delay membrane fouling, while the formation process of membrane fouling was changed. The extracted amount of carbohydrates increased while the amount of proteins decreased. Finally, the potential was enhanced for the practical application of MBR.
Biswas, T; Ghosh, D K; Mukherjee, N; Ghosal, J
1995-08-01
The visceral leishmaniasis (VL) known as kala-azar in India is characterized by severe anaemia. The anaemia seems to be the result, at least in part, of the relatively short life-time of the erythrocytes, which have weakened cell membranes, possibly because of elevated concentrations of 2,3-diphosphoglycerate (2,3-DPG). There is a negative correlation (r = 0.91; P < 0.01) between erythrocytic 2,3-DPG concentrations and the blood concentration of haemoglobin, and the erythrocytes from infected patients display higher osmotic fragility than those from uninfected controls. Spectrofluorometry, using 1,6-diphenyl 1,3,5-hexatriene as a probe, indicated that fluorescence depolarization and microviscosity are also higher in the erythrocytic membranes from VL cases than in those from the controls. The cholesterol/phospholipid ratio is also relatively high in the membranes from the VL cases and there is degradation of the skeletal components and the major integral protein (band 3). The enhanced concentration of 2,3-DPG may be related to the altered structural integrity of the erythrocytes and this may lead to anisocytosis and the reduction in the erythrocytic half life.
Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.
Ko, Heung Cho; Shin, Gunchul; Wang, Shuodao; Stoykovich, Mark P; Lee, Jeong Won; Kim, Dong-Hun; Ha, Jeong Sook; Huang, Yonggang; Hwang, Keh-Chih; Rogers, John A
2009-12-01
Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.
Brito, Pedro N; Gomes, Nuno L; Vieira, Marco P; Faria, Pedro A; Fernandes, Augusto V; Rocha-Sousa, Amândio; Falcão-Reis, Fernando
2014-02-01
To study the potential association between fundus autofluorescence, spectral-domain optical coherence tomography, and visual acuity in patients undergoing surgery because of epiretinal membranes. Prospective, interventional case series including 26 patients submitted to vitrectomy because of symptomatic epiretinal membranes. Preoperative evaluation consisted of a complete ophthalmologic examination, autofluorescence, and spectral-domain optical coherence tomography. Studied variables included foveal autofluorescence (fov.AF), photoreceptor inner segment/outer segment (IS/OS) junction line integrity, external limiting membrane integrity, central foveal thickness, and foveal morphology. All examinations were repeated at the first, third, and sixth postoperative months. The main outcome measures were logarithm of minimal angle resolution visual acuity, fov.AF integrity, and IS/OS integrity. All cases showing a continuous IS/OS line had an intact fov.AF, whereas patients with IS/OS disruption could have either an increased area of foveal hypoautofluorescence or an intact fov.AF, with the latter being associated with IS/OS integrity recovery in follow-up spectral-domain optical coherence tomography imaging. The only preoperative variables presenting a significant correlation with final visual acuity were baseline visual acuity (P = 0.047) and fov.AF grade (P = 0.023). Recovery of IS/OS line integrity after surgery, in patients with preoperative IS/OS disruption and normal fov.AF, can be explained by the presence of a functional retinal pigment epithelium-photoreceptor complex, supporting normal photoreceptor activity. Autofluorescence imaging provides a functional component to the study of epiretinal membranes, complementing the structural information obtained with optical coherence tomography.
Structural basis for catalysis at the membrane-water interface.
Dufrisne, Meagan Belcher; Petrou, Vasileios I; Clarke, Oliver B; Mancia, Filippo
2017-11-01
The membrane-water interface forms a uniquely heterogeneous and geometrically constrained environment for enzymatic catalysis. Integral membrane enzymes sample three environments - the uniformly hydrophobic interior of the membrane, the aqueous extramembrane region, and the fuzzy, amphipathic interfacial region formed by the tightly packed headgroups of the components of the lipid bilayer. Depending on the nature of the substrates and the location of the site of chemical modification, catalysis may occur in each of these environments. The availability of structural information for alpha-helical enzyme families from each of these classes, as well as several beta-barrel enzymes from the bacterial outer membrane, has allowed us to review here the different ways in which each enzyme fold has adapted to the nature of the substrates, products, and the unique environment of the membrane. Our focus here is on enzymes that process lipidic substrates. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.
Stabilization of apoptotic cells: generation of zombie cells.
Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A
2014-08-14
Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn(2+) (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.
Stabilization of apoptotic cells: generation of zombie cells
Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A
2014-01-01
Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy. PMID:25118929
Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang
2017-07-06
Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.
Nanostructured silicon membranes for control of molecular transport.
Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J
2010-11-01
A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane.
Breen, Michael R; Camps, Marta; Carvalho-Simoes, Francisco; Zorzano, Antonio; Pilch, Paul F
2012-01-01
Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity.
Breen, Michael R.; Camps, Marta; Carvalho-Simoes, Francisco; Zorzano, Antonio; Pilch, Paul F.
2012-01-01
Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity. PMID:22493697
Adaptation of the membrane in Archaea.
Oger, Philippe M; Cario, Anaïs
2013-12-15
Microbes often face contrasted and fluctuating environmental conditions, to which they need to adapt or die. Because membranes play a central role in regulating fluxes inward and outward from the cells, maintaining the appropriate structure of the membrane is crucial to maintain cellular integrity and functions. This is achieved in bacteria and eucarya by a modification of the membrane lipid compositions, a strategy termed homeoviscous adaptation. We review here evidence for homeoviscous adaptation in Archaea, and discuss the limits of this strategy and our knowledge in this very peculiar domain of life. © 2013 Elsevier B.V. All rights reserved.
Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska
2012-12-05
The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantifying Square Membrane Wrinkle Behavior Using MITC Shell Elements
NASA Technical Reports Server (NTRS)
Jacobson, Mindy B.; Iwasa, Takashi; Natori, M. C.
2004-01-01
For future membrane based structures, quantified predictions of membrane wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made while using finite elements. Specifically, this work demonstrates that critical assumptions include: effects of gravity. supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 square meter membrane is treated as a structural material with non-negligible bending stiffness. Mixed Interpolation of Tensorial Components (MTTC) shell elements are used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density for cases with differing initial conditions are independent of assumed initial con&tions. In addition, analysis results indicate that the relationship between amplitude scale (W/t) and structural scale (L/t) is linear in the presence of a gravity field.
Aquaporin-0 Targets Interlocking Domains to Control the Integrity and Transparency of the Eye Lens
Lo, Woo-Kuen; Biswas, Sondip K.; Brako, Lawrence; Shiels, Alan; Gu, Sumin; Jiang, Jean X.
2014-01-01
Purpose. Lens fiber cell membranes contain aquaporin-0 (AQP0), which constitutes approximately 50% of the total fiber cell membrane proteins and has a dual function as a water channel protein and an adhesion molecule. Fiber cell membranes also develop an elaborate interlocking system that is required for maintaining structural order, stability, and lens transparency. Herein, we used an AQP0-deficient mouse model to investigate an unconventional adhesion role of AQP0 in maintaining a normal structure of lens interlocking protrusions. Methods. The loss of AQP0 in AQP0−/− lens fibers was verified by Western blot and immunofluorescence analyses. Changes in membrane surface structures of wild-type and AQP0−/− lenses at age 3 to 12 weeks were examined with scanning electron microscopy. Preferential distribution of AQP0 in wild-type fiber cell membranes was analyzed with immunofluorescence and immunogold labeling using freeze-fracturing transmission electron microscopy. Results. Interlocking protrusions in young differentiating fiber cells developed normally but showed minor abnormalities at approximately 50 μm deep in the absence of AQP0 in all ages studied. Strikingly, protrusions in maturing fiber cells specifically underwent uncontrolled elongation, deformation, and fragmentation, while cells still retained their overall shape. Later in the process, these changes eventually resulted in fiber cell separation, breakdown, and cataract formation in the lens core. Immunolabeling at the light microscopy and transmission electron microscopy levels demonstrated that AQP0 was particularly enriched in interlocking protrusions in wild-type lenses. Conclusions. This study suggests that AQP0 exerts its primary adhesion or suppression role specifically to maintain the normal structure of interlocking protrusions that is critical to the integrity and transparency of the lens. PMID:24458158
Quantifying Wrinkle Features of Thin Membrane Structures
NASA Technical Reports Server (NTRS)
Jacobson, Mindy B.; Iwasa, Takashi; Naton, M. C.
2004-01-01
For future micro-systems utilizing membrane based structures, quantified predictions of wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made. This work demonstrates that critical assumptions include: effects of gravity, supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 m x 02 m membrane is treated as a structural material with non-negligible bending stiffness. Finite element modeling is used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density and thickness for cases with differing initial conditions are independent of assumed initial conditions. In addition, analysis results indicate that the relationship between wrinkle amplitude scale (W/t) and structural scale (L/t) is independent of the nonlinear relationship between thickness and stiffness.
DNA nanotubes for NMR structure determination of membrane proteins.
Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M
2013-04-01
Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.
Parton, Robert G; Tillu, Vikas A; Collins, Brett M
2018-04-23
Caveolae are one of the most abundant and striking features of the plasma membrane of many mammalian cell types. These surface pits have fascinated biologists since their discovery by the pioneers of electron microscopy in the middle of the last century, but we are only just starting to understand their multiple functions. Molecular understanding of caveolar formation is advancing rapidly and we now know that sculpting the membrane to generate the characteristic bulb-shaped caveolar pit involves the coordinated action of integral membrane proteins and peripheral membrane coat proteins in a process dependent on their multiple interactions with membrane lipids. The resulting structure is further stabilised by protein complexes at the caveolar neck. Caveolae can bud to generate an endocytic carrier but can also be disassembled in response to specific stimuli to function as a mechanoprotective device. These structures have also been linked to numerous signalling pathways. Here, we will briefly summarise the current molecular and structural understanding of caveolar formation and dynamics, discuss how the crucial structural components of caveolae work together to generate a dynamic sensing domain, and discuss the implications of recent studies on the diverse roles proposed for caveolae in different cells and tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilhelm, Elisabeth; Neumann, Christiane; Sachsenheimer, Kai; Länge, Kerstin; Rapp, Bastian E.
2014-03-01
In this paper we present a fast, low cost bonding technology for combining rigid epoxy components with soft membranes made out of polydimethylsiloxane (PDMS). Both materials are commonly used for microfluidic prototyping. Epoxy resins are often applied when rigid channels are required, that will not deform if exposed to high pressure. PDMS, on the other hand, is a flexible material, which allows integration of membrane valves on the chip. However, the integration of pressure driven components, such as membrane valves and pumps, into a completely flexible device leads to pressure losses. In order to build up pressure driven components with maximum energy efficiency a combination of rigid guiding channels and flexible membranes would be advisable. Stereolithographic (STL) structuring would be an ideal fabrication technique for this purpose, because complex 3D-channels structures can easily be fabricated using this technology. Unfortunately, the STL epoxies cannot be bonded using common bonding techniques. For this reason we propose two UV-light based silanization techniques that enable plasma induced bonding of epoxy components. The entire process including silanization and corona discharge bonding can be carried out within half an hour. Average bond strengths up to 350 kPa (depending on the silane) were determined in ISO-conform tensile testing. The applicability of both techniques for microfluidic applications was proven by hydrolytic stability testing lasting more than 40 hours.
Yung, Susan; Chan, Tak Mao
2012-01-01
The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental changes in the peritoneal membrane structure and function correlate with the number and severity of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the structural and functional changes that occur in the peritoneal membrane during peritonitis and how mesothelial cells contribute to these changes and respond to infection. The latter part of the review discusses the potential of mesothelial cell transplantation and genetic manipulation in the preservation of the peritoneal membrane. PMID:22577250
Yin, Zehua; Cheng, Chong; Qin, Hui; Nie, Chuanxiong; He, Chao; Zhao, Changsheng
2015-01-01
Researches on blood purification membranes are fuelled by diverse clinical needs, such as hemodialysis, hemodiafiltration, hemofiltration, plasmapheresis, and plasma collection. To approach high-performance dialyzer, the integrated antifouling and antithrombotic properties are highly necessary for the design/modification of advanced artificial membranes. In this study, we propose and demonstrate that the physical blend of triblock polyurethane (PU) and polyethersulfone (PES) may advance the performance of hemodialysis membranes with greatly enhanced blood compatibility. It was found that the triblock PU could be blended with PES at high ratio owing to their excellent miscibility. The surfaces of the PES/PU composite membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, water contact angle measurement, and surface ζ-potentials. The results indicated that the membrane surfaces were assembled with hydrophilic segregation layer owing to the migration of amphiphilic PU segments during membrane preparation, which might confer the composite membranes with superior hemocompatibility. The cross-section scanning electron microscopy images of the composite membranes exhibited structure transformation from finger-like structure to sponge-like structure, which indicated that the composite membrane had tunable porosity and permeability. The further ultrafiltration experiments indicated that the composite membranes showed increased permeability and excellent antifouling ability. The blood compatibility observation indicated that PES/PU composite membranes owned decreased protein adsorption, suppressed platelet adhesion, and prolonged plasma recalcification time. These results indicated that the PES/PU composite membranes exhibited enhanced antifouling and antithrombotic properties than the pristine PES membrane. The strategy may forward the fabrication of blood compatible composite membranes for clinical blood dialysis by using the various functional miscible polymers. © 2014 Wiley Periodicals, Inc.
Development of a preprototype times wastewater recovery subsystem
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Dehner, G. F.
1982-01-01
A three-man wastewater recovery preprototype subsystem using a hollow fiber membrane evaporator with a thermoelectric heat pump to provide efficient potable water recovery from wastewater on extended duration space flights was designed, fabricated, and tested at one-gravity. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem. The tubular hollow fiber elements provide positive liquid/gas phase control with no moving parts, and provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery. Application and integration of these key elements solved problems inherent in all previous reclamation subsystem designs.
Micromechanical Switches on GaAs for Microwave Applications
NASA Technical Reports Server (NTRS)
Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang
1995-01-01
In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.
The bacteriorhodopsin model membrane system as a prototype molecular computing element.
Hong, F T
1986-01-01
The quest for more sophisticated integrated circuits to overcome the limitation of currently available silicon integrated circuits has led to the proposal of using biological molecules as computational elements by computer scientists and engineers. While the theoretical aspect of this possibility has been pursued by computer scientists, the research and development of experimental prototypes have not been pursued with an equal intensity. In this survey, we make an attempt to examine model membrane systems that incorporate the protein pigment bacteriorhodopsin which is found in Halobacterium halobium. This system was chosen for several reasons. The pigment/membrane system is sufficiently simple and stable for rigorous quantitative study, yet at the same time sufficiently complex in molecular structure to permit alteration of this structure in an attempt to manipulate the photosignal. Several methods of forming the pigment/membrane assembly are described and the potential application to biochip design is discussed. Experimental data using these membranes and measured by a tunable voltage clamp method are presented along with a theoretical analysis based on the Gouy-Chapman diffuse double layer theory to illustrate the usefulness of this approach. It is shown that detailed layouts of the pigment/membrane assembly as well as external loading conditions can modify the time course of the photosignal in a predictable manner. Some problems that may arise in the actual implementation and manufacturing, as well as the use of existing technology in protein chemistry, immunology, and recombinant DNA technology are discussed.
Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes
Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S.; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G.
2011-01-01
Background SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. Conclusion/Significance The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications. PMID:21339815
Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.
Plasencia, Inés; Survery, Sabeen; Ibragimova, Sania; Hansen, Jesper S; Kjellbom, Per; Helix-Nielsen, Claus; Johanson, Urban; Mouritsen, Ole G
2011-02-14
SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.
Nanosecond pulsed electric fields have differential effects on cells in the S-phase.
Hall, Emily H; Schoenbach, Karl H; Beebe, Stephen J
2007-03-01
Nanosecond pulsed electric fields (nsPEFs) are a type of nonthermal, nonionizing radiation that exhibit intense electric fields with high power, but low energy. NsPEFs extend conventional electroporation (EP) to affect intracellular structures and functions and depending on the intensity, can induce lethal and nonlethal cell signaling. In this study, HCT116 human colon carcinoma cells were synchronized to the S-phase or remained unsynchronized, exposed to electric fields of 60 kV/cm with either 60-ns or 300-ns durations, and analyzed for apoptosis and proliferative markers. Several nsPEF structural and functional targets were identified. Unlike unsynchronized cells, S-phase cells under limiting conditions exhibited greater membrane integrity and caspase activation and maintained cytoskeletal structure. Regardless of synchronization, cells exposed to nsPEFs under these conditions primarily survived, but exhibited some turnover and delayed proliferation in cell populations, as well as reversible increases in phosphatidylserine externalization, membrane integrity, and nuclei size. These results show that nsPEFs can act as a nonligand agonist to modulate plasma membrane (PM) and intracellular structures and functions, as well as differentially affect cells in the S-phase, but without effect on cell survival. Furthermore, nsPEF effects on the nucleus and cytoskeleton may provide synergistic therapeutic actions with other agents, such as ionizing radiation or chemotherapeutics that affect these same structures.
Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi
2015-01-01
As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.
Kleinschmidt, J H; Tamm, L K
1999-04-20
The mechanism of insertion and folding of an integral membrane protein has been investigated with the beta-barrel forming outer membrane protein A (OmpA) of Escherichia coli. This work describes a new approach to this problem by combining structural information obtained from tryptophan fluorescence quenching at different depths in the lipid bilayer with the kinetics of the refolding process. Experiments carried out over a temperature range between 2 and 40 degrees C allowed us to detect, trap, and characterize previously unidentified folding intermediates on the pathway of OmpA insertion and folding into lipid bilayers. Three membrane-bound intermediates were found in which the average distances of the Trps were 14-16, 10-11, and 0-5 A, respectively, from the bilayer center. The first folding intermediate is stable at 2 degrees C for at least 1 h. A second intermediate has been isolated at temperatures between 7 and 20 degrees C. The Trps move 4-5 A closer to the center of the bilayer at this stage. Subsequently, in an intermediate that is observable at 26-28 degrees C, the Trps move another 5-10 A closer to the center of the bilayer. The final (native) structure is observed at higher temperatures of refolding. In this structure, the Trps are located on average about 9-10 A from the bilayer center. Monitoring the evolution of Trp fluorescence quenching by a set of brominated lipids during refolding at various temperatures therefore allowed us to identify and characterize intermediate states in the folding process of an integral membrane protein.
Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view.
Marquês, Joaquim Trigo; Susana Marinho, H; de Almeida, Rodrigo Freire Martins
2018-05-07
This review is focused on sphingolipid backbone hydroxylation, a small but widespread structural feature, with profound impact on membrane biophysical properties. We start by summarizing sphingolipid metabolism in mammalian cells, yeast and plants, focusing on how distinct hydroxylation patterns emerge in different eukaryotic kingdoms. Then, a comparison of the biophysical properties in membrane model systems and cellular membranes from diverse organisms is made. From an integrative perspective, these results can be rationalized considering that superficial hydroxyl groups in the backbone of sphingolipids (by intervening in the H-bond network) alter the balance of favorable interactions between membrane lipids. They may strengthen the bonding or compete with other hydroxyl groups, in particular the one of membrane sterols. Different sphingolipid hydroxylation patterns can stabilize/disrupt specific membrane domains or change whole plasma membrane properties, and therefore be important in the control of protein distribution, function and lateral diffusion and in the formation and overtime stability of signaling platforms. The recent examples explored throughout this review unveil a potentially key role for sphingolipid backbone hydroxylation in both physiological and pathological situations, as they can be of extreme importance for the proper organization of cell membranes in mammalian cells, yeast and, most likely, also in plants. Copyright © 2017. Published by Elsevier Ltd.
Ho, Dean; Chang, Stacy; Montemagno, Carlo D
2006-06-01
Fabrication of next-generation biologically active materials will involve the integration of proteins with synthetic membrane materials toward a wide spectrum of applications in nanoscale medicine, including high-throughput drug testing, energy conversion for powering medical devices, and bio-cloaking films for mimicry of cellular membrane surfaces toward the enhancement of implant biocompatibility. We have used ABA triblock copolymer membranes (PMOXA-PDMS-PMOXA) of varied thicknesses as platform materials for Langmuir film-based functionalization with the OmpF pore protein from Escherichia coli by fabricating monolayers of copolymer amphiphile-protein complexes on the air/water interface. Here we demonstrate that the ability for protein insertion at the air/water interface during device fabrication is dependent upon the initial surface coverage with the copolymer as well as copolymer thickness. Methacrylate-terminated block copolymer structures that were 4 nm (4METH) and 8 nm (8METH) in length were used as the protein reconstitution matrix, whereas a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid (~4 nm thickness) was used as a comparison to demonstrate the effects of copolymer length on protein integration capabilities. Wilhemy surface pressure measurements (mN/m) revealed a greater protein insertion in the 4METH and POPC structures compared with the 8METH structure, indicating that shorter copolymer chains possess enhanced biomimicry of natural lipid-based membranes. In addition, comparisons between the isothermal characteristics of the 4METH, 8METH, and POPC membranes reveal that phase transitions of the 4METH resemble a blend of the 8METH and POPC materials, indicating that the 4METH chain may possess hybrid properties of both copolymers and lipids. Furthermore, we have shown that following the deposition of the amphiphilic materials on the air/water interface, the OmpF can be deposited directly on top of the amphiphiles (surface addition), thus effectively further enhancing protein insertion because of the buoying effects of the membranes. These characteristics of Langmuir-Blodgett-based fabrication of copolymer-biomolecule hybrids represent a synthesis strategy for next-generation biomedical materials.
Effect of Self-Assembly of Fullerene Nano-Particles on Lipid Membrane
Zhang, Saiqun; Mu, Yuguang; Zhang, John Z. H.; Xu, Weixin
2013-01-01
Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC) model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1) assembly process is completely finished before penetration; 2) assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron) of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity. PMID:24204827
Near-ambient solid polymer fuel cell
NASA Technical Reports Server (NTRS)
Holleck, G. L.
1993-01-01
Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as replacement for batteries.
Peddie, Christopher J.; Blight, Ken; Wilson, Emma; Melia, Charlotte; Marrison, Jo; Carzaniga, Raffaella; Domart, Marie-Charlotte; O׳Toole, Peter; Larijani, Banafshe; Collinson, Lucy M.
2014-01-01
Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. PMID:24637200
Bjelkmar, Pär; Niemelä, Perttu S.; Vattulainen, Ilpo; Lindahl, Erik
2009-01-01
Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins—not to mention numerous applications in drug design. Here, we present a full 1 µs atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements, including up to 120° rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation (∼35°) of the extracellular end of all S4 segments is present also in a reference 0.5 µs simulation without applied field, which indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 310 helix contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where the hyperpolarization destabilizes S4–lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly entropic, which would explain the slow process. The coordinates of the transmembrane part of the simulated channel actually stay closer to the recently determined higher-resolution Kv1.2 chimera channel than the starting structure for the entire second half of the simulation (0.5–1 µs). Together with lipids binding in matching positions and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations. PMID:19229308
Oligodendrocytes: Myelination and Axonal Support
Simons, Mikael; Nave, Klaus-Armin
2016-01-01
Myelinated nerve fibers have evolved to enable fast and efficient transduction of electrical signals in the nervous system. To act as an electric insulator, the myelin sheath is formed as a multilamellar membrane structure by the spiral wrapping and subsequent compaction of the oligodendroglial plasma membrane around central nervous system (CNS) axons. Current evidence indicates that the myelin sheath is more than an inert insulating membrane structure. Oligodendrocytes are metabolically active and functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of macromolecules to and from the internodal periaxonal space under the myelin sheath. This review summarizes our current understanding of how myelin is generated and also the role of oligodendrocytes in supporting the long-term integrity of myelinated axons. PMID:26101081
Block Copolymer Membranes for Biofuel Purification
NASA Astrophysics Data System (ADS)
Evren Ozcam, Ali; Balsara, Nitash
2012-02-01
Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.
Highly branched penta-saccharide-bearing amphiphiles for membrane protein studies
Ehsan, Muhammad; Du, Yang; Scull, Nicola J.; Tikhonova, Elena; Tarrasch, Jeffrey; Mortensen, Jonas S.; Loland, Claus J.; Skiniotis, Georgios; Guan, Lan; Byrne, Bernadette; Kobilka, Brian K.; Chae, Pil Seok
2016-01-01
Detergents are essential tools for membrane protein manipulation. Micelles formed by detergent molecules have the ability to encapsulate the hydrophobic domains of membrane proteins. The resulting protein-detergent complexes (PDCs) are compatible with the polar environments of aqueous media, making structural and functional analysis feasible. Although a number of novel agents have been developed to overcome the limitations of conventional detergents, most of them have traditional head groups such as glucoside or maltoside. In this study, we introduce a class of amphiphiles, the PSA’Es with a novel highly branched penta-saccharide hydrophilic group. The PSA’Es conferred markedly increased stability to a diverse range of membrane proteins compared to conventional detergents, indicating a positive role for the new hydrophilic group in maintaining the native protein integrity. In addition, PDCs formed by PSA’Es were smaller and more suitable for electron microscopic analysis than those formed by DDM, indicating that the new agents have significant potential for the structure-function studies of membrane proteins. PMID:26966956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro
In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methodsmore » using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.« less
Low-pressure membrane integrity tests for drinking water treatment: A review.
Guo, H; Wyart, Y; Perot, J; Nauleau, F; Moulin, P
2010-01-01
Low-pressure membrane systems, including microfiltration (MF) and ultrafiltration (UF) membranes, are being increasingly used in drinking water treatments due to their high level of pathogen removal. However, the pathogen will pass through the membrane and contaminate the product if the membrane integrity is compromised. Therefore, an effective on-line integrity monitoring method for MF and UF membrane systems is essential to guarantee the regulatory requirements for pathogen removal. A lot of works on low-pressure membrane integrity tests have been conducted by many researchers. This paper provides a literature review about different low-pressure membrane integrity monitoring methods for the drinking water treatment, including direct methods (pressure-based tests, acoustic sensor test, liquid porosimetry, etc.) and indirect methods (particle counting, particle monitoring, turbidity monitoring, surrogate challenge tests). Additionally, some information about the operation of membrane integrity tests is presented here. It can be realized from this review that it remains urgent to develop an alternative on-line detection technique for a quick, accurate, simple, continuous and relatively inexpensive evaluation of low-pressure membrane integrity. To better satisfy regulatory requirements for drinking water treatments, the characteristic of this ideal membrane integrity test is proposed at the end of this paper.
Shelar, Ashish; Bansal, Manju
2014-12-01
α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. © 2014 Wiley Periodicals, Inc.
Crystallographic snapshot of cellulose synthesis and membrane translocation.
Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen
2013-01-10
Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.
Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.
Tomé, Liliana C; Marrucho, Isabel M
2016-05-21
During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.
Characterization of membrane association of Rinderpest virus matrix protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subhashri, R.; Shaila, M.S.
2007-04-20
Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M proteinmore » gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein.« less
Z-membranes: artificial organelles for overexpressing recombinant integral membrane proteins.
Gong, F C; Giddings, T H; Meehl, J B; Staehelin, L A; Galbraith, D W
1996-01-01
We have expressed a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme beta-glucuronidase in transgenic tobacco cells. Electron microscope images of such cells demonstrate that overexpression of this fusion protein gives rise to a type of endoplasmic reticulum membrane domain in which adjacent membranes become zippered together apparently as a consequence of the oligomerizing action of beta-glucuronidase. These zippered (Z-) membranes lack markers of the endoplasmic reticulum (NADH cytochrome c reductase and ribosomes) and accumulate in the cells in the form of multilayered scroll-like structures (up to 2 micrometers in diameter; 20-50 per cell) without affecting plant growth. The discovery of Z-membranes has broad implications for biology and biotechnology in that they provide a means for accumulating large quantities of recombinant membrane proteins within discrete domains of native membranes. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8700911
Fluid control structures in microfluidic devices
Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.
2008-11-04
Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
Fluid control structures in microfluidic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathies, Richard A.; Grover, William H.; Skelley, Alison
2017-05-09
Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
Fluid control structures in microfluidic devices
NASA Technical Reports Server (NTRS)
Skelley, Alison (Inventor); Mathies, Richard A. (Inventor); Lagally, Eric (Inventor); Grover, William H. (Inventor); Liu, Chung N. (Inventor)
2008-01-01
Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
Cavin family proteins and the assembly of caveolae
Kovtun, Oleksiy; Tillu, Vikas A.; Ariotti, Nicholas; Parton, Robert G.; Collins, Brett M.
