Science.gov

Sample records for membrane transport function

  1. Thermodynamics of Ionic Transport through Functionalized Membranes

    NASA Astrophysics Data System (ADS)

    Rathee, Vikramjit; Qu, Siyi; Dilenschneider, Theodore; Phillip, William A.; Whitmer, Jonathan K.

    Through microphase separation of block copolymers, highly porous solid membranes may be assembled. Further functionalization with amine and sulfonic acid groups has demonstrated promise in exquisitely controlling the flux of charged species, and in particular multivalent ions. Using coarse-grained molecular simulations, we explore the essential thermodynamics underlying salt rejection in charge-functionalized membranes, and develop a model capable of linking the performance of these membranes to their molecular character through free energy calculations.

  2. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  3. Ion transport controlled by nanoparticle-functionalized membranes.

    PubMed

    Barry, Edward; McBride, Sean P; Jaeger, Heinrich M; Lin, Xiao-Min

    2014-12-17

    From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane's electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.

  4. Facilitative plasma membrane transporters function during ER transit.

    PubMed

    Takanaga, Hitomi; Frommer, Wolf B

    2010-08-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na(+)-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.

  5. Ion transport controlled by nanoparticle-functionalized membranes

    NASA Astrophysics Data System (ADS)

    Barry, Edward; McBride, Sean P.; Jaeger, Heinrich M.; Lin, Xiao-Min

    2014-12-01

    From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.

  6. Capacitance-Voltage Measurement of Transporting Function at Cell Membrane

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Miyahara, Yuji

    In this paper, we report the detection of transporting function at cell membrane using capacitance-voltage (CV) measurement. The detection principle of our devices is based on the field-effect of electrostatic interaction between charged species at cell membrane in solution and surface electrons in silicon crystal through the gate insulator of Si3N4/SiO2 thin double-layer. We designed an oocyte-based field-effect capacitor, on which a Xenopus laevis oocyte was fixed. The transporter of human organic anion transporting peptide C (hOATP-C) was expressed at oocyte membrane by induction of cRNA. The electrical phenomena such as ion or molecular charge flux at the interface between cell membrane and gate surface could be detected as the change of flat band voltage in CV characteristics. The flat band voltage shift decreased with incubation time after introduction of substrate into the oocyte-based field-effect capacitor. The electrical signal is due to the change of charge flux from the oocyte at the gate surface inspired by transporter-substrate binding. The platform based on the oocyte-based field-effect capacitor is suitable for a simple and non-invasive detection system in order to analyze function of transporters related to drug efficacy.

  7. Structure and Function of Thyroid Hormone Plasma Membrane Transporters

    PubMed Central

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-01-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model. PMID:25538896

  8. Structure and function of thyroid hormone plasma membrane transporters.

    PubMed

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-09-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.

  9. Supramolecular functional assemblies: dynamic membrane transporters and peptide nanotubular composites.

    PubMed

    Fuertes, Alberto; Juanes, Marisa; Granja, Juan R; Montenegro, Javier

    2017-07-11

    The fabrication of functional molecular devices constitutes one of the most important current challenges for chemical sciences. The complex processes accomplished by living systems continuously demand the assistance of non-covalent interactions between molecular building blocks. Additionally, these building blocks (proteins, membranes, nucleotides) are also constituted by self-assembled structures. Therefore, supramolecular chemistry is the discipline required to understand the properties of the minimal self-assembled building blocks of living systems and to develop new functional smart materials. In the first part of this feature article, we highlight selected examples of the preparation of supramolecular membrane transporters with special emphasis on the application of dynamic covalent bonds. In the second section of the paper we review recent breakthroughs in the preparation of peptide nanotube hybrids with functional applications. The development of these devices constitutes an exciting process from where we can learn how to understand and manipulate supramolecular functional assemblies.

  10. Function and evolution of channels and transporters in photosynthetic membranes.

    PubMed

    Pfeil, Bernard E; Schoefs, Benoît; Spetea, Cornelia

    2014-03-01

    Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants.

  11. Functional genomics of membrane transporters in human populations.

    PubMed

    Urban, Thomas J; Sebro, Ronnie; Hurowitz, Evan H; Leabman, Maya K; Badagnani, Ilaria; Lagpacan, Leah L; Risch, Neil; Giacomini, Kathleen M

    2006-02-01

    Although considerable progress has been made toward characterizing human DNA sequence variation, there remains a deficiency in information on human phenotypic variation at the single-gene level. We systematically analyzed the function of all protein-altering variants of eleven membrane transporters in heterologous expression systems. Coding-region variants were identified by screening DNA from a large sample (n = 247-276) of ethnically diverse subjects. In total, we functionally analyzed 88 protein-altering variants. Fourteen percent of the polymorphic variants (defined as variants with allele frequencies > or =1% in at least one major ethnic group) had no activity or significantly reduced function. Decreased function variants had significantly lower allele frequencies and were more likely to alter evolutionarily conserved amino acid residues. However, variants at evolutionarily conserved positions with approximately normal activity in cellular assays were also at significantly lower allele frequencies, suggesting that some variants with apparently normal activity in biochemical assays may influence occult functions or quantitative degrees of function that are important in human fitness but not measured in these assays. For example, eight (14%) of the 58 variants for which we had measured the transport of at least two substrates showed substrate-specific defects in transport. These variants and the reduced function variants provide plausible candidates for disease susceptibility or variation in clinical drug response.

  12. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  13. Membrane Transporters: Structure, Function and Targets for Drug Design

    NASA Astrophysics Data System (ADS)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  14. Membranes with functionalized carbon nanotube pores for selective transport

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  15. Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization.

    PubMed

    Velleman, Leonora; Shearer, Cameron James; Ellis, Amanda Vera; Losic, Dusan; Voelcker, Nicolas Hans; Shapter, Joseph George

    2010-09-01

    This study presents a simple approach to perform selective mass transport through freestanding porous silicon (pSi) membranes. pSi membranes were fabricated by the electrochemical etching of silicon to produce membranes with controlled structure and pore sizes close to molecular dimensions (approximately 12 nm in diameter). While these membranes are capable of size-exclusion based separations, chemically specific filtration remains a great challenge especially in the biomedical field. Herein, we investigate the transport properties of chemically functionalized pSi membranes. The membranes were functionalized using silanes (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane (PFDS) and N-(triethoxysilylpropyl)-o-polyethylene oxide urethane (PEGS) to give membranes hydrophobic (PFDS) and hydrophilic (PEGS) properties. The transport of probe dyes tris(2,2'-bipyridyl)dichlororuthenium(ii) hexahydrate (Rubpy) and Rose Bengal (RB) through these functionalized membranes was examined to determine the effect surface functionalization has on the selectivity and separation ability of pSi membranes. This study provides the basis for further investigation into more sophisticated surface functionalization and coupled with the biocompatibility of pSi will lead to new advances in membrane based bio-separations.

  16. Proteoliposomes as Tool for Assaying Membrane Transporter Functions and Interactions with Xenobiotics

    PubMed Central

    Scalise, Mariafrancesca; Pochini, Lorena; Giangregorio, Nicola; Tonazzi, Annamaria; Indiveri, Cesare

    2013-01-01

    Proteoliposomes represent a suitable and up to date tool for studying membrane transporters which physiologically mediate absorption, excretion, trafficking and reabsorption of nutrients and metabolites. Using recently developed reconstitution strategies, transporters can be inserted in artificial bilayers with the same orientation as in the cell membranes and in the absence of other interfering molecular systems. These methodologies are very suitable for studying kinetic parameters and molecular mechanisms. After the first applications on mitochondrial transporters, in the last decade, proteoliposomes obtained with optimized methodologies have been used for studying plasma membrane transporters and defining their functional and kinetic properties and structure/function relationships. A lot of information has been obtained which has clarified and completed the knowledge on several transporters among which the OCTN sub-family members, transporters for neutral amino acid, B0AT1 and ASCT2, and others. Transporters can mediate absorption of substrate-like derivatives or drugs, improving their bioavailability or can interact with these compounds or other xenobiotics, leading to side/toxic effects. Therefore, proteoliposomes have recently been used for studying the interaction of some plasma membrane and mitochondrial transporters with toxic compounds, such as mercurials, H2O2 and some drugs. Several mechanisms have been defined and in some cases the amino acid residues responsible for the interaction have been identified. The data obtained indicate proteoliposomes as a novel and potentially important tool in drug discovery. PMID:24300519

  17. Transferring functional annotations of membrane transporters on the basis of sequence similarity and sequence motifs

    PubMed Central

    2013-01-01

    Background Membrane transporters catalyze the transport of small solute molecules across biological barriers such as lipid bilayer membranes. Experimental identification of the transported substrates is very tedious. Once a particular transport mechanism has been identified in one organism, it is thus highly desirable to transfer this information to related transporter sequences in different organisms based on bioinformatics evidence. Results We present a thorough benchmark at which level of sequence identity membrane transporters from Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana belong to the same families of the Transporter Classification (TC) system, and at what level these membrane transporters mediate the transport of the same substrate. We found that two membrane transporter sequences from different organisms that are aligned with normalized BLAST expectation value better than E-value 1e-8 are highly likely to belong to the same TC family (F-measure around 90%). Enriched sequence motifs identified by MEME at thresholds below 1e-12 support accurate classification into TC families for about two thirds of the sequences (F-measure 80% and higher). For the comparison of transported substrates, we focused on the four largest substrate classes of amino acids, sugars, metal ions, and phosphate. At similar identity thresholds, the nature of the transported substrates was more divergent (F-measure 40 - 75% at the same thresholds) than the TC family membership. Conclusions We suggest an acceptable threshold of 1e-8 for BLAST and HMMER where at least three quarters of the sequences are classified according to the TC system with a reasonably high accuracy. Researchers who wish to apply these thresholds in their studies should multiply these thresholds by the size of the database they search against. Our findings should be useful to those who wish to transfer transporter functional annotations across species. PMID:24283849

  18. Effect of sulfhydryl modification on rat kidney basolateral plasma membrane transport function.

    PubMed

    Ansari, Rais A; Rizvi, Syed A A; Husain, Kazim; Lymperopoulos, Anastasios; Berndt, William O

    2012-10-01

    Transport processes are the hallmark of functioning kidney. Various nephrotoxicants disrupt the transport processes to manifest nephrotoxicity. Of several nephrotoxicants, mercuric chloride (HgCl(2)) depletes the reduced glutathione (GSH) in kidney and has been observed to affect the in vitro p-aminohippurate (PAH) transport by basolateral (BL) membrane vesicles. The role of renal nonprotein sulfhydryls such as, reduced GSH has been demonstrated to affect the PAH transport by BL membrane vesicles. The role of protein sulfhydryls in transport process of PAH by BL membrane is not known. Due to mercury mediated effects on sulfhydryls, the effects of protein-sulfhydryls (-SH) modifying reagents in the current study were investigated on PAH transport by BL membrane. It was observed that modification of -SH by p-chloromercuribenzoate sulphate (pCMBS), and mercuric chloride (HgCl(2)) decreased while recovering the protein -SH with dithiothreitol treatment provided protection against the effects of pCMBS, and HgCl(2) on PAH transport by BL membrane vesicles.

  19. Membrane transporters as machines: degenerate singularities as a requirement for function.

    PubMed

    Daniel, R W; Boyd, C A R

    2005-01-21

    It is suggested that Membrane Transporter functionality is based on low energy paths between proteins of different conformations. A simple extension of the Born-Oppenheimer approximation is used to reduce the protein structure problem to one of the kinematics of engineering mechanisms. Such low energy paths between conformations with the same handedness imply the existence of degenerate singularities in the engineering mechanism. The requirement for degeneracy leads to a number of conjectures. These include the structure and function of chaperones for constructing such proteins and the thermodynamic properties of membrane transporters.

  20. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  1. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

    PubMed

    Otero, Maria G; Alloatti, Matías; Cromberg, Lucas E; Almenar-Queralt, Angels; Encalada, Sandra E; Pozo Devoto, Victorio M; Bruno, Luciana; Goldstein, Lawrence S B; Falzone, Tomás L

    2014-04-01

    Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

  2. Monitoring the function of membrane transport proteins in detergent-solubilized form

    PubMed Central

    Quick, Matthias; Javitch, Jonathan A.

    2007-01-01

    Transport proteins constitute ≈10% of most proteomes and play vital roles in the translocation of solutes across membranes of all organisms. Their (dys)function is implicated in many disorders, making them frequent targets for pharmacotherapy. The identification of substrates for members of this large protein family, still replete with many orphans of unknown function, has proven difficult, in part because high-throughput screening is greatly complicated by endogenous transporters present in many expression systems. In addition, direct structural studies require that transporters be extracted from the membrane with detergent, thereby precluding transport measurements because of the lack of a vectorial environment and necessitating reconstitution into proteoliposomes for activity measurements. Here, we describe a direct scintillation proximity-based radioligand-binding assay for determining transport protein function in crude cell extracts and in purified form. This rapid and universally applicable assay with advantages over cell-based platforms will greatly facilitate the identification of substrates for many orphan transporters and allows monitoring the function of transport proteins in a nonmembranous environment. PMID:17360689

  3. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    NASA Astrophysics Data System (ADS)

    Kyoungjin An, Alicia; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung-Gil; Ghaffour, Noreddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  4. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres.

    PubMed

    Kyoungjin An, Alicia; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung-Gil; Ghaffour, Noreddine

    2017-01-30

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  5. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    PubMed Central

    Kyoungjin An, Alicia; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung-Gil; Ghaffour, Noreddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination. PMID:28134288

  6. Discontinuous membrane helices in transport proteins and their correlation with function.

    PubMed

    Screpanti, Emanuela; Hunte, Carola

    2007-08-01

    Alpha-helical bundles and beta-barrel proteins represent the two basic types of architecture known for integral membrane proteins. Irregular structural motifs have been revealed with the growing number of structures determined. "Discontinuous" helices are present in membrane proteins that actively transport ions. In the Ca(2+)-ATPase, a primary active transporter, and in the secondary transporters NhaA, LeuT(Aa), ClC H(+)/Cl(-) exchanger and Glt(Ph), the helical structure of two membrane segments is interrupted and the interjacent polypeptide chain forms an extended peptide. The discontinuous helices are integrated in the membrane either as transmembrane-spanning or hairpin-type segments. In addition, the secondary transporters have inverted internal duplication domains, which are only weakly correlated with their amino acid sequence. The symmetry comprises either parts of or the complete molecule, but always includes the discontinuous helices. The helix-peptide-helix motif is correlated with the ion translocation function. The extended peptides with their backbone atoms, the helix termini and the polar/charged amino acid residues in close vicinity provide the basis for ion recognition, binding and translocation.

  7. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  8. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite

    PubMed Central

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W. A.

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  9. [Vesicular intracellular transport in the digestive organs. Membrane vesicle--the universal mechanism of the functional transport].

    PubMed

    Morozov, I A

    2014-01-01

    On the basis of long-term research of the morpho-functional characteristics of the cells of the stomach, small intestine and gallbladder the mechanism and function of membrane vesicles in the implementation of the main functions of these organs sets out in this article: the secretion of hydrochloric acid by parietal cells, the absorption of nutrients in the small intestine and the fluid at a concentration of bile epitheliocytes of gallbladder. Proofs of the intracellular formation of hydrochloric acid in tubulovesicles of the parietal cells and turnover of its secretory membranes in the process of secretory cycle, that has ensured the re-use and explained the extraordinary life of these unique cells are presented. The credible mechanism of HCl output oppression by H(+)-K(+)-ATPase activity blockers has set out on this basis. The article provides detailed endocytosis mechanism of the ions and nutrients absorption by enterocytes. The mechanism of participation of the apical contractile complex of brush border of epithelial cells in the initiation of endocytosis and cytoplasmic microtubules in transport of membrane vesicles in the cytoplasm was analyzed. Based on our research and numerous of the world scientific proceedings the conclusion was done about the existence of two energy dependent types of transport in the absorptive epithelium of the digestive--transmembrane (ionic and nutritive) homeostatic type which is realized by the ATP-system of the basal plasmalemma, and vesicular (endocytosis) type which is impltmented by apical contractile complex of brush border and cytoplasmic microtubules. Both types of transport are interrelated and are under constant cellular control. This observation is relevant to the majority of cells, including those involved in the secretion of various substances: hydrochloric acid by parietal cells, enzymes by main cells of the gastric glands and exocrinocytes of the pancreas, hormone by endocrine cells of the APUD system and, finally

  10. Isolation of liver nuclei that retain functional trans-membrane transport.

    PubMed

    Ho, Y F; Guenthner, T M

    1997-11-01

    We have developed a method for the rapid isolation of hepatocyte nuclei, which employs gentle homogenization and centrifugation conditions, and involves minimal processing time. The purified nuclei were morphologically unaltered when observed by light and electron microscopy. No significant contamination from cytoplasm or mitochondria was detected when assessed by marker enzymes. Membrane transport function, measured as ATP-dependent calcium uptake, was intact. This isolation method was devised to be applicable to studies that involve measurement of uptake and active transport of a variety of substances by the cell nucleus.

  11. Rapamycin mitigates erythrocyte membrane transport functions and oxidative stress during aging in rats.

    PubMed

    Singh, Abhishek Kumar; Singh, Sandeep; Garg, Geetika; Rizvi, Syed Ibrahim

    2017-07-31

    Erythrocyte membrane is a suitable model to study various metabolic and physiological functions as it undergoes variety of biochemical changes during aging. An age-dependent modulatory effect of rapamycin on erythrocyte membrane functions is completely unknown. Therefore, the present study was undertaken to investigate the effect of rapamycin on age-dependent impaired activities of transporters/exchangers, altered levels of redox biomarkers, viz. protein carbonyl (PC), lipid hydroperoxides (LHs), total thiol (-SH), sialic acid (SA) and intracellular calcium ion [Ca(2+)]i, and osmotic fragility of erythrocyte membrane. A significant reduction in membrane-bound activities of Na(+)/K(+)-ATPase (NKA) and Ca(2+)-ATPase (PMCA), and levels of -SH and SA was observed along with a simultaneous induction in Na(+)/H(+) exchanger (NHE) activity and levels of [Ca(2+)]i, PC, LH and osmotic fragility in old-aged rats. Rapamycin was found to be a promising age-delaying drug that significantly reversed the aging-induced impaired activities of membrane-bound ATPases and altered levels of redox biomarkers.

  12. The cytoplasmic domain is essential for transport function of the integral membrane transport protein SLC4A11.

    PubMed

    Loganathan, Sampath K; Lukowski, Chris M; Casey, Joseph R

    2016-01-15

    Large cytoplasmic domains (CD) are a common feature among integral membrane proteins. In virtually all cases, these CD have a function (e.g., binding cytoskeleton or regulatory factors) separate from that of the membrane domain (MD). Strong associations between CD and MD are rare. Here we studied SLC4A11, a membrane transport protein of corneal endothelial cells, the mutations of which cause genetic corneal blindness. SLC4A11 has a 41-kDa CD and a 57-kDa integral MD. One disease-causing mutation in the CD, R125H, manifests a catalytic defect, suggesting a role of the CD in transport function. Expressed in HEK-293 cells without the CD, MD-SLC4A11 is retained in the endoplasmic reticulum, indicating a folding defect. Replacement of CD-SLC4A11 with green fluorescent protein did not rescue MD-SLC4A11, suggesting some specific role of CD-SLC4A11. Homology modeling revealed that the structure of CD-SLC4A11 is similar to that of the Cl(-)/HCO3(-) exchange protein AE1 (SLC4A1) CD. Fusion to CD-AE1 partially rescued MD-SLC4A11 to the cell surface, suggesting that the structure of CD-AE1 is similar to that of CD-SLC4A11. The CD-AE1-MD-SLC4a11 chimera, however, had no functional activity. We conclude that CD-SLC4A11 has an indispensable role in the transport function of SLC4A11. CD-SLC4A11 forms insoluble precipitates when expressed in bacteria, suggesting that the domain cannot fold properly when expressed alone. Consistent with a strong association between CD-SLC4A11 and MD-SLC4A11, these domains specifically associate when coexpressed in HEK-293 cells. We conclude that SLC4A11 is a rare integral membrane protein in which the CD has strong associations with the integral MD, which contributes to membrane transport function. Copyright © 2016 the American Physiological Society.

  13. The cytoplasmic domain is essential for transport function of the integral membrane transport protein SLC4A11

    PubMed Central

    Loganathan, Sampath K.; Lukowski, Chris M.

    2015-01-01

    Large cytoplasmic domains (CD) are a common feature among integral membrane proteins. In virtually all cases, these CD have a function (e.g., binding cytoskeleton or regulatory factors) separate from that of the membrane domain (MD). Strong associations between CD and MD are rare. Here we studied SLC4A11, a membrane transport protein of corneal endothelial cells, the mutations of which cause genetic corneal blindness. SLC4A11 has a 41-kDa CD and a 57-kDa integral MD. One disease-causing mutation in the CD, R125H, manifests a catalytic defect, suggesting a role of the CD in transport function. Expressed in HEK-293 cells without the CD, MD-SLC4A11 is retained in the endoplasmic reticulum, indicating a folding defect. Replacement of CD-SLC4A11 with green fluorescent protein did not rescue MD-SLC4A11, suggesting some specific role of CD-SLC4A11. Homology modeling revealed that the structure of CD-SLC4A11 is similar to that of the Cl−/HCO3− exchange protein AE1 (SLC4A1) CD. Fusion to CD-AE1 partially rescued MD-SLC4A11 to the cell surface, suggesting that the structure of CD-AE1 is similar to that of CD-SLC4A11. The CD-AE1-MD-SLC4a11 chimera, however, had no functional activity. We conclude that CD-SLC4A11 has an indispensable role in the transport function of SLC4A11. CD-SLC4A11 forms insoluble precipitates when expressed in bacteria, suggesting that the domain cannot fold properly when expressed alone. Consistent with a strong association between CD-SLC4A11 and MD-SLC4A11, these domains specifically associate when coexpressed in HEK-293 cells. We conclude that SLC4A11 is a rare integral membrane protein in which the CD has strong associations with the integral MD, which contributes to membrane transport function. PMID:26582474

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  15. Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics.

    SciTech Connect

    Bock KW; D Honys; JM. Ward; S Padmanaban; EP Nawrocki; KD Hirschi; D Twell; H Sze

    2006-01-01

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. About 1269 genes encoding classified transporters were collected from the Arabidopsis thaliana genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3 and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9); while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, were developmentally-regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::GUS analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.

  16. Uphill transport membrane electrodes

    SciTech Connect

    Uto, M.; Yoshida, H.; Sugawara, M.; Umezawa, Y.

    1986-07-01

    A new membrane electrode was constructed in which carrier-mediated uphill transport of analytes is incorporated. The electrode can boost selectively virtual concentration of specific analytes by uphill transport against their concentration gradient across a built-in liquid membrane into its inner filling solution, whose volume is purposely made very small. Cd(II), UO/sub 2//sup 2 +/, and Cu(II) ion uphill transport membrane electrodes constructed here as illustrative examples utilize three different types of input energies, i.e., complexation, concentration gradient, and redox, respectively, for uphill transport of each analyte. Voltammetric detections were demonstrated for Cd(II) and UO/sub 2//sup 2 +/ ion uphill transport electrodes, and a potentiometric detection for a Cu(II) ion uphill transport membrane electrode is also described in terms of fundamental behaviors and a possible use for a new type of electrochemical sensor.

  17. Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats.

    PubMed Central

    Yasumiba, S; Tazuma, S; Ochi, H; Chayama, K; Kajiyama, G

    2001-01-01

    Changes of the biliary canalicular membrane lipid content can affect membrane fluidity and biliary lipid secretion in rats. The immunosuppressant cyclosporin A is known to cause intrahepatic cholestasis. This study investigated whether cyclosporin A influenced canalicular membrane fluidity by altering membrane phospholipids or transporter expression. In male Sprague-Dawley rats, a bile-duct cannula was inserted to collect bile, and sodium taurocholate was infused (100 nmol/min per 100 g) for 60 min. During steady-state taurocholate infusion, cyclosporin A (20 mg/kg) or vehicle was injected intravenously and then bile was collected for 80 min. After killing the rats, canalicular membrane vesicles were prepared. Expression of canalicular membrane transporters was assessed by Western blotting and canalicular membrane vesicle fluidity was estimated by fluorescence polarization. Cyclosporin A reduced biliary lipid secretion along with a disproportionate reduction of lipids relative to bile acids. Cyclosporin A significantly decreased canalicular membrane fluidity along with an increase of the cholesterol/phospholipid molar ratio. Only expression of the transporter P-glycoprotein was increased by cyclosporin A. Because canalicular membrane transporter expression was largely unchanged by cyclosporin A despite a marked decrease of biliary lipid secretion, transporter activity may partly depend upon canalicular membrane fluidity. PMID:11237863

  18. Role of Membrane Lipids in the Regulation of Erythrocytic Oxygen-Transport Function in Cardiovascular Diseases

    PubMed Central

    Revin, Victor V.; Revina, Elvira S.; Martynova, Maria I.; Seikina, Angelina I.; Revina, Nadezhda V.; Imarova, Oksana G.; Solomadin, Ilia N.; Tychkov, Alexander Yu.; Zhelev, Nikolai

    2016-01-01

    The composition and condition of membrane lipids, the morphology of erythrocytes, and hemoglobin distribution were explored with the help of laser interference microscopy (LIM) and Raman spectroscopy. It is shown that patients with cardiovascular diseases (CVD) have significant changes in the composition of their phospholipids and the fatty acids of membrane lipids. Furthermore, the microviscosity of the membranes and morphology of the erythrocytes are altered causing disordered oxygen transport by hemoglobin. Basic therapy carried out with the use of antiaggregants, statins, antianginals, beta-blockers, and calcium antagonists does not help to recover the morphofunctional properties of erythrocytes. Based on the results the authors assume that, for the relief of the ischemic crisis and further therapeutic treatment, it is necessary to include, in addition to cardiovascular disease medicines, medication that increases the ability of erythrocytes' hemoglobin to transport oxygen to the tissues. We assume that the use of LIM and Raman spectroscopy is advisable for early diagnosis of changes in the structure and functional state of erythrocytes when cardiovascular diseases develop. PMID:27872848

  19. Functional characterization of a ClC transporter by solid-supported membrane electrophysiology

    PubMed Central

    Garcia-Celma, Juan; Szydelko, Adrian

    2013-01-01

    EcClC, a prokaryotic member of the ClC family of chloride channels and transporters, works as coupled H+/Cl− exchanger. With a known structure and the possibility of investigating its behavior with different biochemical and biophysical techniques, the protein has become an important model system for the family. Although many aspects of its function have been previously characterized, it was difficult to measure transport on the same sample under different environmental conditions. To overcome this experimental limitation, we have studied EcClC by solid-supported membrane electrophysiology. The large transport-related transient currents and a simple way of relating transport rates to the measured signal have allowed a thorough investigation of ion selectivity, inhibition, and the dependence of transport on changes in ion concentration and pH. Our results confirm that the protein transports larger anions with about similar rates, whereas the smaller fluoride is not a substrate. We also show that 4,4′-diisothiocyano-2,2’-stilbenedisulfonic acid (DIDS), a known inhibitor of other anion transport protein, irreversibly inhibits EcClC from the intracellular side. The chloride dependence shows an apparent saturation at millimolar concentrations that resembles a similar behavior in eukaryotic ClC channels. Our experiments have also allowed us to quantify the pH dependence of transport. EcClC shows a strong activation at low pH with an apparent pKa of 4.6. The pronounced pH dependence is lost by the mutation of a conserved glutamate facing the extracellular solution that was previously shown to be an acceptor for transported protons, whereas it is largely retained by the mutation of an equivalent residue at the intracellular side. Our results have provided a quantitative basis for the transport behavior of EcClC, and they will serve as a reference for future investigations of novel electrogenic transporters with still-uncharacterized properties. PMID:23478993

  20. A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter Sets and Variable Membrane Organisations

    PubMed Central

    Charles, Hubert; Balmand, Séverine; Lamelas, Araceli; Cottret, Ludovic; Pérez-Brocal, Vicente; Burdin, Béatrice; Latorre, Amparo; Febvay, Gérard; Colella, Stefano; Calevro, Federica; Rahbé, Yvan

    2011-01-01

    Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system. PMID:22229056

  1. Peptides actively transported across the tympanic membrane: Functional and structural properties

    PubMed Central

    Kurabi, Arwa; Beasley, Kerry A.; Chang, Lisa; McCann, James; Pak, Kwang; Ryan, Allen F.

    2017-01-01

    Otitis media (OM) is the most common infectious disease of children under six, causing more antibiotic prescriptions and surgical procedures than any other pediatric condition. By screening a bacteriophage (phage) library genetically engineered to express random peptides on their surfaces, we discovered unique peptides that actively transport phage particles across the intact tympanic membrane (TM) and into the middle ear (ME). Herein our goals were to characterize the physiochemical peptide features that may underlie trans-TM phage transport; assess morphological and functional effects of phage peptides on the ME and inner ear (IE); and determine whether peptide-bearing phage transmigrate from the ME into the IE. Incubation of five peptide-bearing phage on the TM for over 4hrs resulted in demonstrably superior transport of one peptide, in level and in exponential increase over time. This suggests a preferred peptide motif for TM active transport. Functional and structural comparisons revealed unique features of this peptide: These include a central lysine residue, isoelectric point of 0.0 at physiological pH and a hydrophobic C-terminus. When the optimal peptide was applied to the TM independent of phage, similar transport was observed, indicating that integration into phage is not required. When 109 particles of the four different trans-TM phage were applied directly into the ME, no morphological effects were detected in the ME or IE when compared to saline or wild-type (WT) phage controls. Comparable, reversible hearing loss was observed for saline controls, WT phage and trans-TM peptide phage, suggesting a mild conductive hearing loss due to ME fluid. Perilymph titers after ME incubation established that few copies of trans-TM peptide phage crossed into the IE. The results suggest that, within the parameters tested, trans-TM peptides are safe and could be used as potential agents for noninvasive delivery of drugs, particles and gene therapy vectors to the ME

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  3. The plasma membrane monoamine transporter (PMAT): Structure, function, and role in organic cation disposition.

    PubMed

    Wang, J

    2016-11-01

    Plasma membrane monoamine transporter (PMAT) is a new polyspecific organic cation transporter that transports a variety of biogenic amines and xenobiotic cations. Highly expressed in the brain, PMAT represents a major uptake2 transporter for monoamine neurotransmitters. At the blood-cerebrospinal fluid (CSF) barrier, PMAT is the principal organic cation transporter for removing neurotoxins and drugs from the CSF. Here I summarize our latest understanding of PMAT and its roles in monoamine uptake and xenobiotic disposition. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  4. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters.

    PubMed

    Schalk, Isabelle J; Mislin, Gaëtan L A; Brillet, Karl

    2012-01-01

    To get access to iron, microorganisms produce and release into their environment small organic metal chelators called siderophores. In parallel, they produce siderophore-iron outer membrane transporters (also called TonB-Dependent Transporters or TBDT) embedded in the outer membrane; these proteins actively reabsorb the siderophore loaded with iron from the extracellular medium. This active uptake requires energy in the form of the proton motive force transferred from the inner membrane to the outer membrane transporter via the inner membrane TonB complex. Siderophores produced by microorganisms are structurally very diverse with molecular weights of 150 up to 2000Da. Siderophore-iron uptake from the extracellular medium by TBDTs is a highly selective and sometimes even stereoselective process, with each siderophore having a specific TBDT. Unlike the siderophores, all TBDTs have similar structures and belong to the outer membrane β-barrel protein superfamily. The way in which the siderophore-iron complex passes through the TBDT is still unclear. In some bacteria, TBDTs are also partners of signaling cascades regulating the expression of proteins involved in siderophore biosynthesis and siderophore-iron acquisition.

  5. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  6. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1996-01-01

    The development of the seal between the membrane and the Fluid Optical Cells (FOC) has been a high priority activity. This seal occurs at an interface in the instrument where three key functions must be realized: (1) physical membrane support, (2) fluid sealing, and (3) unobscured optical transmission.

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  8. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  9. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  10. Electrophysiological characterization of membrane transport proteins.

    PubMed

    Grewer, Christof; Gameiro, Armanda; Mager, Thomas; Fendler, Klaus

    2013-01-01

    Active transport in biological membranes has been traditionally studied using a variety of biochemical and biophysical techniques, including electrophysiology. This review focuses on aspects of electrophysiological methods that make them particularly suited for the investigation of transporter function. Two major approaches to electrical recording of transporter activity are discussed: (a) artificial planar lipid membranes, such as the black lipid membrane and solid supported membrane, which are useful for studies on bacterial transporters and transporters of intracellular compartments, and (b) patch clamp and voltage clamp techniques, which investigate transporters in native cellular membranes. The analytical power of these methods is highlighted by several examples of mechanistic studies of specific membrane proteins, including cytochrome c oxidase, NhaA Na(+)/H(+) exchanger, ClC-7 H(+)/Cl(-) exchanger, glutamate transporters, and neutral amino acid transporters. These examples reveal the wealth of mechanistic information that can be obtained when electrophysiological methods are used in combination with rapid perturbation approaches.

  11. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport.

    PubMed

    Smith, Andrew J; Daut, Jürgen; Schwappach, Blanche

    2011-06-01

    14-3-3 proteins regulate the function and subcellular sorting of membrane proteins. Often, 14-3-3 binding to client proteins requires phosphorylation of the client, but the relevant kinase is unknown in most cases. We summarize current progress in identifying kinases that target membrane proteins with 14-3-3 binding sites and discuss the molecular mechanisms of 14-3-3 action. One of the kinases involved is Akt/PKB, which has recently been shown to activate the 14-3-3-dependent switch in a number of client membrane proteins.

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-07-01

    In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  13. Oxygen Transport Membranes

    SciTech Connect

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  14. Functional membranes. Present and future

    NASA Technical Reports Server (NTRS)

    Kunitake, T.

    1982-01-01

    The present situation and the future development of the functional membrane are discussed. It is expected that functional membranes will play increasingly greater roles in the chemical industry of the coming decade. These membranes are formed from polymer films, liquid membranes or bilayer membranes. The two most important technologies based on the polymeric membrane are reverse osmosis and ion exchange. The liquid membrane is used for separation of ionic species; an extension of the solvent extraction process. By using appropriate ligands and ionophores, highly selective separations are realized. The active transport is made possible if the physical and chemical potentials are applied to the transport process. More advanced functional membranes may be designed on the basis of the synthetic bilayer membrane.

  15. The Influence of Initial Peritoneal Transport Characteristics, Inflammation, and High Glucose Exposure on Prognosis for Peritoneal Membrane Function

    PubMed Central

    Fernández-Reyes, M. José; Bajo, M. Auxiliadora; Del Peso, Gloria; Ossorio, Marta; Díaz, Raquel; Carretero, Beatriz; Selgas, Rafael

    2012-01-01

    ♦ Background: Fast transport status, acquired with time on peritoneal dialysis (PD), is a pathology induced by peritoneal exposure to bioincompatible solutions. Fast transport has important clinical consequences and should be prevented. ♦ Objective: We analyzed the repercussions of initial peritoneal transport characteristics on the prognosis for peritoneal membrane function, and also whether the influence of peritonitis and high exposure to glucose are different according to the initial peritoneal transport characteristics or the moment when such events occur. ♦ Methods: The study included 275 peritoneal dialysis patients with at least 2 peritoneal function studies (at baseline and 1 year). Peritoneal kinetic studies were performed at baseline and annually. Those studies consist of a 4-hour dwell with glucose (1.5% during 1981 - 1990, and 2.27% during 1991 - 2002) to calculate the peritoneal mass transfer coefficients of urea and creatinine (milliliters per minute) using a previously described mathematical model. ♦ Results: Membrane prognosis and technique survival were independent of baseline transport characteristics. Fast transport and ultrafiltration (UF) failure are reversible conditions, provided that peritonitis and high glucose exposure are avoided during the early dialysis period. The first year on PD is a main determining factor for the membrane’s future, and the mass transfer coefficient of creatinine at year 1 is the best functional predictor of future PD history. After 5 years on dialysis, permeability frequently increases, and UF decreases. Icodextrin is associated with peritoneal protection. ♦ Conclusions: Peritoneal membrane prognosis is independent of baseline transport characteristics. Intrinsic fast transport and low UF are reversible conditions when peritonitis and high glucose exposure are avoided during the early dialysis period. Icodextrin helps in glucose avoidance and is associated with peritoneal protection. PMID:22473036

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  17. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health.

    NASA Astrophysics Data System (ADS)

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-08-01

    Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.

  18. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health

    PubMed Central

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-01-01

    Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  20. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  2. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function

    PubMed Central

    Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP4- (out) for ADP3- (in) + 0.5 phosphate2- (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated. PMID:283393

  3. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    PubMed

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated.

  4. The role of the calcium transporter protein plasma membrane calcium ATPase PMCA2 in cerebellar Purkinje neuron function.

    PubMed

    Empson, R M; Akemann, W; Knöpfel, Thomas

    2010-01-01

    Genetic deletion of the plasma membrane calcium ATPase type 2 (PMCA2), a calcium transporter protein, is associated with an overtly ataxic phenotype in mice. PMCA2 is expressed at high levels in cerebellar Purkinje neurons (PNs) where functional integrity is essential for normal cerebellar function. Indeed, loss of PN function accompanies cerebellar ataxia in humans and mouse models. In the ataxic PMCA2 knockout (PMCA2-/-) mouse the ability of the PNs to control their cytosolic calcium levels was severely impaired; basal calcium levels were high and calcium recovery kinetics slow. Whole cell patch clamp recordings from PMCA2-/- PNs revealed that they possessed hyperpolarised membrane potentials, reduced frequency and increased irregularity of spontaneous action potential firing, curtailed complex spikes and sustained calcium-dependent outward K+ currents. We propose that these alterations limit pathological excursions in PN cytosolic calcium as an aid to survival but that they are insufficient to prevent loss of functional cerebellar output.

  5. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The activities during the fourth semi-annual period of the MTP project have involved the completion of the Science Concept Review (SCR) presentation and peer review, continuation of analyses for the mass transfer coefficients measured from MTA experiment data, and development of the second generation (MTP-II) instrument. The SCR panel members were generated several recommendations for the MTP project recommendations are : Table 1 Summary of Primary SCR Panel Recommendations (1) Continue and refine development of mass transfer coefficient analyses (2) Refine and upgrade analytical modeling associated with the MTP experiment. (3) Increase resolution of measurements in proximity of the membrane interface. (4) Shift emphasis to measurement of coupled transport effects (i.e., development of MTP phase II experiment concept).

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-06-30

    A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

  10. Comparison of Cytotoxicity and Inhibition of Membrane ABC Transporters Induced by MWCNTs with Different Length and Functional Groups.

    PubMed

    Yu, Jing; Liu, Su; Wu, Bing; Shen, Zhuoyan; Cherr, Gary N; Zhang, Xu-Xiang; Li, Mei

    2016-04-05

    Experimental studies indicate that multiwalled carbon nanotubes (MWCNTs) have the potential to induce cytotoxicity. However, the reports are often inconsistent and even contradictory. Additionally, adverse effects of MWCNTs at low concentration are not well understood. In this study, we systemically compared adverse effects of six MWCNTs including pristine MWCNTs, hydroxyl-MWCNTs and carboxyl-MWCNTs of two different lengths (0.5-2 μm and 10-30 μm) on human hepatoma cell line HepG2. Results showed that MWCNTs induced cytotoxicity by increasing reactive oxygen species (ROS) generation and damaging cell function. Pristine short MWCNTs induced higher cytotoxicity than pristine long MWCNTs. Functionalization increased cytotoxicity of long MWCNTs, but reduced cytotoxicity of short MWCNTs. Further, our results indicated that the six MWCNTs, at nontoxic concentration, might not be environmentally safe as they inhibited ABC transporters' efflux capabilities. This inhibition was observed even at very low concentrations, which were 40-1000 times lower than their effective concentrations on cytotoxicity. The inhibition of ABC transporters significantly increased cytotoxicity of arsenic, a known substrate of ABC transporters, indicating a chemosensitizing effect of MWCNTs. Plasma membrane damage was likely the mechanism by which the six MWCNTs inhibited ABC transporter activity. This study provides insight into risk assessments of low levels of MWCNTs in the environment.

  11. Concentrations of Gd-BOPTA in cholestatic fatty rat livers: role of transport functions through membrane proteins.

    PubMed

    Pastor, Catherine M; Wissmeyer, Michael; Millet, Philippe

    2013-01-01

    Gd-BOPTA (gadobenate dimeglumine) is a magnetic resonance (MR) contrast agent that, after i.v. administration, distributes within the extracellular space, enters rat hepatocytes through the sinusoidal transporters organic anion transporting peptides (Oatps) and is excreted unchanged into bile through the multidrug resistance-associated protein 2 (Mrp2). It is unclear how the hepatobiliary contrast agent would accumulate in cholestatic fatty livers from obese rats with bile flow impairment. Indeed, the expression of both Oatps and Mrp2 transporters is decreased in cholestatic hepatocytes. To assess this question, we measured on-line the hepatic concentrations of ¹⁵³Gd-BOPTA with a gamma probe placed over perfused rat livers. During the perfusion of ¹⁵³Gd-BOPTA, we obtained a similar maximal hepatic concentration in normal and fatty livers despite the decreased expression and function of membrane transporters in fatty livers. By pharmacokinetic modeling and mathematical simulations, we show how changes of transport into and out of hepatocytes modify the concentrations of ¹⁵³Gd-BOPTA within hepatocytes. Mathematical simulations help to understand how each parameter (entry into hepatocytes, bile excretion, or efflux back to sinusoids) interferes with the hepatic concentrations. The hepatic concentrations of ¹⁵³Gd-BOPTA within hepatocytes rely on the entry into hepatocytes through the sinusoidal membrane and on two paths of exit, the efflux back to sinusoids and the elimination into bile. Understanding how ¹⁵³Gd-BOPTA accumulates in hepatocytes is then complex. However, such understanding is important to analyze liver imaging with hepatobiliary contrast agents in cholestatic fatty livers.

  12. Nanoengineered membranes for controlled transport

    SciTech Connect

    Doktycz, Mitchel J; Simpson, Michael L; McKnight, Timothy E; Melechko, Anatoli V; Lowndes, Douglas H; Guillorn, Michael A; Merkulov, Vladimir I

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  15. Transporter oligomerization: form and function

    PubMed Central

    Alguel, Yilmaz; Cameron, Alexander D.; Diallinas, George; Byrne, Bernadette

    2016-01-01

    Transporters are integral membrane proteins with central roles in the efficient movement of molecules across biological membranes. Many transporters exist as oligomers in the membrane. Depending on the individual transport protein, oligomerization can have roles in membrane trafficking, function, regulation and turnover. For example, our recent studies on UapA, a nucleobase ascorbate transporter, from Aspergillus nidulans, have revealed both that dimerization of this protein is essential for correct trafficking to the membrane and the structural basis of how one UapA protomer can affect the function of the closely associated adjacent protomer. Here, we review the roles of oligomerization in many particularly well-studied transporters and transporter families. PMID:27913684

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  17. Purification, crystallization and characterization of the Pseudomonas outer membrane protein FapF, a functional amyloid transporter.

    PubMed

    Rouse, Sarah L; Hawthorne, Wlliam J; Lambert, Sebastian; Morgan, Marc L; Hare, Stephen A; Matthews, Stephen

    2016-12-01

    Bacteria often produce extracellular amyloid fibres via a multi-component secretion system. Aggregation-prone, unstructured subunits cross the periplasm and are secreted through the outer membrane, after which they self-assemble. Here, significant progress is presented towards solving the high-resolution crystal structure of the novel amyloid transporter FapF from Pseudomonas, which facilitates the secretion of the amyloid-forming polypeptide FapC across the bacterial outer membrane. This represents the first step towards obtaining structural insight into the products of the Pseudomonas fap operon. Initial attempts at crystallizing full-length and N-terminally truncated constructs by refolding techniques were not successful; however, after preparing FapF(106-430) from the membrane fraction, reproducible crystals were obtained using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.5 Å resolution. These crystals belonged to the monoclinic space group C121, with unit-cell parameters a = 143.4, b = 124.6, c = 80.4 Å, α = γ = 90, β = 96.32° and three monomers in the asymmetric unit. It was found that the switch to complete detergent exchange into C8E4 was crucial for forming well diffracting crystals, and it is suggested that this combined with limited proteolysis is a potentially useful protocol for membrane β-barrel protein crystallography. The three-dimensional structure of FapF will provide invaluable information on the mechanistic differences of biogenesis between the curli and Fap functional amyloid systems.

  18. Purification, crystallization and characterization of the Pseudomonas outer membrane protein FapF, a functional amyloid transporter

    PubMed Central

    Rouse, Sarah L.; Hawthorne, Wlliam J.; Lambert, Sebastian; Morgan, Marc L.; Hare, Stephen A.; Matthews, Stephen

    2016-01-01

    Bacteria often produce extracellular amyloid fibres via a multi-component secretion system. Aggregation-prone, unstructured subunits cross the periplasm and are secreted through the outer membrane, after which they self-assemble. Here, significant progress is presented towards solving the high-resolution crystal structure of the novel amyloid transporter FapF from Pseudomonas, which facilitates the secretion of the amyloid-forming polypeptide FapC across the bacterial outer membrane. This represents the first step towards obtaining structural insight into the products of the Pseudomonas fap operon. Initial attempts at crystallizing full-length and N-terminally truncated constructs by refolding techniques were not successful; however, after preparing FapF106–430 from the membrane fraction, reproducible crystals were obtained using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.5 Å resolution. These crystals belonged to the monoclinic space group C121, with unit-cell parameters a = 143.4, b = 124.6, c = 80.4 Å, α = γ = 90, β = 96.32° and three monomers in the asymmetric unit. It was found that the switch to complete detergent exchange into C8E4 was crucial for forming well diffracting crystals, and it is suggested that this combined with limited proteolysis is a potentially useful protocol for membrane β-barrel protein crystallography. The three-dimensional structure of FapF will provide invaluable information on the mechanistic differences of biogenesis between the curli and Fap functional amyloid systems. PMID:27917837

  19. The "Transport Specificity Ratio": a structure-function tool to search the protein fold for loci that control transition state stability in membrane transport catalysis

    PubMed Central

    King, Steven C

    2004-01-01

    Background In establishing structure-function relationships for membrane transport proteins, the interpretation of phenotypic changes can be problematic, owing to uncertainties in protein expression levels, sub-cellular localization, and protein-folding fidelity. A dual-label competitive transport assay called "Transport Specificity Ratio" (TSR) analysis has been developed that is simple to perform, and circumvents the "expression problem," providing a reliable TSR phenotype (a constant) for comparison to other transporters. Results Using the Escherichia coli GABA (4-aminobutyrate) permease (GabP) as a model carrier, it is demonstrated that the TSR phenotype is largely independent of assay conditions, exhibiting: (i) indifference to the particular substrate concentrations used, (ii) indifference to extreme changes (40-fold) in transporter expression level, and within broad limits (iii) indifference to assay duration. The theoretical underpinnings of TSR analysis predict all of the above observations, supporting that TSR has (i) applicability in the analysis of membrane transport, and (ii) particular utility in the face of incomplete information on protein expression levels and initial reaction rate intervals (e.g., in high-throughput screening situations). The TSR was used to identify gab permease (GabP) variants that exhibit relative changes in catalytic specificity (kcat/Km) for [14C]GABA (4-aminobutyrate) versus [3H]NA (nipecotic acid). Conclusions The TSR phenotype is an easily measured constant that reflects innate molecular properties of the transition state, and provides a reliable index of the difference in catalytic specificity that a carrier exhibits toward a particular pair of substrates. A change in the TSR phenotype, called a Δ(TSR), represents a specificity shift attributable to underlying changes in the intrinsic substrate binding energy (ΔGb) that translocation catalysts rely upon to decrease activation energy (). TSR analysis is therefore a

  20. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  1. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  2. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  3. Disrupted plasma membrane localization and loss of function reveal regions of human equilibrative nucleoside transporter 1 involved in structural integrity and activity.

    PubMed

    Nivillac, Nicole M I; Wasal, Karanvir; Villani, Daniela F; Naydenova, Zlatina; Hanna, W J Brad; Coe, Imogen R

    2009-10-01

    Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  5. Carrier facilitated transport through membranes

    SciTech Connect

    Kaper, H.G.; Leaf, G.K.; Matkowsky, B.J.

    1980-06-01

    Facilitated transport is a process whereby the diffusion of a solute across a membrane is chemically enhanced. In this report an analysis is given of a facilitated transport system involving a volatile species A which reacts with a nonvolatile carrier species B to form the nonvolatile product AB. The species A is transported across the membrane by ordinary diffusion, as well as by the diffusion of the product AB. It is assumed that the reaction rates are large, so the reactions are confined mostly to thin boundary layers near the surfaces of the membrane. The method of matched asymptotic expansions is used to derive the asymptotic solution of the nonlinear boundary value problem governing equilibrium. The effect of various parameters on the facilitation factor is analyzed in detail.

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  7. Composite oxygen transport membrane

    DOEpatents

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  8. Functional reconstitution of purified chloroquine resistance membrane transporter expressed in yeast.

    PubMed

    Tan, W; Gou, D M; Tai, E; Zhao, Y Z; Chow, L M C

    2006-08-15

    Malaria is one of the major parasitic diseases. Current treatment of malaria is seriously hampered by the emergence of drug resistant cases. A once-effective drug chloroquine (CQ) has been rendered almost useless. The mechanism of CQ resistance is complicated and largely unknown. Recently, a novel transmembrane protein, Plasmodium falciparum chloroquine resistance transporter (PfCRT), has fulfilled all the requirements of being the CQ resistance gene. In order to elucidate the mechanism how PfCRT mediates CQ resistance, we have cloned the cDNA from a CQ sensitive parasite (3D7) and tried to express it in Pichia pastoris (P. pastoris) but with unsuccessful results due to AT-rich sequences in the malaria genome. We have therefore, based on the codon usage in P. pastoris, chemically synthesized a codon-modified pfcrt with an overall 55% AT content. This codon-modified pfcrt has now been successfully expressed in P. pastoris. The expressed PfCRT has been purified with immuno metal affinity chromatography (IMAC) and then reconstituted into proteoliposome. It was found that proteoliposomes have a saturable, concentration and time-dependent CQ transport activity. In addition, we found that proteoliposomes with resistant PfCRT(r) (K76T or K76I) showed an increased CQ transport activity compared to liposomes with lipid alone, or proteoliposomes reconstituted with sensitive PfCRT(s) (K76) protein. This activity could be inhibited by nigericin and decreased with the removal of Cl(-). This work suggests that PfCRT is mediating CQR in P. falciparum by virtue of its changes in CQ transport activity depending on pH gradient and chloride ion in the food vacuole.

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  10. Carbon dioxide transport through membranes.

    PubMed

    Missner, Andreas; Kügler, Philipp; Saparov, Sapar M; Sommer, Klaus; Mathai, John C; Zeidel, Mark L; Pohl, Peter

    2008-09-12

    Several membrane channels, like aquaporin-1 (AQP1) and the RhAG protein of the rhesus complex, were hypothesized to be of physiological relevance for CO(2) transport. However, the underlying assumption that the lipid matrix imposes a significant barrier to CO(2) diffusion was never confirmed experimentally. Here we have monitored transmembrane CO(2) flux (J(CO2)) by imposing a CO(2) concentration gradient across planar lipid bilayers and detecting the resulting small pH shift in the immediate membrane vicinity. An analytical model, which accounts for the presence of both carbonic anhydrase and buffer molecules, was fitted to the experimental pH profiles using inverse problems techniques. At pH 7.4, the model revealed that J(CO2) was entirely rate-limited by near-membrane unstirred layers (USL), which act as diffusional barriers in series with the membrane. Membrane tightening by sphingomyelin and cholesterol did not alter J(CO2) confirming that membrane resistance was comparatively small. In contrast, a pH-induced shift of the CO(2) hydration-dehydration equilibrium resulted in a relative membrane contribution of about 15% to the total resistance (pH 9.6). Under these conditions, a membrane CO(2) permeability (3.2 +/- 1.6 cm/s) was estimated. It indicates that cellular CO(2) uptake (pH 7.4) is always USL-limited, because the USL size always exceeds 1 mum. Consequently, facilitation of CO(2) transport by AQP1, RhAG, or any other protein is highly unlikely. The conclusion was confirmed by the observation that CO(2) permeability of epithelial cell monolayers was always the same whether AQP1 was overexpressed in both the apical and basolateral membranes or not.

  11. COPII-coated membranes function as transport carriers of intracellular procollagen I

    DOE PAGES

    Gorur, Amita; Yuan, Lin; Kenny, Samuel J.; ...

    2017-04-20

    The coat protein complex II (COPII) is essential for the transport of large cargo, such as 300-nm procollagen I (PC1) molecules, from the endoplasmic reticulum (ER) to the Golgi. Previous work has shown that the CUL3-KLHL12 complex increases the size of COPII vesicles at ER exit sites to more than 300 nm in diameter and accelerates the secretion of PC1. However, the role of large COPII vesicles as PC1 transport carriers was not unambiguously demonstrated. In this study, using stochastic optical reconstruction microscopy, correlated light electron microscopy, and live-cell imaging, we demonstrate the existence of mobile COPII-coated vesicles that completelymore » encapsulate the cargo PC1 and are physically separated from ER. We also developed a cell-free COPII vesicle budding reaction that reconstitutes the capture of PC1 into large COPII vesicles. This process requires COPII proteins and the GTPase activity of the COPII subunit SAR1. We conclude that large COPII vesicles are bona fide carriers of PC1.« less

  12. Taurocholate transport by brush-border membrane vesicles from the developing rabbit ileum: Structure/function relationships

    SciTech Connect

    Schwarz, S.M.; Watkins, J.B.; Ling, S.C. )

    1990-05-01

    To examine the ontogenesis of bile acid transport in the rabbit ileum, brush-border membrane vesicles (12- to 20-fold purified) were prepared from 14- to 49-day-old animals. Taurocholate uptake was characterized by the emergence of secondary active, Na(+)-dependent transport at the start of weaning (21 days). Transient intravesicular accumulation (overshoot) of taurocholate occurred at 5-10 s of incubation, and the overshoot maximum increased significantly from 21 days (349.2 +/- 22.4 nmol/mg protein) to 35 days (569.0 +/- 84.3 nmol/mg protein; p less than 0.001), without further increase at maturity (49 days, not equal to 607.6 +/- 136.7 nmol/mg protein). No significant taurocholate active uptake component was noted at 14 days; however, ileal vesicles from sucklings showed carrier-mediated, Na+ D-glucose cotransport. In greater than or equal to 35-day-old rabbits, osmolarity studies at 20 s of incubation showed that only approximately 12% of (14C)taurocholate uptake was secondary to bile acid-to-membrane binding. Conversely, at 20 min, greater than 95% of radiolabel incorporation represented solute bound to the external and/or internal membrane surface. Arrhenius plots establish brush-border membrane taurocholate uptake as an intrinsic, lipid-dependent process, with a slope discontinuity between 24 and 28 degrees C, similar to the membrane lipid thermotropic transition region. Steady-state fluorescence polarization studies (1,6-diphenyl-1,3,5-hexatriene) demonstrate a temporal association between the maturation of taurocholate uptake and age-related decreases in ileal brush-border membrane fluidity. These data indicate that maturation of bile acid secondary active transport in the rabbit ileum may be regulated, at least in part, by changes in brush-border membrane lipid dynamics.

  13. Polyene antibiotic that inhibits membrane transport proteins.

    PubMed

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan

    2012-07-10

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains.

  14. Polarity and membrane transport in osteoclasts.

    PubMed

    Baron, R

    1989-01-01

    The osteoclast is a highly polarized non-epithelial cell. The apical pole of the cell is determined by the cell's attachment to the extracellular matrix. This attachment forms the sealing zone, delimiting the subosteoclastic bone resorbing compartment. The apical membrane of the cell forms the ruffled-border, which contains some specific membrane proteins and a proton pump ATPase, which acidifies the apical compartment. Newly synthesized lysosomal enzymes are vectorially transported into this apical compartment bound to mannose-6-phosphate receptors. The basolateral membrane is highly enriched in sodium pumps with beta and alpha 1 subunits. Associated with the acidification process is the carbonic anhydrase found in the cytoplasm and membrane-associated and a bicarbonate-chloride exchanger in the membrane.2 These features put the osteoclast in the same functional category as the kidney tubule intercalated cell and the gastric oxyntic cell, both of epithelial origin, which secrete acid in a polarized fashion.

  15. Membrane protein transport in photoreceptors: the function of PDEδ: the Proctor lecture.

    PubMed

    Baehr, Wolfgang

    2014-12-30

    This lecture details the elucidation of cGMP phosphodiesterase (PDEδ), discovered 25 years ago by Joe Beavo at the University of Washington. PDEδ, once identified as a fourth PDE6 subunit, is now regarded as a promiscuous prenyl-binding protein and important chaperone of prenylated small G proteins of the Ras superfamily and prenylated proteins of phototransduction. Alfred Wittinghofer's group in Germany showed that PDEδ forms an immunoglobulin-like β-sandwich fold that is closely related in structure to other lipid-binding proteins, for example, Uncoordinated 119 (UNC119) and RhoGDI. His group cocrystallized PDEδ with ARL (Arf-like) 2(GTP), and later with farnesylated Rheb (ras homolog expressed in brain). PDEδ specifically accommodates farnesyl and geranylgeranyl moieties in the absence of bound protein. Germline deletion of the Pde6d gene encoding PDEδ impeded transport of rhodopsin kinase (GRK1) and PDE6 to outer segments, causing slowly progressing, recessive retinitis pigmentosa. A rare PDE6D null allele in human patients, discovered by Tania Attié-Bitach in France, specifically impeded trafficking of farnesylated phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase (INPP5E) to cilia, causing severe syndromic ciliopathy (Joubert syndrome). Binding of cargo to PDEδ is controlled by Arf-like proteins, ARL2 and ARL3, charged with guanosine-5'-triphosphate (GTP). Arf-like proteins 2 and 3 are unprenylated small GTPases that serve as cargo displacement factors. The lifetime of ARL3(GTP) is controlled by its GTPase-activating protein, retinitis pigmentosa protein 2 (RP2), which accelerates GTPase activity up to 90,000-fold. RP2 null alleles in human patients are associated with severe X-linked retinitis pigmentosa (XLRP). Germline deletion of RP2 in mouse, however, causes only a mild form of XLRP. Absence of RP2 prolongs the activity of ARL3(GTP) that, in turn, impedes PDE6δ-cargo interactions and trafficking of prenylated protein to the outer

  16. Isolation and Characterization of Methanophenazine and Function of Phenazines in Membrane-Bound Electron Transport of Methanosarcina mazei Gö1

    PubMed Central

    Abken, Hans-Jörg; Tietze, Mario; Brodersen, Jens; Bäumer, Sebastian; Beifuss, Uwe; Deppenmeier, Uwe

    1998-01-01

    A hydrophobic, redox-active component with a molecular mass of 538 Da was isolated from lyophilized membranes of Methanosarcina mazei Gö1 by extraction with isooctane. After purification on a high-performance liquid chromatography column, the chemical structure was analyzed by mass spectroscopy and nuclear magnetic resonance studies. The component was called methanophenazine and represents a 2-hydroxyphenazine derivative which is connected via an ether bridge to a polyisoprenoid side chain. Since methanophenazine was almost insoluble in aqueous buffers, water-soluble phenazine derivatives were tested for their ability to interact with membrane-bound enzymes involved in electron transport and energy conservation. The purified F420H2 dehydrogenase from M. mazei Gö1 showed highest activity with 2-hydroxyphenazine and 2-bromophenazine as electron acceptors when F420H2 was added. Phenazine-1-carboxylic acid and phenazine proved to be less effective. The Km values for 2-hydroxyphenazine and phenazine were 35 and 250 μM, respectively. 2-Hydroxyphenazine was also reduced by molecular hydrogen catalyzed by an F420-nonreactive hydrogenase which is present in washed membrane preparations. Furthermore, the membrane-bound heterodisulfide reductase was able to use reduced 2-hydroxyphenazine as an electron donor for the reduction of CoB-S-S-CoM. Considering all these results, it is reasonable to assume that methanophenazine plays an important role in vivo in membrane-bound electron transport of M. mazei Gö1. PMID:9555882

  17. Functional roles of Na+ and H+ in SO2-4 transport by rabbit ileal brush border membrane vesicles.

    PubMed

    Ahearn, G A; Murer, H

    1984-01-01

    Sulphate uptake by rabbit ileal brush border membrane vesicles was stimulated by a transmembrane sodium gradient [( Na+]o greater than [Na+]i), but not by a similar potassium gradient. 35SO4(-2) influx ( JSO4 oi ) from outside (o) to inside (i) these vesicles was a hyperbolic function of [SO4-2]o and the affinity constant for anion transport was strongly influenced by [Na+]o (100 mM Na+, KSO4 t = 0.52 mM SO4 -2; 10 mM Na+, KSO4 t = 4.32 mM SO4-2). JSO4 oi was a sigmoidal function of [Na+]o at pH 7.4 for both low (0.2 M) and high (4.0 mM) [SO4-2]o. The Na+-dependency of JSO4 oi was examined at pH 6.0, 7.4, and 8.0 (same pH inside and outside). At pH 6.0 and 7.4 sigmoidal Na+-dependent JSO4 oi exhibited nonlinear Eadie-Hofstee plots indicative of a transport mechanism capable of binding a variable number of sodium ions over the [Na+]o range used. Hill plots of anion transport under these conditions displayed slopes near unity at low [Na+]o and slopes approximating 2.0 at higher cation concentrations. At pH 8.0, Na+-dependent JSO4 oi was hyperbolic and showed linear Eadie-Hofstee and Hill plots, the latter with a single slope near 1.0. When a H+ gradient was imposed across the vesicle wall (pHi = 8.0, pHo = 6.0), Na+-dependent JSO4 oi was hyperbolic and significantly increased at each [Na+]o over values observed using bilateral pH 8.0. In contrast, a H+ gradient oriented in the opposite direction (pHi = 6.0, pHo = 8.0) led to Na+-dependent JSO4 oi that was sigmoidal and significantly lower at each [Na+]o than values found using bilateral pH 6.0. Electrogenicity of JSO4 oi at pH 8.0 for both high and low [Na+]o was demonstrated by using a valinomycin-induced transmembrane electrical potential difference. At pH 6.0, electrogenic JSO4 oi occurred only at low [Na+]o (5 mM); anion transfer was electroneutral at 50 mM Na+. A model is proposed for proton regulation of sodium sulphate cotransport where flux stoichiometry is controlled by [H+]i and sodium binding affinity is

  18. Grafted functional groups on expanded tetrafluoroethylene (ePTFE) support for fuel cell and water transport membranes

    DOEpatents

    Fuller, Timothy J.; Jiang, Ruichun

    2017-01-24

    A method for forming a modified solid polymer includes a step of contacting a solid fluorinated polymer with a sodium sodium-naphthalenide solution to form a treated fluorinated solid polymer. The treated fluorinated solid polymer is contacted with carbon dioxide, sulfur dioxide, or sulfur trioxide to form a solid grafted fluorinated polymer. Characteristically, the grafted fluorinated polymer includes appended CO.sub.2H or SO.sub.2H or SO.sub.3H groups. The solid grafted fluorinated polymer is advantageously incorporated into a fuel cell as part of the ion-conducting membrane or a water transport membrane in a humidifier.

  19. Expression and function of thyroid hormone transporters in the microvillous plasma membrane of human term placental syncytiotrophoblast.

    PubMed

    Loubière, L S; Vasilopoulou, E; Glazier, J D; Taylor, P M; Franklyn, J A; Kilby, M D; Chan, Shiao Y

    2012-12-01

    The transplacental passage of thyroid hormones (THs) from mother to fetus in humans has been deduced from observational clinical studies and is important for normal fetoplacental development. To investigate the transporters that regulate TH uptake by syncytiotrophoblast (the primary barrier to maternal-fetal exchange, which lies in direct contact with maternal blood), we isolated the microvillous plasma membrane (MVM) of human term syncytiotrophoblasts. We have demonstrated that MVM vesicles express plasma membrane TH transporter proteins, including system-L (L-type amino acid transporter 1 and CD98), monocarboxylate transporters (MCTs) 8 and 10, organic anion-transporting polypeptides 1A2 and 4A1. We provide the first definitive evidence that the human syncytiotrophoblast MVM is capable of rapid, saturable T(4) and T(3) uptake at similar rates and in a Na(+)-independent manner. These two major forms of THs could not significantly inhibit each others' uptake, suggesting that each is mediated by largely different transporters. No single transporter was noted to play a dominant role in either T(4) or T(3) uptake. Using combinations of transporter inhibitors that had an additive effect on TH uptake, we provide evidence that 67% of saturable T(4) uptake is facilitated by system-L and MCT10 with a minor role played by organic anion-transporting polypeptides, whereas 87% of saturable T(3) uptake is mediated by MCT8 and MCT10. Our data demonstrate that syncytiotrophoblast may control the quantity and forms of THs taken up by the human placenta. Thus, syncytiotrophoblast could be critical in regulating transplacental TH supply from the mother to the fetus.

  20. Membrane transporters in drug development

    PubMed Central

    2011-01-01

    Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labeling. PMID:20190787

  1. Identification and functional characterization of zebrafish solute carrier Slc16a2 (Mct8) as a thyroid hormone membrane transporter.

    PubMed

    Arjona, Francisco J; de Vrieze, Erik; Visser, Theo J; Flik, Gert; Klaren, Peter H M

    2011-12-01

    Most components of the thyroid system in bony fish have been described and characterized, with the notable exception of thyroid hormone membrane transporters. We have cloned, sequenced, and expressed the zebrafish solute carrier Slc16a2 (also named monocarboxylate transporter Mct8) cDNA and established its role as a thyroid hormone transport protein. The cloned cDNA shares 56-57% homology with its mammalian orthologs. The 526-amino-acid sequence contains 12 predicted transmembrane domains. An intracellular N-terminal PEST domain, thought to be involved in proteolytic processing of the protein, is present in the zebrafish sequence. Measured at initial rate and at the body/rearing temperature of zebrafish (26 C), T(3) uptake by zebrafish Slc16a2 is a saturable process with a calculated Michaelis-Menten constant of 0.8 μM T(3). The rate of T(3) uptake is temperature dependent and Na(+) independent. Interestingly, at 26 C, zebrafish Slc16a2 does not transport T(4). This implies that at a normal body temperature in zebrafish, Slc16a2 protein is predominantly involved in T(3) uptake. When measured at 37 C, zebrafish Slc16a2 transports T(4) in a Na(+)-independent manner. In adult zebrafish, the Slc16a2 gene is highly expressed in brain, gills, pancreas, liver, pituitary, heart, kidney, and gut. Beginning from the midblastula stage, Slc16a2 is also expressed during zebrafish early development, the highest expression levels occurring 48 h after fertilization. This is the first direct evidence for thyroid hormone membrane transporters in fish. We suggest that Slc16a2 plays a key role in the local availability of T(3) in adult tissues as well as during the completion of morphogenesis of primary organ systems.

  2. Phylogenetic profiles of all membrane transport proteins

    PubMed Central

    Weiner, January; Kooij, Taco W.A.

    2016-01-01

    In order to combat the on-going malaria epidemic, discovery of new drug targets remains vital. Proteins that are essential to survival and specific to malaria parasites are key candidates. To survive within host cells, the parasites need to acquire nutrients and dispose of waste products across multiple membranes. Additionally, like all eukaryotes, they must redistribute ions and organic molecules between their various internal membrane bound compartments. Membrane transport proteins mediate all of these processes and are considered important mediators of drug resistance as well as drug targets in their own right. Recently, using advanced experimental genetic approaches and streamlined life cycle profiling, we generated a large collection of Plasmodium berghei gene deletion mutants and assigned essential gene functions, highlighting potential targets for prophylactic, therapeutic, and transmission-blocking anti-malarial drugs. Here, we present a comprehensive orthology assignment of all Plasmodium falciparum putative membrane transport proteins and provide a detailed overview of the associated essential gene functions obtained through experimental genetics studies in human and murine model parasites. Furthermore, we discuss the phylogeny of selected potential drug targets identified in our functional screen. We extensively discuss the results in the context of the functional assignments obtained using gene targeting available to date. PMID:28357319

  3. Plasmodium falciparum: functional mitochondrial ADP/ATP transporter in Escherichia coli plasmic membrane as a tool for selective drug screening.

    PubMed

    Razakantoanina, Valérie; Florent, Isabelle; Jaureguiberry, Ginette

    2008-02-01

    Plasmodium falciparum mitochondrial ADP/ATP transporter or adenylate translocase (PfAdT) was previously characterised at the molecular level and intracellularly located by immuno-electromicroscopy. Inhibition of this transporter blocks parasite development in erythrocytes. In this study, PfAdT was expressed in C43 (DE3) Escherichia coli strain under isopropyl beta-d-thiogalacto-pyranoside (IPTG) induction to screen inhibitory molecules. PfAdT was integrated directly into the bacterial cytoplasmic membrane. Whereas IPTG-induced bacterial cells imported radioactively labelled ATP, non-induced cells did not. The transporter bound specifically ADP and ATP, but not AMP. IPTG-induced cells preloaded with labelled ATP exported ATP after exogenous addition of unlabelled ADP or ATP, indicating a counter exchange transport mechanism. Bongrekic acid and atractyloside, two well-known specific inhibitors of mitochondrial ADP/ATP transporter, were tested. This experimental model was evaluated using three Malagasy crude plants extracts which have shown antiplasmodial activity on in vitro parasite cultures.

  4. Graphene-based nafion nanocomposite membranes: enhanced proton transport and water retention by novel organo-functionalized graphene oxide nanosheets.

    PubMed

    Enotiadis, Apostolos; Angjeli, Kristina; Baldino, Noemi; Nicotera, Isabella; Gournis, Dimitrios

    2012-11-05

    Novel nanostructured organo-modified layered materials based on graphene oxide carrying various hydrophilic functional groups (-NH(2), -OH, -SO(3)H) are prepared and tested as nanofillers for the creation of innovative graphene-based Nafion nanocomposites. The hybrid membranes are characterized by a combination of analytical techniques, which show that highly homogeneous exfoliated nanocomposites are created. The pulsed field gradient NMR technique is used to measure the water self-diffusion coefficients. Remarkable behavior at temperatures up to 140 °C is observed for some composite membranes, thereby verifying the exceptional water retention property of these materials. Dynamic mechanical analysis shows that hybrid membranes are much stiffer and can withstand higher temperatures than pure Nafion.

  5. Functional Characterization of AbeD, an RND-Type Membrane Transporter in Antimicrobial Resistance in Acinetobacter baumannii

    PubMed Central

    Srinivasan, Vijaya Bharathi; Venkataramaiah, Manjunath; Mondal, Amitabha; Rajamohan, Govindan

    2015-01-01

    Background Acinetobacter baumannii is becoming an increasing menace in health care settings especially in the intensive care units due to its ability to withstand adverse environmental conditions and exhibit innate resistance to different classes of antibiotics. Here we describe the biological contributions of abeD, a novel membrane transporter in bacterial stress response and antimicrobial resistance in A. baumannii. Results The abeD mutant displayed ~ 3.37 fold decreased survival and >5-fold reduced growth in hostile osmotic (0.25 M; NaCl) and oxidative (2.631 μM–6.574 μM; H2O2) stress conditions respectively. The abeD inactivated cells displayed increased susceptibility to ceftriaxone, gentamicin, rifampicin and tobramycin (~ 4.0 fold). The mutant displayed increased sensitivity to the hospital-based disinfectant benzalkonium chloride (~3.18-fold). In Caenorhabditis elegans model, the abeD mutant exhibited (P<0.01) lower virulence capability. Binding of SoxR on the regulatory fragments of abeD provide strong evidence for the involvement of SoxR system in regulating the expression of abeD in A. baumannii. Conclusion This study demonstrates the contributions of membrane transporter AbeD in bacterial physiology, stress response and antimicrobial resistance in A. baumannii for the first time. PMID:26496475

  6. [Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations].

    PubMed

    Rybchenko, Zh I; Palladina, T O

    2011-01-01

    Participations of electrogenic H+-pumps of plasma and vacuolar membranes represented by E1-E2 and V-type H+-ATPases in plant cell adaptation to salt stress conditions has been studied by determination of their transport activities. Experiments were carried out on corn seedlings exposed during 1 or 10 days at 0.1 M NaCl. Preparations Methyure and Ivine were used by seed soaking at 10(-7) M. Plasma and vacuolar membrane fractions were isolated from corn seedling roots. In variants without NaCl a hydrolytical activity of plasma membrane H+-ATPase was increased with seedling age and its transport one was changed insignificantly, wherease the response of the weaker vacuolar H+-ATPase was opposite. NaCl exposition decreased hydrolytical activities of both H+-ATPases and increased their transport ones. These results demonstrated amplification of H+-pumps function especially represented by vacuolar H+-ATPase. Both preparations, Methyure mainly, caused a further increase of transport activity which was more expressed in NaCl variants. Obtained results showed the important role of these H+-pumps in plant adaptation under salt stress conditions realized by energetical maintenance of the secondary active Na+/H+ -antiporters which remove Na+ from cytoplasm.

  7. Functional membranes via nanoparticle self-assembly.

    PubMed

    Green, Erica; Fullwood, Emily; Selden, Julieann; Zharov, Ilya

    2015-05-07

    This article summarizes a recently developed approach for the preparation of membrane materials by the self-assembly of inorganic, polymeric or hybrid nanoparticles, with the focus on functional membranes possessing permselectivity. Two types of such membranes are discussed, those possessing size and charge selectivity suitable for ultra- and nanofiltration and chemoselective separation, and those possessing proton or lithium transport properties suitable for fuel cell and lithium battery applications, respectively. This article describes the preparation methods of nanoparticle membranes, as well as their mechanical, molecular, and ionic transport properties.

  8. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane.

    PubMed

    Truschel, Steven T; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C; Tenza, Danièle; Thomas, Penelope C; Herman, Kathryn E; Sackett, Sara D; Cowan, David C; Theos, Alexander C; Raposo, Graça; Marks, Michael S

    2009-09-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.

  9. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

    PubMed Central

    Truschel, Steven T.; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C.; Tenza, Danièle; Thomas, Penelope C.; Herman, Kathryn E.; Sackett, Sara D.; Cowan, David C.; Theos, Alexander C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome (HPS) that lack BLOC-1, melanosomal proteins such as Tyrp1 accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverses early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle. PMID:19624486

  10. Iontophoretic Transport Across a Multiple Membrane System

    PubMed Central

    MOLOKHIA, SARAH A.; ZHANG, YANHUI; HIGUCHI, WILLIAM I.; LI, S. KEVIN

    2008-01-01

    The objective of the present study was to investigate the iontophoretic transport behavior across multiple membranes of different barrier properties. Spectra/Por® (SP) and Ionac membranes were the synthetic membranes and sclera was the biomembrane in this model study. The barrier properties of SP membranes were determined individually in passive and iontophoresis transport experiments with tetraethylammonium ion (TEA), chloride ion (Cl), and mannitol as the model permeants. Passive and iontophoretic transport experiments were then conducted with an assembly of SP membranes. The contribution of electroosmosis to iontophoresis was assessed using the mannitol data. Model analysis was performed to study the contribution of diffusion and electromigration to electrotransport across the multiple membrane system. The effects of membrane barrier thickness upon ion-exchange membrane-enhanced iontophoresis were examined with Ionac, SP, and sclera. The present study shows that iontophoretic transport of TEA across the membrane system was related to the thicknesses and permeability coefficients of the membranes and the electromobilities of the permeant across the individual membranes in the assembly. Model analysis suggests significant contribution of diffusion within the membranes across the membrane system, and this mechanism is relatively independent of the current density applied across the system in iontophoresis dominant transport. PMID:17990310

  11. Functional Identification of Plasma Membrane Monoamine Transporter (PMAT/SLC29A4) as an Atenolol Transporter Sensitive to Flavonoids Contained in Apple Juice.

    PubMed

    Mimura, Yoshihisa; Yasujima, Tomoya; Ohta, Kinya; Inoue, Katsuhisa; Yuasa, Hiroaki

    2017-09-01

    The intestinal absorption of atenolol has recently been reported to be reduced by simultaneous ingestion of fruit juices, such as apple juice. This finding implies a possibility that an unidentified carrier-mediated transport system, which could be interfered by some components of those juices, might be involved in atenolol absorption. In an attempt to explore that possibility, we successfully identified plasma membrane monoamine transporter (PMAT/SLC29A4) as a transporter that can operate for cellular atenolol uptake in the intestine, using Madin-Darby canine kidney II cells stably expressing PMAT. The specific uptake of atenolol by PMAT was greatest at around pH 6.0 and decreased with an increase in pH. At pH 6.0, the PMAT-specific uptake of atenolol was saturable with a Michaelis constant of 0.907 mM. Moreover, PMAT-specific atenolol uptake was extensively inhibited by phloretin and quercetin, which are the major flavonoids contained in apple juice, with the half maximal inhibitory concentrations of 33.3 and 116.3 μM, respectively. PMAT-specific atenolol uptake was also inhibited by several ß-blockers, suggesting that they may also be recognized and transported by PMAT. These results suggest that PMAT is an atenolol transporter that may be involved in intestinal atenolol absorption and sensitive to flavonoids contained in apple juice. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Catalyst containing oxygen transport membrane

    DOEpatents

    Lane, Jonathan A.; Wilson, Jamie R.; Christie, Gervase Maxwell; Petigny, Nathalie; Sarantopoulos, Christos

    2017-02-07

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  13. Catalyst containing oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  14. The membrane trafficking and functionality of the K+-Cl− co-transporter KCC2 is regulated by TGF-β2

    PubMed Central

    Speer, Jan Manuel; Chudotvorova, Ilona; Khakipoor, Shokoufeh; Rivera, Claudio; Krieglstein, Kerstin

    2016-01-01

    ABSTRACT Functional activation of the neuronal K+-Cl− co-transporter KCC2 (also known as SLC12A5) is a prerequisite for shifting GABAA responses from depolarizing to hyperpolarizing during development. Here, we introduce transforming growth factor β2 (TGF-β2) as a new regulator of KCC2 membrane trafficking and functional activation. TGF-β2 controls membrane trafficking, surface expression and activity of KCC2 in developing and mature mouse primary hippocampal neurons, as determined by immunoblotting, immunofluorescence, biotinylation of surface proteins and KCC2-mediated Cl− extrusion. We also identify the signaling pathway from TGF-β2 to cAMP-response-element-binding protein (CREB) and Ras-associated binding protein 11b (Rab11b) as the underlying mechanism for TGF-β2-mediated KCC2 trafficking and functional activation. TGF-β2 increases colocalization and interaction of KCC2 with Rab11b, as determined by 3D stimulated emission depletion (STED) microscopy and co-immunoprecipitation, respectively, induces CREB phosphorylation, and enhances Rab11b gene expression. Loss of function of either CREB1 or Rab11b suppressed TGF-β2-dependent KCC2 trafficking, surface expression and functionality. Thus, TGF-β2 is a new regulatory factor for KCC2 functional activation and membrane trafficking, and a putative indispensable molecular determinant for the developmental shift of GABAergic transmission. PMID:27505893

  15. Nanostructured silicon membranes for control of molecular transport

    PubMed Central

    Srijanto, Bernadeta R.; Retterer, Scott T.; Fowlkes, Jason D.; Doktycz, Mitchel J.

    2010-01-01

    A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane. PMID:24932436

  16. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  17. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  18. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  19. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  20. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  1. Molecular mechanisms for proton transport in membranes.

    PubMed Central

    Nagle, J F; Morowitz, H J

    1978-01-01

    Likely mechanisms for proton transport through biomembranes are explored. The fundamental structural element is assumed to be continuous chains of hydrogen bonds formed from the protein side groups, and a molecular example is presented. From studies in ice, such chains are predicted to have low impedance and can function as proton wires. In addition, conformational changes in the protein may be linked to the proton conduction. If this possibility is allowed, a simple proton pump can be described that can be reversed into a molecular motor driven by an electrochemical potential across the membrane. PMID:272644

  2. Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1-35).

    PubMed

    Runti, Giulia; Lopez Ruiz, Maria del Carmen; Stoilova, Tatiana; Hussain, Rohanah; Jennions, Matthew; Choudhury, Hassanul G; Benincasa, Monica; Gennaro, Renato; Beis, Konstantinos; Scocchi, Marco

    2013-12-01

    SbmA is an inner membrane protein of Gram-negative bacteria that is involved in the internalization of glycopeptides and prokaryotic and eukaryotic antimicrobial peptides, as well as of peptide nucleic acid (PNA) oligomers. The SbmA homolog BacA is required for the development of Sinorhizobium meliloti bacteroids within plant cells and favors chronic infections with Brucella abortus and Mycobacterium tuberculosis in mice. Here, we investigated functional features of SbmA/BacA using the proline-rich antimicrobial peptide Bac7(1-35) as a substrate. Circular dichroism and affinity chromatography studies were used to investigate the ability of SbmA to bind the peptide, and a whole-cell transport assay with fluorescently labeled peptide allowed the determination of transport kinetic parameters with a calculated Km value of 6.95 ± 0.89 μM peptide and a Vmax of 53.91 ± 3.17 nmol/min/mg SbmA. Use of a bacterial two-hybrid system coupled to SEC-MALLS (size exclusion chromatography coupled with multiangle laser light scattering) analyses established that SbmA is a homodimer in the membrane, and treatment of the cells with arsenate or ionophores indicated that the peptide transport mediated by SbmA is driven by the electrochemical gradient. Overall, these results shed light on the SbmA-mediated internalization of peptide substrates and suggest that the transport of an unknown substrate(s) represents the function of this protein.

  3. The Cortical Acto-Myosin Network: From Diffusion Barrier to Functional Gateway in the Transport of Neurosecretory Vesicles to the Plasma Membrane

    PubMed Central

    Papadopulos, Andreas; Tomatis, Vanesa M.; Kasula, Ravikiran; Meunier, Frederic A.

    2013-01-01

    Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca2+ to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones. Here we discuss the functions of the cortical actin network, myosins, and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis. PMID:24155741

  4. Functional Interaction between the Cytoplasmic ABC Protein LptB and the Inner Membrane LptC Protein, Components of the Lipopolysaccharide Transport Machinery in Escherichia coli

    PubMed Central

    Martorana, Alessandra M.; Benedet, Mattia; Maccagni, Elisa A.; Sperandeo, Paola; Villa, Riccardo; Dehò, Gianni

    2016-01-01

    ABSTRACT The assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made in Escherichia coli of seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level of lptB is a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carries Pa-LptC, the highly divergent LptC orthologue from Pseudomonas aeruginosa. We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carrying Pa-LptC which is otherwise defective in interactions with the E. coli LptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery. IMPORTANCE The asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. In Escherichia coli the LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a

  5. Ceramic oxygen transport membrane array reactor and reforming method

    DOEpatents

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  6. Structural insights into the transport of small molecules across membranes

    PubMed Central

    Noinaj, Nicholas; Buchanan, Susan K.

    2014-01-01

    While hydrophobic small molecules often can freely permeate a lipid bilayer, ions and other polar molecules cannot and require transporters to mediate their transport. Recently, a number of important structures have been reported which have advanced our understanding of how membrane protein transporters function to transport small molecules. Structures of TbpA/B and HmuUV provided new insight into iron uptake by pathogenic bacteria while the structures of NarK, ASBT, and VcINDY revealed molecular details about the transport of nitrate, bile acids and dicarboxylates, respectively. The structure of the folate ECF transporter indicated that the S component likely undergoes a large conformational shift to mediate folate transport, while the cellulose synthase/transporter contains an elongated translocation pore for passage through the inner membrane. PMID:24681594

  7. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  8. Membrane applications in functional foods and nutraceuticals.

    PubMed

    Akin, Oğuz; Temelli, Feral; Köseoğlu, Sefa

    2012-01-01

    The functional foods and nutraceuticals market is growing at a rapid pace. Membrane processing offers several advantages over conventional methods for separation, fractionation, and recovery of those bioactive components. In this review, membrane applications of lipid-, carbohydrate-, and protein-based nutraceuticals and some minor bioactive components have been critically evaluated. Both non-porous and porous membranes were employed for lipid-based nutraceuticals separations. The use of non-porous membranes together with non-aqueous solvents brought about the impact of solution-diffusion theory on transport through membranes. Both organic and inorganic membranes gave encouraging results for the recovery of lipid components with single- and/or multi-stage membrane processing. Two-stage ultrafiltration (UF)-nanofiltration (NF) systems with polymeric membranes provided an efficient approach for the removal of high- and low-molecular weight (MW) unwanted components resulting in higher purity oligosaccharides in the NF retentate. The charged nature of protein-based nutraceutical components had a major effect on their separation. Operating at optimizal pH levels was critical for fractionation, especially for low MW peptide hydrolysates. Processing of minor components such as polyphenols, utilized all types of porous membranes from prefiltration to concentration stages. Coupling of membrane separation and supercritical fluid technologies would combine unique advantages of each process resulting in a novel separation technology offering great potential for the nutraceutical and functional food industry.

  9. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  10. Functional electrospun membranes

    NASA Astrophysics Data System (ADS)

    Ognibene, G.; Fragalà, M. E.; Cristaldi, D. A.; Blanco, I.; Cicala, G.