2015-01-01
ABSTRACT Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein–protein and protein–lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins. PMID:25829513
Xu, Xiaopeng; Yan, Muting; Wang, Rui; Lin, Ting; Tang, Junliang; Li, Chaozheng; Weng, Shaoping
2014-01-01
ABSTRACT Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytivirus, family Iridoviridae, brings great harm to fish farming. In infected tissues, ISKNV infection is characterized by a unique phenomenon, in that the infected cells are attached by lymphatic endothelial cells (LECs), which are speculated to wall off the infected cells from host immune attack. A viral membrane protein, VP23R, binds and recruits the host nidogen-1 protein to construct a basement membrane (BM)-like structure, termed virus-mock basement membrane (VMBM), on the surface of infected cells to provide attaching sites for LECs. VMBMs do not contain collagen IV protein, which is essential for maintenance of BM integrity and functions. In this study, we identified the VP08R protein encoded by ISKNV. VP08R was predicted to be a secreted protein with a signal peptide but without a transmembrane domain. However, immunofluorescence assays demonstrated that VP08R is located on the plasma membrane of infected cells and shows an expression profile similar to that of VP23R. Coimmunoprecipitation showed that VP08R interacts with both VP23R and nidogen-1, indicating that VP08R is a component of VMBM and is present on the cell membrane by binding to VP23R. Through formation of intermolecular disulfide bonds, VP08R molecules self-organized into a multimer, which may play a role in the maintenance of VMBM integrity and stability. Moreover, the VP08R multimer was easily degraded when the ISKNV-infected cells were lysed, which may be a mechanism for VMBM disassembly when necessary to free LECs and release the mature virions. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV; genus Megalocytivirus, family Iridovirus) is most harmful to cultured fishes. In tissues, the ISKNV-infected cells are attached by lymphatic endothelial cells (LECs), which are speculated to segregate the host immune system. A viral membrane protein, VP23R, binds and recruits the host nidogen-1 protein to construct virus-mock basement membranes (VMBMs) on the surface of infected cells to provide attaching sites for LECs. Although VMBMs lack the collagen IV network, which is an essential structural part of true BMs, VMBMs still show an intact structure. An ISKNV-encoded VP08R protein can self-assemble into a multimer and bind both VP23R and nidogen-1 to maintain the integrity and stability of VMBMs. On the basis of these facts, we redrew the putative schematic illustration of the VMBM structure. Our study suggests that the virus adopts a strategy to remodel the cellular matrix and may provide an important reference to elucidate BM functions and the mechanisms of lymphangiogenesis. PMID:24599992
Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A
2017-06-01
EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant differences in EPR spectral line broadening and a corresponding inverse central line width between spin-labeled KCNE1 residues located inside and outside of the membrane for lipodisq nanoparticle samples when compared to lipid vesicle samples. These results are consistent with the solution NMR structure of KCNE1. This study will be beneficial for researchers working on studying the structural and dynamic properties of membrane proteins.
Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons
NASA Astrophysics Data System (ADS)
Liu, Shih-Chun; Palek, Jiri
1980-06-01
The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1-4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1-4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5-8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer-tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.
Hovers, Jens; Potschies, Meike; Polidori, Ange; Pucci, Bernard; Raynal, Simon; Bonneté, Françoise; Serrano-Vega, Maria J.; Tate, Christopher G.; Picot, Daniel; Pierre, Yves; Popot, Jean-Luc; Nehmé, Rony; Bidet, Michel; Mus-Veteau, Isabelle; Bußkamp, Holger; Jung, Karl-Heinz; Marx, Andreas; Timmins, Peter A.; Welte, Wolfram
2013-01-01
Mixed protein-surfactant micelles are used for in vitro studies and 3D crystallization when solutions of pure, monodisperse integral membrane proteins are required. However, many membrane proteins undergo inactivation when transferred from the biomembrane into micelles of conventional surfactants with alkyl chains as hydrophobic moieties. Here we describe the development of surfactants with rigid, saturated or aromatic hydrocarbon groups as hydrophobic parts. Their stabilizing properties are demonstrated with three different integral membrane proteins. The temperature at which 50% of the binding sites for specific ligands are lost is used as a measure of stability and dodecyl-β-D-maltoside (“C12-b-M”) as a reference for conventional surfactants. One surfactant increased the stability of two different G protein-coupled receptors by approximately 10°C compared to C12-b-M. Another surfactant yielded a stabilization of the human Patched protein receptor by 13°C. In addition, one of the surfactants was successfully used to stabilize and crystallize the cytochrome b6f complex from Chlamydomonas reinhardtii. The structure was solved to the same resolution as previously reported in C12-b-M. PMID:21314479
Interaction of partially denatured insulin with a DSPC floating lipid bilayer.
Dennison, A J C; Jones, R A L; Staniforth, R A; Parnell, A J
2016-01-21
The carefully controlled permeability of cellular membranes to biological molecules is key to life. In degenerative diseases associated with protein misfolding and aggregation, protein molecules or their aggregates are believed to permeate these barriers and threaten membrane integrity. We used neutron reflectivity to study the interaction of insulin, a model amyloidogenic protein, with a DSPC floating lipid bilayer. Structural changes consistent with protein partitioning to the membrane interior and adsorption to a gel phase model lipid bilayer were observed under conditions where the native fold of the protein is significantly destabilised. We propose that the perturbation of the membrane by misfolded proteins involves long term occupation of the membrane by these proteins, rather than transient perforation events.
Mori, Takaharu; Jung, Jaewoon; Sugita, Yuji
2013-12-10
Conformational sampling is fundamentally important for simulating complex biomolecular systems. The generalized-ensemble algorithm, especially the temperature replica-exchange molecular dynamics method (T-REMD), is one of the most powerful methods to explore structures of biomolecules such as proteins, nucleic acids, carbohydrates, and also of lipid membranes. T-REMD simulations have focused on soluble proteins rather than membrane proteins or lipid bilayers, because explicit membranes do not keep their structural integrity at high temperature. Here, we propose a new generalized-ensemble algorithm for membrane systems, which we call the surface-tension REMD method. Each replica is simulated in the NPγT ensemble, and surface tensions in a pair of replicas are exchanged at certain intervals to enhance conformational sampling of the target membrane system. We test the method on two biological membrane systems: a fully hydrated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine) lipid bilayer and a WALP23-POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane system. During these simulations, a random walk in surface tension space is realized. Large-scale lateral deformation (shrinking and stretching) of the membranes takes place in all of the replicas without collapse of the lipid bilayer structure. There is accelerated lateral diffusion of DPPC lipid molecules compared with conventional MD simulation, and a much wider range of tilt angle of the WALP23 peptide is sampled due to large deformation of the POPC lipid bilayer and through peptide-lipid interactions. Our method could be applicable to a wide variety of biological membrane systems.
Euser, Bryan Jeffry; Zhu, Huayang; Berger, John; ...
2017-01-01
Ceramic oxygen-transport membranes, such as the doped perovskite La 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ(LSCF6482) considered in the present paper, are effective in applications such as air separation. The present paper considers a planar configuration that is composed of a thin (order tens of microns) ion-transport membrane, a relatively thick (order millimeter) porous-ceramic support structure, and millimeter-scale oxygen-collection flow channels. The lattice-scale strain associated with charged defects (oxygen vacancies and small polarons) within ion-transport membranes causes macroscopic stress that could distort or damage the assembly. The modeling approach is based on an extended twodimensional Nernst–Planck–Poisson (NPP) formulation that is developed andmore » applied to evaluate the effects of chemically induced stress within a planar oxygen-separation assembly. The computational model predicts two-dimensional distributions of steady-state defect concentrations, electrostatic potentials, and stress. Parameter studies consider the effects of support-membrane dimensions, materials mechanical properties, and operating conditions. Although the stress is found to have a negligible influence on the defect transport, the defect transport is found to significantly affect the stress distributions. Such results can play important roles in the design and development of planar ion-transport membranes and their support structures.« less
Robust membrane detection based on tensor voting for electron tomography.
Martinez-Sanchez, Antonio; Garcia, Inmaculada; Asano, Shoh; Lucic, Vladan; Fernandez, Jose-Jesus
2014-04-01
Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular architecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images (tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need for new and improved computational methods to facilitate this challenging task. In this work, we present a new method for membrane segmentation that is based on anisotropic propagation of the local structural information using the tensor voting algorithm. The local structure at each voxel is then refined according to the information received from other voxels. Because voxels belonging to the same membrane have coherent structural information, the underlying global structure is strengthened. In this way, local information is easily integrated at a global scale to yield segmented structures. This method performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method is demonstrated by applications to tomograms of different biological samples and by quantitative comparison with standard template matching procedure. Copyright © 2014 Elsevier Inc. All rights reserved.
From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity.
Ro, Soo Y; Ross, Matthew O; Deng, Yue Wen; Batelu, Sharon; Lawton, Thomas J; Hurley, Joseph D; Stemmler, Timothy L; Hoffman, Brian M; Rosenzweig, Amy C
2018-05-08
Particulate methane monooxygenase (pMMO) is a copper-dependent, integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. Studies of isolated pMMO have been hindered by loss of enzymatic activity upon its removal from the native membrane. To characterize pMMO in a membrane-like environment, we reconstituted pMMOs from Methylococcus ( Mcc. ) capsulatus (Bath) and Methylomicrobium ( Mm. ) alcaliphilum 20Z into bicelles. Reconstitution into bicelles recovers methane oxidation activity lost upon detergent solubilization and purification without substantial alterations to copper content or copper electronic structure as observed by electron paramagnetic resonance (EPR) spectroscopy.. These findings suggest that loss of pMMO activity upon isolation is due to removal from the membranes rather than caused by loss of the catalytic copper ions. A 2.7 Å resolution crystal structure of pMMO from Mm. alcaliphilum 20Z revealed a mononuclear copper center in the PmoB subunit and indicated that the transmembrane PmoC subunit may be conformationally flexible. Finally, results from extended X-ray absorption fine structure (EXAFS) analysis of pMMO from Mm. alcaliphilum 20Z were consistent with the observed monocopper center in the PmoB subunit. These results underscore the importance of studying membrane proteins in a membrane-like environment, and provide valuable insight into pMMO function. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
[Observation on eggs of Oncomelania hupensis hupensis with scanning electron microscope].
Xia, Q B; Yuan, Y B; Liu, B; Tan, P P
2001-01-01
To observe the structure of the mud hull packed Oncomelania eggs and the surface structure of colloid membrane called the third grade membrane of eggs. Scanning electron microscopy was used to observe Oncomelania snail eggs with integral mud hull collected from eastern Dongting Lake. The mud hull of eggs was made of unshapen small humification combined with earth granules with a diameter of 2.6-9.2 microns. The mud hull in 60 um thickness was honeycomb-like in shape with many small holes and small folds on the wall. There were many round or irregularly round hollownesses on the inner layer of mud hull that contacts colloid membrane but no hole through mud hull. There were some protein fiber networks covering on the colloid membrane and apophysis. The structure of the mud hull showed that the exchange of matter was maintained between eggs and outside, and the mud hull is of great importance to regulating temperature and moisture for the growth of eggs by preventing hydrosoluble substances from penetrating into eggs. The protein fiber networks act on gluing mud hull and buffering outside power. The dense glue membrane might be a main barricade to prevent pharmaceutical molecules from penetrating into eggs.
Olson, Mark A; Lee, Michael S; Yeh, In-Chul
2017-06-15
This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cholesterol asymmetry in synaptic plasma membranes.
Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P
2011-03-01
Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Structural studies of bee melittin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenberg, D.; Terwilliger, T.C.; Tsui, F.
The question of how proteins refold in passing from an aqueous phase to an amphipathic environment such as a membrane is beig addressed by a structural study of bee melittin. Melittin is the toxic, main protein of bee venom, and has been shown by others to integrate into natural and synthetic membranes and to lyse a variety of cells. This function is presumably related to its unusual sequence. Except for charges at the N-terminus and at lysine 7, the first 20 residues are largely apolar. In contrast, the last six residues contain four charges and two polar residues.
Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A
2013-03-07
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na(+)/Ca(2+) exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na(+)/K(+) pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.
Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A
2013-01-01
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. PMID:23470534
X-ray scattering data and structural genomics
NASA Astrophysics Data System (ADS)
Doniach, Sebastian
2003-03-01
High throughput structural genomics has the ambitious goal of determining the structure of all, or a very large number of protein folds using the high-resolution techniques of protein crystallography and NMR. However, the program is facing significant bottlenecks in reaching this goal, which include problems of protein expression and crystallization. In this talk, some preliminary results on how the low-resolution technique of small-angle X-ray solution scattering (SAXS) can help ameliorate some of these bottlenecks will be presented. One of the most significant bottlenecks arises from the difficulty of crystallizing integral membrane proteins, where only a handful of structures are available compared to thousands of structures for soluble proteins. By 3-dimensional reconstruction from SAXS data, the size and shape of detergent-solubilized integral membrane proteins can be characterized. This information can then be used to classify membrane proteins which constitute some 25% of all genomes. SAXS may also be used to study the dependence of interparticle interference scattering on solvent conditions so that regions of the protein solution phase diagram which favor crystallization can be elucidated. As a further application, SAXS may be used to provide physical constraints on computational methods for protein structure prediction based on primary sequence information. This in turn can help in identifying structural homologs of a given protein, which can then give clues to its function. D. Walther, F. Cohen and S. Doniach. "Reconstruction of low resolution three-dimensional density maps from one-dimensional small angle x-ray scattering data for biomolecules." J. Appl. Cryst. 33(2):350-363 (2000). Protein structure prediction constrained by solution X-ray scattering data and structural homology identification Zheng WJ, Doniach S JOURNAL OF MOLECULAR BIOLOGY , v. 316(#1) pp. 173-187 FEB 8, 2002
Thuduppathy, Guruvasuthevan R.; Craig, Jeffrey W.; Schon, Victoria Kholodenko Arne; Hill, R. Blake
2006-01-01
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization fromthe cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal trans-membrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion ( ΔGox) into lipid vesicles was determined to be −6.5 k cal mol−1 at pH4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy–Chapman theory to estimate an electrostatic contribution of ΔGoel ~−2.5 kcal mol−1 and a non-electrostatic contribution of ΔGonel ~−4.0 kcal mol−1 to the free energy of insertion, ΔGox. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed. PMID:16650855
Figueira, T. N.; Palermo, L. M.; Veiga, A. S.; Huey, D.; Alabi, C. A.; Santos, N. C.; Welsch, J. C.; Mathieu, C.; Niewiesk, S.; Moscona, A.
2016-01-01
ABSTRACT Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo. We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. IMPORTANCE Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. PMID:27733647
Figueira, T N; Palermo, L M; Veiga, A S; Huey, D; Alabi, C A; Santos, N C; Welsch, J C; Mathieu, C; Horvat, B; Niewiesk, S; Moscona, A; Castanho, M A R B; Porotto, M
2017-01-01
Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. Copyright © 2016 American Society for Microbiology.
Influence of the surrounding environment in re-naturalized β-barrel membrane proteins.
Lopes-Rodrigues, Maximilien; Triguero, Jordi; Torras, Juan; Perpète, Eric A; Michaux, Catherine; Zanuy, David; Alemán, Carlos
2018-03-01
Outer-membrane porins are currently being used to prepare bioinspired nanomembranes for selective ion transport by immobilizing them into polymeric matrices. However, the fabrication of these protein-integrated devices has been found to be strongly influenced by the instability of the β-barrel porin structure, which depends on surrounding environment. In this work, molecular dynamics simulations have been used to investigate the structural stability of a representative porin, OmpF, in three different environments: (i) aqueous solution at pH=7; (ii) a solution of neutral detergent in a concentration similar to the critical micelle concentration; and (iii) the protein embedded into a neutral detergent bilayer. The results indicate that the surrounding environment not only alters the stability of the β-barrel but affects the internal loop responsible of the ions transport, as well as the tendency of the porin proteins to aggregate into trimers. The detergent bilayer preserves the structure of OmpF protein as is found bacteria membranes, while pure aqueous solution induces a strong destabilization of the protein. An intermediate situation occurs for detergent solution. Our results have been rationalized in terms of protein⋯water and protein⋯detergent interactions, which makes them extremely useful for the future design of new generation of bioinspired protein-integrated devices. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly hydrothermally stable microporous silica membranes for hydrogen separation.
Wei, Qi; Wang, Fei; Nie, Zuo-Ren; Song, Chun-Lin; Wang, Yan-Li; Li, Qun-Yan
2008-08-07
Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.
Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.
Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H
2013-01-01
Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.
Troshin, Petr V; Morris, Chris; Prince, Stephen M; Papiz, Miroslav Z
2008-12-01
Membrane Protein Structure Initiative (MPSI) exploits laboratory competencies to work collaboratively and distribute work among the different sites. This is possible as protein structure determination requires a series of steps, starting with target selection, through cloning, expression, purification, crystallization and finally structure determination. Distributed sites create a unique set of challenges for integrating and passing on information on the progress of targets. This role is played by the Protein Information Management System (PIMS), which is a laboratory information management system (LIMS), serving as a hub for MPSI, allowing collaborative structural proteomics to be carried out in a distributed fashion. It holds key information on the progress of cloning, expression, purification and crystallization of proteins. PIMS is employed to track the status of protein targets and to manage constructs, primers, experiments, protocols, sample locations and their detailed histories: thus playing a key role in MPSI data exchange. It also serves as the centre of a federation of interoperable information resources such as local laboratory information systems and international archival resources, like PDB or NCBI. During the challenging task of PIMS integration, within the MPSI, we discovered a number of prerequisites for successful PIMS integration. In this article we share our experiences and provide invaluable insights into the process of LIMS adaptation. This information should be of interest to partners who are thinking about using LIMS as a data centre for their collaborative efforts.
Improving membrane protein expression by optimizing integration efficiency
2017-01-01
The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were 4-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effects of double mutations on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. PMID:28918393
Molecular simulation aspects of amyloid peptides at membrane interface.
Liu, Yonglan; Ren, Baiping; Zhang, Yanxian; Sun, Yan; Chang, Yung; Liang, Guizhao; Xu, Lijian; Zheng, Jie
2018-02-06
The interactions of amyloid peptides with cell membranes play an important role in maintaining the integrity and functionality of cell membrane. A thorough molecular-level understanding of the structure, dynamics, and interactions between amyloid peptides and cell membranes is critical to amyloid aggregation and toxicity mechanisms for the bench-to-bedside applications. Here we review the most recent computational studies of amyloid peptides at model cell membranes. Different mechanisms of action of amyloid peptides on/in cell membranes, targeted by different computational techniques at different lengthscales and timescales, are rationally discussed. Finally, we have proposed some new insights into the remaining challenges and perspectives for future studies to improve our understanding of the activity of amyloid peptides associated with protein-misfolding diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy. Copyright © 2018 Elsevier B.V. All rights reserved.
Caffrey, Martin; Li, Dianfan; Dukkipati, Abhiram
2012-01-01
The crystal structure of the β2-adrenergic receptor in complex with an agonist and its cognate G protein has just recently been solved. It is now possible to explore in molecular detail the means by which this paradigmatic transmembrane receptor binds agonist, communicates the impulse or signalling event across the membrane and sets in motion a series of G protein-directed intracellular responses. The structure was determined using crystals of the ternary complex grown in a rationally designed lipidic mesophase by the so-called in meso method. The method is proving to be particularly useful in the G protein-coupled receptor field where the structures of thirteen distinct receptor types have been solved in the past five years. In addition to receptors, the method has proven useful with a wide variety of integral membrane protein classes that include bacterial and eukaryotic rhodopsins, a light harvesting complex II (LHII), photosynthetic reaction centers, cytochrome oxidases, β-barrels, an exchanger, and an integral membrane peptide. This attests to the versatility and range of the method and supports the view that the in meso method should be included in the arsenal of the serious membrane structural biologist. For this to happen however, the reluctance in adopting it attributable, in part, to the anticipated difficulties associated with handling the sticky, viscous cubic mesophase in which crystals grow must be overcome. Harvesting and collecting diffraction data with the mesophase-grown crystals is also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. Over the years, we have endeavored to establish how the method works at a molecular level and to make it user-friendly. To these ends, tools for handling the mesophase in the pico- to nano-liter volume range have been developed for highly efficient crystallization screening in manual and robotic modes. Methods have been implemented for evaluating the functional activity of membrane proteins reconstituted into the bilayer of the cubic phase as a prelude to crystallogenesis. Glass crystallization plates have been built that provide unparalleled optical quality and sensitivity to nascent crystals. Lipid and precipitant screens have been designed for a more rational approach to crystallogenesis such that the method can now be applied to an even wider variety of membrane protein types. In this Current Topics article, these assorted advances are outlined along with a summary of the membrane proteins that have yielded to the method. The prospects for and the challenges that must be overcome to further develop the method are described. PMID:22783824
Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins
Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan
2015-01-01
Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301
Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy
NASA Astrophysics Data System (ADS)
Nag, Okhil K.; Naciri, Jawad; Delehanty, James B.
2018-02-01
The main principle of photodynamic therapy (PDT) is to kill malignant cells by generation of reactive oxygen species (ROS). PDT appeared highly effective when ROS can be produced in subcellular location such as plasma membrane. The plasma membrane maintains the structural integrity of the cell and regulates multiple important cellular processes, such as endocytosis, trafficking, and apoptotic pathways, could be one of the best points to kill the cancer cells. Previously, we have developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs. Here we highlight the utility of this LCNP for membrane targeted delivery and imaging for a photosensitizer (PS) for PDT applications.
Wang, Zhuguang; Batista, Victor S.; Yan, Elsa C. Y.
2016-01-01
Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces. PMID:26697504
Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application.
Carter, Princeton; Rahman, Shekh M; Bhattarai, Narayan
2016-01-01
Guided tissue regeneration (GTR) is a widely used method in dental surgical procedures that utilizes a barrier membrane to exclude migration of epithelium and ensure repopulation of periodontal ligament cells at the sites having insufficient gingiva. Commercial GTR membranes are typically composed of synthetic polymers that have had mild clinical success mostly because of their lack of proper bioactivity and appropriate degradation profile. In this study, a natural polymer, aloe vera was blended with polycaprolactone (PCL) to create nanofibrous GTR membranes by electrospinning. Aloe vera has proven anti-inflammatory properties and enhances the regeneration of periodontium tissues. PCL, a synthetic polymer, is well known to produce miscible polyblends nanofibers with natural polymers. Nanofibrous membranes with varying composition of PCL to aloe vera were fabricated, and several physicochemical and biological properties, such as fiber morphology, wettability, chemical structure, mechanical strength, and cellular compatibility of the membranes were analyzed. PCL/aloe vera membranes with ratios from 100/00 to 70/30 showed good uniformity in fiber morphology and suitable mechanical properties, and retained the integrity of their fibrous structure in aqueous solutions. Experimental results, using cell viability assay and cell attachment observation, showed that the nanofibrous membranes support 3T3 cell viability and could be a potential candidate for GTR therapy.
Double Layer Structure and Electrode Kinetics.
1980-09-30
Extensive double layer studies were made at the water- membrane and water-mercury interfaces. The effect of the neu- tral compound phloretin , which can...used to determine the nature of the phloretin adsorption isotherm. A boxcar integration method was developed which allows us to measure short-lived...235-252. 5. R. de Levie, S. K. Rangarajan, P. F. Seelig and 0. S. Andersen, On the adsorption of phloretin onto a black lipid membrane, Biophys. J. 25
Membrane peptides and their role in protobiological evolution
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; Chipot, Christophe
2003-01-01
How simple membrane peptides performed such essential protocellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we explain how these peptides fold at water-membrane interfaces, insert into membranes, self-assemble into higher-order structures and acquire functions. We have investigated the interfacial behavior and folding of several peptides built of leucine and glutamine residues and have demonstrated that many of them tend to adopt ordered structures. Further, we have studied the insertion of an alpha-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)3 into a model membrane. The transmembrane state is metastable, and approximately 15 kcal mol(-1) is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)3 and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self-assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to re-engineer the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.
Highly cross-linked nanoporous polymers
Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.
1998-01-01
Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.
Highly cross-linked nanoporous polymers
Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.
1997-01-01
Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.
Bilayer membrane interactions with nanofabricated scaffolds
Collier, C. Patrick
2015-07-29
Membrane function is facilitated by lateral organization within the lipid bilayer, including phase-separation of lipids into more ordered domains (lipid rafts) and anchoring of the membrane to a cytoskeleton. These features have proven difficult to reproduce in model membrane systems such as black lipid membranes, unilamellar vesicles and supported bilayers. However, advances in micro/nanofabrication have resulted in more realistic synthetic models of membrane-cytoskeleton interactions that can help uncover the design rules responsible for biological membrane formation and organization. This review will focus on describing micro-/nanostructured scaffolds that can emulate the connections of a cellular membrane to an underlying “cytoskeleton”. Thismore » includes molecular-based scaffolds anchored to a solid substrate through surface chemistry, solid-state supports modified by material deposition, lithography and etching, the creation of micro/nanoporous arrays, integration with microfluidics, and droplet-based bilayers at interfaces. Lastly, model systems such as these are increasing our understanding of structure and organization in cell membranes, and how they result in the emergence of functionality at the nanoscale.« less
Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang
2012-01-01
The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954
Huh, Yun Suk; Erickson, David
2009-01-01
Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au structures and multilayer Au/Ag/Au structures and also demonstrate a facile technique for integrating the membranes with all polydimethylsiloxane (PDMS) microfluidic devices. Using the integrated device, we demonstrate a linear response in the main detection peak intensity to solution phase concentration and a limit of detection on the order of 5.2 μU/mL. This low limit of detection is obtained with device containing the multilayer SERS substrate which we show exhibits a stronger Raman enhancement while maintaining biocompatibility and ease or surface reactivity with the capture probe. PMID:19857952
Laccase-based biocathodes: Comparison of chitosan and Nafion.
El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K
2016-09-21
Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Erazo-Oliveras, Alfredo; Fuentes, Natividad R; Wright, Rachel C; Chapkin, Robert S
2018-06-02
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Patra, Mahesh Chandra; Kwon, Hyuk-Kwon; Batool, Maria; Choi, Sangdun
2018-01-01
Toll-like receptors (TLRs) are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM), and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structural model of TLR4—a widely studied member of the interleukin-1 receptor/TLR superfamily—using homology modeling, protein–protein docking, and molecular dynamics simulations to understand the differential domain organization of TLR4 in a membrane-aqueous environment. Results showed that each functional domain of the membrane-bound TLR4 displayed several structural transitions that are biophysically essential for plasma membrane integration. Specifically, the extracellular and cytoplasmic domains were partially immersed in the upper and lower leaflets of the membrane bilayer. Meanwhile, TM domains tilted considerably to overcome the hydrophobic mismatch with the bilayer core. Our analysis indicates an alternate dimerization or a potential oligomerization interface of TLR4-TM. Moreover, the helical properties of an isolated TM dimer partly agree with that of the full-length receptor. Furthermore, membrane-absorbed or solvent-exposed surfaces of the toll/interleukin-1 receptor domain are consistent with previous X-ray crystallography and biochemical studies. Collectively, we provided a complete structural model of membrane-bound TLR4 that strengthens our current understanding of the complex mechanism of receptor activation and adaptor recruitment in the innate immune signaling pathway. PMID:29593733
Toward an integrative and predictive sperm quality analysis in Bos taurus.
Yániz, J L; Soler, C; Alquézar-Baeta, C; Santolaria, P
2017-06-01
There is a need to develop more integrative sperm quality analysis methods, enabling researchers to evaluate different parameters simultaneously cell by cell. In this work, we present a new multi-parametric fluorescent test able to discriminate different sperm subpopulations based on their labeling pattern and motility characteristics. Cryopreserved semen samples from 20 Holstein bulls were used in the study. Analyses of sperm motility using computer-assisted sperm analysis (CASA-mot), membrane integrity by acridine orange-propidium iodide combination and multi-parametric by the ISAS ® 3Fun kit, were performed. The new method allows a clear discrimination of sperm subpopulations based on membrane and acrosomal integrity, motility and morphology. It was also possible to observe live spermatozoa showing signs of capacitation such as hyperactivated motility and changes in acrosomal structure. Sperm subpopulation with intact plasma membrane and acrosome showed a higher proportion of motile sperm than those with damaged acrosome or increased fluorescence intensity. Spermatozoa with intact plasmalemma and damaged acrosome were static or exhibit weak movement. Significant correlations among the different sperm quality parameters evaluated were also described. We concluded that the ISAS ® 3Fun is an integrated method that represents an advance in sperm quality analysis with the potential to improve fertility predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Buarpung, Sirirak; Tharasanit, Theerawat; Thongkittidilok, Chommanart; Comizzoli, Pierre; Techakumphu, Mongkol
2015-10-01
The objective of this study was to compare the efficiency of preservation media for isolated feline testicular spermatozoa as well as the concentrations of bovine serum albumin (BSA) on: (1) the membrane (sperm membrane integrity (SMI)) and DNA integrity of spermatozoa; and (2) the developmental potential of spermatozoa after intracytoplasmic sperm injection (ICSI). Isolated cat spermatozoa were stored in HEPES-M199 medium (HM) or Dulbecco's phosphate-buffered saline (DPBS) at 4°C for up to 7 days. Results indicated that HM maintained a better SMI than DPBS throughout the storage periods (P > 0.05). When spermatozoa were stored in HM supplemented with BSA at different concentrations (4, 8 or 16 mg/ml), SMI obtained from HM containing 8 and 16 mg/ml BSA was higher than with 4 mg/ml BSA (P 0.05). In summary, cat spermatozoa immediately isolated from testicular tissue can be stored as a suspension in basic buffered medium at 4°C for up to 7 days. BSA supplementation into the medium improves membrane integrity of the spermatozoa during cold storage. Testicular spermatozoa stored in HM containing 16 mg/ml BSA retained full in vitro developmental potential after ICSI, similar to that of fresh controls even though DNA integrity had slightly declined.
Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun
2014-03-06
Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.
Wang, Hong; Min, Shixiong; Ma, Chun; Liu, Zhixiong; Zhang, Weiyi; Wang, Qiang; Li, Debao; Li, Yangyang; Turner, Stuart; Han, Yu; Zhu, Haibo; Abou-hamad, Edy; Hedhili, Mohamed Nejib; Pan, Jun; Yu, Weili; Huang, Kuo-Wei; Li, Lain-Jong; Yuan, Jiayin; Antonietti, Markus; Wu, Tom
2017-01-01
Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting. PMID:28051082
Refined views of multi-protein complexes in the erythrocyte membrane
Mankelow, TJ; Satchwell, TJ; Burton, NM
2015-01-01
The erythrocyte membrane has been extensively studied, both as a model membrane system and to investigate its role in gas exchange and transport. Much is now known about the protein components of the membrane, how they are organised into large multi-protein complexes and how they interact with each other within these complexes. Many links between the membrane and the cytoskeleton have also been delineated and have been demonstrated to be crucial for maintaining the deformability and integrity of the erythrocyte. In this study we have refined previous, highly speculative molecular models of these complexes by including the available data pertaining to known protein-protein interactions. While the refined models remain highly speculative, they provide an evolving framework for visualisation of these important cellular structures at the atomic level. PMID:22465511
Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery
NASA Astrophysics Data System (ADS)
Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.
2016-03-01
In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.
Thin film fabrication and system integration test run for a microactuator for a tuneable lens
NASA Astrophysics Data System (ADS)
Hoheisel, Dominik; Rissing, Lutz
2014-03-01
An electromagnetic microactuator, for controlling of a tuneable lens, with an integrated electrostatic element is fabricated by thin film technology. The actuator consists of two parts: the first part with microcoil and flux guide and the second part with a ring shaped back iron on a polyimide membrane. The back iron is additionally useable as electrode for electrostatic measurement of the air gap and for electrostatic actuation. By attracting the back iron an optical liquid is displaced and forms a liquid lens inside the back iron ring covered by the membrane. For testing the thin film fabrication sequence, up-scaled systems are generated in a test run. To fabricate the flux guide in an easy and quick way, a Ni-Fe foil with a thickness of 50 μm is laminated on the Si-wafer. This foil is also utilized in the following fabrication sequence as seed layer for electroplating. Compared to Ni-Fe structures deposited by electroplating, the foil is featuring better soft magnetic properties. The foil is structured by wet chemical etching and the backside of the wafer is structured by deep reactive ion etching (DRIE). For post fabrication thinning, the polyimide membrane is treated by oxygen plasma etching. To align the back iron to the microcoil and the flux guide, a flip-chip-bonder is used during test run of system integration. To adjust a constant air gap, a water solvable polymer is tested. A two component epoxy and a polyimide based glue are compared for their bonding properties of the actuator parts.
Internally bridging water molecule in transmembrane alpha-helical kink.
Miyano, Masashi; Ago, Hideo; Saino, Hiromichi; Hori, Tetsuya; Ida, Koh
2010-08-01
There are hundreds of membrane protein atomic coordinates in the Protein Data Bank (PDB), and high-resolution structures of better than 2.5 A enable the visualization of a sizable number of amphiphiles (lipid and/or detergent) and bound water molecules as essential parts of the structure. Upon scrutinizing these high-resolution structures, water molecules were found to 'wedge' and stabilize large kink angle (30-40 degrees) in a simple cylindrical model at the transmembrane helical kinks so as to form an inter-helical cavity to accommodate a ligand binding or active site as a crucial structural feature in alpha-helical integral membrane proteins. Furthermore, some of these water molecules are proposed to play a pivotal role of their conformational change to exert their functional regulation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling
Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando
2016-01-01
Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420
Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.
Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando
2016-01-19
Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.
Wysokińska, A.; Kondracki, S.; Iwanina, M.
2015-01-01
The present work describes experiments undertaken to evaluate the usefulness of selected physicochemical indices of semen, cell membrane integrity and sperm chromatin structure for the assessment of boar semen sensitivity to processes connected with pre-insemination procedures. The experiments were carried out on 30 boars: including 15 regarded as providers of sensitive semen and 15 regarded as providers of semen that is little sensitive to laboratory processing. The selection of boars for both groups was based on sperm morphology analyses, assuming secondary morphological change incidence in spermatozoa as the criterion. Two ejaculates were manually collected from each boar at an interval of 3 to 4 months. The following analyses were carried out for each ejaculate: sperm motility assessment, sperm pH measurement, sperm morphology assessment, sperm chromatin structure evaluation and cell membrane integrity assessment. The analyses were performed three times. Semen storage did not cause an increase in the incidence of secondary morphological changes in the group of boars considered to provide sperm of low sensitivity. On the other hand, with continued storage there was a marked increase in the incidence of spermatozoa with secondary morphological changes in the group of boars regarded as producing more sensitive semen. Ejaculates of group I boars evaluated directly after collection had an approximately 6% smaller share of spermatozoa with undamaged cell membranes than the ejaculates of boars in group II (p≤0.05). In the process of time the percentage of spermatozoa with undamaged cell membranes decreased. The sperm of group I boars was characterised with a lower sperm motility than the semen of group II boars. After 1 hour of storing diluted semen, the sperm motility of boars producing highly sensitive semen was already 4% lower (p≤0.05), and after 24 hours of storage it was 6.33% lower than that of the boars that produced semen with a low sensitivity. Factors that confirm the accuracy of insemination male selection can include a low rate of sperm motility decrease during the storage of diluted semen, low and contained incidence of secondary morphological changes in spermatozoa during semen storage and a high frequency of spermatozoa with undamaged cell membranes. PMID:26580438
77 FR 54580 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... . Name of Committee: Cell Biology Integrated Review Group, Membrane Biology and Protein Processing Study... Structure and Regeneration Study Section. Date: October 4-5, 2012. Time: 8 a.m. to 5 p.m. Agenda: To review...
Highly cross-linked nanoporous polymers
Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.
1998-01-20
Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.
Abnormal myocardial fluid retention as an early manifestation of ischemic injury.
Willerson, J. T.; Scales, F.; Mukherjee, A.; Platt, M.; Templeton, G. H.; Fink, G. S.; Buja, L. M.
1977-01-01
Fifty-seven isolated, blood perfused, continuously weighed canine hearts have been utilized to study the development of abnormal myocardial fluid retention during early myocardial ischemic injury. Inflatable balloon catheters were positioned around the left anterior descending coronary arteries (LAD) of 54 hearts or the proximal left circumflex coronary arteries of three hearts for study of the following intervals of coronary occlusion: a) 10 minutes followed by 20 minutes of reflow, b) 40 minutes followed by either no reflow or by 20 minutes of reflow, and c) 60 minutes without reflow. After 60 minutes of fixed coronary occlusion, histologic and ultrastructural examination revealed mild swelling of many ischemic cardiac muscle cells in the absence of interstitial edema, cardiac weight gain, and obvious structural defects in cell membrane integrity. After 40 minutes of coronary occlusion and 20 minutes of reflow, significant cardiac weight gain occurred in association with characteristic alterations in the ischemic region, including widespread interstitial edema and focal vascular congestion and hemorrhage and swelling of cardiac muscle cells. Focal structural defects in cell membrane integrity were also noted. The development of abnormal myocardial fluid retention after 40 minutes of LAD occlusion occurred in association with a significant reduction in sodium-potassium-ATPase activity in the ischemic area, but with no significant alteration in either creatine phosphokinase or citrate synthase activity in the same region. Despite the abnormal myocardial fluid retention in these hearts, it was possible pharmacologically to vasodilate coronary vessels with adenosine and nitroglycerin infusion to maintain a consistently high coronary flow following release of the coronary occlusion after 40 minutes and to even exceed initial hyperemic flow values following release of the occlusion when adenosine and nitroglycerin infusion was delayed until 15 minutes after reflow. Thus, the data indicate that impaired cell volume regulation and interstitial fluid accumulation and focal structural defects in cell membrane integrity are early manifestations of ischemic injury followed by reflow, but fail to establish a major role for the abnormal fluid retention in altering coronary blood flow prior to the development of extensive myocardial necrosis. In contrast, fixed coronary occlusion for 60 minutes results in mild intracellular swelling but no significant interstitial edema and no obvious structural defects in cell membrane integrity. Images Figure 1 Figure 5 Figure 6 Figure 2 Figure 3 Figure 4 PMID:139829
The three lives of viral fusion peptides
Apellániz, Beatriz; Huarte, Nerea; Largo, Eneko; Nieva, José L.
2014-01-01
Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention. PMID:24704587
mpMoRFsDB: a database of molecular recognition features in membrane proteins.
Gypas, Foivos; Tsaousis, Georgios N; Hamodrakas, Stavros J
2013-10-01
Molecular recognition features (MoRFs) are small, intrinsically disordered regions in proteins that undergo a disorder-to-order transition on binding to their partners. MoRFs are involved in protein-protein interactions and may function as the initial step in molecular recognition. The aim of this work was to collect, organize and store all membrane proteins that contain MoRFs. Membrane proteins constitute ∼30% of fully sequenced proteomes and are responsible for a wide variety of cellular functions. MoRFs were classified according to their secondary structure, after interacting with their partners. We identified MoRFs in transmembrane and peripheral membrane proteins. The position of transmembrane protein MoRFs was determined in relation to a protein's topology. All information was stored in a publicly available mySQL database with a user-friendly web interface. A Jmol applet is integrated for visualization of the structures. mpMoRFsDB provides valuable information related to disorder-based protein-protein interactions in membrane proteins. http://bioinformatics.biol.uoa.gr/mpMoRFsDB
Optical coherence tomography as a guide for cochlear implant surgery?
NASA Astrophysics Data System (ADS)
Just, T.; Lankenau, E.; Hüttmann, G.; Pau, H. W.
2008-02-01
To assess the potential use of optical coherence tomography (OCT) in cochlear implant surgery, OCT was applied in human temporal bones before cochleostomy. The question was whether OCT might provide information about the cochlear topography, especially about the site of the scala tympani. OCT was carried out on human temporal bone preparations, in which the cochleostomy was performed leaving the membranous labyrinth and the fluid-filled inner ear intact. A specially equipped operating microscope with integrated OCT prototype was used. Spectral-domain (SD)-OCT was used for all investigations. On all scans, OCT supplied information about inner ear structures, such as scala tympani, scala vestibuli while the membranous labyrinth was still intact. In the fresh temporal bone the scala media, basilar membrane and the Reissner's membrane were identified. This OCT study clearly documents the possibility to identify inner ear structures, especially the scala tympani without opening its enveloping membranes. These findings may have an impact on cochlear implant surgery, especially as an orientation guide to localize the scala tympani precisely before opening the fluid filled inner ear.
The Escherichia coli Peripheral Inner Membrane Proteome*
Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios
2013-01-01
Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher. PMID:23230279
Poloxamer 188 (p188) as a membrane resealing reagent in biomedical applications.
Moloughney, Joseph G; Weisleder, Noah
2012-12-01
Maintenance of the integrity of the plasma membrane is essential for maintenance of cellular function and prevention of cell death. Since the plasma membrane is frequently exposed to a variety of mechanical and chemical insults the cell has evolved active processes to defend against these injuries by resealing disruptions in the plasma membrane. Cell membrane repair is a conserved process observed in nearly every cell type where intracellular vesicles are recruited to sites of membrane disruption where they can fuse with themselves or the plasma membrane to create a repair patch. When disruptions are extensive or there is an underlying pathology that reduces the membrane repair capacity of a cell this defense mechanism may prove insufficient and the cell could die due to breakdown of the plasma membrane. Extensive loss of cells can compromise the integrity and function of tissues and leading to disease. Thus, methods to increase membrane resealing capacity could have broad utility in a number of disease states. Efforts to find reagents that can modulate plasma membrane reseal found that specific tri-block copolymers, such as poloxamer 188 (P188, or Pluronic F68), can increase the structural stability and resealing of the plasma membrane. Here we review several current patents and patent applications that present inventions making use of P188 and other copolymers to treat specific disease states such as muscular dystrophy, heart failure, neurodegenerative disorders and electrical injuries, or to facilitate biomedical applications such as transplantation. There appears to be promise for the application of poloxamers in the treatment of various diseases, however there are potential concerns with toxicity with long term application and bioavailability in some cases.
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions
Freites, J. Alfredo; Tobias, Douglas J.
2015-01-01
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na+, K+, Ca2+, and H+ selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1–S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here. PMID:25972106
Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.
Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Zhendre, Vanessa; Henry, Sarah; Thévenot, Julie; Dufourc, Erick J; Alves, Isabel D; Peruch, Frédéric
2014-01-01
The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles. © 2013.
Less is More: Membrane Protein Digestion Beyond Urea–Trypsin Solution for Next-level Proteomics*
Zhang, Xi
2015-01-01
The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea–trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting—not destroying—structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics. PMID:26081834
Hybrid membrane-microfluidic components using a novel ceramic MEMS technology
NASA Astrophysics Data System (ADS)
Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris
2012-03-01
A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of <2 microns. Thin-film membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to <50 nm. Additionally, these membranes may be non-porous or porous (with controllable pore sizes from 200 nm to <5 nm), for sophisticated size-based separations. With previous and current support from the NIH SBIR program, we have built several unique devices, and demonstrated improved separations, cell culturing, and imaging (optical and electron microscopy) versus standard products. Being ceramic, the material is much more robust to demanding environments (e.g. high and low temperatures and organic solvents), compared to polymer-based devices. Additionally, we have applied multiple surface modification techniques, including atomic layer deposition, to manipulate properties such as electrical conductivity. This microfabrication technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.
NASA Astrophysics Data System (ADS)
Gao, Changfei; Liu, Lifen; Yang, Fenglin
2018-03-01
A novel conductive membrane with Fe/Mn/C/F/O elements is developed, it functions as the catalytic cathode of MFC and the antifouling filter of MBR simultaneously, in a newly designed integrated wastewater treatment system, without proton exchange membrane (PEM). The optimal conductive membrane is characterized using SEM-EDX, XRD and XPS. BET and porous structure analysis of the grounded membrane material indicate a narrow and small pore size (2-7 nm). The membrane surface is rich in Fe species (Fe - Fe2O3- Fe3O4) and manganese oxide (MnO2). Its characteristics such as excellent electro-chemical oxygen reduction reaction (ORR) activity, high clear water flux (>240 L/(m2·h)) and better antifouling filtration performance are further confirmed. The new system features bio-electrochemical system (BES) and integrates bio-filtration (trickling filter and air contact oxidation bed) and proton transfer through quartz sand chamber (QSC) which eliminates the use of expensive proton exchange membrane. The system removes chemical oxygen demand (>97.4%), ammonia nitrogen (>96.7%), total phosphorus (>98.0%) effectively, and it simultaneously generates electricity (446 mW/m3). The low cost and high performances, economic and advantageous system has good compatibility with existing wastewater treatment facilities and a wide application prospect.
Novel Mechanisms in the Regulation of G Protein-coupled Receptor Trafficking to the Plasma Membrane*
Tholanikunnel, Baby G.; Joseph, Kusumam; Kandasamy, Karthikeyan; Baldys, Aleksander; Raymond, John R.; Luttrell, Louis M.; McDermott, Paul J.; Fernandes, Daniel J.
2010-01-01
β2-Adrenergic receptors (β2-AR) are low abundance, integral membrane proteins that mediate the effects of catecholamines at the cell surface. Whereas the processes governing desensitization of activated β2-ARs and their subsequent removal from the cell surface have been characterized in considerable detail, little is known about the mechanisms controlling trafficking of neo-synthesized receptors to the cell surface. Since the discovery of the signal peptide, the targeting of the integral membrane proteins to plasma membrane has been thought to be determined by structural features of the amino acid sequence alone. Here we report that localization of translationally silenced β2-AR mRNA to the peripheral cytoplasmic regions is critical for receptor localization to the plasma membrane. β2-AR mRNA is recognized by the nucleocytoplasmic shuttling RNA-binding protein HuR, which silences translational initiation while chaperoning the mRNA-protein complex to the cell periphery. When HuR expression is down-regulated, β2-AR mRNA translation is initiated prematurely in perinuclear polyribosomes, leading to overproduction of receptors but defective trafficking to the plasma membrane. Our results underscore the importance of the spatiotemporal relationship between β2-AR mRNA localization, translation, and trafficking to the plasma membrane, and establish a novel mechanism whereby G protein-coupled receptor (GPCR) responsiveness is regulated by RNA-based signals. PMID:20739277
DOE Office of Scientific and Technical Information (OSTI.GOV)
George A. Marchetti
1999-12-15
Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.
Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun
2013-01-01
Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.
Structure of synaptophysin: a hexameric MARVEL-domain channel protein.
Arthur, Christopher P; Stowell, Michael H B
2007-06-01
Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.
Fischer, Wolfgang; Buhrdorf, Renate; Gerland, Elke; Haas, Rainer
2001-01-01
Helicobacter pylori produces a number of proteins associated with the outer membrane, including adhesins and the vacuolating cytotoxin. These proteins are supposed to integrate into the outer membrane by β-barrel structures, characteristic of the family of autotransporter proteins. By using the SOMPES (shuttle vector-based outer membrane protein expression) system for outer membrane protein production, we were able to functionally express in H. pylori the cholera toxin B subunit genetically fused to the C-terminal VacA domain. We demonstrate that the fusion protein is translocated to the H. pylori outer membrane and that the CtxB domain is exposed on the H. pylori surface. Thus, we provide the first experimental evidence that the C-terminal β-domain of VacA can transport a foreign passenger protein to the H. pylori surface and hence acts as a functional autotransporter. PMID:11598049
Xiao, Z; Devreotes, P N
1997-01-01
Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures. Images PMID:9168471
Xiao, Z; Devreotes, P N
1997-05-01
Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures.
Law, Christopher J.; Almqvist, Jonas; Bernstein, Adam; Goetz, Regina M.; Huang, Yafei; Soudant, Celine; Laaksonen, Aatto; Hovmöller, Sven; Wang, Da-Neng
2008-01-01
Summary Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate/phosphate antiporters. PMID:18395745
Functionalized Vesicles by Microfluidic Device.
Vallejo, Derek; Lee, Shih-Hui; Lee, Abraham
2017-01-01
In recent years, lipid vesicles have become popular vehicles for the creation of biosensors. Vesicles can hold reaction components within a selective permeable membrane that provides an ideal environment for membrane protein biosensing elements. The lipid bilayer allows a protein to retain its native structure and function, and the membrane fluidity can allow for conformational changes and physiological interactions with target analytes. Here, we present two methods for the production of giant unilamellar vesicles (GUVs) within a microfluidic device that can be used as the basis for a biosensor. The vesicles are produced from water-in-oil-in-water (W/O/W) double emulsion templates using a nonvolatile oil phase. To create the GUVs, the oil can be removed via extraction with ethanol, or by altering the interfacial tension between the oil and carrier solution causing the oil to retract into a cap on one side of the structure, leaving behind an exposed lipid bilayer. Methods to integrate sensing elements and membrane protein pores onto the vesicles are also introduced in this work.
Structure and Assembly of Intracellular Mature Vaccinia Virus: Thin-Section Analyses
Griffiths, Gareth; Roos, Norbert; Schleich, Sybille; Locker, Jacomine Krijnse
2001-01-01
In the preceding study (see accompanying paper), we showed by a variety of different techniques that intracellular mature vaccinia virus (vaccinia IMV) is unexpectedly complex in its structural organization and that this complexity also extends to the underlying viral core, which is highly folded. With that analysis as a foundation, we now present different thin-section electron microscopy approaches for analyzing the IMV and the processes by which it is assembled in infected HeLa cells. We focus on conventional epoxy resin thin sections as well as cryosections to describe key intermediates in the assembly process. We took advantage of streptolysin O's ability to selectively permeabilize the plasma membrane of infected cells to improve membrane contrast, and we used antibodies against bone fide integral membrane proteins of the virus to unequivocally identify membrane profiles in thin sections. All of the images presented here can be rationalized with respect to the model put forward for the assembly of the IMV in the accompanying paper. PMID:11602745
Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin
2018-04-30
Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6 mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
NASA Astrophysics Data System (ADS)
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-03-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.
Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.
Dinkla, S; Wessels, K; Verdurmen, W P R; Tomelleri, C; Cluitmans, J C A; Fransen, J; Fuchs, B; Schiller, J; Joosten, I; Brock, R; Bosman, G J C G M
2012-10-18
Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions.
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-01-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537
Li, Dianfan; Howe, Nicole; Dukkipati, Abhiram; Shah, Syed T A; Bax, Benjamin D; Edge, Colin; Bridges, Angela; Hardwicke, Phil; Singh, Onkar M P; Giblin, Ged; Pautsch, Alexander; Pfau, Roland; Schnapp, Gisela; Wang, Meitian; Olieric, Vincent; Caffrey, Martin
2014-04-02
The lipidic mesophase or in meso method for crystallizing membrane proteins has several high profile targets to its credit and is growing in popularity. Despite its success, the method is in its infancy as far as rational crystallogenesis is concerned. Consequently, significant time, effort, and resources are still required to generate structure-grade crystals, especially with a new target type. Therefore, a need exists for crystallogenesis protocols that are effective with a broad range of membrane protein types. Recently, a strategy for crystallizing a prokaryotic α-helical membrane protein, diacylglycerol kinase (DgkA), by the in meso method was reported (Cryst. Growth. Des.2013, 14, 2846-2857). Here, we describe its application to the human α-helical microsomal prostaglandin E2 synthase 1 (mPGES1). While the DgkA strategy proved useful, significant modifications were needed to generate structure-quality crystals of this important therapeutic target. These included protein engineering, using an additive phospholipid in the hosting mesophase, performing multiple rounds of salt screening, and carrying out trials at 4 °C in the presence of a tight binding ligand. The crystallization strategy detailed here should prove useful for generating structures of other integral membrane proteins by the in meso method.
Membrane protein separation and analysis by supercritical fluid chromatography-mass spectrometry.
Zhang, Xu; Scalf, Mark; Westphall, Michael S; Smith, Lloyd M
2008-04-01
Membrane proteins comprise 25-30% of the human genome and play critical roles in a wide variety of important biological processes. However, their hydrophobic nature has compromised efforts at structural characterization by both X-ray crystallography and mass spectrometry. The detergents that are generally used to solubilize membrane proteins interfere with the crystallization process essential to X-ray studies and cause severe ion suppression effects that hinder mass spectrometric analysis. In this report, the use of supercritical fluid chromatography-mass spectrometry for the separation and analysis of integral membrane proteins and hydrophobic peptides is investigated. It is shown that detergents are rapidly and effectively separated from the proteins and peptides, yielding them in a state suitable for direct mass spectrometric analysis.
Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria.
Popov-Celeketić, Dusan; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana
2008-05-21
The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments.
Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria
Popov-Čeleketić, Dus̆an; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana
2008-01-01
The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments. PMID:18418384
HMPAS: Human Membrane Protein Analysis System
2013-01-01
Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858
Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi
2008-07-03
The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure, quite some of them remain apparently intact. The pigmented photosynthetic antenna complexes thus constitute a suitable model system for studying in detail the stability of integral membrane proteins.
NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates*
Poms, Martin; Ansorge, Philipp; Martinez-Gil, Luis; Jurt, Simon; Gottstein, Daniel; Fracchiolla, Katrina E.; Cohen, Leah S.; Güntert, Peter; Mingarro, Ismael; Naider, Fred; Zerbe, Oliver
2016-01-01
Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031–4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1–TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin, A., Cohen, L. S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O., and Naider, F. (2009) Biophys. J. 96, 3187–3196), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123, and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior. PMID:27864365
Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang
2014-10-23
Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.
Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang
2014-01-01
Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices. PMID:25338507
NASA Astrophysics Data System (ADS)
Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang
2014-10-01
Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.
Observing cellulose biosynthesis and membrane translocation in crystallo
Morgan, Jacob L.W.; McNamara, Joshua T.; Fischer, Michael; Rich, Jamie; Chen, Hong-Ming; Withers, Stephen G.; Zimmer, Jochen
2016-01-01
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. In crystallo enzymology with the catalytically-active bacterial cellulose synthase BcsA-B complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a “finger helix” that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves ‘up’ and ‘down’ in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA’s transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation. PMID:26958837
Membrane-Based Functions in the Origin of Cellular Life
NASA Technical Reports Server (NTRS)
Wilson, Michael A.
2003-01-01
How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.
Lindner, Diana; Walther, Cornelia; Tennemann, Anja; Beck-Sickinger, Annette G
2009-01-01
The N terminus is the most variable element in G protein-coupled receptors (GPCRs), ranging from seven residues up to approximately 5900 residues. For family B and C GPCRs it is described that at least part of the ligand binding site is located within the N terminus. Here we investigated the role of the N terminus in the neuropeptide Y receptor family, which belongs to the class A of GPCRs. We cloned differentially truncated Y receptor mutants, in which the N terminus was partially or completely deleted. We found, that eight amino acids are sufficient for full ligand binding and signal transduction activity. Interestingly, we could show that no specific amino acids but rather the extension of the first transmembrane helix by any residues is sufficient for receptor activity but also for membrane integration in case of the hY(1) and the hY(4) receptors. In contrast, the complete deletion of the N terminus in the hY(2) receptors resulted in a mutant that is fully integrated in the membrane but does not bind the ligand very well and internalizes much slower compared to the wild type receptor. Interestingly, also these effects could be reverted by any N-terminal extension. Accordingly, the most important function of the N termini seems to be the stabilization of the first transmembrane helix to ensure the correct receptor structure, which obviously is essential for ligand binding, integration into the cell membrane and receptor internalization.
NASA Astrophysics Data System (ADS)
Liu, Chao; Yang, Guigeng; Zhang, Yiqun
2015-01-01
The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.
A Trimeric Lipoprotein Assists in Trimeric Autotransporter Biogenesis in Enterobacteria*
Grin, Iwan; Hartmann, Marcus D.; Sauer, Guido; Hernandez Alvarez, Birte; Schütz, Monika; Wagner, Samuel; Madlung, Johannes; Macek, Boris; Felipe-Lopez, Alfonso; Hensel, Michael; Lupas, Andrei; Linke, Dirk
2014-01-01
Trimeric autotransporter adhesins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. TAAs form fibrous, adhesive structures on the bacterial cell surface. Their N-terminal extracellular domains are exported through a C-terminal membrane pore; the insertion of the pore domain into the bacterial outer membrane follows the rules of β-barrel transmembrane protein biogenesis and is dependent on the essential Bam complex. We have recently described the full fiber structure of SadA, a TAA of unknown function in Salmonella and other enterobacteria. In this work, we describe the structure and function of SadB, a small inner membrane lipoprotein. The sadB gene is located in an operon with sadA; orthologous operons are only found in enterobacteria, whereas other TAAs are not typically associated with lipoproteins. Strikingly, SadB is also a trimer, and its co-expression with SadA has a direct influence on SadA structural integrity. This is the first report of a specific export factor of a TAA, suggesting that at least in some cases TAA autotransport is assisted by additional periplasmic proteins. PMID:24369174
Iyer, Bharat Ramasubramanian; Mahalakshmi, Radhakrishnan
2016-09-06
The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix. Recent functional and structural studies have shown that these molecular factors are critical for PagP to carry out its function in the challenging environment of the bacterial outer membrane. However, the precise contributions of the N-helix to folding and stability and residues that can influence catalytic rates remain to be addressed. Here, we identify a sequence-dependent stabilizing role for the N-terminal helix of PagP in the measured thermodynamic stability of the barrel. Using chimeric barrel sequences, we show that the Escherichia coli PagP N-terminal helix confers 2-fold greater stability to the Salmonella typhimurium barrel. Further, we find that the W78F substitution in S. typhimurium causes a nearly 20-fold increase in the specific activity in vitro for the phospholipase reaction, compared to that of E. coli PagP. Here, phenylalanine serves as a key regulator of catalysis, possibly by increasing the reaction rate. Through coevolution analysis, we detect an interaction network between seemingly unrelated segments of this membrane protein. Exchanging the structural and functional features between homologous PagP enzymes from E. coli and S. typhimurium has provided us with an understanding of the molecular factors governing PagP stability and function.
Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4;#8201;Å
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Zachary Lee; Cheong, Cheom-Gil; Lee, Seok-Yong
2012-07-11
Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugsmore » (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 {angstrom}. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.« less
Giudice, Francesca; Ambroggio, Ernesto E; Mottola, Milagro; Fanani, Maria Laura
2016-09-01
l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Crystal structure of mitochondrial respiratory membrane protein complex II.
Sun, Fei; Huo, Xia; Zhai, Yujia; Wang, Aojin; Xu, Jianxing; Su, Dan; Bartlam, Mark; Rao, Zihe
2005-07-01
The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.
Malabed, Raymond; Hanashima, Shinya; Murata, Michio; Sakurai, Kaori
2017-12-01
OSW-1 is a structurally unique steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, and has exhibited highly potent and selective cytotoxicity in tumor cell lines. This study aimed to investigate the molecular mechanism for the membrane-permeabilizing activity of OSW-1 in comparison with those of other saponins by using various spectroscopic approaches. The membrane effects and hemolytic activity of OSW-1 were markedly enhanced in the presence of membrane cholesterol. Binding affinity measurements using fluorescent cholestatrienol and solid-state NMR spectroscopy of a 3-d-cholesterol probe suggested that OSW-1 interacts with membrane cholesterol without forming large aggregates while 3-O-glycosyl saponin, digitonin, forms cholesterol-containing aggregates. The results suggest that OSW-1/cholesterol interaction is likely to cause membrane permeabilization and pore formation without destroying the whole membrane integrity, which could partly be responsible for its highly potent cell toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Bronson, Jonathan; Lee, One-Sun; Saven, Jeffery G.
2006-01-01
Poor solubility and low expression levels often make membrane proteins difficult to study. An alternative to the use of detergents to solubilize these aggregation-prone proteins is the partial redesign of the sequence so as to confer water solubility. Recently, computationally assisted membrane protein solubilization (CAMPS) has been reported, where exposed hydrophobic residues on a protein's surface are computationally redesigned. Herein, the structure and fluctuations of a designed, water-soluble variant of KcsA (WSK-3) were studied using molecular dynamics simulations. The root mean square deviation of the protein from its starting structure, where the backbone coordinates are those of KcsA, was 1.8 Å. The structure of salt bridges involved in structural specificity and solubility were examined. The preferred configuration of ions and water in the selectivity filter of WSK-3 was consistent with the reported preferences for KcsA. The structure of the selectivity filter was maintained, which is consistent with WSK-3 having an affinity for agitoxin2 comparable to that of wild-type KcsA. In contrast to KcsA, the central cavity's side chains were observed to reorient, allowing water diffusion through the side of the cavity wall. These simulations provide an atomistic analysis of the CAMPS strategy and its implications for further investigations of membrane proteins. PMID:16299086
NASA Astrophysics Data System (ADS)
Tunuguntla, Ramya
Biological systems use different energy sources to interact with their environments by creating ion gradients, membrane electric potentials, or a proton motive force to accomplish strikingly complex tasks on the nanometer length scale, such as energy harvesting, and whole organism replication. Most of this activity involves a vast arsenal of active and passive ion channels, membrane receptors and ion pumps that mediate complex and precise transport across biological membranes. Despite the remarkable rate of progress exhibited by modern microelectronic devices, they still cannot compete with the efficiency and precision of biological systems on the component level. At the same time, the sophistication of these molecular machines provides an excellent opportunity to use them in hybrid bioelectronic devices where such a combination could deliver enhanced electronic functionality and enable seamless bi-directional interfaces between man-made and biological assemblies. Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex-vivo devices such as electronic biosensors, thin-film protein arrays, or bio-fuel cells. Since most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In our work, we have explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes. One-dimensional inorganic nanostructures, which have critical dimensions comparable to the sizes of biological molecules, form an excellent materials platform for building such integrated structures. Researchers already use silicon nanowire-based field effect transistors functionalized with molecular recognition sites in a diverse array of biosensors. In our group, we have been developing a platform for integration of membrane protein functionality and electronic devices using a 1-D phospholipid bilayer device architecture. In these devices, the membrane proteins reside within the lipid bilayer that covers a nanowire channel of a field-effect transistor. This lipid bilayer performs several functions: it shields the nanowire from the solution species; it serves as a native-like environment for membrane proteins and preserves their functionality, integrity, and even vectorality. In this work, we show that a 1-D bilayer device incorporating a rhodopsin proton pump allows us to couple light-driven proton transport to a bioelectronic circuit. We also report that we were able to adapt another distinctive feature of biological signal processing---their widespread use of modifiers, co-factors, and mediator molecules---to regulate and fine-tune the operational characteristics of the bioelectronic device. In our example, we use co-assembly of protein channels and ionophores in the 1-D bilayer to modify the device output levels and response time.
NASA Astrophysics Data System (ADS)
Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.
2007-09-01
Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.
Integration of β-carotene molecules in small liposomes
NASA Astrophysics Data System (ADS)
Andreeva, Atanaska; Popova, Antoaneta
2010-11-01
The most typical feature of carotenoids is the long polyene chain with conjugated double bonds suggesting that they can serve as conductors of electrons, acting as ''molecular wires'', important elements in the molecular electronic devices. Carotenoids are essential components of photosynthetic systems, performing different functions as light harvesting, photoprotection and electron transfer. They act also as natural antioxidants. In addition they perform structural role stabilizing the three-dimensional organization of photosynthetic membranes. Carotenoids contribute to the stability of the lipid phase, preserving the membrane integrity under potentially harmful environmental conditions. Carotenoids can be easily integrated into model membranes, facilitating the investigation of their functional roles. In carotenoid-egg phosphatidylcholine (EPC) liposomes ß-carotene is randomly distributed in the hydrocarbon interior of the bilayer, without any preferred, well defined orientation and retains a substantial degree of mobility. Here we investigate the degree of integration of ß-carotene in small unilamellar EPC liposomes and the changes in ß-carotene absorption and Raman spectra due to the lipid-pigment interaction. All observed changes in ß-carotene absorption and Raman spectra may be regarded as a result of the lipid-pigment interactions leading to the polyene geometry distortion and increasing of the environment heterogenety in the liposomes as compared to the solutions.
Yu, Daoyong; Huang, Guihong; Xu, Fengxi; Wang, Mengfei; Liu, Shuang; Huang, Fang
2014-06-01
Surfactants play important roles in the preparation, structural, and functional research of membrane proteins, and solubilizing and isolating membrane protein, while keeping their structural integrity and activity intact is complicated. The commercial n-Dodecyl-β-D-maltoside (DDM) and Triton X-100 (TX) were used as solubilizers to extract and purify trimeric photosystem I (PSI) complex, an important photosynthetic membrane protein complex attracting broad interests. With an optimized procedure, TX can be used as an effective surfactant to isolate and purify PSI, as a replace of the much more expensive DDM. A mechanism was proposed to interpret the solubilization process at surfactant concentrations lower than the critical solubilization concentration. PSI-TX and PSI-DDM had identical polypeptide bands, pigment compositions, oxygen consumption, and photocurrent activities. This provides an alternative procedure and paves a way for economical and large-scale trimeric PSI preparation.
The minimalist architectures of viroporins and their therapeutic implications
OuYang, Bo; Chou, James J.
2014-01-01
Many viral genomes encode small, integral membrane proteins that form homo-oligomeric channels in membrane, and they transport protons, cations, and other molecules across the membrane barrier to aid various steps of viral entry and maturation. These viral proteins, collectively named viroporins, are crucial for viral pathogenicity. In the past five years, structures obtained by nuclear magnetic resonance (NMR), X-ray crystallography, and electron microscopy (EM) showed that viroporins often adopt minimalist architectures to achieve their functions. A number of small molecules have been identified to interfere with their channel activity and thereby inhibit viral infection, making viroporins potential drug targets for therapeutic intervention. The known architectures and inhibition mechanisms of viroporins differ significantly from each other, but some common principles are shared between them. This review article summarizes the recent developments in the structural investigation of viroporins and their inhibition by antiviral compounds. PMID:24055819
Transmembrane proteins in the Protein Data Bank: identification and classification.
Tusnády, Gábor E; Dosztányi, Zsuzsanna; Simon, István
2004-11-22
Integral membrane proteins play important roles in living cells. Although these proteins are estimated to constitute 25% of proteins at a genomic scale, the Protein Data Bank (PDB) contains only a few hundred membrane proteins due to the difficulties with experimental techniques. The presence of transmembrane proteins in the structure data bank, however, is quite invisible, as the annotation of these entries is rather poor. Even if a protein is identified as a transmembrane one, the possible location of the lipid bilayer is not indicated in the PDB because these proteins are crystallized without their natural lipid bilayer, and currently no method is publicly available to detect the possible membrane plane using the atomic coordinates of membrane proteins. Here, we present a new geometrical approach to distinguish between transmembrane and globular proteins using structural information only and to locate the most likely position of the lipid bilayer. An automated algorithm (TMDET) is given to determine the membrane planes relative to the position of atomic coordinates, together with a discrimination function which is able to separate transmembrane and globular proteins even in cases of low resolution or incomplete structures such as fragments or parts of large multi chain complexes. This method can be used for the proper annotation of protein structures containing transmembrane segments and paves the way to an up-to-date database containing the structure of all known transmembrane proteins and fragments (PDB_TM) which can be automatically updated. The algorithm is equally important for the purpose of constructing databases purely of globular proteins.
Schapire, Arnaldo L; Voigt, Boris; Jasik, Jan; Rosado, Abel; Lopez-Cobollo, Rosa; Menzel, Diedrik; Salinas, Julio; Mancuso, Stefano; Valpuesta, Victoriano; Baluska, Frantisek; Botella, Miguel A
2008-12-01
Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca(2+)-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca(2+)-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness.
Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.
Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W
2015-10-14
Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton produces the normal biconcave erythrocyte shape and how it is perturbed in pathological conditions that destabilize the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.
Witschas, Katja; Jobin, Marie-Lise; Korkut, Dursun Nizam; Vladan, Maria Magdalena; Salgado, Gilmar; Lecomte, Sophie; Vlachova, Viktorie; Alves, Isabel D
2015-05-01
The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific. Copyright © 2015 Elsevier B.V. All rights reserved.
Expression and crystallization of the plant alternative oxidase.
May, Benjamin; Elliott, Catherine; Iwata, Momi; Young, Luke; Shearman, Julia; Albury, Mary S; Moore, Anthony L
2015-01-01
The alternative oxidase (AOX) is an integral monotopic membrane protein located on the inner surface of the inner mitochondrial membrane. Branching from the traditional respiratory chain at the quinone pool, AOX is responsible for cyanide-resistant respiration in plants and fungi, heat generation in thermogenic plants, and survival of parasites, such as Trypanosoma brucei, in the human host. A recently solved AOX structure provides insight into its active site, thereby facilitating rational phytopathogenic and antiparasitic drug design. Here, we describe expression of recombinant AOX using two different expression systems. Purification protocols for the production of highly pure and stable AOX protein in sufficient quantities to facilitate further kinetic, biophysical, and structural analyses are also described.
Less is More: Membrane Protein Digestion Beyond Urea-Trypsin Solution for Next-level Proteomics.
Zhang, Xi
2015-09-01
The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea-trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting-not destroying-structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support
Di Bartolo, Natalie; Compton, Emma L. R.; Warne, Tony; Edwards, Patricia C.; Tate, Christopher G.; Schertler, Gebhard F. X.; Booth, Paula J.
2016-01-01
The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879
Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage.
Ploss, Martin; Kuhn, Andreas
2011-09-26
Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.
Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage
2011-01-01
Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies. PMID:21943062
Papanicolaou, Kyriakos N.; Phillippo, Matthew M.
2012-01-01
Mitofusins (Mfn-1 and Mfn-2) are transmembrane proteins that bind and hydrolyze guanosine 5′-triphosphate to bring about the merging of adjacent mitochondrial membranes. This event is necessary for mitochondrial fusion, a biological process that is critical for organelle function. The broad effects of mitochondrial fusion on cell bioenergetics have been extensively studied, whereas the local effects of mitofusin activity on the structure and integrity of the fusing mitochondrial membranes have received relatively little attention. From the study of fusogenic proteins, theoretical models, and simulations, it has been noted that the fusion of biological membranes is associated with local perturbations on the integrity of the membrane that present in the form of lipidic holes which open on the opposing bilayers. These lipidic holes represent obligate intermediates that make the fusion process thermodynamically more favorable and at the same time induce leakage to the fusing membranes. In this perspectives article we present the relevant evidence selected from a spectrum of membrane fusion/leakage models and attempt to couple this information with observations conducted with cardiac myocytes or mitochondria deficient in Mfn-1 and Mfn-2. More specifically, we argue in favor of a situation whereby mitochondrial fusion in cardiac myocytes is coupled with outer mitochondrial membrane destabilization that is opportunistically employed during the process of mitochondrial permeability transition. We hope that these insights will initiate research on this new hypothesis of mitochondrial permeability transition regulation, a poorly understood mitochondrial function with significant consequences on myocyte survival. PMID:22636681
Integrated self-organization of transitional ER and early Golgi compartments.
Glick, Benjamin S
2014-02-01
COPII coated vesicles bud from an ER domain termed the transitional ER (tER), but the mechanism that clusters COPII vesicles at tER sites is unknown. tER sites are closely associated with early Golgi or pre-Golgi structures, suggesting that the clustering of nascent COPII vesicles could be achieved by tethering to adjacent membranes. This model challenges the prevailing view that COPII vesicles are clustered by a scaffolding protein at the ER surface. Although Sec16 was proposed to serve as such a scaffolding protein, recent data suggest that rather than organizing COPII into higher-order structures, Sec16 acts at the level of individual COPII vesicles to regulate COPII turnover. A plausible synthesis is that tER sites are created by tethering to Golgi membranes and are regulated by Sec16. Meanwhile, the COPII vesicles that bud from tER sites are thought to nucleate new Golgi cisternae. Thus, an integrated self-organization process may generate tER-Golgi units. © 2014 WILEY Periodicals, Inc.
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.
Freites, J Alfredo; Tobias, Douglas J
2015-06-01
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.
Mechanisms of membrane toxicity of hydrocarbons.
Sikkema, J; de Bont, J A; Poolman, B
1995-01-01
Microbial transformations of cyclic hydrocarbons have received much attention during the past three decades. Interest in the degradation of environmental pollutants as well as in applications of microorganisms in the catalysis of chemical reactions has stimulated research in this area. The metabolic pathways of various aromatics, cycloalkanes, and terpenes in different microorganisms have been elucidated, and the genetics of several of these routes have been clarified. The toxicity of these compounds to microorganisms is very important in the microbial degradation of hydrocarbons, but not many researchers have studied the mechanism of this toxic action. In this review, we present general ideas derived from the various reports mentioning toxic effects. Most importantly, lipophilic hydrocarbons accumulate in the membrane lipid bilayer, affecting the structural and functional properties of these membranes. As a result of accumulated hydrocarbon molecules, the membrane loses its integrity, and an increase in permeability to protons and ions has been observed in several instances. Consequently, dissipation of the proton motive force and impairment of intracellular pH homeostasis occur. In addition to the effects of lipophilic compounds on the lipid part of the membrane, proteins embedded in the membrane are affected. The effects on the membrane-embedded proteins probably result to a large extent from changes in the lipid environment; however, direct effects of lipophilic compounds on membrane proteins have also been observed. Finally, the effectiveness of changes in membrane lipid composition, modification of outer membrane lipopolysaccharide, altered cell wall constituents, and active excretion systems in reducing the membrane concentrations of lipophilic compounds is discussed. Also, the adaptations (e.g., increase in lipid ordering, change in lipid/protein ratio) that compensate for the changes in membrane structure are treated. PMID:7603409
Modeling and Analysis of Wrinkled Membranes: An Overview
NASA Technical Reports Server (NTRS)
Yang, B.; Ding, H.; Lou, M.; Fang, H.; Broduer, Steve (Technical Monitor)
2001-01-01
Thin-film membranes are basic elements of a variety of space inflatable/deployable structures. Wrinkling degrades the performance and reliability of these membrane structures, and hence has been a topic of continued interest. Wrinkling analysis of membranes for general geometry and arbitrary boundary conditions is quite challenging. The objective of this presentation is two-fold. Firstly, the existing models of wrinkled membranes and related numerical solution methods are reviewed. The important issues to be discussed are the capability of a membrane model to characterize taut, wrinkled and slack states of membranes in a consistent and physically reasonable manner; the ability of a wrinkling analysis method to predict the formation and growth of wrinkled regions, and to determine out-of-plane deformation and wrinkled waves; the convergence of a numerical solution method for wrinkling analysis; and the compatibility of a wrinkling analysis with general-purpose finite element codes. According to this review, several opening issues in modeling and analysis of wrinkled membranes that are to be addressed in future research are summarized, The second objective of this presentation is to discuss a newly developed membrane model of two viable parameters (2-VP model) and associated parametric finite element method (PFEM) for wrinkling analysis are introduced. The innovations and advantages of the proposed membrane model and PFEM-based wrinkling analysis are: (1) Via a unified stress-strain relation; the 2-VP model treat the taut, wrinkled, and slack states of membranes consistently; (2) The PFEM-based wrinkling analysis has guaranteed convergence; (3) The 2-VP model along with PFEM is capable of predicting membrane out-of-plane deformations; and (4) The PFEM can be integrated into any existing finite element code. Preliminary numerical examples are also included in this presentation to demonstrate the 2-VP model and PFEM-based wrinkling analysis approach.
Challenge Integrity: The Cell-Penetrating Peptide BP100 Interferes with the Auxin-Actin Oscillator.
Eggenberger, Kai; Sanyal, Papia; Hundt, Svenja; Wadhwani, Parvesh; Ulrich, Anne S; Nick, Peter
2017-01-01
Actin filaments are essential for the integrity of the cell membrane. In addition to this structural role, actin can modulate signaling by altering polar auxin flow. On the other hand, the organization of actin filaments is modulated by auxin constituting a self-referring signaling hub. Although the function of this auxin–actin oscillator is not clear, there is evidence for a functional link with stress signaling activated by the NADPH oxidase Respiratory burst oxidase Homolog (RboH). In the current work, we used the cell-penetrating peptide BP100 to induce a mild and transient perturbation of membrane integrity. We followed the response of actin to the BP100 uptake in a green fluorescent protein (GFP)-tagged actin marker line of tobacco Bright Yellow 2 (BY-2) cells by spinning disc confocal microscopy. We observed that BP100 enters in a stepwise manner and reduces the extent of actin remodeling. This actin ‘freezing’ can be rescued by the natural auxin IAA, and mimicked by the auxin-efflux inhibitor 1-napthylphthalamic acid (NPA). We further tested the role of the membrane-localized NADPH oxidase RboH using the specific inhibitor diphenyl iodonium (DPI), and found that DPI acts antagonistically to BP100, although DPI alone can induce a similar actin ‘freezing’ as well. We propose a working model, where the mild violation of membrane integrity by BP100 stimulates RboH, and the resulting elevated levels of reactive oxygen species interfere with actin dynamicity. The mitigating effect of auxin is explained by competition of auxin- and RboH-triggered signaling for superoxide anions. This self-referring auxin–actin–RboH hub might be essential for integrity sensing.
Daum, Bertram; Quax, Tessa E F; Sachse, Martin; Mills, Deryck J; Reimann, Julia; Yildiz, Özkan; Häder, Sabine; Saveanu, Cosmin; Forterre, Patrick; Albers, Sonja-Verena; Kühlbrandt, Werner; Prangishvili, David
2014-03-11
Viruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.
[The mass-spectrometry studies of the interaction of polyhexamethyleneguanidine with lipids].
Lysytsia, A V; Rebriiev, A V
2014-01-01
In this work the integral components of the cytoplasmic membrane, lecithin and cholesterol were used for mass spectrometry analysis carried out on polyhexamethyleneguanidine (PHMG) mixtures with lipids. The study was performed by mass-spectrometry methods of the MALDI-TOF MS. Our results showed that despite the common use of PHGM polymer derivatives as disinfectants the persistent intermolecular complexes of PHMG oligomers with lipids were not formed. The binding of polycation PHMG with the membrane has been explained by the model proposed. According to this model PHGM can adhere to negatively charged plasma membrane of bacterial cell due to electrostatic interaction and the formation of loop-like structures. Similar stereochemistry mechanism makes the adsorption of the investigated polycation to membrane robust. The mechanism described together with additional destructive factors provides a reasonable explanation for the PHMG induced damage of bacterial cell plasma membrane and the biocide action of disinfectants prepared on the basis of the PHMG salts.
Martínez-Gil, Luis; Sánchez-Navarro, Jesús A.; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael
2009-01-01
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement. PMID:19321624
Martínez-Gil, Luis; Sánchez-Navarro, Jesús A; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael
2009-06-01
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.
Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P
2013-10-03
Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and infection. The present study shows that HFPmn_V2E induces much less vesicle fusion than HFPmn. "HFPtr" contained three strands with HFPmn sequence that were chemically cross-linked near their C-termini. HFPtr mimics the trimeric topology of gp41 and induces much more rapid and extensive vesicle fusion than HFPmn. For HFPmn and HFPtr, well-resolved α and β peaks were observed for A6-, L9-, and L12-labeled samples. For each of these samples, there were similar HFP (13)CO to lipid (31)P proximities in the α and β structures, which evidenced comparable membrane locations of the HFP in either structure including insertion into a single membrane leaflet. The data were also consistent with deeper insertion of HFPtr relative to HFPmn in both the α and β structures. The results supported a strong correlation between the membrane insertion depth of the HFP and its fusogenicity. More generally, the results supported membrane location of the HFP as an important determinant of its fusogenicity. The deep insertion of HFPtr in both the α and β structures provides the most relevant membrane location of the FP for HIV gp41-catalyzed membrane fusion because HIV gp41 is natively trimeric. Well-resolved α and β signals were observed in the HFPmn_V2E samples with L9- and L12- but not A6-labeling. The α signals were much more dominant for L9- and L12-labeled HFPmn_V2E than the corresponding HFPmn or HFPtr. The structural model for the less fusogenic HFPmn_V2E includes a shorter helix and less membrane insertion than either HFPmn or HFPtr. This greater helical population and different helical structure and membrane location could result in less membrane perturbation and lower fusogenicity of HFPmn_V2E and suggest that the β sheet fusion peptide is the most functionally relevant structure of HFPmn, HFPtr, and gp41.
Assembly of β-barrel proteins in the mitochondrial outer membrane.
Höhr, Alexandra I C; Straub, Sebastian P; Warscheid, Bettina; Becker, Thomas; Wiedemann, Nils
2015-01-01
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER). Copyright © 2014 Elsevier B.V. All rights reserved.
Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis
NASA Astrophysics Data System (ADS)
Saiful; Borneman, Z.; Wessling, M.
2018-05-01
Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.
Chiu, Chi-Fang; Ghanekar, Yashoda; Frost, Laura; Diao, Aipo; Morrison, Daniel; McKenzie, Eddie; Lowe, Martin
2008-04-09
The Golgi apparatus occupies a central position within the secretory pathway, but the molecular mechanisms responsible for its assembly and organization remain poorly understood. We report here the identification of zinc finger protein-like 1 (ZFPL1) as a novel structural component of the Golgi apparatus. ZFPL1 is a conserved and widely expressed integral membrane protein with two predicted zinc fingers at the N-terminus, the second of which is a likely ring domain. ZFPL1 directly interacts with the cis-Golgi matrix protein GM130. Depletion of ZFPL1 results in the accumulation of cis-Golgi matrix proteins in the intermediate compartment (IC) and the tubulation of cis-Golgi and IC membranes. Loss of ZFPL1 function also impairs cis-Golgi assembly following brefeldin A washout and slows the rate of cargo trafficking into the Golgi apparatus. Effects upon Golgi matrix protein localization and cis-Golgi structure can be rescued by wild-type ZFPL1 but not mutants defective in GM130 binding. Together, these data suggest that ZFPL1 has an important function in maintaining the integrity of the cis-Golgi and that it does so through interactions with GM130.
Els-Heindl, Sylvia; Chollet, Constance; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Meiler, Jens; Huster, Daniel
2015-01-01
The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an α-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane. PMID:25803439
Gibbs motif sampling: detection of bacterial outer membrane protein repeats.
Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.
1995-01-01
The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488
SARS-CoV fusion peptides induce membrane surface ordering and curvature.
Basso, Luis G M; Vicente, Eduardo F; Crusca, Edson; Cilli, Eduardo M; Costa-Filho, Antonio J
2016-11-28
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
Brea, Roberto J.; Hardy, Michael D.; Devaraj, Neal K.
2015-01-01
There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing “hybrid” artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology. PMID:26149747
Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S
2018-04-01
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.
1980-10-01
for many cultures at one time (Acosta, 1979). When Nitro Blue tetrazolium (NBT) and phenazine methosulphate react with succinate dehydrogenase...microscopically-observable for- mazan granules are formed. When the structural integrity of the mitochondrial membranes is maintained, NBT and phenazine
Structural basis for spectrin recognition by ankyrin.
Ipsaro, Jonathan J; Mondragón, Alfonso
2010-05-20
Maintenance of membrane integrity and organization in the metazoan cell is accomplished through intracellular tethering of membrane proteins to an extensive, flexible protein network. Spectrin, the principal component of this network, is anchored to membrane proteins through the adaptor protein ankyrin. To elucidate the atomic basis for this interaction, we determined a crystal structure of human betaI-spectrin repeats 13 to 15 in complex with the ZU5-ANK domain of human ankyrin R. The structure reveals the role of repeats 14 to 15 in binding, the electrostatic and hydrophobic contributions along the interface, and the necessity for a particular orientation of the spectrin repeats. Using structural and biochemical data as a guide, we characterized the individual proteins and their interactions by binding and thermal stability analyses. In addition to validating the structural model, these data provide insight into the nature of some mutations associated with cell morphology defects, including those found in human diseases such as hereditary spherocytosis and elliptocytosis. Finally, analysis of the ZU5 domain suggests it is a versatile protein-protein interaction module with distinct interaction surfaces. The structure represents not only the first of a spectrin fragment in complex with its binding partner, but also that of an intermolecular complex involving a ZU5 domain.
Johnston, S D; Satake, N; Zee, Y; López-Fernández, C; Holt, W V; Gosálvez, J
2012-06-01
This study investigated whether cryopreservation-induced injury to koala spermatozoa could be explained using an experimental model that mimics the structural and physiological effects of osmotic flux. DNA labelling after in situ nick translation of thawed cryopreserved spermatozoa revealed a positive correlation (r=0.573; P<0.001; n=50) between the area of relaxed chromatin in the nucleus and the degree of nucleotide labelling. While the chromatin of some spermatozoa increased more than eight times its normal size, not all sperm nuclei with relaxed chromatin showed evidence of nucleotide incorporation. Preferential staining associated with sperm DNA fragmentation (SDF) was typically located in the peri-acrosomal and peripheral regions of the sperm head and at the base of the spermatozoa where it appear to be 'hot spots' of DNA damage following cryopreservation. Results of the comparative effects of anisotonic media and cryopreservation on the integrity of koala spermatozoa revealed that injury induced by exposure to osmotic flux, essentially imitated the results found following cryopreservation. Plasma membrane integrity, chromatin relaxation and SDF appeared particularly susceptible to extreme hypotonic environments. Mitochondrial membrane potential (MMP), while susceptible to extreme hypo- and hypertonic environments, showed an ability to rebound from hypertonic stress when returned to isotonic conditions. Koala spermatozoa exposed to 64 mOsm/kg media showed an equivalent, or more severe, degree of structural and physiological injury to that of frozen-thawed spermatozoa, supporting the hypothesis that cryoinjury is principally associated with a hypo-osmotic effect. A direct comparison of SDF of thawed cryopreserved spermatozoa and those exposed to a 64 mOsm/kg excursion showed a significant correlation (r=0.878; P<0.05; n=5); however, no correlation was found when the percentage of sperm with relaxed chromatin was compared. While a cryo-induced osmotic injury model appears to explain post-thaw changes in koala SDF, the mechanisms resulting in relaxed chromatin require further study. A lack of correlation between the percentage of sperm with relaxed chromatin and SDF suggests that the timing of these pathologies are asynchronous. We propose an integrative model of cryo-induced osmotic injury that involves a combination of structural damage (rupture of membrane) and oxidative stress that first leads to the reduction of MMP and the relaxation of chromatin, which is then ultimately followed by an increase in DNA fragmentation.
Determining the Topology of Integral Membrane Peptides Using EPR Spectroscopy
Inbaraj, Johnson J.; Cardon, Thomas B.; Laryukhin, Mikhail; Grosser, Stuart M.