    2016-05-01

    In this study we combined electrospun PES nanofibers with ZnO nanostructures in order to obtain a hierarchical nanostructured hybrid material to be use for active water filtration membranes. It benefits of flexibility and high surface area of the polymeric nanofibers as well as of additional functionalities of ZnOnanostructures. First, randomly oriented nanofibers with diameters of 716nm ±365 nm were electrospun on a glass fibers substrate from a solution of PES and DMF-TOL(1:1). ZnO nanorods were grown onto the surface of electrospun PES fibers by a Chemical Bath Deposition (CBD) process. It was preceed by a seeding process necessary to form nucleation sites for the subsequent radially aligned growth of ZnO nanowires. The morfology of the fibers and the effect of the seeding time have been analysed by SEM. The amount of ZnO nanowires grown over electrospun nanofibers was determined as 45% by weight. The high purity and crystallinity of the asobtained products are confirmed by XRD since all reflection peaks can be indexed to hexagonal wurtzite ZnO.

  11. Gas transport across hyperthin membranes.

    PubMed

    Wang, Minghui; Janout, Vaclav; Regen, Steven L

    2013-12-17

    The use of organic polymeric membranes to separate gaseous mixtures provides an attractive alternative to other methods such as selective adsorption and cryogenic distillation. The primary advantages of membrane-based separations are their relative energy efficiency and lower costs. Because the flux of a gas across a membrane is inversely proportional to the membrane's thickness, this method relies on fabricating membranes that are as thin as possible. However, as researchers have tried to produce "hyperthin" membranes (less than 100 nm), these membranes often form defects and lose their permeation selectivity. In this Account, we review some of the progress in our laboratories at Lehigh University to create hyperthin membranes with high permeation selectivities. We focus special attention on gaseous permeants that are relevant for the production of clean energy (H2 and CO2 formed from CH4) and the reduction of global warming (CO2 and N2, the major components of flue gas). Our studies make extensive use of Langmuir-Blodgett (LB) methods and porous surfactants derived from calix[6]arenes. We specially designed each surfactant to form cohesive monolayers and multilayers, and we introduced a "gluing" technique, where we cross-link porous surfactants containing quaternary ammonium groups ionically with polymeric counterions. Using ellipsometry, atomic force microscopy, X-ray photoelectron spectroscopy, monolayer isotherm, surface viscosity, and permeation measurements, we have characterized these hyperthin films. While molecular sieving appears to make a significant contribution to the permeation selectivity of some of these membranes, solution-diffusion pathways predominate. We also describe initial studies in which we formed hyperthin films from poly(ethylene glycol)-based polyelectrolytes using layer-by-layer deposition (LbL) methods. We have found remarkably high H2/CO2 and CO2/N2 permeation selectivities with these LB- and LbL-based hyperthin membranes. These

  12. Sulfate transport in Penicillium chrysogenum plasma membranes.

    PubMed Central

    Hillenga, D J; Versantvoort, H J; Driessen, A J; Konings, W N

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion. PMID:8682803

  13. Self-assembly and function of primitive cell membranes.

    PubMed

    Pohorille, Andrew; Deamer, David

    2009-09-01

    We describe possible pathways for separating amphiphilic molecules from organic material on the early earth to form membrane-bound structures required for the start of cellular life. We review properties of the first membranes and their function as permeability barriers. Finally, we discuss the emergence of protein-mediated ion transport across membranes, which facilitated many other cellular functions.

  14. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  15. Anion Transport in a Chemically Stable, Sterically Bulky alpha-C Modified Imidazolium Functionalized Anion Exchange Membrane

    DTIC Science & Technology

    2014-06-24

    comparison of benzyltrimethylammonium and 1-benzyl-3-methylimidazolium cationic groups with the same poly( ethylene -co-tetrafluoroethylene) (ETFE...12) Simone, P. M.; Lodge, T. P. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly( Ethylene Oxide) Diblock Copolymers...1514515144 Herring, A. M. Preparation and Characterization of an Alkaline Anion Exchange Membrane from Chlorinated Poly (Propylene) Aminated with

  16. Understanding transport in model water desalination membranes

    NASA Astrophysics Data System (ADS)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  17. Phospholipid flippases: building asymmetric membranes and transport vesicles.

    PubMed

    Sebastian, Tessy T; Baldridge, Ryan D; Xu, Peng; Graham, Todd R

    2012-08-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. This article is part of a Special Issue entitled Lipids and Vesicular Transport. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Phosphate transport in membrane vesicles from Escherichia coli.

    PubMed

    Konings, W N; Rosenberg, H

    1978-04-04

    Escherichia coli strain AN710 possesses only the PIT system for phosphate transport. Membrane vesicles from this strain, which contain phosphate internally, perform exchange and active transport of phosphate. The energy for active transport is supplied by the respiratory chain with ascorbate phenazine methosulphate as electron donor. To a lesser extent also the oxidation of D-lactate energizes phosphate transport; the oxidation of succinate is only marginally effective. Phosphate transport is driven by the proton-motive force and in particular by the pH gradient across the membrane. This view is supported by the observation that phosphate transport is stimulated by valinomycin, inhibited by nigericin and abolished by the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Neither inhibitor affects phosphate exchange. The phosphate analogue arsenate inhibits both the exchange reaction and active transport. Both processes are stimulated by K+ and Mg2+, the highest activities being observed with both ions present. Membrane vesicles have also been isolated from Escherichia coli K10, a strain which possesses only a functional PST phosphate transport system. These vesicles perform neither exchange nor active transport of phosphate, although active transport of amino acids is observed in the presence of ascorbate-phenazine methosulphate or D-lactate.

  19. Actinide transport across cell membranes.

    PubMed

    Bulman, R A; Griffin, R J

    1980-01-01

    Protactinium uptake into the normal liver does not exceed 3%, but when the phospholipid levels in the liver are elevated by administration of thioacetamide this uptake increases to 31%. Phosphatidic acid, which is absent from the normal liver, has been shown to extract protactinium into organic solvents. However, phosphatidylserine, a component of normal liver cell membranes, does not extract protactinium. It might be conjectured that this is why so little protactinium is taken up by the normal liver. The hypothesis is advanced that phosphatidylserine, which is known to complex plutonium, americium and curium, may regulate the uptake of these elements by liver.

  20. Conical nanopore membranes. Preparation and transport properties.

    PubMed

    Li, Naichao; Yu, Shufang; Harrell, C Chad; Martin, Charles R

    2004-04-01

    We have been investigating applications of nanopore membranes in analytical chemistry-specifically in membrane-based bioseparations, in electroanalytical chemistry, and in the development of new approaches to biosensor design. Membranes that have conically shaped pores (as opposed to the more conventional cylindrical shape) may offer some advantages for these applications. We describe here a simple plasma-etch method that converts cylindrical nanopores in track-etched polymeric membranes into conically shaped pores. This method allows for control of the shape of the resulting conical nanopores. For example, the plasma-etched pores may be cylindrical through most of the membrane thickness blossoming into cones at one face of the membrane (trumpet-shaped), or they may be nearly perfect cones. The key advantage of the conical pore shape is a dramatic enhancement in the rate of transport through the membrane, relative to an analogous cylindrical pore membrane. We demonstrate this here by measuring the ionic resistances of the plasma-etched conical pore membranes.

  1. The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity.

    PubMed

    Bao, Huan; Dalal, Kush; Wang, Victor; Rouiller, Isabelle; Duong, Franck

    2013-08-01

    The coupling between ATP hydrolysis and substrate transport remains a key question in the understanding of ABC-mediated transport. We show using the MalFGK2 complex reconstituted into nanodiscs, that membrane lipids participate directly to the coupling reaction by stabilizing the transporter in a low energy conformation. When surrounded by short acyl chain phospholipids, the transporter is unstable and hydrolyzes large amounts of ATP without inducing maltose. The presence of long acyl chain phospholipids stabilizes the conformational dynamics of the transporter, reduces its ATPase activity and restores dependence on maltose. Membrane lipids therefore play an essential allosteric function, they restrict the transporter ATPase activity to increase coupling to the substrate. In support to the notion, we show that increasing the conformational dynamics of MalFGK2 with mutations in MalF increases the transporter ATPase activity but decreases the maltose transport efficiency.

  2. Biomolecular Transport through Hemofiltration Membranes

    PubMed Central

    Datta, Subhra; Fissell, William H.; Roy, Shuvo

    2009-01-01

    A theoretical model for filtration of large solutes through a pore in the presence of transmembrane pressures, applied/induced electric fields, and dissimilar interactions at the pore entrance and exit is developed to characterize and predict the experimental performance of a hemofiltration membrane with nanometer scale pores designed for a proposed implantable Renal Assist Device (RAD). The model reveals that the sieving characteristics of the membrane can be improved by applying an external electric field, and ensuring a smaller ratio of the pore-feed and pore-permeate equilibrium partitioning coefficients when diffusion is present. The model is then customized to study the sieving characteristics for both charged and uncharged solutes in the slit-shaped nanopores of the hemofiltration device for the RAD. The effect of streaming potential or induced fields are found to be negligible under representative operating conditions. Experimental data on the sieving coefficient of bovine serum albumin, carbonic anhydrase and thyroglobulin are reported and compared with the theoretical predictions. Both steric and electrostatic partitioning are considered and the comparison suggests that in general electrostatic effects are present in the filtration of proteins though some data, particularly those recorded in a strongly hypertonic solution (10×PBS), show better agreement with the steric partitioning theory. PMID:19184436

  3. A light-driven proton pump from Haloterrigena turkmenica: Functional expression in Escherichia coli membrane and coupling with a H{sup +} co-transporter

    SciTech Connect

    Kamo, Naoki . E-mail: nkamo@pharm.hokudai.ac.jp; Hashiba, Tsuyoshi; Kikukawa, Takashi; Araiso, Tsunehisa; Ihara, Kunio; Nara, Toshifumi

    2006-03-10

    A gene encoding putative retinal protein was cloned from Haloterrigena turkmenica (JCM9743). The deduced amino acid sequence was most closely related to that of deltarhodopsin, which functions as a light-driven H{sup +} pump and was identified in a novel strain Haloterrigena sp. arg-4 (K. Ihara, T. Uemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura, Y. Mukohata, Evolution of the archaeal rhodopsins: Evolution rate changes by gene duplication and functional differentiation, J. Mol. Biol. 285 (1999) 163-174. GenBank Accession No. AB009620). Thus, we called the present protein H. turkmenica deltarhodopsin (HtdR) in this report. Differing from the Halobacterium salinarum bacteriorhodopsin (bR), functional expression of HtdR was achieved in Escherichia coli membrane with a high yield of 10-15mg protein/L culture. The photocycle of purified HtdR was similar to that of bR. The photo-induced electrogenic proton pumping activity of HtdR was verified. We co-expressed both HtdR and EmrE, a proton-coupled multi-drug efflux transporter in E. coli, and the cells successfully extruded ethidium, a substrate of EmrE, on illumination.

  4. Does Membrane Thickness Affect the Transport of Selective Ions Mediated by Ionophores in Synthetic Membranes?

    PubMed

    Lomora, Mihai; Dinu, Ionel Adrian; Itel, Fabian; Rigo, Serena; Spulber, Mariana; Palivan, Cornelia G

    2015-08-31

    Biomimetic polymer nanocompartments (polymersomes) with preserved architecture and ion-selective membrane permeability represent cutting-edge mimics of cellular compartmentalization. Here it is studied whether the membrane thickness affects the functionality of ionophores in respect to the transport of Ca(2+) ions in synthetic membranes of polymersomes, which are up to 2.6 times thicker than lipid membranes (5 nm). Selective permeability toward calcium ions is achieved by proper insertion of ionomycin, and demonstrated by using specific fluorescence markers encapsulated in their inner cavities. Preservation of polymersome architecture is shown by a combination of light scattering, transmission electron microscopy, and fluorescence spectroscopy. By using a combination of stopped-flow and fluorescence spectroscopy, it is shown that ionomycin can function and transport calcium ions across polymer membranes with thicknesses in the range 10.7-13.4 nm (7.1-8.9 times larger than the size of the ionophore). Thicker membranes induce a decrease in transport, but do not block it due to the intrinsic flexibility of these synthetic membranes. The design of ion selective biomimetic nanocompartments represents a new path toward the development of cellular ion nanosensors and nano-reactors, in which calcium sensitive biomacromolecules can be triggered for specific biological functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phospholipid flippases: building asymmetric membranes and transport vesicles

    PubMed Central

    Sebastian, Tessy T.; Baldridge, Ryan D.; Xu, Peng; Graham, Todd R.

    2012-01-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. PMID:22234261

  6. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  7. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  8. Features of ion transport in perfluorinated ion-exchange membranes

    SciTech Connect

    Timashev, S.F.

    1986-02-01

    The conditions for functioning for various systems and devices electrolyzers for ''chlorate'' electrolysis, current sources, etc.) with perfluorinated ion-exchange membranes and septums are determined to a considerable degree by the physicochemical properties of the perfluorinated materials. In this work, on the basis of concepts developed in streaming theory as to the topology of the ''infinite clusters'' (ICs), the author defines more precisely the form of the preexponential dependence of ion transport coefficients and draws conclusions on the character of heat evolution in a perfluorinated membrane when an electric current is passed through the membrane.

  9. Transport in nanoporous carbon membranes: Experiments and analysis

    SciTech Connect

    Acharya, M.; Foley, H.C.

    2000-05-01

    Single-component permeances of six gases were measured on three different supported nanoporous carbon membranes prepared by spray coating and pyrolysis of poly(furfuryl alcohol) on porous stainless-steel disks. Global activation energies were regressed from data collected as a function of temperature. Permeances and global activation energies were correlated to molecular size, assuming that entropic affects dominated the transport. The permeance was best correlated to the minimum projected area of the molecule computed from first principles. The free-energy barriers to transport within the membranes were derived from the temperature dependence of the permeance data, after accounting for porosity differences between the membranes and differences in molecular adsorption. Using transition-state theory and an entropic model derived, the free energy, enthalpy, and entropic barriers to transport within the membrane were examined as a function of molecular size. Computed on the basis of size, the entropic component of this barrier did not account for the large differences in the transition-state free energies. However, when these entropic barrier values were used to compute the enthalpic portion of the barrier free energies, the minimum projected area of each molecule correlated strongly. Furthermore, these enthalpic components of the barriers were fitted nicely by the Everett-Powl mean field potential, using only the pore size as the adjustable parameter. These results shed light on the underlying mechanism by which shape-selective transport takes place in the NPC membranes and small molecules are separated.

  10. Calixarene-Mediated Liquid-Membrane Transport of Choline Conjugates.

    PubMed

    Adhikari, Birendra Babu; Fujii, Ayu; Schramm, Michael P

    2014-05-01

    A series of supramolecular calixarenes efficiently transport distinct molecular species through a liquid membrane when attached to a receptor-complementary choline handle. Calix-[6]arene hexacarboxylic acid was highly effective at transporting different target molecules against a pH gradient. Both carboxylic- and phosphonic-acid-functionalized calix[4]arenes effect transport without requiring a pH or ion gradient. NMR binding studies, two-phase solvent extraction, and three-phase transport experiments reveal the necessary and subtle parameters to effect the transport of molecules attached to a choline "handle". On the other hand, rescorin[4]arene cavitands, which have similar guest recognition profiles, did not transport guest molecules. These developments reveal new approaches towards attempting synthetic-receptor-mediated selective small-molecule transport in vesicular and cellular systems.

  11. Advanced Hydrogen Transport Membrane for Coal Gasification

    SciTech Connect

    Schwartz, Joseph; Porter, Jason; Patki, Neil; Kelley, Madison; Stanislowski, Josh; Tolbert, Scott; Way, J. Douglas; Makuch, David

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  12. Ionic transport in lipid bilayer membranes.

    PubMed Central

    Bordi, F; Cametti, C; Naglieri, A

    1998-01-01

    The current-voltage relationships of model bilayer membranes have been measured in various phospholipid systems, under the influence of both a gradient of potential and an ionic concentration, in order to describe the ion translocation through hydrated transient defects (water channels) across the bilayer formed because of lipid structure fluctuations and induced by temperature. The results have been analyzed in the light of a statistical rate theory for the transport process across a lipid bilayer, recently proposed by Skinner et al. (1993). In order to take into account the observed I-V curves and in particular the deviation from an ohmic behavior observed at high potential values, the original model has been modified, and a new version has been proposed by introducing an additional kinetic process. In this way, a very good agreement with the experimental values has been obtained for all of the systems we have investigated (dimyristoylphosphatidyl ethanolamine bilayers and mixed systems composed by dimyristoylphosphatidyl ethanolamine/dimyristoylphosphatidylcholine mixtures and dimyristoylphosphatidyl ethanolamine/phosphatidic acid dipalmitoyl mixtures). The rate constants governing the reactions at the bilayer interfaces have been evaluated for K+ and Cl- ions, as a function of temperature, from 5 to 35 degrees C and bulk ionic concentrations from 0.02 to 0.2 M. Finally, a comparison between the original model of Skinner and the modified version is presented, and the advantages of this new formulation are briefly discussed. PMID:9512032

  13. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    PubMed Central

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  14. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization.

    PubMed

    Zou, Wei; Yadav, Smita; DeVault, Laura; Nung Jan, Yuh; Sherwood, David R

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth.

  15. Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli.

    PubMed

    Nunez-Samudio, Virginia; Chesneau, Olivier

    2013-04-01

    Macrolides have wide clinical applications in the treatment of community-acquired respiratory tract infections, among which streptococci are the most frequent causative agents. An active efflux-based mechanism of macrolide resistance, referred to as the M phenotype in streptococcal isolates, has been associated with the presence of mef genes that encode a subset of major facilitator superfamily (MFS) transporters like Mef(E). An msr(D) gene, adjacent to and co-transcribed with mef in the presence of erythromycin, has also been implicated in drug efflux, but its role remains elusive. Msr(D) belongs to the ATP binding cassette (ABC) proteins and harbors two fused nucleotide-binding domains with no membrane-spanning domains. The present work indicates that the major resistance traits of the M phenotype in Escherichia coli may be due to Msr(D) and not to Mef(E). Fluorescence microscopy using Mef(E) tagged with GFP linked low efficacy of the chimera in conferring macrolide resistance with improper subcellular localization. The active role of Msr(D) in directing Mef(E)-GFP to the cell poles was demonstrated, as was synergistic effect in terms of levels of resistance when both proteins were expressed. A trans-dominant negative mutation within ABC Msr(D) affecting MFS Mef(E) strongly suggests that both proteins can interact in vivo, and such a physical interaction was supported in vitro. This is the first reported example of a functional interplay between an ABC component and an MFS transporter. The direct involvement of Msr(D) in the efflux of macrolides remains to be demonstrated.

  16. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  17. Stability properties of elementary dynamic models of membrane transport.

    PubMed

    Hernández, Julio A

    2003-01-01

    Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

  18. Ceramic oxygen transport membrane array reactor and reforming method

    SciTech Connect

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  19. Mapping the functional yeast ABC transporter interactome.

    PubMed

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D; San Luis, Bryan-Joseph; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F; Zhang, Zhaolei; Paumi, Christian M; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-09-01

    ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters.

  20. Mapping the functional yeast ABC transporter interactome

    PubMed Central

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R.; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D.; Luis, Bryan-Joseph San; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F.; Zhang, Zhaolei; Paumi, Christian M.; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-01-01

    ABC transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used Membrane Yeast Two-Hybrid (MYTH) technology to map the protein interactome of all non-mitochondrial ABC transporters in the model organism Saccharomy cescerevisiae, and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated interactome. We show that ABC transporters physically associate with proteins involved in a surprisingly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters. PMID:23831759

  1. Design of membrane proteins: toward functional systems.

    PubMed

    Ghirlanda, Giovanna

    2009-12-01

    Over the years, membrane-soluble peptides have provided a convenient model system to investigate the folding and assembly of integral membrane proteins. Recent advances in experimental and computational methods are now being translated into the design of functional membrane proteins. Applications include artificial modulators of membrane protein function, inhibitors of protein-protein interactions, and redox membrane proteins.

  2. Transport Mechanisms of Carnosine in SKPT Cells: Contribution of Apical and Basolateral Membrane Transporters

    PubMed Central

    Jappar, Dilara; Hu, Yongjun; Keep, Richard F.; Smith, David E.

    2010-01-01

    Purpose The aim of this study was to investigate the transport properties of carnosine in kidney using SKPT cell cultures as a model of proximal tubular transport, and to isolate the functional activities of renal apical and basolateral transporters in this process. Methods The membrane transport kinetics of 10 µM [3H]carnosine was studied in SKPT cells as a function of time, pH, potential inhibitors and substrate concentration. A cellular compartment model was constructed in which the influx, efflux and transepithelial clearances of carnosine were determined. Peptide transporter expression was probed by RT-PCR. Results Carnosine uptake was 15-fold greater from the apical than basolateral surface of SKPT cells. However, the apical-to-basolateral transepithelial transport of carnosine was severely rate-limited by its cellular efflux across the basolateral membrane. The high-affinity, proton-dependence, concentration-dependence and inhibitor specificity of carnosine supports the contention that PEPT2 is responsible for its apical uptake. In contrast, the basolateral transporter is saturable, inhibited by PEPT2 substrates but non-concentrative, thereby, suggesting a facilitative carrier. Conclusions Carnosine is expected to have a substantial cellular accumulation in kidney but minimal tubular reabsorption in blood because of its high influx clearance across apical membranes by PEPT2 and very low efflux clearance across basolateral membranes. PMID:18820998

  3. Membrane transporter proteins: a challenge for CNS drug development

    PubMed Central

    Girardin, François

    2006-01-01

    Drug transporters are membrane proteins present in various tissues such as the lymphocytes, intestine, liver, kidney, testis, placenta, and central nervous system. These transporters play a significant role in drug absorption and distribution to organic systems, particularly if the organs are protected by blood-organ barriers, such as the blood-brain barrier or the maternal-fetal barrier. In contrast to neurotransmitters and receptor-coupled transporters or other modes of interneuronal transmission, drug transporters are not directly involved in specific neuronal functions, but provide global protection to the central nervous system. The lack of capillary fenestration, the low pinocytic activity, and the tight junctions between brain capillary and choroid plexus endothelial cells represent further gatekeepers limiting the entrance of endogenous and exogenous compounds into the central nervous system. Drug transport is a result of the concerted action of efflux and influx pumps (transporters) located both in the basolateral and apical membranes of brain capillary and choroid plexus endothelial cells. By regulating efflux and influx of endogenous or exogenous substances, the blood-brain barrier and, to a lesser extent, the blood-cerebrospinal barrier in the ventricles, represents the main interface between the central nervous system and the blood, ie, the rest of the body. As drug distribution to organs is dependent on the affinity of a substrate for a specific transport system, membrane transporter proteins are increasingly recognized as a key determinant of drug disposition. Many drug transporters are members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter superfamily or the solute-linked carrier (SLC) class. The multidrug resistance protein MDR1 (ABCB1), also called P-glycoprotein, the multidrug resistance-associated proteins MRP1 (ABCC1) and MRP2 (ABCC2), and the breast cancer-resistance protein BCRP (ABCG2) are ATP-dependent efflux

  4. Human membrane transporter database: a Web-accessible relational database for drug transport studies and pharmacogenomics.

    PubMed

    Yan, Q; Sadée, W

    2000-01-01

    The human genome contains numerous genes that encode membrane transporters and related proteins. For drug discovery, development, and targeting, one needs to know which transporters play a role in drug disposition and effects. Moreover, genetic polymorphisms in human membrane transporters may contribute to interindividual differences in the response to drugs. Pharmacogenetics, and, on a genome-wide basis, pharmacogenomics, address the effect of genetic variants on an individual's response to drugs and xenobiotics. However, our knowledge of the relevant transporters is limited at present. To facilitate the study of drug transporters on a broad scale, including the use of microarray technology, we have constructed a human membrane transporter database (HMTD). Even though it is still largely incomplete, the database contains information on more than 250 human membrane transporters, such as sequence, gene family, structure, function, substrate, tissue distribution, and genetic disorders associated with transporter polymorphisms. Readers are invited to submit additional data. Implemented as a relational database, HMTD supports complex biological queries. Accessible through a Web browser user interface via Common Gateway Interface (CGI) and Java Database Connection (JDBC), HMTD also provides useful links and references, allowing interactive searching and downloading of data. Taking advantage of the features of an electronic journal, this paper serves as an interactive tutorial for using the database, which we expect to develop into a research tool.

  5. Effects of spatial variation in membrane diffusibility and solubility on the lateral transport of membrane components.

    PubMed Central

    Eisinger, J; Halperin, B I

    1986-01-01

    There exist many examples of membrane components (e.g. receptors) accumulating in special domains of cell membranes. We analyze how certain variations in lateral diffusibility and solubility of the membrane would increase the efficiency of transport to these regions. A theorem is derived to show that the mean-time-of capture, tc, for particles diffusing to a trap from an annular region surrounding it, is intermediate to the tc values that correspond to the minimum and maximum diffusion coefficients that obtain in this region. An analytical solution for tc as a function of the gradient of diffusivity surrounding a trap is derived for circular geometry. Since local diffusion coefficients can be increased dramatically by reducing the concentration of intra-membrane particles and/or allowing them to form aggregates, such mechanisms could greatly enhance the diffusion-limited transport of particular membrane components to a trap (e.g. coated pit). If the trap is surrounded by an annular region in which the probe particles' partition function is increased, say, by the local segregation of certain phospholipids, tc is shown to vary inversely with the logarithm of the relative partition function. We provide some conjectural examples to illustrate the magnitude of the effects which heterogeneities in diffusibility and solubility may have in biological membranes. PMID:3756302

  6. Host-microbe interactions via membrane transport systems.

    PubMed

    Konishi, Hiroaki; Fujiya, Mikihiro; Kohgo, Yutaka

    2015-04-01

    Living organisms take in essential molecules and get rid of wastes effectively through the selective transport of materials. Especially in the digestive tract, advanced transport systems are indispensable for the absorption of nutrients and elimination of waste products. These transport pathways control physiological functions by modulating the ionic environment inside and outside the cells. Moreover, recent studies have shown the importance of the expression of trafficking-related molecules and the population of gut microbiota. We found that the molecules secreted from microorganisms are imported into the cells via transporters or endocytosis and that they activate cell survival pathways of intestinal epithelial cells. These findings indicate that the interactions between the gut microbiota and host cells are mediated, at least partly, by the membrane transport systems. In addition, it is well known that the breakdown of transport systems induces various diseases. This review highlights the significance of the transport systems as the pathogenic molecules and therapeutic targets in gastrointestinal disorders. For example, abnormal expression of the genes encoding membrane transport-related molecules is frequently involved in digestive diseases, such as colorectal cancer and inflammatory bowel disease. We herein review the significance of these molecules as pathogenic and therapeutic targets for digestive diseases.

  7. Evidence for Bidirectional Endocannabinoid Transport across Cell Membranes*

    PubMed Central

    Chicca, Andrea; Marazzi, Janine; Nicolussi, Simon; Gertsch, Jürg

    2012-01-01

    Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism. PMID:22879589

  8. Effects of Pressure and Electrical Charge on Macromolecular Transport Across Bovine Lens Basement Membrane

    PubMed Central

    Ferrell, Nicholas; Cameron, Kathleen O.; Groszek, Joseph J.; Hofmann, Christina L.; Li, Lingyan; Smith, Ross A.; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L.; Fissell, William H.

    2013-01-01

    Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. PMID:23561524

  9. Strategies for cell membrane functionalization

    PubMed Central

    Armstrong, James PK

    2016-01-01

    The ability to rationally manipulate and augment the cytoplasmic membrane can be used to overcome many of the challenges faced by conventional cellular therapies and provide innovative opportunities when combined with new biotechnologies. The focus of this review is on emerging strategies used in cell functionalization, highlighting both pioneering approaches and recent developments. These will be discussed within the context of future directions in this rapidly evolving field. PMID:27229904

  10. Membrane ion transport in non-excitable tissues.

    PubMed

    Nehrke, Keith

    2014-12-23

    The facilitated movement of ions across cell membranes can be characterized as occurring through active (ATP-dependent), secondary active (coupled), or passive transport processes. Each of these processes is mediated by a diverse group of membrane proteins. Over the past fifteen years, studies of membrane transport in C. elegans have benefited from the fact that worms are anatomically simple, easily and economically cultured, and genetically tractable. These experimental advantages have been instrumental in defining how membrane transport processes contribute to whole organism physiology. The focus of this review is to survey the recent advances in our understanding of membrane transport that have arisen from integrative physiological approaches in the nematode C. elegans.

  11. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  12. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions.

    PubMed

    Pottosin, Igor; Shabala, Sergey

    2016-03-07

    Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, and volume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca(2+) and reactive oxygen species signaling. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. Cholesterol transport through lysosome-peroxisome membrane contacts.

    PubMed

    Chu, Bei-Bei; Liao, Ya-Cheng; Qi, Wei; Xie, Chang; Du, Ximing; Wang, Jiang; Yang, Hongyuan; Miao, Hong-Hua; Li, Bo-Liang; Song, Bao-Liang

    2015-04-09

    Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Functional Analysis of Arabidopsis Sucrose Transporters

    SciTech Connect

    John M. Ward

    2009-03-31

    Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter from companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.

  15. Osmotic water transport through carbon nanotube membranes

    PubMed Central

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuations become significant at the nanoscopic length scales, and as a result, the flow is stochastic in nature. Further, the flow appears frictionless and is limited primarily by the barriers at the entry and exit of the nanotube pore. The observed flow rates are high (5.8 water molecules per nanosecond and nanotube), comparable to those through the transmembrane protein aquaporin-1, and are practically independent of the length of the nanotube, in contrast to predictions of macroscopic hydrodynamics. All of these distinct characteristics of nanoscopic water flow can be modeled quantitatively by a 1D continuous-time random walk. At long times, the pure-water compartment is drained, and the net flow of water is interrupted by the formation of structured solvation layers of water sandwiched between two nanotube membranes. Structural and thermodynamic aspects of confined water monolayers are studied. PMID:12878724

  16. Active transport of calcium in Neurospora plasma membrane vesicles.

    PubMed Central

    Stroobant, P; Scarborough, G A

    1979-01-01

    Functionally inverted plasma membrane vesicles isolated from the eukaryotic microorganism Neurospora crassa catalyze Mg2+/ATP-dependent Ca2+ uptake. Inhibitors induced efflux studies and isotope-exchange experiments indicate that the Ca2+ is accumulated inside the vesicles against a concentration gradient of about 40-fold, and that the majority of the transported Ca2+ is present essentially in free solution. Comparisons of Mg2+/ATP-driven 45Ca2+ uptake and [14C]SCN-uptake with respect to the Mg2+/ATP concentration dependence, the effects of inhibitors, and the nucleotide and divalent cation specificities indicate that the energy for Ca2+ accumulation is derived from ATP hydrolysis catalyzed by the electrogenic plasma membrane ATPase. Energized Ca2+ uptake is stimulated by the permeant anion SCN- to a degree that varies reciprocally with the ability of this anion to dissipate the membrane potential, and is inhibited by K+ in the presence of nigericin. All of these data point to the conclusion that the active transport of Ca2+ across the Neurospora plasma membrane takes place via a Ca2+/H+ antiporter, which functions to pump Ca2+ out of the intact cell. PMID:40223

  17. Gating effects in Halobacterium halobium membrane transport

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.; Silverman, M. P.

    1979-01-01

    The transport of Na(+) via an H(+)/Na(+) antiporter and of aspartate and serine via Na(+)/amino acid symport systems was studied in Halobacterium halobium cell envelope vesicles. Gradients for H(+) were produced by illuminating the bacteriorhodopsin-containing vesicles at different light intensities, and the rate and extent of Na(+) transport were followed as functions of the electrochemical potential difference for protons. The coupling of Na(+) and H(+) gradients suggested a translocation stoichiometry of 2H(+)/Na(+) for the antiporter. The rate of Na(+) transport increases steeply above a critical transmembrane electrochemical proton gradient, and since the electrical and the chemical potentials of H(+) at this threshold point vary with the experimental conditions, while the sum of these potentials is constant, it was concluded that the gating of the Na(+) transport is caused by the total electrochemical gradient.

  18. Gating effects in Halobacterium halobium membrane transport

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.; Silverman, M. P.

    1979-01-01

    The transport of Na(+) via an H(+)/Na(+) antiporter and of aspartate and serine via Na(+)/amino acid symport systems was studied in Halobacterium halobium cell envelope vesicles. Gradients for H(+) were produced by illuminating the bacteriorhodopsin-containing vesicles at different light intensities, and the rate and extent of Na(+) transport were followed as functions of the electrochemical potential difference for protons. The coupling of Na(+) and H(+) gradients suggested a translocation stoichiometry of 2H(+)/Na(+) for the antiporter. The rate of Na(+) transport increases steeply above a critical transmembrane electrochemical proton gradient, and since the electrical and the chemical potentials of H(+) at this threshold point vary with the experimental conditions, while the sum of these potentials is constant, it was concluded that the gating of the Na(+) transport is caused by the total electrochemical gradient.

  19. YTPdb: a wiki database of yeast membrane transporters.

    PubMed

    Brohée, Sylvain; Barriot, Roland; Moreau, Yves; André, Bruno

    2010-10-01

    Membrane transporters constitute one of the largest functional categories of proteins in all organisms. In the yeast Saccharomyces cerevisiae, this represents about 300 proteins ( approximately 5% of the proteome). We here present the Yeast Transport Protein database (YTPdb), a user-friendly collaborative resource dedicated to the precise classification and annotation of yeast transporters. YTPdb exploits an evolution of the MediaWiki web engine used for popular collaborative databases like Wikipedia, allowing every registered user to edit the data in a user-friendly manner. Proteins in YTPdb are classified on the basis of functional criteria such as subcellular location or their substrate compounds. These classifications are hierarchical, allowing queries to be performed at various levels, from highly specific (e.g. ammonium as a substrate or the vacuole as a location) to broader (e.g. cation as a substrate or inner membranes as location). Other resources accessible for each transporter via YTPdb include post-translational modifications, K(m) values, a permanently updated bibliography, and a hierarchical classification into families. The YTPdb concept can be extrapolated to other organisms and could even be applied for other functional categories of proteins. YTPdb is accessible at http://homes.esat.kuleuven.be/ytpdb/.

  20. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways.

    PubMed

    Bonazzi, Matteo; Spanò, Stefania; Turacchio, Gabriele; Cericola, Claudia; Valente, Carmen; Colanzi, Antonino; Kweon, Hee Seok; Hsu, Victor W; Polishchuck, Elena V; Polishchuck, Roman S; Sallese, Michele; Pulvirenti, Teodoro; Corda, Daniela; Luini, Alberto

    2005-06-01

    Membrane fission is a fundamental step in membrane transport. So far, the only fission protein machinery that has been implicated in in vivo transport involves dynamin, and functions in several, but not all, transport pathways. Thus, other fission machineries may exist. Here, we report that carboxy-terminal binding protein 3/brefeldin A-ribosylated substrate (CtBP3/BARS) controls fission in basolateral transport from the Golgi to the plasma membrane and in fluid-phase endocytosis, whereas dynamin is not involved in these steps. Conversely, CtBP3/BARS protein is inactive in apical transport to the plasma membrane and in receptor-mediated endocytosis, both steps being controlled by dynamin. This indicates that CtBP3/BARS controls membrane fission in endocytic and exocytic transport pathways, distinct from those that require dynamin.

  1. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  2. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  3. Hopanoids as functional analogues of cholesterol in bacterial membranes

    PubMed Central

    Sáenz, James P.; Grosser, Daniel; Bradley, Alexander S.; Lagny, Thibaut J.; Lavrynenko, Oksana; Broda, Martyna; Simons, Kai

    2015-01-01

    The functionality of cellular membranes relies on the molecular order imparted by lipids. In eukaryotes, sterols such as cholesterol modulate membrane order, yet they are not typically found in prokaryotes. The structurally similar bacterial hopanoids exhibit similar ordering properties as sterols in vitro, but their exact physiological role in living bacteria is relatively uncharted. We present evidence that hopanoids interact with glycolipids in bacterial outer membranes to form a highly ordered bilayer in a manner analogous to the interaction of sterols with sphingolipids in eukaryotic plasma membranes. Furthermore, multidrug transport is impaired in a hopanoid-deficient mutant of the gram-negative Methylobacterium extorquens, which introduces a link between membrane order and an energy-dependent, membrane-associated function in prokaryotes. Thus, we reveal a convergence in the architecture of bacterial and eukaryotic membranes and implicate the biosynthetic pathways of hopanoids and other order-modulating lipids as potential targets to fight pathogenic multidrug resistance. PMID:26351677

  4. Hopanoids as functional analogues of cholesterol in bacterial membranes.

    PubMed

    Sáenz, James P; Grosser, Daniel; Bradley, Alexander S; Lagny, Thibaut J; Lavrynenko, Oksana; Broda, Martyna; Simons, Kai

    2015-09-22

    The functionality of cellular membranes relies on the molecular order imparted by lipids. In eukaryotes, sterols such as cholesterol modulate membrane order, yet they are not typically found in prokaryotes. The structurally similar bacterial hopanoids exhibit similar ordering properties as sterols in vitro, but their exact physiological role in living bacteria is relatively uncharted. We present evidence that hopanoids interact with glycolipids in bacterial outer membranes to form a highly ordered bilayer in a manner analogous to the interaction of sterols with sphingolipids in eukaryotic plasma membranes. Furthermore, multidrug transport is impaired in a hopanoid-deficient mutant of the gram-negative Methylobacterium extorquens, which introduces a link between membrane order and an energy-dependent, membrane-associated function in prokaryotes. Thus, we reveal a convergence in the architecture of bacterial and eukaryotic membranes and implicate the biosynthetic pathways of hopanoids and other order-modulating lipids as potential targets to fight pathogenic multidrug resistance.

  5. Comparative molecular biological analysis of membrane transport genes in organisms

    PubMed Central

    Nagata, Toshifumi; Iizumi, Shigemi; Satoh, Kouji

    2008-01-01

    Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H+ as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na+ ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H+ ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport. Electronic supplementary material The online version of this article (doi:10.1007/s11103-007-9287-z) contains supplementary material, which is available to authorized users. PMID:18293089

  6. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  7. Natural polyphenols: Influence on membrane transporters

    PubMed Central

    Hussain, Saad Abdulrahman; Sulaiman, Amal Ajaweed; Alhaddad, Hasan; Alhadidi, Qasim

    2016-01-01

    Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. PMID:27069731

  8. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  9. Structure, function, and plasticity of GABA transporters

    PubMed Central

    Scimemi, Annalisa

    2014-01-01

    GABA transporters belong to a large family of neurotransmitter:sodium symporters. They are widely expressed throughout the brain, with different levels of expression in different brain regions. GABA transporters are present in neurons and in astrocytes and their activity is crucial to regulate the extracellular concentration of GABA under basal conditions and during ongoing synaptic events. Numerous efforts have been devoted to determine the structural and functional properties of GABA transporters. There is also evidence that the expression of GABA transporters on the cell membrane and their lateral mobility can be modulated by different intracellular signaling cascades. The strength of individual synaptic contacts and the activity of entire neuronal networks may be finely tuned by altering the density, distribution and diffusion rate of GABA transporters within the cell membrane. These findings are intriguing because they suggest the existence of complex regulatory systems that control the plasticity of GABAergic transmission in the brain. Here we review the current knowledge on the structural and functional properties of GABA transporters and highlight the molecular mechanisms that alter the expression and mobility of GABA transporters at central synapses. PMID:24987330

  10. Niemann-Pick C1 functions independently of Niemann-Pick C2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo.

    PubMed

    Goldman, Stephen D B; Krise, Jeffrey P

    2010-02-12

    The rare neurodegenerative disease Niemann-Pick Type C (NPC) results from mutations in either NPC1 or NPC2, which are membrane-bound and soluble lysosomal proteins, respectively. Previous studies have shown that mutations in either protein result in biochemically indistinguishable phenotypes, most notably the hyper-accumulation of cholesterol and other cargo in lysosomes. We comparatively evaluated the kinetics of [(3)H]dextran release from lysosomes of wild type, NPC1, NPC2, and NPC1/NPC2 pseudo-double mutant cells and found significant differences between all cell types examined. Specifically, NPC1 or NPC2 mutant fibroblasts treated with NPC1 or NPC2 siRNA (to create NPC1/NPC2 pseudo-double mutants) secreted dextran less efficiently than did either NPC1 or NPC2 single mutant cell lines, suggesting that the two proteins may work independently of one another in the egress of membrane-impermeable lysosomal cargo. To investigate the basis for these differences, we examined the role of NPC1 and NPC2 in the retrograde fusion of lysosomes with late endosomes to create so-called hybrid organelles, which is believed to be the initial step in the egress of cargo from lysosomes. We show here that cells with mutated NPC1 have significantly reduced rates of late endosome/lysosome fusion relative to wild type cells, whereas cells with mutations in NPC2 have rates that are similar to those observed in wild type cells. Instead of being involved in hybrid organelle formation, we show that NPC2 is required for efficient membrane fission events from nascent hybrid organelles, which is thought to be required for the reformation of lysosomes and the release of lysosomal cargo-containing membrane vesicles. Collectively, these results suggest that NPC1 and NPC2 can function independently of one another in the egress of certain membrane-impermeable lysosomal cargo.

  11. Myosin VI is required for targeted membrane transport during cytokinesis.

    PubMed

    Arden, Susan D; Puri, Claudia; Au, Josephine Sui-Yan; Kendrick-Jones, John; Buss, Folma

    2007-12-01

    Myosin VI plays important roles in endocytic and exocytic membrane-trafficking pathways in cells. Because recent work has highlighted the importance of targeted membrane transport during cytokinesis, we investigated whether myosin VI plays a role in this process during cell division. In dividing cells, myosin VI undergoes dramatic changes in localization: in prophase, myosin VI is recruited to the spindle poles; and in cytokinesis, myosin VI is targeted to the walls of the ingressing cleavage furrow, with a dramatic concentration in the midbody region. Furthermore, myosin VI is present on vesicles moving into and out of the cytoplasmic bridge connecting the two daughter cells. Inhibition of myosin VI activity by small interfering RNA (siRNA)-mediated knockdown or by overexpression of dominant-negative myosin VI tail leads to a delay in metaphase progression and a defect in cytokinesis. GAIP-interacting protein COOH terminus (GIPC), a myosin VI binding partner, is associated with the function(s) of myosin VI in dividing cells. Loss of GIPC in siRNA knockdown cells results in a more than fourfold increase in the number of multinucleated cells. Our results suggest that myosin VI has novel functions in mitosis and that it plays an essential role in targeted membrane transport during cytokinesis.

  12. Myosin VI Is Required for Targeted Membrane Transport during Cytokinesis

    PubMed Central

    Arden, Susan D.; Puri, Claudia; Au, Josephine Sui-Yan; Kendrick-Jones, John

    2007-01-01

    Myosin VI plays important roles in endocytic and exocytic membrane-trafficking pathways in cells. Because recent work has highlighted the importance of targeted membrane transport during cytokinesis, we investigated whether myosin VI plays a role in this process during cell division. In dividing cells, myosin VI undergoes dramatic changes in localization: in prophase, myosin VI is recruited to the spindle poles; and in cytokinesis, myosin VI is targeted to the walls of the ingressing cleavage furrow, with a dramatic concentration in the midbody region. Furthermore, myosin VI is present on vesicles moving into and out of the cytoplasmic bridge connecting the two daughter cells. Inhibition of myosin VI activity by small interfering RNA (siRNA)-mediated knockdown or by overexpression of dominant-negative myosin VI tail leads to a delay in metaphase progression and a defect in cytokinesis. GAIP-interacting protein COOH terminus (GIPC), a myosin VI binding partner, is associated with the function(s) of myosin VI in dividing cells. Loss of GIPC in siRNA knockdown cells results in a more than fourfold increase in the number of multinucleated cells. Our results suggest that myosin VI has novel functions in mitosis and that it plays an essential role in targeted membrane transport during cytokinesis. PMID:17881731

  13. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  14. Urea transport through composite polyallylamine membranes

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Kubo, L. Y.; Spitze, L. A.; Wydeven, T.; Clark, J. A.

    1977-01-01

    Polyallylamine composite reverse osmosis membranes were prepared by plasma polymerization and deposition onto small-pored cellulose acetate/cellulose nitrate films. The polyallylamine coated the porous substrate with a thin uniform polymer film which exhibited water permeability and urea rejection, of interest because of the potential application of reverse osmosis to urine purification in closed environmental systems. The flux of C-14 labeled urea was studied under the influence of osmotic gradients provided by sodium chloride solutions. The urea flux was found to be enhanced by an osmotic pressure gradient in the same direction and diminished, but not prevented, by an opposing osmotic pressure gradient. Consideration is given to the mechanism of the urea transport, as well as to the influence of concentration polarization on the experimental results. The minimization of coupled flow in pores of a critical size range is apparently necessary to improve urea rejection.

  15. Urea transport through composite polyallylamine membranes

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Kubo, L. Y.; Spitze, L. A.; Wydeven, T.; Clark, J. A.

    1977-01-01

    Polyallylamine composite reverse osmosis membranes were prepared by plasma polymerization and deposition onto small-pored cellulose acetate/cellulose nitrate films. The polyallylamine coated the porous substrate with a thin uniform polymer film which exhibited water permeability and urea rejection, of interest because of the potential application of reverse osmosis to urine purification in closed environmental systems. The flux of C-14 labeled urea was studied under the influence of osmotic gradients provided by sodium chloride solutions. The urea flux was found to be enhanced by an osmotic pressure gradient in the same direction and diminished, but not prevented, by an opposing osmotic pressure gradient. Consideration is given to the mechanism of the urea transport, as well as to the influence of concentration polarization on the experimental results. The minimization of coupled flow in pores of a critical size range is apparently necessary to improve urea rejection.

  16. Plasma membrane microdomains regulate turnover of transport proteins in yeast

    PubMed Central

    Grossmann, Guido; Malinsky, Jan; Stahlschmidt, Wiebke; Loibl, Martin; Weig-Meckl, Ina; Frommer, Wolf B.; Opekarová, Miroslava; Tanner, Widmar

    2008-01-01

    In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins. PMID:19064668

  17. Selective Lysosomal Transporter Degradation by Organelle Membrane Fusion.

    PubMed

    McNally, Erin Kate; Karim, Mahmoud Abdul; Brett, Christopher Leonard

    2017-01-23

    Lysosomes rely on their resident transporter proteins to return products of catabolism to the cell for reuse and for cellular signaling, metal storage, and maintaining the lumenal environment. Despite their importance, little is known about the lifetime of these transporters or how they are regulated. Using Saccharomyces cerevisiae as a model, we discovered a new pathway intrinsic to homotypic lysosome membrane fusion that is responsible for their degradation. Transporter proteins are selectively sorted by the docking machinery into an area between apposing lysosome membranes, which is internalized and degraded by lumenal hydrolases upon organelle fusion. These proteins have diverse lifetimes that are regulated in response to protein misfolding, changing substrate levels, or TOR activation. Analogous to endocytosis for controlling surface protein levels, the "intralumenal fragment pathway" is critical for lysosome membrane remodeling required for organelle function in the context of cellular protein quality control, ion homeostasis, and metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sum frequency generation studies of membrane transport phenomena

    SciTech Connect

    Dyer, R.B.; Shreve, A.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work is to study the transport of protons and ions across biological membranes, one of the most fundamental processes in living organisms, critical for energy transduction in respiration and photosynthesis and for a wide variety of cellular signal transduction events. Membrane protein structure and function, in particular proton and ion pumping are poorly understood. The authors have developed sum frequency generation (SFG) spectroscopy for the study of membrane phenomena, a nonlinear spectroscopic technique that is uniquely sensitive to interfaces and with demonstrated structural specificity. They have used SFG and conventional vibrational spectroscopic approaches to study proton transport processes in cytochrome c oxidase. A key finding has been the identification of vibrational modes associated with proton labile groups, including a glutamic acid near the redox active binuclear center and structural waters. These groups are sensitive to the ligation and redox states of the metal centers and hence are ideal candidates for coupling redox energy to proton transport processes.

  19. Inhibitors of V-ATPase Proton Transport Reveal Uncoupling Functions of Tether Linking Cytosolic and Membrane Domains of V0 Subunit a (Vph1p)*

    PubMed Central

    Chan, Chun-Yuan; Prudom, Catherine; Raines, Summer M.; Charkhzarrin, Sahba; Melman, Sandra D.; De Haro, Leyma P.; Allen, Chris; Lee, Samuel A.; Sklar, Larry A.; Parra, Karlett J.

    2012-01-01

    Vacuolar ATPases (V-ATPases) are important for many cellular processes, as they regulate pH by pumping cytosolic protons into intracellular organelles. The cytoplasm is acidified when V-ATPase is inhibited; thus we conducted a high-throughput screen of a chemical library to search for compounds that acidify the yeast cytosol in vivo using pHluorin-based flow cytometry. Two inhibitors, alexidine dihydrochloride (EC50 = 39 μm) and thonzonium bromide (EC50 = 69 μm), prevented ATP-dependent proton transport in purified vacuolar membranes. They acidified the yeast cytosol and caused pH-sensitive growth defects typical of V-ATPase mutants (vma phenotype). At concentrations greater than 10 μm the inhibitors were cytotoxic, even at the permissive pH (pH 5.0). Membrane fractions treated with alexidine dihydrochloride and thonzonium bromide fully retained concanamycin A-sensitive ATPase activity despite the fact that proton translocation was inhibited by 80–90%, indicating that V-ATPases were uncoupled. Mutant V-ATPase membranes lacking residues 362–407 of the tether of Vph1p subunit a of V0 were resistant to thonzonium bromide but not to alexidine dihydrochloride, suggesting that this conserved sequence confers uncoupling potential to V1V0 complexes and that alexidine dihydrochloride uncouples the enzyme by a different mechanism. The inhibitors also uncoupled the Candida albicans enzyme and prevented cell growth, showing further specificity for V-ATPases. Thus, a new class of V-ATPase inhibitors (uncouplers), which are not simply ionophores, provided new insights into the enzyme mechanism and original evidence supporting the hypothesis that V-ATPases may not be optimally coupled in vivo. The consequences of uncoupling V-ATPases in vivo as potential drug targets are discussed. PMID:22215674

  20. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  1. Targeting and biogenesis of transporters and channels in chloroplast envelope membranes: Unsolved questions.

    PubMed

    Oh, Young Jun; Hwang, Inhwan

    2015-07-01

    Chloroplasts produce carbohydrates, hormones, vitamins, amino acids, pigments, nucleotides, ATP, and secondary metabolites. Channels and transporters are required for the movement of molecules across the two chloroplast envelope membranes. These transporters and channel proteins are grouped into two different types, including β-barrel proteins and transmembrane-domain (TMD) containing proteins. Most β-barrel proteins are localized at the outer chloroplast membrane, and TMD-containing proteins are localized at the inner chloroplast membrane. Many of these transporters and channels are encoded by nuclear genes; therefore, they have to be imported into chloroplasts after translation on cytosolic ribosomes. These proteins should have specific targeting signals for their final destination in the chloroplast membrane and for assembly into specific complexes. In this review, we summarize recent progress in the identification, functional characterization, and biogenesis of transporters and channels at the chloroplast envelope membranes, and discuss outstanding questions regarding transporter and channel protein biogenesis.

  2. Regulation & Development of Membrane Transport Processes.

    DTIC Science & Technology

    1985-05-15

    conducted studies on the regulation of a variety of trans- port processes as a function of cell cycle, growth phase, malignant transfor- mation, hormone ...fertilization of ideas. The contributions dealt with regulatory processes evoked by two kinds of stim- uli: (1) external stimuli, such as hormones or...Mineralocorticoid Regulation of Sodium and Potassium Transport by the Cortical Collecting Duct 89 Bruce M. Koeppen and Gerhard H. Giebisch 6. Hormonal Regulation of

  3. Interactions of connexins with other membrane channels and transporters

    PubMed Central

    Chanson, Marc; Kotsias, Basilio A.; Peracchia, Camillo; O’Grady, Scott M.

    2009-01-01

    Cell-to-cell communication through gap junctions exists in most animal cells and is essential for many important biological processes including rapid transmission of electric signals to coordinate contraction of cardiac and smooth muscle, the intercellular propagation of Ca2+ waves and synchronization of physiological processes between adjacent cells within a tissue. Recent studies have shown that connexins can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis, activation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between connexins and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gap-junction-forming proteins, and Kvβ3, a regulatory β-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. PMID:17475311

  4. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    NASA Astrophysics Data System (ADS)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  5. Electrogenic bromosulfalein transport in isolated membrane vesicles: implementation in both animal and plant preparations for the study of flavonoid transporters.

    PubMed

    Passamonti, Sabina; Tramer, Federica; Petrussa, Elisa; Braidot, Enrico; Vianello, Angelo

    2010-01-01

    Bromosulfalein is an organic anion dye used in the study of a variety of membrane carriers expressed in animal tissues and involved in transport of drugs and metabolites. The spectrophotometric assay of electrogenic bromosulfalein transport in membrane vesicles, isolated from various mammalian organs or tissues, enables to specifically measure the transport activity of bilitranslocase (TCDB 2.A.65.1.1). The latter is a bilirubin- and flavonoid-specific transporter expressed in rat liver, the organ where its function has been best characterized. The spectrophotometric assay of electrogenic bromosulfalein transport requires minimal volumes of membrane vesicles, is completed within 1 min, and, therefore, is a useful tool to screen the transporter spectrum of potential substrates, by testing them as reversible inhibitors of bromosulfalein transport kinetics. Furthermore, the assay enables to study the progress of time-dependent inactivation of bromosulfalein transport, caused by different protein-specific reagents, including specific anti-sequence antibodies. Inactivation can be retarded by the presence of substrates in a concentration-dependent manner, enabling to derive the dissociation constants of the transporter-substrate complex and thus to gain further insight into the transporter structure-function relationship. This assay, implemented in membrane vesicles isolated from plant organs, has paved the way to the discovery of homologues of bilitranslocase in plants.

  6. Transport through liquid membranes containing omeprazole and lansoprazole.

    PubMed

    Nagappa, A N; Pandi, P V; Mishra, P K; Girish, Rahul K; Shanmukh, I

    2002-12-01

    Omeprazole and lansoprazole, the therapeutically important drugs belonging to proton pump inhibitor category are extensively used in the treatment of gastric ulcers. Transport through liquid membranes generated by these drugs in lecithin-cholesterol mixture in series with a supporting membrane has been studied. The data obtained show the formation of liquid membrane in series with the supporting membrane. Transport of cations, chloride and bicarbonate ions in the presence liquid membranes generated by omeprazole and lanzoprazole indicate the modification in the permeability of various permeants.

  7. Analytical Applications of Transport Through Bulk Liquid Membranes.

    PubMed

    Diaconu, Ioana; Ruse, Elena; Aboul-Enein, Hassan Y; Bunaciu, Andrei A

    2016-07-03

    This review discusses the results of research in the use of bulk liquid membranes in separation processes and preconcentration for analytical purposes. It includes some theoretical aspects, definitions, types of liquid membranes, and transport mechanism, as well as advantages of using liquid membranes in laboratory studies. These concepts are necessary to understand fundamental principles of liquid membrane transport. Due to the multiple advantages of liquid membranes several studies present analytical applications of the transport through liquid membranes in separation or preconcentration processes of metallic cations and some organic compounds, such as phenol and phenolic derivatives, organic acids, amino acids, carbohydrates, and drugs. This review presents coupled techniques such as separation through the liquid membrane coupled with flow injection analysis.

  8. Control of membrane thermal transport supporting superconducting detetctor development.

    SciTech Connect

    Yefremenko, V.; Wang, G.; Novosad, V.; Datesman, A. M.; Pearson, J. E.; Divan, R.; Chang, C. L.; Downes, T. P.; McMahon, J.; Bleem, L.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

    2009-06-01

    Because thermal transport determines the dynamic and static operation of bolometric detectors, control of the thermal conductance is critical for the implementation of detectors utilizing superconducting Transition Edge Sensors (TESs). For this reason, we have examined the use of partially perforated membranes for thermal management. This technique preserves the physical integrity of the membrane, and therefore maintains the mechanical robustness of the detector. This paper describes investigations of the thermal transport in trenched membranes.

  9. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles.

    PubMed

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-11-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance.

  10. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    PubMed Central

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  11. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.

    PubMed

    Geng, Jia; Kim, Kyunghoon; Zhang, Jianfei; Escalada, Artur; Tunuguntla, Ramya; Comolli, Luis R; Allen, Frances I; Shnyrova, Anna V; Cho, Kang Rae; Munoz, Dayannara; Wang, Y Morris; Grigoropoulos, Costas P; Ajo-Franklin, Caroline M; Frolov, Vadim A; Noy, Aleksandr

    2014-10-30

    There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these 'CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.

  12. Pentoxifylline modulation of plasma membrane functions in human polymorphonuclear leukocytes.

    PubMed Central

    Hand, W L; Butera, M L; King-Thompson, N L; Hand, D L

    1989-01-01

    Pentoxifylline is known to have major effects on cell membrane function in mammalian cells, including human leukocytes. The protective effects of this agent in animal models of infection and inflammation may be due to alterations in phagocyte (neutrophil and macrophage) function. However, the exact mechanism of action of pentoxifylline is unknown. In this study, we evaluated the effect of the drug on several membrane-associated activities in human polymorphonuclear neutrophils and investigated possible mechanisms for the observed changes in neutrophil function. Pentoxifylline inhibited ingestion of microbial particles (Staphylococcus aureus and zymosan); decreased superoxide generation activated by zymosan, formyl-methionyl-leucyl-phenylalanine, and concanavalin A (but not phorbol myristate acetate); and decreased uptake (transport) of adenosine stimulated by formyl-methionyl-leucyl-phenylalanine and zymosan. In contrast, pentoxifylline actually increased clindamycin uptake in zymosan-stimulated polymorphonuclear neutrophils. However, pentoxifylline had no effect on uptake of adenosine or clindamycin in unstimulated neutrophils. In comparison with known inhibitors of nucleoside transport (nitrobenzylthioinosine and dipyridamole), the results suggested that pentoxifylline does not bind to membrane nucleoside transport receptors. At concentrations which inhibit neutrophil function, pentoxifylline activity is not mediated through external membrane nucleoside regulatory sites. Thus, pentoxifylline affects the activation signal chain at a point beyond the membrane receptors. Whatever its precise mechanism of action, pentoxifylline has a striking modulatory effect on cell membrane-associated responses in stimulated leukocytes and may prove useful for control of injurious inflammatory states. PMID:2553608

  13. Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore

    PubMed Central

    Godbout, Raphaël; Légaré, Sébastien; Auger, Maud; Carpentier, Claudia; Otis, François; Auger, Michèle; Lagüe, Patrick; Voyer, Normand

    2016-01-01

    A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures. PMID:27835700

  14. Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore.

    PubMed

    Godbout, Raphaël; Légaré, Sébastien; Auger, Maud; Carpentier, Claudia; Otis, François; Auger, Michèle; Lagüe, Patrick; Voyer, Normand

    2016-01-01

    A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures.

  15. Carotenoid binding to proteins: Modeling pigment transport to lipid membranes.

    PubMed

    Reszczynska, Emilia; Welc, Renata; Grudzinski, Wojciech; Trebacz, Kazimierz; Gruszecki, Wieslaw I

    2015-10-15

    Carotenoid pigments play numerous important physiological functions in human organism. Very special is a role of lutein and zeaxanthin in the retina of an eye and in particular in its central part, the macula lutea. In the retina, carotenoids can be directly present in the lipid phase of the membranes or remain bound to the protein-pigment complexes. In this work we address a problem of binding of carotenoids to proteins and possible role of such structures in pigment transport to lipid membranes. Interaction of three carotenoids, beta-carotene, lutein and zeaxanthin with two proteins: bovine serum albumin and glutathione S-transferase (GST) was investigated with application of molecular spectroscopy techniques: UV-Vis absorption, circular dichroism and Fourier transform infrared spectroscopy (FTIR). Interaction of pigment-protein complexes with model lipid bilayers formed with egg yolk phosphatidylcholine was investigated with application of FTIR, Raman imaging of liposomes and electrophysiological technique, in the planar lipid bilayer models. The results show that in all the cases of protein and pigment studied, carotenoids bind to protein and that the complexes formed can interact with membranes. This means that protein-carotenoid complexes are capable of playing physiological role in pigment transport to biomembranes.

  16. Modulating molecular and nanoparticle transport in flexible polydimethylsiloxane membranes

    PubMed Central

    Jiao, Kexin; Graham, Chase L.; Wolff, Justin

    2012-01-01

    The ability to fabricate flexible filtration membranes that can selectively separate particles of different sizes is of considerable interest. In this article, we describe a facile, reproducible and simple one-step method to produce pores in polydimethylsiloxane (PDMS) membranes. We embedded micron-sized NaHCO3 particles in 50 micron thick PDMS films. After curing, the membranes were immersed in concentrated HCl acid. Pores were generated in the membrane by the evolution of CO2 gas from the reaction of NaHCO3 and HCl. High resolution Scanning Electron Microscope images clearly reveal the presence of openings on the surface and the cross-section of the membranes. Fluorescence and back-scattered electron imaging of porous PDMS membrane with embedded gold nanoparticles and comparison with non-porous PDMS membranes provided unambiguous evidence of pores in the membrane. Transport studies of molecular fluoresceinate ions, ions (sodium and chloride) and 240 nm polystyrene nanoparticles through these membranes demonstrate passable pores and existence of channels within the body of the membrane. Mechanically stretching the porous PDMS membrane and comparing the flow rates of fluoresceinate ions and the polystyrene beads through the stretched and unstretched membranes allowed a direct proof of the modulation of transport rate in the membranes. We show that stretching the membranes by 10% increases the flow rate of fluorescein molecules by 2.8 times and by a factor of approximately ~40% for the polystyrene nanoparticles. PMID:22942529

  17. Tailored Transport through Vertically Aligned Carbon Nanofibre Membranes; Controlled Synthesis, Modelling, and Passive Diffusion Experiments

    SciTech Connect

    Fowlkes, Jason Davidson; Fletcher, Benjamin L; Hullander, Eric D; Klein, Kate L; Hensley, Dale K; Melechko, Anatoli Vasilievich; Simpson, Michael L; Doktycz, Mitchel John

    2005-01-01

    The ability to control the permeability of a synthetic membrane structure formed by a spatially stochastic forest of vertically aligned carbon nanofibres is demonstrated. Control of membrane pore size and morphology was achieved by varying the thickness of a uniform, conformal coating of SiO2 on the nanofibre surfaces. Characterization of passive diffusion using fluorescence microscopy and labelled latex beads confirms the ability to alter membrane permeability. Further, statistically reproducible transport regimes are predicted for the spatially stochastic membrane as a function of the nanofibre diameter by a Monte Carlo simulation technique. Realizing predictable nanoscale behaviour in a microscopically random, statistical structure is essential for applications requiring controlled, species specific transport.

  18. Effect of pyrrolidine dithiocarbamate on photo-induced proton transport through chloroplast membranes.

    PubMed

    Po, E S; Ho, J W

    1997-12-01

    pH changes produced by photo-induced proton transport through chloroplast membranes in spinach were measured by a glass microelectrode. Effect of pyrrolidine dithiocarbamate on proton translocation through chloroplast membranes has been studied. Kinetic analysis of proton translocation shows that the rate is reduced as the carbamate concentration increases. The rate of proton uptake follows first-order kinetics and diminishes with increasing carbamate concentrations. The outward leakage of accumulated protons through thylakoid membranes in the dark also decreases likewise. However, the leakage of protons takes a much longer time. Pyrrolidine dithiocarbamate is an effective inhibitor of proton transport through chloroplast membranes. The results suggest that the photo-induced proton translocation is regulated by conformation change in the membrane. Higher concentration of carbamate disrupts the tertiary conformation of the membrane. The inhibition of proton transport would affect ATPase function; thus, an excess use or accumulation of pyrrolidine thiocarbamate may compromise ATP production.

  19. Genetic Polymorphisms and Peritoneal Membrane Function

    PubMed Central

    Siddique, Imad; Brimble, K. Scott; Walkin, Louise; Summers, Angela; Brenchley, Paul; Herrick, Sarah; Margetts, Peter J.

    2015-01-01

    ♦ Background: Outcomes for peritoneal dialysis (PD) patients are affected by the characteristics of the peritoneal membrane, which may be determined by genetic variants. We carried out a systematic review of the literature to identify studies which assessed the association between genetic polymorphisms, peritoneal membrane solute transport, and clinical outcomes for PD patients. ♦ Methods: The National Library of Medicine was searched using a variety of strategies. Studies which met our inclusion criteria were reviewed and data abstracted. Our outcomes of interest included: high transport status peritoneal membrane, risk for peritonitis, encapsulating peritoneal sclerosis (EPS), patient and technique survival. We combined data from studies which evaluated the same genetic polymorphism and the same outcome. ♦ Results: We evaluated 18 relevant studies. All studies used a candidate gene approach. Gene polymorphisms in the interleukin (IL)-6 gene were associated with peritoneal membrane solute transport in several studies in different ethnic populations. Associations with solute transport and polymorphisms in endothelial nitric oxide synthase and receptor for advanced glycation end product genes were also identified. There was evidence of a genetic predisposition for peritonitis found in 2 studies, and for EPS in 1 study. Survival was found to be associated with a polymorphism in vascular endothelial growth factor and technique failure was associated with a polymorphism in the IL-1 receptor antagonist. ♦ Conclusions: There is evidence that characteristics of the peritoneal membrane and clinical outcomes for PD patients have genetic determinants. The most consistent association was between IL-6 gene polymorphisms and peritoneal membrane solute transport. PMID:25395500

  20. Membrane nanodomains in plants: capturing form, function, and movement.

    PubMed

    Tapken, Wiebke; Murphy, Angus S

    2015-03-01

    The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation.

    PubMed

    Gui, Minghui; Ormsbee, Lindell E; Bhattacharyya, Dibakar

    2013-08-07

    Membranes have been widely used in water remediation (e.g. desalination and heavy metal removal) because of the ability to control membrane pore size and surface charge. The incorporation of nanomaterials into the membranes provides added benefits through increased reactivity with different functionality. In this study, we report the dechlorination of 2-chlorobiphenyl in the aqueous phase by a reactive membrane system. Fe/Pd bimetallic nanoparticles (NPs) were synthesized (in-situ) within polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) membranes for degradation of polychlorinated biphenyls (PCBs). Biphenyl formed in the reduction was further oxidized into hydroxylated biphenyls and benzoic acid by an iron-catalyzed hydroxyl radical (OH•) reaction. The formation of magnetite on Fe surface was observed. This combined pathway (reductive/oxidative) could reduce the toxicity of PCBs effectively while eliminating the formation of chlorinated degradation byproducts. The successful manufacturing of full-scale functionalized membranes demonstrates the possibility of applying reactive membranes in practical water treatment.

  2. Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics.

    PubMed

    Mooij, Miriam G; Nies, Anne T; Knibbe, Catherijne A J; Schaeffeler, Elke; Tibboel, Dick; Schwab, Matthias; de Wildt, Saskia N

    2016-05-01

    Membrane transporters play an essential role in the transport of endogenous and exogenous compounds, and consequently they mediate the uptake, distribution, and excretion of many drugs. The clinical relevance of transporters in drug disposition and their effect in adults have been shown in drug-drug interaction and pharmacogenomic studies. Little is known, however, about the ontogeny of human membrane transporters and their roles in pediatric pharmacotherapy. As they are involved in the transport of endogenous substrates, growth and development may be important determinants of their expression and activity. This review presents an overview of our current knowledge on human membrane transporters in pediatric drug disposition and effect. Existing pharmacokinetic and pharmacogenetic data on membrane substrate drugs frequently used in children are presented and related, where possible, to existing ex vivo data, providing a basis for developmental patterns for individual human membrane transporters. As data for individual transporters are currently still scarce, there is a striking information gap regarding the role of human membrane transporters in drug therapy in children.

  3. Functionalized inorganic membranes for gas separation

    DOEpatents

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Molaison, Jennifer Lynn; Schick, Louis Andrew ,; Ramaswamy, Vidya

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  4. Models of ionic transport in biological membranes. Raman spectroscopy as a probe of valinomycin, gramicidin A', and rhodopsin conformations.

    PubMed

    Rothschild, K J; Stanley, H E

    1975-05-01

    There is evidence that membrane proteins can serve as the functional units of ionic transport in biological membranes. Laser Raman spectroscopy has been used to probe specific molecular interactions inside two models of transport membrane proteins, valinomycin and gramicidin A. Conformational changes of these molecules, as well as specific interactions with ions, can be detected and may help elucidate how membrane transport proteins such as Na+ minus K+ ATPase and rhodopsin function. Resonance Raman spectroscopy has also been used to study conformational changes and protein-chromophore interactions in rhodopsin, the membrane protein that acts as the primary unit of visual excitation in the eye.

  5. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  6. Low temperature thermal transport in partially perforated silicon nitride membranes.

    SciTech Connect

    Yefremenko, V.; Wang, G.; Novosad, V.; Datesman, A.; Pearson, J.; Divan, R.; Chang, C. L.; Downes, T. P.; Mcmahon, J. J.; Bleem, L. E.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

    2009-05-04

    The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au TESs lithographically defined on silicon nitride membranes 1 {micro}m thick and 6 mm{sup 2} in size. Trenches with variable depth were incorporated between the TES and the silicon frame in order to manage the thermal transport. It was shown that sharp features in the membrane surface, such as trenches, significantly impede the modes of phonon transport. A nonlinear dependence of thermal resistance on trench depth was observed. Partial perforation of silicon nitride membranes to control thermal transport could be useful in fabricating mechanically robust detector devices.

  7. Challenges in the Development of Functional Assays of Membrane Proteins

    PubMed Central

    Tiefenauer, Louis; Demarche, Sophie

    2012-01-01

    Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  8. Effects of electrolytes on ion transport in Chitosan membranes

    NASA Astrophysics Data System (ADS)

    Rupiasih, N. N.

    2016-11-01

    Recently, charged polymer membranes are widely used for water purification applications involving control of water and ion transport, such as reverse osmosis and electrodialysis. In this study, we have explored the effects of electrolyte solutions on ion transport properties of chitosan synthetic membranes via concentration gradient driven transport. Also, the water uptake of those membranes, before (control) as well used membranes have studied. The membrane used was chitosan membrane 2%. The electrolyte solutions used were HCl, KCl, CaCl2, MgCl2 and AlCl3, with various concentrations of 0.1 mM, 1 mM, 10 mM, 100 mM and 1000 mM. Ion transport experiments were carried out in a cell membrane model which composed of two compartments and the potential difference of membrane was measured using Ag/AgCl calomel electrodes. Those measurements were conducted at ambient temperature 28.8 °C. The results showed that the current density (J) increased with increased in concentration gradient of solution. The current density was higher in electrolyte solution which has higher molar conductivity than those of a solution with a small molar conductivity. Meanwhile the current density was smaller in electrolyte solution which has larger Stokes radii than those of a solution with small Stokes radii. Except membrane which has been used in HCl solution, the water uptakes of the used membranes were greater than the control membrane. These results can develop and validate a common framework to interpret data of concentration gradient driven transport in chitosan synthetic membranes and to use it to design of membranes with improved performance.

  9. Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter.

    PubMed

    Telbisz, Agnes; Müller, Marianna; Ozvegy-Laczka, Csilla; Homolya, László; Szente, Lajos; Váradi, András; Sarkadi, Balázs

    2007-11-01

    The human ABCG2 multidrug transporter provides protection against numerous toxic compounds and causes multidrug resistance in cancer. Here we examined the effects of changes in membrane cholesterol on the function of this protein. Human ABCG2 was expressed in mammalian and in Sf9 insect cells, and membrane cholesterol depletion or enrichment was achieved by preincubation with beta cyclodextrin or its cholesterol-loaded form. We found that mild cholesterol depletion of intact mammalian cells inhibited ABCG2-dependent dye and drug extrusion in a reversible fashion, while the membrane localization of the transporter protein was unchanged. Cholesterol enrichment of cholesterol-poor Sf9 cell membrane vesicles greatly increased ABCG2-driven substrate uptake, substrate-stimulated ATPase activity, as well as the formation of a catalytic cycle intermediate (nucleotide trapping). Interestingly, modulation of membrane cholesterol did not significantly affect the function of the R482G or R482T substrate mutant ABCG2 variants, or that of the MDR1 transporter. The selective, major effect of membrane cholesterol on the wild-type ABCG2 suggests a regulation of the activity of this multidrug transporter during processing or in membrane micro-domain interactions. The experimental recognition of physiological and pharmacological substrates of ABCG2, as well as the fight against cancer multidrug resistance may be facilitated by demonstrating the key role of membrane cholesterol in this transport activity.

  10. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid.

    PubMed

    Zhang, Ying; Wade, Mary Margaret; Scorpio, Angelo; Zhang, Hao; Sun, Zhonghe

    2003-11-01

    Pyrazinamide is an important sterilizing drug that shortens tuberculosis (TB) therapy. However, the mechanism of action of pyrazinamide is poorly understood because of its unusual properties. Here we show that pyrazinoic acid, the active moiety of pyrazinamide, disrupted membrane energetics and inhibited membrane transport function in Mycobacterium tuberculosis. The preferential activity of pyrazinamide against old non-replicating bacilli correlated with their low membrane potential and the disruption of membrane potential by pyrazinoic acid and acid pH. Inhibitors of membrane energetics increased the antituberculous activity of pyrazinamide. These findings shed new light on the mode of action of pyrazinamide and may help in the design of new drugs that shorten therapy.

  11. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  12. Electrophoretic Transport of Biomolecules through Carbon Nanotube Membranes

    PubMed Central

    Sun, Xinghua; Su, Xin; Wu, Ji; Hinds, Bruce J.

    2013-01-01

    Electrophoretic transport of proteins across electrochemically oxidized multi-walled carbon nanotube (MWCNT) membranes has been investigated. Small charged protein, lysozyme, was successfully pumped across MWCNT membranes by electric field while rejecting larger bovine serum albumin (BSA). Transport of the lysozome was reduced by a factor of about 30 in comparison to bulk mobility and consistent with prediction for hindered transport. Mobilities between 0.33-1.4×10-9 m2/V-s were observed and are approximately 10 fold faster than comparable ordered nanoporous membranes and are consistent with continuum models. For mixtures of BSA and lysozyme, complete rejection of BSA is seen with electrophoretic separations PMID:21338104

  13. Artificial membranes for membrane protein purification, functionality and structure studies.

    PubMed

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Light-induced modification of plant plasma membrane ion transport.

    PubMed

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  15. Chlorotrifluoroethylcysteine interaction with rabbit proximal tubule cell basolateral membrane organic anion transport and apical membrane amino acid transport.

    PubMed

    Groves, C E; Morales, M N

    1999-11-01

    The interaction of the cysteine conjugate S-(1-chloro-1,2,2, -trifluoroethyl)-L-cysteine (CTFC) with organic anion and amino acid transport in the basolateral and apical membranes was examined with rabbit renal proximal tubule suspensions and primary cultures of rabbit renal proximal tubule cells. The apparent K(i) for CTFC inhibition of the 1-min uptake of [(3)H]p-aminohippurate in tubule suspensions was 105+/-3 microM and suggests that CTFC interacts with basolateral organic anion transport. Also, the addition of 1 mM CTFC decreased the secretion and intracellular accumulation of fluorescein by approximately 70 to 75%. The addition of 1 mM CTFC to the apical compartment decreased the reabsorption and intracellular accumulation of the amino acid [(3)H]phenylalanine by approximately 60 to 70%. Similar to CTFC, saturating concentrations of the organic anion [(3)H]p-aminohippurate and the amino acid phenylalanine reduced by approximately 75% fluorescein secretion and [(3)H]phenylalanine reabsorption, respectively, by approximately 60 to 70%. Thus, the cysteine conjugate CTFC appears to be a potent inhibitor of basolateral organic anion and apical amino acid transepithelial transport. In contrast to its effects on apical phenylalanine uptake, CTFC had no effect on the basal uptake of [(3)H]phenylalanine by primary cultures. The presence of CTFC in the external bath did trans-stimulate the efflux of fluorescein and [(3)H]phenylalanine across the basal and apical membrane in tubule suspensions or primary cultures, respectively, grown on plastic. Collectively, these data demonstrate that CTFC interacts with, and is transported by, two anatomically and functionally distinct transporters, the basolateral organic anion and apical neutral amino acid pathways, in the rabbit renal proximal tubule cell.

  16. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    SciTech Connect

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  17. Human intestinal cell monolayers are preferentially sensitive to disruption of barrier function from basolateral exposure to cholic acid: correlation with membrane transport and transepithelial secretion.

    PubMed

    Lowes, S; Simmons, N L

    2001-11-01

    Unconjugated bile acids such as cholic acid cause diarrhoea, mucosal irritation and toxicity. We sought to define the mechanism of cholate permeation across intestinal mucosal cells to understand how cellular exposure and accumulation are deleterious to mucosal function. Human intestinal Caco-2 and T84 cell monolayers were prepared by high-density seeding and cultured for >14 days on permeable culture supports. Cholate transport and cellular accumulation were determined using [3H]cholic acid. Epithelial barrier function was assessed by measuring transepithelial electrical resistance (Rt) and [14C]mannitol fluxes. Exposure of Caco-2 epithelia to serosal cholate caused a dose- and time-dependent disruption of barrier function. Apical exposure was without disruptive effect. Similar responses were observed for T84 epithelia. Cholate was preferentially accumulated across the basolateral surfaces in both Caco-2 and T84 cells, but was subject to active transepithelial secretion in Caco-2 monolayers only. Net secretion was substantially reduced by ATP depletion, showed saturation kinetics, and was subject to competitive inhibition by other bile acids. Cholate secretion was also sensitive to inhibition by the leukotriene antagonist MK-571 but not by digoxin, suggesting that MRP2, not MDR1, was responsible. RT-PCR and Western blotting confirmed MRP2 expression in Caco-2 epithelia but indicated its apparent absence from T84 cells.

  18. Mechanism Exploration of Ion Transport in Nanocomposite Cation Exchange Membranes.

    PubMed

    Tong, Xin; Zhang, Bopeng; Fan, Yilin; Chen, Yongsheng

    2017-04-19

    The origin of property enhancement of nanocomposite ion exchange membranes (IEMs) is far from being fully understood. By combining experimental work and computational modeling analysis, we could determine the influence of nanomaterials on the ion transport properties of nanocomposite cation exchange membranes (CEMs). We synthesized and characterized a series of nanocomposite CEMs by using SPPO as polymer materials and silica nanoparticles (NPs) (unsulfonated or sulfonated) as nanomaterials. We found that with the increase of NP loading, measured CEM permselectivity and swelling degree first increased and then decreased. We also found the ion exchange capacity (IEC) and ionic resistance of nanocomposite CEMs tend to be the same, regardless what type of NPs are incorporated into the membrane. Modeling analysis suggests that the change of membrane properties is related to the change in membrane microstructure. With the addition of silica NPs, membrane porosity (volume fraction of intergel phase) increases so that membranes can absorb more water. Also, volume fraction of sulfonated polymer segments increases, which can allow membranes to retain more counterions, causing membrane IEC to increase. By calculating the effective ion diffusion coefficients and membrane tortuosity factors of all the silica-NP-based CEMs synthesized in this study, along with nanocomposite CEMs from previous studies, we conclude that membrane ion transport efficiency tends to increase with the incorporation of nanomaterials. In addition, this paper presents a simulation model, which explains how the membrane property changes upon nanomaterial aggregation; the simulation results are in good agreement with the experimental data. Simulation results indicate that membrane properties are related to nanomaterial number concentration in the membrane matrices; thus, a plateau is reached for membrane ion diffusion coefficients due to the severe influence of aggregation on the increase of nanomaterial

  19. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  20. Sulfate transport in apical membrane vesicles isolated from tracheal epithelium

    SciTech Connect

    Elgavish, A.; DiBona, D.R.; Norton, P.; Meezan, E.

    1987-09-01

    Sulfate uptake in apical membrane vesicles isolated from bovine tracheal epithelium is shown to occur into an osmotically sensitive intravesicular space, via a carrier-mediated system. This conclusion is based on three lines of evidence: 1) saturation kinetics: 2) substrate specificity; and 3) inhibition by the anion transport inhibitors SITS and DIDS. The affinity of the transport system is highest in low ionic strength media and decreases in the presence of gluconate. Chloride appears to cis-inhibit sulfate uptake and to trans-stimulate sulfate efflux. Cis-inhibition and trans-stimulation studies with a variety of anions indicate that this exchange system may be shared by HCO/sub 3//sup -/, S/sub 2/O/sub 3//sup 2 -/, SeO/sub 4//sup 2 -/, and MoO/sub 4//sup 2 -/ but not by H/sub 2/PO/sub 4//sup -/ or HAsO/sub 4//sup 2/. Studies indicate that protons may play two distinct roles in sulfate transport in this system. These studies show that the carrier-mediated system can function in the absence of chloride. The overshoot observed in the presence of a proton gradient indicates that under those conditions the mechanism of transport may be a SO/sub 4//sup 2 -/-OH/sup -/ exchange.

  1. Comparative Analyses of Fundamental Differences in Membrane Transport Capabilities in Prokaryotes and Eukaryotes

    PubMed Central

    Ren, Qinghu; Paulsen, Ian T

    2005-01-01

    Whole-genome transporter analyses have been conducted on 141 organisms whose complete genome sequences are available. For each organism, the complete set of membrane transport systems was identified with predicted functions, and classified into protein families based on the transporter classification system. Organisms with larger genome sizes generally possessed a relatively greater number of transport systems. In prokaryotes and unicellular eukaryotes, the significant factor in the increase in transporter content with genome size was a greater diversity of transporter types. In contrast, in multicellular eukaryotes, greater number of paralogs in specific transporter families was the more important factor in the increase in transporter content with genome size. Both eukaryotic and prokaryotic intracellular pathogens and endosymbionts exhibited markedly limited transport capabilities. Hierarchical clustering of phylogenetic profiles of transporter families, derived from the presence or absence of a certain transporter family, showed that clustering patterns of organisms were correlated to both their evolutionary history and their overall physiology and lifestyles. PMID:16118665

  2. Riboflavin transport by rabbit renal basolateral membrane vesicles.

    PubMed

    Yanagawa, N; Jo, O D; Said, H M

    1998-12-09

    The present study examined riboflavin (RF) uptake by isolated rabbit renal basolateral membrane (BLM). RF uptake was linear during the initial 10 seconds and leveled off thereafter with longer incubation. Studies on RF uptake as a function of incubation medium osmolarity indicated that the BLM RF uptake was the results of transport (approximately 45%) into the intravesicular space as well as binding (approximately 55%) to membrane surfaces. The RF binding to BLM was Na+-dependent so that replacement of Na+ by other cations eliminated the binding component of RF uptake. The process of BLM RF uptake was saturable as a function of substrate concentration and was significantly inhibited by cis-addition of its structural analogs, lumiflavin and lumichrome, indicating the involvement of a carrier-mediated process. The BLM RF uptake was affected by changes in extravesicular pH so that, as compared to pH 7.5, RF uptake was lower at pH 6.5 and higher at pH 8.5. The effect of extravesicular pH persisted when the transmembrane H+ gradient was dissipated by FCCP, indicating the direct effect of pH on BLM RF uptake. The BLM RF uptake was not affected by alterations of the transmembrane electrical potential, induced by either the presence of anions with different membrane permeability (Cl-=NO-3>SO-4>gluconate-) or using nigericin (10 microg/mg protein) with an outwardly or inwardly directed transmembrane K+ gradient. The BLM RF uptake was, however, inhibited by probenecid and p-aminohippurate, and was enhanced by trans-RF. In summary, these results demonstrate the existence of a Na+-dependent BLM binding of RF and a membrane-associated carrier system for RF uptake by renal BLM.

  3. Functional Advantages Conferred by Extracellular Prokaryotic Membrane Vesicles

    PubMed Central

    Manning, Andrew J.; Kuehn, Meta J.

    2015-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials, and ridding the cell of toxic envelope proteins. Here we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world. PMID:23615201

  4. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions.

    PubMed

    Bkaily, Ghassan; Avedanian, Levon; Al-Khoury, Johny; Ahmarani, Lena; Perreault, Claudine; Jacques, Danielle

    2012-08-01

    Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation-contraction coupling, excitation-secretion coupling, and excitation - gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.

  5. Molecular Structure and Transport Dynamics in Perfluoro Sulfonyl Imide Membranes

    SciTech Connect

    Idupulapati, Nagesh B.; Devanathan, Ramaswami; Dupuis, Michel

    2011-05-25

    We report a detailed and comprehensive analysis of the nanostructure, transport dynamics of water and hydronium and water percolation in hydrated perfluoro sulfonyl imides (PFSI), a polymer considered for proton transport in PEM fuel cells, using classical molecular dynamics simulations. The dynamical changes are related to the changes in the membrane nanostructure. Water network percolation threshold, the level at which a consistent spanning water network starts to develop in the membrane, lies between hydration level (λ) 6 and 7. The higher acidity of the sulfonyl imide acid group of PFSI compared to Nafion reported in our earlier ab initio study, translates into more free hydronium ions at low hydration levels. Nevertheless, the calculated diffusion coefficients of the H3O+ ions and H2O molecules as a function the hydration level were observed to be almost the same as that of Nafion, indicating similar conductivity and consistent with the experimental observations. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. Effect of cholesterol transport inhibitors on steroidogenesis and plasma membrane cholesterol transport in cultured MA-10 Leydig tumor cells.