2008-01-01
This paper reports on the development of a new structural biology technique for determining the membrane topology of an integral membrane protein inserted into magnetically aligned phospholipid bilayers (bicelles) using EPR spectroscopy. The nitroxide spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) was attached to the pore-lining transmembrane domain (M2δ) of the nicotinic acetylcholine receptor (AChR) and incorporated into a bicelle. The corresponding EPR spectra revealed hyperfine splittings that were highly dependent on the macroscopic orientation of the bicelles with respect to the static magnetic field. The helical tilt of the peptide can be easily calculated using the hyperfine splittings gleaned from the orientational dependent EPR spectra. A helical tilt of 14° was calculated for the M2δ peptide with respect to the bilayer normal of the membrane, which agrees well with previous 15N solid-state NMR studies. The helical tilt of the peptide was verified by simulating the corresponding EPR spectra using the standardized MOMD approach. This new method is advantageous because: (1) bicelle samples are easy to prepare, (2) the helical tilt can be directly calculated from the orientational-dependent hyperfine splitting in the EPR spectra, and (3) EPR spectroscopy is approximately 1000 fold more sensitive than 15N solid-state NMR spectroscopy; thus, the helical tilt of an integral membrane peptide can be determined with only 100 μg of peptide. The helical tilt can be determined more accurately by placing TOAC spin labels at several positions with this technique. PMID:16848493
Pingitore, V; Miriello, D; Drioli, E; Gugliuzza, A
2015-06-14
This work describes some single walled carboxylic carbon nanotubes with outstanding transport properties when assembled in a 3D microarray working like a humidity membrane-sensor and an adjustable moisture regulator. Combined nano-assembly approaches are used to build up a better quality pathway through which assisted-charge and mass transport synchronically takes place. The structure-electrical response relationship is found, while controllable and tunable donor-acceptor interactions established at material interfaces are regarded as key factors for the accomplishment of charge transportation, enhanced electrical responses and adjustable moisture exchange. Raman and infrared spectroscopy provides indications about the fine structural and chemical features of the hybrid-composite membranes, resulting in perfect agreement with related morphology and electrical properties. Enhanced and modular electrical response to changes in the surrounding atmosphere is concerned with doping events, while assisted moisture regulation is discussed in relation to swelling and hopping actions. The electro-activated hybrid-composite membrane proposed in this work can be regarded as an attractive 'sense-to-act' precursor for smart long-distance monitoring systems with capability to adapt itself and provide local comfortable microenvironments.
Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration.
Türkkan, Sibel; Pazarçeviren, A Engin; Keskin, Dilek; Machin, Nesrin E; Duygulu, Özgür; Tezcaner, Ayşen
2017-11-01
Guided bone regeneration (GBR) concept has been developed to prevent the formation of non-functional scar tissue layer on defect site by undertaking barrier role. In this study, a new bilayer membrane which consisted of one layer of electrospun silk fibroin/PCL-PEG-PCL incorporating nanocalcium phosphate (SPCA) 1 and one layer of PCL membrane was developed for GBR. To improve the osteoconductivity of membranes, nanosized calcium phosphate particles synthesized by Flame Spray Pyrolysis method were incorporated into membranes at 10% (wt) (SPCA10) and 20% (wt) (SPCA20) of the polymer content. The structural and chemical analyses revealed the well-integrated two layers of membranes with a total thickness of ca 100μm. In the regenerative layer, the highly porous mesh structure had a thickness of 12.6μm with randomly oriented fibers having diameters around 760nm, and nanoparticles dispersed homogenously. The mechanical test results showed remarkable improvement on the tensile strength of membranes with incorporation of nanoparticles. Higher water affinity of nanoCaP included membranes was proved by lower contact angle values and higher percent water uptake capacity. Biomineralization assay revealed that nucleation and growth of apatites around fibers of SPCA10 and SPCA20 were apparent while on SPCA0 apatite minerals were barely detected after 10days. Human dental pulp stem cells (DPSC) were seeded on electrospun layer of the bilayer membranes for biocompatibility and osteo-compatibility study. Increasing nanoCaP amount resulted in higher cell adhesion, proliferation, ALP activity and calcium deposition on membranes. These overall results confirmed the biocompatibility and potential applicability of proposed membranes for GBR treatments. Copyright © 2017 Elsevier B.V. All rights reserved.
[Eosin Y-water test for sperm function examination].
Zha, Shu-wei; Lü, Nian-qing; Xu, Hao-qin
2015-06-01
Based on the principles of the in vitro staining technique, hypotonic swelling test, and water test, the Eosin Y-water test method was developed to simultaneously detect the integrity of the sperm head and tail and sperm membrane structure and function. As a widely used method in clinical laboratories in China, the Eosin Y-water test is methodologically characterized by three advantages. Firstly, both the sperm head and tail can be detected at the same time, which allows easy and comprehensive assessment of membrane damage in different parts of sperm. Secondly, distilled water is used instead of the usual formula solution to simplify and standardize the test by eliminating any potential effects on the water molecules through the sperm membrane due to different osmotic pressure or different sugar proportions and electrolyte solutions. Thirdly, the test takes less time and thus can be repeated before and after treatment. This article focuses on the fundamental principles and modification of the Eosin Y-water test and its application in sperm function examination and routine semen analysis for male infertility, assessment of the quality of sperm retrieved by testicular fine needle aspiration, semen cryopreservation program development, and evaluation of sperm membrane integrity after microwave radiation.
Structure and interactions in biomaterials based on membrane-biopolymer self-assembly
NASA Astrophysics Data System (ADS)
Koltover, Ilya
Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity < 0.04° ) multilayers of fused bR membranes permitted, for the first time, application of powerful interface-sensitive x-ray scattering techniques to a membrane-protein system. (ii) Interactions between the particles chemically attached or absorbed onto the surfaces of flexible giant phospholipid vesicles. Using video-enhanced light microscopy we have observed a membrane-distortion induced attraction between the particles with the interaction range of the order of particle diameter. Fluid membranes decorated with many particles exhibited: (i) a finite-sized two-dimensional closed packed aggregates and (ii) a one-dimensional ring-like aggregates. (iii) Structure, stability and interactions in the cationic lipid-DNA complexes. Cationic liposomes complexed with DNA are among the most promising synthetic non-viral carriers of DNA vectors currently used in gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures with a transfectionen-hancing lipid DOPE. This structure ( HcII ) derived from synchrotron x-ray diffraction consists of DNA coated by cationic lipid monolayers and arranged on a two-dimensional hexagonal lattice. Optical microscopy revealed that the L ca complexes bind stably to anionic vesicles (models of cellular membranes), whereas the more transfectant HcII complexes are unstable, rapidly fusing and releasing DNA upon adhering to anionic vesicles.
Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin
2015-11-01
Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications. Copyright © 2015 Elsevier Inc. All rights reserved.
In silico local structure approach: a case study on outer membrane proteins.
Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude
2008-04-01
The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. (c) 2007 Wiley-Liss, Inc.
Glycosylatable GFP as a compartment-specific membrane topology reporter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hunsang; Min, Jisoo; Heijne, Gunnar von
2012-11-02
Highlights: Black-Right-Pointing-Pointer An N-linked glycosylation site is introduced near the GFP fluorophore. Black-Right-Pointing-Pointer gGFP is not glycosylated and is fully fluorescent in the cytosol. Black-Right-Pointing-Pointer gGFP is glycosylated and non-fluorescent in the lumen of the ER. Black-Right-Pointing-Pointer gGFP is fused to membrane proteins of known topology. Black-Right-Pointing-Pointer Its applicability as a membrane topology reporter is demonstrated. -- Abstract: Determination of the membrane topology is an essential step in structural and functional studies of integral membrane proteins, yet the choices of membrane topology reporters are limited and the experimental analysis can be laborious, especially in eukaryotic cells. Here, we present amore » robust membrane topology reporter, glycosylatable green fluorescent protein (gGFP). gGFP is fully fluorescent in the yeast cytosol but becomes glycosylated and does not fluoresce in the lumen of the endoplasmic reticulum (ER). Thus, by assaying fluorescence and the glycosylation status of C-terminal fusions of gGFP to target membrane proteins in whole-cell lysates, the localization of the gGFP moiety (and hence the fusion joint) relative to the ER membrane can be unambiguously determined.« less
The Integration of Nanoscale Techniques for an Improved Battery Technology
2012-06-08
anodized aluminum oxide ( AAO ) membranes that were 13...nanoporous anodized aluminum oxide ( AAO ) substrate [13]. During sputtering, thickened columnar growths form around the pores of the substrate...investigates an interpenetrating network structure where ―tubes‖ of polymer electrolyte are placed in the nanopores of anodic aluminum oxide ( AAO
Vamvouka, Magdalini; Cieslak, John; Van Eps, Ned; Hubbell, Wayne; Gross, Adrian
2008-01-01
A four-pulse electron paramagnetic resonance experiment was used to measure long-range inter-subunit distances in reconstituted KvAP, a voltage-dependent potassium (Kv) channel. The measurements have allowed us to reach the following five conclusions about the native structure of the voltage sensor of KvAP. First, the S1 helix of the voltage sensor engages in a helix packing interaction with the pore domain. Second, the crystallographically observed antiparallel helix-turn-helix motif of the voltage-sensing paddle is retained in the membrane-embedded voltage sensor. Third, the paddle is oriented in such a way as to expose one face to the pore domain and the opposite face to the membrane. Fourth, the paddle and the pore domain appear to be separated by a gap that is sufficiently wide for lipids to penetrate between the two domains. Fifth, the critical voltage-sensing arginine residues on the paddle appear to be lipid exposed. These results demonstrate the importance of the membrane for the native structure of Kv channels, suggest that lipids are an integral part of their native structure, and place the voltage-sensing machinery into a complex lipid environment near the pore domain. PMID:18287283
Schaller-Laudel, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Daum, Sebastian; Bacia, Kirsten; Wilhelm, Christian; Goss, Reimund
2017-07-01
The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation. © 2017 Scandinavian Plant Physiology Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, S.P.; Sonwalkar, N.
1991-04-01
The effect of gamma irradiation on the integrity of plasma membranes isolated from Chinese hamster V79 cells was investigated by Raman spectroscopy. Plasma membranes of control V79 cells show transitions between {minus}10 and 5{degree}C (low-temperature transition), 10 and 22{degree}C (middle-temperature transition), and 32 and 40{degree}C (high-temperature transition). Irradiation (5 Gy) alters these transitions markedly. First, the low-temperature transition shifts to higher temperature (onset and completion temperatures 4 and 14{degree}C). Second, the middle-temperature transition shifts up to the range of about 20-32{degree}C, but the width remains unchanged. Third, the higher temperature transition broadens markedly and shifts to the range of aboutmore » 15-40{degree}C. Protein secondary structure as determined by least-squares analysis of the amide I bands shows 36% total helix, 55% total beta-strand, and 9% turn plus undefined for control plasma membrane proteins. Plasma membrane proteins of irradiated V79 cells show an increase in total helix (40 and 45% at 5 and 10 Gy, respectively) and a decrease in the total beta-strand (48 and 44% at 5 and 10 Gy, respectively) structures. The qualitative analysis of the Raman features of plasma membranes and model compounds in the 1600 cm-1 region, assigned to tyrosine groups, revealed that irradiation alters the microenvironment of these groups. We conclude that the radiation dose used in the survival range of Chinese hamster V79 cells can cause damage to plasma membrane proteins without detectable lipid peroxidation, and that the altered proteins react differently with lipids, yielding a shift in the thermal transition properties.« less
Hiruma-Shimizu, Kazumi; Shimizu, Hiroki; Thompson, Gary S; Kalverda, Arnout P; Patching, Simon G
2015-01-01
Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-β-D-glucoside (β-OG), n-dodecyl-β-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.
Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.
Peng, Yuan; Li, Yanshuo; Ban, Yujie; Jin, Hua; Jiao, Wenmei; Liu, Xinlei; Yang, Weishen
2014-12-12
Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets. Copyright © 2014, American Association for the Advancement of Science.
Song, Jianxing
2013-01-01
In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the β-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded with integral membrane proteins, if proteins originally emerged in unsalted prebiotic media. PMID:24555050
Mitochondrial antibodies in primary biliary cirrhosis
Berg, P. A.; Roitt, I. M.; Doniach, D.; Cooper, H. M.
1969-01-01
The effect on the mitochondrial antigen of different agents known to influence the integrity and structure of membranes has been studied using quantitative complement fixation with autoantibodies from the serum of a patient with primary biliary cirrhosis. The susceptibility to proteolytic enzymes suggests that the antigen is a protein. Activity depends upon an association with phospholipids. Addition of phospholipids prevents loss of antigen during artificial ageing of mitochondria at 37°. Activity is lost after treatment with phospholipases or solvents which extract phospholipids. Antigen is also destroyed by surface active agents which dissociate the link with phospholipid but those which weaken bonds between phospholipids and hydrophobic molecules yield fragments of antigen-containing membrane structures which, nonetheless, still react with the mitochondrial autoantibody. ImagesFIG. 2FIG. 4 PMID:5804537
Oropesa-Ávila, Manuel; Fernández-Vega, Alejandro; de la Mata, Mario; Garrido-Maraver, Juan; Cotán, David; Paz, Marina Villanueva; Pavón, Ana Delgado; Cordero, Mario D; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Lema, Rafael; Zaderenko, Ana Paula; Sánchez-Alcázar, José A
2014-09-01
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.
Czubryt, M P; Russell, J C; Sarantopoulos, J; Gilchrist, J S; Pierce, G N
1997-11-01
The putative role of the nuclear nucleoside triphosphatase (NTPase) is to provide energy to the nuclear pore complex for poly A(+) mRNA export. Previous work has demonstrated that liver nuclear NTPase activity is greater in 6 month old corpulent (cp/cp) female JCR:LA rats, a hyperlipidemic rat model, compared to lean (+/?) animals. This increase appeared to be related to increases in nuclear membrane cholesterol content. The current study extended these initial data to compare NTPase activity as a function of age and sex in isolated JCR:LA-cp rat liver nuclei, to further test the hypothesis that nuclear membrane cholesterol may modulate NTPase activity. NTPase activity was increased in cp/cp female animals compared to +/? females at all ages studied, with Vmax values increased by 60-176%. Membrane integrity of cp/cp female nuclei was reduced compared to +/? female nuclei. Nuclear membrane cholesterol levels increased linearly with age by 50, 150 and 250% in 3, 6 and 9 month old cp/cp females over leans. In contrast, nuclei from cp/cp males exhibited only minor, isolated changes in NTPase activity. Furthermore, there were no significant changes in nuclear cholesterol content or membrane integrity in the less hyperlipidemic male animals at any age. These data suggest that altered lipid metabolism may lead to changes in nuclear membrane structure, which in turn may alter NTPase activity and functioning of the nuclear pore complex.
Johannisson, A; Figueiredo, M I; Al-Kass, Z; Morrell, J M
2018-05-01
An improved fertility prediction for stallions is of importance for equine breeding. Here, we investigate the potential of a combined staining of stallion spermatozoa for superoxide and mitochondrial membrane potential (MMP) for this purpose. Semen samples were analysed immediately after arrival at the laboratory, as well as after 24 h. Superoxide was measured by MitoSOXRed, while MMP was measured with JC-1. Menadione was used to stimulate superoxide production. In addition, other parameters of sperm quality, namely motility, membrane integrity, chromatin integrity, sperm kinematics and Hoechst 33258 exclusion were measured and correlated to superoxide production and MMP. Both bivariate correlations between measured parameters as well as multivariate analysis were performed. Measured values in the superoxide/MMP assay did not correlate with other parameters. However, there was a strong negative correlation (r = 0.96 after 0 h, r = 0.95 after 24 h) between membrane integrity and chromatin integrity. Moderate positive correlations were found between motility parameters and membrane integrity, as well as moderate negative correlations between motility parameters and chromatin integrity. The multivariate analysis revealed that membrane integrity, chromatin integrity and motility contributed to the first principal component, while the second was influenced by superoxide/MMP parameters as well as sperm kinematics. Storage of samples for 24 h decreased motility, chromatin integrity and membrane integrity. In conclusion, combined measurement of superoxide and MMP provides additional information not obtained by other assays of sperm quality. Copyright © 2018 Elsevier B.V. All rights reserved.
Gonzalez, M E; Jernstedt, J A; Slaughter, D C; Barrett, D M
2010-09-01
The integrity of onion cells and its impact on tissue texture after high pressure and thermal processing was studied. The contribution of cell membranes and the pectic component of cell walls on the texture properties of onion tissue were analyzed. Neutral red (NR) staining of onion parenchyma cell vacuoles was used for the evaluation of cell membrane integrity and microscopic image analysis was used for its quantification. The content of methanol in tissue as a result of pectin methylesterase activity was used to evaluate the pectin component of the middle lamella and cell walls and the hardening effect on the tissue after processing. High pressure treatments consisted of 5-min holding times at 50, 100, 200, 300, or 600 MPa. Thermal treatments consisted of 30-min water bath exposure to 40, 50, 60, 70, or 90 °C. In the high pressure treatments, loss of membrane integrity commenced at 200 MPa and total loss of membrane integrity occurred at 300 MPa and above. In the thermal treatments, membrane integrity was lost between 50 and 60 °C. The texture of onions was influenced by the state of the membranes and texture profiles were abruptly modified once membrane integrity was lost. Hardening of the tissue corresponded with pressure and temperature PME activation and occurred after membrane integrity loss. The texture of vegetables is an important quality attribute that affects consumer preference. Loss of textural integrity also indicates that other biochemical reactions that affect color, flavor, and nutrient content may occur more rapidly. In this study, we analyzed changes in the texture of onions after preservation with heat and high pressure.
Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San
2017-04-01
An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transport Studies and Modeling in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly
2014-07-30
This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalentmore » weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties was not achieved. We have simulated fuel cell performance, current distribution and water distribution at various values of the water uptake, membrane diffusivity, and electro-osmotic drag coefficient (EODC) and compared modeling results with segmented-cell data for both serpentine and parallel flow-fields. We have developed iterations of fuel cell flow fields to achieve specific water transport and thermal management targets. This work demonstrated the importance of membrane diffusivity on fuel cell performance, the necessity of a high membrane diffusion coefficient, and the desirability of a low EODC at low levels of relative humidity.« less
Kessels, Michael M; Qualmann, Britta
2015-09-01
A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions. © 2015. Published by The Company of Biologists Ltd.
Block copolymers for alkaline fuel cell membrane materials
NASA Astrophysics Data System (ADS)
Li, Yifan
Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC-b-PS. The incorporation of the hydrophilic polymer allows for an investigation of the effect of hydration on ionic conductivity, resulting in the increase in membrane water affinity, enhancement of conductivity and reduced dependence of conductivity on relative humidity. A study of crosslinking of block copolymers was done wherein the crosslinking occurs in the non-matrix phase in order to maintain mechanical properties. The formation of a cationic crosslinked structure improves the mechanical integrity of the membrane in water while showing little deleterious effect on ionic conductivity and mechanical properties.
Design and function of biomimetic multilayer water purification membranes
Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L.; Buehler, Markus J.
2017-01-01
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. PMID:28435877
Design and function of biomimetic multilayer water purification membranes.
Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L; Buehler, Markus J
2017-04-01
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
A membrane stirrer for product recovery and substrate feeding.
Femmer, T; Carstensen, F; Wessling, M
2015-02-01
During fermentation processes, in situ product recovery (ISPR) using submerged membranes allows a continuous operation mode with effective product removal. Continuous recovery reduces product inhibition and organisms in the reactor are not exposed to changing reaction conditions. For an effective in situ product removal, submerged membrane systems should have a sufficient large membrane area and an anti-fouling concept integrated in a compact device for the limited space in a lab-scale bioreactor. We present a new membrane stirrer with integrated filtration membranes on the impeller blades as well as an integrated gassing concept in an all-in-one device. The stirrer is fabricated by rapid prototyping and is equipped with a commercial micromesh membrane. Filtration performance is tested using a yeast cell suspension with different stirring speeds and aeration fluxes. We reduce membrane fouling by backflushing through the membrane with the product stream. © 2014 Wiley Periodicals, Inc.
Oropesa, Manuel; de la Mata, Mario; Maraver, Juan Garrido; Cordero, Mario D; Cotán, David; Rodríguez-Hernández, Angeles; Domínguez-Moñino, Irene; de Miguel, Manuel; Navas, Plácido; Sánchez-Alcázar, José A
2011-04-01
Microtubule cytoskeleton is reformed during apoptosis, forming a cortical structure beneath plasma membrane, which plays an important role in preserving cell morphology and plasma membrane integrity. However, the maintenance of the apoptotic microtubule network (AMN) during apoptosis is not understood. In the present study, we examined apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. We demonstrate that AMN was organized in apoptotic cells with high ATP levels and hyperpolarized mitochondria and, on the contrary, was dismantled in apoptotic cells with low ATP levels and mitochondrial depolarization. AMN disorganization after mitochondrial depolarization was associated with increased plasma membrane permeability assessed by enhancing LDH release and increased intracellular calcium levels. Living cell imaging monitoring of both, microtubule dynamics and mitochondrial membrane potential, showed that AMN persists during apoptosis coinciding with cycles of mitochondrial hyperpolarization. Eventually, AMN was disorganized when mitochondria suffered a large depolarization and cell underwent secondary necrosis. AMN stabilization by taxol prevented LDH release and calcium influx even though mitochondria were depolarized, suggesting that AMN is essential for plasma membrane integrity. Furthermore, high ATP levels and mitochondria polarization collapse after oligomycin treatment in apoptotic cells suggest that ATP synthase works in "reverse" mode during apoptosis. These data provide new explanations for the role of AMN and mitochondria during apoptosis.
Guilfoyle, Amy P; Deshpande, Chandrika N; Vincent, Kimberley; Pedroso, Marcelo M; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika
2014-05-01
GTPases (G proteins) hydrolyze the conversion of GTP to GDP and free phosphate, comprising an integral part of prokaryotic and eukaryotic signaling, protein biosynthesis and cell division, as well as membrane transport processes. The G protein cycle is brought to a halt after GTP hydrolysis, and requires the release of GDP before a new cycle can be initiated. For eukaryotic heterotrimeric Gαβγ proteins, the interaction with a membrane-bound G protein-coupled receptor catalyzes the release of GDP from the Gα subunit. Structural and functional studies have implicated one of the nucleotide binding sequence motifs, the G5 motif, as playing an integral part in this release mechanism. Indeed, a Gαs G5 mutant (A366S) was shown to have an accelerated GDP release rate, mimicking a G protein-coupled receptor catalyzed release state. In the present study, we investigate the role of the equivalent residue in the G5 motif (residue A143) in the prokaryotic membrane protein FeoB from Streptococcus thermophilus, which includes an N-terminal soluble G protein domain. The structure of this domain has previously been determined in the apo and GDP-bound states and in the presence of a transition state analogue, revealing conformational changes in the G5 motif. The A143 residue was mutated to a serine and analyzed with respect to changes in GTPase activity, nucleotide release rate, GDP affinity and structural alterations. We conclude that the identity of the residue at this position in the G5 loop plays a key role in the nucleotide release rate by allowing the correct positioning and hydrogen bonding of the nucleotide base. © 2014 FEBS.
Xue, Rui; Liu, Yalong; Liang, Congcong; Qin, Huazhen; Liu, Pengfei; Wang, Ke; Zhang, Xiaoyong; Chen, Li
2016-01-01
ABSTRACT To verify the interaction mechanism between sericin and Escherichia coli, especially the morphological and structural changes in the bacterial cells, the antimicrobial activity of sericin against E. coli as a model for Gram-negative bacteria was investigated. The antibacterial activity of sericin on E. coli and the interaction mechanism were investigated in this study by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with sericin. The changes in morphology and cellular compositions of bacterial cells treated with sericin were observed by an inverted fluorescence microscope, scanning electron microscopy, and transmission electron microscopy. Changes in electrical conductivity, total sugar concentration of the broth for the bacteria, and protein expression of the bacteria were determined to investigate the permeability of the cell membrane. A sericin-based hydrogel was prepared for an in vivo study of wound dressing. The results showed that the antibacterial activity of the hydrogel increased with the increase in the concentration of sericin from 10 g/liter to 40 g/liter. The introduction of sericin induces membrane blebbing of E. coli cells caused by antibiotic action on the cell membrane. The cytoplasm shrinkage phenomenon was accompanied by blurring of the membrane wall boundaries. When E. coli cells were treated with sericin, release of intracellular components quickly increased. The electrical conductivity assay indicated that the charged ions are reduced after exposure to sericin so that the integrity of the cell membrane is weakened and metabolism is blocked. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that sericin hinders the expression of bacterial protein. Sericin may damage the integrity of the bacterial cell membrane, thereby eventually inhibiting the growth and reproduction of E. coli. Compared to sterile gauze, the sericin-based hydrogel promoted fibroblast cell proliferation and accelerated the formation of granulation tissues and neovessels. IMPORTANCE The specific relationship and interaction mechanism between sericin and E. coli cells were investigated and elucidated. The results show that after 12 h of treatment, sericin molecules induce membrane blebbing of E. coli cells, and the bacteria show decreases in liquidity and permeability of biological membrane, resulting in alterations in the conductivity of the culture medium and the integrity of the outer membrane. The subsequent in vivo results demonstrate that the sericin-poly(N-isopropylacrylamide-N,N′-methylene-bis-acrylamide [NIPAm-MBA]) hydrogel accelerated wound healing compared to that with sterile gauze, which is a beneficial result for future applications in clinical medicine and the textile, food, and coating industries. PMID:27235427
Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure
Dinkla, S; Wessels, K; Verdurmen, W P R; Tomelleri, C; Cluitmans, J C A; Fransen, J; Fuchs, B; Schiller, J; Joosten, I; Brock, R; Bosman, G J C G M
2012-01-01
Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane–cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane–cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions. PMID:23076218
SARS-CoV fusion peptides induce membrane surface ordering and curvature
Basso, Luis G. M.; Vicente, Eduardo F.; Crusca Jr., Edson; Cilli, Eduardo M.; Costa-Filho, Antonio J.
2016-01-01
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed. PMID:27892522
Nascimbeni, Anna Chiara; Giordano, Francesca; Dupont, Nicolas; Grasso, Daniel; Vaccaro, Maria I; Codogno, Patrice; Morel, Etienne
2017-07-14
The double-membrane-bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl-inositol-3-phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER-plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E-Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E-Syt-containing domains during autophagy and that inhibition of E-Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E-Syts are essential for autophagy-associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER-plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy. © 2017 The Authors.
Designed β-Boomerang Antiendotoxic and Antimicrobial Peptides
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N.; Torres, Jaume; Bhattacharjya, Surajit
2009-01-01
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like β-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nm concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the β-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate β-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane. PMID:19520860
Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.
Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William
2017-02-03
Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?
NASA Astrophysics Data System (ADS)
Kohn, Florian; Hauslage, Jens; Hanke, Wolfgang
2017-10-01
All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.
Atomistic Models of General Anesthetics for Use in in Silico Biological Studies
2015-01-01
While small molecules have been used to induce anesthesia in a clinical setting for well over a century, a detailed understanding of the molecular mechanism remains elusive. In this study, we utilize ab initio calculations to develop a novel set of CHARMM-compatible parameters for the ubiquitous modern anesthetics desflurane, isoflurane, sevoflurane, and propofol for use in molecular dynamics (MD) simulations. The parameters generated were rigorously tested against known experimental physicochemical properties including dipole moment, density, enthalpy of vaporization, and free energy of solvation. In all cases, the anesthetic parameters were able to reproduce experimental measurements, signifying the robustness and accuracy of the atomistic models developed. The models were then used to study the interaction of anesthetics with the membrane. Calculation of the potential of mean force for inserting the molecules into a POPC bilayer revealed a distinct energetic minimum of 4–5 kcal/mol relative to aqueous solution at the level of the glycerol backbone in the membrane. The location of this minimum within the membrane suggests that anesthetics partition to the membrane prior to binding their ion channel targets, giving context to the Meyer–Overton correlation. Moreover, MD simulations of these drugs in the membrane give rise to computed membrane structural parameters, including atomic distribution, deuterium order parameters, dipole potential, and lateral stress profile, that indicate partitioning of anesthetics into the membrane at the concentration range studied here, which does not appear to perturb the structural integrity of the lipid bilayer. These results signify that an indirect, membrane-mediated mechanism of channel modulation is unlikely. PMID:25303275
Leto, Kenneth J.; Keresztes, Aron; Arntzen, Charles J.
1982-01-01
The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts. Images PMID:16662421
Novel scanning electron microscope bulge test technique integrated with loading function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuanwei; Xie, Huimin, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn
2014-10-15
Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplifiedmore » Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.« less
Maturation of the Gag core decreases the stability of retroviral lipid membranes.
Davidoff, Candice; Payne, Riley J; Willis, Sharon H; Doranz, Benjamin J; Rucker, Joseph B
2012-11-25
To better understand how detergents disrupt enveloped viruses, we monitored the biophysical stability of murine leukemia virus (MLV) virus-like particles (VLPs) against a panel of commonly used detergents using real-time biosensor measurements. Although exposure to many detergents, such as Triton X-100 and Empigen, results in lysis of VLP membranes, VLPs appeared resistant to complete membrane lysis by a significant number of detergents, including Tween 20, Tween 80, Lubrol, and Saponin. VLPs maintained their structural integrity after exposure to Tween 20 at concentrations up to 500-fold above its CMC. Remarkably, VLPs containing immature cores composed of unprocessed (uncleaved) Gag polyprotein were significantly more resistant to detergent lysis than VLPs with mature cores. Although the maturity of retroviral Gag is known to influence the stability of the protein core structure itself, our studies suggest that the maturity of the Gag core also influences the stability of the lipid bilayer surrounding the core. Copyright © 2012 Elsevier Inc. All rights reserved.