    PubMed

    Nagy, L; Freeman, D A

    1990-05-01

    These studies were directed toward understanding the cellular actions of inhibitor drugs that affect steroidogenesis and cholesterol transport. We investigated the microfilament inhibitor cytochalasin-D, the microtubule inhibitor colchicine, the calmodulin antagonist trifluoperazine, and the inhibitor of acidic vesicle function nigericin. We found that all of these compounds caused dose-dependent inhibition of progesterone synthesis in the MA-10 cells. Each compound also inhibited (Bu)2cAMP-stimulated pregnenolone synthesis, indicating that each inhibited a fundamental process required for steroidogenesis. Each compound was next evaluated for inhibitory actions on cholesterol transport to and from the plasma membrane. On the basis of inhibitor sensitivity, two different categories of cholesterol transport were defined. Transport of newly synthesized or low density lipoprotein-derived cholesterol from the cell interior to the plasma membrane was inhibitor insensitive. Plasma membrane cholesterol internalization, however, was sensitive to all of the inhibitors and did not result because of any drug effect on the acyl-coenzyme-A-cholesterol acyl transferase. Cycling of cholesteryl ester-derived cholesterol through the plasma membrane appeared to occur before its use for steroidogenesis. Thus, inhibition of plasma membrane internalization would prevent utilization of both plasma membrane cholesterol and cholesteryl ester-derived cholesterol, the two major substrate sources for steroid hormone synthesis. Consistent with this interpretation was the finding that inhibition of plasma membrane cholesterol internalization by each inhibitor paralleled the inhibitor's effect on steroidogenesis.

  7. Molecular structure and transport dynamics in perfluoro sulfonyl imide membranes.

    PubMed

    Idupulapati, Nagesh; Devanathan, Ram; Dupuis, Michel

    2011-06-15

    We report a detailed and comprehensive analysis from classical molecular dynamics simulations of the nanostructure of a model of hydrated perfluoro sulfonyl imide (PFSI) membrane, a polymeric system of interest as a proton conductor in polymer electrolyte membrane fuel cells. We also report on the transport dynamics of water and hydronium ions, and water network percolation in this system. We find that the water network percolation threshold for PFSI, i.e. the threshold at which a consistent spanning water network starts to develop in the membrane, is found to occur between hydration levels (λ) 6 and 7. The higher acidity of the sulfonyl imide acid group of PFSI compared to the sulfonic acid group in Nafion, as computationally characterized in our earlier ab initio study (Idupulapati et al 2010 J. Phys. Chem. A 114 6904-12), results in a larger fraction of 'free' hydronium ions at low hydration levels in PFSI compared to Nafion. However, the calculated diffusion coefficients of the H(3)O(+) ions and H(2)O molecules as a function the hydration level are observed to be almost the same as that of Nafion, indicating similar conductivity and consistent with experimental data.

  8. Role of plasma membrane transporters in muscle metabolism.

    PubMed Central

    Zorzano, A; Fandos, C; Palacín, M

    2000-01-01

    Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role. PMID:10903126

  9. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  10. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  11. Polymerization and Functionalization of Membrane Pores for Water Related Applications.

    PubMed

    Xiao, Li; Davenport, Douglas M; Ormsbee, Lindell; Bhattacharyya, Dibakar

    2015-04-29

    Poly(vinylidene fluoride) (PVDF) was modified by chemical treatments in order to create active double bonds to obtain covalent grafting of poly(acrylic acid) (PAA) on membrane. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrum confirms the formation of conjugated C=C double bonds with surface dehydrofluorination. The membrane morphology was studied by scanning electron microscopy (SEM). The surface composition was characterized by X-ray photoelectron spectroscopy (XPS). The thermal stability of the dehydrofluorinated membrane (Def-PVDF) and functionalized membranes were investigated by differential scanning calorimetry (DSC) analysis. The influence of covalently attached PAA on Def-PVDF membrane has been investigated to determine its effect on the transport of water and charged solute. Variations in the solution pH show an effect on both permeability and solute retention in a reversible fashion. Metal nanoparticles were also immobilized in the membrane for the degradation of toxic chlorinated organics from water. In addition, PVDF membranes with an asymmetric and sponge-like morphology were developed by immersion-precipitation phase-inversion methods in both lab-scale and large-scale. The new type of spongy PVDF membrane shows high surface area with higher yield of PAA functionalization. The ion-capacity with Ca(2+) ions was also investigated.

  12. Polymerization and Functionalization of Membrane Pores for Water Related Applications

    PubMed Central

    2015-01-01

    Poly(vinylidene fluoride) (PVDF) was modified by chemical treatments in order to create active double bonds to obtain covalent grafting of poly(acrylic acid) (PAA) on membrane. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrum confirms the formation of conjugated C=C double bonds with surface dehydrofluorination. The membrane morphology was studied by scanning electron microscopy (SEM). The surface composition was characterized by X-ray photoelectron spectroscopy (XPS). The thermal stability of the dehydrofluorinated membrane (Def-PVDF) and functionalized membranes were investigated by differential scanning calorimetry (DSC) analysis. The influence of covalently attached PAA on Def-PVDF membrane has been investigated to determine its effect on the transport of water and charged solute. Variations in the solution pH show an effect on both permeability and solute retention in a reversible fashion. Metal nanoparticles were also immobilized in the membrane for the degradation of toxic chlorinated organics from water. In addition, PVDF membranes with an asymmetric and sponge-like morphology were developed by immersion-precipitation phase-inversion methods in both lab-scale and large-scale. The new type of spongy PVDF membrane shows high surface area with higher yield of PAA functionalization. The ion-capacity with Ca2+ ions was also investigated. PMID:26074669

  13. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms.

    PubMed

    Widdows, Kate L; Panitchob, Nuttanont; Crocker, Ian P; Please, Colin P; Hanson, Mark A; Sibley, Colin P; Johnstone, Edward D; Sengers, Bram G; Lewis, Rohan M; Glazier, Jocelyn D

    2015-06-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [(14)C]L-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [(14)C]L-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with L-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers. © FASEB.

  14. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane is constitutive in CaCo-2 cells and differs from the transport of plasma membrane cholesterol to the endoplasmic reticulum.

    PubMed

    Field, F J; Born, E; Murthy, S; Mathur, S N

    1998-02-01

    The transport of newly synthesized cholesterol from its site of synthesis, the endoplasmic reticulum, to the plasma membrane was studied in CaCo-2 cells. The appearance of newly synthesized cholesterol on the cell surface was rapid. By 30 min, 50% of the total labeled cholesterol was observed in the plasma membrane. The arrival of cholesterol at the plasma membrane was independent of new protein synthesis, a functional Golgi apparatus, or microtubular function. Progesterone, verapamil, and trifluoperazine, inhibitors of p-glycoprotein which are known to inhibit cholesterol transport from the plasma membrane to the endoplasmic reticulum, reduced the amount of newly synthesized cholesterol reaching the plasma membrane. The p-glycoprotein inhibitors, however, caused the accumulation of sterol intermediates in the plasma membrane, suggesting that sterol trafficking to the plasma membrane remained intact, but that trafficking from the plasma membrane to the endoplasmic reticulum was disrupted. In contrast, nigericin, another potent inhibitor of cholesterol movement from the plasma membrane to the endoplasmic reticulum, did not alter the transport of newly synthesized cholesterol to the plasma membrane. Moreover, promoting cholesterol transport from the plasma membrane to the endoplasmic reticulum by sphingomyelin hydrolysis or by micellar cholesterol influx did not alter the percent of newly synthesized cholesterol transported to the plasma membrane. Likewise, preventing plasma membrane cholesterol from reaching the endoplasmic reticulum by incubating cells with lysophosphatidylcholine, filipin, or digitonin did not alter the arrival of newly synthesized cholesterol to the plasma membrane. The results suggest that the amount of cholesterol moving to the plasma membrane from the endoplasmic reticulum is constitutive and regulated at the level of cholesterol synthesis and not at the level of the transport process. The pathways of cholesterol transport to and from the

  15. Transport of heptafluorostearate across model membranes. Membrane transport of long-chain fatty acid anions I.

    PubMed

    Schmider, W; Fahr, A; Blum, H E; Kurz, G

    2000-05-01

    Heptafluorostearic acid, an isogeometric derivative of stearic acid, has a pK(a) value of about 0.5. To evaluate the suitability of heptafluorostearate as model compound for anions of long-chain fatty acids in membrane transport, monolayer and liposome studies were performed with lipid mixtures containing phospholipids;-cholesterol-heptafluorostearate or stearate (100:40:20 molar ratios). Transfer of heptafluorostearate and stearate from liposomes to bovine serum albumin (BSA) was followed by measuring the intrinsic fluorescence of BSA. The percentage of heptafluorostearate, equivalent to the amount placed in their outer monolayer, transferred from liposomes (120;-130 nm diameter) to BSA was 55.7 +/- 3.7% within 10 min at 25 degrees C and 55 +/- 2% within 5 min at 37 degrees C. Slow transfer of 22.7 +/- 2.5% of heptafluorostearate at 25 degrees C followed with a half-life of 2.3 +/- 0.4 h and of 20 +/- 4% at 37 degrees C with a half-life of 0.9 +/- 0.1 h until the final equilibrium distributions between BSA and liposomes were reached, 79 +/- 6% to 21 +/- 5% at 25 degrees C and 75 +/- 5% to 25 +/- 4% at 37 degrees C. The pseudounimolecular rate constants for flip-flop of heptafluorostearate equal k(FF,25) = 0.24 +/- 0.05 h(-) and k(FF,37) = 0.6 +/- 0.1 h(-), respectively. By comparison, transfer of stearate required only 3 min to reach equilibrium distribution. The difference between heptafluorostearate and stearate may be explained by a rapid flip-flop movement of the un-ionized fatty acids which exist in different concentrations in accordance with their pK(a) values. Half-life of flip-flop of heptafluorostearate makes it suitable to study mediated membrane transport of long-chain fatty acid anions.

  16. Hydroxide Solvation and Transport in Anion Exchange Membranes

    SciTech Connect

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.; Knight, Chris; Voth, Gregory A.

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  17. Hydroxide Solvation and Transport in Anion Exchange Membranes.

    PubMed

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  18. Role of glutathione transport processes in kidney function

    SciTech Connect

    Lash, Lawrence H. . E-mail: l.h.lash@wayne.edu

    2005-05-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles.

  19. Simulating and Modeling Transport Through Atomically Thin Membranes

    NASA Astrophysics Data System (ADS)

    Ostrowski, Joseph; Eaves, Joel

    2014-03-01

    The world is running out of clean portable water. The efficacy of water desalination technologies using porous materials is a balance between membrane selectivity and solute throughput. These properties are just starting to be understood on the nanoscale, but in the limit of atomically thin membranes it is unclear whether one can apply typical continuous time random walk models. Depending on the size of the pore and thickness of the membrane, mass transport can range from single stochastic passage events to continuous flow describable by the usual hydrodynamic equations. We present a study of mass transport through membranes of various pore geometries using reverse nonequilibrium simulations, and analyze transport rates using stochastic master equations.

  20. Water and Molecular Transport across Nanopores in Monolayer Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Jang, Doojoon; O'Hern, Sean; Kidambi, Piran; Boutilier, Michael; Song, Yi; Idrobo, Juan-Carlos; Kong, Jing; Laoui, Tahar; Karnik, Rohit

    2015-11-01

    Graphene's atomic thickness and high tensile strength allow it to outstand as backbone material for next-generation high flux separation membrane. Molecular dynamics simulations predicted that a single-layer graphene membrane could exhibit high permeability and selectivity for water over ions/molecules, qualifying as novel water desalination membranes. However, experimental investigation of water and molecular transport across graphene nanopores had remained barely explored due to the presence of intrinsic defects and tears in graphene. We introduce two-step methods to seal leakage across centimeter scale single-layer graphene membranes create sub-nanometer pores using ion irradiation and oxidative etching. Pore creation parameters were varied to explore the effects of created pore structures on water and molecular transport driven by forward osmosis. The results demonstrate the potential of nanoporous graphene as a reliable platform for high flux nanofiltration membranes.

  1. Hijacking membrane transporters for arsenic phytoextraction

    PubMed Central

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  2. Phosphate transport by rat intestinal basolateral-membrane vesicles.

    PubMed Central

    Ghishan, F K; Kikuchi, K; Arab, N

    1987-01-01

    The characteristics of phosphate transport across intestinal basolateral membranes of the rat were determined by using enriched preparations in which uphill Na+-dependent D-glucose transport could not be demonstrated, but ATP-dependent Ca2+ transport was present. Phosphate transport was saturable, Na+-dependent and exhibited Michaelis-Menten kinetics. Vmax. was 51.1 +/- 4.2 pmol/10 s per mg of protein and Km was 14 +/- 3.9 microM. The transport process was electroneutral. Tracer-exchange experiments and counter-transport studies confirmed the presence of a Na+-Pi carrier at the basolateral membrane. The presence of inside-positive membrane potential did not enhance phosphate uptake, indicating that the Na+ effect is secondary to the presence of the Na+-Pi carrier rather than an induction of positive membrane potential. The stoichiometry of this carrier at pH 7.4 was 2 Na+:1 phosphate, as shown by direct studies utilizing the static-head method. These studies are the first to determine the presence of a phosphate carrier at the basolateral membrane. PMID:3663094

  3. Riboflavin transport by rabbit renal brush border membrane vesicles.

    PubMed

    Yanagawa, N; Jo, O D; Said, H M

    1997-12-04

    The present study examined riboflavin (RF) uptake by isolated rabbit renal brush border membrane (BBM). RF uptake was linear for up to 30 s and leveled off thereafter reaching an equilibrium with longer incubation. Studies on RF uptake as a function of incubation medium osmolarity indicated that the uptake was the results of transport (61.4%) into the intravesicular space as well as binding (38.6%) to membrane surfaces. The process of RF uptake was saturable as a function of substrate concentration with an apparent Km of 25.7 +/- 7.6 microM and Vmax of 75.6 +/- 14.7 pmol/mg protein/10 s. cis-Addition of unlabeled RF and its structural analogues, lumiflavin and lumichrome, inhibited the uptake of [3H]RF significantly, indicating the involvement of a carrier-mediated process in RF uptake by renal BBM. RF uptake by renal BBM was partly Na+-dependent so that when Na+ was replaced by potassium, choline, lithium or tetramethylammonium, the RF uptake was reduced to ca. 60% of the control. This Na+-dependency was unlikely to be due to Na+-cotransport mechanism because RF uptake occurred without the characteristic 'overshoot' phenomenon as for other Na+-cotransport systems and the elimination of transmembrane Na+-gradient by preloading Na+ to the intravesicular space did not affect RF uptake. In contrast, removal of Na+ eliminated the binding component of RF uptake, suggesting the requirement of Na+ for RF binding to BBM. The RF uptake was not affected when extravesicular pH was varied within the physiological pH range of 6.5 to 8.5. No effect on BBM [3H]RF uptake was found when the transmembrane electrical potential was altered by either the presence of anions with different membrane permeability (Cl- = NO3- > SO4- > gluconate-) or by using nigericin (10 microg/mg protein) with an outwardly or inwardly directed transmembrane K+ gradient. The uptake of RF by BBM vesicles was, however, inhibited by probenecid and organic anion transport inhibitors, 4,4-diiso

  4. Study of Unstirred Ternary Non-Ionic Solutions Transport in a Double-Membrane System

    NASA Astrophysics Data System (ADS)

    Ślęzak, A.; Grzegorczyn, S.

    1999-12-01

    Non-equilibrium thermodynamic model equations describing transport properties of non-ionic and heterogeneous n-component solutions have been studied in a double-membrane system. The system is composed of two complexes: boundary layer/membrane/boundary layer. Definitions of hydraulic permeability ( p), reflection (σ¯ *) and diffusive permeability (Ω¯) coefficients of the double-membrane system and relations between the coefficients of the double-membrane system ( p, σ¯ *, Ω¯) and the respective quantities of the single membranes of the system (L p, σ*, Ω) are given. The validity of the model has been checked in the case of binary and ternary solutions, using a membrane cell with horizontally mounted membranes. The diffusive permeability and reflection coefficients were determined as functions of solution concentration and gravitational configuration.

  5. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3.

    PubMed

    Duan, Haichuan; Wang, Joanne

    2010-12-01

    The plasma membrane monoamine transporter (PMAT) and organic cation transporter 3 (OCT3) are the two most prominent low-affinity, high-capacity (i.e., uptake(2)) transporters for endogenous biogenic amines. Using the Flp-in system, we expressed human PMAT (hPMAT) and human OCT3 (hOCT3) at similar levels in human embryonic kidney 293 cells. Parallel and detailed kinetics analysis revealed distinct and seemingly complementary patterns for the two transporters in transporting monoamine neurotransmitters. hPMAT is highly selective toward serotonin (5-HT) and dopamine, with the rank order of transport efficiency (V(max)/K(m)) being: dopamine, 5-HT ≫ histamine, norepinephrine, epinephrine. The substrate preference of hPMAT toward these amines is substantially driven by large (up to 15-fold) distinctions in its apparent binding affinities (K(m)). In contrast, hOCT3 is less selective than hPMAT toward the monoamines, and the V(max)/K(m) rank order for hOCT3 is: histamine > norepinephrine, epinephrine > dopamine >5-HT. It is noteworthy that hOCT3 demonstrated comparable (≤2-fold difference) K(m) toward all amines, and distinctions in V(max) played an important role in determining its differential transport efficiency toward the monoamines. Real-time reverse transcription-polymerase chain reaction revealed that hPMAT is expressed at much higher levels than hOCT3 in most human brain areas, whereas hOCT3 is selectively and highly expressed in adrenal gland and skeletal muscle. Our results suggest that hOCT3 represents a major uptake(2) transporter for histamine, epinephrine, and norepinephrine. hPMAT, on the other hand, is a major uptake(2) transporter for 5-HT and dopamine and may play a more important role in transporting these two neurotransmitters in the central nervous system.

  6. A 22-year experience in global transport extracorporeal membrane oxygenation.

    PubMed

    Coppola, Christopher P; Tyree, Melissa; Larry, Karen; DiGeronimo, Robert

    2008-01-01

    Transport extracorporeal membrane oxygenation (ECMO) is currently available at 12 centers. We report a 22-year experience from the only facility providing global transport ECMO. Indications for transport ECMO include lack of ECMO services, inability to transport conventionally, inability to wean from cardiopulmonary bypass, extracorporeal cardiopulmonary resuscitation, and need to move a patient on ECMO for specialized services such as organ transplantation. Retrospective database review of children undergoing inhouse and transport ECMO from 1985 to 2007. Sixty-eight children underwent transport ECMO. Fifty-six were transported on ECMO into our facility. The remaining 12 were moved between 2 outside locations. Ground vehicles and fixed-wing aircraft were used. Distance transported was 8 to 7500 miles (13-12070 km), mean 1380 miles (2220 km). There were 116 inhouse ECMO runs. No child died during transport. Survival to discharge after transport ECMO was 65% (44/68) and, for inhouse ECMO, was 70% (81/116). Transport ECMO is feasible and effective, with survival rates comparable to inhouse ECMO. We have used transport ECMO to help children at non-ECMO centers with pulmonary failure who have not improved with inhaled nitric oxide and high-frequency ventilation. We have also transported a child after extracorporeal cardiopulmonary resuscitation, which may represent an emerging indication for transport ECMO. Transport ECMO often is the only option for children too unstable for conventional transport or those already on ECMO and requiring a specialized service at another facility, such as organ transplantation.

  7. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    PubMed Central

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  8. Current topics in membranes and transport

    SciTech Connect

    Kleinzeller, A.

    1987-01-01

    This book contains 10 chapters. Some of the chapter titles are: Expression of the Oxytocin and Vasopressin Genes; Steroid Effects on Excitable Membranes: The Secretory Vesicle in Processing and Secretion of Neuropeptides: and Steroid Hormone Influences on Cyclic AMP-Generating Systems.

  9. Organization and function of membrane contact sites.

    PubMed

    Helle, Sebastian C J; Kanfer, Gil; Kolar, Katja; Lang, Alexander; Michel, Agnès H; Kornmann, Benoît

    2013-11-01

    Membrane-bound organelles are a wonderful evolutionary acquisition of the eukaryotic cell, allowing the segregation of sometimes incompatible biochemical reactions into specific compartments with tailored microenvironments. On the flip side, these isolating membranes that crowd the interior of the cell, constitute a hindrance to the diffusion of metabolites and information to all corners of the cell. To ensure coordination of cellular activities, cells use a network of contact sites between the membranes of different organelles. These membrane contact sites (MCSs) are domains where two membranes come to close proximity, typically less than 30nm. Such contacts create microdomains that favor exchange between two organelles. MCSs are established and maintained in durable or transient states by tethering structures, which keep the two membranes in proximity, but fusion between the membranes does not take place. Since the endoplasmic reticulum (ER) is the most extensive cellular membrane network, it is thus not surprising to find the ER involved in most MCSs within the cell. The ER contacts diverse compartments such as mitochondria, lysosomes, lipid droplets, the Golgi apparatus, endosomes and the plasma membrane. In this review, we will focus on the common organizing principles underlying the many MCSs found between the ER and virtually all compartments of the cell, and on how the ER establishes a network of MCSs for the trafficking of vital metabolites and information. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A Glimpse of Membrane Transport through Structures-Advances in the Structural Biology of the GLUT Glucose Transporters.

    PubMed

    Yan, Nieng

    2017-08-18

    The cellular uptake of glucose is an essential physiological process, and movement of glucose across biological membranes requires specialized transporters. The major facilitator superfamily glucose transporters GLUTs, encoded by the SLC2A genes, have been a paradigm for functional, mechanistic, and structural understanding of solute transport in the past century. This review starts with a glimpse into the structural biology of membrane proteins and particularly membrane transport proteins, enumerating the landmark structures in the past 25years. The recent breakthrough in the structural elucidation of GLUTs is then elaborated following a brief overview of the research history of these archetypal transporters, their functional specificity, and physiological and pathophysiological significances. Structures of GLUT1, GLUT3, and GLUT5 in distinct transport and/or ligand-binding states reveal detailed mechanisms of the alternating access transport cycle and substrate recognition, and thus illuminate a path by which structure-based drug design may be applied to help discover novel therapeutics against several debilitating human diseases associated with GLUT malfunction and/or misregulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Chloroplast membrane transport: interplay of prokaryotic and eukaryotic traits.

    PubMed

    Vothknecht, Ute C; Soll, Jürgen

    2005-07-18

    Chloroplasts are specific plant organelles of prokaryotic origin. They are separated from the surrounding cell by a double membrane, which represents an effective barrier for the transport of metabolites and proteins. Specific transporters in the inner envelope membrane have been described, which facilitate the exchange of metabolites. In contrast, the outer envelope has been viewed for a long time as a molecular sieve that offers a mere size constriction to the passage of molecules. This view has been challenged lately, and a number of specific and regulated pore proteins of the outer envelope (OEPs) have been identified. These pores seem to have originated by adaptation of outer membrane proteins of the cyanobacterial ancestor of the chloroplast. In a similar fashion, the transport of proteins across the two envelope membranes is achieved by two hetero-oligomeric protein complexes called Toc (translocon in the outer envelope of chloroplasts) and Tic (translocon in the inner envelope of chloroplasts). The phylogenetic provenance of the translocon components is less clear, but at least the channel protein of the Toc translocon is of cyanobacterial origin. Characteristic of cyanobacteria and chloroplasts is furthermore a specialized internal membrane system, the thylakoids, on which the components of the photosynthetic machinery are located. Despite the importance of this membrane, very little is known about its phylogenetic origin or the manner of its synthesis. Vipp1 appears to be a ubiquitous component of thylakoid formation, while in chloroplasts of land plants, additionally a vesicle transport system of eukaryotic origin might be involved in this process.

  12. A carrier-mediated transport for folate in basolateral membrane vesicles of rat small intestine.

    PubMed Central

    Said, H M; Redha, R

    1987-01-01

    The mechanism of exit of folate from the enterocyte, i.e. transport across the basolateral membrane, is not known. In this study we examined, using basolateral membrane vesicles, the transport of folic acid across the basolateral membrane of rat intestine. Uptake of folic acid by these vesicles represents transport of the substrate into the intravesicular compartment and not binding to the membrane surface. The rate of folic acid transport was linear for the first 1 min of incubation but decreased thereafter, reaching equilibrium after 5 min of incubation. The transport of folic acid was: (1) saturable as a function of concentration with an apparent Km of 0.6 +/- 0.17 microM and Vmax. of 1.01 +/- 0.11 pmol/30 s per mg of protein; (2) inhibited in a competitive manner by the structural analogues 5-methyltetrahydrofolate and methotrexate (Ki = 2 and 1.4 microM, respectively); (4) electroneutral; (5) Na+-independent; (6) sensitive to the effect of the anion exchange inhibitor 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS). These data indicate the existence of a carrier-mediated transport system for folic acid in rat intestinal basolateral membrane and demonstrate that the transport process is electroneutral, Na+-independent and sensitive to the effect of anion exchange inhibition. PMID:3689340

  13. Novel macrocyclic carriers for proton-coupled liquid membrane transport

    SciTech Connect

    Lamb, J.D.

    1991-06-10

    The objective of our research program is to elucidate the chemical principles which are responsible for the cation selectivity and permeability of liquid membranes containing macrocyclic carriers. Several new macrocyclic carriers were synthesized during the last three year period, including selenium-containing macrocycles, new crown-4 structures, and several new crown structures containing nitrogen based heterocycles as substituents in the principal macrocyclic ring. The cation binding properties of these macrocycles were investigated by potentiometric titration, calorimetric titration, solvent extraction, and NMR techniques. In addition, hydrophobic macrocycles were incorporated into dual hollow fiber membrane systems to investigate their membrane performance, especially in the proton-coupled transport mode. It was found that the dual hollow fiber system maintains the cation selectivity and permeability of supported liquid membranes, while enhancing membrane stability. The diffusion limited transport model was expanded to account for membrane solvent effects. Furthermore, Eu{sup 2+} transport was found to be similar to that of strontium and much higher than that of the lanthanides, in supported liquid membrane systems.

  14. Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation

    PubMed Central

    Gui, Minghui; Ormsbee, Lindell E.; Bhattacharyya, Dibakar

    2014-01-01

    Membranes have been widely used in water remediation (e.g. desalination and heavy metal removal) because of the ability to control membrane pore size and surface charge. The incorporation of nanomaterials into the membranes provides added benefits through increased reactivity with different functionality. In this study, we report the dechlorination of 2-chlorobiphenyl in the aqueous phase by a reactive membrane system. Fe/Pd bimetallic nanoparticles (NPs) were synthesized (in-situ) within polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) membranes for degradation of polychlorinated biphenyls (PCBs). Biphenyl formed in the reduction was further oxidized into hydroxylated biphenyls and benzoic acid by an iron-catalyzed hydroxyl radical (OH•) reaction. The formation of magnetite on Fe surface was observed. This combined pathway (reductive/oxidative) could reduce the toxicity of PCBs effectively while eliminating the formation of chlorinated degradation byproducts. The successful manufacturing of full-scale functionalized membranes demonstrates the possibility of applying reactive membranes in practical water treatment. PMID:24954974

  15. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.

    2003-01-01

    How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.

  16. Morphology and Proton Transport in Porous Block Copolymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    Chen, Chelsea; Kortright, Jeffrey; Wong, David; Balsara, Nitash

    2015-03-01

    Block copolymer electrolyte membranes consisting of a proton-conducting block and an uncharged structural block are attractive due to their potential in clean energy applications. Herein we demonstrate a novel approach of fabricating block copolymer electrolyte membranes, by inducing pores in the proton-conducting phase. We examine morphology of these membranes with contrast-matched resonant soft X-ray scattering (RSoXS) and electron tomography. Proton conductivity as a function of porosity and water activity is also investigated. By tuning the porosity of the membranes, we are able to adjust the water uptake of the membranes for improved proton conductivities, in both humid air and liquid water.

  17. Peroxisomal ABC transporters: structure, function and role in disease.

    PubMed

    Morita, Masashi; Imanaka, Tsuneo

    2012-09-01

    ATP-binding cassette (ABC) transporters belong to one of the largest families of membrane proteins, and are present in almost all living organisms from eubacteria to mammals. They exist on plasma membranes and intracellular compartments such as the mitochondria, peroxisomes, endoplasmic reticulum, Golgi apparatus and lysosomes, and mediate the active transport of a wide variety of substrates in a variety of different cellular processes. These include the transport of amino acids, polysaccharides, peptides, lipids and xenobiotics, including drugs and toxins. Three ABC transporters belonging to subfamily D have been identified in mammalian peroxisomes. The ABC transporters are half-size and assemble mostly as a homodimer after posttranslational transport to peroxisomal membranes. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA with differences in substrate specificity, and ABCD3/PMP70 is involved in the transport of long and branched chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation of very long chain fatty acids. Here, we summarize recent advances and important points in our advancing understanding of how these ABC transporters target and assemble to peroxisomal membranes and perform their functions in physiological and pathological processes, including the neurodegenerative disease, X-ALD. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Ferrous Ion Transport across Chloroplast Inner Envelope Membranes1

    PubMed Central

    Shingles, Richard; North, Marisa; McCarty, Richard E.

    2002-01-01

    The initial rate of Fe2+ movement across the inner envelope membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membrane vesicles loaded with the Fe2+-sensitive fluorophore, Phen Green SK. The rate of Fe2+ transport was rapid, coming to equilibrium within 3s. The maximal rate and concentration dependence of Fe2+ transport in predominantly right-side-out vesicles were nearly equivalent to those measured in largely inside-out vesicles. Fe2+ transport was stimulated by an inwardly directed electrochemical proton gradient across right-side-out vesicles, an effect that was diminished by the addition of valinomycin in the presence of K+. Fe2+ transport was inhibited by Zn2+, in a competitive manner, as well as by Cu2+ and Mn2+. These results indicate that inward-directed Fe2+ transport across the chloroplast inner envelope occurs by a potential-stimulated uniport mechanism. PMID:11891257

  19. Membrane transport of several ions during peritoneal dialysis: mathematical modeling.

    PubMed

    Galach, Magda; Waniewski, Jacek

    2012-09-01

    Peritoneal dialysis utilizes a complex mass exchange device created by natural permselective membranes of the visceral and abdominal muscle tissues. In mathematical modeling of solute transport during peritoneal dialysis, each solute is typically considered as a neutral, independent particle. However, such mathematical models cannot predict transport parameters for small ions. Therefore, the impact of the electrostatic interactions between ions on the estimated transport parameters needs to be investigated. In this study, transport of sodium, chloride, and a third ion through a permselective membrane with characteristics of the peritoneal transport barrier was described using two models: a model with the Nernst-Planck (NP) equations for a set of interacting ions and a model with combined diffusive and convective transport of each ion separately (DC). Transport parameters for the NP model were calculated using the pore theory, while the parameters for the DC model were estimated by fitting the model to the predictions from the NP model. Solute concentration profiles in the membrane obtained by computer simulations based on these two models were similar, whereas the transport parameters (diffusive mass transport parameters and sieving coefficients) were generally different. The presence of the third ion could substantially modify the values of diffusive mass parameter for sodium and chloride ions estimated using the DC model compared with those predicted by NP. The extent of this modification depended on the molecular mass and concentration of the third ion, and the rate of volumetric flow. Closed formulas for the transport parameters of the DC model in terms of the NP model parameters, ion concentration profiles in the membrane, and volumetric flow across the membrane were derived. Their reliable approximations, which include only boundary ion concentrations instead of spatial intramembrane concentration profiles, were formulated. The precision of this approximation

  20. Hydrogen transport membranes for dehydrogenation reactions

    DOEpatents

    Balachandran,; Uthamalingam, [Hinsdale, IL

    2008-02-12

    A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

  1. Membrane Protein Structure, Function and Dynamics: A Perspective from Experiments and Theory

    PubMed Central

    Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan; Antonny, Bruno; Baum, Daniel; Brannigan, Grace; Buchete, Nicolae-Viorel; Deckman, Jason T.; Delemotte, Lucie; del Val, Coral; Friedman, Ran; Gkeka, Paraskevi; Hege, Hans-Christian; Hénin, Jérôme; Kasimova, Marina A.; Kolocouris, Antonios; Klein, Michael L.; Khalid, Syma; Lemieux, M. Joanne; Lindow, Norbert; Roy, Mahua; Selent, Jana; Tarek, Mounir; Tofoleanu, Florentina; Vanni, Stefano; Urban, Sinisa; Wales, David J.; Smith, Jeremy C.; Bondar, Ana-Nicoleta

    2015-01-01

    Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes, receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function and dynamics of membrane proteins. PMID:26063070

  2. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory

    SciTech Connect

    Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan; Antonny, Bruno; Baum, Daniel; Brannigan, Grace; Buchete, Nicolae-Viorel; Deckman, Jason T.; Delemotte, Lucie; del Val, Coral; Friedman, Ran; Gkeka, Paraskevi; Hege, Hans-Christian; Hénin, Jérôme; Kasimova, Marina A.; Kolocouris, Antonios; Klein, Michael L.; Khalid, Syma; Lemieux, M. Joanne; Lindow, Norbert; Roy, Mahua; Selent, Jana; Tarek, Mounir; Tofoleanu, Florentina; Vanni, Stefano; Urban, Sinisa; Wales, David J.; Smith, Jeremy C.; Bondar, Ana-Nicoleta

    2015-06-11

    It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.

  3. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory

    DOE PAGES

    Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan; ...

    2015-06-11

    It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.

  4. MECHANISM OF GLUCOSE TRANSPORT ACROSS THE YEAST CELL MEMBRANE

    PubMed Central

    Cirillo, Vincent P.

    1962-01-01

    Cirillo, Vincent P. (Seton Hall College of Medicine and Dentistry, Jersey City, N.J.). Mechanism of glucose transport across the yeast cell membrane. J. Bacteriol. 84:485–491. 1962.—The kinetics of d-glucose and l-sorbose transport was studied in Saccharomyces cerevisiae inhibited with iodoacetic acid under nitrogen to prevent glucose metabolism. d-Glucose was found to compete with l-sorbose for a common membrane transport system with an apparent affinity greater than 25 times that of sorbose. A comparison of the net rate of glucose and sorbose transport at 50 and 500 mm external concentration showed that glucose transport is greater than that of sorbose from the lower concentration, but sorbose transport is greater than glucose at the higher concentration. This reversal of transport rate of two sugars with markedly different affinities is predicted by the membrane carrier theory. A further prediction of carrier theory was confirmed by the demonstration that the rate of glucose transport into fructose-loaded cells is greater than into unloaded cells. PMID:14021412

  5. Structure and Water Transport in Nafion Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Page, Kirt

    2014-03-01

    Perfluorinated ionomers, specifically Nafion, are the most widely used ion exchange membranes for vanadium redox flow battery applications, where an understanding of the relationship between membrane structure and transport of water/ions is critical to battery performance. In this study, the structure of Nafion/SiO2 nanocomposite membranes, synthesized using sol-gel chemistry, as well as cast directly from Nafion/SiO2 nanoparticle dispersions, was measured using both small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). Through contrast match studies of the SiO2 nanoparticles, direct information on the change in the structure of the Nafion membranes and the ion-transport channels within was obtained, where differences in membrane structure was observed between the solution-cast membranes and the membranes synthesized using sol-gel chemistry. Additionally, water sorption and diffusion in these Nafion/SiO2 nanocomposite membranes were measured using in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and dynamic vapor sorption (DVS).

  6. A Plasma Membrane Association Module in Yeast Amino Acid Transporters*

    PubMed Central

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J.; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in silico analyses and mutational studies we found that the C-terminal sequences of Gap1, Bap2, Hip1, Tat1, Tat2, Mmp1, Sam3, Agp1, and Gnp1 are about 50 residues long, associate with the PM, and have features that discriminate them from the termini of organellar amino acid transporters. We show that this sequence (named PMasseq) contains an amphipathic α-helix and the FWC signature, which is palmitoylated by palmitoyltransferase Pfa4. Variations of PMasseq, found in different AAPs, lead to different mobilities and localization patterns, whereas the disruption of the sequence has an adverse effect on cell viability. We propose that PMasseq modulates the function and localization of AAPs along the PM. PMasseq is one of the most complex protein signals for plasma membrane association across species and can be used as a delivery vehicle for the PM. PMID:27226538

  7. A Plasma Membrane Association Module in Yeast Amino Acid Transporters.

    PubMed

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-07-29

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in silico analyses and mutational studies we found that the C-terminal sequences of Gap1, Bap2, Hip1, Tat1, Tat2, Mmp1, Sam3, Agp1, and Gnp1 are about 50 residues long, associate with the PM, and have features that discriminate them from the termini of organellar amino acid transporters. We show that this sequence (named PMasseq) contains an amphipathic α-helix and the FWC signature, which is palmitoylated by palmitoyltransferase Pfa4. Variations of PMasseq, found in different AAPs, lead to different mobilities and localization patterns, whereas the disruption of the sequence has an adverse effect on cell viability. We propose that PMasseq modulates the function and localization of AAPs along the PM. PMasseq is one of the most complex protein signals for plasma membrane association across species and can be used as a delivery vehicle for the PM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Mass Transport through Nanostructured Membranes: Towards a Predictive Tool

    PubMed Central

    Darvishmanesh, Siavash; Van der Bruggen, Bart

    2016-01-01

    This study proposes a new mechanism to understand the transport of solvents through nanostructured membranes from a fundamental point of view. The findings are used to develop readily applicable mathematical models to predict solvent fluxes and solute rejections through solvent resistant membranes used for nanofiltration. The new model was developed based on a pore-flow type of transport. New parameters found to be of fundamental importance were introduced to the equation, i.e., the affinity of the solute and the solvent for the membrane expressed as the hydrogen-bonding contribution of the solubility parameter for the solute, solvent and membrane. A graphical map was constructed to predict the solute rejection based on the hydrogen-bonding contribution of the solubility parameter. The model was evaluated with performance data from the literature. Both the solvent flux and the solute rejection calculated with the new approach were similar to values reported in the literature. PMID:27918434

  9. Functionalized nanoparticle interactions with polymeric membranes

    PubMed Central

    Ladner, D.A.; Steele, M.; Weir, A.; Hristovski, K.; Westerhoff, P.

    2011-01-01

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) onporous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10 nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ~2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependant not only on surface functionality but on NP core material (Ag, TiO2, or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. PMID:22177020

  10. Transport analysis of hollow fiber gas separation membranes

    SciTech Connect

    Singh, V.; Rhinehart, R.R.; Narayan, R.S.; Tock, R.W.

    1995-12-01

    Membrane technology is extensively used for industrial gas separation. A steady-state model for gas permeation by hollow membrane fibers is developed for a multicomponent ideal gas system in countercurrent flow. Gas phase diffusion is shown to dominate transport in the substrate making local bore concentration, not diffusing species flux fraction, the appropriate measure of permeate activity for this experimental system. The model is able to predict the experimental trends in a O{sub 2}/N{sub 2}/polysulfone system.

  11. Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport.

    PubMed

    Niclas, J; Allan, V J; Vale, R D

    1996-05-01

    Cytoplasmic dynein is a minus end-directed microtubule motor that performs distinct functions in interphase and mitosis. In interphase, dynein transports organelles along microtubules, whereas in metaphase this motor has been implicated in mitotic spindle formation and orientation as well as chromosome segregation. The manner in which dynein activity is regulated during the cell cycle, however, has not been resolved. In this study, we have examined the mechanism by which organelle transport is controlled by the cell cycle in extracts of Xenopus laevis eggs. Here, we show that photocleavage of the dynein heavy chain dramatically inhibits minus end-directed organelle transport and that purified dynein restores this motility, indicating that dynein is the predominant minus end-directed membrane motor in Xenopus egg extracts. By measuring the amount of dynein associated with isolated membranes, we find that cytoplasmic dynein and its activator dynactin detach from the membrane surface in metaphase extracts. The sevenfold decrease in membrane-associated dynein correlated well with the eightfold reduction in minus end-directed membrane transport observed in metaphase versus interphase extracts. Although dynein heavy or intermediate chain phosphorylation did not change in a cell cycle-dependent manner, the dynein light intermediate chain incorporated approximately 12-fold more radiolabeled phosphate in metaphase than in interphase extracts. These studies suggest that cell cycle-dependent phosphorylation of cytoplasmic dynein may regulate organelle transport by modulating the association of this motor with membranes.

  12. Does hindered transport theory apply to desalination membranes?

    PubMed

    Dražević, Emil; Košutić, Krešimir; Kolev, Vesselin; Freger, Viatcheslav

    2014-10-07

    As reverse osmosis (RO) and nanofiltration polyamide membranes become increasingly used for water purification, prediction of pollutant transport is required for membrane development and process engineering. Many popular models use hindered transport theory (HTT), which considers a spherical solute moving through an array of fluid-filled rigid cylindrical pores. Experiments and molecular dynamic simulations, however, reveal that polyamide membranes have a distinctly different structure of a "molecular sponge", a network of randomly connected voids widely distributed in size. In view of this disagreement, this study critically examined the validity of HTT by directly measuring diffusivities of several alcohols within a polyamide film of commercial RO membrane using attenuated total reflection-FTIR. It is found that measured diffusivities deviate from HTT predictions by as much as 2-3 orders of magnitude. This result indicates that HTT does not adequately describe solute transport in desalination membranes. As a more adequate alternative, the concept of random resistor networks is suggested, with resistances described by models of activated transport in "soft" polymers without a sharp size cutoff and with a proper address of solute partitioning.

  13. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOEpatents

    Davis, Jeffery T.; Sidorov, Vladimir; Kotch, Frank W.

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  14. COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter binding protein-like 7

    USDA-ARS?s Scientific Manuscript database

    Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma me...

  15. Continuous Modeling of Calcium Transport Through Biological Membranes

    NASA Astrophysics Data System (ADS)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  16. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

    PubMed

    Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat

    2016-06-07

    Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions.

  17. Electroosmosis in Membranes: Effects of Unstirred Layers and Transport Numbers

    PubMed Central

    Barry, P. H.; Hope, A. B.

    1969-01-01

    When a current is passed through a membrane system, differences in transport numbers between the membrane and the adjacent solutions will, in general, result in depletion and enhancement of concentrations at the membrane-solution interfaces. This will be balanced by diffusion back into the bulk solution, diffusion of solute back across the membrane itself, and osmosis resulting from these local concentration gradients. The two main results of such a phenomenon are (1) that there is a current-induced volume flow, which may be mistaken for electroosmosis, and (2) that there will generally develop transient changes in potential difference (PD) across membranes during and after the passage of current through them. PMID:5786317

  18. Method of making a hydrogen transport membrane, and article

    DOEpatents

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  19. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems.