Maturation of the Gag core decreases the stability of retroviral lipid membranes
Davidoff, Candice; Payne, Riley; Willis, Sharon H.; Doranz, Benjamin J.; Rucker, Joseph B.
2012-01-01
To better understand how detergents disrupt enveloped viruses, we monitored the biophysical stability of murine leukemia virus (MLV) virus-like particles (VLPs) against a panel of commonly used detergents using real-time biosensor measurements. Although exposure to many detergents, such as Triton X-100 and Empigen, results in lysis of VLP membranes, VLPs appeared resistant to complete membrane lysis by a significant number of detergents, including Tween 20, Tween 80, Lubrol, and Saponin. VLPs maintained their structural integrity after exposure to Tween 20 at concentrations up to 500-fold above its CMC. Remarkably, VLPs containing immature cores composed of unprocessed (uncleaved) Gag polyprotein were significantly more resistant to detergent lysis than VLPs with mature cores. Although the maturity of retroviral Gag is known to influence the stability of the protein core structure itself, our studies suggest that the maturity of the Gag core also influences the stability of the lipid bilayer surrounding the core. PMID:22995186
Lipid Cell Biology: A Focus on Lipids in Cell Division.
Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S
2018-06-20
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al
Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin
2016-01-01
Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405
Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Chih-Chia; Yin, Linxiang; Kumar, Nitin
2017-08-01
Resistance-nodulation-cell division efflux pumps are integral membrane proteins that catalyze the export of substrates across cell membranes. Within the hydrophobe-amphiphile efflux subfamily, these resistance-nodulation-cell division proteins largely form trimeric efflux pumps. The drug efflux process has been proposed to entail a synchronized motion between subunits of the trimer to advance the transport cycle, leading to the extrusion of drug molecules. Here we use X-ray crystallography and single-molecule fluorescence resonance energy transfer imaging to elucidate the structures and functional dynamics of the Campylobacter jejuni CmeB multidrug efflux pump. We find that the CmeB trimer displays a very unique conformation. A directmore » observation of transport dynamics in individual CmeB trimers embedded in membrane vesicles indicates that each CmeB subunit undergoes conformational transitions uncoordinated and independent of each other. On the basis of our findings and analyses, we propose a model for transport mechanism where CmeB protomers function independently within the trimer.« less
The effects of gamma irradiation on micro-hotplates with integrated temperature sensing diodes
NASA Astrophysics Data System (ADS)
Francis, Laurent A.; André, Nicolas; Boufouss, El Hafed; Gérard, Pierre; Ali, Zeeshan; Udrea, Florin; Flandre, Denis
2014-06-01
Micro-hotplates are MEMS structures of interest for low-power gas sensing, lab-on-chips and space applications, such as micro-thrusters. Micro-hotplates usually consist in a Joule heater suspended on a thin-film membrane while thermopiles or thermodiodes are added as temperature sensors and for feedback control. The implementation of micro-hotplates using a Silicon-On-Insulator technology makes them suited for co-integration with analog integrated circuits and operation at elevated environmental temperatures in a range from 200 to 300 °C, while the heater allows thermal cycling in the kHz regime up to 700 °C, e.g. necessary for the activation of gas sensitive metal-oxide on top of the membrane, with mWrange electrical power. The demonstrated resistance of micro-hotplates to gamma radiations can extend their use in nuclear plants, biomedical sterilization and space applications. In this work, we present results from electrical tests on micro-hotplates during their irradiation by Cobalt-60 gamma rays with total doses up to 18.90 kGy. The micro-hotplates are fabricated using a commercial 1.0 μm Silicon-On-Insulator technology with a tungsten Joule heater, which allows power-controlled operation above 600 °C with less than 60 mW, and temperature sensing silicon diodes located on the membrane and on the bulk. We show the immunity of the sensing platform to the harsh radiation environment. Beside the good tolerance of the thermodiodes and the membrane materials to the total radiation dose, the thermodiode located on the heating membrane is constantly annealed during irradiation and keeps a constant sensitivity while post-irradiation annealing can restore the thermodiode.
Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui
2013-01-01
This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.
Connexin channels and phospholipids: association and modulation
Locke, Darren; Harris, Andrew L
2009-01-01
Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents. PMID:19686581
Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination
ERIC Educational Resources Information Center
Ladner, David Allen
2009-01-01
Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…
Yang, Yiwei; Xu, Yuejin; Miu, Jichang; Zhou, Linghong; Xiao, Zhongju
2012-10-01
To apply the classic leakage integrate-and-fire models, based on the mechanism of the generation of physiological auditory stimulation, in the information processing coding of cochlear implants to improve the auditory result. The results of algorithm simulation in digital signal processor (DSP) were imported into Matlab for a comparative analysis. Compared with CIS coding, the algorithm of membrane potential integrate-and-fire (MPIF) allowed more natural pulse discharge in a pseudo-random manner to better fit the physiological structures. The MPIF algorithm can effectively solve the problem of the dynamic structure of the delivered auditory information sequence issued in the auditory center and allowed integration of the stimulating pulses and time coding to ensure the coherence and relevance of the stimulating pulse time.
Complete inactivation of Venezuelan equine encephalitis virus by 1,5-iodonaphthylazide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Anuj; Birla Institute of Technology and Science, Pilani; Raviv, Yossef
2007-06-29
Hydrophobic alkylating compounds like 1,5-iodonaphthylazide (INA) partitions into biological membranes and accumulates selectively into the hydrophobic domain of the lipid bilayer. Upon irradiation with far UV light, INA binds selectively to transmembrane proteins in the viral envelope and renders them inactive. Such inactivation does not alter the ectodomains of the membrane proteins thus preserving the structural and conformational integrity of immunogens on the surface of the virus. In this study, we have used INA to inactivate Venezuelan equine encephalitis virus (VEEV). Treatment of VEEV with INA followed by irradiation with UV light resulted in complete inactivation of the virus. Immuno-fluorescencemore » for VEEV and virus titration showed no virus replication in-vitro. Complete loss of infectivity was also achieved in mice infected with INA treated plus irradiated preparations of VEEV. No change in the structural integrity of VEEV particles were observed after treatment with INA plus irradiation as assessed by electron microscopy. This data suggest that such inactivation strategies can be used for developing vaccine candidates for VEEV and other enveloped viruses.« less
Optical Diagnostic System for Solar Sails: Phase 1 Final Report
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.
2004-01-01
NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.
Hernández, Sebastián; Papp, Joseph K.; Bhattacharyya, Dibakar
2014-01-01
Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30–60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed. PMID:24954975
Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.
2017-01-01
Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets. PMID:28593951
NASA Astrophysics Data System (ADS)
Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.
2017-06-01
Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.
NASA Astrophysics Data System (ADS)
Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.
2016-11-01
Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.
Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology
NASA Astrophysics Data System (ADS)
Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.
2015-04-01
The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.
NASA Astrophysics Data System (ADS)
Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.
2014-07-01
Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.
The Charcot Marie Tooth disease protein LITAF is a zinc-binding monotopic membrane protein
Qin, Wenxia; Wunderley, Lydia; Barrett, Anne L.; High, Stephen; Woodman, Philip G.
2016-01-01
LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61β, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins. PMID:27582497
Pakrasi, H B; De Ciechi, P; Whitmarsh, J
1991-01-01
Cytochrome (cyt) b559, an integral membrane protein, is an essential component of the photosystem II (PSII) complex in the thylakoid membranes of oxygenic photosynthetic organisms. Cyt b559 has two subunits, alpha and beta, each with one predicted membrane spanning alpha-helical domain. The heme cofactor of this cytochrome is coordinated between two histidine residues. Each of the two subunit polypeptides of cyt b559 has one His residue. To investigate the influence of these His residues on the structure of cyt b559 and the PSII complex, we used a site directed mutagenesis approach to replace each His residue with a Leu residue. Introduction of these missense mutations in the transformable unicellular cyanobacterium, Synechocystis 6803, resulted in complete loss of PSII activity. Northern blot analysis showed that these mutations did not affect the stability of the polycistronic mRNA that encompasses both the psbE and the psbF genes, encoding the alpha and the beta subunits, respectively. Moreover, both of the single His mutants showed the presence of the alpha subunit which was 1.5 kd smaller than the same polypeptide in wild type cells. A secondary effect of such a structural change was that D1 and D2, two proteins that form the catalytic core (reaction center) of PSII, were also destabilized. Our results demonstrate that proper axial coordination of the heme cofactor in cyt b559 is important for the structural integrity of the reaction center of PSII. Images PMID:1904816
Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age
Oiki, Shigetoshi
2015-01-01
The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the ‘frozen’ crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. PMID:25833254
Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age.
Oiki, Shigetoshi
2015-06-15
The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Gray, Andrew N; Egan, Alexander JF; van't Veer, Inge L; Verheul, Jolanda; Colavin, Alexandre; Koumoutsi, Alexandra; Biboy, Jacob; Altelaar, A F Maarten; Damen, Mirjam J; Huang, Kerwyn Casey; Simorre, Jean-Pierre; Breukink, Eefjan; den Blaauwen, Tanneke; Typas, Athanasios; Gross, Carol A; Vollmer, Waldemar
2015-01-01
To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division. DOI: http://dx.doi.org/10.7554/eLife.07118.001 PMID:25951518
Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir
2009-01-01
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.
Davis, James G.; Burns, Frank R.; Navaratnam, Dasakumar; Lee, A. Masaji; Ichimiya, Shingo; Oberholtzer, J. Carl; Greene, Mark I.
1997-01-01
A gelatinous otolithic membrane (OM) couples a single calcified otolith to the sensory epithelium in the bluegill sunfish (Lepomis macrochirus) saccule, one of the otolithic organs in the inner ear. Though the OM is an integral part of the anatomic network of endorgan structures that result in vestibular function in the inner ear, the identity of the proteins that make up this sensory accessory membrane in teleosts, or in any vertebrate, is not fully known. Previously, we identified a cDNA from the sunfish saccular otolithic organ that encoded a new member of the collagen family of structural proteins. In this study, we examined biochemical features and the localization of the saccular collagen (SC) protein in vivo using polyclonal antisera that recognize the noncollagenous domains of the SC protein. The SC protein, in vivo, was identified as a 95-kDa glycoprotein in sunfish whole-saccule lysate and in homogenates of microdissected saccular OMs. Immunohistochemical analyses demonstrated that the SC protein was localized within one of the two distinct layers of the sunfish saccular OM. The SC protein was also detected within the cytoplasm of supporting cells at the edges of the saccular sensory epithelium, indicating that these cells are a primary site for the synthesis of this structural protein. Further studies of the organization of this matrix molecule in the OM may help clarify the role of this sensory accessory membrane in vestibular sensory function. PMID:9012849
Onuki, Yoshinori; Obata, Yasuko; Kawano, Kumi; Sano, Hiromu; Matsumoto, Reina; Hayashi, Yoshihiro; Takayama, Kozo
2016-02-01
The purpose of this study is to obtain a comprehensive relationship between membrane microdomain structures of liposomes and their cellular uptake efficiency. Model liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol (Ch) were prepared with various lipid compositions. To detect distinct membrane microdomains in the liposomes, fluorescence-quenching assays were performed at temperatures ranging from 25 to 60 °C using 1,6-diphenyl-1,3,5-hexatriene-labeled liposomes and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl. From the data analysis using the response surface method, we gained a better understanding of the conditions for forming distinct domains (Lo, Ld, and gel phase membranes) as a function of lipid composition. We further performed self-organizing maps (SOM) clustering to simplify the complicated behavior of the domain formation to obtain its essence. As a result, DPPC/DOPC/Ch liposomes in any lipid composition were integrated into five distinct clusters in terms of similarity of the domain structure. In addition, the findings from synchrotron small-angle X-ray scattering analysis offered further insight into the domain structures. As a last phase of this study, an in vitro cellular uptake study using HeLa cells was conducted using SOM clusters' liposomes with/without PEGylation. As a consequence of this study, higher cellular uptake was observed from liposomes having Ch-rich ordered domains.
NASA Astrophysics Data System (ADS)
Naziris, N.; Demetzos, C.
2017-11-01
The self-assembly process of different in nature biomaterials leads to the morphogenesis of various nano-structures, where the individual molecule properties (e.g. hydrophilic-to-hydrophobic balance and elasticity), profoundly affect the intermediate surfaces’ interfacial thermodynamics. Herein, the mixing of a phospholipid and an amphiphilic block copolymer, through the thin-film hydration method, gave different morphologies, among which there were vesicles (i.e. liposomes and polymersomes), micelles and worm-like structures. The formation of such variety of structures is attributed to divergent entropic pathways, which are determined by a number of parameters, such as the lipid:polymer molar ratio and the polymer composition. The developed nanosystems are considered as chimeric/mixed, because of the two different in type biomaterials that compose them. The vesicles also exhibited membrane “irregularities”, which are connected with their biophysical behavior. Nature has “chosen” vesicular forms to be the thermodynamically stable “biological apartments”, in which life was enclosed and additionally, vesicles provided compartmentalized systems, where the intracellular environment was built. Phospholipid properties result in membranes/bilayers that harmonically assimilate other molecules, like proteins and retain their integrity and functionality, while gaining additional features. A cause that alters this relationship might induce changes in the membrane composition and morphology, with respect to lipid rafts/domains, what has been linked with the activation and development of certain human disorders/diseases. The self-assembly of two different biomaterials into various structures that present distinct membrane phenomena is believed to simulate these natural processes.
Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu
2014-01-01
Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4–5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. PMID:25283538
Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu
2014-12-01
Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4-5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA ) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. © 2014 The Protein Society.
Maekawa, Masashi; Fairn, Gregory D
2015-04-01
Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles. © 2015. Published by The Company of Biologists Ltd.
Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2003-01-01
Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4-7 helices. The helices could arrange themselves such that they formed pores capable of transporting ions and small molecules across membranes. Stability of transmembrane aggregates of simple proteins is often only marginal and, therefore, it can be regulated by environmental signals or small sequence modifications in the region of interhelical interactions. A key step in the earliest evolution of membrane proteins was the emergence of selectivity for specific substrates. Many channels could become selective if one or only a few properly chosen amino acids are properly placed along the channel, acting as filters or gates. This is a convenient evolutionary solution because it does not require imposing conditions on the whole sequence.
Membrane mimetic surface functionalization of nanoparticles: Methods and applications
Weingart, Jacob; Vabbilisetty, Pratima; Sun, Xue-Long
2013-01-01
Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regards to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications. PMID:23688632
A protein interaction network analysis for yeast integral membrane protein.
Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling
2008-01-01
Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.
Integrative structure and functional anatomy of a nuclear pore complex
NASA Astrophysics Data System (ADS)
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.
2018-03-01
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
Integrative structure and functional anatomy of a nuclear pore complex.
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P
2018-03-22
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
Molecular Characterization of Caveolin-induced Membrane Curvature*
Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M.; Walser, Piers; Collins, Brett M.; Parton, Robert G.
2015-01-01
The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. PMID:26304117
Molecular Characterization of Caveolin-induced Membrane Curvature.
Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M; Walser, Piers; Collins, Brett M; Parton, Robert G
2015-10-09
The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Kim, Dong-Hun; Kanaly, Robert A; Hur, Hor-Gil
2012-12-01
The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, reduced tellurite (Te(IV), TeO(3)(2-)) to elemental tellurium under anaerobic conditions resulting in the intracellular accumulation of needle shaped crystalline Te(0) nanorods. Fatty acid analyses showed that toxic Te(IV) increased the unsaturated fatty acid composition of the lipid components of the cell membrane, implying a deconstruction of the integrity of the cellular membrane structure. The current results suggest that dissimilatory metal reducing bacteria such as S. oneidensis MR-1 may play an important role in recycling toxic tellurium elements, and may be applied as a novel selective biological filter via the accumulation of industry-applicable rare materials, Te(0) nanorods, in the cell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane.
Du, Jian; Shen, Jian; Wang, Yuanxian; Pan, Chuanying; Pang, Weijun; Diao, Hua; Dong, Wuzi
2016-09-13
Seminal plasma ingredients are important for maintenance of sperm viability. This study focuses on the effect of boar seminal plasma exosomes on sperm function during long-term liquid storage. Boar seminal plasma exosomes had typical nano-structure morphology as measured by scanning electron microscopy (SEM) and molecular markers such as AWN, CD9 and CD63 by western blot analysis. The effect on sperm parameters of adding different ratio of boar seminal plasma exosomes to boar sperm preparations was analyzed. Compared to the diluent without exosomes, the diluent with four times or sixteen times exosomes compared to original semen had higher sperm motility, prolonged effective survival time, improved sperm plasma membrane integrity (p < 0.05), increased total antioxidant capacity (T-AOC) activity and decreased malondialdehyde (MDA) content. The diluent containing four times concentration of exosomes compared to original semen was determined to inhibit premature capacitation, but not to influence capacitation induced in vitro. Inhibition of premature capacitation is likely related to the concentration of exosomes which had been demonstrated to transfer proteins including AWN and PSP-1 into sperm. In addition, using fluorescence microscopy and scanning electron microscopy analysis, it was demonstrated that exosomes in diluent were directly binding to the membrane of sperm head which could improve sperm plasma membrane integrity.
Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane
Du, Jian; Shen, Jian; Wang, Yuanxian; Pan, Chuanying; Pang, Weijun; Diao, Hua; Dong, Wuzi
2016-01-01
Seminal plasma ingredients are important for maintenance of sperm viability. This study focuses on the effect of boar seminal plasma exosomes on sperm function during long-term liquid storage. Boar seminal plasma exosomes had typical nano-structure morphology as measured by scanning electron microscopy (SEM) and molecular markers such as AWN, CD9 and CD63 by western blot analysis. The effect on sperm parameters of adding different ratio of boar seminal plasma exosomes to boar sperm preparations was analyzed. Compared to the diluent without exosomes, the diluent with four times or sixteen times exosomes compared to original semen had higher sperm motility, prolonged effective survival time, improved sperm plasma membrane integrity (p < 0.05), increased total antioxidant capacity (T-AOC) activity and decreased malondialdehyde (MDA) content. The diluent containing four times concentration of exosomes compared to original semen was determined to inhibit premature capacitation, but not to influence capacitation induced in vitro. Inhibition of premature capacitation is likely related to the concentration of exosomes which had been demonstrated to transfer proteins including AWN and PSP-1 into sperm. In addition, using fluorescence microscopy and scanning electron microscopy analysis, it was demonstrated that exosomes in diluent were directly binding to the membrane of sperm head which could improve sperm plasma membrane integrity. PMID:27542209
Kim, Woo-Yeon; Kang, Sungsoo; Kim, Byoung-Chul; Oh, Jeehyun; Cho, Seongwoong; Bhak, Jong; Choi, Jong-Soon
2008-01-01
Cyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date. We report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactions as well as their protein-level interactions using the model cyanobacterium, Synechocystis sp. PCC 6803. It predicts the protein-protein interactions using public interaction databases that contain mutually complementary and redundant data. Furthermore, SynechoNET provides information on transmembrane topology, signal peptide, and domain structure in order to support the analysis of regulatory membrane proteins. Such biological information can be queried and visualized in user-friendly web interfaces that include the interactive network viewer and search pages by keyword and functional category. SynechoNET is an integrated protein-protein interaction database designed to analyze regulatory membrane proteins in cyanobacteria. It provides a platform for biologists to extend the genomic data of cyanobacteria by predicting interaction partners, membrane association, and membrane topology of Synechocystis proteins. SynechoNET is freely available at http://synechocystis.org/ or directly at http://bioportal.kobic.kr/SynechoNET/.
Self-assembled tethered bimolecular lipid membranes.
Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang
2009-01-01
This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules via the NH2 moiety of their headgroups. It is demonstrated that these membranes are well suited for the in situ synthesis of membrane protein by a cell-free expression approach. The vectorial integration of an in vitro synthesized odorant receptor, OR5 from the rat, is demonstrated by means of antibodies that specifically bind to a tag at the N-terminus of the receptor and is read out by surface plasmon fluorescence spectroscopy. A completely different strategy employs his-tagged membrane proteins in their solubilized form binding to a surface-attached Ni(+)-NTA monolayer generating a well-oriented protein layer the density of which can be easily controlled by online monitoring the binding (assembly) step by surface plasmon spectroscopy. Moreover, the attachment of the his-tag to either the C- or the N-terminus allows for the complete control of the protein orientation. After the exchange of the detergent micelle by a lipid bilayer via a surface dialysis procedure an electrically very well isolating protein-tethered membrane is formed. We show that this "wiring" of the functional units allows for the (external) manipulation of the oxidation state of the redox-protein cytochrome c Oxidase by the control of the potential applied to the gold substrate which is used as the working electrode in an electrochemical attachment.
Review of Large Spacecraft Deployable Membrane Antenna Structures
NASA Astrophysics Data System (ADS)
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
Su, Chih -Chia; Bolla, Jani Reddy; Kumar, Nitin; ...
2015-04-01
Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore » halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.« less
Su, Chih-Chia; Bolla, Jani Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared A.; Chou, Tsung-Han; Rajashankar, Kanagalaghatta R.; Shafer, William M.; Yu, Edward W.
2015-01-01
SUMMARY Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein, which belongs to the AbgT family of transporters for which no structural information is available. Here we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump, mediating bacterial resistance to sulfonamide antimetabolite drugs. PMID:25818299
A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...
Charles, Hubert; Balmand, Séverine; Lamelas, Araceli; Cottret, Ludovic; Pérez-Brocal, Vicente; Burdin, Béatrice; Latorre, Amparo; Febvay, Gérard; Colella, Stefano; Calevro, Federica; Rahbé, Yvan
2011-01-01
Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system. PMID:22229056
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N; Torres, Jaume; Bhattacharjya, Surajit
2009-08-14
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like beta-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nM concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the beta-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate beta-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.
NASA Astrophysics Data System (ADS)
Peng, Lincai; Li, Hui; Meng, Yahong
2017-04-01
The development of multifunctional cellulose acetate (CA) membranes with enhanced hemocompatibility and antibacterial and antioxidant activities is extremely important for biomedical applications. In this work, significant improvements in hemocompatibility and antibacterial and antioxidant activities of cellulose acetate (CA) membranes were achieved via layer-by-layer (LBL) deposition of chitosan (CS) and water-soluble heparin-mimicking polysaccharides (i.e., sulfated Cantharellus cibarius polysaccharides, SCP) onto their surface. The surface chemical compositions, growth manner, surface morphologies, and wetting ability of CS/SCP multilayer-modified CA membranes were characterized, respectively. The systematical evaluation of hemocompatibility revealed that CS/SCP multilayer-modified CA membranes significantly improved blood compatibility including resistance to non-specific protein adsorption, suppression of platelet adhesion and activation, prolongation of coagulation times, inhibition of complement activation, as well as reduction in blood hemolysis. Meanwhile, CS/SCP multilayer-modified CA membranes exhibited strong growth inhibition against Escherichia coli and Staphylococcus aureus, as well as high scavenging abilities against superoxide and hydroxyl radicals. In summary, the CS/SCP multilayers could confer CA membranes with integrated hemocompatibility and antibacterial and antioxidant activities, which might have great potential application in the biomedical field.
Gonzalez, Maria E; Anthon, Gordon E; Barrett, Diane M
2010-09-01
Two different analytical methods were evaluated for their capacity to provide quantitative information on onion cell membrane permeability and integrity after high pressure and thermal processing and to study the impact of these processing treatments on cell compartmentalization and texture quality. To determine changes in cell membrane permeability and/or integrity the methodologies utilized were: (1) measurement of a biochemical product, pyruvate, formed as a result of membrane permeabilization followed by enzymatic activity and (2) leakage of electrolytes into solution. These results were compared to previously determined methods that quantified cell viability and ¹H-NMR T(2) of onions. These methods allowed for the monitoring of changes in the plasma and tonoplast membranes after high pressure or thermal processing. High pressure treatments consisted of 5 min holding times at 50, 100, 200, 300, or 600 MPa. Thermal treatments consisted of 30 min water bath exposure to 40, 50, 60, 70, or 90 °C. There was strong agreement between the methods in the determination of the ranges of high pressure and temperature that induce changes in the integrity of the plasma and tonoplast membranes. Membrane rupture could clearly be identified at 300 MPa and above in high pressure treatments and at 60 °C and above in the thermal treatments. Membrane destabilization effects could already be visualized following the 200 MPa and 50 °C treatments. The texture of onions was influenced by the state of the membranes and was abruptly modified once membrane integrity was lost. In this study, we used chemical, biochemical, and histological techniques to obtain information on cell membrane permeability and onion tissue integrity after high pressure and thermal processing. Because there was strong agreement between the various methods used, it is possible to implement something relatively simple, such as ion leakage, into routine quality assurance measurements to determine the severity of preservation methods and the shelf life of processed vegetables.
Dense ceramic membranes for converting methane to syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, U.; Dusek, J.T.; Picciolo, J.J.
1995-07-01
Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion,more » selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.« less
A glimpse of structural biology through X-ray crystallography.
Shi, Yigong
2014-11-20
Since determination of the myoglobin structure in 1957, X-ray crystallography, as the anchoring tool of structural biology, has played an instrumental role in deciphering the secrets of life. Knowledge gained through X-ray crystallography has fundamentally advanced our views on cellular processes and greatly facilitated development of modern medicine. In this brief narrative, I describe my personal understanding of the evolution of structural biology through X-ray crystallography-using as examples mechanistic understanding of protein kinases and integral membrane proteins-and comment on the impact of technological development and outlook of X-ray crystallography.
Hong, Xinguo; Weng, Yu-Xiang; Li, Ming
2004-02-01
The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 A, a long axis of 110 A, and a short axis of 85 A. After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 A, a long axis of 80 A, and a short axis of 55 A. In contrast to the cylindrical crystal structure with a height of 40 A and a diameter of 68 A, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59-consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules.
Hong, Xinguo; Weng, Yu-Xiang; Li, Ming
2004-01-01
The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 Å, a long axis of 110 Å, and a short axis of 85 Å . After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 Å, a long axis of 80 Å, and a short axis of 55 Å. In contrast to the cylindrical crystal structure with a height of 40 Å and a diameter of 68 Å, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59—consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules. PMID:14747343
Protein targeting and integration signal for the chloroplastic outer envelope membrane.
Li, H M; Chen, L J
1996-01-01
Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775
USDA-ARS?s Scientific Manuscript database
The synthesis of chitin, the Beta-1,4-linked polymer of N-acetylglucosamine, is catalyzed by chitin synthase (CHS). Chitin is essential for the structural integrity of the exoskeletal cuticle and midgut peritrophic membrane (PM) of insects. To study the functions of the two chitin synthase genes, ...
Suladze, Saba; Cinar, Suleyman; Sperlich, Benjamin; Winter, Roland
2015-10-07
Phospholipases A2 (PLA2) catalyze the hydrolysis reaction of sn-2 fatty acids of membrane phospholipids and are also involved in receptor signaling and transcriptional pathways. Here, we used pressure modulation of the PLA2 activity and of the membrane's physical-chemical properties to reveal new mechanistic information about the membrane association and subsequent enzymatic reaction of PLA2. Although the effect of high hydrostatic pressure (HHP) on aqueous soluble and integral membrane proteins has been investigated to some extent, its effect on enzymatic reactions operating at the water/lipid interface has not been explored, yet. This study focuses on the effect of HHP on the structure, membrane binding and enzymatic activity of membrane-associated bee venom PLA2, covering a pressure range up to 2 kbar. To this end, high-pressure Fourier-transform infrared and high-pressure stopped-flow fluorescence spectroscopies were applied. The results show that PLA2 binding to model biomembranes is not significantly affected by pressure and occurs in at least two kinetically distinct steps. Followed by fast initial membrane association, structural reorganization of α-helical segments of PLA2 takes place at the lipid water interface. FRET-based activity measurements reveal that pressure has a marked inhibitory effect on the lipid hydrolysis rate, which decreases by 75% upon compression up to 2 kbar. Lipid hydrolysis under extreme environmental conditions, such as those encountered in the deep sea where pressures up to the kbar-level are encountered, is hence markedly affected by HHP, rendering PLA2, next to being a primary osmosensor, a good candidate for a sensitive pressure sensor in vivo.
Török, Zsolt; Crul, Tim; Maresca, Bruno; Schütz, Gerhard J; Viana, Felix; Dindia, Laura; Piotto, Stefano; Brameshuber, Mario; Balogh, Gábor; Péter, Mária; Porta, Amalia; Trapani, Alfonso; Gombos, Imre; Glatz, Attila; Gungor, Burcin; Peksel, Begüm; Vigh, László; Csoboz, Bálint; Horváth, Ibolya; Vijayan, Mathilakath M; Hooper, Phillip L; Harwood, John L; Vigh, László
2014-06-01
The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support.