    PubMed

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R; Prochnik, Simon E; Blouin, Nicolas A; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L; Klein, Anita S; Lin, Senjie; Levine, Ira; Brawley, Susan H; Bhattacharya, Debashish

    2012-04-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters.

  20. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  1. Membrane Elastic Properties and Cell Function

    PubMed Central

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071

  2. Membrane elastic properties and cell function.

    PubMed

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C; Romão, Luciana F; Amaral, Racκele F; Salgado, Leonardo T; Lima, Flavia R; Farina, Marcos; Viana, Nathan B; Moura-Neto, Vivaldo; Nussenzveig, H Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  3. Membrane Transport in Isolated Vesicles from Sugarbeet Taproot 1

    PubMed Central

    Briskin, Donald P.; Thornley, W. Robert; Wyse, Roger E.

    1985-01-01

    Sealed membrane vesicles were isolated from homogenates of sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI, and dextran gradient centrifugation. Relative to the KI-extracted microsomes, the content of plasma membranes, mitochondrial membranes, and Golgi membranes was much reduced in the final vesicle fraction. A component of ATPase activity that was inhibited by nitrate co-enriched with the capacity of the vesicles to form a steady state pH gradient during the purification procedure. This suggests that the nitrate-sensitive ATPase may be involved in driving H+-transport, and this is consistent with the observation that H+-transport, in the final vesicle fraction was inhibited by nitrate. Proton transport in the sugarbeet vesicles was substrate specific for ATP, insensitive to sodium vanadate and oligomycin but was inhibited by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide. The formation of a pH gradient in the vesicles was enhanced by halide ions in the sequence I− > Br− > Cl− while F− was inhibitory. These stimulatory effects occur from both a direct stimulation of the ATPase by anions and a reduction in the vesicle membrane potential. In the presence of Cl−, alkali cations reduce the pH gradient relative to that observed with bis-tris-propane, possibly by H+/alkali cation exchange. Based upon the properties of the H+-transporting vesicles, it is proposed that they are most likely derived from the tonoplast so that this vesicle preparation would represent a convenient system for studying the mechanism of transport at this membrane boundary. PMID:16664342

  4. Folding and Function of Proteorhodopsins in Photoenergy Transducing Membranes

    SciTech Connect

    Spudich, John L

    2012-08-10

    The overall research objectives are to develop proteorhodopsin (PR) proteins as a model system for {alpha}-helical membrane protein insertion and folding, and to advance understanding of the diversity and mechanisms of PRs, a large family of photoenergy transducers (~4000 identified) abundant in the world’s oceans. Specific aims are: (1) To develop a highefficiency genetic selection procedure for light-driven proton-pumping in E. coli cells. Such a procedure would provide a positive selection method for proper folding and function of PRs in the E. coli membrane. (2) Characterize flash-induced absorption changes and photocurrents in PR variants in organisms from various environments, and their expression level and function when expressed in E. coli. Subaims are to: (a) elucidate the relationship of the transport mechanism to mechanisms of other microbial rhodopsins, some of which like PRs function as ion transporters and some of which use light energy to activate signaling pathways (sensory rhodopsins); and (b) identify important residues and chemical events in light-driven proton transport by PRs. In addition to their importance to the energy of the biosphere PRs have attracted interest for their potential for use in making photoenergy-transducing membranes for bioengineering applications.

  5. Electrochemical control of ion transport through a mesoporous carbon membrane

    SciTech Connect

    Surwade, Sumedh P; Chai, Songhai; Choi, Jai-Pil; Wang, Xiqing; Lee, Jeseung; Vlassiouk, Ivan V; Mahurin, Shannon Mark; Dai, Sheng

    2014-01-01

    The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

  6. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis.

    PubMed

    Kell, Douglas B; Swainston, Neil; Pir, Pınar; Oliver, Stephen G

    2015-04-01

    Because they mainly do not involve chemical changes, membrane transporters have been a Cinderella subject in the biotechnology of small molecule production, but this is a serious oversight. Influx transporters contribute significantly to the flux towards product, and efflux transporters ensure the accumulation of product in the much greater extracellular space of fermentors. Programmes for improving biotechnological processes might therefore give greater consideration to transporters than may have been commonplace. Strategies for identifying important transporters include expression profiling, genome-wide knockout studies, stress-based selection, and the use of inhibitors. In addition, modern methods of directed evolution and synthetic biology, especially those effecting changes in energy coupling, offer huge opportunities for increasing the flux towards extracellular product formation by transporter engineering. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters.

    PubMed

    LeVine, Michael V; Cuendet, Michel A; Khelashvili, George; Weinstein, Harel

    2016-06-08

    Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane.

  8. Facilitated transport of small molecules and ions for energy-efficient membranes.

    PubMed

    Li, Yifan; Wang, Shaofei; He, Guangwei; Wu, Hong; Pan, Fusheng; Jiang, Zhongyi

    2015-01-07

    In nature, the biological membrane can selectively transport essential small molecules/ions through facilitated diffusion via carrier proteins. Intrigued by this phenomenon and principle, membrane researchers have successfully employed synthetic carriers and carrier-mediated reversible reactions to enhance the separation performance of synthetic membranes. However, the existing facilitated transport membranes as well as the relevant facilitated transport theories have scarcely been comprehensively reviewed in the literature. This tutorial review primarily covers the two aspects of facilitated transport theories: carrier-mediated transport mechanisms and facilitated transport chemistries, including the design and fabrication of facilitated transport membranes. The applications of facilitated transport membranes in energy-intensive membrane processes (gas separation, pervaporation, and proton exchange membrane fuel cells) have also been discussed. Hopefully, this review will provide guidelines for the future research and development of facilitated transport membranes with high energy efficiency.

  9. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  10. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.

    PubMed

    Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert

    2016-08-16

    Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different

  11. The transport along membrane nanotubes driven by the spontaneous curvature of membrane components.

    PubMed

    Kabaso, Doron; Bobrovska, Nataliya; Góźdź, Wojciech; Gongadze, Ekaterina; Kralj-Iglič, Veronika; Zorec, Robert; Iglič, Aleš

    2012-10-01

    Intercellular membrane nanotubes (ICNs) serve as a very specific transport system between neighboring cells. The underlying mechanisms responsible for the transport of membrane components and vesicular dilations along the ICNs are not clearly understood. The present study investigated the spatial distribution of anisotropic membrane components of tubular shapes and isotropic membrane components of spherical shapes. Experimental results revealed the preferential distribution of CTB (cholera toxin B)-GM1 complexes mainly on the spherical cell membrane, and cholesterol-sphingomyelin at the membrane leading edge and ICNs. In agreement with previous studies, we here propose that the spatial distribution of CTB-GM1 complexes and cholesterol-sphingomyelin rafts were due to their isotropic and anisotropic shapes, respectively. To elucidate the relationship between a membrane component shape and its spatial distribution, a two-component computational model was constructed. The minimization of the membrane bending (free) energy revealed the enrichment of the anisotropic component along the ICN and the isotropic component in the parent cell membrane, which was due to the curvature mismatch between the ICN curvature and the spontaneous curvature of the isotropic component. The equations of motion, derived from the differentiation of the membrane free energy, revealed a curvature-dependent flux of the isotropic component and a curvature-dependent force exerted on a vesicular dilation along the ICN. Finally, the effects of possible changes in the orientational ordering of the anisotropic component attendant to the transport of the vesicular dilation were discussed with connection to the propagation of electrical and chemical signals. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Molecular level water and solute transport in reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  13. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  14. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes.

    PubMed

    van Dam, Vincent; Sijbrandi, Robert; Kol, Matthijs; Swiezewska, Ewa; de Kruijff, Ben; Breukink, Eefjan

    2007-05-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced by the presence of single spanning helical transmembrane peptides that facilitate transbilayer movement of membrane phospholipids. MurG catalysed synthesis of Lipid II from Lipid I in lipid vesicles also did not result in membrane translocation of Lipid II. These findings demonstrate that a specialized protein machinery is needed for transmembrane movement of Lipid II. In line with this, we could demonstrate Lipid II translocation in isolated Escherichia coli inner membrane vesicles and this transport could be uncoupled from the synthesis of Lipid II at low temperatures. The transport process appeared to be independent from an energy source (ATP or proton motive force). Additionally, our studies indicate that translocation of Lipid II is coupled to transglycosylation activity on the periplasmic side of the inner membrane.

  15. Theory for reactive solute transport through clay membrane barriers

    NASA Astrophysics Data System (ADS)

    Malusis, Michael A.; Shackelford, Charles D.

    2002-12-01

    The theoretical development for one-dimensional, coupled migration of solutes with different ionic mobilities through clay soils that behave as ion-restrictive membranes, referred to as clay membrane barriers (CMBs), is presented. The transport formulation is based on principles of irreversible thermodynamics and accounts explicitly for coupling effects of hyperfiltration (ultrafiltration) and chemico-osmotic counter-advection associated with clay membrane behavior in the absence of electrical current. Since, by definition, no solute can enter a "perfect" or "ideal" membrane, the concept of an implicit coupling effect, such that the effective salt-diffusion coefficient, Ds* approaches zero as the chemico-osmotic efficiency coefficient, ω approaches unity is introduced. The theoretical development also illustrates that, even in the absence of membrane behavior, traditional advective-dispersive transport theory based on a constant value of Ds* for the solutes may not be appropriate for simulating transient transport in reactive (ion exchanging) systems. This potential limitation is illustrated through simulations for solute mass flux involving the migration of a binary salt solution (KCl) through a clay barrier with exchange sites saturated with a single exchangeable cation (e.g., Na +) that enters the pore solution upon ion exchange with the salt cation (K +).

  16. Using membrane transporters to improve crops for sustainable food production

    USDA-ARS?s Scientific Manuscript database

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  17. Pyrithione and 8-hydroxyquinolines transport lead across erythrocyte membranes.

    PubMed

    Lind, Stuart E; Park, Jong Sung; Drexler, John W

    2009-09-01

    Acute and chronic lead poisoning remains a significant health problem. Although chelating agents can bind to plasma lead, they cannot cross cell membranes where the total body lead burden resides, and are thus inefficient at reducing the total body lead burden. Recently, calcium and sodium ionophores have been shown to transport lead across cell membranes providing a novel method for reducing total body lead stores. We recently found that clioquinol, an 8-hydroxyquinoline derivative, can act as a zinc ionophore. We postulated that zinc ionophores might also be able to transport lead across biological membranes. To study this, we loaded lead in vitro into human erythrocytes and then studied the ability of zinc ionophores to transport lead into the extracellular space, where it was trapped with a lead chelator. Using inductively coupled plasma mass spectrometry (ICP-MS), we found that several 8-hydroxyquinoline derivatives, as well as the zinc and sodium salts of pyrithione (N-hydroxypyridine-2-thione), reduced erythrocyte lead content. The water-soluble compound, sodium pyrithione, was able to reduce lead in citrated whole blood, without partitioning into the erythrocytes. These results indicate that two classes of zinc ionophores can transport lead across a biological membrane, and they confirm that these ionophores are not cation-specific. Lead ionophores may prove useful in mobilizing lead into the extracellular space, thereby improving the efficacy of chelation therapy, in vivo or ex vivo.

  18. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  19. ATP-dependent calcium transport across basal plasma membranes of human placental trophoblast

    SciTech Connect

    Fisher, G.J.; Kelley, L.K.; Smith, C.H.

    1987-01-01

    As a first step in understanding the cellular basis of maternal-fetal calcium transfer, the authors examined the characteristics of calcium uptake by a highly purified preparation of the syncytiotrophoblast basal (fetal facing) plasma membrane. In the presence of nanomolar concentrations of free calcium, basal membranes demonstrated substantial ATP-dependent calcium uptake. This uptake required magnesium, was not significantly affected by Na/sup +/ or K/sup +/ (50 mM), or sodium azide (10 mM). Intravesicular calcium was rapidly and completely released by the calcium ionophore rapidly and completely released by the calcium ionophore A23187. Calcium transport was significantly stimulated by the calcium-dependent regulatory protein calmodulin. Placental membrane fractions enriched in endoplasmic reticulum (ER) and mitochondria also demonstrated ATP-dependent calcium uptake. In contrast to basal membrane, mitochondrial calcium uptake was completely inhibited by azide. The rate of calcium uptake was completely inhibited by azide. The rate of calcium uptake by the ER was only 20% of that of basal membranes. They conclude that the placental basal plasma membrane possesses a high-affinity calcium transport system similar to that found in plasma membranes of a variety of cell types. This transporter is situated to permit it to function in vivo in maternal-fetal calcium transfer.

  20. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  1. Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks

    SciTech Connect

    William C. Conner

    2007-08-02

    These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

  2. Mechanistic equations for membrane transport of multicomponent solutions.

    PubMed

    Suchanek, G

    2006-03-01

    In the present article, mechanistic equations for membrane transport of N + 1-component solutions have been derived. The major specific investigation result is the introduction - for ternary solutions - of two diffusion coefficients omega(d1) and omega(d2) for solutes, as well as two cross coefficients omega(d12) and omega(d21) for these solutes. The latter parameters may be treated as coefficients of interdiffusion. The expansion of the description of substance transport to include the N + 1-component solutions does not formulate any additional physical phenomena other than those which are formulated by the transport equations for three-component solutions.

  3. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luda; Boutilier, Michael S. H.; Kidambi, Piran R.; Jang, Doojoon; Hadjiconstantinou, Nicolas G.; Karnik, Rohit

    2017-06-01

    Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

  4. Linear coupling of alignment with transport in a polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Li, Jing; Park, Jong Keun; Moore, Robert B.; Madsen, Louis A.

    2011-07-01

    Polymer electrolyte membranes (PEMs) selectively transport ions and polar molecules in a robust yet formable solid support. Tailored PEMs allow for devices such as solid-state batteries,‘artificial muscle’ actuators and reverse-osmosis water purifiers. Understanding how PEM structure and morphology relate to mobile species transport presents a challenge for designing next-generation materials. Material length scales from subnanometre to 1 μm (refs , ) influence bulk properties such as ion conductivity and water transport. Here we employ multi-axis pulsed-field-gradient NMR (ref. ) to measure diffusion anisotropy, and 2H NMR spectroscopy and synchrotron small-angle X-ray scattering to probe orientational order as a function of water content and of membrane stretching. Strikingly, transport anisotropy linearly depends on the degree of alignment, signifying that membrane stretching affects neither the nanometre-scale channel dimensions nor the defect structure,causing only domain reorientation. The observed reorientation of anisotropic domains without perturbation of the inherent nematic-like domain character parallels the behaviour of nematic elastomers, promises tailored membrane conduction and potentially allows understanding of tunable shape-memory effects in PEM materials. This quantitative understanding will drive PEM design efforts towardsoptimal membrane transport, thus enabling more efficient polymeric batteries, fuel cells, mechanical actuators and water purification.

  5. RND transporters protect Corynebacterium glutamicum from antibiotics by assembling the outer membrane.

    PubMed

    Yang, Liang; Lu, Shuo; Belardinelli, Juan; Huc-Claustre, Emilie; Jones, Victoria; Jackson, Mary; Zgurskaya, Helen I

    2014-08-01

    Corynebacterium-Mycobacterium-Nocardia (CMN) group are the causative agents of a broad spectrum of diseases in humans. A distinctive feature of these Gram-positive bacteria is the presence of an outer membrane of unique structure and composition. Recently, resistance-nodulation-division (RND) transporters (nicknamed MmpLs, Mycobacterial membrane protein Large) have emerged as major contributors to the biogenesis of the outer membranes in mycobacteria and as promising drug targets. In this study, we investigated the role of RND transporters in the physiology of Corynebacterium glutamicum and analyzed properties of these proteins. Our results show that in contrast to Gram-negative species, in which RND transporters actively extrude antibiotics from cells, in C. glutamicum and relatives these transporters protect cells from antibiotics by playing essential roles in the biogenesis of the low-permeability barrier of the outer membrane. Conditional C. glutamicum mutants lacking RND proteins and with the controlled expression of either NCgl2769 (CmpL1) or NCgl0228 (CmpL4) are hypersusceptible to multiple antibiotics, have growth deficiencies in minimal medium and accumulate intracellularly trehalose monocorynomycolates, free corynomycolates, and the previously uncharacterized corynomycolate-containing lipid. Our results also suggest that similar to other RND transporters, Corynebacterial membrane proteins Large (CmpLs) functions are dependent on a proton-motive force.

  6. Linear coupling of alignment with transport in a polymer electrolyte membrane.

    PubMed

    Li, Jing; Park, Jong Keun; Moore, Robert B; Madsen, Louis A

    2011-06-19

    Polymer electrolyte membranes (PEMs) selectively transport ions and polar molecules in a robust yet formable solid support. Tailored PEMs allow for devices such as solid-state batteries,'artificial muscle' actuators and reverse-osmosis water purifiers. Understanding how PEM structure and morphology relate to mobile species transport presents a challenge for designing next-generation materials. Material length scales from subnanometre to 1 μm influence bulk properties such as ion conductivity and water transport. Here we employ multi-axis pulsed-field-gradient NMR to measure diffusion anisotropy, and (2)H NMR spectroscopy and synchrotron small-angle X-ray scattering to probe orientational order as a function of water content and of membrane stretching. Strikingly, transport anisotropy linearly depends on the degree of alignment, signifying that membrane stretching affects neither the nanometre-scale channel dimensions nor the defect structure,causing only domain reorientation. The observed reorientation of anisotropic domains without perturbation of the inherent nematic-like domain character parallels the behaviour of nematic elastomers, promises tailored membrane conduction and potentially allows understanding of tunable shape-memory effects in PEM materials. This quantitative understanding will drive PEM design efforts towards optimal membrane transport, thus enabling more efficient polymeric batteries, fuel cells, mechanical actuators and water purification.

  7. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there

  8. The enduring legacy of the "constant-field equation" in membrane ion transport.

    PubMed

    Alvarez, Osvaldo; Latorre, Ramon

    2017-10-02

    In 1943, David Goldman published a seminal paper in The Journal of General Physiology that reported a concise expression for the membrane current as a function of ion concentrations and voltage. This body of work was, and still is, the theoretical pillar used to interpret the relationship between a cell's membrane potential and its external and/or internal ionic composition. Here, we describe from an historical perspective the theory underlying the constant-field equation and its application to membrane ion transport. © 2017 Alvarez and Latorre.

  9. Nanocapillary Membrane Devices: A Study in Electrokinetic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod

    There is considerable interest in developing micro-total analysis systems, also known as lab-on-a-chip devices, for applications in chemical and biological analysis. These devices often employ electrokinetic transport phenomena to move, mix, concentrate and separate dissolved species. The details of these phenomena in micro- and nanometer scale geometries are not fully understood; consequently, the basic principles of device operation are often unclear. For example, nanocapillary membranes (NCM) and other nanometer-sized passages can exhibit charge-selectivity and rectification effects similar to those observed in biological membranes. This dissertation addresses several issues related to ion transport in these membranes. Leading-order 1D steady-state models for diffusion-layer modulated transport through non-ideal membranes are used to study ionic rectification in geometrically asymmetric devices. These models provide qualitative explanations of the operation of a variety of fluidic rectifiers and experimentally observed hysteresis effects. By taking the first steps in the full boundary-layer analysis of the model, it is shown that non-ideal membranes do not maintain local electro-neutrality under passage of electric current. This is in contrast to the usual assumption of membrane local electro-neutrality, but is compatible with the existence of the non-equilibrium macroscopic space charge known to appear in the flanking electrolyte and the requirement of overall charge conservation. Lastly, the problem of electrokinetic instability due to non-equilibrium electro-osmotic slip is considered for the case of an electrolyte-membrane interface inside a 2D channel.

  10. Membrane Proteins in Four Acts: Function Precedes Structure Determination

    PubMed Central

    Cramer, W. A.; Zakharov, S. D.; Hasan, S. Saif; Zhang, H.; Baniulis, D.; Zhalnina, M. V.; Soriano, G. M.; Sharma, O.; Rochet, J. C.; Ryan, C.; Whitelegge., J.; Kurisu, G.; Yamashita, E.

    2011-01-01

    Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/ proton translocation). (1) Crystal structures of the eight subunit heterooligomeric trans-membrane dimeric cytochrome b6f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of seventeen monotopic and polytopic hetero-subunits. (II) β-barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B12 binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins (1). A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a “fishing pole” model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83 Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained (2). A crystal structure of the N-terminal translocation domain of colicin E3

  11. Membrane transporters and drug development: relevance to pharmacogenomics, nutrigenomics, epigenetics, and systems biology.

    PubMed

    Yan, Qing

    2010-01-01

    The study of membrane transporters may result in breakthroughs in the discovery of new drugs and the development of safer drugs. Membrane transporters are essential for fundamental cellular functions and normal physiological processes. These molecules influence drug absorption and distribution and play key roles in drug therapeutic effects. A primary goal of current research in drug discovery and development is to fully understand the interactions between transporters and drugs at both the system levels in the human body and the individual level for personalized therapy. Systematic studies of membrane transporters will help in not only better understanding of diseases from the systems biology point of view but also better drug design and development. The exploration of both pharmacogenomics and systems biology in transporters is necessary to connect individuals' genetic profiles with systematic drug responses in the human body. Understanding of gene-diet interactions and the effects of epigenetic changes on transporter gene expression may help improve clinical drug efficacy. The integration of pharmacogenomics, nutrigenomics, epigenetics, and systems biology may enable us to move from disease treatment to disease prevention and optimal health. The key issues in such integrative understanding include the correlations between structure and function, genotype and phenotype, and systematic interactions among transporters, other proteins, nutrients, drugs, and the environment. The exploration in these key issues may ultimately contribute to personalized medicine with high efficacy but less toxicity.

  12. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions.

    PubMed

    Korman, Christopher E; Megens, Mischa; Ajo-Franklin, Caroline M; Horsley, David A

    2013-04-09

    We report the formation of POPC lipid bilayers that span 130 nm pores in a freestanding silicon nitride film supported on a silicon substrate. These solvent-free lipid membranes self-assemble on organosilane-treated Si3N4 via the fusion of 200 nm unilamellar vesicles. Membrane fluidity is verified by fluorescence recovery after photobleaching (FRAP), and membrane resistance in excess of 1 GΩ is demonstrated using electrical impedance spectroscopy (EIS). An array of 40,000 membranes maintained high impedance over 72 h, followed by rupture of most of the membranes by 82 h. Membrane incorporation of gramicidin, a model ion channel, resulted in increased membrane conductance. This membrane conductance was diminished when the gramicidin channels were blocked with CaCl2, indicating that the change in membrane conductance results from gramicidin-mediated ion transport. These very stable, biologically functional pore-spanning membranes open many possibilities for silicon-based ion-channel devices for applications such as biosensors and high-throughput drug screening.

  13. Barriers to superfast water transport in carbon nanotube membranes.

    PubMed

    Walther, Jens H; Ritos, Konstantinos; Cruz-Chu, Eduardo R; Megaridis, Constantine M; Koumoutsakos, Petros

    2013-05-08

    Carbon nanotube (CNT) membranes hold the promise of extraordinary fast water transport for applications such as energy efficient filtration and molecular level drug delivery. However, experiments and computations have reported flow rate enhancements over continuum hydrodynamics that contradict each other by orders of magnitude. We perform large scale molecular dynamics simulations emulating for the first time the micrometer thick CNTs membranes used in experiments. We find transport enhancement rates that are length dependent due to entrance and exit losses but asymptote to 2 orders of magnitude over the continuum predictions. These rates are far below those reported experimentally. The results suggest that the reported superfast water transport rates cannot be attributed to interactions of water with pristine CNTs alone.

  14. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane

    PubMed Central

    Richardson, Ben D.; Saha, Kaustuv; Krout, Danielle; Cabrera, Elizabeth; Felts, Bruce; Henry, L. Keith; Swant, Jarod; Zou, Mu-Fa; Newman, Amy Hauck; Khoshbouei, Habibeh

    2016-01-01

    The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. PMID:26804245

  15. Facilitated transport membrane hybrid systems for olefin purification

    SciTech Connect

    Davis, J.C.; Valus, R.J.; Eshraghi, R.; Velikoff, A.E.

    1993-01-01

    A new membrane system has been developed by BP for refinery and chemical plant olefin purification and recovery. This facilitated transport system, coupled with distillation, offers lower capital and operating costs than conventional distillation alone. Initial results on lab scale hollow fiber devices indicate membrane flux ranging from 8.75 {times} 10{sup {minus}6} to 8 {times} 10{sup {minus}5} m{sup 3}/m{sup 2}/sec (2.5 to 23 scfd/ft{sub 2}) and selectivities from 150 to 300. Pilot plant experiments on propylene/propane and ethylene purge gas recovery over three to six months duration show membrane stability and product purity of 98.5% or greater using refinery grade propylene feed. Hybrid system optimization data for membranes and distillation indicate that using a side draw from the distillation tower provides advantages in terms of membrane area, purity of feed to the membrane, and low per-pass recovery coupled with high overall propylene recovery. Membrane performance data under various conditions are also presented. In addition to performance data, economic evaluation and energy savings are discussed.

  16. Bi-modal water transport behavior across a simple Nafion membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Ziheng; Promislow, Keith; Martin, Jonathan; Wang, Haijiang; Balcom, Bruce J.

    2011-10-01

    The development of predictive mathematical models for water management in polymer electrolyte membrane fuel cells requires detailed understanding of water distribution and water transport across the Nafion layer. The anisotropic microstructure of Nafion suggests the measurement of water content and mass transport should be along the fuel cell functional direction, i.e. across the membrane. Non-invasive, high resolution, microscopy measurements of this type are very challenging. We report here the calibration of a minimal mathematical model for diffusive water transport in Nafion against data from high-resolution water content maps determined with a new magnetic resonance imaging methodology developed for this purpose. A mock fuel cell was designed to permit well-controlled wetting and drying boundary conditions. With no chemical potential driving force involved, we assume the water transport behavior will be dominated by diffusion. Moreover we show that, in this context, our model is mathematically equivalent to the traditional permeation models based upon saturation dependent pressure gradients via a capillary pressure ansatz. The non-linear equilibrium water distribution across the Nafion membrane measured in this work suggests a bi-modal diffusivity. The model constructed associates distinct transport behaviors to water contents above and below a critical threshold, consistent with a rearrangement of a micro-structural pore network. The experimental observation and the model prediction agree with the primary features of Weber's model of Nafion, which predicts distinct modes of transport for hydration fronts traversing the through-plane direction of the membrane.

  17. O-(carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties.

    PubMed

    Wang, Jiali; Gao, Xueli; Wang, Jian; Wei, Yi; Li, Zhaokui; Gao, Congjie

    2015-02-25

    A novel O-(carboxymethyl)-chitosan (OCMC) nanofiltration (NF) membrane is developed via surface functionalization with graphene oxide (GO) nanosheets to enhance desalting properties. Using ring-opening polymerization between epoxy groups of GO nanosheets and amino groups of OCMC active layer, GO nanosheets are irreversibly bound to the membrane. The OCMC NF membranes surface-functionalized with GO nanosheets are characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, contact angle analyzer, and zeta potential analyzer. The membranes exhibit not only higher permeability but also better salt rejections than the pristine membranes and the commercial NF membranes; besides, the desalting properties are enhanced with the concentration of GO nanosheets increasing. Furthermore, the transport mechanism of GO-OCMC NF membranes reveals that the nanoporous structure of GO-OCMC functional layer and size exclusion and electrostatic repulsion of water nanochannels formed by GO nanosheets lead to the membranes possessing enhanced desalting properties.

  18. Structuring detergents for extracting and stabilizing functional membrane proteins.

    PubMed

    Matar-Merheb, Rima; Rhimi, Moez; Leydier, Antoine; Huché, Frédéric; Galián, Carmen; Desuzinges-Mandon, Elodie; Ficheux, Damien; Flot, David; Aghajari, Nushin; Kahn, Richard; Di Pietro, Attilio; Jault, Jean-Michel; Coleman, Anthony W; Falson, Pierre

    2011-03-31

    Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. Anionic calix[4]arene based detergents (C4Cn, n=1-12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. These compounds seem promising to extract in a functional state membrane proteins obeying the positive inside rule. In that context, they may

  19. Structuring Detergents for Extracting and Stabilizing Functional Membrane Proteins

    PubMed Central

    Matar-Merheb, Rima; Galián, Carmen; Desuzinges-Mandon, Elodie; Ficheux, Damien; Flot, David; Aghajari, Nushin; Kahn, Richard; Di Pietro, Attilio; Jault, Jean-Michel; Coleman, Anthony W.; Falson, Pierre

    2011-01-01

    Background Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. Methodology/Principal Findings Anionic calix[4]arene based detergents (C4Cn, n = 1–12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5–24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. Conclusion/Significance These compounds seem promising to extract in a functional state

  20. Scallop DMT functions as a Ca2+ transporter.

    PubMed

    Toyohara, Haruhiko; Yamamoto, Sayuri; Hosoi, Masatomi; Takagi, Masaya; Hayashi, Isao; Nakao, Kenji; Kaneko, Shuji

    2005-05-09

    We identified a DMT (divalent metal transporter) homologous protein that functions as a Ca(2+) transporter. Scallop DMT cDNA encodes a 539-amino-acid protein with 12 putative membrane-spanning domains and has a consensus transport motif in the fourth extracellular loop. Since its mRNA is significantly expressed in the gill and intestine, it is assumed that scallop DMT transports Ca(2+) from seawater by the gill and from food by the intestine. Scallop DMT lacks the iron-responsive element commonly found in iron-regulatory proteins, suggesting that it is free of the post-transcriptional regulation from intracellular Fe(2+) concentration. Scallop DMT distinctly functions as a Ca(2+) transporter unlike other DMTs, however, it also transports Fe(2+) and Cd(2+) similar to them.

  1. Transposome mutagenesis of an integral membrane transporter in Corynebacterium matruchotii.

    PubMed

    Wang, Cindy; Hayes, Barry; Vestling, Martha M; Takayama, Kuni

    2006-02-17

    A transposon-5 insertion library of Corynebacterium matruchotii ATCC14266 was generated and screened for mutants with altered corynomycolic acid content. One of these designated 319 mutants showed an interruption of a gene encoding an integral membrane protein. MALDI mass spectra of trehalose monocorynomycolate (TMCM), trehalose dicorynomycolate, and methyl corynomycolates derived from cell wall arabinogalactan-corynomycolate showed that these lipids from the mutant contained a lower amount of short-chain (C24 to C34) and much greater amount of long-chain (primarily C(36:2)) corynomycolic acids than the wild type. An analysis of mRNA demonstrated that the integral membrane protein and ATP-binding cassette transporter are transcriptionally coupled. These results suggested that the proteins/enzymes encoded by the membrane transporter gene locus preferably move short-chain corynomycolic acids from the cytoplasm across the membrane bilayer to the periplasmic space where the synthesis of TMCM is thought to occur. This is the first evidence linking corynomycolic acid to a transporter gene locus.

  2. Millimeter microwave effect on ion transport across lipid bilayer membranes.

    PubMed

    Alekseev, S I; Ziskin, M C

    1995-01-01

    The effects of millimeter microwaves in the frequency range of 54-76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB-). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% +/- 0.5%. At the same time, membrane current induced by TPhB- transport increased by 5% +/- 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% +/- 0.4%). No "resonance-like" effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB- transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 degrees C.

  3. Calcium uptake by intestinal brush border membrane vesicles. Comparison with in vivo calcium transport.

    PubMed Central

    Schedl, H P; Wilson, H D

    1985-01-01

    In prior studies, we examined kinetics of steady state in vivo transepithelial calcium transport in rat and hamster. The present studies related calcium uptake by the brush border to in vivo transport. We measured calcium uptake by brush border membrane vesicles from the two species. In the rat, our prior in vivo studies had shown that (a) calcium transport was mediated, (b) no nonmediated component was detectable, and (c) Vmax was 2.5 times greater in proximal than distal small intestine. In brush border membrane vesicles from the rat, Vmax for the saturable component of calcium uptake was again 2.5 times greater in proximal than distal intestine. Contrasting with in vivo studies, a major nonsaturable component was present in vesicles from proximal and distal small intestine. In the hamster, our previous in vivo studies had shown (1) both mediated and nonmediated components of calcium transport, (2) greater nonmediated transport in proximal than distal small intestines, and (3) Vmax for calcium transport twice as great in distal as in proximal small intestine. In the present study with brush border membrane vesicles from hamster, Vmax for saturable calcium transport was again twice as great in distal as in proximal small intestine. However, nonsaturable calcium transport rates relative to saturable rates were much greater with vesicles than in in vivo studies, and were greater in vesicles from distal than proximal small intestine. Since rates of saturable calcium uptake by brush border membrane vesicles parallel corresponding in vivo mediated transport rates, we conclude that the segmental rates of calcium transport in rat and hamster could be determined by brush border function. PMID:2997294

  4. Arabidopsis chloroplast lipid transport protein TGD2 disrupts membranes and is part of a large complex.

    PubMed

    Roston, Rebecca; Gao, Jinpeng; Xu, Changcheng; Benning, Christoph

    2011-06-01

    In most plants the assembly of the photosynthetic thylakoid membrane requires lipid precursors synthesized at the endoplasmic reticulum (ER). Thus, the transport of lipids from the ER to the chloroplast is essential for biogenesis of the thylakoids. TGD2 is one of four proteins in Arabidopsis required for lipid import into the chloroplast, and was found to bind phosphatidic acid in vitro. However, the significance of phosphatidic acid binding for the function of TGD2 in vivo and TGD2 interaction with membranes remained unclear. Developing three functional assays probing how TGD2 affects lipid bilayers in vitro, we show that it perturbs membranes to the point of fusion, causes liposome leakage and redistributes lipids in the bilayer. By identifying and characterizing five new mutant alleles, we demonstrate that these functions are impaired in specific mutants with lipid phenotypes in vivo. At the structural level, we show that TGD2 is part of a protein complex larger than 500 kDa, the formation of which is disrupted in two mutant alleles, indicative of the biological relevance of this TGD2-containing complex. Based on the data presented, we propose that TGD2, as part of a larger complex, forms a lipid transport conduit between the inner and outer chloroplast envelope membranes, with its N terminus anchored in the inner membrane and its C terminus binding phosphatidic acid in the outer membrane.

  5. Electrolyte Gradient-Based Modulation of Molecular Transport through Nanoporous Gold Membranes.

    PubMed

    McCurry, Daniel A; Bailey, Ryan C

    2017-02-14

    chemical modulations of transport are expected to engender increased membrane functionality.

  6. Basement membrane in pancreatic islet function.

    PubMed

    Kragl, Martin; Lammert, Eckhard

    2010-01-01

    Clinical treatment of diabetic patients by islet transplantation faces various complications. At present, in vitro expansion of islets occurs at the cost of their essential features, which are insulin production and release. However, the recent discovery of blood vessel/beta-cell interactions as an important aspect of insulin transcription, secretion, and proliferation might point us to ways of how this problem could be overcome. The correct function of beta-cells depends on the presence of a basement membrane, a specialized extracellular matrix located around the blood vessel wall in mouse and human pancreatic islets. In this chapter, we summarize how the vascular basement membrane influences insulin transcription, insulin secretion, and beta-cell proliferation. In addition, a brief overview about basement membrane components and their interactions with cell surface receptors is given.

  7. TonB-dependent outer membrane transport: going for Baroque?

    PubMed

    Wiener, Michael C

    2005-08-01

    The import of essential organometallic micronutrients (such as iron-siderophores and vitamin B(12)) across the outer membrane of Gram-negative bacteria proceeds via TonB-dependent outer membrane transporters (TBDTs). The TBDT couples to the TonB protein, which is part of a multiprotein complex in the plasma (inner) membrane. Five crystal structures of TBDTs illustrate clearly the architecture of the protein in energy-independent substrate-free and substrate-bound states. In each of the TBDT structures, an N-terminal hatch (or plug or cork) domain occludes the lumen of a 22-stranded beta barrel. The manner by which substrate passes through the transporter (the "hatch-barrel problem") is currently unknown. Solution NMR and X-ray crystallographic structures of various TonB domains indicate a striking structural plasticity of this protein. Thermodynamic, biochemical and bacteriological studies of TonB and TBDTs indicate further that existing structures do not yet capture critical energy-dependent and in vivo conformations of the transport cycle. The reconciliation of structural and non-structural experimental data, and the unambiguous experimental elucidation of a detailed molecular mechanism of transport are current challenges for this field.

  8. Calcium transport by rat duodenal villus and crypt basolateral membranes

    SciTech Connect

    Walters, J.R.F.; Weiser, M.M.

    1987-02-01

    Rat duodenal cells were isolated sequentially to give fractions enriched for villus and crypt cells. From each of these fractions, basolateral-enriched membrane vesicles were prepared and ATP-dependent calcium uptake was studied. Calcium uptake was sensitive to temperature, was inhibited by vanadate and by A23187, and was lower in vitamin D-deficient animals. In normal animals, (UVCa)-transport was approximately twofold greater in villus-tip than in crypt cell-fraction basolateral membranes though the affinity of the uptake for calcium was similar (K/sub m/ = 0.3 M). In vitamin D-deficient animals, the crypt-to-villus gradient was reduced, and in all fractions, calcium transport was similar to or lower than that in the crypts of normal animals. Six hours after vitamin D-deficient animals were repleted with 1,25-dihydroxycholecalciferol, a significant increase in calcium transport by everted gut sacs was present; however, basolateral calcium transport was significantly increased in only the mid-villus fractions, and no change was seen in the villus-tip fractions. Thus vitamin D appears necessary for the development of increased basolateral membrane calcium pump activity in duodenal villus cells, but not all cells in vitamin D-deficient rats are able to respond to 1,25-dihydroxycholecalciferol.

  9. Mechanism of electrodialytic ion transport through solvent extraction membranes

    SciTech Connect

    Moskvin, L.N.; Shmatko, A.G.; Krasnoperov, V.M.

    1987-02-01

    The authors construct a mathematical model for electrodialysis and solvent extraction via an ion-selective ion exchange membrane and accounts for the electrochemical, ion exchange, and diffusional behavior of the processes including their dependence on component concentration and current and voltage. The model is tested against experimental data for the electrodialytic transport of anionic platinum complexes of chlorides from hydrochloric acid solution through tributylphosphate membranes. The platinum concentration in the aqueous solution was determined by gamma spectroscopy obtained via platinum 191 as a radiotracer.

  10. Computational modelling of amino acid exchange and facilitated transport in placental membrane vesicles.

    PubMed

    Panitchob, N; Widdows, K L; Crocker, I P; Hanson, M A; Johnstone, E D; Please, C P; Sibley, C P; Glazier, J D; Lewis, R M; Sengers, B G

    2015-01-21

    Placental amino acid transport is required for fetal development and impaired transport has been associated with poor fetal growth. It is well known that placental amino acid transport is mediated by a broad array of specific membrane transporters with overlapping substrate specificity. However, it is not fully understood how these transporters function, both individually and as an integrated system. We propose that mathematical modelling could help in further elucidating the underlying mechanisms of how these transporters mediate placental amino acid transport. The aim of this work is to model the sodium independent transport of serine, which has been assumed to follow an obligatory exchange mechanism. However, previous amino acid uptake experiments in human placental microvillous plasma membrane vesicles have persistently produced results that are seemingly incompatible with such a mechanism; i.e. transport has been observed under zero-trans conditions, in the absence of internal substrates inside the vesicles to drive exchange. This observation raises two alternative hypotheses; (i) either exchange is not fully obligatory, or (ii) exchange is indeed obligatory, but an unforeseen initial concentration of amino acid substrate is present within the vesicle which could drive exchange. To investigate these possibilities, a mathematical model for tracer uptake was developed based on carrier mediated transport, which can represent either facilitated diffusion or obligatory exchange (also referred to as uniport and antiport mechanisms, respectively). In vitro measurements of serine uptake by placental microvillous membrane vesicles were carried out and the model applied to interpret the results based on the measured apparent Michaelis-Menten parameters Km and Vmax. In addition, based on model predictions, a new time series experiment was implemented to distinguish the hypothesised transporter mechanisms. Analysis of the results indicated the presence of a facilitated

  11. K+ transport and membrane potentials in isolated rat parotid acini

    SciTech Connect

    Nauntofte, B.; Dissing, S.

    1988-10-01

    42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. In the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels.

  12. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system

    PubMed Central

    Aboulwafa, Mohammad

    2013-01-01

    Permeases of the prokaryotic phosphoenolpyruvate–sugar phosphotransferase system (PTS) catalyse sugar transport coupled to sugar phosphorylation. The lipid composition of a membrane determines the activities of these enzyme/transporters as well as the degree of coupling of phosphorylation to transport. We have investigated mechanisms of PTS permease biogenesis and identified cytoplasmic (soluble) forms of these integral membrane proteins. We found that the catalytic activities of the soluble forms differ from those of the membrane-embedded forms. Transport via the latter is much more sensitive to lipid composition than to phosphorylation, and some of these enzymes are much more sensitive to the lipid environment than others. While the membrane-embedded PTS permeases are always dimeric, the cytoplasmic forms are micellar, either monomeric or dimeric. Scattered published evidence suggests that other integral membrane proteins also exist in cytoplasmic micellar forms. The possible functions of cytoplasmic PTS permeases in biogenesis, intracellular sugar phosphorylation and permease storage are discussed. PMID:23985145

  13. Investigating polymorphisms in membrane-associated transporter protein SLC45A2, using sucrose transporters as a model.

    PubMed

    Reinders, Anke; Ward, John M

    2015-07-01

    Solute carrier family 45 member 2 encodes the melanosomal membrane protein, membrane-associated transporter protein (MATP), of unknown function, that is required for normal melanin synthesis. The present study analyzed the effects of two human MATP mutations, D93N, which causes oculocutaneous albinism 4 (OCA4), and L374F, which is correlated with light pigmentation in European populations. Corresponding mutations were produced in the related and well-characterized sucrose transporter from rice, OsSUT1, and transport activity was measured by heterologous expression in Xenopus laevis oocytes, in addition to 14C-sucrose uptake in yeast. The mutation corresponding to D93N resulted in a complete loss of transport activity. The mutation corresponding to L374F resulted in a 90% decrease in transport activity, although the substrate affinity was unaffected. The results indicated that the D93N mutation causes OCA4 as a result of loss of MATP transport activity, and that the F374 allele confers significantly lower transport activity than L374.

  14. Two-compartment behavior during transport of folate compounds in L1210 cell plasma membrane vesicles

    SciTech Connect

    Yang, C.H.; Dembo, M.; Sirotnak, F.M.

    1982-01-01

    The transport of (/sup 3/H) 1,L 5-formyltetrahydrofolate, (/sup 3/H) folic acid, and (/sup 3/H)methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.

  15. MEMBRANE ESTROGEN RECEPTOR REGULATION OF HYPOTHALAMIC FUNCTION

    PubMed Central

    Micevych, Paul E.; Kelly, Martin J.