Nan, Jiangpu; Dong, Xueliang; Wang, Wenjin; Jin, Wanqin; Xu, Nanping
2011-04-19
Metal-organic framework (MOF) membranes have attracted considerable attention because of their striking advantages in small-molecule separation. The preparation of an integrated MOF membrane is still a major challenge. Depositing a uniform seed layer on a support for secondary growth is a main route to obtaining an integrated MOF membrane. A novel seeding method to prepare HKUST-1 (known as Cu(3)(btc)(2)) membranes on porous α-alumina supports is reported. The in situ production of the seed layer was realized in step-by-step fashion via the coordination of H(3)btc and Cu(2+) on an α-alumina support. The formation process of the seed layer was observed by ultraviolet-visible absorption spectroscopy and atomic force microscopy. An integrated HKUST-1 membrane could be synthesized by the secondary hydrothermal growth on the seeded support. The gas permeation performance of the membrane was evaluated. © 2011 American Chemical Society
Valentine, Cathleen D.; Haggie, Peter M.
2011-01-01
The sympathetic nervous system regulates cardiac output by activating adrenergic receptors (ARs) in cardiac myocytes. The predominant cardiac ARs, β1- and β2AR, are structurally similar but mediate distinct signaling responses. Scaffold protein–mediated compartmentalization of ARs into discrete, multiprotein complexes has been proposed to dictate differential signaling responses. To test the hypothesis that βARs integrate into complexes in live cells, we measured receptor diffusion and interactions by single-particle tracking. Unstimulated β1- and β2AR were highly confined in the membrane of H9c2 cardiomyocyte-like cells, indicating that receptors are tethered and presumably integrated into protein complexes. Selective disruption of interactions with postsynaptic density protein 95/disks large/zonula occludens-1 (PDZ)–domain proteins and A-kinase anchoring proteins (AKAPs) increased receptor diffusion, indicating that these scaffold proteins participate in receptor confinement. In contrast, modulation of interactions between the putative scaffold caveolae and β2AR did not alter receptor dynamics, suggesting that these membrane domains are not involved in β2AR confinement. For both β1- and β2AR, the receptor carboxy-terminus was uniquely responsible for scaffold interactions. Our data formally demonstrate that distinct and stable protein complexes containing β1- or β2AR are formed in the plasma membrane of cardiomyocyte-like cells and that selective PDZ and AKAP interactions are responsible for the integration of receptors into complexes. PMID:21680711
Valentine, Cathleen D; Haggie, Peter M
2011-08-15
The sympathetic nervous system regulates cardiac output by activating adrenergic receptors (ARs) in cardiac myocytes. The predominant cardiac ARs, β(1)- and β(2)AR, are structurally similar but mediate distinct signaling responses. Scaffold protein-mediated compartmentalization of ARs into discrete, multiprotein complexes has been proposed to dictate differential signaling responses. To test the hypothesis that βARs integrate into complexes in live cells, we measured receptor diffusion and interactions by single-particle tracking. Unstimulated β(1)- and β(2)AR were highly confined in the membrane of H9c2 cardiomyocyte-like cells, indicating that receptors are tethered and presumably integrated into protein complexes. Selective disruption of interactions with postsynaptic density protein 95/disks large/zonula occludens-1 (PDZ)-domain proteins and A-kinase anchoring proteins (AKAPs) increased receptor diffusion, indicating that these scaffold proteins participate in receptor confinement. In contrast, modulation of interactions between the putative scaffold caveolae and β(2)AR did not alter receptor dynamics, suggesting that these membrane domains are not involved in β(2)AR confinement. For both β(1)- and β(2)AR, the receptor carboxy-terminus was uniquely responsible for scaffold interactions. Our data formally demonstrate that distinct and stable protein complexes containing β(1)- or β(2)AR are formed in the plasma membrane of cardiomyocyte-like cells and that selective PDZ and AKAP interactions are responsible for the integration of receptors into complexes.
Revealing the cell-material interface with nanometer resolution by FIB-SEM
Santoro, Francesca; Zhao, Wenting; Joubert, Lydia-Marie; Duan, Liting; Schnitker, Jan; van de Burgt, Yoeri; Lou, Hsin-Ya; Liu, Bofei; Salleo, Alberto; Cui, Lifeng; Cui, Yi; Cui, Bianxiao
2018-01-01
The interface between cells and non-biological surfaces regulates cell attachment, chronic tissue responses, and ultimately the success of medical implants or biosensors. Clinical and laboratory studies show that topological features of the surface profoundly influences cellular responses, e.g. titanium surfaces with nano- and microtopographical structures enhance osteoblast attachment and host-implant integration as compare to smooth surface. To understand how cells and tissues respond to different topographical features, it is of critical importance to directly visualize the cell-materials interface at the relevant nanometer length scale. Here, we present a new method for in situ examination of the cell-to-material interface at any desired location, based on focused-ion beam milling and scanning electron microscopy imaging (FIB-SEM) to resolve the cell membrane-to-material interface with 10 nm resolution. By examining how cell membranes interact with topographical features such as nanoscale protrusions or invaginations, we discovered that the cell membrane readily deforms inward and wraps around protruding structures, but hardly deforms outward to contour invaginating structures. This asymmetric membrane response (inward vs. outward deformation) causes the cleft width between the cell membrane and the nanostructure surface to vary for more than an order of magnitude. Our results suggest that surface topology is a crucial consideration for the development of medical implants or biosensors whose performances are strongly influenced by the cell-to-material interface. We anticipate that the method can be used to explore the direct interaction of cells/tissue with medical devices such as metal implants in the future. PMID:28682058
Regulation of multispanning membrane protein topology via post-translational annealing.
Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F
2015-09-26
The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.
Double anisotropic electrically conductive flexible Janus-typed membranes.
Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia
2017-12-07
Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.
NASA Astrophysics Data System (ADS)
Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon
2016-10-01
Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).
Folding and insertion thermodynamics of the transmembrane WALP peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bereau, Tristan, E-mail: bereau@mpip-mainz.mpg.de; Bennett, W. F. Drew; Pfaendtner, Jim
The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of meanmore » force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.« less
Folding and insertion thermodynamics of the transmembrane WALP peptide
NASA Astrophysics Data System (ADS)
Bereau, Tristan; Bennett, W. F. Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko
2015-12-01
The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.
Bergal, Hans Thor; Hopkins, Alex Hunt; Metzner, Sandra Ines; Sousa, Marcelo Carlos
2016-02-02
The β-barrel assembly machine (BAM) mediates folding and insertion of integral β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Of the five BAM subunits, only BamA and BamD are essential for cell viability. Here we present the crystal structure of a fusion between BamA POTRA4-5 and BamD from Rhodothermus marinus. The POTRA5 domain binds BamD between its tetratricopeptide repeats 3 and 4. The interface structural elements are conserved in the Escherichia coli proteins, which allowed structure validation by mutagenesis and disulfide crosslinking in E. coli. Furthermore, the interface is consistent with previously reported mutations that impair BamA-BamD binding. The structure serves as a linchpin to generate a BAM model where POTRA domains and BamD form an elongated periplasmic ring adjacent to the membrane with a central cavity approximately 30 × 60 Å wide. We propose that nascent OMPs bind this periplasmic ring prior to insertion and folding by BAM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xue, Rui; Liu, Yalong; Zhang, Qingsong; Liang, Congcong; Qin, Huazhen; Liu, Pengfei; Wang, Ke; Zhang, Xiaoyong; Chen, Li; Wei, Yen
2016-08-01
To verify the interaction mechanism between sericin and Escherichia coli, especially the morphological and structural changes in the bacterial cells, the antimicrobial activity of sericin against E. coli as a model for Gram-negative bacteria was investigated. The antibacterial activity of sericin on E. coli and the interaction mechanism were investigated in this study by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with sericin. The changes in morphology and cellular compositions of bacterial cells treated with sericin were observed by an inverted fluorescence microscope, scanning electron microscopy, and transmission electron microscopy. Changes in electrical conductivity, total sugar concentration of the broth for the bacteria, and protein expression of the bacteria were determined to investigate the permeability of the cell membrane. A sericin-based hydrogel was prepared for an in vivo study of wound dressing. The results showed that the antibacterial activity of the hydrogel increased with the increase in the concentration of sericin from 10 g/liter to 40 g/liter. The introduction of sericin induces membrane blebbing of E. coli cells caused by antibiotic action on the cell membrane. The cytoplasm shrinkage phenomenon was accompanied by blurring of the membrane wall boundaries. When E. coli cells were treated with sericin, release of intracellular components quickly increased. The electrical conductivity assay indicated that the charged ions are reduced after exposure to sericin so that the integrity of the cell membrane is weakened and metabolism is blocked. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that sericin hinders the expression of bacterial protein. Sericin may damage the integrity of the bacterial cell membrane, thereby eventually inhibiting the growth and reproduction of E. coli Compared to sterile gauze, the sericin-based hydrogel promoted fibroblast cell proliferation and accelerated the formation of granulation tissues and neovessels. The specific relationship and interaction mechanism between sericin and E. coli cells were investigated and elucidated. The results show that after 12 h of treatment, sericin molecules induce membrane blebbing of E. coli cells, and the bacteria show decreases in liquidity and permeability of biological membrane, resulting in alterations in the conductivity of the culture medium and the integrity of the outer membrane. The subsequent in vivo results demonstrate that the sericin-poly(N-isopropylacrylamide-N,N'-methylene-bis-acrylamide [NIPAm-MBA]) hydrogel accelerated wound healing compared to that with sterile gauze, which is a beneficial result for future applications in clinical medicine and the textile, food, and coating industries. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.
2007-07-01
A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.
Inoue, S; Osmond, D G
2001-11-01
Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the exceptionally large quantity of CSPG may represent a reservoir of CD44 receptor for use in hemopoiesis. Copyright 2001 Wiley-Liss, Inc.
Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J
2017-08-08
Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.
Gauging a Hydrocarbon Ruler by an Intrinsic Exciton Probe†
Khan, M. Adil; Neale, Chris; Michaux, Catherine; Pomés, Régis; Privé, Gilbert G.; Woody, Robert W.; Bishop, Russell E.
2016-01-01
The structural basis of lipid acyl-chain selection by membrane-intrinsic enzymes is poorly understood because most integral membrane enzymes of lipid metabolism have proven refractory to structure determination; however, robust enzymes from the outer membranes of Gram-negative bacteria are now providing a first glimpse at the underlying mechanisms. The methylene unit resolution of the phospholipid: lipid A palmitoyltransferase PagP is determined by the hydrocarbon ruler, a 16-carbon saturated acyl-chain-binding pocket buried within the transmembrane β-barrel structure. Substitution of Gly88 lining the floor of the hydrocarbon ruler with Ala or Met makes the enzyme select specifically 15- or 12-carbon saturated acyl chains, respectively, indicating that hydrocarbon ruler depth determines acyl-chain selection. However, the Gly88Cys PagP resolution does not diminish linearly because it selects both 14- and 15-carbon saturated acyl chains. We discovered that an exciton, emanating from a buried Tyr26–Trp66 phenol–indole interaction, is extinguished by a local structural perturbation arising from the proximal Gly88Cys PagP sulfhydryl group. Site-specific S-methylation of the single Cys afforded Gly88Cys-S-methyl PagP, which reasserted both the exciton and methylene unit resolution by specifically selecting 13-carbon saturated acyl chains for transfer to lipid A. Unlike the other Gly88 substitutions, the Cys sulfhydryl group recedes from the hydrocarbon ruler floor and locally perturbs the subjacent Tyr26 and Trp66 aromatic rings. The resulting hydrocarbon ruler expansion thus occurs at the exciton’s expense and accommodates an extra methylene unit in the selected acyl chain. The hydrocarbon ruler–exciton juxtaposition endows PagP with a molecular gauge for probing the structural basis of lipid acyl-chain selection in a membrane-intrinsic environment. PMID:17375935
Tollefsen, K-E; Blikstad, Camilla; Eikvar, Sissel; Farmen Finne, Eivind; Katharina Gregersen, Inger
2008-01-01
Alkylphenols are common aquatic pollutants originating from industrial use of the compounds themselves or as biodegradation products of alkylphenol polyethoxylates. The cytotoxicity of a range of alkylphenols and alkylated non-phenolics were assessed in a primary culture of rainbow trout (Onchorhynchus mykiss) hepatocytes to construct a structure-toxicity relationship for this group of ubiquitous aquatic pollutants. Metabolic inhibition and loss of membrane integrity were used as cytotoxic endpoints through use of the cellular markers Alamar blue and 5-carboxyfluorescein diacetate acetoxymethyl ester, respectively. The results show that cytotoxicity increased with the hydrophobicity of the alkylphenols for compounds with logK(OW)<4.9. Normal chained alkylphenols, branched alkylphenols and multi-substituted alkylphenols with logK(OW)4.9 deviated clearly from this relationship. The alkylphenols displayed greater cytotoxicity than alkylated non-phenolics and it is proposed that most alkylated non-phenolic caused non-polar narcosis (baseline toxicity) whereas the alkylphenols caused polar narcosis. Observations that metabolic inhibition occurred at lower concentrations than loss of membrane integrity for most chemicals indicated that interference with cellular metabolic functions was the main cause of cytotoxicity. Metabolic inhibition corresponded better than loss of membrane integrity to reported acute toxicity to fish, although the in vivo acute toxicity of hydrophobic compounds (logK(OW)>2-3) was clearly underestimated by both endpoints.
Neuroglian stabilizes epithelial structure during Drosophila oogenesis.
Wei, Jun; Hortsch, Michael; Goode, Scott
2004-08-01
The vertebrate L1 family of cell adhesion molecules (CAMs) and their fly homolog, Neuroglian, are members of the immunoglobulin (Ig) superfamily of CAMs. In general, Ig CAMs have been found to play critical roles in mediating axon guidance. One Ig CAM, NCAM, has also been implicated in maintaining epithelial integrity and suppressing metastatic dissemination of tumor cells. Other Ig CAMs, such as Nrg, are also expressed in epithelia. We thus tested the hypothesis that, like NCAM, Nrg might also be required for maintaining epithelial integrity and for inhibiting tumor invasion. We used the Drosophila follicular epithelium to determine the function of Nrg in vivo in maintaining epithelial structure, and in regulating the motility of migrating border cells and invasive tumorous follicle cells. Nrg(167) is expressed on the lateral membrane of follicle cells. Loss of Nrg(167) causes border cells to delay delamination and causes other follicle cells to delaminate inappropriately. The delaminated cells have aberrant epithelial polarity manifested as severe mislocalization of apical and basal membrane proteins, and uniform localization of lateral membrane proteins. Furthermore, loss of Nrg(167) dramatically enhances the invasive phenotype associated with loss of Discs Large, a neoplastic tumor suppressor. These results indicate that Nrg(167) stabilizes epithelial polarity by regulating junctional adhesion and function in normal and tumorous epithelia. Our data also suggest that Ig superfamily members have significant functional redundancy in maintaining epithelial polarity, with individual members playing subtle, unique roles during epithelial morphogenesis. Copyright 2004 Wiley-Liss, Inc.
Boundary-integral modeling of cochlear hydrodynamics
NASA Astrophysics Data System (ADS)
Pozrikidis, C.
2008-04-01
A two-dimensional model that captures the essential features of the vibration of the basilar membrane of the cochlea is proposed. The flow due to the vibration of the stapes footplate and round window is modeled by a point source and a point sink, and the cochlear pressure is computed simultaneously with the oscillations of the basilar membrane. The mathematical formulation relies on the boundary-integral representation of the potential flow established far from the basilar membrane and cochlea side walls, neglecting the thin Stokes boundary layer lining these surfaces. The boundary-integral approach furnishes integral equations for the membrane vibration amplitude and pressure distribution on the upper or lower side of the membrane. Several approaches are discussed, and numerical solutions in the frequency domain are presented for a rectangular cochlea model using different membrane response functions. The numerical results reproduce and extend the theoretical predictions of previous authors and delineate the effect of physical and geometrical parameters. It is found that the membrane vibration depends weakly on the position of the membrane between the upper and lower wall of the cochlear channel and on the precise location of the oval and round windows. Solutions of the initial-value problem with a single-period sinusoidal impulse reveal the formation of a traveling wave packet that eventually disappears at the helicotrema.
Solid oxide MEMS-based fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2007-03-13
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Solid polymer MEMS-based fuel cells
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA
2008-04-22
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
The three-dimensional structure of aquaporin-1
NASA Astrophysics Data System (ADS)
Walz, Thomas; Hirai, Teruhisa; Murata, Kazuyoshi; Heymann, J. Bernard; Mitsuoka, Kaoru; Fujiyoshi, Yoshinori; Smith, Barbara L.; Agre, Peter; Engel, Andreas
1997-06-01
The entry and exit of water from cells is a fundamental process of life. Recognition of the high water permeability of red blood cells led to the proposal that specialized water pores exist in the plasma membrane. Expression in Xenopus oocytes and functional studies of an erythrocyte integral membrane protein of relative molecular mass 28,000, identified it as the mercury-sensitive water channel, aquaporin-1 (AQP1). Many related proteins, all belonging to the major intrinsic protein (MIP) family, are found throughout nature. AQP1 is a homotetramer containing four independent aqueous channels. When reconstituted into lipid bilayers, the protein forms two-dimensional lattices with a unit cell containing two tetramers in opposite orientation. Here we present the three-dimensional structure of AQP1 determined at 6Å resolution by cryo-electron microscopy. Each AQP1 monomer has six tilted, bilayer-spanning α-helices which form a right-handed bundle surrounding a central density. These results, together with functional studies, provide a model that identifies the aqueous pore in the AQP1 molecule and indicates the organization of the tetrameric complex in the membrane.
NASA Astrophysics Data System (ADS)
Finkbeiner, F. M.; Brekosky, R. P.; Chervenak, J. A.; Figueroa-Feliciano, E.; Li, M. J.; Lindeman, M. A.; Stahle, C. K.; Stahle, C. M.; Tralshawala, N.
2002-02-01
We present an overview of our efforts in fabricating Transition-Edge Sensor (TES) microcalorimeter arrays for use in astronomical x-ray spectroscopy. Two distinct types of array schemes are currently pursued: 5×5 single pixel TES array where each pixel is a TES microcalorimeter, and Position-Sensing TES (PoST) array. In the latter, a row of 7 or 15 thermally-linked absorber pixels is read out by two TES at its ends. Both schemes employ superconducting Mo/Au bilayers as the TES. The TES are placed on silicon nitride membranes for thermal isolation from the structural frame. The silicon nitride membranes are prepared by a Deep Reactive Ion Etch (DRIE) process into a silicon wafer. In order to achieve the concept of closely packed arrays without decreasing its structural and functional integrity, we have already developed the technology to fabricate arrays of cantilevered pixel-sized absorbers and slit membranes in silicon nitride films. Furthermore, we have started to investigate ultra-low resistance through-wafer micro-vias to bring the electrical contact out to the back of a wafer. .
NASA Astrophysics Data System (ADS)
Ennajdaoui, Aboubakr; Roualdes, Stéphanie; Brault, Pascal; Durand, Jean
A plasma polymerization process using a continuous glow discharge has been implemented for preparing proton conducting membranes from trifluoromethane sulfonic acid and styrene. The chemical and physical structure of plasma membranes has been investigated using FTIR and SEM. The films are homogeneous with a good adhesion on commercial gas diffusion layer (E-Tek ®). Their deposition rate can be increased with increasing flow rate and input power. The thermogravimetric analysis under air of plasma polymers has showed a thermal stability up to 140 °C. Compared to the pulsed glow discharge studied in a previous paper, the continuous glow discharge has enabled to enhance the proton conductivity of membranes by a factor 3 (up to 1.7 mS cm -1). Moreover, the low methanol permeability (methanol diffusion coefficient down to 5 × 10 -13 m 2 s -1) of membranes has been confirmed by this study. In an industrial context, a reactor prototype has been developed to manufacture by plasma processes all active layers of fuel cell cores to be integrated in original compact PEMFC or DMFC.
Hu, Yan; Ke, Lei; Chen, Hao; Zhuo, Ma; Yang, Xinzhou; Zhao, Dan; Zeng, Suying; Xiao, Xincai
2017-01-01
To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. PMID:29200852
Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes
NASA Astrophysics Data System (ADS)
Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang
2018-04-01
Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.
Tissue Architecture and Microenvironment Sustain Hormone Signaling | Center for Cancer Research
Cells interact with their environments in part through protein receptors embedded in the cell membrane. Activation of a receptor by external signaling molecules sets off a complex chain of events within the cell that can result in alterations in protein structure and function and/or changes in gene expression. Proper integration of these signals is crucial for normal cell
Eichmann, Cédric; Tzitzilonis, Christos; Bordignon, Enrica; Maslennikov, Innokentiy; Choe, Senyon; Riek, Roland
2014-08-22
The solution NMR structure of the α-helical integral membrane protein YgaP from Escherichia coli in mixed 1,2-diheptanoyl-sn-glycerol-3-phosphocholine/1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) micelles is presented. In these micelles, YgaP forms a homodimer with the two transmembrane helices being the dimer interface, whereas the N-terminal cytoplasmic domain includes a rhodanese-fold in accordance to its sequence homology to the rhodanese family of sulfurtransferases. The enzymatic sulfur transfer activity of full-length YgaP as well as of the N-terminal rhodanese domain only was investigated performing a series of titrations with sodium thiosulfate and potassium cyanide monitored by NMR and EPR. The data indicate the thiosulfate concentration-dependent addition of several sulfur atoms to the catalytic Cys-63, which process can be reversed by the addition of potassium cyanide. The catalytic reaction induces thereby conformational changes within the rhodanese domain, as well as on the transmembrane α-helices of YgaP. These results provide insights into a potential mechanism of YgaP during the catalytic thiosulfate activity in vivo. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C
1979-05-01
Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The enhanced biological activity of the analog, therefore, may be due to its resistance to inactivation by enzymes on the pituitary cell surface. The membrane-associated inactivating enzyme could play an important role in vivo in determining the concentration of intact LHRH available at the receptor site which initiates gonadotropin release.
Choi, Hyeon-Gyu; Son, Moon; Choi, Heechul
2017-10-01
Thin-film composite mixed matrix membrane (TFC MMM) with functionalized carbon nanotube (fCNT) blended in polyethersulfone (PES) support layer was synthesized via interfacial polymerization and phase inversion. This membrane was firstly tested in lab-scale integrating seawater desalination and wastewater reclamation forward osmosis (FO) process. Water flux of TFC MMM was increased by 72% compared to that of TFC membrane due to enhanced hydrophilicity. Although TFC MMM showed lower water flux than TFC commercial membrane, enhanced reverse salt flux selectivity (RSFS) of TFC MMM was observed compared to TFC membrane (15% higher) and TFC commercial membrane (4% higher), representing membrane permselectivity. Under effluent organic matter (EfOM) fouling test, 16% less normalized flux decline of TFC MMM was observed compared to TFC membrane. There was 8% less decline of TFC MMM compared to TFC commercial membrane due to fCNT effect on repulsive foulant-membrane interaction enhancement, caused by negatively charged membrane surface. After 10 min physical cleaning, TFC MMM displayed higher recovered normalized flux than TFC membrane (6%) and TFC commercial membrane (4%); this was also supported by visualized characterization of fouling layer. This study presents application of TFC MMM to integrated seawater desalination and wastewater reclamation FO process for the first time. It can be concluded that EfOM fouling of TFC MMM was suppressed due to repulsive foulant-membrane interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Presenilins and γ-Secretase: Structure, Function, and Role in Alzheimer Disease
De Strooper, Bart; Iwatsubo, Takeshi; Wolfe, Michael S.
2012-01-01
Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline. PMID:22315713
Effects of photooxidation on membrane integrity in Salix nigra seeds
Roqueiro, Gonzalo; Facorro, Graciela B.; Huarte, Mónica G.; Rubín de Celis, Emilio; García, Fernando; Maldonado, Sara; Maroder, Horacio
2010-01-01
Background and Aims Salix nigra seeds are desiccation-tolerant, as are orthodox seeds, although in contrast to other orthodox seeds they lose viability in a few weeks at room temperature. They also differ in that the chloroplasts of the embryo tissues conserve their chlorophyll and endomembranes. The aim of this paper was to investigate the role of chlorophyll in seed deterioration. Methods Seeds were aged at different light intensities and atmospheric conditions. Mean germination time and normal and total germination were evaluated. The formation of free radicals was assessed using electronic spin resonance spectroscopy, and changes in the fatty acid composition from phospholipids, galactolipids and triglycerides using gas–liquid chromatography. Membrane integrity was studied with electronic spin resonance spin probe techniques, electrolyte leakage and transmission electron microscopy. Key Results Light and oxygen played an important role in free-radical generation, causing a decrease in normal germination and an increase in mean germination time. Both indices were associated with a decrease in polyunsaturated fatty acids derived from membrane lipids as phospholipids and galactolipids. The detection of damage in thylakoid membranes and an increase in plasmalemma permeability were consistent with the decrease in both types of lipids. Triglycerides remained unchanged. Light-induced damage began in outermost tissues and spread inwards, decreasing normal germination. Conclusions Salix nigra seeds were very susceptible to photooxidation. The thylakoid membranes appeared to be the first target of the photooxidative process since there were large decreases in galactolipids and both these lipids and the activated chlorophyll are contiguous in the structure of that membrane. Changes in normal germination and mean germination time could be explained by the deteriorative effects of oxidation. PMID:20338949
Fiskum, Gary; Starkov, Anatoly; Polster, Brian M; Chinopoulos, Christos
2003-06-01
Mitochondrial dysfunction, due to either environmental or genetic factors, can result in excessive production of reactive oxygen species, triggering the apoptotic death of dopaminergic cells in Parkinson's disease. Mitochondrial free radical production is promoted by the inhibition of electron transport at any point distal to the sites of superoxide production. Neurotoxins that induce parkinsonian neuropathology, such as MPP(+) and rotenone, stimulate superoxide production at complex I of the electron transport chain and also stimulate free radical production at proximal redox sites including mitochondrial matrix dehydrogenases. The oxidative stress caused by elevated mitochondrial production of reactive oxygen species promotes the expression and (or) intracellular distribution of the proapoptotic protein Bax to the mitochondrial outer membrane. Interactions between Bax and BH3 death domain proteins such as tBid result in Bax membrane integration, oligomerization, and permeabilization of the outer membrane to intermembrane proteins such as cytochrome c. Once released into the cytosol, cytochrome c together with other proteins activates the caspase cascade of protease activities that mediate the biochemical and morphological alterations characteristic of apoptosis. In addition, loss of mitochondrial cytochrome c stimulates mitochondrial free radical production, further promoting cell death pathways. Excessive mitochondrial Ca(2+) accumulation can also release cytochrome c and promote superoxide production through a mechanism distinctly different from that of Bax. Ca(2+) activates a mitochondrial inner membrane permeability transition causing osmotic swelling, rupture of the outer membrane, and complete loss of mitochondrial structural and functional integrity. While amphiphilic cations, such as dibucaine and propranolol, inhibit Bax-mediated cytochrome c release, transient receptor potential channel inhibitors inhibit mitochondrial swelling and cytochrome c release induced by the inner membrane permeability transition. These advances in the knowledge of mitochondrial cell death mechanisms and their inhibitors may lead to neuroprotective interventions applicable to Parkinsons's disease.
Ultrafast excited state deactivation of doped porous anodic alumina membranes
NASA Astrophysics Data System (ADS)
Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter
2012-08-01
Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.
Ultrafast excited state deactivation of doped porous anodic alumina membranes.
Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter
2012-08-03
Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.
Soheili, Tayebeh; Gicquel, Evelyne; Poupiot, Jérôme; N'Guyen, Luu; Le Roy, Florence; Bartoli, Marc; Richard, Isabelle
2012-02-01
Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein. © 2011 Wiley Periodicals, Inc.
A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase.
Kolek, Stefan Andrew; Bräuning, Bastian; Stewart, Patrick Douglas Shaw
2016-04-01
Random microseed matrix screening (rMMS), in which seed crystals are added to random crystallization screens, is an important breakthrough in soluble protein crystallization that increases the number of crystallization hits that are available for optimization. This greatly increases the number of soluble protein structures generated every year by typical structural biology laboratories. Inspired by this success, rMMS has been adapted to the crystallization of membrane proteins, making LCP seed stock by scaling up LCP crystallization conditions without changing the physical and chemical parameters that are critical for crystallization. Seed crystals are grown directly in LCP and, as with conventional rMMS, a seeding experiment is combined with an additive experiment. The new method was used with the bacterial integral membrane protein OmpF, and it was found that it increased the number of crystallization hits by almost an order of magnitude: without microseeding one new hit was found, whereas with LCP-rMMS eight new hits were found. It is anticipated that this new method will lead to better diffracting crystals of membrane proteins. A method of generating seed gradients, which allows the LCP seed stock to be diluted and the number of crystals in each LCP bolus to be reduced, if required for optimization, is also demonstrated.
Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya
2014-01-01
Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria. PMID:25358460
Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; ...
2014-10-31
Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less
Chen, Wenjun; Gui, Xuchun; Liang, Binghao; Yang, Rongliang; Zheng, Yongjia; Zhao, Chengchun; Li, Xinming; Zhu, Hai; Tang, Zikang
2017-07-19
Nature-motivated pressure sensors have been greatly important components integrated into flexible electronics and applied in artificial intelligence. Here, we report a high sensitivity, ultrathin, and transparent pressure sensor based on wrinkled graphene prepared by a facile liquid-phase shrink method. Two pieces of wrinkled graphene are face to face assembled into a pressure sensor, in which a porous anodic aluminum oxide (AAO) membrane with the thickness of only 200 nm was used to insulate the two layers of graphene. The pressure sensor exhibits ultrahigh operating sensitivity (6.92 kPa -1 ), resulting from the insulation in its inactive state and conduction under compression. Formation of current pathways is attributed to the contact of graphene wrinkles through the pores of AAO membrane. In addition, the pressure sensor is also an on/off and energy saving device, due to the complete isolation between the two graphene layers when the sensor is not subjected to any pressure. We believe that our high-performance pressure sensor is an ideal candidate for integration in flexible electronics, but also paves the way for other 2D materials to be involved in the fabrication of pressure sensors.
O'Neill, Sharon; Mathis, Magalie; Kovačič, Lidija; Zhang, Suisheng; Reinhardt, Jürgen; Scholz, Dimitri; Schopfer, Ulrich; Bouhelal, Rochdi; Knaus, Ulla G
2018-06-08
Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22 phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22 phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22 phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Chong, N.H. Victor; Keonin, Jason; Luthert, Phil J.; Frennesson, Christina I.; Weingeist, David M.; Wolf, Rachel L.; Mullins, Robert F.; Hageman, Gregory S.
2005-01-01
Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly. In its severest form, choroidal neovessels breach the macular Bruch’s membrane, an extracellular matrix compartment comprised of elastin and collagen laminae, and grow into the retina. We sought to determine whether structural properties of the elastic lamina (EL) correspond to the region of the macula that is predilected toward degeneration in AMD. Morphometric assessment of the macular and extramacular regions of 121 human donor eyes, with and without AMD, revealed a statistically significant difference in both the integrity (P < 0.0001) and thickness (P < 0.0001) of the EL between the macular and extramacular regions in donors of all ages. The EL was three to six times thinner and two to five times less abundant in the macula than in the periphery. The integrity of the macular EL was significantly lower in donors with early-stage AMD (P = 0.028), active choroidal neovascularization (P = 0.020), and disciform scars (P = 0.003), as compared to unaffected, age-matched controls. EL thickness was significantly lower only in individuals with disciform scars (P = 0.008). The largest gaps in macular EL integrity were significantly larger in all categories of AMD (each P < 0.0001), as compared to controls. EL integrity, thickness, and gap length in donors with geographic atrophy did not differ from those of controls. These structural properties of the macular EL correspond spatially to the distribution of macular lesions associated with AMD and may help to explain why the macula is more susceptible to degenerative events that occur in this disease. PMID:15632016
Controlling Styrene Maleic Acid Lipid Particles through RAFT.
Smith, Anton A A; Autzen, Henriette E; Laursen, Tomas; Wu, Vincent; Yen, Max; Hall, Aaron; Hansen, Scott D; Cheng, Yifan; Xu, Ting
2017-11-13
The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.
Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria
NASA Astrophysics Data System (ADS)
Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2011-04-01
The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.
Göse, Martin; Pescador, Paula; Reibetanz, Uta
2015-03-09
Key challenges in the development of drug delivery systems are the prevention of serum compartment interaction and the targeted delivery of the cargo. Layer-by-Layer microcarriers offer many advantages due to various options in drug assembly and multifunctional design. Surface modification with a supported lipid membrane enhances biocompatibility, drug protection ability, and specific functionality. However, the integration of functionalized lipids strongly influences the membrane formation and is often accompanied by submicrometer irregularities: The accessibility of underlying polymers to serum components may change the carrier's properties and enhances the susceptibility to opsonization. Therefore, the formation of a tightly assembled multifunctional lipid membrane has been emphasized. A phosphatidylserine/phosphatidylcholine (POPS/POPC) bilayer equipped with phosphatidylethanolamine-polyethylene glycol-biotin (PE-PEG-Biotin) was used to facilitate a biotin/streptavidin binding site for a variable attachment of an additional function, such as antibodies for specific targeting. Thus, a prefunctionalized carrier where only the outer functionality needs to be replaced without disturbing the underlying structure could be created.
Impact of membrane curvature on amyloid aggregation.
Terakawa, Mayu S; Lin, Yuxi; Kinoshita, Misaki; Kanemura, Shingo; Itoh, Dai; Sugiki, Toshihiko; Okumura, Masaki; Ramamoorthy, Ayyalusamy; Lee, Young-Ho
2018-04-28
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Dyer, Adam; Brown, Gemma; Stejskal, Lenka; Laity, Peter R.; Bingham, Richard J.
2015-01-01
The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value. PMID:26181365
Development of new dyes for use in integrated optical sensors.
Citterio, D; Rásonyi, S; Spichiger, U E
1996-03-01
New chromoionophores have been developed, focused on NIR applications so that optode membranes may be used in monolithically integrated optical sensors. The wavelength of maximum absorbance has been estimated for a new model compound by the Pariser-Parr-Pople (PPP) method. Several cyanine type dyes have been tested as membrane chromoionophores. Membrane composition has been altered to overcome solubility problems. In this way, simple pH-sensitive optode membranes have been produced.
Sompornpisut, Pornthep; Roux, Benoît; Perozo, Eduardo
2008-01-01
We present an approach for incorporating solvent accessibility data from electron paramagnetic resonance experiments in the structural refinement of membrane proteins through restrained molecular dynamics simulations. The restraints have been parameterized from oxygen (ΠO2) and nickel-ethylenediaminediacetic acid (ΠNiEdda) collision frequencies, as indicators of lipid or aqueous exposed spin-label sites. These are enforced through interactions between a pseudoatom representation of the covalently attached Nitroxide spin-label and virtual “solvent” particles corresponding to O2 and NiEdda in the surrounding environment. Interactions were computed using an empirical potential function, where the parameters have been optimized to account for the different accessibilities of the spin-label pseudoatoms to the surrounding environment. This approach, “pseudoatom-driven solvent accessibility refinement”, was validated by refolding distorted conformations of the Streptomyces lividans potassium channel (KcsA), corresponding to a range of 2–30 Å root mean-square deviations away from the native structure. Molecular dynamics simulations based on up to 58 electron paramagnetic resonance restraints derived from spin-label mutants were able to converge toward the native structure within 1–3 Å root mean-square deviations with minimal computational cost. The use of energy-based ranking and structure similarity clustering as selection criteria helped in the convergence and identification of correctly folded structures from a large number of simulations. This approach can be applied to a variety of integral membrane protein systems, regardless of oligomeric state, and should be particularly useful in calculating conformational changes from a known reference crystal structure. PMID:18676641
Structural Determinants of Oligomerization of the Aquaporin-4 Channel.
Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C
2016-03-25
The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Crystal Structure of a Phosphorylation-coupled Saccharide Transporter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Cao; X Jin; E Levin
Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which ismore » occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.« less
Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology
Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; ...
2015-04-20
The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore » halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.« less
Bailer, Susanne M.
2017-11-25
Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.
Zhang, Lili; Zhang, Zesheng; Jasa, John; Li, Dongli; Cleveland, Robin O; Negahban, Mehrdad; Jérusalem, Antoine
2017-08-16
The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.
Zettl, Alexander K.; Meyer, Jannik Christian
2013-04-02
An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.
Chen, Jingwen; Zhang, Hongman; Wei, Ping; Zhang, Lin; Huang, He
2014-02-01
The effects of by-products from ethanol fermentation and hydrolysates of lignocelluloses on ethanol diffusion through polydimethylsiloxane (PDMS) membranes with/without silicalite-1 were investigated. A pervaporation process was integrated with lignocellulosic fermentation to concentrate bioethanol using bare PDMS membranes. Results showed that yeasts, solid particles, and salts increased ethanol flux and selectivity through the membranes (PDMS with/without silicalite-1), whereas glucose exerted negative effects on the performance. On bare PDMS membrane, the performance was not obviously affected by the existence of aliphatic acids. However, on PDMS-silicalite-1 membrane, a remarkable decrease in ethanol selectivity and a rapid growth of total flux in the presence of aliphatic acids were observed. These phenomena were due to the interaction of acids with silanol (Si-OH) groups to break the dense membrane surface. On the PDMS membranes with/without silicalite-1, degradation products of lignocellulosic hydrolysates such as furfural and hydroxyacetone slightly influenced separation performance. These results revealed that an integrated process can effectively eliminate product inhibition, improve ethanol productivity, and enhance the glucose conversion rate.
Zhu, Hua-Xu; Duan, Jin-Ao; Guo, Li-Wei; Li, Bo; Lu, Jin; Tang, Yu-Ping; Pan, Lin-Mei
2014-05-01
Resource of traditional Chinese medicine residue is an inevitable choice to form new industries characterized of modem, environmental protection and intensive in the Chinese medicine industry. Based on the analysis of source and the main chemical composition of the herb residue, and for the advantages of membrane science and technology used in the pharmaceutical industry, especially membrane separation technology used in improvement technical reserves of traditional extraction and separation process in the pharmaceutical industry, it is proposed that membrane science and technology is one of the most important choices in technological design of traditional Chinese medicine resource industrialization. Traditional Chinese medicine residue is a very complex material system in composition and character, and scientific and effective "separation" process is the key areas of technology to re-use it. Integrated process can improve the productivity of the target product, enhance the purity of the product in the separation process, and solve many tasks which conventional separation is difficult to achieve. As integrated separation technology has the advantages of simplified process and reduced consumption, which are in line with the trend of the modern pharmaceutical industry, the membrane separation technology can provide a broad platform for integrated process, and membrane separation technology with its integrated technology have broad application prospects in achieving resource and industrialization process of traditional Chinese medicine residue. We discuss the principles, methods and applications practice of effective component resources in herb residue using membrane separation and integrated technology, describe the extraction, separation, concentration and purification application of membrane technology in traditional Chinese medicine residue, and systematically discourse suitability and feasibility of membrane technology in the process of traditional Chinese medicine resource industrialization in this paper.
Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier
2002-01-01
We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366
Plasma Membrane Calcium ATPases as Novel Candidates for Therapeutic Agent Development
Strehler, Emanuel E.
2013-01-01
Plasma membrane Ca2+ ATPases (PMCAs) are highly regulated transporters responsible for Ca2+ extrusion from all eukaryotic cells. Different PMCA isoforms are implicated in various tasks of Ca2+ regulation including bulk Ca2+ transport and localized Ca2+ signaling in specific membrane microdomains. Accumulating evidence shows that loss, mutation or inappropriate expression of different PMCAs is associated with pathologies ranging from hypertension, low bone density and male infertility to hearing loss and cerebellar ataxia. Compared to Ca2+ influx channels, PMCAs have lagged far behind as targets for drug development, mainly due to the lack of detailed understanding of their structure and specific function. This is rapidly changing thanks to integrated efforts combining biochemical, structural, cellular and physiological studies suggesting that selective modulation of PMCA isoforms may be of therapeutic value in the management of different and complex diseases. Both structurally informed rational design and high-throughput small molecule library screenings are promising strategies that are expected to lead to specific and isoform-selective modulators of PMCA function. This short review will provide an overview of the diverse roles played by PMCA isoforms in different cells and tissues and their emerging involvement in pathophysiological processes, summarize recent progress in obtaining structural information on the PMCAs, and discuss current and future strategies to develop specific PMCA inhibitors and activators for potential therapeutic applications. PMID:23958189
Engineering design and theoretical analysis of nanoporous carbon membranes for gas separation
NASA Astrophysics Data System (ADS)
Acharya, Madhav
1999-11-01
Gases are used in a direct or indirect manner in virtually every major industry, such as steel manufacturing, oil production, foodstuffs and electronics. Membranes are being investigated as an alternative to established methods of gas separation such as pressure swing adsorption and cryogenic distillation. Membranes can be used in continuous operation and work very well at ambient conditions, thus representing a tremendous energy and economic saving over the other technologies. In addition, the integration of reaction and separation into a single unit known as a membrane reactor has the potential to revolutionize the chemical industry by making selective reactions a reality. Nanoporous carbons are highly disordered materials obtained from organic polymers or natural sources. They have the ability to separate gas molecules by several different mechanisms, and hence there is a growing effort to form them into membranes. In this study, nanoporous carbon membranes were prepared on macroporous stainless steel supports of both tubular and disk geometries. The precursor used was poly(furfuryl alcohol) and different synthesis protocols were employed. A spray coating method also was developed which allowed reproducible synthesis of membranes with very few defects. High gas selectivities were obtained such as O2/N2 = 6, H2/C2H 4 = 70 and CO2/N2 = 20. Membranes also were characterized using SEM and AFM, which revealed thin layers of carbon that were quite uniform and homogeneous. The simulation of nanoporous carbon structures also was carried out using a simple algorithmic approach. 5,6 and 7-membered rings were introduced into the structure, thus resulting in considerable curvature. The density of the structures were calculated and found to compare favorably with experimental findings. Finally, a theoretical analysis of size selective transport was performed using transition state theory concepts. A definite correlation of gas permeance with molecular size was obtained after removal of adsorption effects. The transition state enthalpy change was determined and increased with effective diameter, which is consistent with previous studies, as well as with predictions from the Everett-Powl mean field potential model.
GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
Aglietti, Robin A.; Estevez, Alberto; Gupta, Aaron; Ramirez, Monica Gonzalez; Liu, Peter S.; Kayagaki, Nobuhiko; Ciferri, Claudio; Dixit, Vishva M.; Dueber, Erin C.
2016-01-01
Gasdermin-D (GsdmD) is a critical mediator of innate immune defense because its cleavage by the inflammatory caspases 1, 4, 5, and 11 yields an N-terminal p30 fragment that induces pyroptosis, a death program important for the elimination of intracellular bacteria. Precisely how GsdmD p30 triggers pyroptosis has not been established. Here we show that human GsdmD p30 forms functional pores within membranes. When liberated from the corresponding C-terminal GsdmD p20 fragment in the presence of liposomes, GsdmD p30 localized to the lipid bilayer, whereas p20 remained in the aqueous environment. Within liposomes, p30 existed as higher-order oligomers and formed ring-like structures that were visualized by negative stain electron microscopy. These structures appeared within minutes of GsdmD cleavage and released Ca2+ from preloaded liposomes. Consistent with GsdmD p30 favoring association with membranes, p30 was only detected in the membrane-containing fraction of immortalized macrophages after caspase-11 activation by lipopolysaccharide. We found that the mouse I105N/human I104N mutation, which has been shown to prevent macrophage pyroptosis, attenuated both cell killing by p30 in a 293T transient overexpression system and membrane permeabilization in vitro, suggesting that the mutants are actually hypomorphs, but must be above certain concentration to exhibit activity. Collectively, our data suggest that GsdmD p30 kills cells by forming pores that compromise the integrity of the cell membrane. PMID:27339137
Vogel, Erica P; Curtis-Fisk, Jaime; Young, Kaitlin M; Weliky, David P
2011-11-22
Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41. © 2011 American Chemical Society
Zhao, Shanyu; Jiang, Bo; Maeder, Thomas; Muralt, Paul; Kim, Nayoung; Matam, Santhosh Kumar; Jeong, Eunho; Han, Yen-Lin; Koebel, Matthias M
2015-08-26
With growing public interest in portable electronics such as micro fuel cells, micro gas total analysis systems, and portable medical devices, the need for miniaturized air pumps with minimal electrical power consumption is on the rise. Thus, the development and downsizing of next-generation thermal transpiration gas pumps has been investigated intensively during the last decades. Such a system relies on a mesoporous membrane that generates a thermomolecular pressure gradient under the action of an applied temperature bias. However, the development of highly miniaturized active membrane materials with tailored porosity and optimized pumping performance remains a major challenge. Here we report a systematic study on the manufacturing of aerogel membranes using an optimized, minimal-shrinkage sol-gel process, leading to low thermal conductivity and high air conductance. This combination of properties results in superior performance for miniaturized thermomolecular air pump applications. The engineering of such aerogel membranes, which implies pore structure control and chemical surface modification, requires both chemical processing know-how and a detailed understanding of the influence of the material properties on the spatial flow rate density. Optimal pumping performance was found for devices with integrated membranes with a density of 0.062 g cm(-3) and an average pore size of 142.0 nm. Benchmarking of such low-density hydrophobic active aerogel membranes gave an air flow rate density of 3.85 sccm·cm(-2) at an operating temperature of 400 °C. Such a silica aerogel membrane based system has shown more than 50% higher pumping performance when compared to conventional transpiration pump membrane materials as well as the ability to withstand higher operating temperatures (up to 440 °C). This study highlights new perspectives for the development of miniaturized thermal transpiration air pumps while offering insights into the fundamentals of molecular pumping in three-dimensional open-mesoporous materials.
Membrane cleaning with ultrasonically driven bubbles.
Reuter, Fabian; Lauterborn, Sonja; Mettin, Robert; Lauterborn, Werner
2017-07-01
A laboratory filtration plant for drinking water treatment is constructed to study the conditions for purely mechanical in situ cleaning of fouled polymeric membranes by the application of ultrasound. The filtration is done by suction of water with defined constant contamination through a membrane module, a stack of five pairs of flat-sheet ultrafiltration membranes. The short cleaning cycle to remove the cake layer from the membranes includes backwashing, the application of ultrasound and air flushing. A special geometry for sound irradiation of the membranes parallel to their surfaces is chosen. Two frequencies, 35kHz and 130kHz, and different driving powers are tested for their cleaning effectiveness. No cleaning is found for 35kHz, whereas good cleaning results are obtained for 130kHz, with an optimum cleaning effectiveness at moderate driving powers. Acoustic and optic measurements in space and time as well as analytical considerations and numerical calculations reveal the reasons and confirm the experimental results. The sound field is measured in high resolution and bubble structures are high-speed imaged on their nucleation sites as well as during their cleaning work at the membrane surface. The microscopic inspection of the membrane surface after cleaning shows distinct cleaning types in the cake layer that are related to specific bubble behaviour on the membrane. The membrane integrity and permeate quality are checked on-line by particle counting and turbidity measurement of the permeate. No signs of membrane damage or irreversible membrane degradation in permeability are detected and an excellent water permeate quality is retained. Copyright © 2017 Elsevier B.V. All rights reserved.
McDonald, Michael B; Freund, Michael S; Hammond, Paula T
2017-11-23
In the presence of an electric field, bipolar membranes (BPMs) are capable of initiating water disassociation (WD) within the interfacial region, which can make water splitting for renewable energy in the presence of a pH gradient possible. In addition to WD catalytic efficiency, there is also the need for electronic conductivity in this region for membrane-integrated artificial photosynthesis (AP) systems. Graphene oxide (GO) was shown to catalyze WD and to be controllably reduced, which resulted in electronic conductivity. Layer-by-layer (LbL) film deposition was employed to improve GO film uniformity in the interfacial region to enhance WD catalysis and, through the addition of a conducting polymer in the process, add electronic conductivity in a hybrid film. Three different deposition methods were tested to optimize conducting polymer synthesis with the oxidant in a metastable solution and to yield the best film properties. It was found that an approach that included substrate dipping in a solution containing the expected final monomer/oxidant ratio provided the most predictable film growth and smoothest films (by UV/Vis spectroscopy and atomic force microscopy/scanning electron microscopy, respectively), whereas dipping in excess oxidant or co-spraying the oxidant and monomer produced heterogeneous films. Optimized films were found to be electronically conductive and produced a membrane ohmic drop that was acceptable for AP applications. Films were integrated into the interfacial region of BPMs and revealed superior WD efficiency (≥1.4 V at 10 mA cm -2 ) for thinner films (<10 bilayers≈100 nm) than for either the pure GO catalyst or conducting polymer individually, which indicated that there was a synergistic effect between these materials in the structure configured by the LbL method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes
Ohta, Naoki; Kato, Yasuhiko; Watanabe, Hajime; Mori, Hirotada; Matsuura, Tomoaki
2016-01-01
Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach. PMID:27808179
Molecular and cellular aspects of rhabdovirus entry.
Albertini, Aurélie A V; Baquero, Eduard; Ferlin, Anna; Gaudin, Yves
2012-01-01
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell.
Molecular and Cellular Aspects of Rhabdovirus Entry
Albertini, Aurélie A. V.; Baquero, Eduard; Ferlin, Anna; Gaudin, Yves
2012-01-01
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell. PMID:22355455
Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon; ...
2016-06-20
Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. Furthermore, in order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers.more » These results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.« less
Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.
2011-01-01
AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes. PMID:22036904
Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent
2017-11-01
It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.
Yang, Ji-Yeon; Park, Jun-Hwan; Lee, Myung-Ji; Lee, Ji-Hoon; Lee, Hoi-Seon
2017-10-03
The antimicrobial effects of 7,8-dihydroxy-6-methoxycoumarin and 7-hydroxy-6-methoxycoumarin isolated from Fraxinus rhynchophylla bark and of their structural analogues were determined in an attempt to develop natural antimicrobial agents against the foodborne pathogens Escherichia coli, Bacillus cereus, Staphylococcus intermedius, and Listeria monocytogenes. To elucidate the relationship between structure and antimicrobial activity for the coumarin analogues, isolated constituents and their structural analogues were evaluated against foodborne pathogens. Based on the culture plate inhibition zones and MICs, 6,7-dimethoxycoumarin, 7,8-dihydroxy-6-methoxycoumarin, 7-hydroxy-6-methoxycoumarin, and 7-methoxycoumarin, containing a methoxy functional group on the coumarin skeleton, had the notable antimicrobial activity against foodborne pathogens. However, 7-hydroxycoumarin and 6,7-dihydroxycoumarin, which contained a hydroxyl functional group on the coumarin skeleton, had no antimicrobial activity against these pathogens. An increase in cell membrane permeability was confirmed by electron microscopy observations, and release of extracellular ATP and cell constituents followed treatment with the ethyl acetate fraction of F. rhynchophylla extract. These findings indicate that F. rhynchophylla extract and coumarin analogues have potential for use as antimicrobial agents against foodborne pathogens and that the antimicrobial mechanisms are associated with the loss of cell membrane integrity.
A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...
Flinner, Nadine; Schleiff, Enrico
2015-01-01
Membranes are central for cells as borders to the environment or intracellular organelle definition. They are composed of and harbor different molecules like various lipid species and sterols, and they are generally crowded with proteins. The membrane system is very dynamic and components show lateral, rotational and translational diffusion. The consequence of the latter is that phase separation can occur in membranes in vivo and in vitro. It was documented that molecular dynamics simulations of an idealized plasma membrane model result in formation of membrane areas where either saturated lipids and cholesterol (liquid-ordered character, Lo) or unsaturated lipids (liquid-disordered character, Ld) were enriched. Furthermore, current discussions favor the idea that proteins are sorted into the liquid-disordered phase of model membranes, but experimental support for the behavior of isolated proteins in native membranes is sparse. To gain insight into the protein behavior we built a model of the red blood cell membrane with integrated glycophorin A dimer. The sorting and the dynamics of the dimer were subsequently explored by coarse-grained molecular dynamics simulations. In addition, we inspected the impact of lipid head groups and the presence of cholesterol within the membrane on the dynamics of the dimer within the membrane. We observed that cholesterol is important for the formation of membrane areas with Lo and Ld character. Moreover, it is an important factor for the reproduction of the dynamic behavior of the protein found in its native environment. The protein dimer was exclusively sorted into the domain of Ld character in the model red blood cell plasma membrane. Therefore, we present structural information on the glycophorin A dimer distribution in the plasma membrane in the absence of other factors like e.g. lipid anchors in a coarse grain resolution.
Hamann, Thorsten
2015-04-01
Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Des Parkin, J.; San Antonio, James D.; Pedchenko, Vadim; Hudson, Billy; Jensen, Shane T.; Savige, Judy
2016-01-01
Collagen IV is the major protein found in basement membranes. It comprises 3 heterotrimers (α1α1α2, α3α4α5, and α5α5α6) that form distinct networks, and are responsible for membrane strength and integrity. We constructed linear maps of the collagen IV heterotrimers (‘interactomes’) that indicated major structural landmarks, known and predicted ligand-binding sites, and missense mutations, in order to identify functional and disease-associated domains, potential interactions between ligands, and genotype-phenotype relationships. The maps documented more than 30 known ligand-binding sites as well as motifs for integrins, heparin, von Willebrand factor (VWF), decorin and bone morphogenetic protein (BMP). They predicted functional domains for angiogenesis and haemostasis, and disease domains for autoimmunity, tumor growth and inhibition, infection and glycation. Cooperative ligand interactions were indicated by binding site proximity, for example, between integrins, matrix metalloproteinases and heparin. The maps indicated that mutations affecting major ligand-binding sites, for example for Von Hippel Lindau (VHL) protein in the α1 chain or integrins in the α5 chain, resulted in distinctive phenotypes (Hereditary Angiopathy, Nephropathy, Aneurysms and muscle Cramps (HANAC) syndrome, and early onset Alport syndrome respectively). These maps further our understanding of basement membrane biology and disease, and suggest novel membrane interactions, functions, and therapeutic targets. PMID:21280145
Maslennikov, Innokentiy; Krupa, Martin; Dickson, Christopher; Esquivies, Luis; Blain, Katherine; Kefala, Georgia; Choe, Senyon; Kwiatkowski, Witek
2009-01-01
Bottlenecks in expression, solubilization, purification and crystallization hamper the structural study of integral membrane proteins (IMPs). Successful crystallization is critically dependent on the purity, stability and oligomeric homogeneity of an IMP sample. These characteristics are in turn strongly influenced by the type and concentration of the detergents used in IMP preparation. By utilizing the techniques and analytical tools we earlier developed for the characterization of protein-detergent complexes (PDCs) (Maslennikov et al., 2007), we demonstrate that for successful protein extraction from E. coli membrane fractions, the solubilizing detergent associates preferentially to IMPs rather than to membrane lipids. Notably, this result is contrary to the generally accepted mechanism of detergent-mediated IMP solubilization. We find that for one particular member of the family of proteins studied (E. coli receptor kinases, which is purified in mixed multimeric states and oligomerizes through its transmembrane region), the protein oligomeric composition is largely unaffected by a 10-fold increase in protein concentration, by alteration of micelle properties through addition of other detergents to the PDC sample, or by a 20-fold variation in the detergent concentration used for solubilization of the IMP from the membrane. We observed that the conditions used for expression of the IMP, which impact protein density in the membrane, has the greatest influence on the IMP oligomeric structure. Finally, we argue that for concentrating PDCs smaller than 30 kDa, stirred concentration cells are less prone to over-concentration of detergent and are therefore more effective than centrifugal ultrafiltration devices. PMID:19214777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon
Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. Furthermore, in order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers.more » These results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.« less
Pedersen, Jan Skov; Oliveira, Cristiano L.P.; Hübschmann, Henriette Baun; Arleth, Lise; Manniche, Søren; Kirkby, Nicolai; Nielsen, Hanne Mørck
2012-01-01
Immune stimulating complex (ISCOM) particles consisting of a mixture of Quil-A, cholesterol, and phospholipids were structurally characterized by small-angle x-ray scattering (SAXS). The ISCOM particles are perforated vesicles of very well-defined structures. We developed and implemented a novel (to our knowledge) modeling method based on Monte Carlo simulation integrations to describe the SAXS data. This approach is similar to the traditional modeling of SAXS data, in which a structure is assumed, the scattering intensity is calculated, and structural parameters are optimized by weighted least-squares methods when the model scattering intensity is fitted to the experimental data. SAXS data from plain ISCOM matrix particles in aqueous suspension, as well as those from complete ISCOMs (i.e., with an antigen (tetanus toxoid) incorporated) can be modeled as a polydisperse distribution of perforated bilayer vesicles with icosahedral, football, or tennis ball structures. The dominating structure is the tennis ball structure, with an outer diameter of 40 nm and with 20 holes 5–6 nm in diameter. The lipid bilayer membrane is 4.6 nm thick, with a low-electron-density, 2.0-nm-thick hydrocarbon core. Surprisingly, in the ISCOMs, the tetanus toxoid is located just below the membrane inside the particles. PMID:22677391
Recent Developments of Graphene Oxide-Based Membranes: A Review
Ma, Jinxia; Ping, Dan; Dong, Xinfa
2017-01-01
Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications. PMID:28895877
Recent Developments of Graphene Oxide-Based Membranes: A Review.
Ma, Jinxia; Ping, Dan; Dong, Xinfa
2017-09-12
Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications.
Wafer-Level Membrane-Transfer Process for Fabricating MEMS
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Wiberg, Dean
2003-01-01
A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.