    2012-01-01

    Over the decades, our understanding of estrogen receptor (ER) function has evolved. Today we are confronted by at least two nuclear ERs: ERα and ERβ; and a number of putative membrane ERs, including ERα, ERβ, ER-X, GPR30 and Gq-mER. These receptors all bind estrogens or at least estrogenic compounds and activate intracellular signaling pathways. In some cases, a well-defined pharmacology, and physiology has been discovered. In other cases, the identity or the function remains to be elucidated. This mini-review attempts to synthesize our understanding of 17β-estradiol membrane signaling within hypothalamic circuits involved in homeostatic functions focusing on reproduction and energy balance. PMID:22538318

  16. Lipopolysaccharide transport to the cell surface: biosynthesis and extraction from the inner membrane

    PubMed Central

    Simpson, Brent W.; May, Janine M.; Sherman, David J.; Kahne, Daniel; Ruiz, Natividad

    2015-01-01

    The cell surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS). The network of charges and sugars provided by the dense packing of LPS molecules in the outer leaflet of the outer membrane interferes with the entry of hydrophobic compounds into the cell, including many antibiotics. In addition, LPS can be recognized by the immune system and plays a crucial role in many interactions between bacteria and their animal hosts. LPS is synthesized in the inner membrane of Gram-negative bacteria, so it must be transported across their cell envelope to assemble at the cell surface. Over the past two decades, much of the research on LPS biogenesis has focused on the discovery and understanding of Lpt, a multi-protein complex that spans the cell envelope and functions to transport LPS from the inner membrane to the outer membrane. This paper focuses on the early steps of the transport of LPS by the Lpt machinery: the extraction of LPS from the inner membrane. The accompanying paper (May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. 2015 Phil. Trans. R. Soc. B 370, 20150027. (doi:10.1098/rstb.2015.0027)) describes the subsequent steps as LPS travels through the periplasm and the outer membrane to its final destination at the cell surface. PMID:26370941

  17. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing

    PubMed Central

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J.; Wang, Yuanyuan; Simon, George P.; Liu, Jefferson Z.; Li, Dan

    2016-01-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub–10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub–10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems. PMID:26933689

  18. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.

    PubMed

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J; Wang, Yuanyuan; Simon, George P; Liu, Jefferson Z; Li, Dan

    2016-02-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub-10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub-10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems.

  19. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  20. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  1. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  2. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Clive Brereton; Warren Wolfs; James Lockhart

    2004-10-21

    During this quarter, work was focused on characterizing the stability of layered composite membranes in a one hundred percent permeate environment. Permeation data was also collected on cermets as a function of thickness. A thin film deposition procedure was used to deposit dense thin BCY/Ni onto a tubular porous support. Thin film tubes were then tested for permeation at ambient pressure. Process flow diagrams were prepared for inclusion of hydrogen separation membranes into IGCC power plants under varying conditions. Finally, membrane promoted alkane dehydrogenation experiments were performed.

  3. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease

    PubMed Central

    Sahoo, Swagatika; Aurich, Maike K.; Jonsson, Jon J.; Thiele, Ines

    2014-01-01

    Membrane transporters enable efficient cellular metabolism, aid in nutrient sensing, and have been associated with various diseases, such as obesity and cancer. Genome-scale metabolic network reconstructions capture genomic, physiological, and biochemical knowledge of a target organism, along with a detailed representation of the cellular metabolite transport mechanisms. Since the first reconstruction of human metabolism, Recon 1, published in 2007, progress has been made in the field of metabolite transport. Recently, we published an updated reconstruction, Recon 2, which significantly improved the metabolic coverage and functionality. Human metabolic reconstructions have been used to investigate the role of metabolism in disease and to predict biomarkers and drug targets. Given the importance of cellular transport systems in understanding human metabolism in health and disease, we analyzed the coverage of transport systems for various metabolite classes in Recon 2. We will review the current knowledge on transporters (i.e., their preferred substrates, transport mechanisms, metabolic relevance, and disease association for each metabolite class). We will assess missing coverage and propose modifications and additions through a transport module that is functional when combined with Recon 2. This information will be valuable for further refinements. These data will also provide starting points for further experiments by highlighting areas of incomplete knowledge. This review represents the first comprehensive overview of the transporters involved in central metabolism and their transport mechanisms, thus serving as a compendium of metabolite transporters specific for human metabolic reconstructions. PMID:24653705

  4. Polyamino acid functionalized membranes for metal capture and nanofiltration of organics: Modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Hestekin, Jamie Allen

    2000-10-01

    Passive membranes have been used for separations ranging from seawater desalination via reverse osmosis to the separation of particles with microfiltration membranes. However the attachment of macromolecules, with multiple functional sites, to microfiltration membranes allows for more selective separations. For these reasons, we have designed a novel membrane system, consisting of cellulose-based microfiltration membranes functionalized with polyamino acids (2,500--15,000 MW). Because of the high carboxyl content of the polyamino acids, these membranes have been shown to be extremely useful for the separation of heavy metals from aqueous solutions. The primary objective of this research was to establish the sorption mechanisms of functionalized microfiltration membranes and use these mechanisms to predict the rate behavior of metal transport through these membranes. Both cellulose acetate and pure cellulose were used as membrane support materials. Extensive experiments (pH 3--6) were conducted (under convective flow mode) with the derivatized membranes involving the heavy metals: lead, cadmium, nickel, copper, and selected mixtures with calcium in aqueous solutions. Metal sorption results were found to be a function of derivatization (aldehydes) density of membranes and degree of attachment of the polyfunctional groups, number of functional groups per chain, membrane surface area, and the type of metals to be sorbed. We have obtained metal sorption capacities as high as 1.5 g metal/g membrane. As opposed to homogeneous solution systems, the molar sorption capacities of the functional carboxyl sites are significantly enhanced in the membrane pores because of counterion condensation resulting partly from the extremely high charge densities in the membrane pores. This phenomenon was incorporated in a kinetic model for the prediction of sorption behavior. The model studied the effect of pore size, polyamino acid attachment density, pH, and metal type. Finally, in

  5. Ballistic electron transport in structured suspended semiconductor membranes

    SciTech Connect

    Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Pokhabov, D. A.

    2013-12-04

    We study ballistic electron transport in freely suspended AlAs/GaAs microstructures containing a high mobility two-dimensional electron gas with square lattice of antidots. We found that the magnetoresistance of the samples demonstrates commensurability oscillations both for the case of non-suspended and suspended devices. The temperature dependence of the commensurability oscillations is similar for both cases. However, the critical dc current, that suppresses these oscillations, in suspended samples is three times lower than in non-suspended ones. The observed phenomenon can be explained by peculiarities of the heat transport in membranes.

  6. Membrane transporters and drought resistance – a complex issue

    PubMed Central

    Jarzyniak, Karolina M.; Jasiński, Michał

    2014-01-01

    Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular, and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted. PMID:25538721

  7. Isothermal titration calorimetry of ion-coupled membrane transporters.

    PubMed

    Boudker, Olga; Oh, SeCheol

    2015-04-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding--enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors.

  8. Anisotropic amplification of proton transport in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Thimmappa, Ravikumar; Fawaz, Mohammed; Devendrachari, Mruthyunjayachari Chattanahalli; Gautam, Manu; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2017-07-01

    Though graphene oxide (GO) membrane shuttles protons under humid conditions, it suffer severe disintegration and anhydrous conditions lead to abysmal ionic conductivity. The trade-off between mechanical integrity and ionic conductivity challenge the amplification of GO's ionic transport under anhydrous conditions. We show anisotropic amplification of GO's ionic transport with a selective amplification of in plane contribution under anhydrous conditions by doping it with a plant extract, phytic acid (PA). The hygroscopic nature of PA stabilized interlayer water molecules and peculiar geometry of sbnd OH functionalities around saturated hydrocarbon ring anisotropically enhanced ionic transport amplifying the fuel cell performance metrics.

  9. Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction.

    PubMed

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2017-04-01

    Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.

  10. OCTN3 is a mammalian peroxisomal membrane carnitine transporter

    SciTech Connect

    Lamhonwah, Anne-Marie; Ackerley, Cameron A.; Tilups, Aina; Edwards, Vernon D.; Wanders, Ronald J.; Tein, Ingrid . E-mail: ingrid.tein@sickkids.ca

    2005-12-30

    Carnitine is a zwitterion essential for the {beta}-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes. We now demonstrate expression and colocalization of mOctn3, the intermediate-affinity carnitine transporter (K {sub m} 20 {mu}M), and catalase in murine liver peroxisomes by TEM using immunogold labelled anti-mOctn3 and anti-catalase antibodies. We further demonstrate expression of hOCTN3 in control human cultured skin fibroblasts both by Western blotting and immunostaining analysis using our specific anti-mOctn3 antibody. In contrast with two peroxisomal biogenesis disorders, we show reduced expression of hOCTN3 in human PEX 1 deficient Zellweger fibroblasts in which the uptake of peroxisomal matrix enzymes is impaired but the biosynthesis of peroxisomal membrane proteins is normal, versus a complete absence of hOCTN3 in human PEX 19 deficient Zellweger fibroblasts in which both the uptake of peroxisomal matrix enzymes as well as peroxisomal membranes are deficient. This supports the localization of hOCTN3 to the peroxisomal membrane. Given the impermeability of the peroxisomal membrane and the key role of carnitine in the transport of different chain-shortened products out of peroxisomes, there appears to be a critical need for the intermediate-affinity carnitine/organic cation transporter, OCTN3, on peroxisomal membranes now shown to be expressed in both human and murine peroxisomes. This Octn3 localization is in keeping with the essential role of carnitine in peroxisomal lipid metabolism.

  11. 65Zn2+ transport by lobster hepato-pancreatic baso-lateral membrane vesicles.

    PubMed

    Capo, J A; Mandal, P K; Eyyunni, S; Ahearn, G A

    2005-01-01

    The lobster (Homarus americanus) hepato-pancreatic epithelial baso-lateral cell membrane possesses three transport proteins that transfer calcium between the cytoplasm and hemolymph: an ATP-dependent calcium ATPase, a sodium-calcium exchanger, and a verapamil-sensitive cation channel. We used standard centrifugation methods to prepare purified hepato-pancreatic baso-lateral membrane vesicles and a rapid filtration procedure to investigate whether (65)Zn(2+) transfer across this epithelial cell border occurs by any of these previously described transporters for calcium. Baso-lateral membrane vesicles were osmotically reactive and exhibited a time course of uptake that was linear for 10-15 s and approached equilibrium by 120 s. In the absence of sodium, (65)Zn(2+) influx was a hyperbolic function of external zinc concentration and followed the Michaelis-Menten equation for carrier transport. This carrier transport was stimulated by the addition of 150 microM ATP (increase in K(m) and J(max)) and inhibited by the simultaneous presence of 150 micromol l(-1) ATP+250 micromol l(-1) vanadate (decrease in both K(m) and J(max)). In the absence of ATP, (65)Zn(2+) influx was a sigmoidal function of preloaded vesicular sodium concentration (0, 5, 10, 20, 30, 45, and 75 mmol l(-1)) and exhibited a Hill Coefficient of 4.03+/-1.14, consistent with the exchange of 3 Na(+)/1Zn(2+). Using Dixon analysis, calcium was shown to be a competitive inhibitor of baso-lateral membrane vesicle (65)Zn(2+) influx by both the ATP-dependent (K(i)=205 nmol l(-1) Ca(2+)) and sodium-dependent (K(i)=2.47 micromol l(-1) Ca(2+)) transport processes. These results suggest that zinc transport across the lobster hepato-pancreatic baso-lateral membrane largely occurred by the ATP-dependent calcium ATPase and sodium-calcium exchanger carrier proteins.

  12. Using membrane transporters to improve crops for sustainable food production.

    PubMed

    Schroeder, Julian I; Delhaize, Emmanuel; Frommer, Wolf B; Guerinot, Mary Lou; Harrison, Maria J; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V; Munns, Rana; Nishizawa, Naoko K; Tsay, Yi-Fang; Sanders, Dale

    2013-05-02

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land.

  13. Using membrane transporters to improve crops for sustainable food production

    PubMed Central

    Schroeder, Julian I.; Delhaize, Emmanuel; Frommer, Wolf B.; Guerinot, Mary Lou; Harrison, Maria J.; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V.; Munns, Rana; Nishizawa, Naoko K.; Tsay, Yi-Fang; Sanders, Dale

    2013-01-01

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land. PMID:23636397

  14. Functional advantages conferred by extracellular prokaryotic membrane vesicles.

    PubMed

    Manning, Andrew J; Kuehn, Meta J

    2013-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane-derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials and ridding the cell of toxic envelope proteins. Here, we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane-bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world. Copyright © 2013 S. Karger AG, Basel.

  15. Role of intracellular membranes in transcellular calcium transport

    SciTech Connect

    Coleman, J.R.; Young, L.B.; Wade, P.C.

    1981-01-01

    Models can be tested through the use of various agents that affect different portions of the overall mechanism. The calcium ionophore A23187 can be used to increase the rate of calcium entry through the brush border, effectively removing diffusion through the brush border as a rate-limiting step. It would be expected that treatment with A23187 would thus increase the overall rate of calcium transcellular transport. In contrast, chlorpromazine has been shown to inhibit in vitro calcium uptake by Golgi membranes. Consequently if the model is correct, treatment with A23187 and chlorpromazine would tend to raise the cytoplasmic calcium concentration, since the Golgi membrane uptake mechanism would be inhibited, and calcium would accumulate in mitochondria with little or no increase in transcellular transport. Finally, Golgi membranes have been shown to release calcium in response to ATP. Sodium azide inhibits ATP generation and calcium uptake by mitochondria. Thus, treatment with A23187 and soidum azide should cause accumulation of calcium in the Golgi membranes, if the proposed model is correct. The purpose of this investigation was to use coordinated electron probe x-ray microanalysis and transmission electron microscopy to test the response of the intestinal absorptive cells to the agents mentioned.

  16. Interhospital Transport System for Critically Ill Patients: Mobile Extracorporeal Membrane Oxygenation without a Ventilator

    PubMed Central

    Yeo, Hye Ju; Cho, Woo Hyun; Park, Jong Myung; Kim, Dohyung

    2017-01-01

    Background Extracorporeal membrane oxygenation (ECMO) has been successfully used as a method for the interhospital transportation of critically ill patients. In South Korea, a well-established ECMO interhospital transport system is lacking due to limited resources. We developed a simplified ECMO transport system without mechanical ventilation for use by public emergency medical services. Methods Eighteen patients utilized our ECMO transport system from December 2011 to September 2015. We retrospectively analyzed the indications for ECMO, the patient status during transport, and the patient outcomes. Results All transport was conducted on the ground by ambulance. The distances covered ranged from 26 to 408 km (mean, 65.9±88.1 km) and the average transport time was 56.1±57.3 minutes (range, 30 to 280 minutes). All patients were transported without adverse events. After transport, 4 patients (22.2%) underwent lung transplantation because of interstitial lung disease. Eight patients who had severe acute respiratory distress syndrome showed recovery of heart and lung function after ECMO therapy. A total of 13 patients (70.6%) were successfully taken off ECMO, and 11 patients (61.1%) survived. Conclusion Our ECMO transport system without mechanical ventilation can be considered a safe and useful method for interhospital transport and could be a good alternative option for ECMO transport in Korean hospitals with limited resources. PMID:28180097

  17. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology

    PubMed Central

    Jentsch, Thomas J

    2015-01-01

    Abstract After providing a personal description of the convoluted path leading 25 years ago to the molecular identification of the Torpedo Cl− channel ClC-0 and the discovery of the CLC gene family, I succinctly describe the general structural and functional features of these ion transporters before giving a short overview of mammalian CLCs. These can be categorized into plasma membrane Cl− channels and vesicular Cl−/H+-exchangers. They are involved in the regulation of membrane excitability, transepithelial transport, extracellular ion homeostasis, endocytosis and lysosomal function. Diseases caused by CLC dysfunction include myotonia, neurodegeneration, deafness, blindness, leukodystrophy, male infertility, renal salt loss, kidney stones and osteopetrosis, revealing a surprisingly broad spectrum of biological roles for chloride transport that was unsuspected when I set out to clone the first voltage-gated chloride channel. PMID:25590607

  18. Membrane Transport in Isolated Vesicles from Sugarbeet Taproot

    PubMed Central

    Giannini, John L.; Miller, Gene W.; Briskin, Donald P.

    1987-01-01

    The effects of fluoride on the tonoplast type ATPase and transport activities associated with sealed membrane vesicles isolated from sugarbeet (Beta vulgaris L.) storage tissue were examined. This anion had two distinct effects upon the proton-pumping vesicles. When ATP hydrolysis was measured in the presence of gramicidin D, significant inhibition (approximately 50%) only occurred when the fluoride concentration approached 50 millimolar. In contrast, the same degree of inhibition of proton transport occurred when the fluoride concentration was about 24 millimolar. Effects on proton pumping at this concentration of fluoride could be attributed to an inhibition of chloride movement which serves to dissipate the vesicle membrane potential. Valinomycin could partially restore ATPase activity in sealed vesicles which were inhibited by fluoride and this restoration occurred with a reduction in the membrane potential. Fluoride demonstrated a competitive interaction with chloride-stimulation of proton transport and inhibited the uptake of radioactive chloride into sealed vesicles. When the vesicles were allowed to develop a pH gradient in the absence of KCl, and KCl was subsequently added, fluoride reduced enhancement of the existing pH gradient by KCl. The results are consistent with a chloride carrier that is inhibited by fluoride. PMID:16665312

  19. Functional nanofibers and membranes by electrospinning

    NASA Astrophysics Data System (ADS)

    Formo, Eric Victor

    This research focuses on advances in the fabrication of functional membranes through the process of electrospinning to either alter the arrangement or composition of nanofiber arrays. To control nanofiber arrangement, easily reconfigurable collectors were constructed that could direct the deposition over large areas (>50 cm2) and pattern the membranes into various designs, including parallel, fan-out, and spiral arrays. Subsequently, the composition of electrospun membranes was modified using the sol-gel method to yield fibers composed of TiO2 (anatase and rutile) and ZrO 2 (tetragonal) phases. Implementing the polyol reduction method, these nanofiber surfaces were coated with Pt, Pd, and Rh nanoparticles of 2-5 nm or Pt nanowires with lengths up to 125 nm. Interestingly, by calcining the ZrO2 at a lower temperature, the nanofibers could mediate the growth of Pt nanostars or Pt nanowires by adjusting the Pt precursor concentration in the polyol reduction bath. The anatase membranes could also be modified through the self-assembly of various silanes to give either thiol or amine surface groups. The functionalized membranes were then tested for a number of applications associated with the catalysis field. Specifically, anatase fiber membranes coated with Pt and Pd nanoparticles were used as catalysts in a continuous flow reactor for either hydrogenation or cross-coupling reactions, respectively, which was proven to operate with a high yield, a rapid flow rate, and were readily recyclable. The effects of both the coverage and morphology of the Pt-decorated anatase fibers on the methanol oxidation reaction were then studied. Nanofibers with a submonolayer of Pt nanoparticles or Pt nanowires were found to display improved catalytic durability over commercial Pt/C as determined by chronoamperometry. Further, by utilizing the oxygen reduction reaction, results showed that the Pt nanostars had superior electrochemical properties in comparison to Pt black. Finally, the

  20. Temperature effect on transport performance by inorganic nanofiltration membranes

    SciTech Connect

    Tsuru, Toshinori; Izumi, Shuhei; Yoshioka, Tomohisa; Asaeda, Masashi

    2000-03-01

    The effect of temperature on nanofiltration performance was examined using three inorganic membranes with a molecular-weight cutoff of approximately 200, 600, and 2,000, respectively. The inorganic porous membranes were prepared from silica-zirconia colloidal sols and used in nanofiltration experiments for neutral solutes over a temperature range of 20 to 60 C. The rejection of solutes decreased with an increase in temperature for the membranes, while the permeate volume flux increased. Three transport coefficients--reflection coefficient, solute permeability, and water permeability--were obtained using the Spiegler-Kedem equation, which accounts for the contribution of convection and diffusion to solute flux. As a result, the reflection coefficient corresponding to the fraction of solutes reflected by the membrane in convective flow was almost constant, irrespective of experimental temperature. The dependency was larger for larger solutes and membranes with smaller pore diameters. Therefore, the hindered diffusion of solutes through micropores was indicative of an activated process. Moreover, pure water permeability, after correction for the temperature effect on viscosity, also increased with experimental temperature.

  1. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  2. Assaying the proton transport and regulation of UCP1 using solid supported membranes.

    PubMed

    Blesneac, Iulia; Ravaud, Stéphanie; Machillot, Paul; Zoonens, Manuela; Masscheylen, Sandrine; Miroux, Bruno; Vivaudou, Michel; Pebay-Peyroula, Eva

    2012-08-01

    The uncoupling protein 1 (UCP1) is a mitochondrial protein that carries protons across the inner mitochondrial membrane. It has an important role in non-shivering thermogenesis, and recent evidence suggests its role in human adult metabolism. Using rapid solution exchange on solid supported membranes, we succeeded in measuring electrical currents generated by the transport activity of UCP1. The protein was purified from mouse brown adipose tissue, reconstituted in liposomes and absorbed on solid supported membranes. A fast pH jump activated the ion transport, and electrical signals could be recorded. The currents were characterized by a fast rise and a slow decay, were stable over time, inhibited by purine nucleotides and activated by fatty acids. This new assay permits direct observation of UCP1 activity in controlled cell-free conditions, and opens up new possibilities for UCP1 functional characterization and drug screening because of its robustness and its potential for automation.

  3. Characteristics of (+)-catechin and (-)-epicatechin transport across pig intestinal brush border membranes.

    PubMed

    Starp, Christiane; Alteheld, Birgit; Stehle, Peter

    2006-01-01

    (+)-Catechin and (-)-epicatechin are considered as disease preventive flavan-3-ols of foods like fruits, beverages and chocolate. We investigated mechanisms and kinetics of (+)-catechin and (-)-epicatechin uptake employing a validated in vitro model with isolated pig brush border membrane vesicles. Vesicles were isolated from pig small intestine employing the divalent cation method. Characterization (marker enzymes, electron microscopy) confirmed their purity and function. Transport studies with (+)-catechin and (-)-epicatechin under predefined conditions [presence/absence of sodium, pH gradient, temperature (8-37 degrees C), various initial substrate concentrations (2-20 mmol/l)] revealed a measurable transport (HPLC analyses) across the brush border membrane for both substrates. Catechin transport was stimulated by an outwardly directed H(+) gradient (pH(i) 5.5/pH(o) 7.5). The presence of an inwardly directed Na(+) gradient did not result in a transient overshoot in (+)-catechin and (-)-epicatechin uptake. At 37 degrees C, subtraction of diffusion from the total transport rate showed saturation kinetics. Our in vitro study indicate that both (+)-catechin and (-)-epicatechin are transported across the basolateral membrane using a dual transport system consisting of free diffusion (dominant at low concentrations) and carrier-mediated facilitated diffusion.

  4. Use of inside-out chloroplast thylakoid membrane vesicles for studying electron transport and membrane structure

    SciTech Connect

    Atta-Asafo-Adjei, E.

    1987-01-01

    Inside-out and right-side-out thylakoid vesicles were isolated from spinach chloroplasts by aqueous-polymer two-phase partitioning following mechanical fragmentation of thylakoid membranes by Yeda press treatment. Externally added plastocyanin stimulated the whole-chain and PSI electron transport rates in the inside-out thylakoid vesicles by about 500 and 350%, respectively, compared to about 50% stimulation for both assays in the fraction enriched in right-side-out vesicles. The electron transport between PSII and PSI in inside-out thylakoid vesicles appears to be interrupted due to plastocyanin release from the thylakoids by the Yeda press treatment, but it was restored by externally added plastocyanin. Acetic anhydride chemical modification and uncoupler-induced proton release from dark-adapted membranes are probes for detecting the sequested proton domains in thylakoid membranes. Both assays were used to find out if inside-out membranes retain metastable, localized proton binding domains. Treatment of dark-maintained inside-out thylakoid membrane vesicles with ({sup 3}H)acetic anhydride showed no uncoupler-induced increase in acetylation of the 33, 24, and 18 kDa polypeptides of the oxygen-evolving-complex, indicating complete loss of the implicated proton domains in these polypeptides. The various steps in the inside-out preparation were studied to discern which steps(s) leads to the loss of the metastable domain proton pool.

  5. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae.

    PubMed Central

    Gaber, R F; Styles, C A; Fink, G R

    1988-01-01

    We identified a 180-kilodalton plasma membrane protein in Saccharomyces cerevisiae required for high-affinity transport (uptake) of potassium. The gene that encodes this putative potassium transporter (TRK1) was cloned by its ability to relieve the potassium transport defect in trk1 cells. TRK1 encodes a protein 1,235 amino acids long that contains 12 potential membrane-spanning domains. Our results demonstrate the physical and functional independence of the yeast potassium and proton transport systems. TRK1 is nonessential in S. cerevisiae and maps to a locus unlinked to PMA1, the gene that encodes the plasma membrane ATPase. Haploid cells that contain a null allele of TRK1 (trk1 delta) rely on a low-affinity transporter for potassium uptake and, under certain conditions, exhibit energy-dependent loss of potassium, directly exposing the activity of a transporter responsible for the efflux of this ion. Images PMID:3043197

  6. The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent

    PubMed Central

    Di Pasquale, Eric; Chahinian, Henri; Sanchez, Patrick; Fantini, Jacques

    2009-01-01

    Background Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic transporters). This issue is of major importance since anandamide transport through the plasma membrane is crucial for its biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of cholesterol in membrane uptake and transport of anandamide. Methodology/Principal Findings Molecular modeling simulations suggested that anandamide can adopt a shape that is remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range, anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was assessed by: i) the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM) on cholesterol monolayers, and ii) the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers. In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidylcholine bilayers dose-dependently stimulated the translocation of anandamide. Conclusions/Significance Our results demonstrate that cholesterol stimulates both the insertion of anandamide into synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides putative anandamide protein-transporters, cholesterol could

  7. Plasma membrane-localized transporter for aluminum in rice

    PubMed Central

    Xia, Jixing; Yamaji, Naoki; Kasai, Tomonari; Ma, Jian Feng

    2010-01-01

    Aluminum (Al) is the most abundant metal in the Earth's crust, but its trivalent ionic form is highly toxic to all organisms at low concentrations. How Al enters cells has not been elucidated in any organisms. Herein, we report a transporter, Nrat1 (Nramp aluminum transporter 1), specific for trivalent Al ion in rice. Nrat1 belongs to the Nramp (natural resistance-associated macrophage protein) family, but shares a low similarity with other Nramp members. When expressed in yeast, Nrat1 transports trivalent Al ion, but not other divalent ions, such as manganese, iron, and cadmium, or the Al–citrate complex. Nrat1 is localized at the plasma membranes of all cells of root tips except epidermal cells. Knockout of Nrat1 resulted in decreased Al uptake, increased Al binding to cell wall, and enhanced Al sensitivity, but did not affect the tolerance to other metals. Expression of Nrat1 is up-regulated by Al in the roots and regulated by a C2H2 zinc finger transcription factor (ART1). We therefore concluded that Nrat1 is a plasma membrane-localized transporter for trivalent Al, which is required for a prior step of final Al detoxification through sequestration of Al into vacuoles. PMID:20937890

  8. Plasma membrane-localized transporter for aluminum in rice.

    PubMed

    Xia, Jixing; Yamaji, Naoki; Kasai, Tomonari; Ma, Jian Feng

    2010-10-26

    Aluminum (Al) is the most abundant metal in the Earth's crust, but its trivalent ionic form is highly toxic to all organisms at low concentrations. How Al enters cells has not been elucidated in any organisms. Herein, we report a transporter, Nrat1 (Nramp aluminum transporter 1), specific for trivalent Al ion in rice. Nrat1 belongs to the Nramp (natural resistance-associated macrophage protein) family, but shares a low similarity with other Nramp members. When expressed in yeast, Nrat1 transports trivalent Al ion, but not other divalent ions, such as manganese, iron, and cadmium, or the Al-citrate complex. Nrat1 is localized at the plasma membranes of all cells of root tips except epidermal cells. Knockout of Nrat1 resulted in decreased Al uptake, increased Al binding to cell wall, and enhanced Al sensitivity, but did not affect the tolerance to other metals. Expression of Nrat1 is up-regulated by Al in the roots and regulated by a C2H2 zinc finger transcription factor (ART1). We therefore concluded that Nrat1 is a plasma membrane-localized transporter for trivalent Al, which is required for a prior step of final Al detoxification through sequestration of Al into vacuoles.

  9. Multicomponent transport in membranes for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Monroe, Charles

    2015-03-01

    Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that

  10. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  11. Smart gating membranes with in situ self-assembled responsive nanogels as functional gates

    PubMed Central

    Luo, Feng; Xie, Rui; Liu, Zhuang; Ju, Xiao-Jie; Wang, Wei; Lin, Shuo; Chu, Liang-Yin

    2015-01-01

    Smart gating membranes, inspired by the gating function of ion channels across cell membranes, are artificial membranes composed of non-responsive porous membrane substrates and responsive gates in the membrane pores that are able to dramatically regulate the trans-membrane transport of substances in response to environmental stimuli. Easy fabrication, high flux, significant response and strong mechanical strength are critical for the versatility of such smart gating membranes. Here we show a novel and simple strategy for one-step fabrication of smart gating membranes with three-dimensionally interconnected networks of functional gates, by self-assembling responsive nanogels on membrane pore surfaces in situ during a vapor-induced phase separation process for membrane formation. The smart gating membranes with in situ self-assembled responsive nanogels as functional gates show large flux, significant response and excellent mechanical property simultaneously. Because of the easy fabrication method as well as the concurrent enhancement of flux, response and mechanical property, the proposed smart gating membranes will expand the scope of membrane applications, and provide ever better performances in their applications. PMID:26434387

  12. Xanthophylls as modulators of membrane protein function.

    PubMed

    Ruban, Alexander V; Johnson, Matthew P

    2010-12-01

    This review discusses the structural aspect of the role of photosynthetic antenna xanthophylls. It argues that xanthophyll hydrophobicity/polarity could explain the reason for xanthophyll variety and help to understand their recently emerging function--control of membrane organization and the work of membrane proteins. The structure of a xanthophyll molecule is discussed in relation to other amphiphilic compounds like lipids, detergents, etc. Xanthophyll composition of membrane proteins, the role of their variety in protein function are discussed using as an example for the major light harvesting antenna complex of photosystem II, LHCII, from higher plants. A new empirical parameter, hydrophobicity parameter (H-parameter), has been introduced as an effective measure of the hydrophobicity of the xanthophyll complement of LHCII from different xanthophyll biosynthesis mutants of Arabidopsis. Photosystem II quantum efficiency was found to correlate well with the H-parameter of LHCII xanthophylls. PSII down-regulation by non-photochemical chlorophyll fluorescence quenching, NPQ, had optimum corresponding to the wild-type xanthophyll composition, where lutein occupies intrinsic sites, L1 and L2. Xanthophyll polarity/hydrophobicity alteration by the activity of the xanthophyll cycle explains the allosteric character of NPQ regulation, memory of illumination history and the hysteretic nature of the relationship between the triggering factor, ΔpH, and the energy dissipation process. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Study of the casting of sulfonated polyimide ionomer membranes: structural evolution and influence on transport properties.

    PubMed

    Galatanu, Anca-Nicoleta; Rollet, Anne-Laure; Porion, Patrice; Diat, Olivier; Gebel, Gérard

    2005-06-09

    A casting process has been studied for charged polymers: the sulfonated polyimide ionomer membrane. The formation of the membrane has been followed by X-ray reflectivity as a function of temperature. The effect of equivalent weight has been also investigated. The thickness loss presents two regimes: the first one is linear vs time indicating that the models developed for noncharged polymer may be suitable for ionomers in the early period of drying. The second one corresponds to the loss of X-ray reflectivity signal. Moreover, the X-ray reflectivity signal seems to be correlated to the characteristic time of the sample drying. In complement, we have studied the influence of casting on the properties of the dried ionomer membranes. The transport coefficients of N(CH(3))(4)(+) ions confined in two kinds of membranes that were differently cast were measured. The results show that shearing the ionomer solution during casting may lead to an enhancement of the anisotropy of structure and of transport. Moreover, we have studied the effect of both interfaces on the ion transport properties through the dried membranes.

  14. Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism.

    PubMed

    Zhang, Shiyong; Zhao, Yan

    2012-01-14

    Dimeric, trimeric, and tetrameric oligocholates with flexible 4-aminobutyroyl spacers caused the efflux of hydrophilic molecules such as carboxyfluorescein (CF) and glucose from POPC/POPG liposomes. Transport was greatly suppressed across higher-melting DPPC membranes. Lipid-mixing assays and dynamic light scattering (DLS) indicated that the liposomes were intact during the transport. Kinetic analysis supported the involvement of monomeric species in the rate-limiting step of CF transport, consistent with a carrier-based mechanism. Glucose transport, on the other hand, displayed a highly unusual zero-order dependence on the oligocholate concentration at low loading of the transporter. Different selectivity was observed in the oligocholate transporters depending on the guest involved.

  15. The plasma membrane transport systems and adaptation to salinity.

    PubMed

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.

  16. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

  17. Function and structure of heterodimeric amino acid transporters.

    PubMed

    Wagner, C A; Lang, F; Bröer, S

    2001-10-01

    Heterodimeric amino acid transporters are comprised of two subunits, a polytopic membrane protein (light chain) and an associated type II membrane protein (heavy chain). The heavy chain rbAT (related to b(0,+) amino acid transporter) associates with the light chain b(0,+)AT (b(0,+) amino acid transporter) to form the amino acid transport system b(0,+), whereas the homologous heavy chain 4F2hc interacts with several light chains to form system L (with LAT1 and LAT2), system y(+)L (with y(+)LAT1 and y(+)LAT2), system x (with xAT), or system asc (with asc1). The association of light chains with the two heavy chains is not unambiguous. rbAT may interact with LAT2 and y(+)LAT1 and vice versa; 4F2hc may interact with b(0,+)AT when overexpressed. 4F2hc is necessary for trafficking of the light chain to the plasma membrane, whereas the light chains are thought to determine the transport characteristics of the respective heterodimer. In contrast to 4F2hc, mutations in rbAT suggest that rbAT itself takes part in the transport besides serving for the trafficking of the light chain to the cell surface. Heavy and light subunits are linked together by a disulfide bridge. The disulfide bridge, however, is not necessary for the trafficking of rbAT or 4F2 heterodimers to the membrane or for the functioning of the transporter. However, there is experimental evidence that the disulfide bridge in the 4F2hc/LAT1 heterodimer plays a role in the regulation of a cation channel. These results highlight complex interactions between the different subunits of heterodimeric amino acid transporters and suggest that despite high grades of homology, the interactions between rbAT and 4F2hc and their respective partners may be different.

  18. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  19. Modulating molecular transport across peptide-modified nanoporous alumina membranes with light

    NASA Astrophysics Data System (ADS)

    Kumeria, Tushar; Yu, Jingxian; Alsawat, Mohammed; Kurkuri, Mahaveer D.; Santos, Abel; Abell, Andrew D.; Losic, Dusan

    2016-12-01

    We designed and fabricated a smart and stimuli responsive membrane to cater on demand molecular transporting applications. A novel photoswitchable peptide (PSP) was synthesized and attached inside nanoporous anodic alumina membranes (NAAMs) pores. The PSP specifically switched between its cis and trans photostationary states on exposure to 364 nm and 440 nm wavelength lights respectively, which not only provided the ability to control its pore diameter but also the surface chemistry. The switchable molecular transport properties of the PSP-NAAMs have been shown as a function of the light exposure. Most importantly, the molecular transport across PSP-NAAMs could be repeatedly switched between on and off state, which is highly significant for on-demand triggered drug release systems.

  20. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries

    PubMed Central

    2017-01-01

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201

  1. Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries

    DOE PAGES

    Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun; ...

    2017-04-27

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less

  2. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation

    PubMed Central

    Fuoco, Alessio; Khdhayyer, Muhanned R.; Attfield, Martin P.; Esposito, Elisa; Jansen, Johannes C.; Budd, Peter M.

    2017-01-01

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability. PMID:28208658

  3. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation.

    PubMed

    Fuoco, Alessio; Khdhayyer, Muhanned R; Attfield, Martin P; Esposito, Elisa; Jansen, Johannes C; Budd, Peter M

    2017-02-11

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H₂, O₂, N₂, CH₄, CO₂ were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability.

  4. Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994

    SciTech Connect

    Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

    1994-04-01

    The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

  5. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    SciTech Connect

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-06-15

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.

  6. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  7. Enhanced Wettability and Transport Control of Ultrafiltration and Reverse Osmosis Membranes with Grafted Polyelectrolytes.

    PubMed

    Gao, Kai; Kearney, Logan T; Wang, Ruocun; Howarter, John A

    2015-11-11

    End-functionalized poly(acrylic acid) (PAA-silane) was synthesized with reversible addition-fragmentation chain-transfer (RAFT) polymerization and attached to both polysulfone ultrafiltration (UF) and polyamide reverse osmosis (RO) membranes through a nonimpairing, one-step grafting to approach in order to improve membrane surface wettability with minimal impact on membrane transport performance. After PAA grafting, composition and morphology changes on the membrane surface were characterized with Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Static contact angle on PAA grafted membranes exhibited an increase in surface hydrophilicity and hence a potential enhancement in antifouling performance. The native contact angle on the polysulfone membrane systems was 86° and was reduced to 24° after modification, while the polyamide film contact angle decreased from 58° to 25°. The PAA layer endowed the porous UF membrane with dynamic control over the permeability and selectivity through the manipulation of the solution pH. The UF membrane with a 35 nm average pore size displayed a 115% increase in flux when the contact solution was changed from pH 11 to pH 3. This effect was diminished to 70% and 32% as the average pore size decreased to 20 and 10 nm, respectively. Modified RO membranes displayed no reduction in membrane performance indicating that the underlying materials were unaffected by the modification environment or added polymer. Model polyamide and polysulfone surfaces were reacted with the PAA-silane inside a quartz crystal microbalance (QCM) to help inform the deposition behavior for the respective membrane chemistries.

  8. Clay and pillard clay membranes: Synthesis, characterization and transport properties

    NASA Astrophysics Data System (ADS)

    Vercauteren, Sven

    In this work, the preparation and characterization of ceramic multilayer membranes with an Alsb2Osb3-pillared montmorillonite (Al-PILC) and a Laponite separating layer have been studied. Al-PILC is a pillared clay prepared by intercalation of polyoxo cations of aluminium between the montmorillonite clay sheets, followed by a thermal treatment (400sp°C) to obtain rigid oxide pillars. The free spacing between the clay plates is about 0.8 nm. Laponite is a synthetic clay with a pore structure formed by the stacking of very small clay plates. To deposit an Al-PILC top layer on a macro- or mesoporous aluminiumoxide support membrane, two preparation routes were considered. According to the standard preparation route of a pillared clay, the easiest way is to use a suspension of clay mixed with the pillaring solution in which the support membrane is dipped. However, it is not possible to deposit uniform and crack-free top layers in this way because of the formation of unstable suspensions. A second preparation route is based on an indirect pillaring procedure. By dipping a support membrane in a stable clay suspension, a thin clay film is deposited in a first step. Pillaring is achieved via immersion of the supported clay film in the pillaring solution in a second step. After a washing procedure, the membrane is dried and calcined at 400sp°C. Laponite membranes were simply prepared by dipping a support membrane in a suspension of this synthetic clay in water. Afterwards a drying at room temperature and a calcination at 400 ar 500sp°C is performed. Both membrane types were tested for gas separation and pervaporation purposes. Transport of permanent gases (He, N2) occurs by means of Knudsen diffusion. Diffusion is kinetically controlled and for a binary mixture, the maximum separation factor is determined by the difference in molecular weight of both components. From pervaporation experiments with water/alcohol mixtures it was found that Al-PILC membranes can be used for

  9. Transport properties of tomato fruit tonoplast membrane vesicles

    SciTech Connect

    Oleski, N.; Joyce, D.; Osteryoung, K.; Bennett, A.B.

    1986-04-01

    To study the role of the tonoplast in tomato fruit development, methods were developed to isolate sealed tonoplast membrane vesicles. Low density (approx. 1.23 g/cc) membrane vesicles they found to possess a NO/sub 3//sup -/-sensitive H/sup +/-translocating ATPase. The properties of this H/sup +/-ATPase are similar to those described for other tonoplast H/sup +/-ATPases. ATP-dependent Ca/sup + +/ transport into the vesicles proceeded by two mechanisms, one operative at low Ca/sup + +/ concentrations (1 ..mu..M) and inhibited by vanadate, and the other operative at high Ca/sup + +/ concentrations (10 ..mu..M) and inhibited by NO/sub 3//sup -/. Their present results indicate that the high affinity (vanadate-sensitive) Ca/sup + +/ transporter resides in E.R. membrane that contaminates the tonoplast preparation. Citrate uptake in tonoplast vesicles is stimulated by ATP and inhibited by NO/sub 3//sup -/ suggesting that citrate uptake is driven indirectly by the H/sup +/-ATPase. The substrate for sugar uptake is UDP-glucose resulting in the appearance of sucrose inside the tonoplast vesicle. No evidence for ATP stimulation of glucose, fructose, or sucrose uptake was observed.

  10. Cellular Transport and Membrane Dynamics of the Glycine Receptor

    PubMed Central

    Dumoulin, Andrea; Triller, Antoine; Kneussel, Matthias

    2009-01-01

    Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR) trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review (i) proteins and mechanisms involved in GlyR cytoskeletal transport, (ii) the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and (iii) adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism. PMID:20161805

  11. In Vivo Linking of Membrane Lipids and the Anion Transporter Band 3 with Thiourea-modified Amphiphilic Lipid Probes

    PubMed Central

    Moriyama, Akihiro; Katagiri, Naohiro; Nishimura, Shinichi; Takahashi, Nobuaki; Kakeya, Hideaki

    2015-01-01

    Membrane proteins interact with membrane lipids for their structural stability and proper function. However, lipid–protein interactions are poorly understood at a molecular level especially in the live cell membrane, due to current limitations in methodology. Here, we report that amphiphilic lipid probes can be used to link membrane lipids and membrane proteins in vivo. Cholesterol and a phospholipid were both conjugated to a fluorescent tag through a linker containing thiourea. In the erythrocyte, the cholesterol probe fluorescently tagged the anion transporter band 3 via thiourea. Tagging by the cholesterol probe, but not by the phospholipid probe, was competitive with an anion transporter inhibitor, implying the presence of a specific binding pocket for cholesterol in this ~100 kDa protein. This method could prove an effective strategy for analyzing lipid–protein interactions in vivo in the live cell membrane. PMID:26616474

  12. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites.

    PubMed

    Kentala, Henriikka; Weber-Boyvat, Marion; Olkkonen, Vesa M

    2016-01-01

    Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes. Copyright © 2016. Published by Elsevier Inc.

  13. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations.

    PubMed

    Luoto, Heidi H; Nordbo, Erika; Baykov, Alexander A; Lahti, Reijo; Malinen, Anssi M

    2013-12-06

    Membrane-bound Na(+)-pyrophosphatase (Na(+)-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na(+) transport in bacteria and archaea. Each ~75-kDa subunit of homodimeric Na(+)-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na(+) concentrations (<5 mM), the Na(+)-PPases of Chlorobium limicola, four other bacteria, and one archaeon additionally exhibit an H(+)-pumping activity in inverted membrane vesicles prepared from recombinant Escherichia coli strains. H(+) accumulation in vesicles was measured with fluorescent pH indicators. At pH 6.2-8.2, H(+) transport activity was high at 0.1 mM Na(+) but decreased progressively with increasing Na(+) concentrations until virtually disappearing at 5 mM Na(+). In contrast, (22)Na(+) transport activity changed little over a Na(+) concentration range of 0.05-10 mM. Conservative substitutions of gate Glu(242) and nearby Ser(243) and Asn(677) residues reduced the catalytic and transport functions of the enzyme but did not affect the Na(+) dependence of H(+) transport, whereas a Lys(681) substitution abolished H(+) (but not Na(+)) transport. All four substitutions markedly decreased PPase affinity for the activating Na(+) ion. These results are interpreted in terms of a model that assumes the presence of two Na(+)-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H(+) transport activity. The inherent H(+) transport activity of Na(+)-PPase provides a rationale for its easy evolution toward specific H(+) transport.

  14. Lymphocytes possess an electrogenic H(+)-transporting pathway in their plasma membrane.

    PubMed Central

    Káldi, K; Szászi, K; Suszták, K; Kapus, A; Ligeti, E

    1994-01-01

    The existence of an electrogenic H(+)-transporting pathway similar to that described in the plasma membrane of granulocytes and macrophages is reported in pig peripheral lymphocytes. The function of the H(+)-transport pathway can only be detected when free movement of charge-compensating cations is allowed. H+ transport is stimulated by arachidonic acid and various unsaturated fatty acids, and inhibited by bivalent cations, with the following sequence of efficiency: Zn2+ > Cd2+ = Co2+ = Ni2+ > Mn2+ > Ba2+ = Ca2+ = Mg2+. The transport pathway is activated by intracellular acidification and by NN'-dicyclohexylcarbodiimide, but it is not influenced by phorbol 12-myristate 13-acetate. As pig peripheral lymphocytes are not able to produce O2-., it is suggested that the operation of the electrogenic H+ conductance does not require the assembly of a functional NADPH oxidase. Images Figure 1 PMID:7519007

  15. Electrogenicity of phosphate transport by renal brush-border membranes.

    PubMed Central

    Béliveau, R; Ibnoul-Khatib, H

    1988-01-01

    Phosphate uptake by rat renal brush-border membrane vesicles was studied under experimental conditions where transmembrane electrical potential (delta psi) could be manipulated. Experiments were performed under initial rate conditions to avoid complications associated with the dissipation of ion gradients. First, phosphate uptake was shown to be strongly affected by the nature of Na+ co-anions, the highest rates of uptake being observed with 100 mM-NaSCN (1.010 +/- 0.086 pmol/5 s per micrograms of protein) and the lowest with 50 mM-Na2SO4 (0.331 +/- 0.046 pmol/5 s per micrograms of protein). Anion substitution studies showed that potency of the effect of the co-anions was in the order thiocyanate greater than nitrate greater than chloride greater than isethionate greater than gluconate greater than sulphate, which correlates with the known permeability of the membrane to these anions and thus to the generation of transmembrane electrical potentials of decreasing magnitude (inside negative). The stimulation by ion-diffusion-induced potential was observed from pH 6.5 to 8.5, indicating that the transport of both monovalent and divalent phosphate was affected. In addition, inside-negative membrane potentials were generated by valinomycin-induced diffusion of K+ from K+-loaded vesicles and showed a 57% stimulation of phosphate uptake, at pH 7.5. Similar experiments with H+-loaded vesicles, in the presence of carbonyl cyanide m-chlorophenylhydrazone gave a 50% stimulation compared with controls. Inside-positive membrane potentials were also induced by reversal of the K+ gradient (outside greater than inside) in the presence of valinomycin and gave 58% inhibition of phosphate uptake. The membrane-potential dependency of phosphate uptake was finally analysed under thermodynamic equilibrium, and a stimulation by inside-negative potential was observed. The transport of phosphate was thus driven against a concentration gradient by a membrane potential, implicating the net

  16. Aquaporin-1 and HCO3−–Cl− transporter-mediated transport of CO2 across the human erythrocyte membrane

    PubMed Central

    Blank, Michael E; Ehmke, Heimo

    2003-01-01

    Recent studies have suggested that aquaporin-1 (AQP1) as well as the HCO3−–Cl− transporter may be involved in CO2 transport across biological membranes, but the physiological importance of this route of gas transport remained unknown. We studied CO2 transport in human red blood cell ghosts at physiological temperatures (37 °C). Replacement of inert with CO2-containing gas above a stirred cell suspension caused an outside-to-inside directed CO2 gradient and generated a rapid biphasic intracellular acidification. The gradient of the acidifying gas was kept small to favour high affinity entry of CO2 passing the membrane. All rates of acidification except that of the approach to physicochemical equilibrium of the uncatalysed reaction were restricted to the intracellular environment. Inhibition of carbonic anhydrase (CA) demonstrated that CO2-induced acidification required the catalytic activity of CA. Blockade of the function of either AQP1 (by HgCl2 at 65 μM) or the HCO3−–Cl− transporter (by DIDS at 15 μM) completely prevented fast acidification. These data indicate that, at low chemical gradients for CO2, nearly the entire CO2 transport across the red cell membrane is mediated by AQP1 and the HCO3−–Cl− transporter. Therefore, these proteins may function as high affinity sites for CO2 transport across the erythrocyte membrane. PMID:12754312

  17. Membrane proteins in four acts: function precedes structure determination.

    PubMed

    Cramer, W A; Zakharov, S D; Saif Hasan, S; Zhang, H; Baniulis, D; Zhalnina, M V; Soriano, G M; Sharma, O; Rochet, J C; Ryan, C; Whitelegge, J; Kurisu, G; Yamashita, E

    2011-12-01

    Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/proton translocation. (1) Crystal structures of the eight subunit hetero-oligomeric trans-membrane dimeric cytochrome b(6)f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of 17 monotopic and polytopic hetero-subunits. (II) β-Barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B(12) binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins [1]. A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a "fishing pole" model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained [2]. A crystal structure of the N-terminal translocation domain of colicin E3 complexed to

  18. Computer Modeling of Protocellular Functions: Peptide Insertion in Membranes

    NASA Technical Reports Server (NTRS)

    Rodriquez-Gomez, D.; Darve, E.; Pohorille, A.

    2006-01-01

    Lipid vesicles became the precursors to protocells by acquiring the capabilities needed to survive and reproduce. These include transport of ions, nutrients and waste products across cell walls and capture of energy and its conversion into a chemically usable form. In modem organisms these functions are carried out by membrane-bound proteins (about 30% of the genome codes for this kind of proteins). A number of properties of alpha-helical peptides suggest that their associations are excellent candidates for protobiological precursors of proteins. In particular, some simple a-helical peptides can aggregate spontaneously and form functional channels. This process can be described conceptually by a three-step thermodynamic cycle: 1 - folding of helices at the water-membrane interface, 2 - helix insertion into the lipid bilayer and 3 - specific interactions of these helices that result in functional tertiary structures. Although a crucial step, helix insertion has not been adequately studied because of the insolubility and aggregation of hydrophobic peptides. In this work, we use computer simulation methods (Molecular Dynamics) to characterize the energetics of helix insertion and we discuss its importance in an evolutionary context. Specifically, helices could self-assemble only if their interactions were sufficiently strong to compensate the unfavorable Free Energy of insertion of individual helices into membranes, providing a selection mechanism for protobiological evolution.

  19. Molecular mechanism of {alpha}-tocopheryl-phosphate transport across the cell membrane

    SciTech Connect

    Negis, Yesim; Meydani, Mohsen; Zingg, Jean-Marc; Azzi, Angelo . E-mail: angelo.azzi@tufts.edu

    2007-07-27

    {alpha}-Tocopheryl-phosphate ({alpha}-TP) is synthesized and hydrolyzed in animal cells and tissues where it modulates several functions. {alpha}-TP is more potent than {alpha}-T in inhibiting cell proliferation, down-regulating CD36 transcription, inhibiting atherosclerotic plaque formation. Administration of {alpha}-TP to cells or animals requires its transfer through membranes, via a transporter. We show here that {alpha}-TP is passing the plasma membrane via a system that is inhibited by glibenclamide and probenecid, inhibitors of a number of transporters. Glibenclamide and probenecid prevent dose-dependently {alpha}-TP inhibition of cell proliferation. The two inhibitors act on ATP binding cassette (ABC) and organic anion transporters (OAT). Since ABC transporters function to export solutes and {alpha}-TP is transported into cells, it may be concluded that {alpha}-TP transport may occur via an OAT family member. Due to the protection by glibenclamide and probenecid on the {alpha}-TP induced cell growth inhibition it appears that {alpha}-TP acts after its uptake inside cells.

  20. TonB-dependent transporters: regulation, structure, and function

    PubMed Central

    Noinaj, Nicholas; Guillier, Maude; Barnard, Travis J.; Buchanan, Susan K.

    2011-01-01

    TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that bind and transport ferric chelates called siderophores, as well as vitamin B12, nickel complexes, and carbohydrates. The transport process requires energy in the form of protonmotive force and a complex of three inner membrane proteins, TonB-ExbB-ExbD, to transduce this energy to the outer membrane. The siderophore substrates range in complexity from simple small molecules such as citrate to large proteins like serum transferrin and haemoglobin. Because iron uptake is vital for almost all bacteria, expression of TBDTs is regulated in a number of ways that include metal-dependent regulators, σ/anti-σ factor systems, small RNAs, and even a riboswitch. In recent years many new structures of TBDTs have been solved in various states, resulting in a more complete picture of siderophore selectivity and binding, signal transduction across the outer membrane, and interaction with TonB-ExbB-ExbD. However, the transport mechanism is still unclear. In this review, we summarize recent progress in understanding regulation, structure and function in TBDTs and questions remaining to be answered. PMID:20420522

  1. TonB-dependent transporters: regulation, structure, and function.

    PubMed

    Noinaj, Nicholas; Guillier, Maude; Barnard, Travis J; Buchanan, Susan K

    2010-01-01

    TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that bind and transport ferric chelates, called siderophores, as well as vitamin B(12), nickel complexes, and carbohydrates. The transport process requires energy in the form of proton motive force and a complex of three inner membrane proteins, TonB-ExbB-ExbD, to transduce this energy to the outer membrane. The siderophore substrates range in complexity from simple small molecules such as citrate to large proteins such as serum transferrin and hemoglobin. Because iron uptake is vital for almost all bacteria, expression of TBDTs is regulated in a number of ways that include metal-dependent regulators, σ/anti-σ factor systems, small RNAs, and even a riboswitch. In recent years, many new structures of TBDTs have been solved in various states, resulting in a more complete understanding of siderophore selectivity and binding, signal transduction across the outer membrane, and interaction with the TonB-ExbB-ExbD complex. However, the transport mechanism is still unclear. In this review, we summarize recent progress in understanding regulation, structure, and function in TBDTs and questions remaining to be answered.

  2. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  3. Functional polymers for anhydrous proton transport

    NASA Astrophysics Data System (ADS)

    Chikkannagari, Nagamani

    Anhydrous proton conducting polymers are highly sought after for applications in high temperature polymer electrolyte membrane fuel cells (PEMFCs). N-heterocycles (eg. imidazole, triazole, and benzimidazole), owing to their amphoteric nature, have been widely studied to develop efficient anhydrous proton transporting polymers. The proton conductivity of N-heterocyclic polymers is influenced by several factors and the design and development of polymers with a delicate balance among various synergistic and competing factors to provide appreciable proton conductivities has been a challenging task. In this thesis, the proton transport (PT) characteristics of polymers functionalized with two diverse classes of functional groups--- N-heterocycles and phenols have been investigated and efforts have been made to develop the molecular design criteria for the design and development of efficient proton transporting functional groups and polymers. The proton conduction pathway in 1H-1,2,3-triazole polymers is probed by employing structurally analogous N-heterocyclic (triazole, imidazole, and pyrazole) and benz-N-heterocyclic (benzotriazole, benzimidazole, and benzopyrazole) polymers. Imidazole-like pathway was found to dominate the proton conductivity of triazole and pyrazole-like pathway makes only a negligible contribution, if any. Polymers containing benz-N-heterocycles exhibited higher proton conductivity than those with the corresponding N-heterocycles. Pyrazole-like functional groups, i.e. the molecules with two nitrogen atoms adjacent to each other, were found not to be good candidates for PT applications. A new class of proton transporting functional groups, phenols, has been introduced for anhydrous PT. One of the highlighting features of phenols over N-heterocycles is that the hydrogen bond donor/acceptor reorientation can happen on a single -OH site, allowing for facile reorientational dynamics in Grotthuss PT and enhanced proton conductivities in phenolic polymers

  4. Amiloride transport in rabbit renal brush-border membrane vesicles

    SciTech Connect

    Wright, S.H.; Wunz, T.M.

    1989-03-01

    Rabbit renal brush-border membrane vesicles (BBMV) were used to study amiloride transport across the luminal membrane of proximal tubular cells. An outwardly directed H+ gradient (pHi 6.0; pHo 7.5) stimulated 8 microM (/sup 14/C)-amiloride uptake into BBMV and supported a transient active accumulation of substrate consistent with the presence of an amiloride-H+ exchange process. Uptake was inhibited, in the presence or absence of a pH gradient, by 1 mM unlabeled amiloride or 20 mM tetraethylammonium (TEA). Amiloride transport was not directly affected by the presence of 100 mM Na+ in the extravesicular medium, suggesting that Na-H exchange did not mediate amiloride flux. Amiloride transport was a saturable process with a maximal flux (under pH gradient conditions) of 3 nmol.mg-1.min-1 and an apparent Kt of 8 microM. TEA acted as a competitive inhibitor of this process with an apparent Ki of approximately 80 microM, similar to the Kt of TEA transport via the TEA-H+ exchanger. Likewise, amiloride acted as a competitive inhibitor of TEA uptake with an apparent Ki of approximately 11 microM. Preloading BBMV with 1-2 mM TEA stimulated the rate of amiloride uptake and supported a transient active accumulation of amiloride. We conclude that amiloride and TEA are transported by a common pathway in BBMV, which involves a carrier-mediated exchange with H+ and which may play a role in the tubular secretion of these compounds.

  5. Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes

    NASA Astrophysics Data System (ADS)

    Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.

    2016-12-01

    The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.

  6. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity.

    PubMed

    Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-04-01

    Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.

  7. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    NASA Astrophysics Data System (ADS)

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2013-11-01

    Graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that γ-graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13 L/cm2/day/MPa, 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore size. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membranes.

  8. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    PubMed Central

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2013-01-01

    Graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that γ-graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13 L/cm2/day/MPa, 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore size. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membranes. PMID:24196437

  9. Study of transport through an electro responsive polymer membrane

    NASA Astrophysics Data System (ADS)

    Das, D.; Datta, A.; Contractor, A. Q.

    2015-02-01

    Conducting polymers have been used widely for development of several electronic, sensing devices because of its electro active nature. In the present work porous polycarbonate (PC) support was coated with a thin gold layer. An electrochemically synthesized polyaniline (PANI) film was deposited on gold coated PC and characterisation was done by field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). For measuring the concentration of potassium ion (K+) inductively coupled plasma atomic emission spectrometry (ICP-AES) was used. Potassium ion transport across PANI membrane at various potential showed the gradual opening of the coiled PANI. In this work an effort has been given to picture the situation in the membrane electrolyte junction on application of potential.

  10. A new mechanism for membrane iron transport in Pseudomonas aeruginosa.

    PubMed

    Schalk, I J; Abdallah, M A; Pattus, F

    2002-08-01

    Various biochemical and biophysical studies have demonstrated the existence of a novel iron-uptake mechanism in Pseudomonas aeruginosa, different from that generally described for ferrichrome and ferric-enterobactin in Escherichia coli. This new iron-uptake mechanism involves all the proteins generally reported to be involved in the uptake of ferric-siderophore complexes in Gram-negative bacteria (i.e. the outer membrane receptor, periplasmic binding protein and ATP-binding-cassette transporter), but differs in the behaviour of the siderophore. One of the key features of this process is the binding of iron-free pyoverdin to the outer membrane receptor FpvA in conditions of iron deficiency.

  11. Mechanisms of calcium transport in human colonic basolateral membrane vesicles.

    PubMed

    Saksena, Seema; Ammar, Mohammad S; Tyagi, Sangeeta; Elsharydah, Ahmed; Gill, Ravinder K; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2002-10-01

    Human colon has been suggested to play an important role in calcium absorption especially after extensive disease or resection of the small intestine. We have previously demonstrated the presence of a carrier-mediated calcium uptake mechanism in the human colonic luminal membrane vesicles. Current studies were, therefore, undertaken to investigate the mechanism(s) of calcium exit across the basolateral membrane domain of the human colon. Human colonic basolateral membrane vesicles (BLMVs) were isolated and purified from mucosal scrapings of organ donor colons, utilizing a technique developed in our laboratory. 45Ca uptake was measured by a rapid filtration technique. 45Ca uptake represented transport into the intravesicular space as evidenced by an osmolarity study and by the demonstration of Ca2' efflux from calcium preloaded vesicles by Ca2+ ionophore A23187. Calcium uptake was stimulated by Mg2+ ATP. The kinetic parameters for ATP-dependent Ca2+ uptake revealed saturation kinetics with Michaelis constant (Km) of 0.22 +/- 0.04 microM and a maximum rate of uptake (Vmax) of 0.38 +/- 0.12 nmol/mg protein/min. The Km of ATP concentration required for half maximal Ca2+ uptake was 0.39 +/- 0.04 mM. ATP-stimulated calcium uptake into these vesicles was further stimulated in the presence of calmodulin and was inhibited by calmodulin antagonist, trifluoperazine. Uptake of 45Ca into BLMVs was markedly inhibited by cis-Na+ but was significantly stimulated by trans-Na+ (40-50% stimulation). Our results demonstrate the presence of a Mg2+/ATP-dependent calmodulin-regulated Ca2+ transport system and a Na+-Ca2+ exchange process in the human colonic basolateral membranes.

  12. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    NASA Astrophysics Data System (ADS)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  13. Intrinsic limitations of spin transport in 2D membranes

    NASA Astrophysics Data System (ADS)

    Song, Yang

    2014-03-01

    Two dimensional membranes have become the playground for both theorists and experimentalists due to their unique intrinsic properties emerged from simple lattice structures. They are the new focus of spintronic applications. Therefore, it is important that we have a clear view of the relaxation processes in spin transport, limited by their intrinsic and symmetry structures. In this talk, we present our findings by systematically applying group theory to the coupling of phonons and transport carriers in spin-dependent scattering. Scattering by phonon is amplified in 2D membranes due to its unique and populous flexural mode. Opposite spin coupling by one flexural phonon is allowed by symmetry, unlike the momentum scattering by higher-order two flexural phonons. Furthermore, we specifically discuss the ultrafast electron spin relaxation in single-layer transition metal dichalcogenides (SL-TMDs). The additional factor stems from the decoupling of tiny conduction band spin splitting and the large spin scattering constant. The former results from conduction band orbital orientation, while the latter comes from inter-band coupling and reflects the atomic SOC strength. We will present that the essential use of group theory (invariant quantities) elucidates various spin-dependent selection rules of electron/hole-phonon interaction, within and between all relevant band-valley edges. Multiple potential applications of the derived results can be explored in transport problems, such as the strain effects, spin Gunn effect, hot exciton dynamics, and the scattering angle and spin anisotropy dependence. We compare different 2D membranes (graphene, SL-TMD, silicene and germanene) from general consideration of the lattice and band-edge symmetries. This work is supported by NRI-NSF, NSF, and DTRA Contracts No. DMR-1124601, No. ECCS-1231570, and No. HDTRA1-13-1-0013, respectively.

  14. FOOD VACUOLE MEMBRANE GROWTH WITH MICROTUBULE-ASSOCIATED MEMBRANE TRANSPORT IN PARAMECIUM

    PubMed Central

    Allen, Richard D.

    1974-01-01

    Evidence from a morphological study of the oral apparatus of Paramecium caudatum using electron microscope techniques have shown the existence of an elaborate structural system which is apparently designed to recycle digestive-vacuole membrane. Disk-shaped vesicles are filtered out of the cytoplasm by a group of microtubular ribbons. The vesicles, after being transported to the cytostome-cytopharynx region in association with these ribbons, accumulate next to the cytopharynx before they become fused with the cytopharyngeal membrane. This fusion allows the nascent food vacuole to grow and increase its membrane surface area. The morphology of this cytostome-cytopharynx region is described in detail and illustrated with a three-dimensional drawing of a portion of this region and a clay sculpture of the oral apparatus of Paramecium. Evidence from the literature for the transformation of food vacuole membrane into disk-shaped vesicles both from condensing food vacuoles in the endoplasm and from egested food vacuoles at the cytoproct is presented. This transformation would complete a system of digestive vacuole membrane recycling. PMID:4373478

  15. Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

    PubMed Central

    Bell, David C.; Cohen-Karni, Tzahi; Rosenstein, Jacob K.; Wanunu, Meni

    2016-01-01

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2–7 nm thick) free-standing hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore. PMID:24083444

  16. Slow DNA transport through nanopores in hafnium oxide membranes.

    PubMed

    Larkin, Joseph; Henley, Robert; Bell, David C; Cohen-Karni, Tzahi; Rosenstein, Jacob K; Wanunu, Meni

    2013-11-26

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2-7 nm thick) freestanding hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore.

  17. Novel macrocyclic carriers for proton-coupled liquid membrane transport

    SciTech Connect

    Lamb, J.D.; Bradshaw, J.S.; Izatt, R.M.

    1992-07-01

    A number of new macrocyclic ligands was prepared for transport studies. The cryptands were prpepared (18-40% yield) by a new metal carbonate-catalyzed one-step method from 1 mole oligoethyleneoxy diamine and 2 moles diahlide derivative of oligoethylene glycol. Bis-crown ethers were also isolated in 17-30% yields. Cage compounds were also prepared; they interact with various metal ions and protons. Back extraction and dual module hollow fiber membrane separation experiments were used to study the cation selectivity of new ligands, including crown thioethers. An isothermal flow calorimeter is being constructed for studies of macrocycle-cation reactions. 3 figs, 2 tabs.

  18. Protein Mediators of Sterol Transport Across Intestinal Brush Border Membrane

    PubMed Central

    Brown, J. Mark; Yu, Liqing

    2012-01-01

    Dysregulation of cholesterol balance contributes significantly to atherosclerotic cardiovascular disease (ASCVD), the leading cause of death in the United States. The intestine has the unique capability to act as a gatekeeper for entry of cholesterol into the body, and inhibition of intestinal cholesterol absorption is now widely regarded as an attractive non-statin therapeutic strategy for ASCVD prevention. In this chapter we discuss the current state of knowledge regarding sterol transport across the intestinal brush border membrane. The purpose of this work is to summarize substantial progress made in the last decade in regards to protein-mediated sterol trafficking, and to discuss this in the context of human disease. PMID:20213550

  19. Membrane vesicles: A simplified system for studying auxin transport

    SciTech Connect

    Goldsmith, M.H.M.

    1989-01-01

    Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA[sup [minus

  20. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  1. Erythrocyte membrane transporters during human ageing: modulatory role of tea catechins.

    PubMed

    Pandey, Kanti Bhooshan; Jha, Rashmi; Rizvi, Syed Ibrahim

    2013-02-01

    Ageing is associated with many physiological and cellular changes, many of which are due to alterations in the plasma membrane. The functions of membrane transporter proteins are crucial for the maintenance of ionic homeostasis between the extra- and intracellular environments. The aim of the present study was to determine the status of erythrocyte membrane transporters, specifically Ca(2+) -ATPases, Na(+) /K(+) -ATPases and the Na(+) /H(+) exchanger (NHE), during ageing in humans. Furthermore, because tea catechins have been reported to possess strong anti-oxidant potential, the study was extended to evaluate the effect of (-)-epicatechin (EC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG) on these transporters as a function of human age. The study was performed on 97 normal healthy subjects (62 men, 35 women; 16-80 years old). To investigate the effects of tea catechins, subjects were divided into three groups: young (<40 years old; n = 34); middle-aged (40-60 years old; n = 32); and old (>60 years old; n = 31). Erythrocyte ghosts/cell suspension from each group were incubated with ECG, EGCG, EGC and EC (10 μmol/L) for 30 min at 37°C prior to assay. Ageing significantly increased NHE activity and decreased Ca(2+) -ATPase activity. There were no significant changes in Na(+) /K(+) -ATPase activity during the ageing process. (-)-Epigallocatechin-3-gallate, EGC, ECG and EC effectively mitigated the changes in membrane transporter activity in erythrocytes from all age groups; however, the effect was more pronounced in the old age group. We hypothesize that impairment in -bound transporters may be one of the possible mechanisms underlying the pathological events during ageing. A higher intake of catechin-rich food may provide some protection against age-dependent diseases.

  2. Integral membrane proteins of the chloroplast envelope: Identification and subcellular localization of new transporters

    PubMed Central

    Ferro, Myriam; Salvi, Daniel; Rivière-Rolland, Hélène; Vermat, Thierry; Seigneurin-Berny, Daphné; Grunwald, Didier; Garin, Jérôme; Joyard, Jacques; Rolland, Norbert

    2002-01-01

    A two-membrane system, or envelope, surrounds plastids. Because of the integration of chloroplast metabolism within the plant cell, the envelope is the site of many specific transport activities. However, only a few proteins involved in the processes of transport across the chloroplast envelope have been identified already at the molecular level. To discover new envelope transporters, we developed a subcellular proteomic approach, which is aimed to identify the most hydrophobic envelope proteins. This strategy combined the use of highly purified and characterized membrane fractions, extraction of the hydrophobic proteins with organic solvents, SDS/PAGE separation, and tandem mass spectrometry analysis. To process the large amount of MS/MS data, a blast-based program was developed for searching in protein, expressed sequence tag, and genomic plant databases. Among the 54 identified proteins, 27 were new envelope proteins, with most of them bearing multiple α-helical transmembrane regions and being very likely envelope transporters. The present proteomic study also allowed us to identify common features among the known and newly identified putative envelope inner membrane transporters. These features were used to mine the complete Arabidopsis genome and allowed us to establish a virtual plastid envelope integral protein database. Altogether, both proteomic and in silico approaches identified more than 50 candidates for the as yet previously uncharacterized plastid envelope transporters. The predictable function of some of these proteins opens up areas of investigation that may lead to a better understanding of the chloroplast metabolism. The present subcellular proteomic approach is amenable to the analysis of the hydrophobic core of other intracellular membrane systems. PMID:12177442

  3. Chemical Genetics in Dissecting Membrane Glycerolipid Functions.

    PubMed

    Chevalier, Florian; Carrera, Laura Cuyàs; Nussaume, Laurent; Maréchal, Eric

    2016-01-01

    Chemical genetics has emerged as a powerful approach to dissect biological processes, based on the utilization of small molecules disturbing the function of specific target proteins. By analogy with classical genetics, 'reverse chemical genetics' refers to the utilization of drugs acting on a known target, enabling its functional characterization at the levels of the cells, tissues and organisms. Likewise, 'direct chemical genetics' refers to the utilization of a drug of unknown mode of action, but triggering a phenotype of interest. In that case, one has to identify the target(s) possibly blocked (or possibly activated) by the small molecule. This chapter illustrates both approaches, like the analysis of the elongation of fatty acids, the biosynthesis of galactoglycerolipids or the catabolism of phosphoglycerolipids by reverse chemical genetics or the study of the membrane glycerolipid remodeling triggered upon phosphate starvation, by direct chemical genetics.

  4. Chemical biology approaches to membrane homeostasis and function.

    PubMed

    Takahashi-Umebayashi, Miwa; Pineau, Ludovic; Hannich, Thomas; Zumbuehl, Andreas; Doval, David Alonso; Matile, Stefan; Heinis, Christian; Turcatti, Gerardo; Loewith, Robbie; Roux, Aurélien; Reymond, Luc; Johnsson, Kai; Riezman, Howard

    2011-01-01

    The study of membranes is at a turning point. New theories about membrane structure and function have recently been proposed, however, new technologies, combining chemical, physical, and biochemical approaches are necessary to test these hypotheses. In particular, the NCCR in chemical biology aims to visualize and characterize membrane microdomains and determine their function during hormone signaling.

  5. Transport of copper ammines through a cation-exchange membrane during electrodialysis

    SciTech Connect

    Kireeva, L.D.; Shaposhnik, V.A.; Sorokina, V.I.

    1987-09-10

    Extraction of copper ammine complexes from waste waters in electroplating technology and in production of cuprammonium fibers is an important problem and electrodialysis with ion-exchange membranes is the most promising method of solving it. The authors aim was to study transport of copper(II) ammines through a commercial cation-exchange membrane of the MK-40 type. The electrodialyzer consisted of five Plexiglas compartments separated in alternating order by MK-40 cation-exchange and MA-40 anion-exchange membranes. The authors studied the dependence of the transport of copper(II) ammine complexes on the current density at copper concentration 0.025 M in the desalination compartment and 0.15 M ammonia concentration. The experiments lead to the conclusion that electrodialysis of copper(II) ammine complexes is possible only at current densities below the limiting values and that the transport is accompanied by decrease of the formation function of the complexes both in the membrane and in the solution of the concentrate receiving compartment.

  6. Functional transformations of bile acid transporters induced by high-affinity macromolecules

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Alam, Farzana; Park, Jooho; Lee, Kyung Eun; Jeon, Hyesung; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, In-San; Kim, Sang Yoon; Byun, Youngro

    2014-01-01

    Apical sodium-dependent bile acid transporters (ASBT) are the intestinal transporters that form intermediate complexes with substrates and its conformational change drives the movement of substrates across the cell membrane. However, membrane-based intestinal transporters are confined to the transport of only small molecular substrates. Here, we propose a new strategy that uses high-affinity binding macromolecular substrates to functionally transform the membrane transporters so that they behave like receptors, ultimately allowing the apical-basal transport of bound macromolecules. Bile acid based macromolecular substrates were synthesized and allowed to interact with ASBT. ASBT/macromolecular substrate complexes were rapidly internalized in vesicles, localized in early endosomes, dissociated and escaped the vesicular transport while binding of cytoplasmic ileal bile acid binding proteins cause exocytosis of macromolecules and prevented entry into lysosomes. This newly found transformation process of ASBT suggests a new transport mechanism that could aid in further utilization of ASBT to mediate oral macromolecular drug delivery. PMID:24566561

  7. Functional transformations of bile acid transporters induced by high-affinity macromolecules.

    PubMed

    Al-Hilal, Taslim A; Chung, Seung Woo; Alam, Farzana; Park, Jooho; Lee, Kyung Eun; Jeon, Hyesung; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, In-San; Kim, Sang Yoon; Byun, Youngro

    2014-02-25

    Apical sodium-dependent bile acid transporters (ASBT) are the intestinal transporters that form intermediate complexes with substrates and its conformational change drives the movement of substrates across the cell membrane. However, membrane-based intestinal transporters are confined to the transport of only small molecular substrates. Here, we propose a new strategy that uses high-affinity binding macromolecular substrates to functionally transform the membrane transporters so that they behave like receptors, ultimately allowing the apical-basal transport of bound macromolecules. Bile acid based macromolecular substrates were synthesized and allowed to interact with ASBT. ASBT/macromolecular substrate complexes were rapidly internalized in vesicles, localized in early endosomes, dissociated and escaped the vesicular transport while binding of cytoplasmic ileal bile acid binding proteins cause exocytosis of macromolecules and prevented entry into lysosomes. This newly found transformation process of ASBT suggests a new transport mechanism that could aid in further utilization of ASBT to mediate oral macromolecular drug delivery.

  8. The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.

    PubMed

    McCoy, Jason G; Ren, Zhenning; Stanevich, Vitali; Lee, Jumin; Mitra, Sharmistha; Levin, Elena J; Poget, Sebastien; Quick, Matthias; Im, Wonpil; Zhou, Ming

    2016-06-07

    The phosphoenolpyruvate:carbohydrate phosphotransferase systems are found in bacteria, where they play central roles in sugar uptake and regulation of cellular uptake processes. Little is known about how the membrane-embedded components (EIICs) selectively mediate the passage of carbohydrates across the membrane. Here we report the functional characterization and 2.55-Å resolution structure of a maltose transporter, bcMalT, belonging to the glucose superfamily of EIIC transporters. bcMalT crystallized in an outward-facing occluded conformation, in contrast to the structure of another glucose superfamily EIIC, bcChbC, which crystallized in an inward-facing occluded conformation. The structures differ in the position of a structurally conserved substrate-binding domain that is suggested to play a central role in sugar transport. In addition, molecular dynamics simulations suggest a potential pathway for substrate entry from the periplasm into the bcMalT substrate-binding site. These results provide a mechanistic framework for understanding substrate recognition and translocation for the glucose superfamily EIIC transporters.

  9. High Affinity S-Adenosylmethionine Plasma Membrane Transporter of Leishmania Is a Member of the Folate Biopterin Transporter (FBT) Family*

    PubMed Central

    Dridi, Larbi; Ahmed Ouameur, Amin; Ouellette, Marc

    2010-01-01

    S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms. PMID:20406813

  10. The properties of the outer membrane localized Lipid A transporter LptD

    NASA Astrophysics Data System (ADS)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico

    2010-11-01

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  11. Calcium and proton transport in membrane vesicles from barley roots

    SciTech Connect

    DuPont, F.M.; Windle, J.J. ); Bush, D.S.; Jones, R.L. )

    1990-09-01

    Ca{sup 2+} uptake by membrane fractions from barley (Hordeum vulgare L. cv CM72) roots was characterized. Uptake of {sup 45}Ca{sup 2+} was measured in membrane vesicles obtained from continuous and discontinuous sucrose gradients. A single, large peak of Ca{sup 2+} uptake coincided with the peak of proton transport by the tonoplast H{sup +}-ATPase. Depending on the concentration of Ca{sup 2+} in the assay, Ca{sup 2+} uptake was inhibited 50 to 75% by those combinations of ionophores and solutes that eliminated the pH gradient and membrane potential. However, 25 to 50% of the Ca{sup 2+} uptake in the tonoplast-enriched fraction was not sensitive to ionophores but was inhibited by vanadate. The results suggest that {sup 45}Ca uptake was driven by the low affinity, high capacity tonoplast Ca{sup 2+}/nH{sup +} antiporter and also by a high affinity, lower capacity Ca{sup 2+}-ATPase. The Ca{sup 2+}-ATPase may be associated with tonoplast, Golgi or contaminating vesicles of unknown origin. No Ca{sup 2+} transport was specifically associated with the distinct peak of endoplasmic reticulum that was identified by NADH cytochrome c reductase, choline phosphotransferase, and dolichol-P-mannosyl synthase activities. A small shoulder of Ca{sup 2+} uptake in the plasma membrane region of the gradient was inhibited by vanadate and erythrosin B and may represent the activity of a separate plasma membrane Ca{sup 2+}-ATPase. Vesicle volumes were estimated using electron spin resonance techniques, and intravesicular Ca{sup 2+} concentrations were estimated to be as high as 5 millimolar. ATP-driven uptake of Ca{sup 2+} created 800- to 2,000-fold concentration gradients within minutes. Problems in interpreting the effects of Ca{sup 2+} on ATP-generated pH gradients are discussed and the suggestion is made that Ca{sup 2+} dissipates pH gradients by a different mechanism than is responsible for Ca{sup 2+} uptake into tonoplast vesicles.

  12. Bio-functionalized Nanotube Membranes For DNA Separation

    NASA Astrophysics Data System (ADS)

    Kohli, Punit

    2006-03-01

    The studies of translocation and transport of ions, biopolymers, and other genetics materials is very important in medical and scientific communities. The transport of biopolymers such as RNA, DNA, and polypeptides across membrane occurs in many biological systems. Examples include the transport of RNA molecules and transcription factors through nuclear pores, injection of DNA from a virus head into the host cell, and the uptake of oligonucleotides by specific membrane proteins. Another example is the transport of ions through protein ion channels across cell membranes, which converts the concentration of transported analytes through a channel into change in channel conductance. Nature's highly selective biosensor are based on molecular-recognition of one species of interest in the presence of others. In this presentation, I will discuss the fabrication of a new DNA biosensor. I will also talk about the transport behavior of DNA molecules through nanotubes. These sensors based on monodisperse ensemble of gold nanotubes. Single stranded oligonucleotides were immobilized onto the inner walls of nanotubes. These bio/nano-membranes selectively transport complementary DNA across the membrane with selectivity greater than 5 was observed. With these membranes, single nucleotide polymorphism detection is also demonstrated.

  13. A folded protein can be transported across the chloroplast envelope and thylakoid membranes.

    PubMed Central

    Clark, S A; Theg, S M

    1997-01-01

    Many thylakoid lumenal proteins are nuclear encoded, cytosolically synthesized, and reach their functional location after posttranslational targeting across two chloroplast envelope membranes and the thylakoid membrane via proteinaceous transport systems. To study whether these transmembrane transport machineries can translocate folded structures, we overexpressed the 17-kDa subunit of the oxygen-evolving complex of photosystem II (prOE17) that had been modified to contain a unique C-terminal cysteine. This allowed us to chemically link a terminal 6.5-kDa bovine pancreatic trypsin inhibitor (BPTI) moiety to prOE17 to create the chimeric protein prOE17-BPTI. Redox reagents and an irreversible sulfhydryl-specific cross-linker, bis-maleimidohexane, were used to manipulate the structure of BPTI. Import of prOE17-BPTI into isolated chloroplasts and thylakoids demonstrates that the small tightly folded BPTI domain is carried across both the chloroplast envelopes and the delta pH-dependent transmembrane transporter of the thylakoid membrane when linked to the correctly targeted OE17 precursor. Transport proceeded even when the BPTI moiety was internally cross-linked into a protease-resistant form. These data indicate that unfolding is not a ubiquitous requirement for protein translocation and that at least some domains of targeted proteins can maintain a nonlinear structure during their translocation into and within chloroplasts. Images PMID:9168475

  14. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport.

    PubMed

    Numata, Tomohiro; Murakami, Tatsuya; Kawashima, Fumiaki; Morone, Nobuhiro; Heuser, John E; Takano, Yuta; Ohkubo, Kei; Fukuzumi, Shunichi; Mori, Yasuo; Imahori, Hiroshi

    2012-04-11

    The control of ion transport across cell membranes by light is an attractive strategy that allows targeted, fast control of precisely defined events in the biological membrane. Here we report a novel general strategy for the control of membrane potential and ion transport by using charge-separation molecules and light. Delivery of charge-separation molecules to the plasma membrane of PC12 cells by a membranous nanocarrier and subsequent light irradiation led to depolarization of the membrane potential as well as inhibition of the potassium ion flow across the membrane. Photoregulation of the cell membrane potential and ion transport by using charge-separation molecules is highly promising for control of cell functions. © 2012 American Chemical Society

  15. Placental development and expression of calcium transporting proteins in the extraembryonic membranes of a placentotrophic lizard.

    PubMed

    Stinnett, Haley K; Stewart, James R; Ecay, Tom W; Pyles, Rebecca A; Herbert, Jacquie F; Thompson, Michael B

    2012-03-01

    Pseudemoia pagenstecheri is a viviparous Australian scincid lizard in which the maternal-embryonic placental interface is differentiated into structurally distinct regions. The chorioallantoic placenta contains an elliptical-shaped region, the placentome, characterized by hypertrophied uterine and embryonic epithelial cells supported by dense vascular networks. The remainder of the chorioallantoic placenta, the paraplacentome, is also highly vascularized but uterine and chorionic epithelia are thin. An omphaloplacenta with hypertrophied epithelia is located in the abembryonic hemisphere of the egg. There is extensive placental transport of organic and inorganic nutrients, e.g., 85-90% of neonatal calcium is received via placental transfer. Calcium uptake by extraembryonic membranes of squamates correlates with expression of the intracellular calcium binding protein, calbindin-D(28K) , and plasma membrane calcium ATPase (PMCA) is a marker for active calcium transport. We estimated expression of calbindin-D(28K) and PMCA in the chorioallantoic membrane in a developmental series of embryos using immunoblotting and used immunohistochemistry to define the cellular localization of calbindin-D(28K) to test the hypotheses that 1) expression of calcium transporting proteins is coincident with placental transport of calcium and 2) the placenta is functionally specialized for calcium transport in regions of structural differentiation. Calbindin-D(28K) and PMCA were detected at low levels in early stages of development and increased significantly prior to birth, when embryonic calcium uptake peaks. These data support the hypothesis that placental calcium secretion occurs over an extended interval of gestation, with increasing activity as embryonic demand escalates in late development. In addition, calbindin-D(28K) expression is localized in chorionic epithelial cells of the placentome and in the epithelium of the omphalopleure of the omphaloplacenta, which supports the

  16. Electrical resistance and transport numbers of ion-exchange membranes used in electrodialytic soil remediation

    SciTech Connect

    Hansen, H.K.; Ottosen, L.M.; Villumsen, A.

    1999-08-01

    Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to known if this contact with the soil causes damage to the membrane. This work presents the result of transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc CR67 HMR412 cation-exchange membranes and Ionics, Inc AR204 SXZR anion-exchange membranes), which have been used in four different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new membranes, whereas two membranes showed a slightly increased resistance.

  17. Transport of Water in Semicrystalline Block Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  18. Towards Co-evolution of Membrane Transport and Metabolism

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Pohorille, Andrzej

    2014-01-01

    Protocellular boundaries were inextricably connected to the metabolism they encapsulated: to be inheritable, early metabolism must have led to an increased rate of growth and division of vesicles and, similarly, transport through vesicle boundaries must have supported the evolution of metabolism. Even though explaining how this coupling emerged and evolved in the absence of the complex machinery of modern cells is one of the key issues in studies on the origin of life, little is known about the biochemical and biophysical processes that might have been involved. This gap in our knowledge is a major impediment in efforts to construct scenarios for the origin of life and laboratory models of protocells. A combination of experimental and computational studies carried out by us and our collaborators is aimed at helping to close this gap. Properties of membranes might have contributed to the selection of RNA as an early biopolymer. A kinetic mechanism was proposed (Sacerdote & Szostak, 2005) in which ribose was s